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Abstract

Blind source separation problems emerge in many applitsitiohere signals can be modeled
as superpositions of multiple sources. Many popular apptios of blind source separation are
based on linear instantaneous mixture models. If speci@riance properties are known about
the sources, for example, translation or rotation invagarthe simple linear model can be ex-
tended by inclusion of the corresponding transformatiieen the sources are invariant against
translations (spatial displacements or time shifts) tisalteng model is called an anechoic mixing
model. We present a new algorithmic framework for the sotutif anechoic problems in arbitrary
dimensions. This framework is derived from stochastic tfimreguency analysis in general, and
the marginal properties of the Wigner-Ville spectrum intjgalar. The method reduces the gen-
eral anechoic problem to a set of anechoic problems withmegativity constraints and a phase
retrieval problem. The first type of subproblem can be solwedxisting algorithms, for example
by an appropriate modification of non-negative matrix fazation (NMF). The second subprob-
lem is solved by established phase retrieval methods. VWisksand compare implementations
of this new algorithmic framework for several example pesb$ with synthetic and real-world
data, including music streams, natural 2D images, humaiomtrgjectories and two-dimensional
shapes.

Keywords: blind source separation, anechoic mixtures, time-frequéransformations, linear
canonical transform, Wigner-Ville spectrum

1. Introduction

Blind source separation is an important approach for the modeling of datadmpervised learn-
ing (Choi et al., 2005; Cichocki and Amari, 2002; Ogrady et al., 206@n@n and Jutten, 2010).
The most elementary class of such methods is based on linear mixture modetsbaie source
signals or mixture components as weighted linear sum. Such linear blind sapagation meth-
ods have a wide spectrum of applications. Examples include speeclsgragéAnthony and Se-
jnowski, 1995; Torkkola, 1996a; Smaragdis et al., 2007; Ogrady e2@D5), spectral analysis
(Nuzillard and Bijaoui, 2000; Chen and Wang, 2001), and the interpratafibiomedical and geo-
physical data (Hu and Collins, 2004; Aires et al., 2000). Popular agpes exploit typically two
classes of generative models: instantaneous and convolutive mixtures€tCal., 2005; Ogrady
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et al., 2005; Pedersen et al., 2007). Titantaneous mixture modsldefined by the equations:

n

x(t)=Y ajjsjt) i=1,---,m
J; iSi

The time-dependent signadst) are approximated by the linear superposition of a number of hidden
source signals;(t). This superposition is computed separately, time-point by time-point. Contrast-
ing with this model,convolutive mixtureassume that the source signals are filtered assuming the
filter kernelsa;; (t) prior to the superposition, resulting in the mixing model:

i(/ma., s,(t-r)dr) i—1....m (1)

It is obvious that the instantaneous mixture model is a special case of thelwaiire model, where
the filter kernels are constrained to be proportional to delta funciigy($) = a;;8(t). In be-
tween these two model classes areechoic mixture modelshich linearly combine time-shifted
and scaled versions of the sources, without permitting multiple occurreficks same source in
the mixture. These models are equivalent to convolutive models for whicfiltérekernels are
constrained to the forrijj (t) = a;;(t — Tj; ), resulting in the equation:

Compared to full covolutive models, anechoic models constrain substantialgptice of ad-
missible filter functions. This reduces dramatically the amount of data that ess@y for the
estimation of the model parameters. In addition, this restriction of the pararpetar eften results
in model parameters that are easier to interpret, which is critical for marigatigns that use mix-
ture models for data analysis.

Apart from the problem of robust parameter estimation with limited amounts ofalBtéind source
separation methods suffer from intrinsic ambiguities. For all discussedlsitdeordering of the
recovered sources is arbitrary. For fully convolutive models the ssuran be recovered only up
to an unknown filter functionfiter ambiguity. The distortion of the source shape by this arbitrary
filter hampers interpretability of the source signals. This makes it necesséuyther constrain
the estimation of the sources by introduction of additional auxiliary assumpsgank as minimal
distortion (see Matsuoka, 2002 for details). In contrast, for anechoitures (see Equation (2))
the filter ambiguity is limited to an unknown scaling and arbitrary additive shift¢hatbe applied
to all time delays;j, while the form of the source functions is uniquely defined, exceptifeokute
position. This implies that anechoic mixtures can be advantageous for thdimgoafedata that are
consistent with the corresponding generative model. This advantageisufaaly strong if only
small amounts of data are available or if the models are employed to interpréitibcal structure
of the data.

The presence of shifts (translations) is a common problem in many scientiéictorical appli-
cations (e.qg., spectral displacements due to doppler-shifts in astrongmghasnous signal trans-
mission in electrical engineering, or spatial displacements of features in #nagbe anechoic
model provides thus an attractive alternative for the common instantanealas$, nvbich can model
shifts only by an introduction of additional sources, typically degradingthieility of the estimates
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and the interpretability of the model parameters. Also the assumption of the soaglrence of the
sources in the individual components of the mixture is reasonable for npatigations. Examples
from biology include human motion analysis (Barliya et al., 2009; d’Avelld.e2808), where the
same control signal might influence several muscles or joints with diffeledays, or in functional
magnetic resonance imaging, where time shift occur naturally due to henmitydalays (Mgrup
et al., 2008).

The major part of previous work on anechoic mixtures has consideretatetermined (over-
complete) source separation problemms< n), where the sources outnumber the dimensions of the
available data. This is typically the case for acoustic data, for example in seeofahe 'cocktail
party problem’, where the signals of many speakers have to be reddvene a small number of
microphones. Such under-determined problems require additional asssngbout the sources
(for example sparseness Georgiev et al., 2005; Bofill, 2003; Yilmaz acichiRl, 2004), in order
to obtain unique and stable solutions. Since most of existing algorithms for ter-determined
case rely on such additional constraints for the estimation of the soureggahnot be easily gen-
eralized for the undercomplete case. This case, where the numberroésasi smaller than the
dimensionality of he data, is typical for data reduction problems. The applicafialgorithms
developed for the over-determined problem may lead to erroneous resulis case. For example
strong sparseness assumptions (Wkalisjoint orthogonality Yilmaz and Rickard, 2004) lead to an
overestimation of the number of the sources (in the overdetermined casgjared to methods that
only assume statistical independence of the sources.

In this paper we present a present a new algorithmic framework for thémoof arbitrary ane-
choic mixture problems, which is independent of the number of sourceshandimensionality
of the data. Contrasting with most previous approaches addressing tlet (@phcour method is
suitable for dimension reduction since it is applicable for the solution of degrmined prob-
lems fn > n). The key idea of the novel framework is to transform the original mixtuodlem
into the time-frequency domain, exploiting the Wigner-Ville transformation (WWVTHe resulting
transformed problem is completely equivalent to the original problem, bue regitable for an
efficient algorithmic solution. Exploiting the fact that for the WVT the knowledd a limited
number of marginals allows the complete and unambiguous reconstruction ofigiveal signal,
we devise an algorithm that replaces then original problem by a set wenrsional anechoic
demixing problems with positivity constraints and a phase retrieval problemp@sitive demixing
problems are solved by approximative methods, such as nonnegative factobzation (NMF) or
positive ICA. The projection onto lower-dimensional problems leads tofamesft solution even of
higher-dimensional problems with multi-dimensional translations. The obtaoiaton in time-
frequency space is then transformed back into signal space, whesedoad step the full solution
of the original problem is determined by solution of a phase retrieval prable

Our method exploits specifically the advantageous mathematical properties\Wfgher-Ville
transform. A particular role in this context plays the relationship between tgpaimtime-frequency
representation and the linear canonical transform (LCT) (also calegiaffine Fourier transform
or ABCD transform). This class of linear integral transformations gdizesaclassical transforma-
tions, like the Fourier or the Gauss-Weierstrass integral transform.rliégat for the transformation
of higher-dimensional problems into a (coupled) set of lower-dimensjmadllems and provides a
theoretical basis for the phase retrieval in the second step of the algohitiaeidition, the choice of
appropriate Linear Canonincal Transformations can improve the dejitgiraf the source signals.

1113



OMLOR AND GIESE

The paper is structured as follows: After a discussion of related agipesaand an introduction
of the notation, Section 2 gives a short introduction into the theory of théastic Wigner-Ville
distribution and its expected value, the Wigner-Ville spectrum. Though mosteé tiesults are well
established in mathematics they are not so well-known in the machine learning oimnithe
second part of this section introduces the linear canonical transfo@)(knd its properties that
are fundamental for our algorithm. For the solution of the non-negatigelamc mixture problem
a modification of non-negative matrix factorization (NMF) (Lee and SeB8§9) is presented in
3.2. Finally, we discuss several phase retrieval methods in 3.3. Sectimsdnps in detail three
concrete implementations of the novel algorithmic framework. Section 5 pses&alidation of the
developed method on several data sets, including music streams, natuma@&s, human motion
trajectories, and two-dimensional shapes. Finally, conclusions arerpeglsin Section 6.

