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Abstract

Principal curves are defined as self-consissembothcurves passing through th&ddleof the data,
and they have been used in many applications of machineihggas a generalization, dimension-
ality reduction and a feature extraction tool. We redefinagipal curves and surfaces in terms of
the gradient and the Hessian of the probability densityredt. This provides a geometric under-
standing of the principal curves and surfaces, as well asfging view for clustering, principal
curve fitting and manifold learning by regarding those argipal manifolds of different intrinsic
dimensionalities. The theory does not impose any particlgasity estimation method can be used
with any density estimator that gives continuous first armbsd derivatives. Therefore, we first
present our principal curve/surface definition withoutuasisig any particular density estimation
method. Afterwards, we develop practical algorithms fa ommonly used kernel density esti-
mation (KDE) and Gaussian mixture models (GMM). Resulthett algorithms are presented in
notional data sets as well as real applications with corspas to other approaches in the principal
curve literature. All in all, we present a novel theoretioalderstanding of principal curves and
surfaces, practical algorithms as general purpose matdaneing tools, and applications of these
algorithms to several practical problems.

Keywords: unsupervised learning, dimensionality reduction, ppatcurves, principal surfaces,
subspace constrained mean-shift

1. Introduction

Principal components analysis (PCA)—also known as Karhunen-Loaresform—is perhaps the
most commonly used dimensionality reduction method (Jolliffe, 1986; Jack€®1,), which is
defined using the linear projection that maximizes the variance in the projqued gHotelling,
1933). For a data set, principal axes are the set of orthogonal semtw which the variance of
the projected data points remains maximal. Another closely related proper@Aidrthat, for
Gaussian distributions, the principal line is also self-consistent. Thatygs@int on the principal
line is the conditional expectation of the data on the orthogonal hyperplanfact, this forms
the basic idea behind the original principal curve definition by Hastie (t 38dstie and Stuetzle
(1989).
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Due to the insufficiency of linear methods for dimensionality reduction, mamnjirear pro-
jection approaches have been studied. A common approach is to use a roixinear models
(Bishop, 1997). Mixture models are attractive, since they arevsimpleraigzable as linear meth-
ods; however, assumingsaitablemodel order, they are able to provide much more powerful tools
as compared to linear methods. Although model order selection is a toughtdisgtimization
problem, and mixture methods suffer from the problems introduced by impsepertion of model
order, there are principled ways to approach this problem such as Binmbcess mixtures (Fergu-
son, 1973). Techniques based on local PCA include most well-knoamgbes for mixture models
(Fukunaga and Olsen, 1971; Meinicke and Ritter, 1999; Kambhatla agm 1894, 1997).

Another common way of developing nonlinear projections is to use genetdiimar models
(McCullagh and Nelder, 1989; Fahrmeir and Tutz, 1994). This is basékeoidea of constructing
the nonlinear projection as a linear combination of nonlinear basis funcédineproducing kernel
Hilbert space techniques such as the well-known kernel PCAdlBapf et al., 1998) and kernel
LDA (Baudat and Anouar, 2000) belong to this family. The main idea herersjothe data into a
high dimensional space and perform the original linear method in this spheee the dot products
are computed via a kernel function using the so-calledhel trick More recent methods in this
category replace the widely used Gaussian kernel with similarity metrics stemmma@fweighted
neighborhood graph. These methods are referred to as grapthkssel methods (Shawe-Taylor
and Singer, 2004; Ham et al., 2004).

If the data dimensionality is very high, the most successful methods are radr#oning algo-
rithms, which are based on generating the locality information of data sampigsaudata proxim-
ity graph. Most well known methods that fall into this category include Isqruagal linear embed-
ding, Laplacian eigenmaps, and maximum variance unfolding (Tenenkzalm2000; Roweis and
Saul, 2000; Belkin and Niyogi, 2003; Weinberger and Saul, 2006). idéw of defining geodesic
distances using the data neighborhood graphs assumes that the graptotoave angapsin the
manifold, as well as the graph also does notogisidethe data manifold. This requires a care-
ful tuning of the parameters of graph constructiéndr €, as in the case of most commonly used
K-nearest neighbor a-ball graphs), since the efficiency of the dimensionality reduction methods
depend on the quality of the neighborhood graph.

At the time, Hastie and Stuetzle’s proposition of self consistent principaksyHastie, 1984;
Hastie and Stuetzle, 1989) pointed out a different track for nonlinearrdiimeality reduction.
They defined self-consistency over fbeal conditional data expectations, and generalized the self-
consistency property of the principal line into nonlinear structures to int®the concept of prin-
cipal curves. Hastie and Stuetzle define the principal curem asfinitely differentiable finite length
curve that passes through the middle of the dadalf-consistency means that every point on the
curve is the expected value of the data points projecting onto this point.

Hastie and Stuetzle’s major theoretical contributions are the followijgth€¢y show that if
a straight line is self-consistent, it is a principal componéptb@ased on the MSE criterion, self-
consistent principal curves are saddle points of the distance functimy. Udse this second property
to develop an algorithm that starts from the principal line and iteratively fimelgrincipal curve by
minimizing the average squared distance of the data points and the curtie (H884; Hastie and
Stuetzle, 1989). Although they cannot prove the convergence of tgenitam, Hastie and Stuetzle
claim that principal curves are by definition a fixed point of their algorithnd & the projection
step of their algorithm is replaced with least squares line fitting, the algoritmveoges to the
principal line. Since there is no proof of convergence for Hastie-Stuatgorithm, existence of
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principal curves could only be proven for special cases such as dlligtatributions or distributions
concentrated around a smooth curve, until Duchamp and Stuetzle’s studpesicipal curves on
the plane (Duchamp and Stuetzle, 1996a,b).

Banfield and Raftery extend the Hastie-Stuetzle principal curve algoritluhosed curves and
and propose an algorithm that reduces the estimation bias (Banfield aiedyR#992). Tibshirani
approaches the problem from a mixture model point-of-view, and prevadealgorithm that uses
expectation maximization (Tibshirani, 1992). Delicado’s proposition usethanproperty of the
principal line rather than self-consistency (Delicado, 1998). Delisad@thod is based on the
total variance and conditional means and finds the principal curggerited pointf the data set.
Stanford and Raftery propose another approach that improves ontthex mbustness capabilities
of principal curves (Stanford and Raftery, 2000). Probabilistic jpidccurves approach, which
uses a cubic spline over a mixture of Gaussians to estimate the principas/sumfaces (Chang
and Grosh, 2002), is known to be among the most successful methodsrtmme the common
problem of bias introduced in the regions of high curvature. Verbeekcaworkers used local
principal lines to construct principal curves (Verbeek et al., 20G8) gasoft version of the algorithm
is also available (Verbeek et al., 2001), knowrKasegments and soft-segments methods.

Algorithmically, Manifold Parzen Windows method (Vincent and Bengio, 2@&¥hgio et al.,
2006) the most similar method in the literature to our approach. They use al kiemsity esti-
mation (and in their later paper, a Gaussian mixture model with a regularizediaoee) based
density estimate that takes the leading eigenvectors of the local covariatrgemato account.
Many principal curve approaches in the literature, including the origimatid-Stuetzle algorithm,
are based on the idea of minimizing mean square projection error. An oliobem with such
approaches is overfitting, and there are different methods in the literatyvide regulariza-
tion. Kegl and colleagues provide a regularized version of Hastie'sitlefi by bounding the total
length of the principal curve to avoid overfitting (Kegl et al., 2000), arey thiso show that prin-
cipal curves of bounded length always exist, if the data distribution h#e iecond moments.
Sandilya and Kulkarni define the regularization in another way by cansigabounds on the turns
of the principal curve (Sandilya and Kulkarni, 2002). Similar to Kegl's pipal curve definition
of bounded length, they also show that principal curves with boundadatways exist if the data
distribution has finite second moments. Later, Kegl later applies this algorithkeletasnization
of handwritten digits by extending it into the Principal Graph algorithm (Kegl EKryzak, 2002).
At this point, note that the original Hastie-Stuetzle definition requires the ipehcurve not to
intersect itself, which is quite restrictive, and perhaps, Kegl's Prin€gvaph algorithm is the only
approach in the principal curves literature that can handle self-intargetata.

