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Abstract
Blind source separation problems emerge in many applications, where signals can be modeled
as superpositions of multiple sources. Many popular applications of blind source separation are
based on linear instantaneous mixture models. If specific invariance properties are known about
the sources, for example, translation or rotation invariance, the simple linear model can be ex-
tended by inclusion of the corresponding transformations.When the sources are invariant against
translations (spatial displacements or time shifts) the resulting model is called an anechoic mixing
model. We present a new algorithmic framework for the solution of anechoic problems in arbitrary
dimensions. This framework is derived from stochastic time-frequency analysis in general, and
the marginal properties of the Wigner-Ville spectrum in particular. The method reduces the gen-
eral anechoic problem to a set of anechoic problems with non-negativity constraints and a phase
retrieval problem. The first type of subproblem can be solvedby existing algorithms, for example
by an appropriate modification of non-negative matrix factorization (NMF). The second subprob-
lem is solved by established phase retrieval methods. We discuss and compare implementations
of this new algorithmic framework for several example problems with synthetic and real-world
data, including music streams, natural 2D images, human motion trajectories and two-dimensional
shapes.
Keywords: blind source separation, anechoic mixtures, time-frequency transformations, linear
canonical transform, Wigner-Ville spectrum

1. Introduction

Blind source separation is an important approach for the modeling of data byunsupervised learn-
ing (Choi et al., 2005; Cichocki and Amari, 2002; Ogrady et al., 2005; Comon and Jutten, 2010).
The most elementary class of such methods is based on linear mixture models that combine source
signals or mixture components as weighted linear sum. Such linear blind sourceseparation meth-
ods have a wide spectrum of applications. Examples include speech processing (Anthony and Se-
jnowski, 1995; Torkkola, 1996a; Smaragdis et al., 2007; Ogrady et al.,2005), spectral analysis
(Nuzillard and Bijaoui, 2000; Chen and Wang, 2001), and the interpretation of biomedical and geo-
physical data (Hu and Collins, 2004; Aires et al., 2000). Popular approaches exploit typically two
classes of generative models: instantaneous and convolutive mixtures (Choi et al., 2005; Ogrady
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et al., 2005; Pedersen et al., 2007). Theinstantaneous mixture modelis defined by the equations:

xi(t) =
n

∑
j=1

αi j sj(t) i = 1, · · · ,m.

The time-dependent signalsxi(t) are approximated by the linear superposition of a number of hidden
source signalssj(t). This superposition is computed separately, time-point by time-point. Contrast-
ing with this model,convolutive mixturesassume that the source signals are filtered assuming the
filter kernelsαi j (t) prior to the superposition, resulting in the mixing model:

xi(t) =
n

∑
j=1

(∫ ∞

−∞
αi j (τ)sj(t− τ)dτ

)

i = 1, · · · ,m. (1)

It is obvious that the instantaneous mixture model is a special case of the convolutive model, where
the filter kernels are constrained to be proportional to delta functionsαi j (t) = αi j δ(t). In be-
tween these two model classes areanechoic mixture modelswhich linearly combine time-shifted
and scaled versions of the sources, without permitting multiple occurrencesof the same source in
the mixture. These models are equivalent to convolutive models for which thefilter kernels are
constrained to the formαi j (t) = αi j δ(t− τi j ), resulting in the equation:

xi(t) =
n

∑
j=1

αi j sj(t− τi j ) i = 1, · · · ,m. (2)

Compared to full covolutive models, anechoic models constrain substantially the space of ad-
missible filter functions. This reduces dramatically the amount of data that is necessary for the
estimation of the model parameters. In addition, this restriction of the parameter space often results
in model parameters that are easier to interpret, which is critical for many applications that use mix-
ture models for data analysis.
Apart from the problem of robust parameter estimation with limited amounts of data,all blind source
separation methods suffer from intrinsic ambiguities. For all discussed models the ordering of the
recovered sources is arbitrary. For fully convolutive models the sources can be recovered only up
to an unknown filter function (filter ambiguity). The distortion of the source shape by this arbitrary
filter hampers interpretability of the source signals. This makes it necessaryto further constrain
the estimation of the sources by introduction of additional auxiliary assumptions, such as minimal
distortion (see Matsuoka, 2002 for details). In contrast, for anechoic mixtures (see Equation (2))
the filter ambiguity is limited to an unknown scaling and arbitrary additive shift thatcan be applied
to all time delaysτi j , while the form of the source functions is uniquely defined, except for absolute
position. This implies that anechoic mixtures can be advantageous for the modeling of data that are
consistent with the corresponding generative model. This advantage is particularly strong if only
small amounts of data are available or if the models are employed to interpret the statistical structure
of the data.

The presence of shifts (translations) is a common problem in many scientific ortechnical appli-
cations (e.g., spectral displacements due to doppler-shifts in astronomy, asynchronous signal trans-
mission in electrical engineering, or spatial displacements of features in images). The anechoic
model provides thus an attractive alternative for the common instantaneous model, which can model
shifts only by an introduction of additional sources, typically degrading thestability of the estimates
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and the interpretability of the model parameters. Also the assumption of the singleoccurrence of the
sources in the individual components of the mixture is reasonable for many applications. Examples
from biology include human motion analysis (Barliya et al., 2009; d’Avella et al., 2008), where the
same control signal might influence several muscles or joints with differentdelays, or in functional
magnetic resonance imaging, where time shift occur naturally due to hemodynamic delays (Mørup
et al., 2008).

The major part of previous work on anechoic mixtures has considered under-determined (over-
complete) source separation problems (m≤ n), where the sources outnumber the dimensions of the
available data. This is typically the case for acoustic data, for example in the case of the ’cocktail
party problem’, where the signals of many speakers have to be recovered from a small number of
microphones. Such under-determined problems require additional assumptions about the sources
(for example sparseness Georgiev et al., 2005; Bofill, 2003; Yilmaz and Rickard, 2004), in order
to obtain unique and stable solutions. Since most of existing algorithms for the under-determined
case rely on such additional constraints for the estimation of the sources, they cannot be easily gen-
eralized for the undercomplete case. This case, where the number of sources is smaller than the
dimensionality of he data, is typical for data reduction problems. The application of algorithms
developed for the over-determined problem may lead to erroneous resultsfor this case. For example
strong sparseness assumptions (likeW-disjoint orthogonality Yilmaz and Rickard, 2004) lead to an
overestimation of the number of the sources (in the overdetermined case), compared to methods that
only assume statistical independence of the sources.
In this paper we present a present a new algorithmic framework for the solution of arbitrary ane-
choic mixture problems, which is independent of the number of sources andthe dimensionality
of the data. Contrasting with most previous approaches addressing the model (2), our method is
suitable for dimension reduction since it is applicable for the solution of over-determined prob-
lems (m≥ n). The key idea of the novel framework is to transform the original mixture problem
into the time-frequency domain, exploiting the Wigner-Ville transformation (WVT). The resulting
transformed problem is completely equivalent to the original problem, but more suitable for an
efficient algorithmic solution. Exploiting the fact that for the WVT the knowledge of a limited
number of marginals allows the complete and unambiguous reconstruction of theoriginal signal,
we devise an algorithm that replaces then original problem by a set lower-dimensional anechoic
demixing problems with positivity constraints and a phase retrieval problem. The positive demixing
problems are solved by approximative methods, such as nonnegative matrixfactorization (NMF) or
positive ICA. The projection onto lower-dimensional problems leads to an efficient solution even of
higher-dimensional problems with multi-dimensional translations. The obtained solution in time-
frequency space is then transformed back into signal space, where in asecond step the full solution
of the original problem is determined by solution of a phase retrieval problem.

Our method exploits specifically the advantageous mathematical properties of the Wigner-Ville
transform. A particular role in this context plays the relationship between the Wigner time-frequency
representation and the linear canonical transform (LCT) (also called special affine Fourier transform
or ABCD transform). This class of linear integral transformations generalizes classical transforma-
tions, like the Fourier or the Gauss-Weierstrass integral transform. It is crucial for the transformation
of higher-dimensional problems into a (coupled) set of lower-dimensionalproblems and provides a
theoretical basis for the phase retrieval in the second step of the algorithm.In addition, the choice of
appropriate Linear Canonincal Transformations can improve the separability of the source signals.
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The paper is structured as follows: After a discussion of related approaches and an introduction
of the notation, Section 2 gives a short introduction into the theory of the stochastic Wigner-Ville
distribution and its expected value, the Wigner-Ville spectrum. Though most of these results are well
established in mathematics they are not so well-known in the machine learning community. The
second part of this section introduces the linear canonical transform (LCT) and its properties that
are fundamental for our algorithm. For the solution of the non-negative anechoic mixture problem
a modification of non-negative matrix factorization (NMF) (Lee and Seung,1999) is presented in
3.2. Finally, we discuss several phase retrieval methods in 3.3. Section 4 presents in detail three
concrete implementations of the novel algorithmic framework. Section 5 presents a validation of the
developed method on several data sets, including music streams, natural 2Dimages, human motion
trajectories, and two-dimensional shapes. Finally, conclusions are presented in Section 6.

A preliminary version of the algorithm and some applications have been previously published
as conference papers (Omlor and Giese, 2007a,b). However, the complete theoretical framework
with a comparison between different implementations has never been published before.

