Journal of Machine Learning Research 12 (2011) 3431-3466 bm&ted 12/10; Revised 11/11; Published 12/11

Convergence of Distributed Asynchronous Learning Vector
Quantization Algorithms

Bendt Patra* BENOIT.PATRA@UPMC.FR
LSTA

Universié Pierre et Marie Curie — Paris VI

Tour 15-25, 4 place Jussieu

75252 Paris cedex 05, France

Editor: Gabor Lugosi

Abstract

Motivated by the problem of effectively executing clustgrialgorithms on very large data sets,
we address a model for large scale distributed clusterindpons. To this end, we briefly recall
some standards on the quantization problem and some renulie almost sure convergence of the
competitive learning vector quantization (CLVQ) procezluh general model for linear distributed
asynchronous algorithms well adapted to several paraltaputing architectures is also discussed.
Our approach brings together this scalable model and th&Gilgorithm, and we call the resulting
technique the distributed asynchronous learning vectantization algorithm (DALVQ). An in-
depth analysis of the almost sure convergence of the DAL\YQrahm is performed. A striking
result is that we prove that the multiple versions of the dizars distributed among the processors
in the parallel architecture asymptotically reach a cosssralmost surely. Furthermore, we also
show that these versions converge almost surely towardsaime nearly optimal value for the
guantization criterion.

Keywords: k-means, vector quantization, distributed, asynchromstoshastic optimization, scal-
ability, distributed consensus

1. Introduction

Distributed algorithms arise in a wide range of applications, including telecomationis, dis-
tributed information processing, scientific computing, real time processat@rtd many others.
Parallelization is one of the most promising ways to harness greater compesingrces, whereas
building faster serial computers is increasingly expensive and alss $acee physical limits such
as transmission speeds and miniaturization. One of the challenges prdpos&athine learning
is to build scalable applications that quickly process large amounts of datalissoated ways.
Building such large scale algorithms attacks several problems in a distribateéwork, such as
communication delays in the network or numerous problems caused by the Ewkred memory.
Clustering algorithms are one of the primary tools of unsupervised learfkirgn a practical
perspective, clustering plays an outstanding role in data mining applicatichsas text mining,
web analysis, marketing, medical diagnostics, computational biology and otlagss. Clustering
is a separation of data into groups of similar objects. As clustering repsetbendata with fewer
clusters, there is a necessary loss of certain fine details, but simplificatichiesed. The popular
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competitive learning vector quantization (CLVQ) algorithm (see Gershdzmay, 1992) provides a
technique for building reliable clusters characterized by their prototyhepointed out by Bottou
and Bengio (1995), the CLVQ algorithm can also be viewed as the on-lis®weof the widespread
Lloyd’s method (see Lloyd 2003, for the definition) which is referred tbashk-means in Bottou
and Bengio (1995). The CLVQ also belongs to the class of stochastiegtatescent algorithms
(for more information on stochastic gradient descent proceduresfertine reader to Benveniste
et al. 1990).

The analysis of parallel stochastic gradient procedures in a machimgnigarontext has re-
cently received a great deal of attention (see for instance Zinkevah 2209 and McDonald et al.
2010). In the present paper, we go further by introducing a modebtirags together the original
CLVQ algorithm and the comprehensive theory of asynchronous pdialar algorithms devel-
oped by Tsitsiklis (1984), Tsitsiklis et al. (1986) and Bertsekas and Tigt$l©089). The resulting
model will be called distributed asynchronous learning vector quantizdad&h\(Q for short). Ata
high level, the DALVQ algorithm parallelizes several executions of the Ciowéghod concurrently
on different processors while the results of these algorithms are lasiaihcough the distributed
framework asynchronously and efficiently. Here, the term processers to any computing in-
stance in a distributed architecture (see Bullo et al. 2009, chap. 1, fordetais). Let us remark
that there is a series of publications similar in spirit to this paper. Indeed st&ret al. (2009)
and in Durham et al. (2009), a coverage control problem is formulateoh aptimization problem
where the functional cost to be minimized is the same of the quantization protaéad & this
manuscript.

Let us provide a brief mathematical introduction to the CLVQ technique and@ARlgo-
rithms. The first technique computes quantization schemel fdimensional samples;,z,, ...
using the following iterations on @R%)" vector,

w(t+1) =w(t) —&41H (ze11,wW(t)), t>0.

In the equation abovey(0) € (Rd)K and theg; are positive reals. The vectbir(z, w) is the opposite
of the difference between the sampleand its nearest componentim Assume that there are
M computing entities, the data are split among the memory of these machhr;e‘g..., where

i € {1,...,M}. Therefore, the DALVQ algorithms are defined by Méterations{w/ (t)}* o, called
versions, satisfying (with slight simplifications)

W(t+1) = iai’j(t)wj (t(t) — € 4H (Z,1,W (1)), i€{1,...,M}andt>0.
£

The time instantg™I (t) > 0 are deterministic but unknown and the delays satisfy the inequality
t—T1"I(t) > 0. The families{a"I(t)}}; define the weights of convex combinations.

As a striking result, we prove that multiple versions of the quantizers, digtdbamong the
processors in a parallel architecture, asymptotically reach a consalmsost surely. Using the
materials introduced above, it writes

WH(t) —w (1) —=0, (i,j)e{L..., M1}2, almost surely (a.s.).

Furthermore, we also show that these versions converge almost swelg$o(the same) nearly
optimal value for the quantization criterion. These convergence reseltsimarlar in spirit to the
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most satisfactory almost sure convergence theorem for the CLVQ algoatitained by Pags
(1997).

For a given time span, our parallel DALVQ algorithm is able to process muck daia than a
single processor execution of the CLVQ procedure. Moreover, D@li¥also asynchronous. This
means that local algorithms do not have to wait at preset points for masgalgecome available.
This allows some processors to compute faster and execute more iteratiomghtes, and it also
allows communication delays to be substantial and unpredictable. The comtiam@dzwnnels are
also allowed to deliver messages out of order, that is, in a differemr dhdn the one in which
they were transmitted. Asynchronism can provide two major advantages, &neduction of the
synchronization penalty, which could bring a speed advantage overcaArenous execution. Sec-
ond, for potential industrialization, asynchronism has greater implemenfhiahility. Tolerance
to system failures and uncertainty can also be increased. As in the caswibin-line algorithm,
DALVQ also deals with variable data loads over time. In fact, on-line algorithraigldremendous
and non scalable batch requests on all data sets. Moreover, with areaigorithm, new data may
enter the system and be taken into account while the algorithm is alreadpgunn

The paper is organized as follows. In Section 2 we review some staratdsdoh the clustering
problem. We extract the relevant material from &a¢§1997) without proof, thus making our ex-
position self-contained. In Section 3 we give a brief exposition of the mattieah&tamework for
parallel asynchronous gradient methods introduced by Tsitsiklis (198#3iklis et al. (1986) and
Bertsekas and Tsitsiklis (1989). The results of Blondel et al. (2008herasymptotic consensus
in asynchronous parallel averaging problems are also recalled. toi$dc¢ our main results are
stated and proved.

2. Quantization and CLVQ Algorithm

In this section, we describe the mathematical quantization problem and the @ldé€xhm. We
also recall some convergence results for this technique found BsRhg97).

2.1 Overview

Let g be a probability measure diR® with finite second-order moment. The quantization prob-
lem consists in finding a “good approximation” pfoy a set ofk vectors ofRY called quantizer.
Throughout the document tlkequantization points (or prototypes) will be seen as the components
of a (Rd)K-dimensional vectow = (Wi, ...,Wgx). To measure the correctness of a quantization
scheme given bw, one introduces a cost function called distortion, defined by

Cu(w) = ;/ min [|z—wy|2du(z).

