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Abstract

We propose a distance phrase reordering model (DPR) for statistical machine translation (SMT),
where the aim is to learn the grammatical rules and context dependent changes using a phrase
reordering classification framework. We consider a varietyof machine learning techniques, includ-
ing state-of-the-art structured prediction methods. Techniques are compared and evaluated on a
Chinese-English corpus, a language pair known for the high reordering characteristics which can-
not be adequately captured with current models. In the reordering classification task, the method
significantly outperforms the baseline against which it wastested, and further, when integrated as
a component of the state-of-the-art machine translation system, MOSES, it achieves improvement
in translation results.

Keywords: statistical machine translation (SMT), phrase reordering, lexicalized reordering (LR),
maximum entropy (ME), support vector machine (SVM), maximum margin regression (MMR) ,
max-margin structure learning (MMS)

1. Introduction

Machine translation(MT) is a challenging problem in artificial intelligence. Natural languages
are characterised by large variabilities of expressions, exceptions to grammatical rules and context
dependent changes. Differences in these across different languages make automatic translation a
very difficult task. While early work in machine translation was dominated by rule based approaches
(Bennett and Slocum, 1985), the availability of large corpora, and the ease with which they can be
processed on computers has, similar to developments in other areas of artificial intelligence, paved
the way for statistical methods to be applied. The process of translation froma sourcelanguage
to a target language is considered equivalent to a problem of retrieving a target message from the
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Symbol Notation

f the source sentence (string)

e the target sentence (string)

f j the j-th word in the source sentence

ei the i-th word in the target sentence

f̄I the source phrase sequence

ēI the target phrase sequence

f̄ j the source phrase wherēf denotes the sequence of words[ f j l , . . . , f jr ]

and j denotes that̄f j is the j-th phrase in̄fI

ēi the target phrase where ¯edenotes the sequence of words[ei l , . . . ,eir ]

andi denotes that ¯ei is thei-th phrase in̄eI

ϒ the set of phrase pairs( f̄ j , ēi) ∈ ϒ
N the number of examples inϒ
( f̄ n

j , ē
n
i ) then-th example inϒ that is also abbreviated as( f̄ n, ēn)

φ( f̄ j , ēi) the feature vector of phrase pair( f̄ j , ēi)

d the phrase reordering distance

o the phrase orientation class

O the set of phrase orientationso∈ O

CO the number of phrase orientations inO

ϕ embedding function to map the orientation set to an output spaceϕ : O → R

wo weight vector measuring features’ contribution to an orientationo

{wo}o∈O The set of weight vectors for the phrase reordering model

dim the dimension of

Table 1: Notation used in this paper.

“source code” (Weaver, 1949). This view enables a probabilistic formulation in which the task
becomes the maximisation of the posterior probability over all the phrase sequences in the target
language. Principled approaches to designing the different componentsof such a system, shown in
Figure 1, have been developed in recent years (Koehn et al., 2005).

Phrase-basedstatistical machine translation(SMT) is a task where each source sentencef is
segmented into a sequence ofI phrases̄fI and translated into a target sequenceēI , often by means of
a stochastic process that maximises the posterior probabilityēI = argmax̂eI∈E

{
P(êI |f̄I )

}
. Usually

the posterior probabilityP(êI |f̄I ) is modelled in a log-linear maximum entropy framework (Berger
et al., 1996) which permits easy integration of additional models, and is givenby

P(êI |f̄I ) =
exp

(

∑mλmhm(f̄I , êI )
)

∑I ′,êI ′ exp
(

∑mλmhm(f̄I ′ , êI ′)
) ,
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where{hm} represent sub-models with scaling factors{λm}. As the denominator only depends
on the source phrase sequencef̄I , it is usually discarded and the solution is also represented as
ēI = argmax̂eI∈E

{
exp

(

∑mλmhm(f̄I , êI )
)}

.

Figure 1: Training (top box) and decoding (bottom box) procedures for a state-of-the-art SMT sys-
tems (dotted line box) and our MT system (solid line box).

A combination of several sub-models{hm} (see Figure 1), including a phrase translation proba-
bility model, a language model and a phrase reordering model are commonly used. Each sub-model
is trained individually and then weighted by a scale factorλm tuned to achieve good final translation
quality (Och, 2003). Finally, the decoder searches a Viterbi-best stringpath given the joint decoding
information. The reader is referred to Ni (2010) for detailed discussions on these models.

1.1 Modelling Phrase Movements

In this paper, we focus on developing a crucial component in statistical machine translation—the
phrase reordering model. Word or phrase reordering is a common problem in bilingual translations
arising from different grammatical structures. For example, the Chinese “NP1 DEG NP2” sequence
is analogous to the English possessive structure of “NP1’s NP2” and does not require reordering
(see Figure 2 (a)). However, due to different linguistic environment it may come from, this Chinese
possessive structure can express more sophisticated relationships which are inappropriate for the
“NP1’s NP2” expression, for example, the “NP2 of NP1” sequence which requires phrase swapping
(see Figure 2 (b)). In general, if the decoder “knows” the orders ofphrase translations in the target
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Figure 2: Example: the distance phrase reordering in Chinese-to-Englishbilingual translation.

Figure 3: The phrase reordering distanced.

language, the fluency of machine translation can be greatly improved. This motivates investigations
into, and development of models for, phrase reordering.

Now taking a Chinese-to-English translation (see Figure 3) for example, obviously not all words
are translated one by one and some words are translated far behind afterits preceding words are
translated (e.g., phrase “a fire”). Therefore, an ideal phrase reordering model should be able to
handle arbitrary distance phrase movements. However, handling such movements is a computation-
ally expensive problem (Knight, 1999). Within recently developed SMT systems, a simple phrase
reordering model, namedword distance-based reordering model(WDR), is commonly used (Och
et al., 1999; Koehn, 2004; Zens et al., 2005). This model defines a reordering distance for thej-th
source phrasēf j as (see Figure 3 for an illustration of this.)

d j := abs(last source word position of previously translated phrase+1
−first source word position of newly translated phrasef̄ j)

, (1)

and the total cost of phrase movements for a sentence pair(f,e) is linear proportional to these
reordering distanceshd(f̄I , ēI ) = −α∑

j
d j with a tuning parameterα. Although computationally

efficient, this model has been shown to be weak due to its content independence. A content-based
extension to WDR is thelexicalized reordering model(LR) (Tillmann, 2004; Koehn et al., 2005),
which splits the distance space into several segments, each of which represents a phrase reordering
orientationo (see Figure 4). Then the phrase reordering probability for a phrase pair ( f̄ j , ēi) is
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Figure 4: The phrase reordering orientations: the three-class setup (top) and the five-class setup
(bottom).

predicted usingmaximum likelihood estimation(MLE)

p
(
o|( f̄ j , ēi)

)
=

count(o,( f̄ j , ēi))

∑
o′

count(o′,( f̄ j , ēi))
,

wherehd(f̄I , ēI ) = ∑
( f̄ j ,ēi)∈(f̄I ,ēI )

p(o|( f̄ j , ēi)) is used to represent the cumulative cost of phrase move-

ments. Although the overall performance is better than WDR, it usually suffers from data sparse-
ness, and some heuristics have to be employed to make the approach effective.