A preliminary version of the algorithm and some applications have been psdyipublished
as conference papers (Omlor and Giese, 2007a,b). However, thdetertipporetical framework
with a comparison between different implementations has never been pdibisfure.

1.1 Related Approaches

Anechoic mixtures have frequently been used in acoustics to model esatdn-free environ-
ments. Such models have been treated in several papers focusing ardéredatermined case,
often in the context of the 'cocktail party problem’. The work in Torkkal®%96a,b) extended the
information maximization approach by Anthony and Sejnowski (1995), usiagadaptive delay
architecture described in Platt and Faggin (1992) in order to unmix aime2ho2 mixtures. An-
other approach by Emile and Comon (1998) is to estimate the unknown paramiietetly in the
time domain, with the additional assumption of predefined constant mixing wemhts (). Fre-
guency or time-frequency methods, like the DUET algorithm (Yilmaz and RitkK2004) or the
scatter plot method by Bofill (2003), exploit sparsity properties of thecgmin these domains. For
the even-determined case=€ m) the weights and delays can be estimated by joint diagonalization
of specific spectral matrices, as demonstrated in Yeredor (2003). Algo-dimensional version
of the AC-DC joint diagonalization algorithm has been successfully apptiethe separation of
images that appeared with unknown spatial-shifts (Be'ery and Yerg@68). Other work on the
under-determined case is summarized in Ogrady et al. (2005), Arlieakt(2007) and Namgook
and Jay Kuo (2009).

The over-determined case, which is most important for dimension redugtfications has been
treated only very rarely so far. In Harshman et al. (2003) this problasnbeen addressed using
an alternating least squares (ALS) algorithm (Shifted Factor Analysikjs dlgorithm has been
revised and improved in Mgrup et al. (2007), exploiting the Fourier stefbittm and information
maximization in the complex domain (SICA, Shifted Independent Componeny#isha

The performance of independent component analysis and blind ssepegation methods is
critically dependent on the non-Gaussianity of the source distributionsl¢€a, 1998), and the
possibility of a sparse representation of the data, which in turn is related tuffeg-gaussianity
of the distribution of the sources. This implies that preprocessing of thalsigior example, by
application of bilinear time-frequency transformations before sourcaragpn can be essential.
In this context time-frequency representations have been used qujtesfrity in the context of
blind source separation (Karako-Eilon et al., 2003; Leung and Sil%;;20@t al., 2004; Seki et al.,
1998), and specifically for anechoic demixing (Yilmaz and Rickard, 20Bd$ides, the application
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of the superposition law of the Wigner-Ville spectrum (WVS) in Belouchaawai Amin (1998), such
distributions have been mainly applied for pre-processing purposestastng with this work, our
approach relies on further properties of the stochastic Wigner-VilletgprgWVS), which to our
knowledge, never have been exploited for source separation psgviou

1.2 Notations

Throughout the paper the following well-established mathematical notationseniised:

The notation = indicates that the left hand side is defined by the right hand side of the
equation.

i denotes the complex unit.

E denotes the expectation operator.

For a scalar, or a function, x* denotes the complex conjugate.

The operatorsF and F ~1 denote the Fourier and inverse Fourier transform respectively,
defined by:

FX(f):

/x(t)e‘zmtfdtzx(f),
FIX(1) :/X(f)ezﬂﬁ”df.

In the case of discrete time variables the same symbols signify the DiscreterHoansform
(DFT).

— The notatiorij; x indicates the shift operatdr;x(t) = x(t — 1;j) with 1;; € R.

— If not noted otherwiset € RY andx: RY — R,t — x(t), that is, in generak denotes a
multivariate function. In order to distinguish the variable of integration froenftinctional
variable, in addition to the variabtethe variable’ is used. (Thux(t’) denotes the function
x at pointt’.)

— The symbok marks the convolution.

— If A,Bare two matrices thef§ denotes the entrywise fractid) = (g )ij.
— X(t) is short for the derivativéX(t).

— X<+ yimplies thatx is replaced by in the current iteration of an algorithm.
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2. The Wigner-Ville Distribution and Its Stochastic Gener alizations

The Wigner-Ville distribution was originally defined by Wigner (1932) in thatext of quantum
mechanics. It was later reintroduced in signal analysis by Ville (1948), thithbasic idea of
defining a joint distribution of the signal energy simultaneously in time and &ecyu(in physics
corresponding to coordinates and momentum). For a continuous scilarcemplex signal (wave
function)x(t) the Wigner-Ville distribution is defined as the bilinear transformation:

Wi (t, f) ::/x(t+%> X* (t—%) e it gr. (3)

Unfortunately, this expression cannot be interpreted as a true probatalitsity, since it can
become negative. A variety of mathematical properties have been prowvdrefWigner-Ville dis-
tribution (Mecklenbruker and Hlawatsch, 1997), making it a widely usetlitosignal analysis,
with generalizations to linear signal spaces, linear time-varying systemaroeér(see, e.g., Matz
and Hlawatsch, 2003 for review). While the Wigner distribution was deelop the probabilistic
framework of quantum mechanics, definition Equation (3) applies to detetiifuactionsx. In
the works of Janssen (1979), Martin (1982) as well as Martin and Ria(iP85) the deterministic
definition Equation (3) has been extended to the very general classndhaable stochastic pro-
cesses. The only requirement for a zero mean random signal to berhzatvle is the existence of
a Fourier representatiah of its autocovariance function(t,t’) that is defined by:

() = E(xOX ()} = [ [ @M a0 drdp

The probabilistic analogue to the deterministic Wigner distribution for a stochmetiessis given
by the stochastic integral:

Wy(t, ) = /x(t + %) x* (t — %) e 2" dpP(1).

In this formuladP signifies a probability measure, defining a stochastic integral. (See Papoulis
et al., 2001 for further details.) In this case, the distributig(t, f) is again a stochastic process.
This stochastic integral exists in quadratic mean if the absolute forth order meEgx|*} exist
(Martin, 1982). Furthermore, the existence of these moments guaranétebdlexpected value
and the integration can be exchanged:

E{w(t, )} = E{/( é) ( ;)em”dP(r)}

:/E{x(tjtT ( )} e 2uitigr = /rx<t+%,t—%) e 2t gy
=W (t, f) 4)

The last expressiow(t, f), which can be defined for a more general class of random processes
is called the Wigner-Ville spectrum (WVS). The invertibility of the Fourier ineddéquation (4)
assures that the WVS is equivalent to the covariance funcfiart’). Therefore, it contains full
information about the second-order statistic.ofhe WVS represents a time-dependent spectrum
that is commonly used to study the local and global non-stationarity of rapdocesses.
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2.1 Basic Examplesfor the WVS

White noise process
The white noise processis defined by:

E{x(t)} =0
rx(t,t') =8t —t').

Then it is easy to see that the WVS is given by:

W(t, F) = /B(T)e‘zm”dr _1

Signal plus noise
Defining a process(t) = y(t) + n(t) by the superposition of a deterministic signél) and a
zero-mean noise componetit), the WVS is given by:

W:/E{X(t+%)x* (t_%)}e_szdt
:/[E{N}+yE{n*}+WE{n}+E{nn*}]e*2m”dr:/[yy*+E{nn*}]e*2m”dr

:/yy*e‘zmrfdr+/E{nn*}e‘zm”dr:M(t,f)+Wn(t,f).
| —
deterministic

This shows that for signal plus noise the WVS is given by the sum of thendigtistic Wigner
distribution and the WVS of the noise.

2.2 Properties of the WVSand the Wigner Distribution

The stochastic as well as the deterministic definition share many propertiased@intly, in the
following only the properties of the WVS will be listed, unless the propertighefdeterministic
WV transformation are different. (Proofs for the properties can badpéor example, in Cohen

1989).

— Real : The WVS is a real function of time and frequency:

V\&(t,f)*:/E{x* (t+%>x(t—£>}e2m”dr
:/E{x* (t—%)x(th%)}e‘m”dT:Vm.