R 1<¢<K

Under some minimal assumptions, the existence of an op(inaIK-valued guantizer vectar® €
argming(Rd)KCu(w) has been established by Pollard (1981) (see also Sabin and GrayA[$86,

pendix 2).
In a statistical context, the distributiqnis only known throughn independent random observa-
tionsz,...,z, drawn according tQ. Denote byu, the empirical distribution based @, ..., z,,
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that is, for every Borel subsgétof RY
1 n
“n(A) = - 1 iEAL-
ni; {zieA}

Much attention has been devoted to the convergence study of the quantazieme provided by
the empirical minimizers
w, € argminC,, (w).
we (Rd)"
The almost sure convergence®fiw,) towards mir),_ (R9)" Cu(w) was proved by Pollard (1981,

1982a) and Abaya and Wise (1984). Rates of convergence andymptotic performance bounds
have been considered by Pollard (1982b), Chou (1994), Linddr €t994), Bartlett et al. (1998),
Linder (2001, 2000), Antos (2005) and Antos et al. (2005). Carstece results have been estab-
lished by Biau et al. (2008) whengis a measure on a Hilbert space. It turns out that the mini-
mization of the empirical distortion is a computationally hard problem. As showmalyd et al.
(1994), the computational complexity of this minimization problem is exponentialdmtimber

of quantizerx and the dimension of the datk Therefore, exact computations are intractable for
most of the practical applications.

Based on this, our goal in this document is to investigate effective methogws tiaaice accurate
guantizations with data samples. One of the most popular procedure is ¢ lalgdirithm (see
Lloyd, 2003) sometimes refereed to as bdtaheans. A convergence theorem for this algorithm is
provided by Sabin and Gray (1986). Another celebrated quantizatiomithlign is the competitive
learning vector quantization (CLVQ), also called on-likeneans. The latter acronym outlines
the fact that data arrive over time while the execution of the algorithm and ¢hanacteristics
are unknown until their arrival times. The main difference between the@@hvid the Lloyd’s
algorithm is that the latter run in batch training mode. This means that the wholagraet is
presented before performing an update, whereas the CLVQ algorittsreash item of the training
sequence at each update.

The CLVQ procedure can be seen as a stochastic gradient desegithalg In the more general
context of gradient descent methods, one cannot hope for thergemee of the procedure towards
global minimizers with a non convex objective function (see for instancedaste et al. 1990). In
our quantization context, the distortion mappigs not convex (see for instance Graf and Luschgy
2000). Thus, just as in Lloyd’s method, the iterations provided by the Chl¢Qrithm converge
towards local minima o€,,.

Assuming that the distributignhas a compact support and a bounded density with respect to the
Lebesgue measure, Reg(1997) states a result regarding the almost sure consistency of\ag CL
algorithm towards critical points of the distorti@). The author shows that the set of critical points
necessarily contains the global and local optimal quantizers. The mainuliécin the proof arise
from the fact that the gradient of the distortion is singulaketaples having equal components and
the distortion functiorC, is not convex. This explains why standard theories for stochastic gtadie
algorithm do not apply in this context.

2.2 The Quantization Problem, Basic Properties

In the sequel, we denote hy the closed convex hull of sugp), where suppp) stands for the
support of the distribution. Observe that, with this notation, the distortion mgpgithe function
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C: (RY)" — [0,) defined by

C(W)é;/g min (2w |Pduz). w=(wa.....w) € ()"

1</<k

Throughout the document, with a slight abuse of notatjof,means both the Euclidean norm of
RY or (RY)". In addition, the notatiorD¥ stands for the set of all vector ¢R%)" with pairwise
distinct components, that is,

DKL {WG (Rd)K | wy £ wy if and only if £ k}.

Under some extra assumptionsjghe distortion function can be rewritten using space partition
set called Voronitessellation.

Definition 1 Let we (Rd)K, the Vorond tessellation ofG related to w is the family of open sets
{We(W) }1< < defined as follows:

o Ifwe DK forall 1</ <Kk,
wiw) = {ve 6 | lwi—vl <minlwe v |

o Ifwe (Rd)K\@f,forall 1< <K,

— if £=min{k | wx =w,},
W, (w) = {ve G ‘ lwe — V|| < min ||wkv|]}
Wi Wy

— otherwise, Ww) = 0.

As an illustration, Figure 1 shows Voroinessellations associated to a veatdying in ([0, 1] x
[0,1])°° whose components have been drawn independently and uniformly. Tinie figso high-
lights a remarkable property of the cell borders, which are portions péipjanes (see Graf and
Luschgy, 2000).

Observe that ifi(H) is zero for any hyperplanig of RY (a property which is sometimes referred
to as strong continuity) then using Definition 1, it is easy to see that the disttakien the form:

C(W):lK/ lz—w||2dp(z) we(Rd)K
24; Wi(w) ’ '

The following assumption will be needed throughout the paper. This asgumg similar to
the peak power constraint (see Chou 1994 and Linder 2000). Notentsitof the results of this
subsection are still valid fit satisfies the weaker strong continuity property.

Assumption 1 (Compact supported density)The probability measure i has a bounded density
with respect to the Lebesgue measuréRdn Moreover, the support of p is equal to its convex hull
G, which in turn, is compact.
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Figure 1: Vorondtessellation of 50 points d&? drawn uniformly in a square.

The next proposition states the differentiability of the distort@nand provides an explicit
formula for the gradienflC whenever the distortion is differentiable.

Proposition 1 (Pages 1997)Under Assumption 1, the distortion C is continuously differentiable at
every w= (Wi, ..., W) € D¥. Furthermore, for alll < ¢ <k,

0, C(w) = / (W — 2) dp(2).
W, (w)
Some necessary conditions on the location of the minimize@&azn be derived from its dif-
ferentiability properties. Therefore, Proposition 2 below states that the migrisniC have parted

components and that they are contained in the support of the density, theugradient is well
defined and these minimizers are necessarily some zerdds. dfor the sequel it is convenient to

let A be the interior of any subsétof (RY),

Proposition 2 (Pages 1997)Under Assumption 1, we have

argminC(w) C argminlocC(w) ¢ G* N{OC =0} N D,
WE(Rd)K we G

whereargminlog, ;< C(w) stands for the set of local minimizers of C owf.
For anyz € RY andw € (RY)", let us define the following vector ¢fR?)"
H(z,w) = ((We = 2) T zeww)) ) 1<perc- @)
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On DX, the functionH may be interpreted as an observation of the gradient. With this notation,
Proposition 1 states that

DC(W):/gH(z,W)du(z), we D,

Let CA stands for the complementary (&?)" of a subseA ¢ (RY)". Clearly, for allw € CD¥,
the mappindH (., w) is integrable. Thereforé&)C can be extended o(er)K viathe formula

h(w)é/gH(z,w)du(z), we (RY)*. 2)

Note however that the functidm which is sometimes called the average function of the algorithm,
iS not continuous.

Remark 1 Under Assumption 1, a computation for allavD¥ of the Hessian matrix?C(w) can

be deduced from Theorem 4 of (Fort and Bag1995). In fact, the formula established in this
theorem is valid for cost functions which are more complex than C (theysacited to Kohonen
Self Organizing Maps, see Kohonen 1982 for more details). In Thedyéetting o(k) = 1 x—o;,
provides the result for our distortion C. The resulting formula shows thasigular onCDX and,
consequently, that this function cannot be Lipschitzz8n

2.3 Convergence of the CLVQ Algorithm

The problem of finding a reliable clustering scheme for a data set is égpivia find optimal
(or at least nearly optimal) minimizers for the mappidg A minimization procedure by a usual
gradient descent method cannot be implemented as lohiLas unknown. Thus, the gradient is
approximated by a single example extracted from the data. This leads to theiriiglistochastic
gradient descent procedure

W(t + 1) = W(t> - €t+1H (Zt+17w(t)) , t=> 07 (3)

wherew(0) € G“ N DX andzy,z,... are independent observations distributed according to the
probability measure.

