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Abstract

Gaussian process regression is a flexible and powerful tvomfchine learning, but the high
computational complexity hinders its broader applicatioin this paper, we propose a new ap-
proach for fast computation of Gaussian process regresstara focus on large spatial data sets.
The approach decomposes the domain of a regression furistdosmall subdomains and infers
a local piece of the regression function for each subdomaia.explicitly address the mismatch
problem of the local pieces on the boundaries of neighbasuilomains by imposing continuity
constraints. The new approach has comparable or betterutatiygm complexity as other compet-
ing methods, but it is easier to be parallelized for fastenpatation. Moreover, the method can be
adaptive to non-stationary features because of its lodat@and, in particular, its use of different
hyperparameters of the covariance function for differenal regions. We illustrate application of
the method and demonstrate its advantages over existingpdstsing two synthetic data sets and
two real spatial data sets.

Keywords: domain decomposition, boundary value problem, Gaussiaregs regression, paral-
lel computation, spatial prediction

1. Introduction

This paper is concerned about fast computation of Gaussian precgession, hereafter called GP
regression. With its origin in geostatistics, well knownkaigiing, the GP regression has recently
developed to be a useful tool in machine learning (Rasmussen and Willia@®, 20GP regression
provides the best unbiased linear estimator computable by a simple closedxpression and is
a popular method for interpolation or extrapolation. A major limitation of GP ragpasis its
computational complexity, scaled (N?), whereN is the number of training observations. Many
approximate computation methods have been introduced in the literature to thkes@mputation
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burden. A new computation scheme is developed in this paper with a focusgensigatial data
sets.

Existing approximation methods may be categorized into three schools: matroxapation,
likelihood approximation and localized regression. The first school is ntetivay the observation
that the inversion of a big covariance matrix is the major part of the expeosmputation, and
thus, approximating the matrix by a lower rank version will help reduce the atatipnal demand.
Williams and Seeger (2000) approximated the covariance matrix by theddysixtension of a
smaller covariance matrix evaluated bhtraining observationsM < N). This helps reduce the
computation cost fron®(N2) to O(NM?), but this method does not guarantee the positivity of the
prediction variance (Qabnero-Candela and Rasmussen, 2005, page 1954).

The second school approximates the likelihood of training and testing pgiatsshiming condi-
tional independence of training and testing points, giVeartificial points, known asifhducing in-
puts” Under this assumption, one only needs to invert matrices of kafidkr GP predictions rather
than the original big matrix of rank. Depending on the specific independence assumed, there are
a number of variants to the approach: deterministic training conditional (B€€ger et al., 2003),
full independent conditional (FIC, Snelson and Ghahramani, 20@&japindependent conditional
(PIC, Snelson and Ghahramani, 2007). DTC assumes a deterministic rékettiegen the inducing
inputs and the regression function values at training sample locations. #nirs®TC is how to
choose the inducing inputs; a greedy strategy has been used to chepshitting inputs among the
training data. FIC assumes that each individual training or test point ditemmally independent
of one another once given all the inducing inputs. Under this assumptiGnemjoys a reduced
computation cost o®(NM?) for training andO(M?) for testing. However, FIC will have difficulty
in fitting data having abrupt local changes or non-stationary featuzesSselson and Ghahramani
(2007). PIC makes a relaxed conditional independence assumptioneintordetter reflect local-
ized features. PIC first groups all data points into several blocksssuh®es that all the data points
within a block could still be dependent but the data points between block®aditional indepen-
dent once given the inducing inputs. Suppose B the number of data points in a block, PIC
entertains a reduced computation cos¢k (M + B)?) for training andO((M + B)?) for testing.

The last school is localized regression. It starts from the belief thairaopabservations
far away from each other are almost uncorrelated. As such, preditiartest location can be
performed by using only a small number, €yof neighboring points. One way to implement this
idea, calledocal kriging, is to decompose the entire domain into smaller subdomains and to predict
at a test site using the training points only in the subdomain which the test sitegbemmnlt is
well known that local kriging suffers from having discontinuities in prédit on the boundaries
of subdomains. On the other hand, the local kriging enjoys many advantagsh as adaptivity to
non-stationary changes, efficient computation v@tNB?) operations for training an@(B?) for
testing, and easiness of being parallelized for faster computation.

Another way for localized regression is to build multiple local predictors armbtobine them
by taking a weighted average of the local predictions. Differing in the vigiglschemes used, sev-
eral methods have been proposed in the literature, including Bayesian coenméthine (BCM,
Tresp, 2000; Schwaighofer et al., 2003), local probabilistic regmegsPR, Urtasun and Darrell,
2008), mixture of Gaussian process experts (MGP, Rasmussen ahda@laai, 2002), and treed
Gaussian process model (TGP, Gramacy and Lee, 2008). Becatlgeavieraging mechanism, all
these methods avoid the discontinuity problem of local kriging. Howevetesiang time complex-
ities of all these methods are significantly higher than local kriging, making teesncompetitive
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when the number of test locations is large. In particular, BCM is transduatid it requires in-
version of a matrix whose size is the same as the number of test locations, sunchad is very
slow when the number of test locations is large. Mixture models such as MGF@R involve
complicated integrations which in turn are approximated by sampling or Monte Siarulation.
The use of Monte Carlo simulation makes these methods less effective fediatg sets.

Being aware of the advantages and disadvantages of the local krigimgywaith computational
limitations of the averaging-based localized regression, we propose &oalkriging approach
that explicitly addresses the problem of discontinuity in prediction on thedaries of subdomains.
The basic idea is to formulate the GP regression as an optimization problem @ecbtopose the
optimization problem into smaller local optimization problems that provide localigireds. By
imposing continuity constraints on the local predictions at the boundariearevable to produce
a continuous global prediction for 1-d data and significantly control tlyeeses of discontinuities
for 2-d data. Our new local kriging approach is motivated by the domaiordposition method
widely used for solving partial differential equations (PDE, Quarteanai Valli, 1999). To obtain a
numerical solution of a PDE, the finite element method discretizes the probtkaparoximates the
PDE by a big linear system whose computation cost grows with the numbercoétiitng points
over the big domain. In order to attain an efficient solution, the domain decsitigpomethod
decomposes the domain of the PDE solution into small pieces, solves small lys¢@ams for
local approximations of the PDE solution, and smoothly connects the locabapations through
imposing continuity and smoothness conditions on boundaries.

Our method has, in a regular (sequential) computing environment, at least siomiputational
complexity as the most efficient existing methods such as FIC, PIC, BCML.BRd but it can be
parallelized easily for faster computation, resulting a much reduced commatiagiost ofO(B?).
Furthermore, each local predictor in our approach is allowed to useeaeaiffhyperparameter for
the covariance function and thus the method is adaptive to non-statioremgehin the data, a
feature not enjoyed by FIC and PIC. The averaging-based localegréssions also allow local
hyperparameters, but our method is computationally more attractive fortésggata sets. Overall,
our approach achieves a good balance of computational speed amacycas demonstrated empir-
ically using synthetic and real spatial data sets (Section 6). Methods applgmmpactly supported
covariance function (Gneiting, 2002; Furrer et al., 2006) can beiderssl as a variant of localized
regression, which essentially usesving boundarieto define neighborhoods. These methods can
produce continuous predictions but cannot be easily modified to adaphistationarity.

The rest of the paper is organized as follows. In Sections 2 and 3, wrilate the new local
kriging as a constrained optimization problem and provide solution appesdchthe optimization
problem. Section 4 presents the numerical algorithm of our method. Sectimeudsses the hy-
perparameter learning issue. Section 6 provides numerical comparismmsmethod with several
existing methods, including local kriging, FIC, PIC, BCM, and LPR, using $ynthetic data sets
(1-d and 2-d) and two real data sets (both 2-d). Finally Section 7 coeslind paper, followed by
additional discussions on possible improvement of the proposed method.

2. GP Regression as an Optimization Problem

Before formulating the problem, we define notational convention. Boldfapéal letters represent
matrices and boldface lowercase letters represent vectors. Ondierdspa notation for spatial
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locations. A spatial location is a two-dimensional vector, but for notationgplgity, we do not
use boldface for it. Instead, we use boldface lowercase to represenbf spatial locations.