— Time-frequency shift covariant: The Wigner-Ville spectrum of atime frequency shifted
signalxX(t) = x(t —to) 2™ (=) js the shifted WV'S of the original signal:

Wk(t, f) =Wk(t —to, f — fo). (5)
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— Correct marginals: The marginals in time and frequency of the WVS reflect the second
order properties of the process:

JVRE T = r(t, 1) = E{p(t) 2, ©®)
JVRE Tt = (1. 1) = E( (DI}, ™

— Cross terns: Due to its quadratic nature, the deterministic Wigner-distribution of a multi-
component signat = s; + S always contains cross terms of the form:

We, s, (t, ) /31 %) e 2T gr,

Geometrically, these terms will always occur in the time-frequency plane mithetyeen
two (auto-)componenis, , of the deterministic Wigner distribution

(Mecklenbruker and Hlawatsch, 1997). For the stochastic WVS existehcross terms
is determined by the time-frequency correlations of the processes. ex#&onplex(t) =

n
S aj-sj(t), the sum ofn uncorrelated zero mean random processgs, then it is obvious
=1

fromrg g (t,t") = E{s(t)s(t')} = 0Vk #1| thatWg, g (t, f) = 0Vk # | and thus:

n
=S o AW (&, ). ®)
J

n
A similar superposition law also holds for the suth) = 5 a; - sj(t) of deterministic signals
i=1

sj(t) if the weightsaj are uncorrelated zero mean random factors:
Wk(t, f) = 3 E{]o "W (¢, ).
]

— Instant aneous frequency: For a univariate random signalhich is square mean differ-
entiable, the instantaneous frequency can be defined as:

Im(X'(t)x(t)")

fu(t) = 2rvar(x(t))

The expectation is given by the following relation:

JIW(t, f)df  E{Im(X'(t)x(t)*)}
E{(0) = var(x(t)) — 2mvar(x(t)) ©
A similar property also holds for the group delay (Cohen, 1989).

— Sympl ectic covariance: For our algorithm it will be central that signals are related that
correspond to Wigner Ville Spectra resulting from each other by linearftranations in the
time-frequency plane. More specifically, the WVS is covariant agaiest-preserving linear
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transformation$/ of the time-frequency plain. Such transformatidnss R29*2 belong to
the symplectic group, that i&) has the form:

M = (é g) with defM) =1, ATC=C"A, D'B=B'D.

The transformed WVS is again the WVS of another siget), Which is given by the rela-
tionship:

W(t, f) =Wk ((t, f)MT) or equivalently (10)
WE((t, F)(MT) 1) = Wik(t, f).

The processesandxare related by the so called linear canonical transform (LCT), disdusse
in the following section.

2.3 WV Spectrum Estimation for Non-stationary Signals

In most practical applications, it is necessary to estimate the WVS from a siegieation of
a process. For this reason ensemble averages are often unavailabilbe YWVS is the Fourier
transform of the autocovariance function, any estimatorrfér,t’) is sufficient in the sense of
statistics. All such estimators have a fundamental bias-variance trad&ofiothing reduces the
variance of the estimate but introduces a bias. One way to derive an estfovattoe WVS is to
assume the procegg) is semi-stationary, implying that its characteristics are changing slowly with
time. This so called quasi-stationary assumption allows the approximation of tineogariance
functionry(t,t’) with a local average:
T T T\ ., 1
I (t + §7t - §> ~ /F(s—t,r)x <s+ E) X (s— 2) ds

HereF is an arbitrary window function that determines the local time-averaging tasestimate
the autocovariance functian(t,t’). If this approximation is used to form an estimate of the WVS
(replacingry in Equation (4)) this leads to the equation:

Wi(t, f) ~ [ We(t', £)9(t —t', f — f')dt'd f’ with
F(t,1) = /S(t,v)e‘m‘”dv. (11)

Therefore, all distributions belonging to Cohen’s class (Cohen, 1/@88) estimators for the WVS
(Martin and Flandrin, 1985). An alternative way to justify this particular €lafsestimators can be
found in Akbar and Douglas (1995). Other ways to estimate the WVS includitaper reassign-
ment (Xiao and Flandrin, 2007) or soft wavelet thresholding (Bararii@R4).

The marginal properties (Equation 6, Equation 7) impose certain conditiotiedernel. This
implies that not all members of Cohen’s class share all properties of the. Whé8 this point of
view the choiceéd = (1), which approximates the WVS by the deterministic Wigner distribution of
the samples, seems a natural choice for the estimator. It should also béhadted long as certain
properties preserved by the chosen kernels, such as the corrginataEquation 6, Equation 7),
the derivations derived in the following sections remain valid even if the estirdats not share
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all properties of the WVS. The choice of the deterministic Wigner Ville Distribuisrestimator is
thus less restrictive as it might originally appear.

While the algorithms derived in the following sections do not require at ainyt ploe explicit
numerical computation of a WVS, numerically estimators have been proposedlitw to im-
plement the computation of the transformation on a computer, for example Madifrlandrin
(1985):

Wit Hlm2 Yy Y Fr2r)xt+t+T)x (t—1+1)e ¥

T=—00T'=—00

2.4 Thelinear Canonical Transform (LCT)

At several points of the algorithms that will be derived in the following weleixphe symplec-
tic covariance property (Equation 10) of the WVS. This properties linksadggthat correspond to
WVS that are related by a symplectic trasformation in the time-frequency doifta@relationship
betweenx andx as specified by the symplectic covariance property (Equation 10) caarhed
explicitly in the case of a nonsingular submatBx(i.e., detB) # 0). It is given by the follow-
ing integral transformation, which is called linear canonical transformi{L& ABCD-transform
(Bultheel and Maiihez-Sulbaran, 2006):

LIM)X(F) = (detiB)*? / " x(t)exp(imtTB At 2tTB M + DB L)) dt.  (12)

In the case of singular matric&the general description is more involved and can be found in
Alieva and Bastiaans (2007).

Integral transformations of this type play an important role in optics andnmdtion processing,
as they specify affine transformations in phase space. For exampléidfq(E2) describes the
behavior of a wave functior by a propagation through a system of thin lenses, free space or if
focused with a satellite dish. For special cases of mathtasany classical integral transformations
used in signal processing can be realized. Some examples are, cigsédemctionx(t) with one-
dimensional argumenmnt

— Fourier and fractional Fourier transforms are special cases biyéime one-parameter sub-

_ (cogB) —sin(8) . , . .
groupM(8) = <sin(9) cos®) ) The fractional Fourier transform with parameges an

operator power of the normal Fourier transform with the expo%%.ni’he Integral represen-
tation (Ozaktas et al., 2001) is given by:

Fox(f) 1— 1'1200t(9) gicot(8)1%/2 /°° e—ﬁcsqe)ft+ﬁcot(e)§x(t)dt. (13)
T w

The cased = 7 corresponds to the classical Fourier transform. This form was useain th
context of one implementation of the proposed algortihmic framework (se@®Bdc2).

— The Fresnel transform is defined by the expression:

git®l oo a(E—t)2
[Fresne@z,l)x](«ﬁ):\/E _me]1 X(t)dt.
: L 1 b 1 4
_ _ 2
is obtained in the cadd = <0 1> = (O f)
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— Chirp multiplication is given b = (i g)

— Scaling can be achieved by = <g ?)

a

These relationships make it possible to adopt the developed frameworkeiedifcommon repre-
sentations of data in the frequency space, in order to optimize the perfoeroathe algorithm.

2.5 Main Properties of the Linear Canonical Transform

Independent of the matriM, all linear canonical transforms share the following properties:

— Linearity: Obviously the linear canonical transform is a linear transformation, faxmge:
LM+l (F) = ALM)[X(F) +RLM)Y)(F) VA, pue R.

— Unitarity: The LCT is a unitary operation. Assumirig* denotes the adjoint operator
then:

— Goup structure: The product of two LCT operators with matrickls andM is again a
LCT with matrix M3 = M1 Mo:

(L(M1)L(M2)) = L(M1My).

— Shift Theorem Of particular interest for the anechoic mixing problem is the behavior of
the linear canonical transform under shifts of the input signal:

LMt —1)](f) = exp(im(2 f — At)TCt) L(M)[X](f — AT). (14)

Since the output signal is translated by the té&ma good choice of the matrik can optimize
the separability of the the signalfrom it is shifted counterparts in particular LCT domains
(Sharmaa and Joshi, 2006). To illustrate this point, consider the example afamssian
signals with a small difference in means (see Figure 1(a)). Linear caldransformation

with A= 3andB = 0 increases the mean difference, and thus leads to an improved separability

as shown in Figure 1(b).

3. Algorithmic Framework: Anechoic Demixing Using Wigner Marginals

In the following, we will first derive the basic algorithmic framework by apation of the mathe-
matical properties of the WVS, as discussed in the last section, to the ametking model. The

resulting algorithm consists of two major steps: the solution of positive aiedemixing prob-

lems and phase retrieval. In the following, we will discuss specific methodsntipée¢ment these
two main steps of our algorithmic framework. Section 3.2 discusses a spmombf Non-negative
Matrix Factorization, which is particularly suited for the algorithm. Finally, Sec8@ discusses
different methods for the implementation of the phase retrieval step.
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15 : . . 1.5

0.5f

0 1 0 1 -1 0 1
(a) Two gaussian signals with a small differer{bg¢ Absolute value of the LCT transformation of
in mean and their sum (dark grey). the two gaussians with=3,B=0.