The algorithm defined by the iterations (3) is known as the CLVQ algorithm idakee analysis
community. It is also called the Kohonen Self Organizing Map algorithm with Ohixeig(see for
instance Kohonen 1982) or the on-likeneans procedure (see MacQueen 1967 and Bottou 1998)
in various fields related to statistics. As outlined by &am Pags (1997), this algorithm belongs
to the class of stochastic gradient descent methods. However, the almmsbsvergence of this
type of algorithm cannot be obtained by general tools such as Robkinseihethod (see Robbins
and Monro, 1951) or the Kushner-Clark's Theorem (see KushnérGlark, 1978). Indeed, the
main difficulty essentially arises from the non convexity of the func@orits non coercivity and
the singularity oh atCD¥ (we refer the reader to Pag 1997, Section 6, for more details).

The following assumption set is standard in a gradient descent contelasittally upraises
constraints on the decreasing speed of the sequence of{st¢fs.

Assumption 2 (Decreasing steps)he (0,1)-valued sequencég; },., satisfies the following two
constraints:
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l. z;’ozost = 00,
2. 3208
- 2t=0& <.

An examination of identities (3) and (1) reveals thatif, € W, (w(t)), where the integer
loe{1,...,M} then
Wi (t+1) = (1—€t11) Weo (1) +Er412t42.
The componentv,,(t + 1) can be viewed as the imagewf, (t) by az 1-centered homothety with
ratio 1— &1 (Figure 2 provides an illustration of this fact). Thus, under Assumptionsll2athe

trajectories ofw(t) },-, stay inG* N DX. More precisely, if

w(0) € G* N D

then
w(t) e G*N DY, t>0,a.s.

Figure 2: Drawing of a portion of a 2-dimensional Vordrnessellation. Fot > O, if the vector
Zi 41 € Wy, (W(t)) thenw(t + 1) = wy(t) for all £ # ¢ andwy,(t + 1) lies in the segment
[We,(t),zi+1]. The update of the vectow,(t) can also be viewed as & i-centered
homothety with ratio &, 1.

Although [OC is not continuous some regularity can be obtained. To this end, we need to in-
troduce the following materials. For ady> 0 and any compact sétC RY, let the compact set
L& c (RY)" be defined as

K2 | mi —W||>d¢.
L5 2 {we L™ minjw —wd > 8 @

The next lemma that states on the regularitylefwill prove to be extremely useful in the proof of
Theorem 4 and throughout Section 4.

3438



CONVERGENCE OFDISTRIBUTED ASYNCHRONOUSLEARNING VECTORQUANTIZATION ALGORITHMS

Lemma 2 (Pagss 1997)Assume that p satisfies Assumption 1 and let L be a compact B&t of
Then, there is some constantstch that for all w and v in £ with [w,v] C D,

10C(w) —OC(V)|| < Psllw—Vv][.

The following lemma, called G-lemma in Regy(1997) is an easy-to-apply convergence results
on stochastic algorithms. It is particularly adapted to the present situatioe @L¥Q algorithm
where the average function of the algorithris singular.

Theorem 3 (G-lemma, Fort and Pa@s 1996)Assume that the iterations (3) of the CLVQ algo-
rithm satisfy the following conditions:

1 52 1& = andg P 0.
2. The sequencesv(t) };- o and {h(w(t))};-, are bounded a.s.
3. The serie§ > oeri1 (H(zer1,W(t)) —h(w(t))) converge a.s. ifRY)",

4. There exists a lower semi-continuous function(t[Bd)K — [0,0) such that

00

%&.ﬂG(W(t)) <o, a.s.

t=
Then, there exists a random connected compoBeit{ G = 0} such that

dist(w(t),=) = 0, as.,

where the symbadlist denotes the usual distance function between a vector and a sub&t)of
Note also that if the connected component§®@f= 0} are singletons then there exists {G = 0}
such that wt) P ¢ as.

For a definition of the topological concept of connected component, feette reader to Choquet
(1966). The interest of thep-lemma depends upon the choi@e lof our context, a suitable lower
semi-continuous function i defined by

Gw)2 liminf |OC(V)|?, we G~ (5)

veGkN DK, v—w

The next theorem is, as far as we know, the first almost sure comeagbeorem for the
stochastic algorithm CLVQ.

Theorem 4 (Pags 1997)Under Assumptions 1 and 2, conditioned on the event
TP K
{Ilmlorgfdlst(w(t),[]@*) > 0}, one has

dist(w(t), =) P 0, as,

where=,, is some random connected componentldE = 0}.
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The proof is an application of the above G-lemma with the map@rggfined by Equation (5).
Theorem 4 states that the iterations of the CLVQ necessarily convergads@me critical points
(zeroes ofJC). From Proposition 2 we deduce that the set of critical points necessaribains

optimal quantizers. Recall that without more assumption th@) € G N DX, we have already
discussed the fact that the componentsv(tf) are almost surely parted for dl> 0. Thus, it is
easily seen that the two following events only differ on a set of zero fwibtya

{Iimigfdist(w(t),[]@f) > o}

and
{tiggdist(w(t),[lﬂ)f) > 0} :

Some results are provided by Rasg1997) for asymptotically stuck components but, as pointed out
by the author, they are less satisfactory.

3. General Distributed Asynchronous Algorithm

We present in this section some materials and results of the asynchromallsl inear algorithms
theory.

3.1 Model Description

Lets(t) be any(Rd)K-valued vector and consider the following iterations
w(t+1) =w(t)+st), t>0. (6)

Here, the model of discrete time described by iterations (6) can only berpexdl by a single
computing entity. Therefore, if the computations of the vecs@rsare relatively time consuming
then not many iterations can be achieved for a given time span. Conslggaeparallelization
of this computing scheme should be investigated. The aim of this section is t@sliaquecise
mathematical description of a distributed asynchronous model for the itesgdn This model
for distributed computing was originally proposed by Tsitsiklis et al. (1988) \®as revisited in
Bertsekas and Tsitsiklis (1989, Section 7.7).

Assume that we dispose of a distributed architecture Mittomputing entities called processors
(or agents, see for instance Bullo et al. 2009). Each processor ledali@ simplicity of notation,
by a natural numberr € {1,...,M}. Throughout the paper, we will add the superscriph the
variables possessed by the processdm the model we have in mind, each processor has a buffer
where its current version of the iterated vector is kept, that is, local merbuns, for agent such
iterations are represented by tfie")“-valued sequencéw(t)}," ..

Lett > O denote the current time. For any pair of processorg € {1,...,M}?, the value
kept by agentj and available for ageritat timet is not necessarily the most recent omg(t),
but more probably and outdated omé(t"1(t)), where the deterministic time instant (t) satisfy
0 < thi(t) <t. Thus, the differencé—1"/(t) can be seen as a communication delay. This is a
modeling of some aspects of the network: latency and bandwidth finiteness.

We insist on the fact that there is a distinction between “global” and “local” tiffiiee time
variable we refer above to asorresponds to a global clock. Such a global clock is needed only for
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analysis purposes. The processors work without knowledge of thislgttock. They have access
to a local clock or to no clock at all.

The algorithm is initialized at = 0, where each processbe {1,...,M} has an initial ver-
sionw!(0) € (Rd)K in its buffer. We define the general distributed asynchronous algoriththeb
following iterations

W(t+1) = % al(tw (Vi (t))+8(t), ie{l,...,M}andt>0. 7)
=1

The model can be interpreted as follows: at time0, processorreceives messages from other
processors containing! (t"1(t)). Processor incorporates these new vectors by forming a convex
combination and incorporates the vectt) resulting from its own “local” computations. The
coefficientsa’} (t) are nonnegative numbers which satisfy the constraint

%ai’j(t):l, ie{1,...,M}andt >0. (8)
=1

As the combining coefficients! (t) depend om, the network communication topology is some-
times referred to as time-varying. The sequen@éé(t)}:‘;o need not to be known in advance by
any processor. In fact, their knowledge is not required to executdigiesadefined by Equation
(7). Thus, we do not necessary dispose of a shared global clessiohronized local clocks at the
processors.