Overall, the original principal curve definition by Hastie and Stuetzle formsisang basis for
many, possibly all, principal curve algorithms. The idea of using leastreguagression or mini-
mum squared projection error properties of linear principal compomeatysis to build a nonlinear
counterpart brings the problem of overfitting. Hence, algorithms basdtiase definitions have
to introduce a regularization term. Here we take a bold step by defining thepaircurves with
no explicit smoothness constraint at all; we assume that smoothness dgparmaves/surfaces is
inherent in the smoothness of the underlying probability density (estimateyidirg the defini-
tion in terms of data probability density allows us to link open ended problemsrafipal curve
fitting literature—like optimal regularization constraints and outlier robustnéssvell established
principles in density estimation literature.
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In this paper we emphasize the following messages: (i) principal cungeswafaces are geo-
metrically interesting structures of the theoretical probability distribution thderies the data as
opposed to the particular data set realization, (ii) optimal density estimationr(ia sense) does
not necessarily result in optimal principal surface estimation. The fiiigit ftuminates the fact
that one should not seek to solve a problem such as manifold learning wittemisely character-
izing the sought solution; defining the sought manifold as the solution to opgimality criterion
of choice is incorrect, the solution should be defined geometrically firsttramdit should be ap-
proximated and its optimality properties should be discovered, leading to optppedxamation
algorithms. The second point highlights the fact that a maximum likelihood desstityate, for
instance, might not lead to a maximum likelihood estimate of the principal surf&tatistically
optimal and consistent estimation procedures for the latter must be soutjtg bymmunity.

The following sections try to address the first issue mentioned above bsétload issue will
be left as future work; we are confident that the community will eventuatip@se much better al-
gorithms for identifying principal surfaces than the ones we providedke framework presented
here. Consequently, the subspace constrained mean shift algoriteenfae later is not implied
to be optimal in any statistical sense—its choice in this paper is merely due to (Artiikafity
of our audience with the mean shift clustering algorithm (which suffers fatl the drawbacks we
suffer, such as curse of dimensionality for kernel density estimation}thgi¥act that it includes
parametric mixture distributions as a special case of the formulation (i.e., thefsamdas apply
to both kernel density and mixture model estimates with minor modifications), (iii)tneecgence
of the algorithm to a point on the principal surface with appropriate dimeabipris guaranteed
for any initial point, since mean-shift is a convergent procedure.

2. Principal Curves/Surfaces

We start with an illustration to give some intuition to our approach, and then aeder a formal
definition of the principal curves and surfaces, study special cagbsannections to PCA, exis-
tence conditions, limitations and ambiguities. All this will be conducted in terms of rdient
and the Hessian of the data pdf, and throughout this section, the datagssilisied to be known
or can be estimated either parametrically or non-parametrically from the dapesa In the next
section we will go back to the data samples themselves while we develop a gralcfarghm.

2.1 An lllustration

Before we go into the details of the formal definition, we will present a simpletifitisn. Our
principal curve definition essentially corresponds to rikdge of the probability density function.
Principal curve definitions in the literature are based on local expectagiothself-consistency.
Hastie’s self-consistency principle states that every point on the prirzipze is the expected value
of the points in the orthogonal subspace of the principal curve at thatpand this orthogonal
space rotates along the curve .our view, every point on the principal surface is the local maximum,
not the expected value, of the probability density in the local orthogoreace.

Consider the modes (local maxima) of the pdf. On the modes, the gradiewrt pdtis equal to
zero and the eigenvectors of the Hessian matrix are all negative, soehadftis decreasing in all
directions. The definition of the ridge of the pdf can be given very similartgims of the gradient
and the Hessian of the pdf. On the ridge of the pdf, one of the eigenseifttite Hessian is parallel
with the gradient. Furthermore, the eigenvalues of the all remaining eigensduwhich in fact
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Figure 1: An illustration of the principal curve on a two Gaussian mixtures.

span the orthogonal space of the principal curve) are all negatitbasthe pdf is decreasing in all
these directions; hence the point is on a ridge, not in a valley.

Figure 1 presents two illustrations on two Gaussian mixtures. On the left, a deopaf
the proposed principal curve projection, and the trajectories of theegriaaf the pdf is presented.
Consider a Gaussian mixture with 3 components with the pdf contour plot shealtowing the
local gradient (top left) essentially coincides with well-known mean shiftritlym (Cheng, 1995;
Comaniciu and Meer, 2002), and maps the points to the modes of the pdgashetlowing the
eigenvectors of the local covariance (bottom left) gives an orthogaogction onto the principal
curve. The principal curve—the ridge—of this 3-component Gaussiatunixs also shown with
the dashed line. On the right, we present the principal curve of a 7-amnp&aussian mixture
from two different points of view.

2.2 Formal Definition of Principal Curves and Surfaces

We assert that principal surfaces are geometrically well defined stesdtuat underly the theoreti-
cal, albeit usually unknown, probability distribution function of the data;seguently, one should
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define principal surfaces with the assumption that the density is known—dimitgle estimators

of these surfaces is a question to be answered based on this chaatioteriinspired by differ-
ential geometry where principal lines of curvature are well-defined adénstood, we define the
principal curves and surfaces in terms of the first and second oedieatives of theassumed prob-
ability density function Next, we define critical, principal, and minor surfaces of all dimensions
and point out facts relating to these structures—proofs are generaigf &md are omitted for most
statements.

Given a random vectox € R", let p(x) be its pdf,g(x) be the transpose of the local gradient,
andH(x) be the local Hessian of the probability density function. To avoid mathematcapli-
cations, we assume that the data distributox) > O for all x, and is at least twice differentiable.
Also let {(A1(x),01(X)), ..., (An(X),0n(x))} be the eigenvalue-eigenvector pairdHik), where the
eigenvalues are sorted such thatx) > Az(x) > ... > Ap(X) andA; # 0.2
Definition 1. A point x is an element of the-dimensional critical set, denoted Ig}f' iff the inner
product ofg(x) with at least (-d) eigenvectors oH(x) is zero.

The definition above is an intentional extension of the familiar notion of criticadtp in calcu-
lus; thus local maxima, minima, and saddle points of the pdf become the simpleist spse.

Fact 1. ¢° consists of and only of the critical points (where gradient is zer@(x). Furthermore,
cdc il

In practice, this fact points to the possibility of designing dimension reduckymrithms where
each data is projected to a critical manifold of one lower dimension sequentlaftation). Alter-
natively, one could trace out critical curves starting off from criticahps(inflation). This property
of linear PCA has been extensively used in the design of on-line algorithtne B0's (Kung et al.,
May 1994; Wong et al., 2000; Hegde et al., 2006).

Definition 2. A pointx € % — ¢9 1 is called a regular point of 9. Otherwise, it is an irregular
point.

Fact 2. If x is a regular point o9, then there exists an index detc {1,...,n} with cardinality
|l | = (n—d) such thatg(x),q;(x)) = 0iff i € 1, . If xis anirregular point o9, then|l , | > (n—d).

Regular points of a critical set are the set of points that are not also invles hmensional
critical sets. At regular points, the gradient is orthogonal to exdctly d) eigenvectors of the
Hessian, thus these points locally lie on a surface with an intrinsic dimensionatityNéturally,
these surfaces have their tangent and orthogonal spaces locally.

Definition 3. Let x be a regular point of* with | . Letly ={1,...,n} —I.. The tangent subspace
is Cf(x) = spar{q;(x)|i €1} and the normal/orthogonal subspacef§x) = span{q;(x)|i € 1.}.
Definition 4. A regular pointx of ¢ with 1, is (assuming no zero-eigenvalues exist for simplicity):

1. aregular point in the principal sé iff A;(x) < 0Vi € 1,; that is,x is a local maximum in
ct(x).

2. aregular point in the minor se¥® iff A;(x) > 0Vi € I,; that is,x is a local minimum in
CY(x).

3. aregular point in the saddle s#t otherwise; that isx is a saddle inC9 (x).