A spatial GP regression is usually formulated as follows: given a trainitegsad?D = {(x;, i),i =
1,...,N} of n pairs of locationsg and noisy observationg, obtain the predictive distribution for
the realization of a latent function at a test locationdenoted byf, = f(x.). We assume that the
latent function comes from a zero-mean Gaussian random field with a@oeverfunctiork(-,-) on
a domainQ c R 9 and the noisy observatiogsare given by

yi = f(x)+ &, i=1,...,N,

whereg; ~ A((0,62) are white noises independent bfx;). Denotex = [x,%p,..,xn]' andy =
[V1,¥2,-.,Yn]t. The joint distribution of( f,,y) is

Pty =a (o, K Fx
~Y) = "1 Exs 02I+I{xx '

wherek.. = K(X.,X.), kxx = (K(X1,X,), - .., K(Xn, X))t and Kxy is anN x N matrix with (i, j )i entity
K(xi,xj). The subscripts k.., kx. and Kyy represent two sets of the locations between which the
covariance is computed, anxg is abbreviated as. By the conditional distribution for Gaussian
variables, the predictive distribution éf giveny is

P(f.|y) = N (K}, (0°T + Kxx) 1y, K — Kk, (021 + Ky) thexs). (1)

The predictive meatk!, (621 + Kyx) 1y gives the point prediction of (x) at locationx,, whose
uncertainty is measured by the predictive variakge- k&, (021 + Kyx) tkys.
The point prediction given above is the best linear unbiased predictd/RBin the following
sense. Consider all linear predictors
H(x.) = u(x.)'y,

satisfying the unbiasedness requiremgept(x.)] = 0. We want to find the vectas(x.) that min-
imizes the mean squared prediction efdu(x.) — f(x.)]?. SinceE[u(x.)] = 0 andE[f(x,)] =0,
the mean squared prediction error equals the error variang€éxar— f (x,)] and can be expressed
as

(%) E(yy")u(x.) — 2u(x.)'E(yf.) +E(f?)
(%) (02T + Ky )u(X, ) — 2 (%, ) ks + K,

o(Xy)

=u
(2)
=u
which is a quadratic form im(x,). It is easy to see(x,) is minimized if and only ifu(x,) is chosen
to be(0%I + Kyy) ‘kxs.
Based on the above discussion, the mean of the predictive distribution in 1§ best linear
unbiased predictor can be obtained by solving the following minimization probtam; € Q,

Mi(ni)mﬂi%zNe Zu(x.)] == w(x) (0T + Ky )u(X.) — 2u(X) K, (3)

where the constant teri.. in o(x,) is dropped from the objective function. Given the solution
w(x,) = (02T 4+ Kyx) 1ky., the predictive mean is given hy(x,)'y and the predictive variance is
Zu(x.)] + k., the optimal objective value plus the variancefpht the locatiorx,.
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The optimization problem (3) and its solution depends on the special locatibmat we seek
prediction. However, we are usually interested in predicting at multiple teatitors. This mo-
tivates us to define another class of optimization problem whose solutiomsda@endent of the
location. Note that the optimal solution of (3) has the formAd,. for anN x N matrix A and thus,
we can restrict the feasible region fo(x.) to V = { Aky.; A € RN*N}1. This leads to the following
optimization problem: fox, € Q,

Minimize Z[A] := k&, AY(0°T + Kyy) Aky, — 2k', A'ky,. (4)
AERNXN

The first order necessary condition (FONC) for solving (4) is

djj] = 2(0°1 + Kyy) Aky. kb, — 2ky. kL, = 0. (5)
To obtain A, we needN x N equations with respect td. However, the FONC only provides
equations sincéy. k', is a rank one matrix, and thus it cannot uniquely determine the optimal
In fact, A = (0°T + Kx«)~X(I + B), whereB is any matrix satisfyingBkx. = 0, all satisfies the
FONC in (5).

Recall that our intention of the reformulation is to produce location-indepersiddutions. Yet
thoseA'’s satisfying the FONC as mentioned above are still dependext, @xcept forA = (0?T +
Ky, which becomes the one we propose to choose as the solution to the FOd@lsti easy
to verify thatA = (0°T + Kyx) ' is indeed the optimal solution to (4). The formulation (4) and the
above-mentioned rationale for choosing its solution will serve as the badisefaevelopment of
local kriging in the next section.

3. Domain Decomposition: Globally Connected Local Kriging

The reformulation of the GP regression as the optimization problem in (4) mateseduce the
computational complexity. We still need to compute the matrix inversiohwhich require®O(N3)
computations. To ease the computational burden, our strategy is to appmxireaptimization
problem (4) by a collection of local optimization problems, each of which is caatjpnally cheap
to solve. The local optimization problems are connected in a way ensuringésaatial prediction
function is globally continuous. We present the basic idea in this sectionexiw dhe numerical
algorithm in the next section.

We decompose the domaf® into m disjoint subdomaingQ;}j—1_.m. Letx; be the subset
of locations of observed data that belongQ2p and lety; denote the corresponding values of the
response variable. Denote hythe number of data points @;. Consider an initial local problem
as follows: forx, € Qj,

I\ﬁig}i}gixzn? ki A§(OFT + Kxx;) Ajkx — 2Ky Ak, (6)
where we introduced the subdomain-dependent noise var'mﬁncé’he minimizerA;j = (osz+
Kyx, )~1 provides a local predictop;(x.) = k;j*Atij, for x, € Qj. Computing the local predictor
requires onI),O(nJ3) operations for eacl. By makingn; < N, the saving in computation could be
substantial.

As we mentioned in the introduction, the above local kriging will suffer frastdntinuities in
prediction on boundaries of subdomains. While the prediction on the intdreaoh subdomain is
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independently governed by the corresponding local predictor, thBgicn on a boundary comes
from the local predictors of at least two subdomains that intersect orotinedlary, which provide
different predictions. For simplicity, in this paper, we suppose that a kayrig shared by at most
two subdomains. In the language of finite element analysis, our subdof@jhs-1
‘conforming mesh of the domai2 (Ern and Guermond, 2004). Suppose that two neighboring
subdomaing); andQy have a common boundafyy := Q; N Qyx, whereQ; means the closure of
Q;j. Usingkon as the abbreviation d;fx.xo, we have discontinuities dnjk, that is,

ks o Ay 7 Ky o Akyk for x, € T jk.

The discontinuity problem of local kriging has been well documented in thalitex; see Snelson
and Ghahramani (2007, Figure 1).

To fix the problem, we impose continuity constraints on subdomain boundareseombining
the local predictors. Specifically, we impose

(Continuity) K ,Ajyj = ki, Ajyk for x, € Tk

This continuity requirement implies that two mean predictions obtained from fwealictors of
two neighboring subdomains are the same on the common subdomain bowtanmding to (2),
the predictive variance is in a quadratic form of the predictive mean. ,Tthascontinuity of the
predictive mean across boundary imply the continuity of the predictivenaeia

To incorporate the continuity condition to the local kriging problems, defjge.) as a con-
sistent prediction at, onT . The continuity condition is converted to the following two separate
conditions:

k;joAtij‘ = rjk( ) andk;koA}(yk = rjk(xo) for x, € I k-

Adding these conditions as constraints, we revise the initial local problérto (e following
constrained local problem: fot, € Q;

LP() :  Minimize k:; AN O + Ky ) Ak, — 2Ky Alky .
AJ Rn xnj J (7)
st K .Ajyj=ri(x) forx el andkeN(j),

whereN(j) = {k: Qg is nexttoQ;}. Note thatrjk(x,) is a function ofx, and is referred to as a
boundary value functioon I"jx. We ensure the continuity of the prediction across the boundary
Ijk by using a common boundary value functigp for two neighboring subdomair@; and Q.
Solving of the constrained local problein®(j) will be discussed in the subsequent section. Since
the solution depends on a setrgf's, denoted collectively as; = {rj;k € N(j)}, we denote the
solution of (7) asd;(rj). Note that, ifr; is given, we can solve the constrained local probld()
for each subdomain independently. In realityis unknown unless additional conditions are used.
To obtain the boundary value functions, we propose to minimize the predietiiences on the
subdomain boundaries. The predictive variance at a boundary xoistgiven by the objective
function of (7), which depends an and can be written as

XJOA]( ) (O'ZI—I—KXX])AJ(T)ICXJO - Zkt 'OAj (I'J)thJO

To obtain the collection of all boundary value functiofs; }"" Ly, We solve the following optimiza-
tion problem
m
Ml?lmlze Z ki o A ()" (05T + Kxix) ) Aj (1) exjo — 2k3 A (1) Kxor (8)
I J=1keN(j) %€l j
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Note that we cannot solve optimization over eaglseparately sincej in rj is equivalent tary;
in r¢ so the optimization over; is essentially linked to the optimization oves In other words,
the equations for obtaining the optimizeds are entangled. We call (8) anterface equation
since it solves the boundary values on the interfaces between subdobaiags of solving these
equations will be given in the next section.