Adopting the idea of predicting phrase reordering orientations, researchers started exploiting
context or grammatical content which may relate to phrase movements (Tillmann and Zhang, 2005;
Xiong et al., 2006; Zens and Ney, 2006). In general, the distribution of phrase reorderings is ex-
pressed with a log-linear form

p(o|( f̄ j , ēi),wo) =
h(wT

o φ( f̄ j , ēi))

Z( f̄ j , ēi)
(2)

with the normalisation termZ( f̄ j , ēi) = ∑
o∈O

h(wT
o φ( f̄ j , ēi)). The feature parameters{wo}o∈O are then

tuned by different discriminative models, among which themaximum entropy(ME) framework is a
popular candidate. To characterise phrase movements, a variety of linguistic features are proposed

• Context features – word sequence (n-gram) features in (or around)the phrases. These indi-
cator functions are the basic features used in Zens and Ney (2006) andalso used in other MT
experiments such as the word-sense disambiguation of Vickrey et al. (2005).
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• Shallow syntactic features – part-of-speech (POS) tags or word-classfeatures in (or around)
the phrases. These indicator features are also used in the models above,and also in the
context-aware phrase selection model of Giménez and M̀arquez (2007).

• Statistical features – features such as the lexicalized reordering probability (Koehn et al.,
2005) and the language model probability, etc. These real-value features are introduced by
Tillmann and Zhang (2005) and are shown to be beneficial in capturing the local phrase re-
ordering information.

Many other feature sets, such as lemma features and syntactic relationshipsin POS tags have also
been investigated, posing a feature selection problem for any learning algorithm. Instead of inves-
tigating features sets, in this paper we concentrate on exploiting a limited set of linguistic features
with different learning agents. We propose adistance phrase reordering model(DPR) that is also
inspired by the orientation prediction framework (Koehn et al., 2005). Unlike Xiong et al. (2006)
and Zens and Ney (2006) we regard phrase movements as a classification problem and use three
multi-class learning agents—support vector machine(SVM), maximum margin regression(MMR)
andmax-margin structure learning(MMS) to perform the classification. Our goal is to find a learn-
ing agent that provides good tradeoff between classification accuracywith a limited feature set and
computational efficiency. Furthermore, we also integrate the DPR model in a traditional SMT sys-
tem, and the resulting MT system (solid line box in Figure 1) is compared with a state-of-the-art
SMT system (dotted line box in Figure 1) on a Chinese-to-English MT task so as to demonstrate the
effectiveness of the proposed DPR model.

1.2 Contribution and Structure

This paper makes two significant contributions. The first is a comparison, interms of classification
accuracy and computational efficiency, between different machine learning techniques for distance
phrase movements in machine translation. This is mainly in the paradigm of structured learning,
including maximum margin structure learning (MMS) and maximum margin regression (MMR),
which is seen as a powerful framework that takes advantage of output structures in supervised
learning problems, in modern machine learning literature. Our second contribution is the demon-
stration that this paradigm is effective in the task of phrase movements, whichis acknowledged as
a challenging task in machine translation. This turns out to be true, both in stand-alone translation
tasks and when the method is integrated into a complete end-to-end statistical machine translation
system. This is sufficiently encouraging that we have made our work available as a public domain
software package1 (Ni et al., 2010a) in a form that it can be integrated into the widely used MOSES
system.2

The remainder of the paper is organised as follows: a general framework of the DPR model is
given in Section 2, which specifies the modelling of phrase movements and describes the motiva-
tions of using the three learning agents. Then in Section 3 we demonstrate the linguistic features
used and the training procedure for the DPR model. Section 4 evaluates the performance of the DPR
model with both phrase reordering classification and machine translation experiments. Finally, we
draw conclusions and mention areas for future work in Section 5.

1. The software is available athttp://patterns.enm.bris.ac.uk/distance-phrase-reordering-for-moses.
2. MOSES is available athttp://www.statmt.org/moses/.
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2. Distance Phrase Reordering (DPR)

We adopt a discriminative model to capture the frequently occurring distance reorderings (e.g.,
Figure 2). An ideal model would consider every word position as a class and predict the start
position of the next phrase, although in practice this is rather difficult to achieve. Hence, we consider
a limited set of classes.

2.1 Orientation Class Definition

Following Koehn’s lexicalized reordering model, we use the phrase reordering distanced in (1)
to measure phrase movements. The distance spaced ∈ Z is then split intoCO segments (i.e.,CO

classes) and the possible start positions of phrases are grouped to makeup a phrase orientation setO.
Note that the more orientation classes a model has, the closer it is to the ideal model, but the smaller
amount of training samples it would receive for each class. Therefore we consider two setups: a
three-class approachO = {d < 0,d = 0,d > 0} and one with five classesO = {d ≤−5,−5< d <

0,d = 0,0< d < 5,d ≥ 5}3 (see Figure 4).

2.2 Reordering Probability Model and Learning Agents

Given a (source, target) phrase pair( f̄ n
j , ē

n
i ) ∈ ϒ with f̄ j = [ f j l , . . . , f jr ] and ēi = [ei l , . . . ,eir ], the

distance phrase reordering probabilityhas the form

p(o|( f̄ n
j , ē

n
i ),{wo}) :=

h
(
wT

o φ( f̄ n
j , ē

n
i )
)

∑
o′∈O

h
(
wT

o′φ( f̄ n
j , ē

n
i )
) , (3)

wherewo = [wo,0, . . . ,wo,dim(φ)]
T is the weight vector measuring features’ contribution to an orien-

tationo∈ O, φ is the feature vector andh is a pre-defined monotonic function.
Equation (3) is analogous to the well-known maximum entropy framework of Equation (2). In

contrast to learning{wo}o∈O by maximising the entropy over all phrase pairs’ orientations

max
{wo∈O}

{
− ∑

( f̄ n
j ,ē

n
i )∈ϒ

∑
o∈O

p(o| f̄ n
j , ē

n
i ,{wo}) logp(o| f̄ n

j , ē
n
i ,{wo})

}
,

we propose using maximum-margin based approaches to learn{wo}o∈O . Under this framework,
three discriminative models are introduced, for different purposes of capturing phrase movements.
We now describe each of these in the following subsections.