1. Strict inequalities are assumed here for the theoretical analysigjdgerathe case of repeated eigenvalues local
uncertainties similar to those in PCA will occur. We also assume non-zeeo\gityes for the Hessian of the pdf.
These assumptions are not critical to the general theme of the papgeaathlized conclusions can be relatively
easily obtained. These ambiguities will later be discussed in Section 2.6.
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Regular and irregular points in these special cases are defined similksdy.téngent and orthogo-
nal subspaces are defined identically.

Clearly, (P9, M9, 59) is a partition ofC9. In practice, while principal surfaces might be useful
in dimension reduction as in manifold learning, minor surfaces, valleys in titeapility density
function, can be useful in semi-supervised learning. A common theme in spmiivésed learning
employs the so-called cluster hypothesis, where the valleys in the dataitglensity function
have to be identified (Chapelle et al., 2006), like in the well-known Low Dergfyaration algo-
rithm (Chapelle and Zien, 2005). Note that allowing zero-eigenvaluesiwesult in local plateaus
in pdf, and allowing repeated eigenvalues would result in ill-defined regoiats. While concep-
tually the consequences are clear, we avoid discussing all possibleistuatmstance for now for
the sake of simplicity. We give a detailed discussion on these limitations in Section 2.6

By construction, we have ¢ P° iff x is a local maximum ofp(x); x € MC iff x is a local
minimum of p(x); x € SCiff x is a saddle point gf(x). Furthermore®? c P4+ andM9 c Ad+1.2
In mean shift clustering, projections of data point#fbare used to find the solution (Cheng, 1995;
Comaniciu and Meer, 2002). In fact, théraction basif of each mode of the pdf can be taken as
a local chart that has a curvilinear orthogonal coordinate systenmaatmt by the eigenvectors of
the Hessian of the pdf (or a nonlinear function of it—consequences afibiee of the nonlinear
function will be discussed soon).

Note that the definitions and properties above allow for piecewise smoottigairsurfaces
and opportunities are much broader than techniques that sglekally smooth optimal manifold
which does not generally exist according to our interpretation of the gepnfégure 2 illustrates
a simple density where a globally smooth curve (for instance a principle limephofprovide a
satisfactory underlying manifold; in fact such a case would likely be hanaéng local PCA—a
solution which essentially approximates the principal curve definition wecade@bove.

At this point we note that due to the assumption of a second-order consilyudiferentiable
pdf model, the Hessian matrix and its eigenvectors and eigenvalues areucostieverywhere.
Consequently, at any point on tdedimensional principal set (or critical or minor sets) in a small
open ball around this point, the points in the principal set form a continsiotiace. Considering
the union of open balls around points in tihe 1-dimensional principal surface, we can note that the
continuouty of thed-dimensional surface implies continuity of tHe- 1-dimensional subsurface as
well as the 1-dimensional projection trajectories in the vicinity. Furthermoveg iissume that the
pdf models are three-times continuously differentiable, the projection traesidollowing local
Hessian eigenvectors) are not only locally continuous, but also locatiyncmusly differentiable).
In general, the order of continuous differentiability of the underlying mdfel is reflected to the
emerging principal surfaces and projection trajectories accordingly.

2.3 Principal Surfaces of a Nonlinear Function of the PDF

In this section we show that for a pdf tiset of pointghat constitute?? is identical to theset of
pointsthat constitutePd of the functionf (p(x)) wheref (§) is monotonically increasing. The same

2. Observe this inclusion property by revisiting Figure 1, as the majoripgahcurve (show in the figures on the right)
passes through all local maxima of the Gaussian mixture density.

3. The attraction basin is defined as the set of points in the feature spatéhatiinitial conditions chosen in this set
evolve to a particular attractor -modes of the pdf for this particular castael context of mean-shift the underlying
criterion is the KDE of the data. In this case, attraction basins are regiomsibd by minor curves, and the attractors
are the modes of the pdf.
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conclusion can be drawn and shown similarly for the minor and critical sesfaletails of this will
not be provided here.

Considerx, a regular point ofPY with pdf p(x) and its gradient-transpoggx) and Hessian
H(x). Then, the eigenvectors and eigenvalues of the Hessian at this poine gamtitioned into the
parallel and orthogonal subspace contributioA$x) = I/\HQ\ + Q. A, Q", where the parallel
subspace is spanned Bigenvectors in the columns Q¥ and t‘1e orthogonal subspace is spanned
by (n—d) eigenvectors irQ . At a regular point the gradient is in the tangent space, therefore,
g(x) = QB for some suitable vectds of linear combination coefficients. The gradient-transpose
and Hessian of the functiof( p(x)) are:

gr(x) = F1(p(¥))g()
= F/(p(x))Q)B,
Hi(x) = f(POOIHT(X)+ F(p(x))g(x)g" (x)

= (1(PO)QAQ] + F1(P())QUBBTQT ) + F/(P(X))Q.A.QT .

We observe that atthe gradiengs (X) is also in the originatl-dimensional tangent space. Further,
the orthogonal subspace and the sign of its eigenvalues remain undhamgef/(g) > 0). This
shows that ifk is a regular point of?9, then it is also a regular point Gf?. The converse statement
can also be shown by switching the roles of the two functions and congidieninverse off as
the nonlinear mapping.

Note that we simply proved that the principal surface (as a set of poihtsiwen dimension
remains unchanged under monotonic transformations of the pdf. If ajecps points in higher
dimensional surfaces to lower dimensional principal surfaces followeigdtories traced by the
Hessian off (p((x))), these projection trajectories will depend farT his brings us to the connection
with PCA.

2.4 Special Case of Gaussian Distributions, Connections to PCA

For a jointly Gaussian pdf, choosirfg¢) = log(§) yields a quadratic function of, thus the local
HessianH|og(X) = —(1/2)=~! becomes independent of position. Consequently, the local Hessian
eigendirections form linear trajectories and principal surfaces becgperplanes spanned by the
eigenvectors of the Gaussian’s covariance matrix. If this connection £oi®@esired, that is, if

the density becomes Gaussian, principal surface projections of pointsdmwith those one would
obtain via linear PCA, then the choice Iq@gx) becomes attractive. Otherwise, one can seek choices
of f that brings other benefits or desirable properties. For this reason,logias the nonlinearity,

we introduce the concept of local covariance matrix.

Definition 5. The local covariance-inverse of a pdf at any poitig given by—2 times the Hessian
of the logarithm of the pdf. Specifically, in terms of the gradient-transpoddfe Hessian of the
pdf, this corresponds B 1(x) = —p~1(x)H(x) + p~2g(x)g" (). If we assume that its eigenvalue-
vector pairs argyi(x),vi(x)} for i € {1,...,n} and if the eigenvalues (some of which might be
negative) are sorted as followyi < ... < ¥, the local ordering of critical directions from most
principal to least follows the same indexing scheme (igis the first to go when projecting to
lower dimensions).
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Figure 2: A T-shaped Gaussian mixture

2.5 Existence of Principal Curves and Surfaces

Considering Hastie’s principal curve definition, the existence proofiatipal curves is limited to
some special cases, such as elliptical or spherical distributions coaeshdiround a smooth curve.
It should also be noted that this definition of the principal curve requiregptimcipal curve not
to intersect itself. The principal curve definition of Kegl et al. (2000) &andilya and Kulkarni
(2002) are theoretically more appealing in this context, since by their definitierprincipal curve
always exists if the distribution has finite second moments.

According to our definition, the principal curve exists as long as the dataapility density
is twice differentiable, such that the Hessian is nonzero. There is nictiestrof finite moments,
which is an improvement on existing methods. However, also note that byefinitidn the prin-
cipal curve does not exist for uniform distributichgn practice, however, since we will build our
algorithms based on KDE with Gaussian kernels or GMM, even if the trueriymatg distribution
is uniform, KDE or GMM guarantee that the gradient and Hessian are cantin

2.6 Local Ranking of the Principal Curves and Ambiguities

In PCA, the ordering of the principal component directions are naturaléndoy sorting the corre-
sponding eigenvalues of the covariance matrix in a descending ordas.tiNd, since it coincides
with PCA for Gaussian distributions, our principal curve definition alsothasambiguity that oc-
curs in PCA,; the principal surface of a spherically symmetric distribution tiswed-defined.