To summarize, we reformulate the spatial prediction problem as a collectionadfdoediction
optimization problems, and impose continuity restrictions to these local problemssdalution
strategy is to first solve the interface equations to obtain the boundaryfuglcigons, and then to
solve the constrained local problems to build the globally connected loddicpyes. The imple-
mentation of this basic idea is given in the next section.

4. Numerical Algorithm Based on Domain Decomposition

To solve (7) and (8) numerically, we make one simplification that restricts thadzoy value
functionsr jk’s to be polynomials of a certain degree. Since we want our predictionscortt@uous
and smooth, and polynomials are dense in the space of continuous funstimhsrestriction to
polynomials does not sacrifice much accuracy. To facilitate computation sevé agrange basis
polynomials as the basis functions to represent the boundary value fumctio

Suppose that we use Lagrange basis polynomials definedpainterpolation points that are
uniformly spaced ori jx. We refer top as thedegrees of freedomiet rjx be ap x 1 vector that
denotes the boundary functiop evaluated at thp interpolation points. Theny(x,) can be written
as a linear combination

k(%) = Tik(%) Tk, €)

whereTk(X,) is ap x 1 vector with the values gf Lagrange basis polynomialsxtas its elements.
Plugging (9) into (7), the local prediction problem becomesdor Qj,

LP@) :  Minimize ki A% (05T + Kyx,) Ajkx;« — 2K} Alky,.
Ajeanxnj J J (10)
s.t. k;joAtij‘ :Tjk(Xo)tTjk for x, € I'jx andk € N(j).

Since the constraint in (10) must hold for all points o, there are infinite number of con-
straints to check. One way to handle these constraints is to merge the infinitefycamastraints
into one constraint by considering the following integral equation:

/r [k;joAtjyj _Tjk(xo)trjk]zdxo =0.
jk

The integral depends on the covariance function used and is usuallgtattiea for general covari-
ance functions. Even when the integral has a closed form expresB@®mexpression can be too
complicated to ensure a simple solution to the constrained optimization. Considexample,
the covariance function is a squared exponential covariance fundtighis case, the integration
can be written as a combination of Gaussian error functions, but still wid oot easily have the
first order optimal solution fo with the integral constraint. We thus adopt another simplification,
which is to check the constraint only @uniformly spaced points ohjx; these constraint-checking
points on a boundary are referred tocamtrol points Although this approach does not guarantee
that the continuity constraint is met at all pointsiog, we find that the difference d:f;joA‘jyj and
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r'ik(X) is small for allx, onT jx whenq is chosen to be reasonably large; see Section 6.2 for some
empirical evidence.

Specifically, Ietxkj?k denote theq uniformly spaced points ofijx. Evaluateky;. and Tik(X.)
whenx, is taken to be an element ﬂf‘k and denote the results collectively as thex g matrix
Kxjxpk and theq x p matrix Tjk, respectively. Then, the continuity constraints atghgoints are

]

expressed as follows: for, € Qj,

t t
K b A jkrlk

XXy
Consequently, the optimization problem (10) can be rewritten ax. ferQ;,

LP()":  Minimize K}, Aj( 2I+Kxx,>A g — 2k5 Al .
AjeR™ (11)

Introducing Lagrange multiplierajk(x*) (agx 1 vector), the problem becomes an uncon-
strained problem to minimize the Lagrangian: forc Qj,
L(Aj, Ajk(x.)) 1= K AY(OFT + Kyx) Ajkx; —Zk;j*At-kxj
=3 M) Ky Ay - Ther). (12
keN(j)

Let Aj(x.) denote agj x 1 vector formed by stacking thosey(x.)'s for k € N(j) whereq; :=
qIN(j)|- Letxb denote the collection od*’ forallk e N(j). We formKXjX? by columnwise binding

Kxjx?k and formTJtrJ by row-wise blndlngI’Jerk. The Lagrangian becomes: for € Qj,

L(AJ’)‘JK(X*)) = k;]*Atj (O-JZI+KXJ‘XJ‘)AJ"€X]* - Zk;J*Atjkxl*
—Aj(x)'[K} o, ALy —Tirj].

xb
X)X

The first order necessary conditions (FONC) for local optima arex.ferQ;,

d

d—AjL(AJ-,)\jk) =2(cIT + Kxjxj)A,-kxj*k;j* — 2k K — YA (X*)K)‘(jx? =0, (13)
d

d|

As in the unconstrained optimization case, that is, (4) and (5), the FONGp(@@ides insuf-
ficient number of equations to uniquely determine the optisgland Aj(x,). To see this, note
that we haven; x nj unknowns fromA; andg; unknowns from\;(x.). Equation (13) provides
only n; distinguishable equations due to the matrix of rank ahqg,k:x .» and Equation (14) adag
(=qIN(])]) linear equations. Thus, in order to find a sensible solutlon we will follomsolution-
choosing rationale stated in Section 2, which is to look for the location-indepesdlution.

To proceed, first, we change our target of obtaining the optityaio an easier task of obtain-
ing u(x.) = Ajky;., which is the quantity directly needed for the local prediaidx,)'yj. From
Equation (13), we have that

_ 1
Ajkxj* = (GJ'ZI+KXij) 1 <kX]—* + EyJAJ(X*) X; xb(kg(]*kxj ) 1ka*> . (15)
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From here, the only thing that needs to be determined igjthel vectorA;(x,), which comes
out from the Lagrangian (12). We hage equations from (14) to determir (x.), So we restrict
the solution space foX;(x,) to a space fully specified by, unknowns. Specifically, we lex;(x.)
be proportional tdﬂxb*, which is inversely related to the distancexpffrom the boundary points in

x. More precisely, we seX;(x.) = A (k;?*kx?*)*l/zkx?*, Where(kf(,j)*ch?*)*1/2 is a scaling factor
to normalize the vectokx?* to unit length, andA; is aq; x g; unknown diagonal matrix whose

diagonal elements are collectively denoted as a column vagtoNote that the newly define;
no longer depends on locations.

The optimal); is obtained by using (15) to evaluatj k. at theq; pomtsx (ke N(j))on
the boundaries and then solving (14). The optimal solutlon is (derlvatlompendlx A)

Ajky;. = (05T + Ky,) * (16)
<kxj* + ZyJ)‘t [(kxb*kx *) 1/2kxb*] o [K)t(jxl]?ka*(kg(j*ka*)l]> )
TJtT'J K)t( Xb(02I+KXJX]) y]
y,-(021+Kxjx,-) Yj
{dlagl/z[( bbexbxb) ] xbxb} {K beX xbdlag[( Kx xb) }}>

i

Aj = 2G|

where A o B is a Hadamard product of matriA and B, diag,»[A] is a diagonal matrix with its
diagonal elements the same as the square root of the diagonal elemdntaraf note thac‘i;’j*1 is
symmetric. To simplify the expression, we define

hj = (05T + Kyx;) 'yj andk,p, 1= [(k;?*kx?*)*l/zkx?*} o [K;jx?kxj*(k;j*kxj*)*l].

The optimal solution becomes

Y (Tjtrj — K bhj)th

_ Xi X5 _
Aikxj* = (GJ'ZI+KXJX1) : K« + yt.h.] J kxlf* ' (7)
'l
It follows from (17) that the local mean predictor is
B (X 7)) i= Ky ALy = ki +E;?*G,-(T}r,- — K)‘(jx?hj), (18)

for x. € Q. The local mean predictor is the sum of two terms: the first téfmh |, is the standard
local kriging predictor without any boundary constraints; the secormd tera scaled version of
Tjri— K)t(ijhj, that is, the mismatches between the boundary value function and the traguet
local kriginé prediction. Ifx, is one of the control points, then the local mean predictor given in
(18) matches exactly the value given by the boundary value function.