1.1 Related Approaches

Anechoic mixtures have frequently been used in acoustics to model reverberation-free environ-
ments. Such models have been treated in several papers focusing on the under-determined case,
often in the context of the ’cocktail party problem’. The work in Torkkola (1996a,b) extended the
information maximization approach by Anthony and Sejnowski (1995), usingthe adaptive delay
architecture described in Platt and Faggin (1992) in order to unmix anechoic 2×2 mixtures. An-
other approach by Emile and Comon (1998) is to estimate the unknown parameters directly in the
time domain, with the additional assumption of predefined constant mixing weights (αi j = 1). Fre-
quency or time-frequency methods, like the DUET algorithm (Yilmaz and Rickard, 2004) or the
scatter plot method by Bofill (2003), exploit sparsity properties of the sources in these domains. For
the even-determined case (n= m) the weights and delays can be estimated by joint diagonalization
of specific spectral matrices, as demonstrated in Yeredor (2003). Also atwo-dimensional version
of the AC-DC joint diagonalization algorithm has been successfully applied for the separation of
images that appeared with unknown spatial-shifts (Be’ery and Yeredor,2008). Other work on the
under-determined case is summarized in Ogrady et al. (2005), Arberet et al. (2007) and Namgook
and Jay Kuo (2009).
The over-determined case, which is most important for dimension reduction applications has been
treated only very rarely so far. In Harshman et al. (2003) this problem has been addressed using
an alternating least squares (ALS) algorithm (Shifted Factor Analysis). This algorithm has been
revised and improved in Mørup et al. (2007), exploiting the Fourier shift theorem and information
maximization in the complex domain (SICA, Shifted Independent Component Analysis).

The performance of independent component analysis and blind sourceseparation methods is
critically dependent on the non-Gaussianity of the source distributions (Cardoso, 1998), and the
possibility of a sparse representation of the data, which in turn is related to thesuper-gaussianity
of the distribution of the sources. This implies that preprocessing of the signals, for example, by
application of bilinear time-frequency transformations before source separation can be essential.
In this context time-frequency representations have been used quite frequently in the context of
blind source separation (Karako-Eilon et al., 2003; Leung and Siu, 2007; Li et al., 2004; Seki et al.,
1998), and specifically for anechoic demixing (Yilmaz and Rickard, 2004). Besides, the application
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of the superposition law of the Wigner-Ville spectrum (WVS) in Belouchraniand Amin (1998), such
distributions have been mainly applied for pre-processing purposes. Contrasting with this work, our
approach relies on further properties of the stochastic Wigner-Ville spectrum (WVS), which to our
knowledge, never have been exploited for source separation previously.

1.2 Notations

Throughout the paper the following well-established mathematical notations willbe used:

– The notation := indicates that the left hand side is defined by the right hand side of the
equation.

– i denotes the complex unit.

– E denotes the expectation operator.

– For a scalar, or a functionx , x∗ denotes the complex conjugate.

– The operatorsF andF −1 denote the Fourier and inverse Fourier transform respectively,
defined by:

F x( f ) : =
∫

x(t)e−2πit f dt = X( f ),

F
−1X(t) =

∫
X( f )e2πit f d f.

In the case of discrete time variables the same symbols signify the Discrete Fourier Transform
(DFT).

– The notationTi j x indicates the shift operatorTi j x(t) = x(t− τi j ) with τi j ∈R.

– If not noted otherwise,t ∈ Rd and x : Rd → R, t 7→ x(t), that is, in generalx denotes a
multivariate function. In order to distinguish the variable of integration from the functional
variable, in addition to the variablet, the variablet ′ is used. (Thusx(t ′) denotes the function
x at pointt ′.)

– The symbol∗ marks the convolution.

– If A,B are two matrices thenAB denotes the entrywise fraction(A
B) = (

ai j

bi j )i j .

– x′(t) is short for the derivativedx
dt (t).

– x← y implies thatx is replaced byy in the current iteration of an algorithm.
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2. The Wigner-Ville Distribution and Its Stochastic Generalizations

The Wigner-Ville distribution was originally defined by Wigner (1932) in the context of quantum
mechanics. It was later reintroduced in signal analysis by Ville (1948), withthe basic idea of
defining a joint distribution of the signal energy simultaneously in time and frequency (in physics
corresponding to coordinates and momentum). For a continuous scalar real or complex signal (wave
function)x(t) the Wigner-Ville distribution is defined as the bilinear transformation:

Wx(t, f ) :=
∫

x
(

t +
τ
2

)

x∗
(

t− τ
2

)

e−2πiτ f dτ. (3)

Unfortunately, this expression cannot be interpreted as a true probabilitydensity, since it can
become negative. A variety of mathematical properties have been proven for the Wigner-Ville dis-
tribution (Mecklenbruker and Hlawatsch, 1997), making it a widely used tool in signal analysis,
with generalizations to linear signal spaces, linear time-varying systems or frames (see, e.g., Matz
and Hlawatsch, 2003 for review). While the Wigner distribution was developed in the probabilistic
framework of quantum mechanics, definition Equation (3) applies to deterministic functionsx. In
the works of Janssen (1979), Martin (1982) as well as Martin and Flandrin (1985) the deterministic
definition Equation (3) has been extended to the very general class of harmonizable stochastic pro-
cesses. The only requirement for a zero mean random signal to be harmonizable is the existence of
a Fourier representationΦ of its autocovariance functionrx(t, t ′) that is defined by:

rx(t, t
′) := E{x(t)x∗(t ′)}=

∫ ∫
e2πi(λt−µt′)Φ(λ,µ)dλdµ.

The probabilistic analogue to the deterministic Wigner distribution for a stochasticprocessx is given
by the stochastic integral:

wx(t, f ) :=
∫

x
(

t +
τ
2

)

x∗
(

t− τ
2

)

e−2πiτ f dP(τ).

In this formuladP signifies a probability measure, defining a stochastic integral. (See Papoulis
et al., 2001 for further details.) In this case, the distributionwx(t, f ) is again a stochastic process.
This stochastic integral exists in quadratic mean if the absolute forth order momentsE{|x|4} exist
(Martin, 1982). Furthermore, the existence of these moments guarantees that the expected value
and the integration can be exchanged:

E{wx(t, f )}= E

{∫
x
(

t +
τ
2

)

x∗
(

t− τ
2

)

e−2πiτ f dP(τ)
}

=
∫

E
{

x
(

t +
τ
2

)

x∗
(

t− τ
2

)}

e−2πiτ f dτ =
∫

rx

(

t +
τ
2
, t− τ

2

)

e−2πiτ f dτ

=: Wx(t, f ). (4)

The last expressionWx(t, f ), which can be defined for a more general class of random processes,
is called the Wigner-Ville spectrum (WVS). The invertibility of the Fourier integral Equation (4)
assures that the WVS is equivalent to the covariance functionrx(t, t ′). Therefore, it contains full
information about the second-order statistics ofx. The WVS represents a time-dependent spectrum
that is commonly used to study the local and global non-stationarity of randomprocesses.
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2.1 Basic Examples for the WVS

White noise process
The white noise processx is defined by:

E{x(t)}= 0

rx(t, t
′) = δ(t− t ′).

Then it is easy to see that the WVS is given by:

Wx(t, f ) =
∫

δ(τ)e−2πiτ f dτ = 1.

Signal plus noise
Defining a processx(t) = y(t)+n(t) by the superposition of a deterministic signaly(t) and a
zero-mean noise componentn(t), the WVS is given by:

Wx(t, f ) =
∫

E
{

x
(

t +
τ
2

)

x∗
(

t− τ
2

)}

e−2πiτ f dτ

=
∫

[E{yy∗}+yE{n∗}+y∗E{n}+E{nn∗}]e−2πiτ f dτ =
∫
[yy∗+E{nn∗}]e−2πiτ f dτ

=
∫

yy∗e−2πiτ f dτ
︸ ︷︷ ︸

deterministic

+
∫

E{nn∗}e−2πiτ f dτ =Wy(t, f )+Wn(t, f ).

This shows that for signal plus noise the WVS is given by the sum of the deterministic Wigner
distribution and the WVS of the noise.

2.2 Properties of the WVS and the Wigner Distribution

The stochastic as well as the deterministic definition share many properties. Consequently, in the
following only the properties of the WVS will be listed, unless the properties ofthe deterministic
WV transformation are different. (Proofs for the properties can be found, for example, in Cohen
1989).

– Real: The WVS is a real function of time and frequency:

Wx(t, f )
∗
=

∫
E
{

x∗
(

t +
τ
2

)

x
(

t− τ
2

)}

e2πiτ f dτ

=
∫

E
{

x∗
(

t− τ
2

)

x
(

t +
τ
2

)}

e−2πiτ f dτ =Wx(t, f ).

– Time-frequency shift covariant: The Wigner-Ville spectrum of a time frequency shifted
signalx̃(t) = x(t− t0)e2πi f0(t−t0) is the shifted WVS of the original signal:

Wx̃(t, f ) =Wx(t− t0, f − f0). (5)
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– Correct marginals: The marginals in time and frequency of the WVS reflect the second
order properties of the process:

∫
Wx(t, f )d f = rx(t, t) = E{|x(t)|2}, (6)

∫
Wx(t, f )dt = rF x( f , f ) = E{|F x( f )|2}. (7)

– Cross terms: Due to its quadratic nature, the deterministic Wigner-distribution of a multi-
component signalx= s1+s2 always contains cross terms of the form:

Ws1,s2(t, f ) :=
∫

s1

(

t +
τ
2

)

s∗2
(

t− τ
2

)

e−2πiτ f dτ.