As for now the descent tern{s (t) },~ , will be arbitrary (RY)“-valued sequences. In Section 4,
when we define the distributed asynchronous learning vector quantiZB#divQ), the definition
of the descent terms will be made more explicit.

3.2 The Agreement Algorithm

This subsection is devoted to a short survey of the results, found byd&lat al. (2005), for a
natural simplification of the general distributed asynchronous algorithmr{rs simplification is
called agreement algorithm by Blondel et al. and is defined by

X(t+1) = % al(t)x (¥ (1)), ie{1,...,M}andt>0. (9)
=1

wherex (0) € (RY)"“. An observation of these equations reveals that they are similar to iterations
(7), the only difference being that all descent terms equal O.

In order to analyse the convergence of the agreement algorithm (9)d@&let al. (2005) define
two sets of assumptions that enforce some weak properties on the communétltigs and the
network topology. As shown in Blondel et al. (2005), if the assumptiomséaioed in one of these
two set hold, then the distributed versions of the agreement algorithm, naneel, treach an
asymptotical consensus. This latter statement means that there exists avéicependent of)
such that

X(t) —x*, ie{l,...,M}.

t—oo

The agreement algorithm (9) is essentially driven by the communication tir@sassumed to
be deterministic but do not need to be knasvpriori by the processors. The following Assumption
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Figure 3: lllustration of the time delays introduced in the general distributggchsonous algo-
rithm. Here, there ar®1 = 4 different processors with their own computations of the
vectorsw(), i € {1,2,3,4}. Three arbitrary values of the global timare represented(

t, andtz), with T (t) =ty for all i € {1,2,3,4} and 1< k < 3. The dashed arrows head
towards the versions available at titpdor an agent € {1,2, 3,4} represented by the tail
of the arrow.

3 essentially ensures, in its third statement, that the communication die#a)‘/é(t) are bounded.
This assumption prevents some processor from taking into account sbitnardy old values com-
puted by others processors. Assumption 3 1. is just a convention: avhgh = 0 the valuer'i(t)
has no effect on the update. Assumption 3 2. is rather natural becengsgors have access to
their own most recent value.

Assumption 3 (Bounded communication delays)
1. Ifd(t) = 0thenone has™i(t)=t, (i,j)e{1,...,M}*andt>0,
2. tM(t)=t, ie{1,...,M}andt>0.
3. There exists a positive integey Buch that

t—Br<ti(t)<t, (i,j)e{l,...,.M}*?andt>0.

The next Assumption 4 states that the value possessed byiagédimet + 1, namelyx (t + 1),
is a weighted average of its own value and the values that it has justeddemnm other agents.
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Assumption 4 (Convex combination and threshold)There exists a positive constamt> 0 such
that the following three properties hold:

1. d'(t)>a, ie{1,...,M}andt>0.

2. dit)e{orufa,1, (i,j)e{1,...,M}*andt>0.

3. yM,ad(t)=1, ie{1,...,M}andt>0.

Let us mention one particular relevant case for the choice of the combiogffiasentsa’ ! (t).

Leti € {1,...,M} andt > 0, the set

N'(t) 2 {je{1,....M} € {1,...,M} | a"}(t) #£0}

corresponds to the set of agents whose version is taken into accopridgssor at timet. For all
(i,j) € {1,...,M}? andt > 0, the weights"i () are defined by

(0 {1/#Ni(t) if j € N'(1);

0 otherwise;

where #A denotes the cardinal of any finite getThe above definition on the combining coefficients
appears to be relevant for practical implementations of the model DALVQduated in Section 4.
For a discussion on others special interest cases regarding theschbtbe coefficients’ (t) we
refer the reader to Blondel et al. (2005).

The communication patterns, sometimes refereed to as the network communicptmgyo
can be expressed in terms of directed graph. For a thorough introductigiaph theory, (see
Jungnickel, 1999).

Definition 5 (Communication graph) Letus fix t> 0, the communication graph attimgt}/, E(t)),
is defined by

e the set of verticed’ is formed by the set of processars= {1,...,M},

e the set of edges(E) is defined via the relationship

(j,i) € E(t) ifand only if &/ (t) > 0.

Assumption 5 is a minimal condition required for a consensus among the pooseMore pre-
cisely, it states that for any pair of ageiitsj) € {1,..., M}2 there is a sequence of communications
where the values computed by agéemiill influence (directly or indirectly) the future values kept
by agentj.

Assumption 5 (Graph connectivity) The graph(?/,Us>tE(S)) is strongly connected for allt 0.

Finally, we define two supplementary assumptions. The combination of one twidtfollowing
assumptions with the three previous ones will ensure the convergence ajrtbement algorithm.
As mentioned above, if Assumption 5 holds then there is a communication pathelnednre pair
of agents. Assumption 6 below expresses the fact that there is a finitehgup®l for the length of
such paths.
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Assumption 6 (Bounded communication intervals)If i communicates with j an infinite number
of times then there is a positive integer &ich that

(i,j) EE()UE(t+1)U...UE(t+B;—1), t>0.

Assumption 7 is a symmetry condition: if agent {1,...,M} communicates with agente
{1,...,M} thenj has communicated or will communicate wittluring the time intervalt — Bz,t +
Bs) whereBs > 0.

Assumption 7 (Symmetry) There exists somezB> 0 such that whenever the pafr, j) € E(t),
there exists somethat satisfiest — 1| < Bz and(j,i) € E(1).

To shorten the notation, we set

Assumption 3; Assumption 3;
Assumption 4; Assumption 4;
(AsY), = Py (AsY), = pY
Assumption 5; Assumption 5;
Assumption 6. Assumption 7,

We are now in a position to state the main result of this section. The Theorepréssrs the
fact that, for the agreement algorithm, a consensus is asymptotically reagktieelagents.

Theorem 6 (Blondel et al. 2005)Under the set of Assumptiof&sY), or (AsY),, there is a con-
sensus vectorx (]Rd)K (independent of i) such that

lim [|x'(t) —x*|| =0, ie{1,...,M}.

t—o0

Besides, there exigte [0,1) and L> 0 such that

X)) —X(@)| <Lp™™, ie{l,...,M}andt>1>0.

3.3 Asymptotic Consensus

This subsection is devoted to the analysis of the general distributed asgpals algorithm (7).
For this purpose, the study of the agreement algorithm defined by Egsid@pwill be extremely
fruitful. The following lemma states that the version possessed by ageqt,...,M} at time

t > 0, namelyw (t), depends linearly on the others initialization vectar0) and the descent

subsequencess! (T }t ' wherej e {1,...,M}.

Lemma 7 (Tsitsiklis 1984) For all (i,j) € {1,...,M}2 and t > 0, there exists a real-valued se-
quence{q@ (t,T }1—71 such that

t—1 M

M
=3 ¢ ©+3 3 @09,

=1
Forall(i,j) € {1,...,M}? andt > 0, the real-valued sequencfg’! (t,t }tfl do not depend
on the value taken by the descent tersrs). The real numberg (t, T) are determined by the
sequence§ti(1)}._, and{a"i(1)}!_, which do not depend ow. These last sequences are un-

known in general but some useful qualitative properties can be dedgeexpressed in Lemma 8
below.
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Lemma 8 (Tsitsiklis 1984) For all (i, j) € {1,...,M}?, let {¢'] (t,r)}tT;l_l be the sequences de-
fined in Lemma 7.

1. Under Assumption 4,

o<@gitn <1 (i,j)e{1,...M}*andt>1> —1.

2. Under Assumption@sY), or (AsY),, we have:
(@) Forall (i,j) € {1,...,M}? andt > —1, the limit of @] (t,7) as t tends to infinity exists
and is independent of j. It will be denoted(T).
(b) There exists somg> 0 such that

@¢(1)>n, ie{l,...,M}andt > -1
(c) There exist a constant A0 andp € (0,1) such that
@1 -gd@)] <A, () e{l...,M}Pandt>T> ~L.