Figure 1: Example for increased separability of signals in appropriatedd@ain.

3.1 Application of the WV Stothe Mixture Model

We assume that the observed random signals (proces&es) = 1,...,mare delayed superposi-
tions of uncorrelated source signajﬁ), that is:

withrsﬁj(t,t) E{s() (1)} =0fori # j.

The shift covariance (5) of the WVS and the superposition law (8) imply tiewing relation
between the spectra of the sources and observations:

Z Joij WG, (t =i, F) Z Jotj [ W, (., ). (16)

Since the relationship (16) holds pointwise for all points of the time-frequptzin (t, f) it is also
fulfilled after application of an area preserving symplectic transformatiof

W (6 MT) 1) = Sy [AWe, o (€, ) (MT) 1)

J

10) 77— %%
2 Wy (€ ) z\a.,r W m, 5 (& ). (17)

In order to make use of relation (17) an estimator for the WVS is requiredséaition 2.3). The
simplest bias-free estimator for the WVS is just the empirical Wigner transtmmaAlternative
estimators belong to Cohen’s class of time-frequency distributions. In tlog/fiog only the deter-
ministic Wigner transformation is applied, since it has the advantage of piegdhe properties

of the WVS. Depending on the smoothing ker@ein Equation (11), these properties are shared
by large number of time-frequency-distributions in Cohen’s class, cuesgly leading to the same
expression (20) (see below). Replacing the WVS by its deterministic camteEquation (17)
transforms into:

Wemiox) (t, F) Z |t [PW ) (8 ). (18)
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This equation could directly serve as basis for the separation of theessigmalss;. However,
for higher-dimensional cases the computational costs make a direct sgiuioibitive. Since the
joint description of the involved function in time and frequency is highly refdum, an equivalent
description can be derived by computing the marginals of Equation (18):

IL(M /WL \(t, 1) df_zya.,| /WL syt D) f
- = 2
=l [ L(M)[Tijs]|? ZIOI. [|L(M)[s}](t — Aij) 2. (19)
]

Note that by introduction of the general mathkinto Equation (17) time and frequency marginals
lead to equivalent expressions Equation (19), but with different syatipleansformationsi. The
two types of marginal are are related to each other by the produdt with a 7-rotation in the
time-frequency plain, resulting in an interchange of the time and the freqaessyThe individual
marginals have the form of an anechoic mixture problem with an additionalegativity constraint:

|L(M Z|GIJ| | L(M)[s]](t — ATij) |+ n(t). (20)

The additional noise term(t) emphasizes the fact that Equation (20) is an approximation, which
only holds precisely under the asymptotic conditigm, (t,t") = 0. In practice deviation from exact
time-frequency disjointness (e.g., due to the finite sample size) result nomaise terms(t).
However, the (approximate) solution of Equation (20) gives an estimatkedgrower spectra of the
sources in LCT domaiiz(M)]sj]|?, the scaled delayt;; and the absolute value of the weights
|ajj|. Methods for the solution of the positive shifted mixture problem will be disedsn Section
3.2. The missing phase information {6(M)]s;] can be recovered by computing multiple marginals
depending on different matricdd. Phase retrieval methods for this purpose are discussed in the
following Section 3.3. This operation exploits for a second time the special matiwal properties
of the WVS with respect to the symplectic covariance.

Since the projections onto LCT domains (19) are also anechoic mixturast gidince, the pos-
itive system of Equations (20) seems not to provide any advantage cedngethe direct solution
of Equations (15) or (18). However, a more thorough analysis shaatghk transformation into
the coupled set of equations for the marginals has the following advantages

(i) A single marginal described by Equation (19) is not sufficient to retrot the signal or
its WVS. It is thus necessary to compute a set of different marginals, anchtbice of the
matrix M in the LCT allows the selection of different marginals that correspondexam-
ple, to different slanted lines in the time-frequency space in the caseabiofral Fourier
transform. This procedure is different from a source separationttjiria the time-frequency
plane (Belouchrani and Amin, 1998). In this case (separation in the Teplapplication
of the LCT would not result in a facilitation of source separation becausariesponds to
an area preserving deformatidvh (Healy et al., 2008). The chosen approach to work on
the marginals however, has the immediate advantage of a much higher compltetion
ciency since it avoids the high computational cost of the WVS and allows thetien of
multi-variate problems into an uni-variate problems.
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(ii) For each single marginal (19) the linear canonical transform, that éschivice ofM, de-
termines the distribution of the estimated sources, and especially their gEgsdihis can
be exploited to improve the interpretability and compactness of recoveredesmodels.
Since the LCT includes a lot of different transformations, such as theidtoor the frac-
tional Fourier transformation, it provides much more flexibility for an optimizatérthe
representation space of the data than methods relying on a single reéatiesefe.g., Healy
et al., 2008). A nice example of this advantage is data that can be refg@sdiiciently by
a superposition of chirps, given by functions of the foefA™. These functions are nei-
ther sparse in time nor frequency. However, they have compact supocorrectly chosen
LCT domain. A particular useful approach is to chose the marin a way that maximizes
the sparsity of the power spectral density within the signal space that ieedddy the cor-
responding LCT. (The WVS in different linear spaces is discussed iwaiteh and Kozek
(1993).) Formally, one might thus determildefor a given data set that spans the linear space
X = sparixy, ..., %,) by maximizing the sparseness of the approximation, formally:

mMaxsparsity(]L(M) [X]1?).

(iii) The magnitude of the effective (scaled) delays of the mixture comporierEguation (19)
T;; directly depends on the paramesfeof the LCT. An appropriate choice éfresults thus in
improved separation of the signals (Sharmaa and Joshi, 2006). Furtegimaahoicéd =0
simplifies the mixture by transforming it into an instantaneous mixture. As the mudtiear
LCT can be the tensorial product of several one-dimensional LE€an be adjusted for each
dimension individually, making it possible to transform a multivariate anechoitungxnto
several coupled one-dimensional mixtures (Omlor and Giese, 2007a)isTthis core idea
behind the implementation of our algorithm for the multi-variate case, which issiiedun
Section 4.2.

Additional remarks about the proposed framework:

1. Since both the deterministic and the stochastic WVS share the property@tamarginals,
Equation (20) holds also for the exact power-speEtfac(M)s|?}. The positivity in (20)
is thus a direct consequence of the assumption of uncorrelated samttemes not result
from an additional approximation. Similarly, the fact that the cross-termisivam Equation
(18) represent a consequence of this assumption. With respect topiies® the deriva-
tion of Equation (18) exploits the same properties as joint diagonalizatiomages (e.g.,
Belouchrani and Amin, 1998).

2. The uncorrelatedness assumption for the sources leads to vanisbésgems in the full
time-frequency plane. However, a single projection (20) requires oahthie cross terms in
that particular LCT domain vanish. In practice, this simplifies the choice aiogpiate LCT
domains in order to improve the separability of the sources.

3. The linear weights(;; and the delays;; can be estimated exploiting multiple marginals si-
multaneously. This makes the estimation more robust against the influencs®f no

4. Forthe special case]M] = ¥ (Fourier transformation), Equation (20) can be derived without
the theoretical background of time-frequency analysis. Howevertaen@d single equation
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is not sufficient for the reconstruction of the sources, and without thikemaatical theory of
the WVS it is not clear how the missing phase information can be recovered.

3.2 Nonnegative M atrix Factorization

In the following we will introduce a modified version of convolutive non-atdge matrix factoriza-
tion as one method that is particularly suitable for the numerically efficient solofithe positive
mixture problem (19). Opposed to standard non-negative matrix fadionzgd\MF), convolutive
NMF assumes a hon-negative convolutive model (see Equation 1).

3.2.1 ONVOLUTIVE NON-NEGATIVE MATRIX FACTORIZATION

The simple standard non-negative matrix factorization model

X ~ASwithA >0, S>0 (21)

assumes that the daXaarises from a linear superposition of positive vectors. For many applistio
such as spectral analysis or blind image deblurring, the data can bébdesorore exactly as a
(discrete) positive convolution of the form:

n

J:l

/-

z [u]sj[t —u] (22)

ajj _0, sj>0viel,---,m

Depending on the definition of the convolution operatan Equation (22), the weights; are ei-
ther periodic functions or are characterized by a compact suppagtredfto as circular or linear
convolution. It is always possible to interpret a linear convolution with carnpapport as a circu-
lar convolution with additional zero padding (Rabiner and Gold, 1975).t\Wfe present here the
convolutive NMF algorithm in the following for the circular case.