Geometrically, these terms will always occur in the time-frequency plane midwaybetween
two (auto-)componentsWx1,2 of the deterministic Wigner distribution
(Mecklenbruker and Hlawatsch, 1997). For the stochastic WVS existence of cross terms
is determined by the time-frequency correlations of the processes. Is forexamplex(t) =

n
∑
j=1

α j · sj(t), the sum ofn uncorrelated zero mean random processessj(t), then it is obvious

from rsk,sl (t, t
′) = E{sk(t)sl (t ′)}= 0∀k 6= l thatWsk,sl (t, f ) = 0∀k 6= l and thus:

Wx(t, f ) =
n

∑
j

|α j |2Wsj (t, f ). (8)

A similar superposition law also holds for the sumx(t) =
n
∑
j=1

α j ·sj(t) of deterministic signals

sj(t) if the weightsα j are uncorrelated zero mean random factors:

Wx(t, f ) =
n

∑
j

E{|α j |2}Wsj (t, f ).

– Instantaneous frequency: For a univariate random signalx which is square mean differ-
entiable, the instantaneous frequency can be defined as:

fx(t) =
Im(x′(t)x(t)∗)
2πvar(x(t))

.

The expectation is given by the following relation:

E{ fx(t)}=
∫

fWx(t, f )d f
var(x(t))

=
E{Im(x′(t)x(t)∗)}

2πvar(x(t))
. (9)

A similar property also holds for the group delay (Cohen, 1989).

– Symplectic covariance: For our algorithm it will be central that signals are related that
correspond to Wigner Ville Spectra resulting from each other by linear transformations in the
time-frequency plane. More specifically, the WVS is covariant against area-preserving linear
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transformationsM of the time-frequency plain. Such transformationsM ∈R2d×2d belong to
the symplectic group, that is,M has the form:

M =

(
A B
C D

)

with det(M) = 1 , ATC=CTA , DTB= BTD.

The transformed WVS is again the WVS of another signal ˜x(t), which is given by the rela-
tionship:

Wx(t, f ) =Wx̃ ((t, f )MT) or equivalently (10)

Wx ((t, f )(MT)−1) =Wx̃(t, f ).

The processesx andx̃ are related by the so called linear canonical transform (LCT), discussed
in the following section.

2.3 WV Spectrum Estimation for Non-stationary Signals

In most practical applications, it is necessary to estimate the WVS from a singlerealization of
a process. For this reason ensemble averages are often unavailable. As the WVS is the Fourier
transform of the autocovariance function, any estimator forrx(t, t ′) is sufficient in the sense of
statistics. All such estimators have a fundamental bias-variance tradeoff.Smoothing reduces the
variance of the estimate but introduces a bias. One way to derive an estimatorfor the WVS is to
assume the processx(t) is semi-stationary, implying that its characteristics are changing slowly with
time. This so called quasi-stationary assumption allows the approximation of the autocovariance
functionrx(t, t ′) with a local average:

rx

(

t +
τ
2
, t− τ

2

)

≈
∫

F(s− t,τ)x
(

s+
τ
2

)

x∗
(

s− τ
2

)

ds.

HereF is an arbitrary window function that determines the local time-averaging usedto estimate
the autocovariance functionrx(t, t ′). If this approximation is used to form an estimate of the WVS
(replacingrx in Equation (4)) this leads to the equation:

Wx(t, f )≈
∫

Wx(t
′, f ′)ϑ(t− t ′, f − f ′)dt′d f ′ with

F(t,τ) =
∫

ϑ(t,ν)e−2πiντdν. (11)

Therefore, all distributions belonging to Cohen’s class (Cohen, 1989)form estimators for the WVS
(Martin and Flandrin, 1985). An alternative way to justify this particular class of estimators can be
found in Akbar and Douglas (1995). Other ways to estimate the WVS include multitaper reassign-
ment (Xiao and Flandrin, 2007) or soft wavelet thresholding (Baraniuk, 1994).

The marginal properties (Equation 6, Equation 7) impose certain conditions on the kernel. This
implies that not all members of Cohen’s class share all properties of the WVS. From this point of
view the choiceϑ≡ δ(t), which approximates the WVS by the deterministic Wigner distribution of
the samples, seems a natural choice for the estimator. It should also be notedthat, as long as certain
properties preserved by the chosen kernels, such as the correct marginals (Equation 6, Equation 7),
the derivations derived in the following sections remain valid even if the estimator does not share
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all properties of the WVS. The choice of the deterministic Wigner Ville Distributionas estimator is
thus less restrictive as it might originally appear.

While the algorithms derived in the following sections do not require at any point the explicit
numerical computation of a WVS, numerically estimators have been proposed that allow to im-
plement the computation of the transformation on a computer, for example Martin and Flandrin
(1985):

Wx(t, f )≈ 2
∞

∑
τ=−∞

∞

∑
τ′=−∞

F(τ,2τ′)x(t + τ+ τ′)x∗(t− τ+ τ′)e−2iωτ.

2.4 The Linear Canonical Transform (LCT)

At several points of the algorithms that will be derived in the following we exploit the symplec-
tic covariance property (Equation 10) of the WVS. This properties links signals that correspond to
WVS that are related by a symplectic trasformation in the time-frequency domain.The relationship
betweenx and x̃ as specified by the symplectic covariance property (Equation 10) can be derived
explicitly in the case of a nonsingular submatrixB (i.e., det(B) 6= 0). It is given by the follow-
ing integral transformation, which is called linear canonical transform (LCT) or ABCD-transform
(Bultheel and Mart́ınez-Sulbaran, 2006):

L(M)[x]( f ) := (detiB)1/2

∫ ∞

−∞
x(t)exp

(
iπ(tTB−1At−2tTB−1 f + f TDB−1 f )

)
dt. (12)

In the case of singular matricesB the general description is more involved and can be found in
Alieva and Bastiaans (2007).

Integral transformations of this type play an important role in optics and information processing,
as they specify affine transformations in phase space. For example Equation (12) describes the
behavior of a wave functionx by a propagation through a system of thin lenses, free space or if
focused with a satellite dish. For special cases of matricesM many classical integral transformations
used in signal processing can be realized. Some examples are, considering a functionx(t) with one-
dimensional argumentt:

– Fourier and fractional Fourier transforms are special cases givenby the one-parameter sub-

groupM(θ) =
(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)

. The fractional Fourier transform with parameterθ is an

operator power of the normal Fourier transform with the exponent2θ
π . The Integral represen-

tation (Ozaktas et al., 2001) is given by:

F θx( f ) :=

√

1− icot(θ)
2π

eicot(θ) f 2/2

∫ ∞

−∞
e−icsc(θ) f t+icot(θ) t2

2 x(t)dt. (13)

The caseθ = π
2 corresponds to the classical Fourier transform. This form was used in the

context of one implementation of the proposed algortihmic framework (see Section 4.2).

– The Fresnel transform is defined by the expression:

[Fresnel(z, l)x](ξ) =
eiπz/l

√
ilz

∫ ∞

−∞
eiπ/zl(ξ−t)2

x(t)dt.

is obtained in the caseM =

(
1 b
0 1

)

=

(
1 zl

2π
0 1

)

.
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– Chirp multiplication is given byM =

(
1 0
c 1

)

.

– Scaling can be achieved byM =

(
a 0
0 1

a

)

.

These relationships make it possible to adopt the developed framework to different common repre-
sentations of data in the frequency space, in order to optimize the performance of the algorithm.

2.5 Main Properties of the Linear Canonical Transform

Independent of the matrixM, all linear canonical transforms share the following properties:

– Linearity: Obviously the linear canonical transform is a linear transformation, for example:

L(M)[λx+µy]( f ) = λL(M)[x]( f )+µL(M)[y]( f ) ∀ λ,µ∈R.

– Unitarity: The LCT is a unitary operation. Assuming(.)∗ denotes the adjoint operator
then:

(L(M))−1 = (L(M))∗ =
(
L(M−1)

)
.

– Group structure: The product of two LCT operators with matricesM1 andM2 is again a
LCT with matrixM3 = M1M2:

(L(M1)L(M2)) = L(M1M2).

– Shift Theorem: Of particular interest for the anechoic mixing problem is the behavior of
the linear canonical transform under shifts of the input signal:

L(M)[x(t− τ)]( f ) = exp
(
iπ(2 f −Aτ)TCτ

)
L(M)[x]( f −Aτ). (14)

Since the output signal is translated by the termAτ a good choice of the matrixA can optimize
the separability of the the signalx from it is shifted counterparts in particular LCT domains
(Sharmaa and Joshi, 2006). To illustrate this point, consider the example of two gaussian
signals with a small difference in means (see Figure 1(a)). Linear canonical transformation
with A= 3andB= 0 increases the mean difference, and thus leads to an improved separability,
as shown in Figure 1(b).

3. Algorithmic Framework: Anechoic Demixing Using Wigner Marginals

In the following, we will first derive the basic algorithmic framework by application of the mathe-
matical properties of the WVS, as discussed in the last section, to the anechoic mixing model. The
resulting algorithm consists of two major steps: the solution of positive anechoic demixing prob-
lems and phase retrieval. In the following, we will discuss specific methods thatimplement these
two main steps of our algorithmic framework. Section 3.2 discusses a special form of Non-negative
Matrix Factorization, which is particularly suited for the algorithm. Finally, Section 3.3 discusses
different methods for the implementation of the phase retrieval step.
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(a) Two gaussian signals with a small difference
in mean and their sum (dark grey).
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(b) Absolute value of the LCT transformation of
the two gaussians withA= 3,B= 0.