Taket’ > 0 and assume that the agents stop performing update aftett’tirnet keep com-
municating and merging the results. This means shy = 0 for allt > t’. Then, Equations (7)

write
_ M

wit+l) =y alw (t(t)), ie{l,...,M}andt>t.
j=1

If Assumptions(AsY), or (AsY), are satisfied then Theorem 6 shows that there is a consensus
vector, depending on the time instaht This vector will be equal tav*(t’) defined below (see
Figure 4). Lemma 8 provides a good way to define the sequmite) },-_, as shown in Definition

9. Note that this definition does not involve any assumption on the descerst ter

Definition 9 (Agreement vector) Assume that Assumptio&sY), or (AsY), are satisfied. The
agreement vector sequenpe*(t) },-_, is defined by

t—-1 M

w23 WO +3 5 PO, 120
=1 =0j=1
It is noteworthy that the agreement vector sequenicgatisfies the following recursion formula

WH(t41) = wr(t) + % @)s(t), t>0. (10)
=1

4. Distributed Asynchronous Learning Vector Quantization

This section is devoted to the distributed asynchronous learning vectatizatéon techniques. We
provide a definition and investigate the almost sure convergence prepafthe techniques.
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Global

time reference I wl(t) | | wz(t) | I w(t) I | ur4(t) ‘
t_ - o 4 4+
Averaging and computation iR
with descent terms
(general distributed T
asynchronous algorithm). -+
t T

Only averaging
(agreement algorithm). T

wh(t) — w*(t) wi(t) — w*@#) wi(t) — wr(t) wh(t) — w*(t)

Figure 4: The agreement vector at tithew*(t’) corresponds to the common value asymptotically
achieved by all processors if computations integrating descent termssteppeed after
t’, thatis,s'(t) =0 forallt > t'.

4.1 Introduction, Model Presentation

From now on, and until the end of the paper, we assume that one of theetwad Assumptions
(AsY), or (AsY), holds, as well as the compact-supported density Assumption 1. In additon, w
will also assume that @ G. For the sake of clarity, all the proofs of the main theorems as well as
the lemmas needed for these proofs have been postponed at the engdagi¢hen Annex.

Tsitsiklis (1984), Tsitsiklis et al. (1986) and Bertsekas and Tsitsiklis (19&f&lied distributed
asynchronous stochastic gradient optimization algorithms. In this serieghti€ations, for the
distributed minimization of a cost functioh : (RY)“ — R, the authors considered the general
distributed asynchronous algorithm defined by Equation (7) with spedifiices for stochastic
descent terms. Using the notation of Section 3, the algorithm writes

M
W(t+1) = > ad(w (T () +8(t), ie{1,...,M}andt>0,
=1

with stochastic descent terrdt) satisfying

E{s(t) (1), j€{L,...,M} andt > T >0} = —¢ ., 0OF (W(t)),
ie{l,...,M}andt>0. (11)

Where{e{}fzo are decreasing steps sequences. The definition of the descent termdsekBs
and Tsitsiklis (1989) and Tsitsiklis et al. (1986) is more general than thejgoearing in Equation
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(11). We refer the reader to Assumption 3.2 and 3.3 in Tsitsiklis et al. (1@86)Assumption 8.2
in Bertsekas and Tsitsiklis (1989) for the precise definition of the deseems. As discussed in
Section 2, the CLVQ algorithm is also a stochastic gradient descent precednfortunately, the
results from Tsitisklis et al. do not apply with our distortion functi@psince the authors assume
thatF is continuously differentiable andF is Lipschitz. Therefore, the aim of this section is to
extend the results of Tsitsiklis et al. to the context of vector quantization id® clustering.

We first introduce the distributed asynchronous learning vector quéatizALVQ) algo-
rithm. To prove its almost sure consistency, we will need an asynchrdaadesima, which is in-
spired from the G-lemma, Theorem 3, presented in Section 2. This theorgimensaen as an easy-
to-apply tool for the almost sure consistency of a distributed asynchssystem where the average
function is not necessary regular. Our approach sheds also somighean the convergence of
distributed asynchronous stochastic gradient descent algorithmssd¥yeProposition 8.1 in Tsit-
siklis et al. (1986) claims that the next asymptotic equality holds: liminf|OF (w(t))|| = O,
while our main Theorem 12 below states that;lina || JC(w/(t))|| = 0. However, there is a price
to pay for this more precise result with the non Lipschitz gradiédt Similarly to Pags (1997),
who assumes that the trajectory of the CLVQ algorithm has almost surely &styecafly parted
components (see Theorem 4 in Section 2), we will suppose that the agiteeror sequence has,
almost surely, asymptotically parted component trajectories.

Recall that the goal of the DALVQ is to provide a well designed distributedralym that
processes quickly (in term of wall clock time) very large data sets to peodocurate quantization.
The data sets (or streams of data) are distributed among several gerdigg glata to the different
processors of our distributed framework. Thus, in this context theesega, , zb, . . . stands for the
data available for processor, whére {1,...,M}. The random variables

1,1 2 2
71,23,...,29,25,. . .

are assumed to be independent and identically distributed according to

In the definition of the CLVQ procedure (3), the teHi{(z_1,w(t)) can be seen as an observa-
tion of the gradientlC (w(t)). Therefore, in our DALVQ algorithm, each processer{1,...,M}
is able to compute such observations using its own dgt, .... Thus, the DALVQ procedure is
defined by Equation (7) with the following choice for the descent t&rm

0 otherwise;

vv_here{s{}flo are(0,1)-valued sequences. The s&lscontain the time instants where the version
W, kept by processar, is updated with the descent terms. This fine grain description of the algo-
rithm allows some processors to be idle for computing descent terms @what). This reflects
the fact that the computing operations might not take the same time for all pavsesvhich is
precisely the core of asynchronous algorithms analysis. Similarly to time datad/sombining
coefficients, the sef§' are supposed to be deterministic but do not need to be kaopriori for
the execution of the algorithm.

In the DALVQ model, randomness arises from the dat&herefore, it is natural to left };-_
be the filtration built on the-algebras

#20(z,ie{l,...,M} andt >s>0), t>0.
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An easy verification shows that, for ajle {1,...,M} andt > 0, w*(t) andwl(t) are %-
measurable random variables.

For simplicity, the assumption on the decreasing speed of the seqt{eah}::'é:% is strengthened
as follows. The notatioaV b stands for the maximum of two readsandb.

Assumption 8 There exist two real numbers K 0 and K > 1 such that

tlf/—ll <g,, < ,[}\(/—21, ic{l...,M}andt>0.
If Assumption 8 holds then the sequent{e§}:°:0 satisfy the standard Assumption 2 for stochastic
optimization algorithms. Note that the choice of steps proportional/tchas been proved to be

a satisfactory learning rate, theoretically speaking and also for practipdémentations (see for
instance Murata 1998 and Bottou and LeCun 2004).

For practical implementation, the sequen@eﬁl}:’:o satisfying Assumption 8 can be imple-
mented without a global clock, that is, without assuming that the curreng edius known by the
agents. This assumption is satisfied, for example, by taking the curreet o&dliproportional to
1/ni, whereni is the number of times that process@s performed an update, that is, the cardinal
of the setT'n{0,...,t}. For a given processor, if the time span between consecutive updates is
bounded from above and from below, a straightforward examinatiowsliwat the sequence of
steps satisfy Assumption 8.

Finally, the next assumption is essentially technical in nature. It enable®id tawe instants
where all processors are idle. It basically requires that, at anyttim®, there is at least one
processoi € {1,...,M} satisfyings (t) # 0.

Assumption 9 One hasz?"zlll{tdj} >1forallt > 0.