The use of the local mean predictor in (18) relies on the knowledge ofivectehich identifies
IN(j)| boundary value functions defined g¥( j)| boundaries surroundir@;. Ther; is equivalent
to mean prediction (18) aff We choose the solution af; such that it minimizes the predictive
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variance at(*]?. The local predictive variance is computed by
6} (X 7j) = Kew + ki L AJ(OFT + Kixjx;) Aoy — 2k5  Afix .
= K — ki (OFT + Kx)~hex,.
Lt (Tt t N (Tt t NV~
hly;

The second equality of (19) is obtained by plugging (17) into the first laéguaf (19). Since
evaluatlngcxb at each point |n<b and combining them in columnwise resultsGf -, ! the predictive

(19)

variances axb can be simplified as
&i(xP;r)) = diag,[(T}r; —K)t(jx?hj)(Tjt’f’j —K)t(jx?hj)t]/(ht yj) + constant

where diag[A] is a column vector of the diagonal elements of maiix Omitting a constant, the
summation of the predictive variances@ﬁs

Sj(rj) = Vdiag((Tirj — K ohi) (Tirj — K »hi)']/(hjy;)
= tracd(Tjrj — K ,ohy) (Tjrj — K oh)]/ (Riy))
= (Tjrj = K oh)) (Tj7) = K whi) [ (Rjy))-

We propose to minimize with respect{e; }rj":1 the summation of predictive variances at all bound-
ary points over all subdomains, that is,
m
Minimize Sj(rj). 20

{Tj}ﬁnzl JZ]_ ( )
This is the realized version of (8) in our numerical solution procedureaee this is a quadratic
programming with respect tej, we can easily see that the optimal boundary va"qesatxjk are
given by (derivation in Appendix B)

t,,.
hkyk t thJ t bhk ) (21)

o (gt kIR 7
er - (TJkTJk) Tk ht y] + hkyk X]Xb + ht ] _|_ ht yk kajk

Apparently, the minimizer of (20) is a weighted average of the mean predidtmmgwo standard
local GP predictors of neighboring subdomains.

In summary, we first solve the interface Equation (20) forlalj to obtainrj’s so that its
choice makes local predictors continuous across internal boundagigen r;’s, we solve each
local problemLP(j)’, whose solution is given by (16) and yields the local mean predictors n (18
and the local predictive variance in (19). To simplify the expression @l lpedictive variance, we
define au;j as

uj = Gj(TjtTj —K)t(jxlj)hj),

so that the predictive variance in (19) can be written as
6’j(X*;7‘j) = Ky — k;j*(O'JZI—i—KXij)_lkxj* + E;?*Ujutjlz:x?*/(htjyj),
A summary of the algorithm (labeled as DDM), including the steps of making the mprealiction

and computing the predictive variance, is given in Algorithm 1.
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Algorithm 1.  Domain Decomposition Method (DDM).

1. Partition domainQ into subdomain$y,...,Qm.

2. Precompute Hj, hj, Gjj andc; for each subdomaif2; using
Hj — (GJZI+KXIXJ)_1, hj — ijj, Cj yﬁhj,
andGi — ({diagl/z[(Kt Kxbxb)_l]KxE’x?}

X?X? i
o K o Kogpodiag (Ko Koo) 11}
3. Solvethe interface equation far=1,...,mandk € N(j):

Tjk:(T-tijk)flT-t [ % _K'  hi K, hyl.

Cj
j ik | cj+cx XijJ-)k JTcj+a xkx'j’k
4. Compute the quantities in the local predictor. For edef
) uj Gj(Tjtrj —K)t(jx?hj).
5. Predict at locationx,. If x, is in Q;j,
I) kx?* = [(k;?*kx?*)il/zk_x?*] © [K;jx?kxj*(k;j*kxj'*)il]'
i) f)j (X*;rj) — kij*hj +k§(b*u1'
] — —
III) Oj (X*;’l“j) — Ky — kg(,-*ijXj* +k§<?*uj'utjkx?*/0j.

Remark 1 Analysis of computational complexity. Suppose thatjn=B for j=1,....m. The
computational complexity for the precomputation step in Algorithm 1(im®), or equivalently,
O(NB?). If we denote the number of sharing boundaries by w, the complexitplfdng the inter-
face equation is QvgB+ ¢®), where the inversion iI(lTjtijk)_lTjtk is counted once because the
Tjx matrix is essentially the same for all subdomains if we use the same polyreraiahted at
the same number of equally spaced locations. Since w is no more than dettimgle-shaped
subdomains, the computation required to solve the interface equation is ateehioy @dmqgB), or
equivalently, @dgN). Since computing;’s requires only @mcf) operations, the total complexity
for performing Step 1 through 4 is(@B? 4 dgN). We call this the ‘training time complexity’. For
small g and d, the complexity can be simplified {0NG? + N), which is clearly dominated by NB
The existence of the dgN term also indicates that it does not help with caiopataaving to use
too many control points on boundaries. On the other hand, we also wbeenpirically that using
g greater than eight does not render significant gain in terms of redudétidooundary prediction
mismatches (see Figure 2 and related discussion). Hence, we beli¢vgeshauld, and could, be
kept at a small value.

The prediction step requires(8) computation for predictive mean and B%) for predictive
variance after pre-computinky; andw ;. The complexities for training and prediction is summarized
in Table 1 with a comparison to several other methods including FIC, P{@VIBand LPR. Note
that the second row in Table 1 is the computational complexity for a fully parateldomain
decomposition approach (denoted by P-DDM), which will be explained iat&ection 6.7, and
BGP in the sixth row refers to the Bagged Gaussian Process, to be explaiSedtion 6.

Remark 2 One dimensional caseThe derivation in this section simplifies significantly in the one
dimensional case. In fact, all results hold with the simplificatioa g = 1. When d= 1, I x has
only one point and there is no need to define a polynomial boundary fiaha&ion. Denote byik
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the prediction at the boundaiyj, the local prediction problerbP(j)’ is simply
hﬂienkminzje Ky A5 (OFT + K, ) Ajox; — 2k Al kix,.
st K Alyj=rik forkeN(j).

The local mean predictor is straightforwardly obtained from expresgl@&)by replacingTjx with
1.

5. Hyperparameter Learning

By far, our discussions were made when using fixed hyperparam&tiersgliscuss in this section
how to estimate hyperparameters from data. Inheriting the advantage bkiiggag, DDM can
choose different hyperparameters for each subdomain. We refecticssibdomain-specific hyper-
parameters as “local hyperparameters.” Since varying hyperpansnmedans varying covariance
functions across subdomains, nonstationary variation in the data carptweechby using local
hyperparameters. On the other hand, if one set of hyperparametesdigar the whole domain,
we refer to these hyperparameters as “global hyperparameters.§j bleibal hyperparameters is
desirable when the data are spatially stationary.

Maximizing a marginal likelihood is a popular approach for hyperparamedeniley in like-
lihood approximation based methods (Seeger et al., 2003; Snelson ahch@laai, 2006, 2007).
Obtaining the optimal hyperparameter values is generally difficult since tHigblel maximization
is usually a non-linear and non-convex optimization problem. The methodomatheless success-
fully provided reasonable choices for hyperparameters. We prapdsarn local hyperparameters
by maximizing the local marginal likelihood functions. Specifically, the localdngprameters, de-
noted by; associated with eaddj, are selected such that they minimize the negative log marginal
likelihood:

n; 1 1 _
ML;(6;) := —logp(yj;0;j) = §J|09(2n) + > |09‘01'ZI+KXJ-XJ |+ éytj (onI+KXij) Yyi, (22)

where Ky x; depends odj. Note that (22) is the marginal likelihood of the standard local kriging
model. One might want to replacxifI+Kx‘j>1(j in (22) by the optimalA ; that solves (11). However,
doing so needs to solve fakj, rj and®; iteratively, which is computationally more costly. Our
simple strategy above disentangles the hyperparameter learning and diwiqgmeproblem, and
works well empirically (see Section 6).
When we want to have the global hyperparameters for the whole domaahawsed such that
it minimizes "
ML(0) = Z ML;(0), (23)
=1

where the summation of the negative log local marginal likelihoods is over latlsnains. The
above treatment assumes that the data from each subdomain are mutuakiyawetdp This is cer-
tainly an approximation to solving the otherwise computationally expensive lgitdrginal likeli-
hood.