2.2.1 SUPPORTVECTORMACHINE (SVM) LEARNING

Support vector machines (SVMs) is a learning method which has become very popular in many
application areas over recent years (see, e.g., Cristianini and Shawe-Taylor, 2000 for details). The
basic SVM is a binary classifier, and we learn eachwo with a separated SVM that solves the follow-
ing convex optimisation problem

3. The five-word parameter setting is designed specifically for the MT experiments, which enables each class to have
similar sizes of samples.
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min
wo,ξ

1
2wT

o wo+C ∑
( f̄ n,ēn)∈ϒ

ξ( f̄ n, ēn)

s.t. ϕ(on,o)
(
wT

o φ( f̄ n, ēn)
)
≥ 1−ξ( f̄ n, ēn)

ξ( f̄ n, ēn)≥ 0, ∀( f̄ n, ēn) ∈ ϒ

,

whereϕ(on,o) is an embedding function for the phrase orientationon, which is assigned 1 ifon = o
and−1 otherwise.

This approach has been successfully used for many tasks. However,for N training examples
(phrase pairs) the computation complexity of the SVM model is somewhere between O(CON+
N2dim(φ)) andO(CON2+N2dim(φ)) (Bishop, 2006). The dependence onCO may cause computa-
tional problems, especially when the number of phrase orientations increase.

2.2.2 MAXIMUM MARGIN REGRESSION(MMR) L EARNING

A good agent for learning{wo}o∈O should adapt to the number of phrase orientationsCO , enabling
Equation (3) to extend to more classes in the future. In this sense, we introduce the maximum
margin regression (MMR) technique, that acquires{wo}o∈O by solving the following optimisation
problem (Szedmak et al., 2006)

min
{wo}o∈O

1
2 ∑

o∈O
wT

o wo+C ∑
( f̄ n,ēn)∈ϒ

ξ( f̄ n, ēn)

s.t. ∑
o∈O

ϕ(on,o)wT
o φ( f̄ n, ēn)≥ 1−ξ( f̄ n, ēn)

ξ( f̄ n, ēn)≥ 0, ∀( f̄ n, ēn) ∈ ϒ

,

whereϕ(on,o) is an indicator function, which is assigned 1 if the phrase reordering orientation
satisfieson = o and 0 otherwise.

The computational complexity of MMR is the complexity of a binary SVM (Szedmak et al.,
2006), which is independent to the output structure (i.e., number of classes). This allows the ori-
entation class approach presented here to be extended, say to tree structured models, whilst not
increasing the computational complexity. Furthermore, it allows the use of non-linear functions,
going beyond the approach presented in Zens and Ney (2006), and is expected to provide more
flexibility in the expression of phrase features. The reader is referredto Appendix B for further
description of MMR.

2.2.3 MAX -MARGIN STRUCTURE (MMS) LEARNING

The two techniques above only consider a fixed margin to separate one orientation class from the
others. However, as the phrase reordering orientations tend to be interdependent, introducing flex-
ible margins to separate different orientations sounds more reasonable. Take the five-class setup
for example, if an example in classd ≤ −5 is classified in class−5 < d < 5, intuitively the loss
should be smaller than when it is classified in classd> 5. Therefore, learning{wo}o∈O is more than
a multi-class classification problem: the output (orientation) domain has an inherent structure and
the model should respect it. By this motivation, we introduce the max-margin learning framework
proposed in Taskar et al. (2003) which is equivalent to minimising the sum ofall classification errors

min
{wo}o∈O

1
N

N

∑
n=1

ρ(on, f̄ n
, ēn

,{wo}o∈O)+
λ
2 ∑

o∈O

‖wo‖
2
, (4)
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Figure 5: The tree structure constructed by the distance matrix△(on,o′).

whereλ ≥ 0 is a regularisation parameter,

ρ(on, f̄ n
, ēn

,{wo}o∈O) = max
{

0,max
o′ 6=on

[△(on,o
′)+wT

o′φ( f̄ n
, ēn)]−wT

on
φ( f̄ n

, ēn)
}

(5)

is a structured margin loss and function△(on,o′) is applied to measure the “distance” between a
pseudo-orientationo′ and the correct oneon. In the experiments, the distance matrix is pre-defined
as

△(on,o
′) =







0 if o′ = on

0.5 if o′ andon are close inO
1 else

.

As shown in Figure 5, this is equivalent to constructing a heuristic tree structure in the orientation
domain.

Theoretically, the structured loss (5) requires that the orientationo′ which is “far away” from
the true orientationon must be classified with a large margin△(on,o′), while nearby candidates
are allowed to be classified with a smaller margin. This is an extension of that provided by Collins
(2002) where no distance between classes is considered (i.e.,△(on,o′) = 1, ∀o′), and it has been
applied successfully to phrase translation tasks (Ni et al., 2010b).

Considering the training time, we ignored the regularisation term (i.e.,λ = 0) and used a
perceptron-based structured learning (PSL) algorithm to tune the parameters{wo}o∈O , the pseudo-
code is demonstrated in Table 2.

Table 2 indicates that the computational complexity of PSL isO(Ndim(φ)CO), which still de-
pends on the number of classes. However, compared with the previous SVM and even the MMR
models, PSL is substantially faster as in practice the number of classesCO is much smaller than
the number of examplesN. This time efficiency is also verified by the experiment results shown in
Figure 15.

Notice that in PSLwo,k+1 is tested on the example(on,φ( f̄ n, ēn)) which is not available for train-
ing wo,k, so if we can guarantee a low cumulative loss we are already guarding against over-fitting.
If one wished to add regularisation to further guard against over-fitting,one could apply methods

9
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Input of the learner: The samplesϒ =
{

on,φ( f̄ n, ēn)
}N

n=1, learning rateη
Initialization: k= 0; wo,k = 0 ∀o∈ O;
Repeat

randomly sample( f̄ n, ēn) ∈ ϒ
V = max

o′

{
△(on,o′)+wT

o′,kφ( f̄ n, ēn)
}

o∗ = argmax
o′

{
△(on,o′)+wT

o′,kφ( f̄ n, ēn)
}

if wT
on,k

φ( f̄ n, ēn)<V then
wo,k+1|o=on = wo,k|o=on +ηφ( f̄ n, ēn)
wo,k+1|o=o∗ = wo,k|o=o∗ −ηφ( f̄ n, ēn)
k= k+1

until converge
Output of the learner: wo,k+1 ∈ R

dim(φ) ∀o∈ O

Table 2: Pseudo-code of perceptron-based structured learning (PSL).

such as ALMA (Gentile, 2001) or NORMA (Kivinen et al., 2004). However, the requirement of
normalisingwo at each step makes the implementation intractable for a large structured learning
problem. As an alternative, the risk function (4) can be reformulated as a joint convex optimisation
problem4

min
{‖wo‖≤R}

max
{zo∈Z}

L({wo}o∈O ,{zo}o∈O) (6)

with

L({wo}o∈O ,{zo}o∈O) =
N
∑

n=1
max

{

0, ∑
o∈O

zn
o

(
△(on,o)+wT

o φ( f̄ n, ēn)
)}

s.t.







zn
o =−1 o= on

zn
o ≥ 0 o 6= on

∑
o∈O

zn
o = 0

n= 1, . . . ,N
.

