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Abstract

We propose a distance phrase reordering model (DPR) fast&tat machine translation (SMT),
where the aim is to learn the grammatical rules and contepémigent changes using a phrase
reordering classification framework. We consider a variétyachine learning techniques, includ-
ing state-of-the-art structured prediction methods. Meples are compared and evaluated on a
Chinese-English corpus, a language pair known for the réghdering characteristics which can-
not be adequately captured with current models. In the exorg classification task, the method
significantly outperforms the baseline against which it tes$ed, and further, when integrated as
a component of the state-of-the-art machine translatistesy, MOSES, it achieves improvement
in translation results.

Keywords: statistical machine translation (SMT), phrase reordetigxjcalized reordering (LR),
maximum entropy (ME), support vector machine (SVM), maximmargin regression (MMR) ,
max-margin structure learning (MMS)

1. Introduction

Machine translation(MT) is a challenging problem in artificial intelligence. Natural languages
are characterised by large variabilities of expressions, exceptionarungatical rules and context
dependent changes. Differences in these across different geguaake automatic translation a
very difficult task. While early work in machine translation was dominated letrased approaches
(Bennett and Slocum, 1985), the availability of large corpora, and thewids which they can be
processed on computers has, similar to developments in other areas aahimifdligence, paved
the way for statistical methods to be applied. The process of translationafspurcelanguage

to atargetlanguage is considered equivalent to a problem of retrieving a targsagesom the
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Symbol  Notation

f the source sentence (string)

e the target sentence (string)

f; the j-th word in the source sentence

€ thei-th word in the target sentence

fl the source phrase sequence

e the target phrase sequence

f; the source phrase whefedenotes the sequence of wofds, . .., f;, ]
andj denotes thaf; is the j-th phrase irf'

) the target phrase wheesdenotes the sequence of wofds, ..., &, ]
andi denotes thag is thei-th phrase ire

Y the set of phrase pai(sf_j, e ey

N the number of examples M

(f7.@)  then-th example inY that is also abbreviated &§", &)

@(f;,&) the feature vector of phrase péir, &)

d the phrase reordering distance

o] the phrase orientation class

0] the set of phrase orientationss O

Co the number of phrase orientations@n

¢ embedding function to map the orientation set to an output space— R
Wo weight vector measuring features’ contribution to an orientation

{Wo}oco The set of weight vectors for the phrase reordering model
dim the dimension of

Table 1: Notation used in this paper.

“source code” (Weaver, 1949). This view enables a probabilistic fatiom in which the task
becomes the maximisation of the posterior probability over all the phrasersazim the target
language. Principled approaches to designing the different comparfesush a system, shown in
Figure 1, have been developed in recent years (Koehn et al., 2005).
Phrase-basestatistical machine translatio(SMT) is a task where each source sentehise

segmented into a sequencd ghrase$' and translated into a target sequedceften by means of
a stochastic process that maximises the posterior probaBilityarg may g {P(é' ]f')}. Usually
the posterior probability?(&|f') is modelled in a log-linear maximum entropy framework (Berger
et al., 1996) which permits easy integration of additional models, and is biven

P — - PL2nAnin(CE))

Yia exp( I mAmhm(f",&"))
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where {hn} represent sub-models with scaling fact¢ds,}. As the denominator only depends
on the source phrase sequeribteit is usually discarded and the solution is also represented as

& = argmax ¢ { exp(TmAmhm(f1,€))}.

Training —
|
|
Phrase i
Training translation i
corpus % model |
Language ;
model i
|
|
|
|
|
|
|
l Y
|
|
|
|
|
|
; 1 English
Foreign [ Englis
sentence " Beam search decoder .
Decoding

Figure 1: Training (top box) and decoding (bottom box) procedunea &tate-of-the-art SMT sys-
tems (dotted line box) and our MT system (solid line box).

A combination of several sub-modelby,} (see Figure 1), including a phrase translation proba-
bility model, a language model and a phrase reordering model are commeudlykesch sub-model
is trained individually and then weighted by a scale faatptuned to achieve good final translation
quality (Och, 2003). Finally, the decoder searches a Viterbi-best gtétipgiven the joint decoding
information. The reader is referred to Ni (2010) for detailed discussiorthese models.