If both, the filtersa;; and the sources; are unknown, Equation (22) implies the estimation
problem:

n
ar{rjmex. Z ajj *Sj) ( (23)

subjecttas; > 0, aj > 0Vi, j.
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Since (22) is both finite-dimensional and linear, it can be expressed in matmix In the simple
case of one-dimensional (vectorial) data the convolugiprs; is equal to the matrix products:

[a4j(0)  aj(N)  a;(N=1) -] [5(0)]
aj(1)  a;(0) aj(N) .1 |s(2)
(@ +s) = |aj(2)  a&;(1) o ] | =ATS
_aj(N) aj(N—l) L [Si(N) ]
5100 si(N)  si(N=1) -] 1a;(0)]
si(1)  si(0) siN) .| |a;(2)
= Sj(Z) Sj(l) R : :ZSinj. (24)

_sj('N) sj(N.—l) o & (N).

For higher dimensional data the vect®sS' and the Toeplitz matricea;;, A"l are replaced with
column vectors and block circular matrices respectively. Adopting this madtixtion, one can
reformulate the model (22):

X1

All A12 Aln Sl
Xo n no ...
X:= | =<m>i=(2aj*sj> :<ZA”SJ> = [AT AT AT
: =1 i =1 i : o n
Xm
=:A-S (25)

and the optimization problem (23):
min|| X — AS||
AS
subject toA,S> 0 Vi, j.

Writing the deconvolution problem in this form immediately shows the connectionrioggative
matrix factorization. Indeed Equation (25) is just a special case of Equéih with a specific
structure of the matriXdA. Thus according to the multiplicative updates derived by Lee and Seung
(1999) Equation (23) can be optimized by repeated iteration of the two steps:

XST i

Aij < Aij (EASST)):J-7 (26)
ATX

Sj+ S ((AT A S))’ (27)

In Equations (26,27) it is important to note that none of the operétoid , SandS™ appears alone,
but always in combination with its influence on another operator. For exampdeder to compute

n
AS= (Z ajj *Sj)
=1 i
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it is not necessary to represent eitideor S as high-dimensional matrix. Additionally the convo-
lution can be implemented very efficiently exploiting Fast Fourier TransféiiRT}, instead of an
expensive matrix multiplication. From relations (24) and (25) it is easy tovedhiat the effect of
the transposed operatoks , ST can be expressed as:

Tx:(éaﬂm) (zif (Faij)" )>',
XS = (x+s]); = (F H((F5) Fx));; |

Here we exploited the fact that the impulse response of the adjoint filter iothplex conjugate
of the original signal. Replacing the matrices in Equation (26,27) by theiesponding repre-
sentations in the discrete Fourier domain, results in the followingujadate rules for convolutive
NMF:

aji — ai (’(F 1 —‘]:SJ "}—Xi)) Vi J
: Y FIG(Fs) Fan-Fx)
1 )k
5 s F(Su(Fa))" - Fx) vi.

FHZpi(Fap)) - Fap- Fs)
Though the non-negative deconvolution problem (22) is formally etgrivéo the regular NMF the
matrix productAB does not define a low rank decomposition. As a consequence Equatjdma&

in contrast to Equation (21), no prospect of uniqueness. For exaeyae; member of the family
aj =X (t —1j) andsj = d_y is a (trivial) possible solution. In order to find unique solutions for
the optimization problem (22) it is thus necessary to introduce some forngatamrezation, such as
sparseness assumptions about the filters (e.g., Chen and CichocRi, 2005

3.2.2 GONVOLUTIVE NMF FORANECHOIC DEMIXING (ANECHOIC NMF (ANMF))

The positive anechoic demixing problem
n
Xi(t) = Z aijSj(t —1jj) with X, i, > 0V i,
j=1
can be written as a special case of a convolution, by defining the filtexs as; 8(t — 1;):

n
X = Y Vij*Sj With X, vij, sj > 0V, . (28)
=1

The anechoic problem (28) can thus be solved using the convolutive&ligFithm for the solution

of the problem (22), if sparseness of the filters is enforced. Repldabmapdate rules for the
squared euclidian distance with rules which minimize Amari’s alpha-divesyédichocki et al.,

2008) results in the update rules:

r pg 14+A1
. B\ \ £
Vij ¢ | Vij (71 <(TSJ')*5“ {Tl(xk?wkf}-s&)} )) ] ; (29)

S S'(_‘fﬁl (,‘TV )*f|: Yk :|B)
: : Z h F U FvaFs)

=

(30)

:| 1+A2
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which can be adjusted for sparseness. The specific cheic#.9, = 2,A1 = 0.02, A, = 0 results
in sparse features (Cichocki et al., 2008). Alternative approachekd introduction of sparseness
include, for example, bayesian regularization (Lin and Lee, 2005).

One disadvantage of delay estimation by deconvolution, is the difficulty to Itvatxact peak
of the sparse filter, especially for fractional delays (non-integer dglayhis can be avoided if the
multiplicative updates for the sparse filter given by Equation (29), alaceg with a constrained
standard estimator for the delays (see Appendix).

The positive anechoic mixture problem that is given by Equation (20)

L]0 = 3 e L[S~ APl
j=

can be solved with this anechoic non-negative matrix factorization agp(@&¢MF). The deriva-

tion of the last equation assumed vanishing cross-terms in the Wigner-Vitterspe(equivalent to
the assumption of uncorrelated sources). Similar as in Vollgraf et al. {2008 together with the
marginal properties of the Wigner-Ville cross spectrum implies vanishing Li@3sespectra, that
is:

Wt F)'Z 0 = L(M)(s)LM)(s) 20
= |L(M)(s)P1LM) ()P 2 . (31)

The fact that the cross-spectra are not present in Equation 31 pemsftsrmulation as a constraint
for the anechoic NMF problem (19) of the form:

Ss'=1. (32)

This orthogonality constraint guarantees a unique solution NMF-factmmizaroblem (Ding et al.,
2006). In addition, it is closely linked to positive independent componealyais (Yang and Yi,
2007; Plumbley and Oja, 2004). Equation (32) represents a specmntyf the estimator, which
it is not necessarily fulfilled for the expectatioB$L(M)(s)} because they are not zero mean. This
implies that the condition (32) guaranties source separation, but only ingreses an additional
asymptotic constraint on the sources. This orthogonality constraint (82agties the uniqueness
of the solution of the anechoic demixing problem, making the new algorithm a lingk dource
separation method. In practice, however, it is often useful to relax thigaton for the sources
and to replace the orthogonal NMF update rules with more classical upflatexample, based
on least squares. The resulting model can capture also sourcesetmatt grerfectly uncorrelated
(independent), often resulting in better approximation of the data.

3.3 Phase Retrieval

The solution of the positive anechoic mixture problem:
2 C 2 2
[LM)X][%(t) = 3 Joij || L(M)[sj](t — Aij )|
=1
that is given by Equation (20) yields the LCT power spe¢tréM)[s;]|%. In order to reconstruct
the sources;, or equivalently their LCT transforms(M)|s;], the missing phase information needs
to be recovered. Depending on the choicévbfn (20) several phase recovery techniques can be

applied for this purpose.
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3.3.1 DECONVOLUTION

In many applications, such as computer tomography or image processiligetdraveights;; can

be assumed to be nonnegative. This implies that the absolute value operstiwwveeights can be
dropped in (20). FoA # 0 in this case the anechoic mixture (2) reduces to a simple deconvolution
problem with known filtersy;; = &;8(t — 1jj). If the weights are real and have arbitrary signs the
filter can determined only up to an arbitrary sign, and if the weights are coraglerstant complex
phase factor of the filter remains undetermined. In all cases (with apgt®peguarization) the
filters can be estimated applying applying a standard deconvolution algorghoisas the Wiener
filter (Wiener, 1964), and the sourcgscan be retrieved by least squares estimation.