This min-max problem can be solved by theextra-gradientalgorithm, which is guaranteed to
converge linearly to a solution of{w∗

o}o∈O and{z∗o}o∈O under mild conditions (Taskar et al., 2006).

3. Feature Extraction and Application

In this section, we describe two key steps for the method: feature extractionand model training.

3.1 Feature Extraction

Following (Vickrey et al., 2005; Zens and Ney, 2006), we consider different kinds of information
extracted from the phrase environment (see Table 3). To capture unknown grammars and syntactic
structures, some of the features would depend on the word-class5 information. Mathematically,
given a sequences from the feature environment (e.g.,s= [ f j l−dl , . . . , f j l ] in Figure 6), the features

4. The reader is referred to Appendix A for detailed inference.
5. The word-class tags are provided by the state-of-the-art SMT system (MOSES).
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features for source phrasēf j features for target phrase ¯ei

Context features

Word n-grams within
a window (lengthd)

around the source phrase
edge[ j l ] and[ jr ]

Word n-grams (subphrases)
of the target phrase[ei l , . . . ,eir ]

Syntactic features

Word-class n-grams
within a window (lengthd)
around the source phrase

edge[ j l ] and[ jr ]

Word-class
n-grams (subphrases)

of the target phrase[ei l , . . . ,eir ]

Table 3: Features extracted from the phrase environment. n-gram indicates a word sequence of
lengthn.

Figure 6: Illustration of the phrase pair( f̄ n
j , ē

n
i ) (the word alignments are in black rectangle). The

linguistic features are extracted from the target phrase and a window environment (blue
shadow boxes) around the source phrase.

extracted are of the form
φu(s

|u|
p ) = δ(s|u|p ,u),

with the indicator functionδ(·, ·), p= { j l −dl , . . . , j l , jr , . . . , jr +dr} and strings|u|p = [ fp, . . . , fp+|u|].
In this way, the phrase features are distinguished by both the contentu and its start positionp.

This position-dependent linguisticfeature expression creates a very high dimensional feature
space where each example( f̄ n

j , ē
n
i ) is assigned a sparse feature vector. Figure 7 shows the context

feature space created for all five phrase pairs in Figure 3 and the non-zero features for the phrase
pair (“Xiang gang”, “Hong Kong”). The whole feature space contains180 features and only 9

11
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features are non-zero for this phrase pair. The advantage of this feature expression is the collection
of comprehensive linguistic information which may relate to phrase movements. However, the side
effect it brings in is a large set of free parameters which may cause over-fitting on the training data.

3.2 Training and Application

The training samples{on,( f̄ n, ēn)}N
n=1 (phrase pairs up to length 8) for the DPR model are derived

from a general phrase pair extraction procedure described in Koehnet al. (2005). At translation
time, we follow the idea of Giḿenez and M̀arquez (2007), where the samples having the same
source phrasēf are considered to be from the same cluster (cf., Figure 8 (a)). A sub-model using
the above learning agents is then trained for each cluster. In our largestexperiment, this framework
results in training approximately 70,000 sub-DPR models (Figure 8 (b)). A statistics of the number
of free parameters (features) against the number of training examples for each cluster is depicted
in Figure 8 (c), implying a potential over-fitting risk. To avoid the over-fitting,a prior of{wo}o∈O

is applied to the maximum entropy (ME) model as used in Zens and Ney (2006) and for the MMS
model, theearly stoppingstrategy6 is used which involves the careful design of the maximum
number of iterations.

During the decoding, the DPR model finds the corresponding sub-model for a source phrase
f̄ j and generates the phrase reordering probability for each orientation class with Equation (3).
In particular, for the classification experiments, the most-confident orientation is selected as the
predicted class.

4. Experiments

Experiments used theparallel texts of Hong Kong laws.7 This bilingualChinese-Englishcorpus
consists of mainly legal and documentary texts from Hong Kong which is aligned at the sentence
level. The sizes of the corpus are shown in Figure 9. As the vocabulary sizes of the corpus are
very small, the content information is relatively easy to learn. However, dueto many differences
in word order (grammar) occurring for Chinese-English, this corpus contains many long distance
phrase movements (see Figure 9). In this case, the phrase reordering model is expected to have more
influence on the translation results, which makes this a suitable data set to analyse and demonstrate
the effectiveness of our proposed DPR model.

For the experiments, sentences of lengths between 1 and 100 words wereextracted and the ratio
of source/target lengths was no more than 2 : 1. The training set was takenamong{20K,50K,100K,

150K,185K} sentences while the test set was fixed at 1K sentences.

4.1 Classification Experiments

We usedGIZA++ to produce word alignments, enabling us to compare a DPR model against a
baseline LR model (Koehn et al., 2005) that uses MLE orientation predictionand a discriminative
model that uses an ME framework (Zens and Ney, 2006). In addition, wealso compared the clas-

6. The strategy selects the maximum number of iterations and the learning rateη by cross-validating on a validation set.
In our experiments, this was done on the 185K-sentence Chinese-to-English MT task and the (max-iteration, learning
rate) with the best performance was chosen for all other MT experiments.

7. The original corpus is available athttp://projects.ldc.upenn.edu/Chinese/hklaws.htm, which however con-
tains some sentence alignment errors. The corpus has been further cleaned up and aligned at the sentence level by
the authors. This refined corpus is now available upon request.
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Figure 7: An example of the linguistic feature space created for all phrases in Figure 3 and the non-
zero features for the phrase pair (“Xiang gang”, “Hong Kong”). Due to space limitation,
this example only demonstrates the context features for the source phrases (i.e., the top
left block in Table 3).
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Figure 8: (a) A cluster for the source phrase “an quan” and its training samples (phrase pairs). Note
that the linguistic features for the samples are not demonstrated in this example.(b) The
number of training samples for each cluster (phrases are extracted from185K Chinese-
English sentence pairs). (c) The statistics of the number of features against the number of
training samples (phrases are extracted from 185K Chinese-English sentence pairs).