Conditional expectation or mean squared projection error based defirtidwe driven the prin-
cipal curves research, but in general, the definition is limited to the nonlkoesaterpart of the first
principal component. In fact, there is no definitions&cond, third, etc. principal curvia the
literature that we are aware of. Considering the connection to PCA, angseeathat our principal
curve definition is not limited to the nonlinear counterpart of the first prin@penponent, under
the assumption that the Hessian matrix has distinct eigenvalues, one cantbbétaal ordering
for anyd-dimensional principal manifold.

In general, data densities may take complex forms and counterintuitivergxensay arise.
Hence, generally, local information may not always indicate the globé&l eard a global ordering

4. Note that one can always convolve a distribution with a spherical @eaussother circularly symmetric unimodal
kernel to introduce continuous first and second derivatives withistdrting the geometry of the principal surfaces.
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in a principal set of given dimensionality may not be possible. To illustrate #ut tonsider
again the T-shaped Gaussian mixture consisting of two components. Nawethéranches of this
principal graph correspond to the leading eigenvector of the locatieovz at different portions of
the feature space and a global ranking is not possible.

3. Subspace Constrained Mean Shift (SCMS)

Consider the fact tha®®, principal surface of dimensionality zero, is by construction the local
maxima points of the(x). This presents a strong connection to clustering, since mapping to the
local maxima points of the data pdf is a widely accepted clustering solution vacdhy the well-
known mean shift algorithm (Cheng, 1995; Comaniciu and Meer, 2082hid section we present

a subspace constrained likelihood maximization idea that stems from Definitiopodnt on?¢ is

a local maximum in the orthogonal space. We provide an algorithm whichyssuilar to mean-

shift in spirit. This lays an algorithmic connection between clustering andipehcurve/surface
fitting that accompanies the theoretical connection.

Mean-shift assumes an underlying KDE probability density of the data andnnemnts a fixed-
point iteration that maps the data points to the closest mode (local maximum) offirengdhe
mean-shift update at any point on the feature space is parallel with tiegraf the KDE (Cheng,
1995; Comaniciu and Meer, 2002). A point is on the one dimensional pahsipface iff the local
gradient is an eigenvector of the local Hessian—since the gradient basotthogonal to the other
(n— 1) eigenvectors—and the corresponding-(1) eigenvalues are negative. Again via the same
underlying KDE assumption, a simple modification of the mean-shift algorithnobgtcaining the
fixed-point iterations in the orthogonal space of correspondingX) eigenvector directions at the
current point in the trajectory leads to an update that converges to thegpadinurves and not to the
local maxima. For this case, the orthogonal space of corresporalind) eigenvector directions
of the local covariance is the parallel space of the leading eigenvectioe ¢dcal covariance. The
algorithm could be modified to converge to tlelimensional principal manifol@ trivially, by
selecting the constrained subspace as the subspace spanned $yaratieg ( — d) eigenvectors
of the local covariance to constrain the mean-shift iterations into the scispanned bg leading
eigenvectors of the local covariance. To provide both parametric amghnametric variations, we
will present an algorithm that can be used for well-known KDE and GMisitg estimators.

Consider the data sampléz; } ;, wherex; € O". The KDE of this data set (using Gaussian
kernels) is given as

N
p(x) = (1/N)_;Gzi (X=Xi) , (1)

whereZ; is the kernel covariance fog; Gs, (y) = Czie‘yTzflwz. Note that for in (1) we use the
general case of anisotropic variable (data-dependent) kerndidoac For isotropic kernels one
can use a scalar value instead of a full covariance, or for fixed kmetions one can constrain
the data dependency and drop the sample indégain for the general case, the gradient and the
Hessian of the KDE are

N

g(x) = —N_lzlciuh

pzd

Hx) = NS quu -z,
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1. Initialize the trajectories to a mesh or data points and se0. Input the Gaussian kernel
bandwidtho (or kernel covariance matrix for anisotropic Gaussian kernels) to tlositdo.

2. For every trajectory evaluate(x(t)) using (2) and (3).

3. Evaluate the gradient, the Hessian, and perform the eigendecomposiof(x(t)) = VI'V
(in specific cases, the full eigendecomposition could be avoided).

4. LetV, = [v1...vy_q] be the 6 —d) largest eigenvectors af *
5. %(k) =V, VIm(x)

6. It g"(x)VIgX) | /(lax)[|-IVTg(x)|) < € thenstop elsex(t + 1) + X, increment and go
to step 2.

Table 1: KDE-based SCMS Algorithm

X)) = —p M H(X) +pPg(x)g’ () ()
where U 5 lx—x) and =Gy (X—X) .

Let {(y1(X),v1(X)),..., (Ya(X),Vn(X))} be the eigenvalue-eigenvector pair$bf’(x) as defined
in (2) ordered from smallest to largest and the mean-shift update emérging?) is

xmx) = (g6 )ty a5 . 3)

At x, the subspace mean-shift update is performed by projextintp the constrained spagg =
(V:VTm(x)). The stopping criterion can be constructed from definition directly to clifeitie
gradient is orthogonal to the subspace spanned by the seleetddcigenvectors when projecting
the data frorm to d dimensions] g™ (x)VTg(x) | /(llg(x)|| - IVTg(x)|)) < €. For the special case of
d = 1, an equivalent stopping criterion is that the gradient becomes an eigenwef the Hessian,
so one can employ:g" (x)Hg(x) | /(lg(X)| - [[Hg(x)||) > 1— €. Alternatively, the more traditional
(but rather more risky) stopping criterion [y — xk|| < € can be used.

The iterations can be used to find the principal curve projection of arityasbpoint of interest
in the feature spacTo find the principal curve projections of the data samples, a suitable way is
to initialize the projection trajectories to the data samples themselves, as in mdasiusiéring.
The general version of SCMS algorithm that converges taltbdanensional principal manifold is
presented in Table 1, and SCMS principal curve algorithm can simply baebthy settingd = 1.

Following the derivation of the KDE with Gaussian kernel functions, usi@IS for GMM
density estimates is trivial, by replacing the data samples with Gaussian mixtuegscand the
kernel bandwidth/covariance with the Gaussian mixture bandwidth/cocasafrrom now on, we
will refer these as KDE-SCMS and GMM-SCMS, and we will presentltesiased on both KDE
and GMM density estimates in the next section.

5. Note that these fixed-point-update-based projections are relativahge approximations and more accurate pro-
jections can be obtained via numerical integration of the correspondifeyetifial equations, for instance using
Runge-Kutta order-4 method.

1259



OZERTEM AND ERDOGMUS

Figure 3: Curves buried in noise (left) and finite bandwidth (middle) anidlvkr bandwidth (right)
KDE

3.1 Properties of KDE-SCMS

Before proceeding to experiments we would like to briefly discuss somegirep of SCMS. We
believe these properties are important since they connect many oped-guestions in principal
curves literature to well-studied results in density estimation. Outlier robusanelsegularization
properties are just some examples of the properties that are adoptedhfegparticular density
estimation method—KDE in our case. Similar algorithms that stem from the definitidecition

2 can be designed for other density estimation methods as well. The propeesesited here are a
few of many possibilities to illustrate the connections.

3.1.1 GOMPUTATIONAL LOAD

The computational complexity of KDE-SCMS @&(N? x n®), whereN is the number of samples,
andn is the data dimensionality. The& dependency comes from the eigendecomposition of the
Hessian matrix. For GMM-SCMS, the complexity becor@éhl x mx n3), wheremis the number

of Gaussians in the mixture density estimidote that the computational load required by SCMS
is only slightly higher than the mean-shift algorithm that has been practically ingrited in many
application domains. The literature is rich in approaches to accelerate miéaralstof which

are directly applicable for our algorithm as well. These methods vary fiowple heuristics to
more principled methods like Fast Gaussian Transform (Yang et al., 20p8gi-Newton methods
(Yang et al., 2003a) or Gaussian Blurring Mean Shift (CarreiraiRanp 2006). The cubic compu-
tational dependency may become the bottleneck for very high dimensidaal@iae solution to this
problem might be to look for thd leading eigenvalues of the Hessian matrix sequentially, instead
of the full eigendecomposition (as in Hegde et al., 2006), which will dropcdmeplexity down to
O(N? x d3) whered is the target dimensionalityl(= 1 for principal curves). However note that if
this is the case, the computational bottleneck is not the only problem. If weddayeN?, density
estimation will also suffer fronthe curse of dimensionalignd our approach—that is based on the
density estimation—wiill fail. In the experimental result section we will showltgsuith such high
dimensional data.