In the likelihood approximation based methods like FIC, the time complexity to evaduate
marginal likelihood is the same as their training computation, th&DGBI,MZ). However, numeri-
cally optimizing the marginal likelihood runs such evaluation a number of iteratichally, 50—
200 times. For this reason, the total training time (counting the hyperparameatenigas well) is
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Methods Hyperpar_ameter Training Prediction _
Learning Mean Variance
DDM | O(LNB?) O(NPB?) 0O(B) 0O(B?)
P-DDM | O(LB?®) O(B?) O(B) O(B?)
FIC | O(LNM?) O(NM?) o(M) O(M?)
PIC | O(LN(M+B)?) | O(N(M+B)?) | O(M+B) O((M +B)?)
BCM | O(LNM?) O(NMZ+N3) | O(NM) O(NM)
BGP | O(LKM?®) O(KM3) O(KM?) O(KM?)
LPR | O(R(LM3+N)) O(KM3+KN) O(KM3+KN)

Table 1: Comparison of computational complexities: we supposd.thatations are required for
learning hyperparameters; for DDM, the number of control pajrds a boundary is kept
to be a small constant as discussed in Remark 1; for B8Ms the number of testing
points; for BGPK is the number of bootstrap samplé4,is the size of each bootstrap
sample; for LPRR is the number of the subsets of training points used for estimating
local hyperparameters aidis the number of local experts of siké

much slower than expected. The computational complexity of DDM is similar to&Ghown in
Table 1. One way that can significantly improve the computation is throughigiaation, which

is easier to conduct for DDM because théocal predictions can be performed simultaneously. If a
full parallelization can be done, the computational complexity for one iterasmmgDDM reduces

to O(B?®), wheren; = Bis assumed for alj's. For more comparison results, see Table 1.

6. Experimental Results

In this section, we present some experimental results for evaluating tioerpance of DDM. First,
we show how DDM works as the tuning parameters of DD ¢ andm) change, and provide
some guidance on setting the tuning parameters when applying DDM. Thecomgare DDM
with several competing methods in terms of computation time and prediction agcWécalso
evaluate how well DDM can solve the problem of prediction mismatch on beigsda

The competing methods are local GP (i.e., local kriging), FIC (Snelson aatirdmani, 2006),
PIC (Snelson and Ghahramani, 2006), BCM (Tresp, 2000), and LIPagun and Darrell, 2008).
We also include in our comparative study the Bagged Gaussian Pro¢B&esChen and Ren,
2009) as suggested by a referee, because it is another way to peovitieuous prediction sur-
faces by smoothly combining independent GPs. BGP was originally dewkefopémproving the
robustness of GP regression, not for the purpose of faster computatie prediction by BGP is
an average of the predictions obtained from multiple bootstrap resamptgsptwhich has the
same size as the training data. Hence, its computational complexity is no bettéhehfaii GP
regression. But faster computation can be achieved by reducing tkstdapcsample size to a small
numberM < N, a strategy used in our comparison.

FIC and PIC does not allow the use of local hyperparameters for tiafidocal variations of
data, so we used global hyperparameters for both FIC and PIC, aD®M as well, for the sake of
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fairness. The remaining methods are designed to allow local hyperparansst&DM uses local
hyperparameters for comparison with those.

We did not compare DDM with the the mixture of GP experts such as MGP (Rasmasd
Ghahramani, 2002) and TGP (Gramacy and Lee, 2008), becausedhgiutation times are far
worse than the other compared methods especially for large data sets,tbdeaise of computa-
tionally slow sampling methods. For example, according to our simple experimeémbkitmore
than two hours for TGP to train its predictor for a data set with 1,000 trainimggpand took more
than three days (79 hours) for a larger data set with 2,000 training pwihile other competing
methods took only a few seconds. We did not directly implement and test MGRBcbording to
Gramacy and Lee (2008, page 1126), MGP’s computation efficiencylietier than TGP. In gen-
eral, the sampling based approaches are not competitive for handliegsizate data sets and thus
are inappropriate for comparison with DDM, even though they may be lusefsmall to medium-
sized data sets in high dimension.

6.1 Data Sets and Evaluation Criteria

We considered four data sets: two synthetic data sets (one in 1-d and #rdrofyd) and two
real spatial data sets both in 2-d. The synthetic data set in 1-d is packetti¢ogvith the FIC
implementation by Snelson and Ghahramani (2006). It consists of 200 gainints and 301 test
points. We use this synthetic data set to illustrate that PIC still encountersatlietion mismatch
problem at boundaries, while the proposed DDM does solve the probleind data. The second
synthetic data set in 2-égynt heti c- 2d, was generated from a stationary GP with an isotropic
squared exponential function using the R packigayalonFi el ds, where nugget = 4, scale=4, and
variance=8 are set as parameters for the covariance function.slist®of 63,001 sample points.

The first real data seT,CO, contains data collected by NIMBUS-7/TOMS satellite to measure
the total column of ozone over the globe on Oct 1 1988. This set consié&381 measurements.
The second real data séf)D08- CL, was collected by the Moderate Resolution Imaging Spectro-
radiometer (MODIS) on NASA's Terra satellite that measures the averfagjeua fractions over
the globe from January to September in 2009. It has 64,800 measurefyeatisal non-stationarity
presents in both real data sets.

Using the second synthetic data set and the two real spatial data setspp&redhe computa-
tion time and prediction accuracy among the competing methods. We randomlyasplitiata set
into a training set containing 90% of the total observations and a test deirdog the remaining
10% of the observations. To compare the computational efficiency of nethadmeasure two
computation times, the training time (including the time for hyperparameter learmdgha pre-
diction (or test) time. For comparison of accuracy, we use three measutis set of the test data,
denoted ag(x, ¥ );t =1,..., T}, whereT is the total data amount in the test set. The first measure
is the mean squared error (MSE)

1 T
MSE= =% (i — k)2,
T

which measures the accuracy of the mean predigii@nlocations. The second one is the negative
log predictive density (NLPD)

1 Cln—w? 1 2
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which considers the accuracy of the predictive variamcas well as the mean predictipp These
two criteria were used broadly in the GP regression literature. The lasuneeéise mean squared
mismatch (MSM), measures the mismatches of mean prediction on boundaries.a3et of test
points, {xe;e=1,...,E}, located on the boundary between subdom&nandQ;, the MSM is
defined as
msm = 15 (-,

PX
wherepg) and uéj) are mean predictions frof2; andQ;j, respectively. A smaller value of MSE,
NLPD or MSM indicates a better performance.

Our implementation of DDM was mostly done in MATLAB. When applying DDM to thd 2-
spatial data, one issue is how to partition the whole domain into subdomainsnaiso ksmeshing
in the finite element analysis literature (Ern and Guermond, 2004). A simpldddest to use a
uniform mesh, where each subdomain has roughly the same size. Hawrapée, this idea works
surprisingly well in many applications, including our three data sets in 2-ds,Mie used a uniform
mesh with each subdomain shaped rectangularly in our implementation.

For FIC, we used the MATLAB implementation by Snelson and Ghahrama@bj2®hile for
BCM, the implementation by Schwaighofer et al. (2003) was used. Since thenmaptations of
the other methods are not available, we wrote our own codes for PICahBRGP. Throughout the
numerical analysis, we used the anisotropic version of a squared e rcovariance function.
All numerical studies were performed on a computer with two 3.16 GHz quadzBUs.

6.2 Mismatch of Predictions on Boundaries

DDM puts continuity constraints on local GP regressors so that predidtimmsneighboring local
GP regressors are the same on boundaries for 1-d data and are niadlled for 2-d data. In this
section, we show empirically, by using the synthetic 1-d data set and thes2lyiTCO data set, the
effectiveness of having the continuity constraints.