Figure 1: Example for increased separability of signals in appropriate LCT-domain.

3.1 Application of the WVS to the Mixture Model

We assume that the observed random signals (processes)xi(t) , i = 1, . . . ,m are delayed superposi-
tions of uncorrelated source signalssj(t), that is:

xi(t) =
n

∑
j=1

αi j ·sj(t− τi j ) i = 1, · · · ,m (15)

with rsi ,sj (t, t
′) = E{si(t)s

∗
j (t
′)}= 0 for i 6= j.

The shift covariance (5) of the WVS and the superposition law (8) imply the following relation
between the spectra of the sources and observations:

Wxi (t, f ) =
n

∑
j=1

|αi j |2Wsj (t− τi j , f ) =
n

∑
j=1

|αi j |2WTi j sj (t, f ). (16)

Since the relationship (16) holds pointwise for all points of the time-frequency plain (t, f ) it is also
fulfilled after application of an area preserving symplectic transformationM−1:

Wxi

(
(t, f )(MT)−1

)
=

n

∑
j

|αi j |2WTi j sj

(
(t, f )(MT)−1

)

(10)
=⇒WL [M](xi)(t, f ) =

n

∑
j

|αi j |2WL [M](Ti j sj )(t, f ). (17)

In order to make use of relation (17) an estimator for the WVS is required (cf. Section 2.3). The
simplest bias-free estimator for the WVS is just the empirical Wigner transformation. Alternative
estimators belong to Cohen’s class of time-frequency distributions. In the following only the deter-
ministic Wigner transformation is applied, since it has the advantage of preserving the properties
of the WVS. Depending on the smoothing kernelϑ in Equation (11), these properties are shared
by large number of time-frequency-distributions in Cohen’s class, consequently leading to the same
expression (20) (see below). Replacing the WVS by its deterministic counterpart, Equation (17)
transforms into:

WL [M](xi)(t, f ) =
n

∑
j=1

|αi j |2WL [M](Ti j sj )(t, f ). (18)
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This equation could directly serve as basis for the separation of the source signalssj . However,
for higher-dimensional cases the computational costs make a direct solutionprohibitive. Since the
joint description of the involved function in time and frequency is highly redundant, an equivalent
description can be derived by computing the marginals of Equation (18):

|L(M)[x j ]|2(t) =
∫

WL(M)[x j ](t, f )d f =
n

∑
j

|αi j |2
∫

WL(M)[Ti j sj ](t, f )d f

=
n

∑
j

|αi j |2|L(M)[Ti j sj ]|2(t)
(14)
=

n

∑
j

|αi j |2|L(M)[sj ](t−Aτi j )|2. (19)

Note that by introduction of the general matrixM into Equation (17) time and frequency marginals
lead to equivalent expressions Equation (19), but with different symplectic transformationsM̃. The
two types of marginal are are related to each other by the product ofM with a π

2-rotation in the
time-frequency plain, resulting in an interchange of the time and the frequencyaxis. The individual
marginals have the form of an anechoic mixture problem with an additional nonnegativity constraint:

|L(M)[xi]|2(t) =
n

∑
j=1

|αi j |2|L(M)[sj ](t−Aτi j )|2+n(t). (20)

The additional noise termn(t) emphasizes the fact that Equation (20) is an approximation, which
only holds precisely under the asymptotic conditionrsi ,sj (t, t

′) = 0. In practice deviation from exact
time-frequency disjointness (e.g., due to the finite sample size) result non-zero noise termsn(t).
However, the (approximate) solution of Equation (20) gives an estimate forthe power spectra of the
sources in LCT domain|L(M)[sj ]|2, the scaled delaysAτi j and the absolute value of the weights
|αi j |. Methods for the solution of the positive shifted mixture problem will be discussed in Section
3.2. The missing phase information forL(M)[sj ] can be recovered by computing multiple marginals
depending on different matricesM. Phase retrieval methods for this purpose are discussed in the
following Section 3.3. This operation exploits for a second time the special mathematical properties
of the WVS with respect to the symplectic covariance.

Since the projections onto LCT domains (19) are also anechoic mixtures, at first glance, the pos-
itive system of Equations (20) seems not to provide any advantage compared to the direct solution
of Equations (15) or (18). However, a more thorough analysis shows that the transformation into
the coupled set of equations for the marginals has the following advantages:

(i) A single marginal described by Equation (19) is not sufficient to reconstruct the signal or
its WVS. It is thus necessary to compute a set of different marginals, and the choice of the
matrix M in the LCT allows the selection of different marginals that correspond, forexam-
ple, to different slanted lines in the time-frequency space in the case of fractional Fourier
transform. This procedure is different from a source separation directly in the time-frequency
plane (Belouchrani and Amin, 1998). In this case (separation in the TF plane), application
of the LCT would not result in a facilitation of source separation because itcorresponds to
an area preserving deformationM (Healy et al., 2008). The chosen approach to work on
the marginals however, has the immediate advantage of a much higher computational effi-
ciency since it avoids the high computational cost of the WVS and allows the reduction of
multi-variate problems into an uni-variate problems.
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(ii) For each single marginal (19) the linear canonical transform, that is, the choice ofM, de-
termines the distribution of the estimated sources, and especially their sparseness. This can
be exploited to improve the interpretability and compactness of recovered source models.
Since the LCT includes a lot of different transformations, such as the Fourier or the frac-
tional Fourier transformation, it provides much more flexibility for an optimizationof the
representation space of the data than methods relying on a single representation (e.g., Healy
et al., 2008). A nice example of this advantage is data that can be represented efficiently by
a superposition of chirps, given by functions of the forme2απit2

. These functions are nei-
ther sparse in time nor frequency. However, they have compact support in a correctly chosen
LCT domain. A particular useful approach is to chose the matrixM in a way that maximizes
the sparsity of the power spectral density within the signal space that is defined by the cor-
responding LCT. (The WVS in different linear spaces is discussed in Hlawatsch and Kozek
(1993).) Formally, one might thus determineM for a given data set that spans the linear space
X = span(x1, . . . ,xn) by maximizing the sparseness of the approximation, formally:

max
M

sparsity
(
|L(M)[X ]|2

)
.

(iii) The magnitude of the effective (scaled) delays of the mixture componentsin Equation (19)
τi j directly depends on the parameterA of the LCT. An appropriate choice ofA results thus in
improved separation of the signals (Sharmaa and Joshi, 2006). Furthermore the choiceA= 0
simplifies the mixture by transforming it into an instantaneous mixture. As the multivariate
LCT can be the tensorial product of several one-dimensional LCTs,A can be adjusted for each
dimension individually, making it possible to transform a multivariate anechoic mixture into
several coupled one-dimensional mixtures (Omlor and Giese, 2007a). Thisis the core idea
behind the implementation of our algorithm for the multi-variate case, which is discussed in
Section 4.2.

Additional remarks about the proposed framework:

1. Since both the deterministic and the stochastic WVS share the property of correct marginals,
Equation (20) holds also for the exact power-spectraE{|L(M)si |2}. The positivity in (20)
is thus a direct consequence of the assumption of uncorrelated sourcesand does not result
from an additional approximation. Similarly, the fact that the cross-terms vanish in Equation
(18) represent a consequence of this assumption. With respect to thesepoints, the deriva-
tion of Equation (18) exploits the same properties as joint diagonalization approaches (e.g.,
Belouchrani and Amin, 1998).

2. The uncorrelatedness assumption for the sources leads to vanishing cross terms in the full
time-frequency plane. However, a single projection (20) requires only that the cross terms in
that particular LCT domain vanish. In practice, this simplifies the choice of appropriate LCT
domains in order to improve the separability of the sources.

3. The linear weightsαi j and the delaysτi j can be estimated exploiting multiple marginals si-
multaneously. This makes the estimation more robust against the influence of noise.

4. For the special caseL [M] =F (Fourier transformation), Equation (20) can be derived without
the theoretical background of time-frequency analysis. However, the obtained single equation
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is not sufficient for the reconstruction of the sources, and without the mathematical theory of
the WVS it is not clear how the missing phase information can be recovered.

3.2 Nonnegative Matrix Factorization

In the following we will introduce a modified version of convolutive non-negative matrix factoriza-
tion as one method that is particularly suitable for the numerically efficient solution of the positive
mixture problem (19). Opposed to standard non-negative matrix factorization (NMF), convolutive
NMF assumes a non-negative convolutive model (see Equation 1).

3.2.1 CONVOLUTIVE NON-NEGATIVE MATRIX FACTORIZATION

The simple standard non-negative matrix factorization model

X≈ AS with A≥ 0 , S≥ 0 (21)

assumes that the dataX arises from a linear superposition of positive vectors. For many applications,
such as spectral analysis or blind image deblurring, the data can be described more exactly as a
(discrete) positive convolution of the form:

xi(t) =
n

∑
j=1

(ai j ∗sj)[t] =
n

∑
j=1

∑
u

ai j [u]sj [t−u] (22)

ai j ≥ 0 , sj ≥ 0 ∀i ∈ 1, · · · ,m.