3.3.2 (ERCHBERGSAXTON (GS) ALGORITHM

In typical phase retrieval applications the parameters known about thed sig the phase and some
other properties like the support. A simple procedure to recover the $ignakhese constraints is
based on the projection onto convex sets (POCS). This method iteratiogdeisrrandom starting
values onto constrained sets that are specified by the given data. Phimelp can been applied
for the reconstruction of signals from multiple power-spectra (Zalevsky. €1996). For the phase
retrieval problem in our algorithm, an estimate of the signal is transformdddratforth between
different LCT domains, always replacing the estimated amplitude spectrtine ppown amplitude
spectrum from the solution of the positive mixture problem and re-eastimatengtthse. This
fundamental algorithm is called Gerchberg-Saxton (GS) procedureli@erg and Saxton, 1972).
Given the spectra for the LCT domail, . .., My, it can be characterized by the following pseudo-
code:

Algorithm 1. Simple GS algorithm for the linear canonical transform
Input: Spectrd £L(Mo)[X]|, .., | L(Mk)[X]|
y=[L(Mo)[x]|;
Yold = —; % Initial vector with entries—co
while [}y - yoigl| > € do
fori=0:kdo

Yold =Y
L(Mmodi+ 1M Y]

Hivil

Y= |L(Mmodi+1k+1)) X 3
mod(i+1,k+1) |L(Mnmquik+DMi

end
end

According to the properties of the LCZE(MiHM(l) transforms a signal from the domdify into
the domain belonging tM; ;. The modulo operation m@H- 1,k + 1) just ensures a cyclic run
through all parameters.
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3.3.3 HGHER-ORDERWIGNER MOMENTS

Given a one-dimensional signe&lt) = |[x(t)|exp(id(t)) the instantenous frequency property of the
WVS (9) is given by:

/ W (t, f)d f = Im(X (t)x*(t)) = Im <(|x(t)|’eﬁ¢<t> + \x(t)|eﬁ¢<t>ﬁ¢'(t))|X(t)|eﬁ¢<t>)
= [x(t)[%9' (1)

This link between the derivative of the phase of a signal and the first ntomith respect to
frequency, of it is Wigner distribution can be applied to Equation (17).thus possible to compute
the missing phase information from the relation:

LLOM) ()] 0] 3 s O / W () (£, F)I F = ;|a.,| ? [ Weymys ¢ D

n

known from (20)

Using the estimators from Equation (20) in relation (33), allows the computatitve ghase deriva-
tives¢’L(M)[sj]. Thus by integration, the missing phase information can be theoreticallyaeszbup
to the natural ambiguity of an arbitrary timeshift of the sources. In pradtice approach has the
disadvantage that only the product of the power spectrum and the giidgative can be computed.
Zeros in the power spectrum thus prevent a direct integration of thes phfmsmation. However,
this approach is feasible if it is combined with the GS algorithm (presented in 3Rb2this pur-
pose, not only the correct power-spectra are enforced duringstep of the GS algorithm, but in
addition also also the constraint given by (33).

3.3.4 FHHASE RETRIEVAL FROM TwO SIMILAR LCT SPECTRA

In theory, the Gerchberg-Saxton algorithm is suitable for computing theepinam arbitrary two
LCT power spectra. In practice however (Cong et al., 1998), thedspEeonvergence highly
depends on the distance between the power spectra specified byndiffelees of the matrid.
For spectra defined by very similar matrices the GS procedure might failisindake, the following
procedure permits to recover the phase from two very similar power spectr

For simplicity consider again the one-dimensional signal case. This makessibfe to refor-
mulate the instantaneous frequency property of the WVS:

9:‘[/( /|L ’2 72T[11(,0tdt (10)//\/\& t f (MT) )dfefZT[uwtdt
= / / W (U, v)e 2EUAHBY qudy=: 2,(Aw, Bw). (34)

The two-dimensional Fourier transform of the Wigner distributiytAw, Bw) is called the Ambiguity-
function (Mecklenbruker and Hlawatsch, 1997). Due to the properfised~ourier transform we

obtain:
k-+l k+I
tRFIW(t, ) = (2;1) F [‘W} (t, f).
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Now the instantaneous frequency property can be formulated as follows:

(1) Po%(r) /fvvx r, f) df—/2 [aﬂx a, B)] (r, f)e~2m0fg f

/(af‘lx Lu > e 2T gy

r::Aw 1 6,54X(A00, U) e—ZT[ﬁrAwdw
21AL ou U0

_ 1 aﬁ&(AKUaBQ» 1 — 2THrAW

_2rm\j/ < 9B w>B_oe deo

349 1 // O‘L(M)[X(I)HZ 1 omit ge o 2mirAG

= oo [ 3B B 0(Joe dte dw

:/ [aL(Ma)E[,X(t)HZ} BZO (m_erﬁ/j)ezm(MHAw)dw) dt

2
-2 {O‘L(MG)B[X(U” Losgr(;—i—r)dt. (35)

Equation (35) links the derivative of LCT intensities(M)[x]|? with the instantaneous frequency
of the signal. Given two close intensities the deriva(i@lé(M)[X(t)]lz/aB) 5o Can be approximated by
a difference quotient, so that the local frequency can be recovBeatigans and Wolf, 2003).

4. Example Algorithms
Summarizing the theoretical considerations from Section 3.1, we concludeithéhe assumption
of uncorrelated sources general the anechoic mixture problem for msxtdithe form

ZGIJSJ le |:177m

can be solved by the following two step procedure:
Algorithm 2: Generic algorithm for anechoic demixing based on Wigner-marginals
Input: Observed datg ,i=1,...,m, LCT domaingVx , k=1,...,K
Step 1. Solve the positive anechoic demixing problems given by:

£ (M) [x;][* Z ot 2L (M) [sy])(t — ATi )2
for example, using the ANMF algorithm (1) or the bayesian Probabilistic t&emponent
Analysis (PLCA) algorithm (Smaragdis et al., 2007).

Step 2: Recover the phase information fgrby one of the methods discussed in
Section 3.3.

The general algorithm 2 is quite flexible, and it can be implemented by manyeshimicthe LCT
and the phase retrieval method. To illustrate this generality we discuss inltheihg three exam-
ple implementations that cover a wide spectrum of applications.
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4.1 Example 1: Time Series Demixing using Higher-order Wigner Moments

The choiceM = _01 (1) reduces the LCT to the standard Fourier transform. \Xith O this

simplifies the first step in algorithm 2, reducing the positive anechoic mixture instantenous
mixture problem:
n
[Fxi[2(F) = |offj| Fsi|*(f).
]
In this case the phase retrieval (step 2) can be implemented by an alternasinggeares approach
that is given by the following iteration:

for iter=1:maxiterdo
Compute the instantaneous ph¢§§sj) by solving numerically the following equation:

LX) B0 (F) = 3 [0 751 (E) (8], (F) — 27
J

Update the delays; using an arbitrary delay estimator (e.g., Swindelhurst, 1998.).
end

4.2 Example 2: Multivariate Demixing using Fractional Fourier Transform

In the case of multivariate data (e.g., images) the simplest choice for a limearical transform is
just the tensorial product of one dimensional LCTs, correspondingtchbice of diagonal matrices
for A,B,C,D. This has the advantage that by selection of @dg- (a; )i the multivariate positive
demixing problem simplifies to a set of one-dimensional problems.

As an illustrative example we discuss the demixing of two-dimensional imagexdatd,),
wheret; andt, are the pixel coordinates. A simple example for a tensorial linear candréces-
form are the fractional Fourier transfornfg®-82) — £% 7% |n this notation%® represents the
fractional Fourier transforn¥ ® (as defined by (13)) in thith variable (see (13) or Ozaktas et al.,

2001). The system of equations (20) then reduces to:

n
|F20% (0, w0)|? = |aff|F7*Vsj((wr, 002) - (0,Tij, c088) ) 2,
=1

n
| O (won,00) 2 = Y [atff | F s ((con, wp) — (1ij, €088, 0) )%
=1

Note that for multivariate data the shiftg are vectors, denoted here with = (1, Tjj,). Since in
this context the variables;; model intensities of basis imagss one can assum®; > 0. Hence
phase retrieval can be accomplished by a simple deconvolution procadutescribed in 3.3.1.
4.3 Example 3: LCT Based Positive Demixing of Time Series

For the univariate case a particularly attractive parameter choice for te llanonical transform
isA=1andB=1. ForA =1 the values of the delays remain unchanged, Brd 1 has the
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considerable numerical advantage that the integral transform (12)rdieénvolve scaling. Thus
this transformation just converts the original anechoic mixture problem intmaegative mixture
problem that can be solved using the update rules given by (29) ahd (30

5. Applications

In its generic form algorithm 2 has a very broad spectrum of applicatidhs.inclusion of shifts
into the mixing model makes it suitable for the shift-invariant learning of feataresources. This
problem is relevant in a variety of areas. Furthermore, the theoretmadtsén Section 3.1 are valid
independent of the dimensionality of the data and of the number of extramiecks. However, the
ANMF algorithm is better suited for the over-determined case. We condtrdlieetesting of our
framework to dimension-reduction for 1D and 2D data, since these are thtefnraguent problems
outside of acoustics. A version of the code that implements the basic vefdiom algorithm can
be downloaded from the web padet p: / / ww. conpsens. uni - t uebi ngen. de/ pub/ downl oad/
sof t war e/ annf .