Figure 9: The data statistics for theparallel texts of Hong Kong lawscorpus (left) and the statistics
of phrase reordering distanced for all consistent phrase pairs (up to length 8) extracted
from the corpus (right). The word alignments are provided by the word alignment toolkit
GIZA++. The right figure shows that short distance phrase movements (i.e.,d< 4) only
take up 62% of the whole phrase movements.
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Chinese-to-English task

Orientations
Training set Test set

20K 50K 100K 150K 185K 20K 50K 100K 150K 185K
d < 0 0.17M 0.45M 0.82M 1.25M 1.63M 13K 16K 16K 17K 17K
d = 0 0.41M 1.11M 2.10M 3.30M 4.04M 28K 33K 34K 38K 38K
d > 0 0.12M 0.32M 0.61M 0.90M 1.11M 9K 10K 11K 11K 11K

d ≤−5 80K 0.20M 0.38M 0.56M 0.70M 6.0K 6.5K 7.3K 7.5K 7.4K
−5< d < 0 90K 0.25M 0.44M 0.69M 0.83M 7.0K 9.5K 8.7K 9.5K 9.6K

d = 0 4.1M 1.11M 2.10M 3.30M 4.04M 28K 33K 34K 38K 38K
0< d < 5 40K 0.10M 0.20M 0.27M 0.31M 2.5K 2.8K 2.5K 2.4K 2.2K

d ≥ 5 80K 0.22M 0.41M 0.63M 0.80M 6.5K 7.2K 8.5K 8.6K 8.8K

Table 4: The training and the test sizes (phrase pairs) for three-class setup (top) and five-class setup
(bottom), where “K” indicates thousand and “M” indicates million.

sification performance and the computational efficiency among the three learning agents for DPR:
SVM,8 MMR and MMS, where the goal was to find the best learning agent for the MT experiments.

Two orientation classification tasks were carried out: one with three-class setup and one with
five-class setup. We discarded points that had long distance reordering(|d| > 15, representing less
than 8% of the data) to avoid some alignment errors caused byGIZA++. This results in data sizes
shown in Table 4. The classification performance was measured by an overall precision across all
orientation classes and the class-specific F1 measures and the experimentswere repeated three times
to asses variance.

4.1.1 COMPARISON OFOVERALL PRECISIONS AND THECLASS-SPECIFICF1-SCORES

Figure 10 shows classification accuracies at different sizes of trainingsets, and we observed a mono-
tonic increase with the amount of training data used. In addition, all discriminative models perform
better than the generative LR model. The MMS approach achieves the bestclassification perfor-
mance, with an absolute 8.5% average improvement with three-class setup and an absolute 8.7%
average improvement with five classes. Similar improvements are observed when examining class-
specific F1 scores on Table 5 and Table 6; the DPR model with the MMS learning agent achieves
the best results. However, the DPR models with SVM and MMR techniques do not perform very
well in the experiments, possibly due to the feature expression we used. Since constructing a kernel
using the sparse feature expression usually results in a very sparse kernel matrix where little sim-
ilarity between samples is presented, SVM and MMR might not extract adequate information for
modelling phrase movements.

When the training sample size is large, the ME model performs better than all other learning
agents except MMS, showing its good ability in exploiting features. But whenthe training sample
size is small (e.g., 50K-sentence task), its results are worse than that of SVM, possibly due to the
over-fitting on the training data. This reveals the importance of choosing the priors for the ME
models: a simple prior may not be helpful while a complicated prior usually makes the training

8. The multi-class SVM model is trained by SVM-Multiclass (Tsochantaridis et al., 2004).
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Orientations
Training Generative model Discriminative models

Data LR MMR SVM ME MMS

d < 0

20K 57.2±0.8 63.7±0.6 64.1±0.9 63.9±0.5 64.7±0.6
50K 58.5±0.1 65.6±0.6 65.8±0.7 65.9±0.5 67.4±0.1
100K 61.6±1.1 69.6±1.4 70.6±1.3 71.8±1.3 74.2±0.3
150K 63.8±0.6 72.3±0.8 73.0±0.6 75.3±1.3 76.5±1.0
185K 63.3±0.8 72.2±1.2 73.1±0.8 75.7±1.0 76.8±1.0

d = 0

20K 80.1±0.3 83.6±0.1 84.3±0.2 83.7±0.2 84.7±0.2
50K 80.0±0.1 83.4±0.5 84.5±0.2 84.5±0.3 85.5±0.2
100K 81.7±0.2 85.7±0.6 87.0±0.3 87.8±0.3 88.6±0.3
150K 83.0±0.3 86.8±0.4 88.1±0.3 89.0±0.4 89.9±0.4
185K 82.9±0.2 86.9±0.2 88.2±0.3 89.5±0.3 90.3±0.2

d > 0

20K 44.2±0.8 55.9±0.7 56.6±0.8 55.6±0.6 58.1±1.0
50K 44.3±0.3 54.9±0.5 56.7±0.2 56.1±0.2 59.3±0.5
100K 48.4±2.0 63.6±0.6 65.1±0.2 66.5±0.1 68.7±0.1
150K 51.4±0.6 64.7±0.3 66.5±0.2 68.5±0.5 70.8±0.3
185K 49.2±1.0 64.9±1.5 66.5±0.3 69.6±1.5 71.5±1.6

P-value in T-test

Orientations
Generative model Discriminative models

LR MMR SVM ME
d < 0 1.02e−8 2.75e−5 7.27e−5 1.00e−4
d = 0 8.66e−10 8.39e−7 1.55e−5 2.19e−6
d > 0 1.97e−9 1.45e−6 7.19e−6 3.84e−9

Table 5: Classification performance on the Chinese-English corpus: the class-specific F1-scores
[%] for three-class setup. Bold numbers refer to the best results.P-values ofT-test for
statistical significance in the differences between MMS and other models areshown in the
lower table.

time increase dramatically. Hence, how to choose the appropriate priors forME in order to balance
training speed and performance is often difficult. Alternatively, using the early stopping strategy
DPR with MMS does not over-fit the training data, indicating that the PSL algorithm in company
with early stopping already guards against over-fitting.

Figure 11 further demonstrates the average precision for each reordering distanced on the 185K-
sentence task (five-class setup), using the results provided by LR, ME and DPR with MMS respec-
tively. It shows that even for long distance reordering, the DPR model still performs well, while
the LR baseline usually performs badly (more than half examples are classified incorrectly). With
so many classification errors, the effect of this baseline in an SMT system isin doubt, even with a
powerful language model. Meanwhile, we observed that results for forward phrase movements (i.e.,
d < 0) are better than those for backward reorderings (i.e.,d > 0). We postulate this is because the
reordering patterns for backward reorderings also depend on the orientation classes of the phrases
nearby. For example, in Figure 3, the phrase “on a building” would be in “forward reordering” if
it does not meet another “forward” phrase “a fire has taken place”. This observation shows that a
richer feature set including a potential orientation class of nearby phrases may help the reordering
classification and will be investigated in our future work.
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Figure 10: The overall classification precision of three-class setup (Figure (a)) and five-class setup
(Figure (b)), where “K” indicates thousand and the error bars show the variances.