Depending on the definition of the convolution operator∗ in Equation (22), the weightsai j are ei-
ther periodic functions or are characterized by a compact support, referred to as circular or linear
convolution. It is always possible to interpret a linear convolution with compact support as a circu-
lar convolution with additional zero padding (Rabiner and Gold, 1975). Wethus present here the
convolutive NMF algorithm in the following for the circular case.

If both, the filtersai j and the sourcessj are unknown, Equation (22) implies the estimation
problem:

min
ai j ,b j

‖xi(t)−
n

∑
j=1

(ai j ∗sj)(t)‖ (23)

subject tosj ≥ 0 , ai j ≥ 0∀i, j.
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Since (22) is both finite-dimensional and linear, it can be expressed in matrixform. In the simple
case of one-dimensional (vectorial) data the convolutionai j ∗sj is equal to the matrix products:

(ai j ∗sj) =











ai j (0) ai j (N) ai j (N−1) · · ·
ai j (1) ai j (0) ai j (N) . . .

ai j (2) ai j (1)
.. . .. .

...
...

...
...

ai j (N) ai j (N−1) . . . . . .











·










sj(0)
sj(1)

...

sj(N)










=: Ai j S j

=











sj(0) sj(N) sj(N−1) · · ·
sj(1) sj(0) sj(N) . . .

sj(2) sj(1)
.. . . . .

...
...

...
...

sj(N) sj(N−1) . . . . . .











·










ai j (0)
ai j (1)

...

ai j (N)










=: S jAi j . (24)

For higher dimensional data the vectorsS j ,S j and the Toeplitz matricesAi j ,Ai j are replaced with
column vectors and block circular matrices respectively. Adopting this matrix notation, one can
reformulate the model (22):

X :=








x1

x2
...

xm







= (xi)i =

(
n

∑
j=1

ai j ∗sj

)

i

=

(
n

∑
j=1

Ai j S j

)

i

=






A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

.. .




 ·






S1

...
Sn






=: A ·S. (25)

and the optimization problem (23):

min
A,S
‖X−AS‖

subject toA,S≥ 0 ∀i, j.

Writing the deconvolution problem in this form immediately shows the connection to nonnegative
matrix factorization. Indeed Equation (25) is just a special case of Equation (21) with a specific
structure of the matrixA. Thus according to the multiplicative updates derived by Lee and Seung
(1999) Equation (23) can be optimized by repeated iteration of the two steps:

Ai j ← Ai j
(XST)i j

(ASST)i j
, (26)

S j ← S j
(ATX) j

(ATAS) j
. (27)

In Equations (26,27) it is important to note that none of the operatorsA,AT ,S andST appears alone,
but always in combination with its influence on another operator. For example, in order to compute

AS =

(
n

∑
j=1

ai j ∗sj

)

i

1126



ANECHOIC BLIND SOURCESEPARATION USING WIGNER MARGINALS

it is not necessary to represent eitherA or S as high-dimensional matrix. Additionally the convo-
lution can be implemented very efficiently exploiting Fast Fourier Transform (FFT), instead of an
expensive matrix multiplication. From relations (24) and (25) it is easy to derive that the effect of
the transposed operatorsAT , ST can be expressed as:

ATX =

(
n

∑
i=1

aT
i j ∗xi

)

j

=

(
n

∑
i=1

F −1((F ai j )
∗F xi

)

)

j

,

XST =
(
xi ∗sT

j

)

i j
=
(
F
−1((F sj)

∗
F xi

))

i j .

Here we exploited the fact that the impulse response of the adjoint filter is the complex conjugate
of the original signal. Replacing the matrices in Equation (26,27) by their corresponding repre-
sentations in the discrete Fourier domain, results in the following fastupdate rules for convolutive
NMF:

ai j ← ai j

(
F −1((F sj)

∗ ·F xi)
)

(F −1(∑k(F sj)∗ ·F aik ·F sk))
∀i, j,

sj ← sj
F −1(∑k(F ak j)

∗ ·F xk)

F −1
(

∑p,l (F ap j)∗ ·F apl ·F sl
) ∀ j.

Though the non-negative deconvolution problem (22) is formally equivalent to the regular NMF the
matrix productAB does not define a low rank decomposition. As a consequence Equation (22) has,
in contrast to Equation (21), no prospect of uniqueness. For example,every member of the family
ai j = xi(t− τ j) andsj = δ−τ j is a (trivial) possible solution. In order to find unique solutions for
the optimization problem (22) it is thus necessary to introduce some form of regularization, such as
sparseness assumptions about the filters (e.g., Chen and Cichocki, 2005).

3.2.2 CONVOLUTIVE NMF FOR ANECHOIC DEMIXING (ANECHOIC NMF (ANMF))

The positive anechoic demixing problem

xi(t) =
n

∑
j=1

αi j sj(t− τi j ) with xi ,αi j ,sj ≥ 0∀ i, j

can be written as a special case of a convolution, by defining the filters asνi j = αi j δ(t− τi j ):

xi =
n

∑
j=1

νi j ∗sj with xi ,νi j ,sj ≥ 0∀ i, j. (28)

The anechoic problem (28) can thus be solved using the convolutive NMFalgorithm for the solution
of the problem (22), if sparseness of the filters is enforced. Replacingthe update rules for the
squared euclidian distance with rules which minimize Amari’s alpha-divergence (Cichocki et al.,
2008) results in the update rules:

νi j ←



νi j

(

F
−1

(

(F sj)
∗
F

[
yi

F −1(∑kF νikF sk)

]β
)) µ

β




1+λ1

, (29)

sj ←
[

sj
(
F
−1∑

k

(F ν jk)
∗
F

[
yk

F −1
(

∑l F νklF sl
)

]β
) µ

β

]1+λ2

(30)
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which can be adjusted for sparseness. The specific choiceµ= 1.9,β = 2,λ1 = 0.02,λ2 = 0 results
in sparse features (Cichocki et al., 2008). Alternative approaches for the introduction of sparseness
include, for example, bayesian regularization (Lin and Lee, 2005).

One disadvantage of delay estimation by deconvolution, is the difficulty to locatethe exact peak
of the sparse filter, especially for fractional delays (non-integer delays). This can be avoided if the
multiplicative updates for the sparse filter given by Equation (29), are replaced with a constrained
standard estimator for the delays (see Appendix).

The positive anechoic mixture problem that is given by Equation (20)

|L(M)[xi]|2(t) =
n

∑
j=1

|αi j |2|L(M)[sj ](t−Aτi j )|2+n(t).

can be solved with this anechoic non-negative matrix factorization approach (ANMF). The deriva-
tion of the last equation assumed vanishing cross-terms in the Wigner-Ville spectrum (equivalent to
the assumption of uncorrelated sources). Similar as in Vollgraf et al. (2000), this together with the
marginal properties of the Wigner-Ville cross spectrum implies vanishing LCT cross-spectra, that
is:

Wsi ,sj (t, f )
i 6= j
= 0 ⇒ L(M)(si)L(M)(sj)

∗ i 6= j
= 0

⇒ |L(M)(si)|2|L(M)(sj)|2
i 6= j
= 0. (31)

The fact that the cross-spectra are not present in Equation 31 permits areformulation as a constraint
for the anechoic NMF problem (19) of the form:

SST = I . (32)

This orthogonality constraint guarantees a unique solution NMF-factorization problem (Ding et al.,
2006). In addition, it is closely linked to positive independent component analysis (Yang and Yi,
2007; Plumbley and Oja, 2004). Equation (32) represents a special property of the estimator, which
it is not necessarily fulfilled for the expectationsE{L(M)(si)} because they are not zero mean. This
implies that the condition (32) guaranties source separation, but only if oneimposes an additional
asymptotic constraint on the sources. This orthogonality constraint (32) guaranties the uniqueness
of the solution of the anechoic demixing problem, making the new algorithm a true blind source
separation method. In practice, however, it is often useful to relax this restriction for the sources
and to replace the orthogonal NMF update rules with more classical updates, for example, based
on least squares. The resulting model can capture also sources that are not perfectly uncorrelated
(independent), often resulting in better approximation of the data.

3.3 Phase Retrieval

The solution of the positive anechoic mixture problem:

|L(M)[xi]|2(t) =
n

∑
j=1

|αi j |2|L(M)[sj ](t−Aτi j )|2

that is given by Equation (20) yields the LCT power spectra|L(M)[sj ]|2. In order to reconstruct
the sourcessj , or equivalently their LCT transformsL(M)[sj ], the missing phase information needs
to be recovered. Depending on the choice ofM in (20) several phase recovery techniques can be
applied for this purpose.
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3.3.1 DECONVOLUTION

In many applications, such as computer tomography or image processing, thelinear weightsαi j can
be assumed to be nonnegative. This implies that the absolute value operation on the weights can be
dropped in (20). ForA 6= 0 in this case the anechoic mixture (2) reduces to a simple deconvolution
problem with known filtersνi j = ai j δ(t− τi j ). If the weights are real and have arbitrary signs the
filter can determined only up to an arbitrary sign, and if the weights are complexa constant complex
phase factor of the filter remains undetermined. In all cases (with appropriate reguarization) the
filters can be estimated applying applying a standard deconvolution algorithms,such as the Wiener
filter (Wiener, 1964), and the sourcessj can be retrieved by least squares estimation.