For the synthetic data set, we split the whole domiaiti, 7], into four subdomains of equal size.
The same subdomains are used for local GP, PIC and DDM. PIC is a¢seaffoy the number and
locations of inducing inputs. To see how the mismatch of prediction is affegtatidonumber
of inducing inputs, we considered two choices, five and ten, as the nwhbwetucing inputs for
PIC. The locations of inducing inputs along with the hyperparameters asentby optimizing the
marginal likelihood. For DDM, the local hyperparameters are obtaineddoh subdomain using
the method described in Section 5.

Figure 1 shows for the synthetic data the predictive distributions of the fRillggression, local
GP, PIC withM =5, PIC withM = 10, and DDM. In the figure, red lines are the predictive means of
the predictive distributions. The mean of local GP and the mean of PIOWviths have substantial
discontinuities ak = 1.5 andx = 4.5, which correspond to the boundary points of subdomains.
As M increases to 10, the discontinuities decrease remarkably but are still vidiblgeneral,
the mismatch in prediction on boundaries is partially resolved in PIC by incgg#sgtnnumber of
inducing inputs at the expense of longer computing time. By contrast, the mediotjppn of DDM
is continuous, and close to that of the full GP regression.

Unlike in the 1-d case, DDM cannot perfectly solve the mismatch problem-tbd&ta. Our
algorithm chooses to enforce continuity at a finite number of control potzatural question is
whether continuity uniformly improves as the number of control poigitsncreases. This question
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(a) full GPR

() PIC (M=5)

Figure 1: Comparison of predictive distribution in the synthetic data set: sirefgresent training
points; the red lines are predictive means and the gray bands repdesetion from the
predictive means by-1.5 times of predictive standard deviations; black crosses on the
bottom of plots for PIC show the locations of inducing inputs.

1712



DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

(2) MSM (p=3)

5
4
3
2
1
0 o

0 2 4 6 8 10 12

# of control points (q)
(c) MSM (p=5)
5
]

4
3
2
1 \
0 . . . o

0 2 4 6 8 10 12

# of control points (q)
(e) MSM (p=8)

5 T - -
4
3
2
1
0 . . . o

0 2 4 6 8 10 12

# of control points (q)

20

18

16

14

12

10
0

20

18

16

14

12

10
0

20

18

16

14

12

10
0

(b) MSE (p=3)

__o—o6——HF

2 4 6 8 10 12
# of control points (q)

(d) MSE (p=5)

]

2 4 6 8 10 12
# of control points (q)

() MSE (p=8)

2 4 6 8 10 12
# of control points (q)

Figure 2: Left column: MSM versus the degrees of freedoand the number of control points
Right column: MSE versup andq.

is related to the stability of the algorithm. Another interesting question is whetheletjrees of
freedom @) affects the continuity or other behaviors of DDM. To answer thesetiuss we traced
MSE and MSM with the change gfandq for a fixed regular grid.
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We observe from Figure 2 that for tH€O data set, the magnitude of prediction mismatch,
measured by MSM, decreases as we increase the number of control pelso observe that
there is no need to use too many control points. For the 2-d data sets atusamgl more than
eight control points does not help much in decreasing the MSM furtherffaMSM is close to
zero with eight (or more) control points. On the other hand, if the degregeedom {) is small
but the number of control points is larger, the MSE could increase reiigrksee Figure 2-(b)).
This is not surprising, because the degrees of freedom determinesrtimexity of a boundary
function, and if we pursue better match with too simple boundary function, evédndistort local
predictors a lot, which will in the end hurt the accuracy of the local predict p is large enough
to represent the complexity of boundary functions, the MSE stays rowghistant regardless gf
(see Figure 2-(d) and 2-(f)). To save space, we do not preseatthe results for another real data
set,MOD08- CL, because they are consistent with thoseT@®. Our general recommendation is to
use a reasonably largeand letg = p.

6.3 Choice of Mesh Size for DDM

An important tuning parameter in DDM is the mesh size. In this section, we pravgdédeline for
an appropriate choice of the mesh size through some designed experifitentsesh size is defined
by the number of training data points in a subdomain, previously denot&l We empirically
measure, using the synthetic-2€0 andMOD08- CL data sets, how MSE and training/testing times
change for differenB’s. In order to characterize the goodnes®8pive introduce in the following

a “marginal MSE loss” with respect to the total computation tifik@e that is, training time + test
time, measured in seconds. Given a set of mesh $#izegB;,B,,...., B},

MSE(B) — MSE(B*)
"1+ TimeB*) — Time(B)

margina(B;B*) := max{o } for B € B,
whereB* = max{B € B}. The denominator implies how much time saving is obtained for a reduced
B, while the numerator implies how much MSE we lost with the time saving. But ma(&iriil)
alone is not a good enough measure because majB) is always zero aB = B*. So, we
balanced the loss by adding the change in MSE and computation relative todhest mesh size
in B, namely

marginal MSE loss= margina(B; B*) + margina(B; B°),

whereB° = min{B € B}. We can interpret the marginal MSE loss as how much MSE is sacrificed
for a unit time saving, so smaller values are better.

Figure 3 shows the marginal MSE loss for the three data sets. For all dajaBebetween
200 and 600 gives smaller marginal MSE loss. Based on this empirical egidee recommend
to choose the mesh size so that the number of training data points in a subdangss from 200
to 600. If the number is too large, DDM will spend too much time for small reduatiok SE.
Conversely, if the number is too small, MSE will deteriorate significantly. Therlatight be
because DDM has too fewer training data points to learn local hyperptame

6.4 DDM Versus Local GP

We compared DDM with local GP for different mesh sizes and in terms ofdlyenediction accu-
racy and mismatch on boundaries. We considered two versions of DDysing global hyperpa-
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Figure 3: Marginal MSE loss versus mesh sB)efor the three data sets, the marginal loss is small
whenB is in between 200 and 600.

rameters (G-DDM) and the other using local hyperparameters (L-DBbt)local GP, we always
used local hyperparameters.

Figure 4 shows the three performance measures as a function of themefrsbhbdomains for
G-DDM, L-DDM and local GP, using th&CO data and the synthetic-2d data, respectively. DDM
adds more computation to local GP for imposing the continuity on boundariethéircreased
computation is very small relative to the original computation of local GP. Heheecomparison
of DDM with local GP as a function of the number of subdomains is almost abprit/ to the
comparison in terms of the total time (i.e., training plus test time).

In Figure 4, local GP has bigger MSE and NLPD than the two versions dflB® both data
sets. The better performance of DDM can be contributed to the better fiwedaccuracy around
boundaries of subdomains. The comparison results for two version©df Bre as expected:
In terms of MSE and NLPD, L-DDM is better than G-DDM for tA€0 data set, which can be
explained by nonstationarity of the data. On the other hand, for the synfttbtiata set, G-DDM
is better, which is not surprising since the synthetic-2d data set is gethénatea stationary GP so
one would expect that global hyperparameters work well.

The left panels of Figure 5 show the comparison results for the akfildB- CL data set. In
terms of MSE and NLPD, L-DDM is appreciably better than local GP when timeber of subdo-
mains is small, but the two methods perform comparably when the number aireabt is large.
This message is somewhat different from what we observelXodata set. One explanation is that
TCOdata set has several big empty spots with no observation over the sulhtagfidOD08- CL data
set does not have such “holes”. Because of the continuity constrainbelieve DDM is able to
borrow information from neighboring subdomains, and consequentlyotade better spatial pre-
dictions. To verify this, we randomly chose twenty locations within the spatialaiio of MOD08- CL
data set and artificially removed small neighborhoods of each randoméerHocation from the
MOD08- CL data set; doing so resulted in a new data set cal&d08- CL with holes”. The results
of applying three methods on this new data set are shown on the right péfagire 5. L-DDM
is clearly superior over local GP across different choices of the nuoflsibdomains.

This comparison reveals that when there is nonstationary in data, usingéwameters (local
GP and L-DDM versus G-DDM) will help adapt to the non-stationary fesgtuand thus, improve
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the prediction accuracy. More importantly, the improvement in prediction ednrther enhanced
by a proper effort to smooth out the boundary mismatches in localized methda®M versus
local GP). In all cases, the MSM associated with DDM method is very small.