6. Note that this excludes the computational load required for the expe@etaiimization training to fit the GMM.
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3.1.2 SATISTICAL CONSISTENCY

Our algorithmic approach has used the powerful kernel density estim#tioB)(technique to es-
timate principal surface structures that underly data densities. Thergemoe properties of KDE
have been well understood and bandwidth selection, especially in thefdass-bandwidth mod-
els, have been rigorously investigated leading to a variety of criteria fd& E@hstruction with opti-
mal density estimate convergence properties. In principal surfacesykqg we rely on the accurate
estimation of the first and second derivatives of the multivariate data dexsityg with the density
itself. Consequently, an important question that one needs to ask (thesatitaok the reviewer
who posed this question) is whether the first and second order deswati the KDE will converge
to the true corresponding derivatives, thus leading to the convergétioe principal surface struc-
tures of the KDE to those of the actual data density. Literature on the gena properties of
KDE in estimating derivatives of densities is relatively less developed—henvesme work exists
on the convergence of KDE derivatives in probability using isotropindisrwith dependent data
and general bandwidth sequences (Hansen, 2008). In partictiarelst result on general kernel
bandwidth matrices for fixed-bandwidth KDE derivatives, albeit slightly en@strictive since it
uses convergence in the mean squared error sense, partly ansaepsestion for us under rela-
tively reasonable assumptions considering typical machine learning apmpicavolving manifold
learning (Chacon et al., 2011).

Specifically and without going into too much detail, Chacon et al. (2011) dstrada that under
the assumptions that the (unstructured but fixed) kernel bandwidth matriserges to zero fast
enough, and the underlying density and the kernel have continuoasesigtegrable derivatives up
to the necessary order or more (density must have square integrailbides 2 orders more than
the kernel), and that the kernel has a finite covariance, the integratedsgeared error between
the vector of order-r derivatives of the KDE converge to those of e density of the data (from
Theorems 1-3). The order of convergence for the integrated meamestjarror has been given,
from Theorems 2 & 3, a(n~#/(4+2+4)) 4 o(nL{H|~1/2tr" (H1) +-tr2H)

This demonstrates that as the number of samiglgses to infinity, given aufficiently smooth
density and kernel, the derivatives will also converge. Consequgnithgipal surfaces character-
ized by first and second derivatives as in our definition will also cayeser

3.1.3 QUTLIER ROBUSTNESS

Outlier robustness is another key issue in principal curve literature. iPaincurve definitions

that involve conditional sample expectations and mean squared projectiordemot incorporate
any data likelihood prior; hence, they treat each data sample equally. Spadeaahes are known
to be sensitive to noise, and presence of outlier data samples, of cauitdaias the principal

curve towards outliers. Stanford and Raftery present an algorithmntipsbves upon the outlier
robustness of the earlier approaches (Stanford and Raftery,.2000)

Outlier robustness is a well-known property of variable bandwidth KDEhiBapproach, a data
dependent kernel function is evaluated for each sample such that ttieofithe kernel is directly
proportional with the likelihood that sample is an outlier. This can be implementeatious ways,
and the most commonly used methods argdheearest neighbor based approaches, namigtihe
mean/median distance to thenearest neighbor data points) Sum of the weights oK-nearest
neighbor data points in a weighted KDE. Hence, the kernel bandwidthaisesefor the samples
that are in a sparse neighborhood of data samples. Figure 3 (lefthfwes€eata set consisting
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Figure 4: Mean projection error vs. overfitting tradeoff as a kernatbédth selection problem.
Three density estimates are presented—a narrow bandwidth (left) Maxirnkalihbod
kernel bandwidth (middle) and a wide kernel bandwidth (right)

of two crescent-like clusters buried in noise. In fact, this data set is similaetditistration that
Stanford and Raftery use as they propose their noise robust priccipa approach (Stanford and
Raftery, 2000). We present the fixed and variable bandwidth—usingarest neighbor method
(i) mentioned above and selectikg= N¥/*—KDE of the data set in Figure 3 in middle and right,
respectively. Note that in the resulting density estimate the variable size KDE afanithe ef-
fects of the outliers without oversmoothing or distorting the pdf significantly énsilpport of the
data. Selecting the kernel functions in a data dependent manner, carKibBkeased SCMS ro-
bust to outliers in the data. However, additional computational load of \lariesnel bandwidth
evaluations may increase the overall computational complexity.

3.1.4 REGULARIZATION AND OVERFITTING

If a problem is formulated over sample expectations or minimization of the avgragection error,

the issue of overfitting arises. In the context of principal curves arfdes, most explicitly, Kegl
brings up this question in his PhD dissertation (Kegl, 1999). Consideringatzeset and principal
curves in Figure 4 (left), Kegl asks, which of the curves is the right tisehe solid curve following

the data too closely, or is the dashed curve generalizing too much?” Inadjepfecourse, this is an
open ended question and the answer depends on the particular application

Still, density estimation methods can provide many approaches to define tHarizagion,
varying from heuristics to theoretically well-founded approaches like maxitikelihood. In other
words, instead of trying for different length (Kegl et al., 2000) onveature (Sandilya and Kulkarni,
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2002) parameters, density estimation can provide purely data-driveocaghyes, where the regular-
ization parameters are learned from the data directly using cross-validation

Figure 4 shows density estimates obtained using KDE for different kbemelwidth selections
for the data set presented. In SCMS, the trade-off between projectimmasd overfitting can be
adjusted by setting the kernel width. One can select the kernel bandwidthathaby observing the
data or exploiting domain specific knowledge. This is, of course, not miffelaht than observing
the data and selecting a suitable length or curvature constraint. Howeveeahadvantage here
is the rich literature on how to select the kernel function from the data sardpkssly. There
are many theoretically well-founded ways of optimizing the kernel width aliagrto maximum
likelihood or similar criteria (Silverman, 1986; Parzen, 1962; Comaniciu3288eather and Jones,
1991; Jones et al., 1996; Raykar and Duraiswami, 2006).

Furthermore, anisotropic and/or variable size kernel functions natunatilement many types
of constraints that cannot be defined by any length or bound of turselgting anisotropic kernel
functions, one can define the regularization constraint at differet¢salong different directions.
This can also be achieved by lenghth/curvature constraints by scalingthelifferently among
different dimensions. However, data-dependent variable bandwadttels can define varying con-
straints throughout the space. This is not possible to achieve by a coostaature or length
penalty of any sort.

In summary, our KDE based principal curve projection algorithm not oahnects the trade off
between the projection error and generalization into well studied resulénsitg estimation field, it
also allows one to derive data-dependent constraints that vary thoouthie space, which cannot be
given by any length or curvature constraint whatsoever. Althoughtiliisannot ultimately answer
the open-ended question on the trade-off between the regularizatigmajadtion error, it provides
a principled way to approach the problem and proves to be effective ig reahapplications as we
will show next.

4. Experimental Results

This section consists of three parts. In the first part, we provide coropariwith some earlier
principal curve algorithms in the literature. We perform simulations on notidaia sets and give
performance and computation times. In the second part, we focus orppiiations, where we
briefly mention some applications with pointers to our recent publications amgigide results in
some areas that principal curves has (feature extraction for OCRjsamdt been (time-frequency
distribution sharpening, MIMO channel equalization) used before. ésetapplications we use
SCMSdirectly. Surely, pre- and post-processing steps can be added to improeenpante of
these applications, however our aim is to show the versatility of the apprmdcb optimize every
implementation detail. In the third and final part, we focus on the limitations of the mhetho

Same as the principal line, principal curves—in our definition—extend toifyfiln general
though, what one is really interested in is not the whole structure, but tjections of samples
onto the underlying structure. Therefore, throughout this sectiorer#thn populating samples on
the curve that extend to infinity, we prefer representing the principakecwith the data samples
projected onto the principal curyeso that the curves in the plots remain in the support of the data.
For the same reason, although the underlying structure is continuousgaie populated into any
desired density), the presented principal curves sometimes doakatontinuous where the data is
sparse.
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Figure 5: Zig-zag data set, and Hastie-Stuetzle principal curve

4.1 Comparisons with Other Principal Curve Methods

In this section we present comparisons with original Hastie-Stuezle primtipsge method (Hastie,
1984; Hastie and Stuetzle, 1989) and the Polygonal Line Algorithm by &egl. (Kegl et al.,
2000), and we provide both computation time and performance comparisons.