3.3.2 GERCHBERG-SAXTON (GS) ALGORITHM

In typical phase retrieval applications the parameters known about the signal are the phase and some
other properties like the support. A simple procedure to recover the signalfrom these constraints is
based on the projection onto convex sets (POCS). This method iteratively projects random starting
values onto constrained sets that are specified by the given data. This approach can been applied
for the reconstruction of signals from multiple power-spectra (Zalevsky et al., 1996). For the phase
retrieval problem in our algorithm, an estimate of the signal is transformed back and forth between
different LCT domains, always replacing the estimated amplitude spectrum bythe known amplitude
spectrum from the solution of the positive mixture problem and re-eastimating the phase. This
fundamental algorithm is called Gerchberg-Saxton (GS) procedure (Gerchberg and Saxton, 1972).
Given the spectra for the LCT domainsM0, . . . ,Mk, it can be characterized by the following pseudo-
code:

Algorithm 1: Simple GS algorithm for the linear canonical transform

Input: Spectra|L(M0)[x]|, . . . , |L(Mk)[x]|
y= |L(M0)[x]|;
yold =−∞; % Initial vector with entries−∞
while ‖y−yold‖> ε do

for i = 0 : k do

yold = y

y= |L(Mmod(i+1,k+1))[x]|
L(Mmod(i+1,k+1)M

−1
i )[y]

|L(Mmod(i+1,k+1)M
−1
i )[y]|

end
end

According to the properties of the LCTL(Mi+1M−1
i ) transforms a signal from the domainMi into

the domain belonging toMi+1. The modulo operation mod(i +1,k+1) just ensures a cyclic run
through all parameters.
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3.3.3 HIGHER-ORDERWIGNER MOMENTS

Given a one-dimensional signalx(t) = |x(t)|exp(iϕ(t)) the instantenous frequency property of the
WVS (9) is given by:

∫
fWx(t, f )d f = Im(x′(t)x∗(t)) = Im

(
(
|x(t)|′eiϕ(t)+ |x(t)|eiϕ(t)

iϕ′(t)
)
|x(t)|e−iϕ(t)

)

= |x(t)|2ϕ′(t).

This link between the derivative of the phase of a signal and the first moment, with respect to
frequency, of it is Wigner distribution can be applied to Equation (17). It isthus possible to compute
the missing phase information from the relation:

|L(M)[xi(t)]|2ϕ′LC
T (M)[xi ]

(t) =
∫

fWL(M)[xi ](t, f )d f =
n

∑
j=1

|αi j |2
∫

fWL [M](Ti j sj )(t, f )d f

=
n

∑
j=1

|αi j |2|L(M)[sj(t−Aτi j )]|2
︸ ︷︷ ︸

known from (20)

(
ϕ′L(M)[sj ]

(t−Aτi j )+2πCτi j
)
. (33)

Using the estimators from Equation (20) in relation (33), allows the computation ofthe phase deriva-
tivesϕ′

L(M)[sj ]
. Thus by integration, the missing phase information can be theoretically recovered up

to the natural ambiguity of an arbitrary timeshift of the sources. In practice,this approach has the
disadvantage that only the product of the power spectrum and the phasederivative can be computed.
Zeros in the power spectrum thus prevent a direct integration of the phase information. However,
this approach is feasible if it is combined with the GS algorithm (presented in 3.3.2). For this pur-
pose, not only the correct power-spectra are enforced during each step of the GS algorithm, but in
addition also also the constraint given by (33).

3.3.4 PHASE RETRIEVAL FROM TWO SIMILAR LCT SPECTRA

In theory, the Gerchberg-Saxton algorithm is suitable for computing the phase from arbitrary two
LCT power spectra. In practice however (Cong et al., 1998), the speed of convergence highly
depends on the distance between the power spectra specified by different values of the matrixM.
For spectra defined by very similar matrices the GS procedure might fail. In this case, the following
procedure permits to recover the phase from two very similar power spectra.

For simplicity consider again the one-dimensional signal case. This makes it possible to refor-
mulate the instantaneous frequency property of the WVS:

F |L(M)[x(t)]|2(ω) =
∫
|L(M)[x(t)]|2e−2πiωtdt

(10)
=

∫∫
Wx
(
(t, f )(MT)−1)d f e−2πiωtdt

=
∫∫

Wx(u,v)e
−2πiω(Au+Bv)dudv=: Ax(Aω,Bω). (34)

The two-dimensional Fourier transform of the Wigner distributionAx(Aω,Bω) is called the Ambiguity-
function (Mecklenbruker and Hlawatsch, 1997). Due to the properties of the Fourier transform we
obtain:

tk f lWx(t, f ) =

(
1

2πi

)k+l

F

[
∂k+lAx(α,β)

∂kα ∂l β

]

(t, f ).
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Now the instantaneous frequency property can be formulated as follows:

|x(r)|2ϕ′x(r) =
∫

fWx(r, f )d f =
∫

1
2πi

F

[
∂Ax(α,β)

∂β

]

(r, f )e−2πi0 f d f

=
1

2πi

∫ (∂Ax(τ,u)
∂u

)

u=0
e−2πirτdτ

τ=Aω
=

1
2πAi

∫ (∂Ax(Aω,u)
∂u

)

u=0
e−2πirAωdω

=
1

2πAi

∫ (∂Ax(Aω,Bω)
∂B

1
ω

)

B=0
e−2πirAωdω

(34)
=

1
2πAi

∫∫ [∂|L(M)[x(t)]|2
∂B

]

B=0

1
ω

e−2πiωtdte−2πirAωdω

=
∫ [∂|L(M)[x(t)]|2

∂B

]

B=0

(
1

2πAi

∫
1
ω

e−2πi(ωt+rAω)dω
)

dt

=
1
2

∫ [∂|L(M)[x(t)]|2
∂B

]

B=0
sgn(

t
A
+ r)dt. (35)

Equation (35) links the derivative of LCT intensities|L(M)[x]|2 with the instantaneous frequency
of the signal. Given two close intensities the derivative

(
∂|L(M)[x(t)]|2/∂B

)

B=0 can be approximated by
a difference quotient, so that the local frequency can be recovered (Bastiaans and Wolf, 2003).

4. Example Algorithms

Summarizing the theoretical considerations from Section 3.1, we conclude that with the assumption
of uncorrelated sources general the anechoic mixture problem for mixtures of the form

xi(t) =
n

∑
j=1

αi j sj(t− τi j ) i = 1, · · · ,m

can be solved by the following two step procedure:

Algorithm 2: Generic algorithm for anechoic demixing based on Wigner-marginals
Input: Observed dataxi , i = 1, . . . ,m, LCT domainsMk , k= 1, . . . ,K

Step 1: Solve the positive anechoic demixing problems given by:

|L(Mk)[x j ]|2(t) =
n

∑
j

|αi j |2|L(Mk)[sj ](t−Aτi j )|2

for example, using the ANMF algorithm (1) or the bayesian Probabilistic Latent Component
Analysis (PLCA) algorithm (Smaragdis et al., 2007).

Step 2: Recover the phase information forsj by one of the methods discussed in
Section 3.3.

The general algorithm 2 is quite flexible, and it can be implemented by many choices for the LCT
and the phase retrieval method. To illustrate this generality we discuss in the following three exam-
ple implementations that cover a wide spectrum of applications.
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4.1 Example 1: Time Series Demixing using Higher-order Wigner Moments

The choiceM =

(
0 1
−1 0

)

reduces the LCT to the standard Fourier transform. WithA = 0 this

simplifies the first step in algorithm 2, reducing the positive anechoic mixture to an instantenous
mixture problem:

|F xi |2( f ) =
n

∑
j

|α|2i j |F sj |2( f ).

In this case the phase retrieval (step 2) can be implemented by an alternating least squares approach
that is given by the following iteration:

for iter=1:maxiter do
Compute the instantaneous phaseϕ′(F sj )

by solving numerically the following equation:

|F xi( f )|2ϕ′(F xi)
( f ) =

n

∑
j

|α|2i j |F sj(ξ)|2
(
ϕ′(F sj )

( f )−2πτi j
)

Update the delaysτi j using an arbitrary delay estimator (e.g., Swindelhurst, 1998.).
end

4.2 Example 2: Multivariate Demixing using Fractional Fourier Transform

In the case of multivariate data (e.g., images) the simplest choice for a linear canonical transform is
just the tensorial product of one dimensional LCTs, corresponding to the choice of diagonal matrices
for A,B,C,D. This has the advantage that by selection of diag(A) = (aii )i the multivariate positive
demixing problem simplifies to a set of one-dimensional problems.

As an illustrative example we discuss the demixing of two-dimensional image dataxi(t1, t2),
wheret1 andt2 are the pixel coordinates. A simple example for a tensorial linear canonicaltrans-
form are the fractional Fourier transformsF (θ1,θ2) = F

θ1
1 F

θ2
2 . In this notationF θ

i represents the
fractional Fourier transformF θ (as defined by (13)) in theith variable (see (13) or Ozaktas et al.,
2001). The system of equations (20) then reduces to:

|F (π/2,θ)xi(ω1,ω2)|2 =
n

∑
j=1

|α|2i j |F (π/2,θ)sj
(
(ω1,ω2)− (0,τi j2 cosθ)

)
|2,

|F (θ,π/2)xi(ω1,ω2)|2 =
n

∑
j=1

|α|2i j |F (θ,π/2)sj
(
(ω1,ω2)− (τi j1 cosθ,0)

)
|2.