6.5 G-DDM Versus FIC and PIC

We compared prediction accuracy of G-DDM with FIC and PIC. We onlysimared global hyper-
parameters for DDM because FIC and PIC cannot incorporate lopatpgtrameters. Since each of
the compared methods has different tuning parameters, it is hard to cothpaeemethods using
prediction accuracy measures (MSE and NLPD) for a fixed set of tgrpamameters. Instead, we
considered MSE and NLPD as a function of the total computation time requirechbtain the
prediction accuracy measures for different computation times, we triedaealifferent settings of
experiments and presented the best accuracies of each method forcgivgutation times: for
DDM, we varied the number of equally sized subdomaimy §nd the number of control points
g while keeping the degrees of freedqgmthe same asg; we tested two versions of PIC having
different domain decomposition schemes: k-means clustering (denotd@lGy &nd regular grids
meshing (denoted by rPIC), and for each version, we varied the tatddeuof subdomainsrf) and
the number of inducing input$A); for FIC, we varied the number of inducing inputd), We see
that each of the compared methods has one major tuning parameter mainly gffeetirtraining
and test times; it isn for DDM, or M for FIC and PIC. In order to obtain one point in Figure 6, we
first fixed the major tuning parameter for each method, and then changeshthaing parameters
to get the best accuracy for a given computation time.

In this empirical study, for G-DDM, a set of the global hyperparametexrs arned by min-
imizing (23). In FIC, the global hyperparameters, together with the locatbtise inducing in-
puts, were determined by maximizing its marginal likelihood function. For PICtestd several
options: learning the hyperparameters and inducing inputs by maximizing @apgproximated
marginal likelihood; learning the hyperparameters by maximizing the PIC gippated marginal
likelihood, whereas learning the inducing inputs by the FIC approximated ldadihor learning
the hyperparameters by the FIC approximated marginal likelihood, whieraaéng the inducing
inputs by the PIC approximated marginal likelihood. Theoretically, the firsboshould be the
best choice. However, as discussed in Section 5, due to the non-limaoa-convex nature of the
likelihood function, an optimization algorithm may converge to a local optimum amslylelds a
suboptimal solution. Consequently, it is not clear which option’s local optirproduces the best
performance. According to our empirical studies, for 0@ data set, the first option gave the best
result, while for thevoD08- CL data set, the third option was the best. We present the results based
on the empirically best result.

Figure 6 shows MSE and NLPD versus the total computation time. G-DDM exIsilyjitsrior
performance for the two real data sets. We observe that FIC and BtCariarge number of inducing
inputs, at the cost of much longer computation time, in order to lower its MSE &INio a level
comparable to G-DDM. Depending on specific context, the differencenmpatation time could
be substantial. For the instanceTdO data set, G-DDM using 156 subdomains produced MSE =
17.7 and NLPD = 2.94 with training time = 47 seconds. FIC could not obtain a siresait even
with M = 500 and computation time = 484 seconds, and rPIC could obtain MSE = 25M8L&0l
= 3.06 after spending 444 seconds and using 483 subdomaing an800. For the synthetic-2d
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Figure 4: Prediction accuracy of DDM and local GP for different masbss ForTCO, p ranged
from five to eight for G-DDM and L-DDM. For synthetic-2d data getanged from four
to eight.
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Figure 5: Prediction accuracy of DDM and local GP for MuB08- CL data set. The left panel uses
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to eight for G-DDM and L-DDM.
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data set from a stationary GP, G-DDM does not have advantage averte PIC but still performs
reasonably well.

We here used two versions of PIC: kPIC and rPIC, and the differbrbgeen them is how
the subdomains are created. Since rPIC uses a regular grid meshingmopidse the domain, the
general perception is that rPIC might not perform as well as kPICialinis domain-decomposition
rigidity. It is interesting, however, to see that this perception is not stegdyy our empirical
studies of using large-size spatial data sets. In Figure 6, kPIC exhikajgpreciable difference with
rPIC in terms of MSE and NLPD. Please note that we actually did not coutihtkedor conducting
the domain decomposition when we recorded the training time. If we consideothputation
complexities of the k-means clustering versus the regular grid meshing, BHénwould be less
attractive. This is because the time complexity for performing the k-meansrihgsie O(IkdN),
much more expensive than that for regular grid meshing, which only e=@{dN) computation,
wherel is the number of iterations required for the convergence of the clustdgogtam, k is the
size of neighborhoodsl is the dimension of data, amdlis the number of data points.

Regarding the mismatch of prediction on boundaries as measured by M8NGis multifold
better than that of rPIC; see Figure 7. This is not surprising, since DEloily controls the
mismatch of prediction on boundaries. For kPIC, we could not measure bessluse it is difficult
to define boundaries when we use the k-means clustering for the purfobsmain decomposition.
FIC does not have the mismatch problem since it does not use subdonrginsdiztion.

6.6 L-DDM Versus Local Methods

We compared prediction accuracy of L-DDM with three localized regrassiethods, BCM, BGP,
and LPR, all of which partition the original data space for fast computat®R@P uses different
hyperparameters for each bootstrap sample, but strictly speaking, linpsgarameters cannot
be called “local hyperparameters” since each bootstrap sample is fromhtble domain, not a
local region. However, BGP can be converted to have local hypempeters by making bootstrap
samples to come from local regions in the same way as BCM, that is, via k-rokestering. We
call the “local version” of BGP as L-BGP, and we present the expetiahessults of both BGP and
L-BGP (this L-BGP is in fact suggested by one referee). We presentgults in the same way as
in the previous section by plotting computation times versus prediction accomaagures. Since
the computational complexity comparison here is significantly different faritrgand testing (or
prediction), the results for training time and test time are presented separately

To obtain the prediction accuracy measures for different computation tinees;ied several
different settings of experiments and presented the best accura@astomethod for given com-
putation times: for DDM, we varied the number of equally sized subdomainshendumber of
control pointsg while keeping the degrees of freedqmthe same as|; for BGP, the number of
bootstrap sample({ ranged from 5 to 30 and the number of data points in each mbelanged
from 300 to 900; for L-BGP, the number of local regioig ¢(anged from for 9 to 64 and the number
of data points in each mode\) ranged from 150 to 1500; for LPR, the number of local experts
(K) ranged from 5 to 20 and the number of data points used for each ékperanged from 50 to
200 while the number of locations chosen for local hyperparameter |ggfRjrranged from 500
to 1500; for BCM, the number of local estimatoig)(was varied from 100 to 600. Similar to what
we did in Section 6.5, we still use one or two major parameters to determine the dimptme
first, and then use the remaining parameters to get the best accura@cfiomethod. The major
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Figure 7: MSM versus total computation time. For three data sets, G-DDM mses
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time-determining parameters are:for DDM; K andM for BGP;K for L-BGP; T andR for LPR;
M for BCM.

The local hyperparameters for the methods in comparison are all leaynachimizing (22).
However, for BCM, when we tried to use local hyperparameters fof @alata set, the implemen-
tation by Schwaighofer et al. (2003) always returned “NA’ (not avd#aso we could not obtain
valid results with local hyperparameters. Therefore, we applied glofmdrparameters to BCM
only for theTCO data set. The global hyperparameters were learned by minimizing (23 vghic
equivalent to the implementation of BCM by Schwaighofer et al. (2003). Wi ran our imple-
mentation of LPR, we found that the results are sensitive to the setting of itgtparameters. The
reported results for LPR are based on the set of tuning parametersvibatite best MSE, chosen
from more than thirty different settings.

Figure 8 traces MSEs and NLPDs as a function of training time for the thtaesdes. Foif CO,
BCM and L-DDM have comparably good accuracy (measured using M&B)similar training
costs, but the NLPD of L-DDM is much smaller than that of BCM, implying that tbedmess
of fit of L-DDM is better. The other methods do not perform as accurasliz-DDM with even
much greater training cost. For all of the three data sets, BCM, BGP, L&@RPR have higher,
and sometimes much higher, NLPD than L-DDM. By the definition of NLPD, bdifgaMSE and
a small predictive variance will lead to a high NLPD. Thus, we can infer fioatthe TCO data
set, the differences of NLPD between L-DDM and BCM are mainly caugaddsmall predictive
variances of BCM (i.e., BCM underestimates the predictive variancegdaably), since the MSEs
produced by the two methods are very close. For other data sets, tmerlitis in NLPD come from
both the differences in MSE and differences in predictive variance. titeostationary synthetic
data set, BCM has high MSE and NLPD, suggesting that BCM might not lyeceenpetitive for
stationary data sets. Overall, L-DDM outperforms all other methods for hathstationary and
stationary data sets.