4.1.1 AG-ZAG DATA SET

Zig-Zag data set has been used in an earlier principal curve papeediyeKal. (2000) (This data
set is provided by Kegl). Figure 5 shows the data samples and resulstiéldalgorithm. Figure 6
presents the results of Kegl's polygonal line algorithm for differentaftgrcoefficients. The length
penalty coefficient is equal to 0.1, 0.3, 0.5, and 0.7, respectively. Boad.ine algorithm with the
right length penalty seems to be working the best for this dataset with higatave on the corners.

In Figure 7 we compare results of the SCMS algorithm based on threeediffdensity esti-
mates: (i) KDE with constant bandwidth, (ii) KDE with variable (data-depetjdeovariance (iii)
Gaussian mixture with 4 components. For (i) and (ii), the bandwidth andieoearof the Gaussian
kernel are selected according to the leave-one-out maximum likelihoodami{®uda et al., 2000).
For the Gaussian mixture model, therrect model order is assumed to be known and a standard
expectation-maximization algorithm is used to estimate the parameters (Duda @08@)., 2

Here all density estimates lead to very similar results. Since it allows one to leakethel
covariances elongated with the data, (ii) gives a sharper KDE estimatengad to (i). However,
since there is no significant difference between the principal curyegtions of these two, (i)
might be regarded as somewhat overfitting, since too many parameteadditional parameters
per sample, as the constant kernel bandwidth is replaced by a full dptaxdent covariance) are
learned, leading to no significant changes. The result shown in (iii) i®d gegample which shows
that good results can be obtained if the parametric family fits the distributionnaty Of course,
as you can imagine, the GMM based results might have been much worseufiosaitable selection
of the number of components, or if EM converges to a suboptimal resuliodoeor initialization,
whereas KDE is much more robust in this sense. Also note an analogy t kpgltoach, using
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Figure 6: Zig-zag data set, and result of the Polygonal Line Algorithm

GMM-SCMS leads to a piecewise linear structure if the Gaussian componergsféiciently far
(in Mahalanobis distance sence) from each other. In the vicinity of thestucomponent centers,
except when components significantly overlap or get close, the prirctipags can be approximated
well linearly by piecewise local components.

Note that theoretically the principal curves in (i) and (ii) extend to infinity othlemds; and for
the GMM based example in (iii), each component crosses and extends ftyirtfiare—and also
for the rest of the paper—we present the data projected onto principad only, that depicts the
portion of the principal curve in the support of the input data. The natfiiee curves outside this
region is obvious from the definition and the density estimate plots.

4.1.2 SIRAL DATA SET

Since many principal curve algorithms are based on the idea of starting withritiepal line
and adding complexity to the structure (for example adding a vertex to piecénésar curve) to
minimize mean projected error, a data set that folds onto itself may lead to dotuitee results,
and spiral data set is a benchmark data set that has been used in maaifoiddend principal
curve algorithm literature (Kegl et al., 2000; Vincent and Bengio, 20@8gif, this data set is
provided by Kegl).
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Figure 7: Zig-zag data set, and its principal curve projections obtaine® & with isotropic
constant bandwidth (top), KDE with anisotropic and data-dependeatiam¢e (middle),
and Gaussian mixture with 4 components (bottom). The underlying density estianate
shown on the right column.
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Figure 8: Spiral data set, and Hastie-Stuetzle principal curve

Similar to the previous example, we start with the results of Hastie-Stuetzle alganitti Kegl's
polygonal line algorithm. Figure 8 shows the data samples and the resultstiedalgorithm.
Figure 9 presents the results of Kegl's polygonal line algorithm for diffepenalty coefficients.
The length penalty coefficient is equal to 0.1, 0.2, 0.4, and 0.5, resekctiv

As in the previous example, in SCMS uses the leave-one-out ML kermelbdth for this
data set. Figure 10 shows the same spiral data set along with the resultEeS&BS. Comparing
Figure 9 and Figure 10, one can see that both Polygonal Line algorithm-suiitible parameters—
and our locally defined principal curve can achieve satisfactory reSuilesefore, we create a more
challenging scenario, where the spiral this time has some substantial nmisel dhe underlying
generating curve and has fewer samples. Figure 11 shows the reKOIESECMS, and Figure 12
shows results of Polygonal Line algorithm for different penalty coieffits; 0.05, 0.1, 0.2, and 0.3.

On the noisy spiral data set, we also provide quantitative results foratitfeise levels and
compare the computation times. At each noise level, we find the principal gsirvg both methods
using the same noisy data set, and afterwards we take another 200 saompldsefsame generating
curve and add same amount of radial noise to use as the test set. Wa flieddSE between the
projection of the test samples and their original points on the noiselessatjagerurve. Results
for KDE-SCMS, and Polygonal Line algorithm are presented in Table 2galgth corresponding
running times for 50 Monte Carlo runs of this experiment. Since results asepted for the leave-
one-out ML kernel bandwidth, the running times for SCMS include this Mining as well. For
the Polygonal Line algorithm we performed a manual parameter tuningdbmease level and best
results are presented.

Overall, as the noise level increases, the computation time of SCMS incrpesssmably due
to more iterations being required for convergence; still, the computation time ib fass than
that of the Polygonal Line algorithm. In terms of MSE between the estimated artecuih curve,
SCMS provides similar or better performance as compared to the Polygmmablgorithm. For
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Figure 9: Spiral data set, and result of the Polygonal Line Algorithm

some noise levels the difference in performance is very small; howeverthrai the real advantage
of SCMS is that it provides the similar/better results nonparametrically—as cethpathe best
result of several runs of the Polygonal Line algorithm with differemapzeters.

4.1.3 LOOPS SELF-INTERSECTIONS AND BIFURCATIONS

Since they are specifically designed tasfitoothcurves to the data, traditional principal curve fitting
approaches in the literature have difficulties if there are loops, bifurcatiod self intersections in
the data. Perhaps the most efficient algorithm in this context is Kegl's pahgiaph algorithm
(Kegl and Kryzak, 2002), where Kegl modifies his polygonal line athar (Kegl et al., 2000)
with a table of predefined rules to handle these irregularities. On the othéy inathe presence of
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Figure 11: Noisy spiral data set, and KDE-SCMS principal curve

such irregularities, our definition yields a principal graph—a collectiomafath curves. Since the
ridges of the pdf can intersect each other, KDE-SCMS can handledsiialsets with no additional
effort/parameter. Results of KDE-SCMS on a synthetically-created sngstat data set that has a
number of loops, self intersections, and bifurcation points is presentaduneFL3.
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Figure 12: Noisy spiral data set, and result of the Polygonal Line Algarith

4.1.4 EXTENDING THE DEFINITION TO HIGHER DIMENSIONAL MANIFOLDS

The generalization of principal curves to principal surfaces and higtier manifolds is naturally
achieved with our definition. Here we present the results of KDE-SCMSlfe 1 andd = 2
for a three-dimensional helix data set in Figure 14. (fFer 2, we present the surface built by the
Delaunay triangulations Delaunay, 1934 of the principal surface projecfor better visualization.)
Here, note that the covariance of the helix data around the principa &aunot symmetric, and the
horizontal dimension has a higher variance (and this is why the principalcsuis spanned along
this dimension). If the helix had been symmetric around the principal curgeggrthcipal surface
would have been ill-defined.
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Computation timel Mean squared projection errorongise