4.2 The Asynchronous G-lemma

The aim of this subsection is to state a useful theorem similar to Theorem adapted to our
asynchronous distributed context. The precise Definition 9 of the agréemetor sequence should
not cast aside the intuitive definition. The reader should keep in mind the¢therw*(t) is also the
asymptotical consensus if descent terms are zero aftettti@ensequently, even if the agreement
vector {w*(t)},, is adapted to the filtratiof % };-,, the vectow*(t) cannot be accessible for a
user at time.. Nevertheless, the agreement veato(t) can be interpreted as a “probabilistic state”
of the whole distributed quantization scheme at timéThis explains why the agreement vector
is a such convenient tool for the analysis of the DALVQ convergenckvéh be central in our
adaptation of G-lemma, Theorem 10.

Let us remark that Equation (10), writes for &l O,

<

Wi(t+1) =w(t)+ Y @) (t)

z 7
A

= W*(t) - ]l{teTi}(pj (t)gtj+lH (th+1ij (t)> .
=1

We recall the reader that ti@, 1]-valued functionsp'’s are defined in Lemma 7.
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~ Using the functiorh defined by identity (2) and the fact that the random variablg$) and
w!(t) are f;-measurable then it holds

h(w"(t)) =E{H (z,w'(t)) | &}, t=>0.

and
hw!(t)) =E{H (z,w (t)) | %}, j€{L...,M}andt>0.

wherez is a random variable of law independent of;.
For allt > 0, set

M o
&1 = Z ]l{teTJ'}(PJ (t)stj+l' (13)
=1

Clearly, the real numberg are nonnegative. Their strictly positiveness will be discussed in
Proposition 3.

Set
M . . .
MM £ S Lieern @ (el (hw (1)~ hwi (1)), t=0, (14)
=1
and "
AME® £ 5 Tger @ (06!, (hw'©) ~H (WD), 120 13)
pa

Note thatk {AMt(Z)} = 0 and, consequently, that the random variablméz) can be seen as the

increments of a martingale with respect to the filtrat{oh};" .
Finally, with this notation, equation (10) takes the form

WH(t+ 1) = wH(t) — g, h(w (1) + aMY +am? | t> 0. (16)

We are now in a position to state our most useful tool, which is similar in spirit to thea,
but adapted to the context of distributed asynchronous stochasticgrddezent algorithm.

Theorem 10 (Asynchronous G-lemma)Assume thatAsY), or (AsY), and Assumption 1 hold
and that the following conditions are satisfied:

1. 5208 = andgf P 0.
2. The sequencesv*(t)};-, and {h(w*(t))}-, are bounded a.s.
3. The series oAMY and s ,AM? converge a.s. ifRY)".

4. There exists a lower semi-continuous function(@?)" —: [0,) such that

ZfﬁlG (W(t)) <o, a.s.
t=

Then, there exists a random connected compoferit{ G = 0} such that

dist(w*(t),=) — 0, a.s.

t—oo

3449



PATRA

4.3 Trajectory Analysis

The Pags’s proof in Pags (1997) on the almost sure convergence of the CLVQ procedurgedq
a careful examination of the trajectories of the procgsé)};-,. Thus, in this subsection we
investigate similar properties and introduce the assumptions that will be needeal’e our main
convergence result, Theorem 12.

The next Assumption 10 ensures that, for each processor, the qususiiag in the support of
the density.

Assumption 10 One has
P{wi(t)e g} =1, je{1,...,M}andt>0.
Firstly, let us mention that since the sgf is convex, if Assumption 10 holds then
P{w*(t)e g} =1, t>0.

Secondly, note that the Assumption 10 is not particularly restrictive. Thigwagtion is satisfied
under the condition: for each processor, no descent term is addedardombining computation
is performed. This writes

aj(t)=35andt(t)=t, (i,j)e{l,...,M}*andteT"

This requirement makes sense for practical implementations.
Recall thatift ¢ T', thens (t) = 0. Thus, Equation (7) takes the form

| W (t+1) :v\ﬁ(t)_—s{+l_(v¢(t)fz{+_1)
W(t+1) = = (g )W) +e 17,
Wi(t+1) =M adt)w(thi(t)) otherwise.

ifteT'

Since G¥ is a convex set, it follows easily that Wi/ (0) € GX, thenwl(t) € G* for all j €
{1,...,M} andt > 0 and, consequently, that Assumption 10 holds.

The next Lemma 11 provides a deterministic upper bound on the differéetesen the dis-
tributed versionsv and the agreement vector. For any sulisef (Rd)K, the notation diarfA)
stands for the usual diameter defined by

diam(A) = sup{|jx—y]}.
X,yeA

Lemma 11 AssumégAsY), or (AsY), holds and that Assumptions 1, 8 and 10 are satisfied then
W (t) —w(t)]| < VKM diam(G)AK.6;, i€ {1,...,M}andt>0,as.,

where; £ z‘r;l_lwilp“, A andp are the constants introduced in Lemma 8§, iK defined in
Assumption 8.

The sequencéb: }- defined in Lemma 11 satisfies

6 ——0andS & <o, (17)
t—o0 & t
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We give some calculations justifying the statements at the end of the Annex.
Thus, under Assumptions 8 and 10, it follows easily that

W) -W(t) —0, i€{L...,M}as,

and _ '
W(t) —wi(t) —0, (.)€ {1,...,M}? as. (18)

This shows that the trajectories of the distributed versions of the quantesaas asymptotically
a consensus with probability 1. In other words, if one of the seque{wbés)}:lo converges then
they all converge towards the same value. The rest of the paper is dév@ieve that this common
value is in fact a zero dfIC, that is, a critical point.

To prove the result mentioned above, we will need the following assumptieichvibasically
states that the componentssfare parted, for every timebut also asymptotically. This assumption
is similar in spirit to the main requirement of Theorem 4.

Assumption 11 One has
1. P{w(t)e Dk} =1, t>0.

2. P{liminfi_odist(w*(t),0D¥) >0} =1, t>0.

4.4 Consistency of the DALVQ

In this subsection we state our main theorem on the consistency of the DAtY/@oof is based
on the asynchronous G-lemma, Theorem 10. The goal of the nextgtiopds to ensure that the
first assumption of Theorem 10 holds.

Proposition 3 AssumegAsY), or (AsY), holds and that Assumptions 1, 8 and 9 are satisfied then
g >0,t>0,¢f P Oandy 2 g&f = oo.

The second condition required in Theorem 10 deals with the convergdribe two series
defined by Equations (14) and (15). The next Proposition 4 providifigisnt condition for the
almost sure convergence of these series.

Proposition 4 AssumegAsY), or (AsY), holds and that Assumptions 1, 8, 10 and 11 are satisfied
then the seriei{”:OAMt(l) and z{"’:OAMt(Z) converge almost surely i(Rd)K.

This next proposition may be considered has the most important step in tifeopthe conver-
gence of the DALVQ. It establishes the convergence of a series obthey;” &1 ||OC (w(t))]2.
The analysis of the convergence of this type of series is standard fan#tlgsis of stochastic gra-
dient method (see for instance Benveniste et al. 1990 and Bottou 190dyr tontext, we pursue
the fruitful use of the agreement vector sequereg(t)};” o, and its related “stepsf{e; };-o.

Note that under Assumption 11, we havewv*(t)) = OC(w*(t)) for all t > 0, almost surely,
therefore the sequend€IiC (w*(t))};.., below is well defined.

Proposition 5 AssumeéAsY), or (AsY), holds and that Assumptions 1, 8, 10 and 11 are satisfied
then
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1. C(w(t)) ?C«,, a.s.,
where G is a0, «)-valued random variable,

;s:+1\\DC<w*<t>>rrz <o, as. (19)

t=

Remark that from the convergence of the series given by Equatioro(tan only deduce that
liminf;_. ||CC(w*(t))|| = O.

We are now in a position to state the main theorem of this paper, which exptésseonver-
gence of the distributed version towards some zero of the gradient oistioetidn. In addition, the

convergence results (18) imply that if a version converges then all iséome converge towards
this value.