Figure 9 shows MSEs and NLPDs as testing times change. One obsemvie ttesting times
are significantly different across methods. In particular, the computatiomig®éed to predict at a
new location for BCM and LPR is far longer than that for L-DDM or BGPIidTis also supported
by the computational complexity analysis presented in Table 1. One alswebs$leat the curves of
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L-DDM always locate at the lower-left parts of the plots, implying that L-DBpent much shorter
prediction time but obtained much better prediction accuracy. Note that this aad y-axis of the
plots are log-scaled so the difference in computation times is much bigger thaiit \Wduks like
in the plots. For examples, L-DDM spent less than three seconds for alathesets for making a
prediction, while BCM’s prediction time ranged from 100 to 1,000 secomid,l&#R spent from
189 to 650 seconds. BCM and LPR do not look competitive when the nurhlzerations to predict
is large, a situation frequently encountered in real spatial predictiongmmab

6.7 Benefit of Parallel Processing

As mentioned earlier, one advantage of DDM is that its computation can blepaed easily.
This advantage comes from its domain decomposition formulation. As soonchiars of inter-
face Equation (8) is available, (11) can be solved simultaneously forithdil/subdomains. Once
fully parallelized, the computational complexity of DDM reduce©{d@?) for training, and that for
hyperparameter learning is reducedd@_B2). Since the computation of hyperparameter learning
usually accounts for the biggest portion of the entire training time, parallelivatiold provide a re-
markable computational saving. See the second row of Table 1 for a suroftbeycomputational
complexity for the parallel version of DDM (P-DDM).

While a full parallelization of DDM needs the support from sophisticatetivsoe and hard-
ware and is thus not yet available, we implemented a rudimentary versioBiNPby using the
MATLAB Parallel Processing Toolbox on a computer with two quadcore £Pd doing so, we
replaced the reguldror -loop with its parallel versiompar f or -loop and examined how much the
training time can be reduced by this simple action.

Denote the training time from the sequential DDMS3E the training time from P-DDM aBT,
and define the “speed-up ratio” 83 /PT. We use the speed-up ratio to summarize the increase of
computing power by parallel processing. We varied the mesh size andriiteenof control points
on the boundaries to examine the effect of parallel computing underatiffeettings.

Speed-up ratios for different setups of mesh size are presented e BiguThe speed-up ratio
is roughly proportional to the number of concurrent processes. Withkammian of eight concurrent
processes allowed by the computer, we are able to accelerate trainiegpinca factor of at least
three and half. This result does not appear to depend much on dathutdatsjepends on mesh
sizes. Since a smaller mesh size implies that each subdomain (or computing usitinesnless
time, parallelization works more effectively and the speed-up ratio cumdsless downward as
the number of processes increases.

7. Concluding Remarks and Discussions

We develop a fast computation method for GP regression, which revisksctidriging predictor
to provide consistent predictions on the boundaries of subdomains. DMt mDethod inherits
many advantages of the local kriging: fast computation, the use of logarpgrameters to fit
spatially nonstationary data sets, and the easiness of parallel computat@nadd/antages of the
proposed method over other competing methods are supported by our elgtirdies. Mismatch
of predictions on subdomain boundaries is entirely eliminated in the 1-d cdsis aignificantly
controlled in the 2-d cases. Most importantly, DDM shows more accuratiction using less
training and testing time than other methods. Parallelization of computation for D&iMeveals
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clear benefit in time efficiency. The proposed method is specially desigreahtiie spatial data
sets. Given the ubiquitous of large spatial data sets, our method shoelevid®/applications.

In the meanwhile, we also acknowledge that more work is heeded to fine mipertiormance
of the new method, including addressing the issues on meshing, hypegiardearning, and par-
allelization. While extending the new method by addressing these issues & liefture research,
we do want to present our thoughts regarding a possible improvementgingaeeration, for the
purpose of facilitating further discussions and development.

7.1 Mesh Generation

Since meshing is a classical problem in the finite element analysis, methods initthel@ment
analysis literature could be helpful, or even readily applicable. A uniforshynas we used in this
paper, works surprisingly well in many applications. However, the umiforesh applies the equal-
sized subdomains to both the slowly changing regions and the fast chargiongs. Doing so may
not be able to effectively adapt to local abrupt changes in the data antbathto a large prediction
error in fast changing regions. As a remedy, one can consider usragl#ptive mesh generation
(Becker and Rannacher, 2001) which adjusts the size of subdomathatshey are adaptive to
local changes.

The basic idea is to start with a relatively coarse uniform mesh and to sptibswdins until
the approximation error is smaller than a prescribed tolerance. In eadioitefi@lowed, a certain
percentage of the subdomains having higher local error estimates, dompé, the top 20% of
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those, are split. After several iterations, local error estimates will becatan¢ed over all the
subdomains. This strategy of splitting a subdomain is caltear-balancing strategy

In DDM, we have a natural choice for local error estimator, which is teeigtive error variance
givenin (19). Thus, itis possible to apply the error-balancing stratgycan define our local error
estimate using the integrated error variance as followsQfor

No; :/Q_ffj(x*irj)dxk-

J

Since the integral is intractable, we may use the Niystmethod to approximate the integral Sff
is a set of points uniformly distributed ove);, the error estimate is

ﬁQj = ZS 6J(X*,’I’J)
X €

Given the local error estimate for each subdomain, we define the ovellestimate as the sum-
mation of the local error estimates over all the subdomains, namelyjthag o, No;, wheren
denotes the overall estimate. Thus the adaptive mesh generation in DDMlmoplerformed as
follows: Start with a coarse mesh and continue splitting the subdomains pondiag to the top
100- a% of therjg;'s until fj is less than a pre-specified tolerance.
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Appendix A. Derivation of (16)for Local Predictor

With Xj(x.) = A (k;b*kx?*)‘l/zk (15) and (14) can be written as
]

Dy
XJ*

_ 1 _ _
Ajky. = (071 + Ky;x;) 1<kxj*+2’yj(k§(?*kxlj)*) o ATEG o (R Ko ) 1k:x,.*>, (24)

K;jX?Atjy,- ~Tjrj=0, (25)

where A is aq;j x g; diagonal matrix and\; is a column vector of its diagonal elements. The
expression (24) can be rewritten as
th)* Xj

_ 1 _ _
Ajky; = (05T + Ky, 1(kxj*+2yj>\tj[(kt ko,) l/zkxlj)*]o[K)t(jx?ka*(k;j*kxj*) 1]). (26)

Evaluating (26) at| points uniformly distributed ofi j for k € N(j) and binding the evaluated
values columnwise, we have

1
2 — _
A, 0 = (071 + Kyx,) 1<KXJ_X?+2yj)\tjGj 1), (27)
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whereGj‘1 is symmetric and given by
= {diagy o [(Kpo Kyo) 1Ko} (L o Ko oiad (KL o K ) 1}
Substitute the transpose of (27) into (25) to get
<I{)t(jxljj + ;Gjl)\jytj> (GJZI—i- Kxjxj)flyj = Tjtrj.

After some simple algebra, we obtain the optitalvalue

TtTJ Kt (O-JZI‘FKX]’XJ’)ilyj

Aj = 2G|
J J yj(0]2I+KXij)_lyj

Appendix B. Derivation of (21) for Interface Equation

Note thatTjtT'j is a rowwise binding OTjtk’r'jk. Ignoring a constant, the objective function to be
minimized can be written as

5

To find the optimalrjx, we only need pay attention to the relevant terms in (28). Sifyce- ry;
andTjx = Tj, the objective function for finding optimaly reduces to

z JkTJk Xb hj)\ (T JkT'Jk )t(ijkhj)~ (28)
I keNTj) .

1 1 K
%(Tjk"’jk Xb hj){(T k"“Jk ij?khj)

1 t t t t 1
+ %(Tkjrk] — KXkXEjhk) (Tkjrkj — KXkXEjhk)’

the minimization of which gives (21).
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