SCMS 3.237 sec. 0.003184 0.005
PL 18.422 sec. 0.017677 0.005
SCMS 3.508 sec. 0.011551 0.01
PL 20.547 sec. 0.024497 0.01
SCMS 3.986 sec. 0.062832 0.02
PL 22.671 sec. 0.066665 0.02
SCMS 6.257 sec. 0.194560 0.04
PL 27.672 sec. 0.269184 0.04
SCMS 7.198 sec. 0.433269 0.06
PL 19.093 sec. 0.618819 0.06
SCMS 8.813 sec 0.912748 0.08
PL 19.719 sec 1.883287 0.08

Table 2: Computation Time and MSE Performance Comparisons

Figure 13: Snow crystal data set, and KDE-based SCMS result

4.2 Applications of Principal Curves

In the following, we will present a number of applications of our approanhime series denoising,
independent components analysis, time-frequency reassignmentetkgnalization, and optical
character skeletonization.
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Figure 14: Helix data set, and KDE-based SCMS resultdfer1 (top) andd = 2 (bottom)

4.2.1 TIME SERIESSIGNAL DENOISING

KDE-SCMS finds use in many applications of time series denoising. In detierdeature space for
such problems can be constructed using the time index as one of the fegielcisg an embedded
structure of the—possibly multidimensional—time signal. In such spaces, we tlad KDE-
SCMS can successfully be used for denoising (Ozertem and Erdog608;,0zertem et al., 2008).
In the following, first we will briefly mention our previous work on applyindpE-SCMS to signal
denoising applications, and proceed with preliminary results in two other atiphicdomains.

We proposed to use principal curve projections as a nonparametricsohgnfilter at the pre-
processing stage of time warping algorithms, which in general are proneide (Ozertem and
Erdogmus, 2009). In this setting, time embedding is used in the scatter plot phithef signals
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that we want to find the time warping function in between. We use a slightly elifferariant of

KDE-based SCMS for this purpose that exploits the application specificthas the time embed-
ding dimension is not a random variable, and shown improvement in time skrgssication and

clustering.

A common problem in signal denoising is that if the signal has a blocky, in atleds, a
piecewise-smooth structure, traditional frequency domain filtering tecbsiquay lead to over-
smoothings in discontinuities. One idea to overcome this is to take discrete wheslsfiorm
(DWT), do the filtering (or thresholding) in this domain and recover the sneabsignal by taking
inverse DWT. The shortcoming of this is high frequency artifacts (similar td&#ffect) at both
ends of the discontinuities. We show that KDE-SCMS can be used for tipege (Ozertem et al.,
2008). Since at the discontinuities, KDE will not be much affected by theakiganmples of the
other end of the discontinuity, the algorithms leads to a piecewise-smooth idgn@isult without
introducing oversmoothings or any artifacts at the discontinuities.

4.2.2 NONLINEAR INDEPENDENTCOMPONENTANALYSIS

The proposed principal surface definition can be viewed in a diffeleggiametric framework as
follows: at each poink, the solutions to the differential equations that characterize curve whose
tangents are the eigenvectors of the local covariance of the pdf foroabkdorvilinear coordinate
system that is isomorphic to an Euclidean space in some open ball axoUtt trajectories that
take a poinix to its projection on thel-dimensional principal surface can be used to obtain these
curvilinear coordinates that specify the point with respect to some refei@itical point that can be
assumed to be the origin. Consequently, for instancex,ftire lengths of curves during its projec-
tion from n-dimensional space to tHe — 1)-dimensional principal surface, and then subsequently
to(n—2),...,1, and eventually to a local maximum (the one that has been recognizedoagthe
could, in some cases when a global manifold unfolding is possible, lead toliaear coordinate
vector. This manifold unfolding strategy can be used in many applicationgdinglwisualization

and nonlinear blind source separation. As we do not aim to focus on thgohdamnwrapping
aspects of the proposed framework in this paper (because that, in fgjreiguires solving differ-
ential equations accurately and the proposed algorithm is not at a diesietdf accuracy for that
purpose), we simply point out that the definition presented here allowss ffoincipled coordinate
unfolding strategy as demonstrated in nonlinear blind source separatog(Bus and Ozertem,
2007). Developing fast feedforward approximations (via parametmooparametric mappings) to
this manifold unwrapping strategy remains as a critical future work.

4.2.3 TIME-FREQUENCYDISTRIBUTION REASSIGNMENT

Time-frequency reassignment is a known problem in signal processirgjlite and yields another
example, where KDE-SCMS can be applied directly. As any other bilineamggmistribution, the
spectrogram is faced with an unavoidable trade-off between the redweétinisleading interference
terms and a sharp localization of the signal components. To reduce the smadtacts introduced
by the window function in short-term Fourier transform, reassignment rdstae used to sharpen
the time-frequency representation by using the rate of change of phése signal, which finds
numerous applications in speech signal processing and signal rasganalysis (Fulop and Fitz,
2007; K. Fitz and L. Haken and P. Christensen, 2000). Parametdppagef spectral components
are obtained byollowing ridges on the smooth time-frequency surfacging the reassignment
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(a) The Wigner-Ville distribution (b) Smoothed Wigner-Ville distribution and its
principal curve

Figure 15: Wigner-Ville distribution in time-frequency domain, its smoothediorrand principal
curve of the smoothed distribution

method (Auger and Flandrin, May 1995) to improve the time and frequenityaes for the en-
velope breakpoints. Figure 15 shows our preliminary results for a symtirae frequency surface
with multiple components in some time intervals that yield cross interference termsaekAXgle
distribution of the signal, and the smoothed Wigner-Ville distribution, where thgseterms in the
original spectogram are eliminated are shown in Figure 15(a). Figul® $66ws the principal
curve of this time-frequency surface obtained by KDE-SCMS.

Furthermore, in the presence of tugo-cross termsa much more challenging scenario appears
(Ozdemir and Arikan, 2000; Ozdemir et al., 2001). In these cases a rotati@riant reassignment
method is required and traditional methods that are based on the rate géatfahe phase cannot
answer this need. KDE-SCMS, on the other hand, is still directly applicalthéstproblem because
it is invariant to rotations in the input data.

4.2.4 TIME-VARYING MIMO CHANNEL EQUALIZATION

Recently, multiple-input multiple-output wireless communication systems havendramsiderable
attention, and there are reliable and computationally inexpensive symbalidetalgorithms in the
literature (Foschini et al., Nov 1999). On the other hand, applications intangng environments
pose a harder problem to the changing channel state, and some seghedgisrithms have been
proposed to tackle this issue, where an initialization phase is used in the ingegfon training
purpose (Rontogiannis et al., May 2006; Karami and Shiva, 2006 éltab., Nov. 2005).

Blind channel equalization approaches in the literature are based orriciggtehen et al., Jul
1993). However, these approaches mostly focus on time-invariant Sifmglésingle-output chan-
nels. Recently, a spectral clustering technique is proposed that extendpplications into time-
varying multiple-input multiple-output channels as well (Van Vaerenbetrgh,2007; Vaerenbergh
and Santamaria, 2008). Van Vaerenbergh and Santamaria introduce teetiveéding into the fea-
ture space before employing the clustering algorithmrttanglethe clusters. The same idea proves
to be effective in Post-Nonlinear Blind Source Separation as well (Va@ergh and Santaniay
2006).
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The original clustering problem in four dimensions presented in Figura)18the fast time-
varying nature of the channel poses a very difficult clustering probigéim overlapping clusters.
With the time embedding, the overlapping clusters become intertwined threadsvas is Figure
16(b) with two three-dimensional subspace projections of the data. VareMaergh and Santa-
maria employ a spectral clustering algorithm to solve the channel equalizatbfem with no
supervision. At this point, one can improve noise robustness of the ¢hgst®r using the fact that
the clusters are curves in the feature space by using the spectralinlystethe principal curve
projections instead of the data samples. Figure 17 shows a result of KIMSSor the same data
set at signal to noise ratio of 5dB, along with the average normalized M8E{@ne standard de-
viation) between the actual noisefree signal and the principal curyeqpiem over 20 Monte Carlo
runs. The principal curve projection result can give a good estimatesofdtsefree signal even in
signal to noise ratio levels even lower than 0dB—where the noise poweeasegrthan the signal
power itself.