5.1 Sound Mixtures

Since the formulation of the "cocktail party problem” by Cherry (1953)ustizs has been a major
field for the application of blind source separation methods. The cocktaif peoblem refers
to the separation of individual human speakers in a noisy environmentdrbmited number of
signals, recorded by microphones. In this context, many methods for thiing of sound signals
have been developed over the years (e.g., Anthony and Sejnowski, T@&%kola, 1996a). The
most realistic linear models for BSS in acoustics are convolutive. Howarmechoic mixtures are
relevant for the case of reverberation-free environments (Bofill329Dmaz and Rickard, 2004).

To demonstrate that algorithm 2 is applicable to sound mixtures we presentiifiezent sep-
aration problems for synthetically generated delayed mixtures (modelgi2)j speech and sound
segments from the ICA benchmark described in Cichocki and Amari {2082otal the data set
consisted of 14 signals with a length of 8000 time points. In order to obtain staflistiepresenta-
tive results, data sets were recomputed 20 times with random selection ofitice si@gnals, and/or
of the mixing and delay matrices. Three types of mixtures were generated:

() Mixtures of 2 source segments with random mixing and delay matrice2j2each resulting
in two simulated signalg; ».

(I Mixtures of 2 randomly selected segments from the speech data bsisig the constant
mixing matrix A and the constant delay matix

1 2 0 400

3 1 2500 5000
A=110 5 ,T:(Tij)ij =1 100 200

1 2 1 1

1 1 500 333

Data set (Il) with fixed mixing and delay matrices was included since compleaaljyom
generation sometimes produced degenerated anechoic mixtures (instastamgtures or
ill-conditioned mixing matrices).
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Data set 1 Data set II Data set III
1 1

0.8

o 06
0 o4

0.2
0.0 0.0 0.0
Alg. 4.1Alg. 4.3 SICA PCA Alg. 4.1Alg. 4.3SICA PCA Alg.4.1Alg. 4.3 SICA PCA

Figure 2: Comparison of different blind source separation algorithmsyathetic mixtures of
sound signals with delays (data sets I-1ll, see text).

(111) Athird data set was generated by mixing two randomly selected ss@gments with random
mixture matrices and random delay matrices.

We compared the implementations of our algorithm described in section 4.1 amdtid Rrinci-

pal component analysis (as baseline) and shifted independent compoadysis (SICA) (Mgrup

et al., 2007). The performand of each algorithm was measured by the maximum of the cross-
correlations between extracted souregsactj and original sourcesyig,j (after appropriate match-
ing of individual sources, since the recovered sources are netaxdn a specific manner):

Pe= (1/n) ZlmTaX“E{Sapprox,j (t)Sorig,j (t+T)} |-
£

5.1.1 RESULTS FOR THESOUND DEMIXING

The results for the sound demixing are summarized in Figure 2. The bar plmisthe mean
and the standard deviation of the performance meaReidetermined for the twenty simulations,
comparing the methods for the data sets I-1ll. As expected, the perfeeRanf the instantaneous
mixture model assumed by principal component analysis (PCA) is worsetltieaperformance
achieved by the three compared anechoic methods. Overall the clagsicarldomain method 4.1
with Pe~ 80% is superior to both the LCT-method 4Ref 75%) as well as SICARe~ 70%).
This reflects the well-known fact that the Fourier frequency domain issuitied for the separation
of sound signals.

5.2 Human Motion Data

Characterizing manifolds that parameterize human motion is an important tdektiothe analysis
and the synthesis of movement trajectories. In analysis (Flash and Hp2008) a popular idea
is that such manifold representations reflects some lower dimensional tha@cesults from the
fact that the central nervous system reduces the exploited degreeedbms by application of
appropriate control strategies. A related important interpretation is thaethaf source signals,
that are appropriate for the reconstruction of human movement trajectorietectromyography
(EMG) signals, might reflect control units, synergies or movement prinsitivat are exploited by
the central nervous system to simplify the underlying control problem lbydang the curse of
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dimensionality (Bellman, 1957). An overview of BSS methods in this field cambed in Tresch
et al. (2006) or Chau (2001).

In synthesis the main purpose of an approximation of such a manifold is tesesgra set of
natural movements, in order to guarantee realistic looking animations. Foutipisse many differ-
ent methods have been suggested, ranging from linear or multilinear métoBECA (Safonova
et al., 2004) to nonlinear methods like isomap (Jenkins and Mataric, 20@2Jlyldinear embed-
ding (LLE) (Roweis and Saul, 2000), or methods based on space-timespondence (llg et al.,
2004).

Our second data set consists of human motion data. We show that anechmiemhave the
potential for a strong dimensionality reduction. A first data set consistgrifangle trajectories
(Euler angles) that were computed from motion capture data (mocapjdeectrom twenty-five
lay-actors who executed walking with five basic emotional styles (neutrphyhangry, sad and
fear). A second data set consisted of the shoulder and elbow trajsctdriive actors executing
various arm movements (right-handed throwing, golf swing and tennis jwifith mocap data
was recorded using a VICON 612 motion capture system with seven,cieghe nine cameras.
The system has a sampling frequency of 120 Hz and determines the threxestbnal positions
of reflective markers (diameter: 1.25 cm) with spatial error below 1.5 mm. Thkemsawere
attached to skin or tight clothing with double-sided adhesive tape, acgotalithe positions of
VICON's Plug-In-Gait marker set. Commercial VICON software was usegconstruct and label
the markers, and to interpolate short missing parts of the trajectories.

5.2.1 RESULTS FOR THEMOTION DATA

To quantify the performance of different methods for dimension reductiermeasured the quality
of approximation as a function of the number of sources. The quality opprogimationF to the
data matrixX can be quantified by the quotient:

_IX=F
Xl

Q=1

where||.|| is the Frobenius norm. This measure is related to explained variance, witefiried

by 1— (HXfFH/HxH)Z, but it has the advantage of linear scaling with the residual-norm. For small
residuals explained variance is hard to interpret since, due to the fadt thaquadratic in the
residual norm it results in values close to one even for mediocre apprisimaa Figure 3 shows
this measure for approximation quality as a function of the number of socoregaring principal
component analysis (as baseline), shifted independent compondygisu&ICA) (Mgrup et al.,
2007) and the example algorithms described in Sections 4.1 and 4.3.

The results of the comparison are shown in Figure 3. Overall, the besbapgation is achieved by
the Fourier-domain algorithm 4.1, exceeding the quality of PCA with the dowlstdrr of sources
(light blue line in Figure 3(a)). Slightly worse performance is obtained witbrilgm 4.3, likely
explained by the additional positivity constrainf > 0. Qualitatively the same results are obtained
for the non periodic arm movements (figure 3(b)). The total approximatiatity is lower in the
second case, reflecting the higher variability of this data set.

In general, for both classes of movements a very accurate approximétios tbajectory sets
can be achieved with very few<(5) sources. This makes the method very interesting for the
classification of movements (Omlor and Giese, 2007b), but also for theesysithf realistic looking
human movement data in computer graphics (Park et al., 2008; Mukovsily 2008).
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of extracted sources for periodic gait data. ber of extracted sources for non periodic arm move-
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Figure 3: Comparison of different blind source separation algorithmé. dtibled refers to prin-
ciple component analysis using twice as many sources.

5.3 Image Processing

Blind source separation is interesting for a wide range of applications in ipr@gessing. This
includes watermarking (Bounkong et al., 2004), denoising (Hoyer §gad2D00), deblurring (Bar
et al., 2005), or the extraction of image features (Lee and Seung, D8&er et al., 2003). In most
of these applications only instantenous models and algorithms have beem applie

With anechoic mixtures spatial displacements can be explicitly modeled (Omlor asd,Gie
2007a; Be'’ery and Yeredor, 2008). To demonstrate this, a firstfdesbimages (Figure 4) was
generated by pasting two objects at random positions in images with a resaiLiisdx 150 pixels.
Ideally, algorithm 4.2 should be able to extract the original pictures of theobjects as features.
The result of the feature extraction are shown in Figure 4 for both, thehBerg-Saxton phase
retrieval method 3.3.2 and deconvolution 3.3.1.

Clearly, deconvolution is superior to the phase retrieval. This is partiallytatiee very slow
convergence of the Gerchberg-Saxton algorithm, especially for sraatldnal powers of the frac-
tional Fourier transform and for inaccurate estimates of the power spétimddition, the deconvo-
lution method exploits, for a second time, the specific structure of the mixturelnfodaantitative
comparison shows that images predicted from the extracted componetits 8556 of the variance
of the original images for the deconvolution method, but only 72% for theghetrieval method.