Figure 11: Five-class classification precision with respect tod on the 185K-sentence task. A similar
trend is also observed on the three-class classification precision.
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Orientations
Training Generative model Discriminative models

Data LR MMR SVM ME MMS

d ≤−5

20K 40.9±2.4 46.2±1.8 47.2±2.4 45.6±1.9 47.0±1.5
50K 41.0±0.2 46.5±0.6 48.1±0.4 47.5±0.3 49.6±0.7
100K 46.9±0.1 54.7±1.5 56.3±0.8 57.3±0.5 58.7±0.8
150K 47.6±0.9 57.1±1.1 58.9±1.4 60.5±1.3 62.1±1.1
185K 47.8±0.3 57.6±0.4 59.3±0.3 61.8±0.7 63.4±0.7

−5< d < 0

20K 35.0±1.5 44.6±1.6 45.2±1.3 46.6±1.1 47.6±1.0
50K 40.8±1.5 52.3±1.2 52.4±0.8 53.8±0.7 55.5±0.2
100K 43.3±0.5 55.3±1.2 56.1±1.5 58.7±1.4 60.9±0.5
150K 47.8±1.7 60.8±2.0 61.8±2.0 65.1±2.5 66.1±2.0
185K 45.7±1.5 59.2±1.5 61.0±1.5 64.8±1.6 66.0±1.5

d = 0

20K 79.9±0.3 83.6±0.2 84.0±0.2 83.9±0.2 84.7±0.3
50K 80.0±0.1 83.7±0.2 84.3±0.2 84.4±0.2 85.5±0.2
100K 81.4±0.1 86.0±0.6 86.8±0.5 87.6±0.4 88.6±0.4
150K 82.7±0.3 87.2±0.3 87.9±0.3 88.8±0.5 89.8±0.3
185K 82.7±0.2 87.2±0.1 88.2±0.2 89.5±0.3 90.4±0.2

0< d < 5

20K 13.4±1.8 39.2±3.0 42.8±3.5 41.0±3.0 46.3±2.5
50K 22.0±1.7 44.5±1.0 47.6±0.6 45.5±0.4 50.8±0.6
100K 19.2±2.4 50.9±0.9 53.6±1.5 54.6±1.3 58.1±1.1
150K 23.8±0.7 50.2±0.9 54.4±0.7 56.8±1.7 60.4±1.1
185K 19.6±2.8 47.8±2.8 51.4±3.0 56.2±3.7 60.0±3.0

d ≥ 5

20K 41.4±0.9 47.9±3.5 50.7±1.1 49.9±1.0 50.8±2.1
50K 39.4±0.8 49.5±0.2 50.9±0.5 50.8±0.4 55.4±0.5
100K 47.0±1.3 59.9±0.1 61.2±0.6 62.7±0.6 64.5±0.8
150K 48.8±0.5 62.0±0.1 63.8±0.2 65.2±0.6 67.1±0.2
185K 49.4±0.6 62.9±1.3 64.9±1.3 67.2±1.4 68.8±1.2

P-value in T-test

Orientations
Generative model Discriminative models

LR MMR SVM ME
d ≤−5 6.19e−7 3.93e−5 9.30e−3 7.89e−10

−5< d < 0 7.77e−10 3.07e−7 3.69e−7 2.02e−5
d = 0 1.14e−9 1.19e−6 3.50e−6 8.99e−11

0< d < 5 2.36e−11 5.21e−8 8.50e−5 9.51e−9
d ≥ 5 4.76e−8 4.25e−7 8.56e−4 1.00e−3

Table 6: Classification performance on the Chinese-English corpus: the class-specific F1-scores
[%] for five-class setup. Bold numbers refer to the best results.P-values ofT-test for
statistical significance in the differences between MMS and other models areshown in the
lower table.

4.1.2 EXPLORING DPR WITH MMS

With the above general view, the DPR model with the MMS learning agent has shown to be the best
classifier. Here we further explore its advantages by analysing more detailed results.

Figure 12 first illustrates the relative improvements of DPR with MMS over LR, ME and DPRs
with MMR and SVM on the switching classes (i.e.,d 6= 0), where we observed that the relative
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Figure 12: The average relative improvements of DPR with MMS over (a) LR, (b) DPR with MMR,
(c) DPR with SVM and (d) ME on the switching classes (i.e.,d 6= 0) for three-class setup
(Red dashed lines) and five-class setup (Blue solid lines). “K” indicates thousand and
the error bars show the variances.

improvement with five-class setup is usually greater than that with three-classsetup. This implies
the more orientation classes DPR has, the better performance MMS achievescompared with other
models. This observation makes MMS the most promising learning agent in our future work where
we expect to extend the orientation set further.

We then compared the DPR model with MMS with the LR and the ME models accordingto
the overall precision of each cluster on Figure 13. Compared with the generative model LR, DPR
performs better in many of the clusters, especially when given enough training samples (the black
lines in the figure). This verifies the advantage of discriminative models. In particular, the number
of larger circles which imply greater ambiguity in target translations is greater than that of larger
rectangles; indicating MMS performs better in these ambiguous clusters, implying that the target
translations also contain useful information about phrase movements.

Comparing the two discriminative models, the cluster improvement of DPR over MEis smaller
than that over LR, represented by the reduced number of circles and theincreased number of rect-
angles. However, DPR with MMS still achieves a stable improvement over ME.This is especially
true when the training samples are not adequate (represented by more circles in Figure 13 (c) than
in Figure 13 (d)), where the ME model is more likely to over-fit while the DPR withMMS still
performs well.

Finally we illustrate three examples on Figure 14, where we observed a great improvement
of DPR over LR. The first (top) example demonstrates the benefit from thetarget translations as
by translating the Chinese source phrase “you guan” into different English words (i.e., “relating”,
“relates” or “relevant”), the phrase pairs usually have different butregular movements. The second
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Figure 13: Scatter-plots comparing the cluster accuracies of DPR with MMS with the LR (top) and
ME (bottom) models on 50K-sentence task (left) and 150K-sentence task (right). Each
circle/rectangle/point represents a cluster that contains all phrase pairswith a unique
source phrase (e.g., Figure 8 (a)). Those clusters for which the performance difference
(x-axes) is greater than 0.1 are shown as rectangles and circles, the areas of which are
proportional to the number of target translations in them. The y-axes show the number
of training samples (in log10 scale) for each cluster.
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Figure 14: Phrase movements captured by the DPR model with MMS on the 50K-sentence task.