4.2.5 KXELETONIZATION OF OPTICAL CHARACTERS

Optical character skeletonization can be used for two purposes: daattraction for optical char-
acter recognition and compression. Principal curves have beenarstisfapplication (Kegl and
Kryzak, 2002). One significant problem with applying principal curgmethms to skeletonization
of optical characters is that, by definition, algorithms are seeking fsn@oth curve In general,
data may have loops, self intersections, and bifurcation points, which ity the case for opti-
cal characters. Kegl's principal graph algorithm is perhaps the onlyadeththe literature that can
successfully handle such irregularities (Kegl and Kryzak, 2002hiapproach, Kegl reshapes
his polygonal line algorithm (Kegl et al., 2000) to handle loops, and selfsat¢ions by modifying
it with a table of rules and adding preprocessing and postprocessirgg &ismg the handwritten
digits data set provided by Kegl, we show the results of KDE-SCMS. Fig8rghows the binary
images along with the principal curve projection of the pixels. SCMS givisfaetory results
without any rule or model based special treatment for the self intersections

4.3 Limitations, Finite Sample Effects, and the Curse of Dimensionality

Since our principal curve definition assumes the pdf to be given, it dispemthe reliability of the
preceding density estimation step, which in general may not be an easyStzkd by Bellman
asthe curse of dimensionalif@Bellman, 1961), it is a very well-known fact that density estimation
becomes a much harder problem as the dimensionality of the data increbsestofe, before we
move on to applications on real data, in this section we will present the pefme of our principal
curve fitting results for various density estimates with different numbermoptes and dimensions.

The first comparison is with principal line estimation based on eigendecompositibe data
covariance, where the true underlying probability distribution is Gaus$iaa second comparison
examines the model order estimation using a Gaussian mixture model, which in the licaisag
where the number of Gaussian mixtures is equal to the number of samplesigesito KDE. In all
comparisons presented below principal curve projections are obtajyrted KDE-SCMS algorithm
using the leave-one-out ML kernel bandwidth.
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(a) Four dimensional data, coming from four symbols

dim 3

(b) Four dimensional data with time embedding

Figure 16: Symbol clustering problem for a MIMO channel

4.4 Comparison with Eigenvector Estimation

As mentioned before, the reason why we prefer to use KDE is its ability td taldifferent complex

shapes that data may take. Indeed, results previously presented irctiia show that KDE based
principal curve estimation proves to be efficient in adapting to many realdife distributions of a
diverse set of applications. However, one well-known disadvantb®B is the required number
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Figure 17: Signal samples and their principal curve projections, norrdai&E vs signal to noise
ratio (in dB).

of samples as the dimensionality of the data increases. Here we discussehatwe the true
underlying probability density is Gaussian; hence, the claith@fequirement to adapt to complex
shapes in the dates an obvious overstatement. In this scenario, we will compare the princigal lin
estimator based on PCA to the principal curve based on KDE, for diffetenber of dimensions.

Consider the data sék! , } Gaussian distributed id-dimensional space, whevedenotes the
true principal line of this distribution, and. denotes the principal line obtained by sample PCA.
What we are going to compare here is the following:

1. mean squared distance between the projection of the data samples onte thesttieigen-
vector and the estimated first principal componé&dt|v'x — v x|}

2. mean squared distance between the projection of the data samples onte thigenvector
and the principal curve projection E{|[vx —X||}.

Figure 19 presents the MSE of the principal line (dashed curve) ancigaircurve (solid curve)
projections for 2, 3, 4, 5, 10, 20, 30,and 40 dimensions, and avergdé¢3& for 100 Monte Carlo
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Figure 18: SCMS results in optical characters

simulations is shown. For all cases the MSE decreases for both methodsrasther of samples
increase. Principal line projection always results in better accuracthammerformance of principal
curve projections drop exponentially for increasing dimensions.

4.5 Effects of the Model Order Estimation

An important problem in parametric density estimation is model order selectidhe Ireal appli-
cations presented above, we work with KDE-SCMS to provide a genarpbpe nonparametric
algorithm, and to avoid model order selection problems. However, usingaanpéric model has
two main advantages:

1. As opposed t®(N?) complexity of the KDE-SCMS, the computational complexity of GMM-
SCMS isO(MN), whereM is the number of mixtures in the Gaussian mixture ahid the
number of samples, since typicaly < N.

2. As also implied in the previous section, with the comparison against PCA amiss@n data
set, a parametric approach wit@itablemodel order, the algorithm would need less samples
to achieve good principal curve estimates.

Here we will evaluate the stability of principal curve estimation with GMM-SCMSrfgproper
model order selections in the GMM density estimation step, and compare thgaglioarve pro-
jection results for a Gaussian mixture with 3 components. Since the true undedgnsity is
known to have 3 components, we measure the performance as of pricipalprojection results
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Figure 19: Mean projection error Inge scale for principal line (dashed) and principal curve (solid).
Average of 100 Monte Carlo simulations is shown.
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107 - .. '. 7

Figure 20: One realization of the 3-component Gaussian mixture data usedd@nmance evalua-
tions

for different number of components in the density estimate as the distance poirthipal curve
projections obtained with three components

J = E{(Xa(x) —Xa(x))’},
where d = 1,2,3,4,5,6,10,15,25,50,100,200,400.

The data sex has 400 samples in 2-dimensional space. Figure 20 shows a realizatien@étis-
sian mixture, and Figure 21 presents the performance of the principa pusjections for different
number of components in the Gaussian mixture estimation, and results of 50 ®ardesimula-
tions is shown. Note that for increasing model orders, if the GMM has mardauof components
than the true underlying distribution, the generalization performance ofitngigal curve does not
change significantly.

5. Discussions

We proposed a novel definition that characterizes the principal cangésurfaces in terms of the
gradient and the Hessian of the density estimate. Unlike traditional machiméniggrapers on
manifold learning, which tend to focus on criteria such as reconstruction@ravailable samples,
we focus on the definition of the underlying manifold from a more (differéatthough not em-
phasized here) geometric point of view. There are strong connecttweén our definition and the
literature. If the ridge cross-section is a unimodal and symmetric densitglefimition coincides
with the original Hastie & Stuetzle definition. There is a strong connection td'Kpigcewise
linear curve proposition, when the underlying density is selected to be sstaaumixture. How-
ever, the connections are less obvious when considering a principed oumanifold definition
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Figure 21: Principal curve projections for different number of congos in the density estimate
in loge scale. Specificallyd = 1,2,3,4,5,6,10,15,25,50,100,200,400.

that is not explicit (e.g., the principal curve is the solution to some optimizatidsligmrowithout an
analytical expression or property).

Providing the definition in terms of the probability density estimate of the data allews u
exclude any smoothness or regularization constraints from the definitidradopt them from the
density estimation literature directly. Although this cannot ultimately answer th&tiqoeof the
trade-off between generalization and overfitting, using the connectioarnsitgt estimation yields
data-driven nonparametric solutions for handling regularization and ocgleistness. In the def-
inition, we also do not assume any parametric model and since the ridgespaiffthan intersect
each other, handling self-intersecting data structures requires no adtliéftort.

Animportant property of the definition is that it yields a unified frameworlcfastering, princi-
pal curve fitting and manifold learning. Similar to PCA, formdimensional data set, our definition
contains all thed-dimensional principal manifolds, whede< n. Theoretically, the principal set of
d = 0 yields the modes of the probability density, which coincides with a widely aedagustering
solution. We accompany this with an algorithmic connection by showing thatipaincurves can
be achieved using the SCMS idea, very similar to the well-known mean-shsfeciog algorithm.
KDE-based SCMS implementation is significantly faster than the most commonlymestbadd in
principal curves literature. Besides, it does not require significanthertiore or memory storage
as compared to mean shift, which already has been used in many pragbibedépn domains.

In high dimensional spaces, density estimation becomes impractical due tasbeo€dimen-
sionality. Therefore, similar to existing methods in principal curves literatbesproposed method
is not an alternative for proximity graph based manifold learning methodsdikaap, Laplacian
eigenmaps etc. Still, we show that there are many real applications in lowersionahspaces
suitable for KDE-based SCMS. We show results on a family of applications ingeries signal
processing, as well as an earlier proposed application of principas(©CR).
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