Note that for multivariate data the shiftsτi j are vectors, denoted here withτi j = (τi j1,τi j2). Since in
this context the variablesαi j model intensities of basis imagessj , one can assumeαi j ≥ 0. Hence
phase retrieval can be accomplished by a simple deconvolution procedure, as described in 3.3.1.

4.3 Example 3: LCT Based Positive Demixing of Time Series

For the univariate case a particularly attractive parameter choice for the linear canonical transform
is A = 1 andB = 1. For A = 1 the values of the delays remain unchanged, andB = 1 has the
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considerable numerical advantage that the integral transform (12) does not involve scaling. Thus
this transformation just converts the original anechoic mixture problem into a nonnegative mixture
problem that can be solved using the update rules given by (29) and (30).

5. Applications

In its generic form algorithm 2 has a very broad spectrum of applications.The inclusion of shifts
into the mixing model makes it suitable for the shift-invariant learning of features or sources. This
problem is relevant in a variety of areas. Furthermore, the theoretical results in Section 3.1 are valid
independent of the dimensionality of the data and of the number of extracted sources. However, the
ANMF algorithm is better suited for the over-determined case. We constrained the testing of our
framework to dimension-reduction for 1D and 2D data, since these are the most frequent problems
outside of acoustics. A version of the code that implements the basic version of the algorithm can
be downloaded from the web page:http://www.compsens.uni-tuebingen.de/pub/download/
software/anmf.

5.1 Sound Mixtures

Since the formulation of the ”cocktail party problem” by Cherry (1953) acoustics has been a major
field for the application of blind source separation methods. The cocktail party problem refers
to the separation of individual human speakers in a noisy environment from a limited number of
signals, recorded by microphones. In this context, many methods for the unmixing of sound signals
have been developed over the years (e.g., Anthony and Sejnowski, 1995; Torkkola, 1996a). The
most realistic linear models for BSS in acoustics are convolutive. However,anechoic mixtures are
relevant for the case of reverberation-free environments (Bofill, 2003; Yilmaz and Rickard, 2004).

To demonstrate that algorithm 2 is applicable to sound mixtures we present three different sep-
aration problems for synthetically generated delayed mixtures (model (2)) using speech and sound
segments from the ICA benchmark described in Cichocki and Amari (2002). In total the data set
consisted of 14 signals with a length of 8000 time points. In order to obtain statistically representa-
tive results, data sets were recomputed 20 times with random selection of the source signals, and/or
of the mixing and delay matrices. Three types of mixtures were generated:

(I) Mixtures of 2 source segments with random mixing and delay matrices (2×2), each resulting
in two simulated signalsx1,2.

(II) Mixtures of 2 randomly selected segments from the speech data basis using the constant
mixing matrixA and the constant delay matrixT:

A=









1 2
3 1
10 5
1 2
1 1









, T = (τi j )i j =









0 4000
2500 5000
100 200
1 1

500 333









.

Data set (II) with fixed mixing and delay matrices was included since completely random
generation sometimes produced degenerated anechoic mixtures (instantaneous mixtures or
ill-conditioned mixing matrices).
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Figure 2: Comparison of different blind source separation algorithms forsynthetic mixtures of
sound signals with delays (data sets I-III, see text).

(III) A third data set was generated by mixing two randomly selected sourcesegments with random
mixture matrices and random delay matrices.

We compared the implementations of our algorithm described in section 4.1 and 4.2with princi-
pal component analysis (as baseline) and shifted independent component analysis (SICA) (Mørup
et al., 2007). The performancePeof each algorithm was measured by the maximum of the cross-
correlations between extracted sourcessextract, j and original sourcessorig, j (after appropriate match-
ing of individual sources, since the recovered sources are not ordered in a specific manner):

Pe= (1/n)
n

∑
j=1

max
τ

∣
∣E{sapprox., j(t)sorig, j(t + τ)}

∣
∣ .

5.1.1 RESULTS FOR THESOUND DEMIXING

The results for the sound demixing are summarized in Figure 2. The bar plots show the mean
and the standard deviation of the performance measurePedetermined for the twenty simulations,
comparing the methods for the data sets I-III. As expected, the performancePeof the instantaneous
mixture model assumed by principal component analysis (PCA) is worse thanthe performance
achieved by the three compared anechoic methods. Overall the classical Fourier domain method 4.1
with Pe≈ 80% is superior to both the LCT-method 4.3 (Pe≈ 75%) as well as SICA (Pe≈ 70%).
This reflects the well-known fact that the Fourier frequency domain is wellsuited for the separation
of sound signals.

5.2 Human Motion Data

Characterizing manifolds that parameterize human motion is an important task forboth, the analysis
and the synthesis of movement trajectories. In analysis (Flash and Hochner, 2005) a popular idea
is that such manifold representations reflects some lower dimensional spacethat results from the
fact that the central nervous system reduces the exploited degree of freedoms by application of
appropriate control strategies. A related important interpretation is that the set of source signals,
that are appropriate for the reconstruction of human movement trajectories, or electromyography
(EMG) signals, might reflect control units, synergies or movement primitives that are exploited by
the central nervous system to simplify the underlying control problem by avoiding the curse of
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dimensionality (Bellman, 1957). An overview of BSS methods in this field can be found in Tresch
et al. (2006) or Chau (2001).

In synthesis the main purpose of an approximation of such a manifold is to represent a set of
natural movements, in order to guarantee realistic looking animations. For this purpose many differ-
ent methods have been suggested, ranging from linear or multilinear methodslike PCA (Safonova
et al., 2004) to nonlinear methods like isomap (Jenkins and Mataric, 2002), locally linear embed-
ding (LLE) (Roweis and Saul, 2000), or methods based on space-time correspondence (Ilg et al.,
2004).

Our second data set consists of human motion data. We show that anechoic mixtures have the
potential for a strong dimensionality reduction. A first data set consisted ofjoint angle trajectories
(Euler angles) that were computed from motion capture data (mocap), recorded from twenty-five
lay-actors who executed walking with five basic emotional styles (neutral, happy, angry, sad and
fear). A second data set consisted of the shoulder and elbow trajectories of five actors executing
various arm movements (right-handed throwing, golf swing and tennis swing). All mocap data
was recorded using a VICON 612 motion capture system with seven, respectively nine cameras.
The system has a sampling frequency of 120 Hz and determines the three-dimensional positions
of reflective markers (diameter: 1.25 cm) with spatial error below 1.5 mm. The markers were
attached to skin or tight clothing with double-sided adhesive tape, according to the positions of
VICON’s Plug-In-Gait marker set. Commercial VICON software was usedto reconstruct and label
the markers, and to interpolate short missing parts of the trajectories.

5.2.1 RESULTS FOR THEMOTION DATA

To quantify the performance of different methods for dimension reduction, we measured the quality
of approximation as a function of the number of sources. The quality of an approximationF to the
data matrixX can be quantified by the quotient:

Q := 1− ‖X−F‖
‖X‖

where‖.‖ is the Frobenius norm. This measure is related to explained variance, which isdefined
by 1− (‖X−F‖/‖X‖)2, but it has the advantage of linear scaling with the residual-norm. For small
residuals explained variance is hard to interpret since, due to the fact that it is quadratic in the
residual norm it results in values close to one even for mediocre approximations. Figure 3 shows
this measure for approximation quality as a function of the number of sourcescomparing principal
component analysis (as baseline), shifted independent component analysis (SICA) (Mørup et al.,
2007) and the example algorithms described in Sections 4.1 and 4.3.
The results of the comparison are shown in Figure 3. Overall, the best approximation is achieved by
the Fourier-domain algorithm 4.1, exceeding the quality of PCA with the double number of sources
(light blue line in Figure 3(a)). Slightly worse performance is obtained with algorithm 4.3, likely
explained by the additional positivity constraintαi j ≥ 0. Qualitatively the same results are obtained
for the non periodic arm movements (figure 3(b)). The total approximation quality is lower in the
second case, reflecting the higher variability of this data set.

In general, for both classes of movements a very accurate approximation of the trajectory sets
can be achieved with very few (≤ 5) sources. This makes the method very interesting for the
classification of movements (Omlor and Giese, 2007b), but also for the synthesis of realistic looking
human movement data in computer graphics (Park et al., 2008; Mukovskiy etal., 2008).
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Figure 3: Comparison of different blind source separation algorithms. PCA doubled refers to prin-
ciple component analysis using twice as many sources.

5.3 Image Processing

Blind source separation is interesting for a wide range of applications in imageprocessing. This
includes watermarking (Bounkong et al., 2004), denoising (Hoyer and Oja, 2000), deblurring (Bar
et al., 2005), or the extraction of image features (Lee and Seung, 1999;Draper et al., 2003). In most
of these applications only instantenous models and algorithms have been applied.

With anechoic mixtures spatial displacements can be explicitly modeled (Omlor and Giese,
2007a; Be’ery and Yeredor, 2008). To demonstrate this, a first set of test images (Figure 4) was
generated by pasting two objects at random positions in images with a resolutionof 150×150 pixels.
Ideally, algorithm 4.2 should be able to extract the original pictures of the twoobjects as features.
The result of the feature extraction are shown in Figure 4 for both, the Gerchberg-Saxton phase
retrieval method 3.3.2 and deconvolution 3.3.1.