More interesting is the application of this feature extracting method to real im@gesecond
image data set consisted of four gray-scale images taken with a digital camterasampled with
a resolution of 200x 200 pixels (cf. Figure 5). The photographs show two objects (scissats
a cup) that were placed at different positions on a wooden surfaetrdBthe application of the
algorithms the images were whitened (Gluckman, 2005) in order to compensé#te torrelation
statistics of natural images. This procedure removes strong correlagonedn features on small
spatial scales. In this case only the deconvolution method was implementedecmstruction
explains 85% of the of the pre-whitened training images and recovers itfieabrobjects with
reasonable accuracy (see Figure 5).

1136



ANECHOICBLIND SOURCE SEPARATION USING WIGNER MARGINALS

Mixture 3 == ﬁ

Mixture 1

Mixture 2 '@- Mixture 4

Extracted Features  jaiesss -
(using deconvolution)

fatfaids

Figure 4: Left: synthetic example images defining an (over-determinedhaitemixture in two
dimensions. Right: extracted features from the image set on the left usingh@se
retrieval or deconvolution.

Figure 5: Left: Real Images. Right: Extracted Features from pre-wddtémages
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5.4 Scale and Rotation Invariant Shape Separ ation

Automatic identification of image content is an important challenge for many apiphsasuch
as medical imaging, surveillance or the search in image databases. Oftdrafieecs objects in
images has to be recognized independently of object size or orientationy $dgervised and
unsupervised learning approaches have been proposed for thidicddion of images using object
shapes (see, e.g., Veltkamp and Hagedoorn, 1999; Mohanty et al., l2885and Jacobs, 2007;
Ahmad and Ibrahim, 2006). Essential for the performance of suchitdgar is the underlying
shape representation (Zhang and Lu, 2004).

Since an object should be identifiable independent of it is relative sizeramtation, scaling
and rotation are desired invariances for two-dimensional contour mi@my In order to apply the
anechoic mixture model (2) to this problem, a planar contour can be tramsfiointo a log-polar
image. Assuming that the center of the coordinate system is givé, by = [0, 0], the nonlinear

transformation is given by:
p=log <\/t%+t§> ,
9= arctan(tz> .
t1

Translations in the new coordinatés,9) permit to model scalings and rotations in the original
coordinates. A shift of the angl® corresponds to a rotation of the object in the image plane.
Shifts of the logarithmic radiug can be used to model objects with different sizes. This is just one
example for a transformation. In the general case, the independéatilearc R" can be replaced

by the nonlinearly transformed coordinatgs). The mixture model (2) then transforms into:

n n
%(t) =x(@t) = aijsj(et —1j)) = H aij§jt—1;) i=1---.m
A A
Thus a shift in the new independent variableorresponds to a transformation of the source func-
tionss;j(.) = sj(¢(.)), that depends on the coordinate chapge

5.4.1 APPLICATION TO TWO-DIMENSIONAL SHAPES

To illustrate this application of anechoic mixtures to model rotation and scaléanear, we tested
the scale and rotation invariant learning on a small sample of shapes takethie MPEG-7 test
database (Sebastian et al., 2001) (depicted in Figure 6a). After théotraasion into log-polar
coordinates (with coordinate centers chosen as the xy-mean of the ,sdgpdthm 4.2 was applied
for feature extraction.

Both the extracted features (figure 6b) as well as the correspondigbtee;; (figure 6¢) show
that in principle, the anechoic mixing model is capable of correctly classifyiiifierent objects, in-
dependent of their size and rotation. Due to the fact that the one-dimehsioriaurs are treated as
2D images, this approach has a high computational cost, limiting its applicability todatgbases.
Besides complex objects would need more than one source for an addgsatition. This is
obvious for the example of the elephant in Figure 6b. An increase in thessacyy number of
sources would result in decrease of classification performancee Enelbetter approaches for the
parametrization of line shapes, such as level sets (Osher and FedR&y, &hich might improve
the results of our algorithm in this case.
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<7 | >
T\

a) b)

Figure 6: a) Sample object contours taken from the MPEG-7 databaBeatrarted features using
algorithm 4.2. c¢) Amplitude normalized weights; corresponding to the three shapes
Bird (B1-3), Elephant (E1-3) and Ray (R1-3).

6. Conclusions

We have presented a novel class of algorithms for the solution of overdraoher-determined ane-
choic mixture problems, which extend to an arbitrary number of dimension® dintte argument.
The developed method exploits the marginal properties of the stochastic Miidjeadistribution.
Proper application of this bilinear time-frequency distribution to the delayed neixtwdel trans-
forms the anechoic problem into a simpler delayed mixture problem in the domaimefr canon-
ical transform and a phase recovery problem. Appropriate choicdsofrémsformation enhances
the separability of the signals and allows the projection of high-dimensiooblgms onto a system
of one-dimensional problems. This results in implementations with a computat@mmnalexity that
grows linearly in the number of dimensions.

The efficiency of this approach was demonstrated by a series of appigaticluding both
synthetic and real world data, such as music streams, natural 2D images) motion trajectories
as well as two dimensional shapes. These examples represent only asgbsat of the many
possible applications for the learning of invariant features. Due to its mahlthe proposed
framework is very flexible and can be easily adjusted and optimized foradgplications.

In order to optimize the computational performance of the proposed agprodure work will
investigate the use of marginals of time-frequency distributions transcetitinget of distribu-
tions from the convenient Cohen class. Another important direction is thgsion of additional
constraints in the optimization problem, for example, for the weights of the time slel@ych
constraints will allow to model certain topological structures which are giwethe data. One
particular example for this are the neighborhood relations of certain musthaslla and Bizzi,
2005), for example, in the context of face movements. In addition, soneetsspf the discussed
time-frequency framework may be applicable to full convolutive mixtures otuméxmodels with
other invariance properties. Finally, some steps of the proposed algostenss to be well-suited
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for a fast implementation on Graphics Processing Units (GPUs) (David R.dtd Hwu, 2010).
An example are the discussed variants of NMF algorithms.
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Appendix A. Delay Estimation

Time delay estimation (TDE) problems are common in many technical applications |kcerte
munications (Takeuchi et al., 1990), radar (Raja Rajeswari and R@®8),Lsonar (Carter, 1981)
or seismology (Du et al., 2004). The corruption of the signal with noisgradiation of the signal
shape, moving signal sources, and the multiple overlaps of reflectedsanfpiee signals (multi-
path), make TDE a very challenging problem. Consequently, a variety ofitdmic approaches
have been developed (see Chen et al., 2006 and Bjorklund and Lja@g,far review). If the
observed signat(t) is the superposition of multiple delayed signsjls

n

X(t) = JZlaij(t—Tij)+n(t).

then (in case of gaussian noigethe maximum likelihood (ML) delay estimator takes the form of
the least squares problem:

arg min E{\x i sj(t—Dj) Hz} (36)

aj,(Dj) =

Though the ML estimator is statistically efficient (i.e., achieves the @rd®ao bound (CRB)) it
requires in general a-dimensional search and is thus computationally inefficient (Swindelhurst,
1998.). If the signals are uncorrelategs, (t,t") = 0 then the ML estimation simplifies to 1-
dimensional estimation problems(; (t) specifying the cross-correlation function of the signals
ands;):

arg(gnnE { [Ix(t) Z a;sj(t—D } = (arg rglaxx@ (Dj))j. (37)

In this case the corresponding optimal weighiscan be obtained by linear regression. Though
computational very efficient, this approximation is only accurate if crosssietieeen the signals is
minimal. Itis straight-forward, to change both estimators to include the constrain O.

For the solution of the delay estimation problem in the anechoic NMF algorithrreé&dof
Equation (29)), the ML-cost function (36) was minimized by a nonlinear opétiun based on the
nonlinear Gauss-Seidel algorithm.
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Figure 7: Comparison of different multi-source time-delay estimation methduasred line shows
the RMSE of the nonlinear Gauss-Seidel algorithm, the blue line indicates #meCr
Rao bound (CRB) and the green line shows the performance of the siniptates (37).

The performance of this estimator was tested in several simulations, andreshpthe Crarar
Rao bound. The test sources were part of the music data-base ugegldound mixtures described
in Section 5.1. The delays were estimated from mixtures with three randomlyesktemirces and
constant weigh® and delay matrice$ = (Tjj )i;:

1 20.2
A=11 ,T:(Tij)ij: 7.9
1 1202

Different amounts of noise were added in order to vary the signal to maise(SNR). The root
mean square erroy/ E{(jj — Tjj)?}, which is compared with the Cr&nRao bound, is based on
1000 simulated trials.

The results for the different estimators can be found in Figure 7. Clgéhadynonlinear Gauss-
Seidel iteration outperforms the simple estimator (37). In addition, the Gaidel8eration results
in estimation errors close to the CranRao bound. This implies that the described method for phase
retrieval performs close to the theoretically possible optimum.
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