Theorem 12 (Asynchronous theorem)AssumgAsY), or (AsY), holds and that Assumptions 1,
8,9, 10 and 11 are satisfied then

1. W*(t)—vv‘(t)H—m>0, ie{l,...,M},as,
2. W(t)-wi(t) — 0, (i,j)e {1,....M}?, as,,
3. dist(w*(t), =) P 0, as.,
4. dist(W, =) —20 ief{l.. M}as,
where=,, is some random connected component of th¢S€t= 0} N G*.

4.5 Annex

Sketch of the proof of asynchronous G-lemmaTi@e proof is an adaptation of the one found by
Fort and Pags, Theorem 4 in Fort and Ragy(1996). The recursive equation (16) satisfied by the

sequencgw*(t) };-, is similar to the iterations (2) in Fort and Rexy(1996), with the notation of
this paper:

Xt+1 =X _ €t+lh (Xt) + €41 (AMH-l + nt-‘rl) , t> 0.

Thus, similarly, we define a family of continuous time stepwise funcfiors Wi (t,u)}; ;.
W (0,u) =W (s),if ue [e]+...+ €5, € +...+€51), UE[0,).
and ifu < &, w* (0,u) = w*(0).
W*(t,u) =W (0,€]+...+& +Uu), t>1andue[0,).
Hence, for every € N,

W*(t,u) = W*(0,t) —/Ouh(vT/*(t,v))dv—i— Ru(t), ue[0,0),
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where, forevery > 1 anduc [e+... + & o, €]+ ... +& v 1),

€+...+E+u 4t/
Ru(t) 2 / ' W (Vv Y (AM§1)+AM§2)).
&+.. +8:(+1/ s=t+1

The only difference between the families of continuous time functigns, u) },~ and{X(t> }:021
defined in Fort and P&g (1996) is the remainder tefR)(t). The convergence

sup [R(D)] — 0, T>0.
uel0,T] e

follows easily from the third assumption of Theorem 10. The rest of thefgatlows similarly as
in Fort and Pags (1996, Theorem 4).

Proof of Lemma 11For alli € {1,...,M}, and allt > 0, and all 1< ¢ < k, we may write
Jwi (t) —wi ()]

Mo _ ot o
= Zl (((ﬂ" (-1 -¢'(-1)w(0)+ 3 (¢I(t,1)~ (1)) Sé(U) H
=

=

(by Definition 9 and Lemma)7
M

<3 I —d(—l)!Hw}XO)H+§§W”’(M)—<ﬁ(t)lHséi(r)H

<13 [wh0] <43, 3 0[50
(by Lemma §.
Thus,
Wi (1) WMI

t-1 M

<Apt+lz HWJ H +AZOZpt ‘e r+1]1{T€T'}
(by Equation (12)
<r 13 [wo

t—1 M

+A%Z p' e T+1]lT€T’]l{z[ 1EW (W(T }HWE ZH_lH

H(z W (1)
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Therefore,
W (t) —wi (t)]]
t-1
< t+1
AMdiam(G)p' " + Adiam(G)KoM ZOT\/l
(because @& g and by Assumptions 8 and 10
<
Adiam(G)KoM er\/l
Consequently,
Iw(©) = w'(©)]
K
- 2
= \/; Wi () —w; )]
=1
. &1
< VkMdiam(G)AK; zlmp
This proves the desired result. |

Let us now introduce the following events: for aby- 0 andt > 0,
AsE{w(t) e Gy, t>1>0}.

Recall that thegy is a compact subset @f* defined by Equality (4). The next lemma establishes
a detailed analysis of security regions for the parted components of thersaes{w*(t) },-, and

{wl (t)};o:O'
Lemma 13 Let Assumptions 8 and 10 hold. Then,

1. there exists an intege§ t 1 such that
t+1 1
As CAs t>tg
Moreover,
W (t) € G5 = W' (1), W (t+1)] C G, t>15.

2. There exists an integ% t 1 such that
WH(t) € GE = W (1), W ()] C G, T€{L,...,M}andt>12.

Proof of Lemma 13Proof of statement IThe proof starts with the observation that under Assump-
tion 10 we haven! (t) € g%, foralli € {1,...,M} andt > 0. It follows that, for any < ¢ <Kk,

HH <Z€+17Wj(t))£H < Hztjﬂ—wé(t)u
<diam(G).
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Let us now provide an upper bound on the norm of the differenceseeeiiwo consecutive
values of the agreement vector sequence. We may write, fobdll and all 1< ¢ < M,

o t+2) - i 0)]
M
aie
M
2,9 H H
M

§ et 4 (i)

(by Equation (12) and statement 1. of Lemma 8
M dia K
(by Assumption 8.

| A

| A

Taket > %‘M diam(G)K; and 1< k# ¢ < M. Leta be a real number in the intervil, 1].
If w*(t) € G5 then

(1= c)wy (1) +owy (t+1) — (1 — a)wic(t) —awj(t+ 1)
= (Wi () — Wi (t) + o (Wi (t+ 1) =W (1) + o (Wi (t) — wie(t + 1))

= [|Wi (t) = Wie() || — [lor (Wi (t+ 1) — Wi (1)) + o (Wi (t) — wie(t+ 1)) ]

> [[Wi (1) = Wie(t) || —arfjw (t + 1) = Wi (1) || — o [lwie(t) — wic(t + 1)
0

>2'>—20(Z1r

>0/2.

This proves that the whole segmewt (t), w*(t + 1)] is contained ingg/z.

Proof of statement 2Taket > 1 and 1< ¢ < M. If w*(t) € gg then by Lemma 11, there exists
t2 such that

- o .
W (1) —wy(t)|| < 7 € {1,...,M} andt > t2.
Let k and/ two distinct integers between 1 abl For anyt > t2,

Haw'k(t)Jr(l—a)w*(t)—qw;() (1—o)wj(t)|] |
= || Wi (t) — W7 (t) + o (Wi (t) — wic(t)) + o (W (t )—le(t?)H
> [[Wig(t) — W (1) — ot | wh(t) — wic(t) || — o [|w (t) — wi (1) |

o)
>0—20-
>0 20(4

This implies[w*(t),w'(t)] C G55, as desired. u
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Proof of Proposition 3By definitiong;, ; equalsy; 1c71,¢ (t)el, 4, forallt > 0.
On the one hand, since the real numikt) belongs to the intervah, 1] (by Lemma 8. ; is
bounded from above by% using the right-hand side inequality of Assumption 8.

On the other hand, ; is bounded from below by the nonnegative real nunrhéﬁ using the
left-hand side inequality of Assumption 8. Note also that as Assumption 9 tibldseal number
is a positive one. Therefore, it follows that

&g —0

t—o0

and

&

Proof of Proposition 4 Consistency o[{"’:OAth. Let & be a positive real number and tep t2,
wheretg is given by Lemma 19. We may write

M o .
Tag Zl]l{teTJ}(pj (Dl 1 [[h(w () —h(wW (1)) ]|
=

M
i (t)e) * -
< Lwmiojcags) 2, @ Ot [0C0 ) ~OC (W)
(using statement 2. of Lemma 13 and the fact th@t= h on D)
M _
= M wincas,) o2 J;Stjﬂ [Jw(t) —w! (1)

(by Lemma 2

< vk diam( g)AK22P5/2M2%
(by Lemma 11).