Clearly, deconvolution is superior to the phase retrieval. This is partially dueto the very slow
convergence of the Gerchberg-Saxton algorithm, especially for small fractional powers of the frac-
tional Fourier transform and for inaccurate estimates of the power spectra. In addition, the deconvo-
lution method exploits, for a second time, the specific structure of the mixture model. A quantitative
comparison shows that images predicted from the extracted components predict 95% of the variance
of the original images for the deconvolution method, but only 72% for the phase retrieval method.

More interesting is the application of this feature extracting method to real images. Our second
image data set consisted of four gray-scale images taken with a digital cameraand resampled with
a resolution of 200× 200 pixels (cf. Figure 5). The photographs show two objects (scissorsand
a cup) that were placed at different positions on a wooden surface. Before the application of the
algorithms the images were whitened (Gluckman, 2005) in order to compensate for the correlation
statistics of natural images. This procedure removes strong correlations between features on small
spatial scales. In this case only the deconvolution method was implemented. Thereconstruction
explains 85% of the of the pre-whitened training images and recovers the original objects with
reasonable accuracy (see Figure 5).
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Mixture 1

Mixture 2

Mixture 3

Mixture 4

Extracted Features

(Gerchberg-Saxton)

Extracted Features

(using deconvolution)

Figure 4: Left: synthetic example images defining an (over-determined) anechoic mixture in two
dimensions. Right: extracted features from the image set on the left using GRphase
retrieval or deconvolution.

Figure 5: Left: Real Images. Right: Extracted Features from pre-whitened images
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5.4 Scale and Rotation Invariant Shape Separation

Automatic identification of image content is an important challenge for many applications such
as medical imaging, surveillance or the search in image databases. Often the shape of objects in
images has to be recognized independently of object size or orientation. Many supervised and
unsupervised learning approaches have been proposed for the classification of images using object
shapes (see, e.g., Veltkamp and Hagedoorn, 1999; Mohanty et al., 2005;Ling and Jacobs, 2007;
Ahmad and Ibrahim, 2006). Essential for the performance of such algorithms is the underlying
shape representation (Zhang and Lu, 2004).

Since an object should be identifiable independent of it is relative size andorientation, scaling
and rotation are desired invariances for two-dimensional contour recognition. In order to apply the
anechoic mixture model (2) to this problem, a planar contour can be transformed into a log-polar
image. Assuming that the center of the coordinate system is given by[t1, t2] = [0,0], the nonlinear
transformation is given by:

ρ = log

(√

t2
1 + t2

2

)

,

ϑ = arctan

(
t2
t1

)

.

Translations in the new coordinates(ρ,ϑ) permit to model scalings and rotations in the original
coordinates. A shift of the angleϑ corresponds to a rotation of the object in the image plane.
Shifts of the logarithmic radiusρ can be used to model objects with different sizes. This is just one
example for a transformation. In the general case, the independent variablet ∈Rn can be replaced
by the nonlinearly transformed coordinatesφ(t). The mixture model (2) then transforms into:

x̃i(t) = xi(φ(t)) =
n

∑
j=1

αi j sj(φ(t− τi j )) =
n

∑
j=1

αi j s̃j(t− τi j ) i = 1, · · · ,m.

Thus a shift in the new independent variablet corresponds to a transformation of the source func-
tions s̃j(.) = sj(φ(.)), that depends on the coordinate changeφ.

5.4.1 APPLICATION TO TWO-DIMENSIONAL SHAPES

To illustrate this application of anechoic mixtures to model rotation and scale invariance, we tested
the scale and rotation invariant learning on a small sample of shapes taken from the MPEG-7 test
database (Sebastian et al., 2001) (depicted in Figure 6a). After the transformation into log-polar
coordinates (with coordinate centers chosen as the xy-mean of the shape), algorithm 4.2 was applied
for feature extraction.

Both the extracted features (figure 6b) as well as the corresponding weightsαi j (figure 6c) show
that in principle, the anechoic mixing model is capable of correctly classifyingdifferent objects, in-
dependent of their size and rotation. Due to the fact that the one-dimensional contours are treated as
2D images, this approach has a high computational cost, limiting its applicability to large databases.
Besides complex objects would need more than one source for an adequatedescription. This is
obvious for the example of the elephant in Figure 6b. An increase in the necessary number of
sources would result in decrease of classification performance. There are better approaches for the
parametrization of line shapes, such as level sets (Osher and Fedkiw, 2002), which might improve
the results of our algorithm in this case.
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Figure 6: a) Sample object contours taken from the MPEG-7 database. b)Extracted features using
algorithm 4.2. c) Amplitude normalized weightsαi j corresponding to the three shapes
Bird (B1-3), Elephant (E1-3) and Ray (R1-3).

6. Conclusions

We have presented a novel class of algorithms for the solution of over- and under-determined ane-
choic mixture problems, which extend to an arbitrary number of dimensions of the time argument.
The developed method exploits the marginal properties of the stochastic Wigner-Ville distribution.
Proper application of this bilinear time-frequency distribution to the delayed mixture model trans-
forms the anechoic problem into a simpler delayed mixture problem in the domain ofa linear canon-
ical transform and a phase recovery problem. Appropriate choice of this transformation enhances
the separability of the signals and allows the projection of high-dimensional problems onto a system
of one-dimensional problems. This results in implementations with a computational complexity that
grows linearly in the number of dimensions.

The efficiency of this approach was demonstrated by a series of applications including both
synthetic and real world data, such as music streams, natural 2D images, human motion trajectories
as well as two dimensional shapes. These examples represent only a smallsubset of the many
possible applications for the learning of invariant features. Due to its modularity, the proposed
framework is very flexible and can be easily adjusted and optimized for special applications.

In order to optimize the computational performance of the proposed approach, future work will
investigate the use of marginals of time-frequency distributions transcendingthe set of distribu-
tions from the convenient Cohen class. Another important direction is the inclusion of additional
constraints in the optimization problem, for example, for the weights of the time delays. Such
constraints will allow to model certain topological structures which are givenby the data. One
particular example for this are the neighborhood relations of certain muscles(d’Avella and Bizzi,
2005), for example, in the context of face movements. In addition, some aspects of the discussed
time-frequency framework may be applicable to full convolutive mixtures or mixture models with
other invariance properties. Finally, some steps of the proposed algorithmsseems to be well-suited
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for a fast implementation on Graphics Processing Units (GPUs) (David B. Kirk and Hwu, 2010).
An example are the discussed variants of NMF algorithms.
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Appendix A. Delay Estimation

Time delay estimation (TDE) problems are common in many technical applications like telecom-
munications (Takeuchi et al., 1990), radar (Raja Rajeswari and Rani, 1998), sonar (Carter, 1981)
or seismology (Du et al., 2004). The corruption of the signal with noise, degradation of the signal
shape, moving signal sources, and the multiple overlaps of reflected copies of the signals (multi-
path), make TDE a very challenging problem. Consequently, a variety of algorithmic approaches
have been developed (see Chen et al., 2006 and Bjorklund and Ljung, 2003 for review). If the
observed signalx(t) is the superposition of multiple delayed signalssj :

x(t) =
n

∑
j=1

α jsj(t− τi j )+n(t).

then (in case of gaussian noisen) the maximum likelihood (ML) delay estimator takes the form of
the least squares problem:

arg min
α j ,(D j ) j

E

{

‖x(t)−
n

∑
j=1

α jsj(t−D j))‖2
}

. (36)

Though the ML estimator is statistically efficient (i.e., achieves the Cramér Rao bound (CRB)) it
requires in general an-dimensional search and is thus computationally inefficient (Swindelhurst,
1998.). If the signals are uncorrelatedrsi ,sj (t, t

′) = 0 then the ML estimation simplifies ton 1-
dimensional estimation problems (rx,sj (t) specifying the cross-correlation function of the signalsx
andsj ):

arg min
(D j ) j

E

{

‖x(t)−
n

∑
j=1

α jsj(t−D j))‖2
}

=
(
argmax

D j

rx,sj (D j)
)

j . (37)

In this case the corresponding optimal weightsα j can be obtained by linear regression. Though
computational very efficient, this approximation is only accurate if cross-talkbetween the signals is
minimal. It is straight-forward, to change both estimators to include the constraint α j ≥ 0.

For the solution of the delay estimation problem in the anechoic NMF algorithm (instead of
Equation (29)), the ML-cost function (36) was minimized by a nonlinear optimization based on the
nonlinear Gauss-Seidel algorithm.
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Figure 7: Comparison of different multi-source time-delay estimation methods. The red line shows
the RMSE of the nonlinear Gauss-Seidel algorithm, the blue line indicates the Cramér
Rao bound (CRB) and the green line shows the performance of the simple estimator (37).

The performance of this estimator was tested in several simulations, and compared to the Craḿer
Rao bound. The test sources were part of the music data-base used for the sound mixtures described
in Section 5.1. The delays were estimated from mixtures with three randomly selected sources and
constant weightA and delay matricesT = (τi j )i j :

A=





1
1
1



 , T = (τi j )i j =





20.2
7.9

120.2



 .

Different amounts of noise were added in order to vary the signal to noiseratio (SNR). The root
mean square error

√

E{(τ̂i j − τi j )2}, which is compared with the Craḿer Rao bound, is based on
1000 simulated trials.

The results for the different estimators can be found in Figure 7. Clearly,the nonlinear Gauss-
Seidel iteration outperforms the simple estimator (37). In addition, the Gauss-Seidel iteration results
in estimation errors close to the Cramér Rao bound. This implies that the described method for phase
retrieval performs close to the theoretically possible optimum.
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