21



NI , SAUNDERS, SZEDMAK AND NIRANJAN

(middle) example shows a grammatical structure captured by the DPR model: in English the phrase
“any of” usually stays in front of the subjects (or objects) it modifies. In general, when given
enough training samples a discriminative model such as DPR is able to capture various grammatical
structures (modelled by phrase movements) better than a generative model. The final (bottom)
example depicts one type of phrase movements caused by the constant expressions in different
languages (e.g., date expression). Although such expressions can becovered manually with a rule-
based MT system, they can easily be captured by a DPR model as well. Hence, we conclude that
the frequent phrase movements, whether caused by different grammatical structures or rule-based
expressions, can be captured and the movement information is then passedon to an MT decoder to
organise the target sentence structures.

4.1.3 A COMPARISON OF THETRAINING TIME

Figure 15: The training time of MMR, ME, MMS (coded in Python) and SVM (coded in C++) to
reach the same training error tolerance.

As a comparison, we plot on Figure 15 the training time of MMS, MMR, ME and SVM to reach
the same training error tolerance.9 For the DPR model, MMS is the fastest as expected where in
contrast the SVM technique is the slowest. Moreover, training a DPR model with MMS is faster
than training an ME model, especially when the number of classes increase. This is because the
generalised iterative scaling(GIS) algorithm for an ME model requires going through all samples
twice at each round: one is for updating the conditional distributionsp(o| f̄ j , ēi) and the other is for
updating{wo}o∈O . Alternatively, the PSL algorithm only goes through all examples once at each
round, making it faster and more applicable for larger data sets.

9. The MMS, MMR and ME models are coded in Python while SVM-multiclass is coded in C++.
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4.2 Machine Translation Experiments

We now test the effectiveness of the DPR model in an MT system, using a state-of-the-art SMT
system—MOSES (Koehn et al., 2005) that models phrase movements with the LR models as a
baseline system. To keep the comparison fair, our MT system just replacesMOSES’s LR models
with DPR while sharing all other components (i.e., a phrase translation probability model, a 4-gram
language model (Stolcke, 2002) and the beam search decoder). In addition, we also compared the
DPR model with the ME model in Zens and Ney (2006) on the 50K-sentence MT task, where the
results confirmed that DPR can lead to improvement performance.

We chose MMS as the learning agent for the DPR model in consideration of itsprominent
classification performance. In detail, all consistent phrase pairs (up to length 8) were extracted from
the training sentence pairs and form the sample pool. The DPR model was thentrained by the PSL
algorithm and the functionh(z) = exp(z) was applied to Equation (3) to transform the prediction
scores.

To make use of the phrase reordering probabilities, two strategies were applied: one is to use
the probabilities directly as the reordering cost (dotted line in Figure 1), which is also used in Xiong
et al. (2006); Zens and Ney (2006); the other is to use them to adjust the word distance-based
reordering cost (solid line in Figure 1), where the reordering cost of asentence is computed as

hd(f̄I
, ēI ) =− ∑

( f̄ jm,ēim)∈(f̄I ,ēI )

dm

βp(o| f̄ jm, ēim)
(7)

with tuning parameterβ. Intuitively, if the DPR model has a large orientation set (i.e., the phrase
movements are modelled in a precise way) and the orientation predictions are good enough, it
is reasonable to use the reordering probabilities directly. However, as weexperienced in Section
4.1, the DPR predictions with five-class setup still need improvement, especiallyfor the switching
orientations (i.e.,d 6= 0). On the other hand, if the DPR model only uses a small orientation set (e.g.,
three-class setup), it is able to provide very good orientation predictions.But all long distance phrase
movements will have the same reordering probabilities, which may mislead the SMT decoder and
spoil the translations. In this case, the distance-sensitive expression (7) is able to fill the deficiency
of a small-class setup of DPR by penalising long distance phrase movements. Hence in the MT
experiments, we used the five-class phrase reordering probabilities directly while the three-class
probabilities were used to adjust the word distance-based reordering cost.

For parameter tuning, minimum-error-rating training (MERT) (Och, 2003) is used to tune the
parameters. Note that there are seven parameters which need tuning in MOSES’s LR models, while
there is only one for DPR. The translation performance is evaluated by four standard MT mea-
surements, namelyword error rate(WER) (Tillmann et al., 1997),BLEU (Papineni et al., 2002),
NIST (Doddington, 2002) andMETEOR(Banerjee and Lavie, 2005). In effect, WER and NIST
weight more on word/phrase translation accuracy; BLEU biases towardstranslation fluency; and
METEOR emphasises translation adequacy (i.e., word/phrase translation recall). The reader is re-
ferred to Callison-Burch et al. (2007) and Ni (2010) for detailed discussions on these measurements.

We first demonstrate on Table 7 a comparison of the DPR model with the LR and the ME
models on the 50K-sentence Chinese-to-English MT task. The improvements on most evaluations
over LR and ME are consistent with what are observed on the reordering classification experiments.
However, the MT results show no difference between three-class setupand five-class setup, possibly
due to the low classification accuracy of DPR with five-class setup (especially on the switching
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Measure MOSES
DPR ME

3-class 5-class 3-class 5-class
WER [%] 24.3±0.6 24.6±1.5 24.7±1.1 25.3±1.7 26.0±2.1
BLEU [%] 44.5±1.2 47.1±1.3 47.5±1.2 46.17±1.7 45.0±2.5

NIST 8.73±0.11 9.04±0.26 9.03±0.32 8.72±0.26 8.49±0.49
METEOR [%] 66.1±0.8 66.4±1.1 66.1±1.1 65.0±1.7 63.9±2.6

Table 7: The comparison of the DPR model with the LR and the ME models on the 50K-sentence
MT task.

classes). How to improve the classification accuracy of DPR with a large class setup is hence a
main challenge for our future work.

Since the three-class DPR achieves the same translation quality but it is faster, for the other
MT tasks we only used DPR with three-class setup as the phrase reorderingmodel. Figure 16
illustrates the comparison of the DPR MT system with the baseline MOSES according to the four
MT evaluations, where we observed consistent improvements on most evaluations. Furthermore,
the larger the sample size is, the better results DPR will achieve. This again shows the learning
ability of the DPR model when given enough samples. In particular, both systems produce similar
predictions in sentence content (represented by similar WERs), but our MT system does better at
phrase reordering and produces more fluent translations (represented by better BLEUs).