Thus, sincesy o & < o, the series

[ M . . .
t;)ﬂAg gl]l{teTi}(pj(t)stj—s-l [h(w(t)) —h (WD)

is almost surely convergent. Under Assumption 11, we have

]P’{ U ﬂAg} =1
5>0t=0
K

It follows that the serie§§°:0AMt(1) converges almost surely {R9)
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Consistency o{{"’:OAMt@. The sequence of random variabMéZ) defined, for alt > 0, by

@2 5 Au®
= 3.3 el s®0) (h(w(0) —H (2wl

is a vector valued martingale with respect to the filtratioh};-_,. It turns out that this martin-
gale has square integrable increments. Precisely,

S M 7= S e[ 7} <

Indeed, for allj € {1,...,M} andt > 1,

TilE{H]l{reTJ}ELrl (h (WJ( ) — (Zr+1 ))H }

< 3 (ct) B{ [nw ) -1 (L s0rwo) | 7}

=1
i (ehen) E{ I )+ [ (2w [ 5}
< akciam(6)° 5 (el,.)°

=1
(using Assumption 10
t
< 4cdiam(G)’KZ 5 1
T

=1 T2 .
We conclude that the serigszlAMt(Z) is almost surely convergent. |

Proof of Proposition 5 Denote by(x,y) the canonical inner product of two vectotg € R and
also, with a slight abuse of notation, the canonical inner product of tetorex,y € (RY)". Letd
be a positive real number. Take any max{t3,t2}, wheret} andt? are defined as in Lemma 13.
One has,

LG (W (t+1)) <TxC(W(t+1)).
(by definitionAL™ c AY)
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Consequently,

]1A16+1C (W (t+1))
< 1 COW () + 1 (O (1), W (1) —w (1)

e vicey,)

X sup  {[|HC(z) — OC(W*(1))[|} [Iw*(t +1) —w*(t)]]
ze[w*(t),wr(t+1)]

ST C (W) + Lag (OC(W (1)), W (t + 1) — W' (1))
+Psja W (t+1) —w(t)])?
(using Lemma 2.

The first inequality above holds since the bounded increment formulaabealid by statement 1
of Lemma 13. Let us now bound separately the right hand side memberss&dbed inequality.

Firstly, the next inequality holds by Inequality (20) provided in the prodfedihma 13,

KoM diam(G)\ 2
)

Ps/2 || W*(t + 1) — wW*(t)||* < kP2 <

Secondly,

La (OC(W(t)),W*(t+1) —w'(t))
= 1 (HC(W (1)), ﬁlqﬂ(t)sj (t))
(by Equation (10)
=1la ﬁlmcw ), 1 (1))
y

+ 1 5 (OC(W (1)) — OC(W (1)), @ (1)) (1))

=1
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Thus,

T (HC(W (1)), Wi (t + 1) —w(t))

+1a Zl1<DC(W*(t)) —0CW (1)), @ (1)s (1)
=

M .
< Ly y (OCW(1). ¢ (1)) (1)
=1

M
+ 3 1y 0w @)~ oew @) l@ O )
J:

(using Cauchy-Schwarz inequaljty

Therefore,

+Zﬂ wicgy,} 15CW ©) = Bem O)] @ © O]

(by statement 2 of Lemma 13
M

<1lp Zl<DC(Wj (), ¢ () (1))
=

+Ps)2 ZlHW*(t) ~wO)][|¢®Os' )]
=

(using Lemma 2

+ P5/2AK22KM2diam(g)zett
(using Lemma 11 and the upper bound (20)
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Finally,
]lAt6+1C (W* (t + 1))
< T C(WH(L)) + L Z (OCc(w!' (1)), @ (t)s (1))
=1
+ P5/2AK22KM2diam(g)2%
. 2

+KPy2 <K2'V'°“tfm‘(6)) , 1)

Set
Q3 £ PspAKZKM? diam( G)?
and

Q2 2 kPs/ (KoM diam(G))?.

In the sequel, we shall need the following lemma.

Lemma 14 For all t > max{t3,t2}, the quantity Wbelow is a nonnegative supermartingale with
respect to the filtratiod # };-o:

) t—1 1 M ) 2
W £ 14 C (W (1)) +nKlr;)]lAg¥ ;]l{TeTj} [0C (W (1))

<81 el
+QIY 224025 o t> 1
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Proof of Lemma 14Indeed, using the upper bound provided by Equation (21),
E{nAtglC (WH(t+1)) ‘ y’t}

ST CWH () +Ta ZlE{<DC(W‘ ), @O W) | #}
=

21

1

:mgs( (1)

g 3 (0CWI0).E{ 1o @0eL HE W @) | 7))

=1

Qlet+Q6t2
=1 C(W'(t))
— g ,i]l{teTJ}‘Pj(t)stLlHDC(Wj )| +Qlet JFQEStz
< T C(WH(t))
- n7K1]1A‘ Z Lyersy [|OC(W/ (1)) "’Qlet ""Qétz

In the last inequality we used the fact thg{t) > n (Lemma 8) andztj+1 > % (Assumption 8).

It is straightforward to verify that, we haW — E{W_1| %} > 0 which prove the desired result.
|

Proof of Proposition 5 (continued) Since{W }- , is a nonnegative supermartingale (by Lemma
14),W converges almost surely tis+ « (see for instance Durrett 1990). Then, &S, e(T P 0

— 00

andyy, 5 0, we have
Lo C(w(t)) P Cw, a.s., (22)

whereC,, € [0,0) and, because the origin of the expression is increasingtire following series
converges

29

;]l BT\/lz]l{TeTJ}HDC(WJ ))H2<oo7 a.s. 23)
=

Proof of statement 1JAssumption 11 means that

{{uns}-
5>0t>0
Statement 1 follows easily from the convergence (22).
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Proof of statement 2T'he required convergence (19) is proven as follows. We have
t

%€¥+11A}3 IEC (w* (1))

- t M
§TZO;(PJ(T)]I{IGTJ}]IATewl”DC( w* (1))||?
(using Equality (13)
< 2K, %M Z 1zeriy [ OC (W (1)) H

(using Assumption

t 1 M |
_ ] _ *
i 2K2%]I{Wr),wi(w}cgg/z} vl ;1 |0C (w!(1)) — OC (w*(1))

(using Assumption 9 and statement 2 of Lemmg 13

2
|

Thus,
t
T;SMHA; IoC (w* (1)1
<KoY Lp %]1 y[|0C (wi (1) |2
> T;) A5T\/1J:1 {teTl}
5 t M J 2
TP 3 e mwimicar,) Tv Z W' (1) —w (1)
(by Lemma 2.
Thus,

t

Z)€¥+111Ag I0C (w* (1)) |2

=

t 1 M ) 2
S22 3 AT ;111{@1}!!50 (wW/(©)]]
Lo
3A2 Hi 2 2
+2P2 /ZKZKM Acdiam(G) T;ir\/ler
(by Lemma 1].

Finally, using the convergence (23), one has

[ee]

;eﬁlﬂAg IoC (W (0)* <, as,

=

and the conclusion follows from the fact that Assumption 11 implies

Aluns-
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Proof of Theorem 12 The proof consists in verifying the assumptions of Theorem 10 with the
functionG defined by Equation (5).

It has been outlined that Assumption 10 implies twaft) lie in the compact se*, almost
surely, for allt > 0. Consequently, in the definition &{w*) the liminf symbol can be omitted. For
allze g and allt > 0, we have|H (z,w*(t))| < /kdiam(G), almost surely, whered®(w*(t)) }i—qo
satisfies

h(w*(t)) =E{H (z,w*(t)) | %}, t>0,a.s.
Thus, the sequencds/*(t) };-, and{h(w*(t)) };~, are bounded almost surely.

Proposition 3, respectively Proposition 4, respectively Propositiorod #iat the first assump-
tion, respectively the third assumption, respectively the fourth assumgtidreorem 10 hold. This
concludes the proof of the theorem. |

Justification of the statements (1Recall that the definition d is provided in Lemma 11. Let
us remark that it is sufficient to analyse the behavidrahthe quantltyzT 1pt t/1. Lete > O then
forallt > [1/¢] + 1, we have

[1/¢] pt- pt-T
=1 T = % +1 T
|1/¢] t—1
ZX pt T_|_£ ; pt—r

1/e]+1
p [1/¢] €

<= 4~
- 1-p 1-p
(using the fact thap € (0,1)).
Consequently, for sufficiently large we have
t—1

t—1
p
=1 T

2¢
<
=1,

which proves the first claim.
The second claim follows the same technique by letting-“1//t".
Thus, fort > 1 we have

1-p 1-p
Finally, forT > 1, it holds
T t-1

2 e (3 k)

The two partial sums in the above parenthesis have finite limits which provedbedstatement.
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