However, if the sample size is small (e.g., the 20K-sentence task), DPR is unable to collect
adequate phrase reordering information. In this case the application of DPR to an MT system may
involve a risk of a reduction in translation quality (represented by the low qualities on WER and
METEOR).

5. Conclusions and Future Work

We have proposed a distance phrase reordering (DPR) model using a classification scheme and
trained and evaluated it in a structured learning framework. The phrase reordering classification
tasks have shown that DPR is better at capturing phrase movements over theLR and ME models.
The MMS learning agent in particular, achieves outstanding performancein terms of classification
accuracy and computational efficiency. An analysis of performance confirms that the proposed
MMS method is shown to perform particularly well when there is a large amountof training data,
and on translation examples with large ambiguity in the target language domain.

Machine translation experiments carried out on the Chinese-English corpus show that DPR gives
more fluent translation results, which confirms its effectiveness. On the other hand, when training
data is sparse, the process may involve a risk of a reduction in translation quality.

For future work, we aim to improve the prediction accuracy of the five-class setup before apply-
ing it to an MT system, as DPR can be more powerful if it is able to provide more precise phrase
positions for the decoder. We also aim to formulate the phrase reordering problem as an ordinal
regression problem rather than a classification one proposed in this paper. Furthermore, we will
refine the learning framework of DPR by carefully designing or automaticallylearning the distance
matrix△(on,o′). A richer feature set to better characterise the grammar reorderings is also a direc-
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Figure 16: The translation evaluations.
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tion of our current investigations. Finally we will try the DPR model on larger corpora (e.g., the
NIST Chinese-English corpus), with the purpose of verifying its ability in scaling up to large data
collections.
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Appendix A.

In this appendix we infer the optimisation problem (6) from (4).
To consider adding a regularisation term, we upper bound the norm of each wo by ‖wo‖ ≤ R.

Then minimising (5) with respect to{wo}o∈O is equivalent to solving the following optimisation
problem

min
‖wo‖≤R

L
(
{wo}o∈O

)
, (8)

where the cumulative lossL
(
{wo}o∈O

)
= ∑

n
ρ
(
on, f̄ n, ēn,{wo}o∈O

)
.

We can then express the sub maximisation problem max
o6=on

[△(on,o)+wT
o φ( f̄ n, ēn)]−wT

on
φ( f̄ n, ēn)

in Equation (5) as alinear programmingproblem

max
zn

∑
o∈O

zo
n[△(on,o)+wT

o φ( f̄ n, ēn)]

s.t. ∑
c

zo
n = 0

zon
n =−1

zo
n ≥ 0, o∈ {O\on}

. (9)

LetZn denote the closed set ofzn, z= {z1, . . . ,zN} andZ = Z1× . . .×ZN, substituting (9) into (8)
yields a natural saddle-point form

min
‖wo‖≤R

max
z∈Z

L({wo}o∈O ,{zo}o∈O)

with

L({wo}o∈O ,{zo}o∈O) =
N
∑

n=1
max

{

0, ∑
o∈O

zn
o

(
△(on,o)+wT

o φ( f̄ n, ēn)
)}

s.t.







zn
o =−1 o= on

zn
o ≥ 0 o 6= on

∑
o∈O

zn
o = 0

n= 1, . . . ,N
,

which is the optimisation problem (6).

26



EXPLOITATION OF ML T ECHNIQUES INMODELLING PHRASE MOVEMENTS FORMT

Appendix B.

In this appendix, we describe more details about maximum margin regression (MMR).
To illuminate the background of the MMR, let the constraints

s.t. ∑
o∈O

ϕ(on,o)wT
o φ( f̄ n, ēn)≥ 1−ξ( f̄ n, ēn)

ξ( f̄ n, ēn)≥ 0, ∀( f̄ n, ēn) ∈ ϒ

be transformed into an inner product based form

∑
o∈O

ϕ(on,o)wT
o φ( f̄ n, ēn)≥ 1−ξ( f̄ n, ēn)

⇒ 〈ϕ(on),Wφ( f̄ n, ēn)〉 ≥ 1−ξ( f̄ n, ēn)
, (10)

where the following short hand notations are applied:W = {wT
o} ∈R

|O|×dim(φ) is a matrix in which
the rows correspond to the row vectorswT

o , andϕ(on) = (ϕ(on,o)), o∈O is a vector of the indicator
values.

To give a possible interpretation to the inner product based constraints consider the well known
cosine rule connecting the inner product and the distance via norms in aL2 norm space, namely for
every pair of vectorsa,b of this space the following holds‖a−b‖2

2 = ‖a‖2
2+ ‖b‖2

2−2〈a,b〉. Ex-
ploiting this equality the inner product based constraints (10) can be transformed into an equivalent,
norm based one

‖ϕ(on)‖
2
2+‖Wφ( f̄ n, ēn)‖2

2−2+2ξ( f̄ n, ēn)≥ ‖ϕ(on)−Wφ( f̄ n, ēn)‖2
2 . (11)

Constraints (11) state that the squared distance between the vector valuedrepresentation of the
outputs and the image of the input vectors with respect to the linear operator matrix W is bounded
above by summing of the square norm of outputs, the norm of the input image and a tolerance given
by the margin. Therefore if the Frobenius norm ofW is minimised then the constraints force the
distance between the outputs and the image of the inputs to be small. If the norm ofall outputs are
the same this minimisation works uniformly, otherwise larger distance error is allowed for outputs
with greater norm.

The optimisation problem of MMR allows to use implicit representation not only forthe inputs
but also for the outputs. To see that one can introduce Lagrangian multipliers, α( f̄ n, ēn), to each
constraints and write up the dual problem for MMR

min 1
2 ∑
( f̄ n,ēn)

∑
( f̄ m,ēm)

α( f̄ n, ēn)α( f̄ m, ēm)

κϕ
nm

︷ ︸︸ ︷

〈ϕ(on),ϕ(om)〉

κφ
nm

︷ ︸︸ ︷

〈φ( f̄ n
, ēn),φ( f̄ m

, ēm)〉

− ∑
( f̄ n,ēn)

α( f̄ n, ēn)

w.r.t α( f̄ n, ēn), ∀( f̄ n, ēn) ∈ ϒ
s.t. 0≤ α( f̄ n, ēn)≤C, ∀( f̄ n, ēn) ∈ ϒ

,

whereκφ
nm andκϕ

nm stand for the inner products between the input and the output pairs respectively.
Therefore, to solve the dual problem requires only the knowledge of thevalues of inner products
of the output pairs and not their concrete feature representation. See further motivations behind the
formulation of MMR in Szedmak and Hussain (2009).
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