1.1 Modelling Phrase Movements

In this paper, we focus on developing a crucial component in statisticalinetranslation—the
phrase reordering modelWord or phrase reordering is a common problem in bilingual translations
arising from different grammatical structures. For example, the ChinéBeDEG NBR,” sequence

is analogous to the English possessive structure ofy"SNRP,” and does not require reordering
(see Figure 2 (a)). However, due to different linguistic environment it amene from, this Chinese
possessive structure can express more sophisticated relationshipsasdimappropriate for the
“NP1’'s NP,” expression, for example, the “Nf NP;” sequence which requires phrase swapping
(see Figure 2 (b)). In general, if the decoder “knows” the ordephoése translations in the target
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(a) (b)

CH: |3m | ||R2 % | CH:
Y Y
EN: |Mary]| | parents | EN: |the application| machine translation |
Grammar: Grammar:
NP; DEG NP, (CH) => NP,” s NP, (EN) NP; DEG NP, (CH) => NP, of NP; (EN)

Figure 2: Example: the distance phrase reordering in Chinese-to-Ebdgiigjual translation.

d=-7 N
d=0 | — | d=a %3
CH Character: ‘Jﬁf\ ’ﬁ?’ﬁl‘- ‘FE‘.EI Vii KK
¥ v S T
CH Pinyin: ‘Zhou lin ‘ ‘ Xiang gang ‘yi min ju l ‘ fa sheng l huo zai ‘

EN:

On Saturday||a fire 'has taken place| on a building| in:\ Hong Kong|

Figure 3: The phrase reordering distanice

language, the fluency of machine translation can be greatly improved. Thistes investigations
into, and development of models for, phrase reordering.

Now taking a Chinese-to-English translation (see Figure 3) for exampl&udly not all words
are translated one by one and some words are translated far behindsafterceding words are
translated (e.g., phrase “a fire”). Therefore, an ideal phraselegng model should be able to
handle arbitrary distance phrase movements. However, handling suemranis is a computation-
ally expensive problem (Knight, 1999). Within recently developed SM3tesyis, a simple phrase
reordering model, nameaord distance-based reordering mod#&/DR), is commonly used (Och
et al., 1999; Koehn, 2004, Zens et al., 2005). This model definesrdengg distance for thg-th
source phrasé; as (see Figure 3 for an illustration of this.)

dj := abglastsource word position of previously translated phrase (1)
—first source word position of newly translated phrédse ’

and the total cost of phrase movements for a sentence(fajris linear proportional to these

reordering distancelq(f',€') = —a 3 dj with a tuning parameten. Although computationally

efficient, this model has been ShOV\Jln to be weak due to its content indemmend® content-based
extension to WDR is théxicalized reordering modd€LR) (Tillmann, 2004; Koehn et al., 2005),
which splits the distance space into several segments, each of whickeetsra phrase reordering
orientationo (see Figure 4). Then the phrase reordering probability for a phrais€ f3,& ) is

4
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Figure 4: The phrase reordering orientations: the three-class seppafid the five-class setup
(bottom).

predicted usingnaximum likelihood estimatigiMLE)

~ _. _ counto,(f},§))
p(ol(fj,&)) = Zcounl(O’,(ij,a))7
g

wherehy(f', &) p(o](f_j, €)) is used to represent the cumulative cost of phrase move-

(f ?é%@,@)
ments. Although the overall performance is better than WDR, it usuallyrsuffem data sparse-
ness, and some heuristics have to be employed to make the approacheeffecti

Adopting the idea of predicting phrase reordering orientations, rdse@started exploiting
context or grammatical content which may relate to phrase movements (Tillmdrghang, 2005;
Xiong et al., 2006; Zens and Ney, 2006). In general, the distributiorhcdge reorderings is ex-
pressed with a log-linear form

h(wl (f},&))

Z(fj,e) @

p(o|(f}.&),Wo) =

with the normalisation terrd( ﬂ, &)= 3 hw] g f_j, &)). The feature parametefe/, }oco are then
ocO0

tuned by different discriminative models, among whichtieximum entrop¢ME) framework is a
popular candidate. To characterise phrase movements, a variety of liofeagures are proposed

e Context features — word sequence (n-gram) features in (or ard@ghhrases. These indi-
cator functions are the basic features used in Zens and Ney (2006)sanaised in other MT
experiments such as the word-sense disambiguation of Vickrey et ah)(200
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¢ Shallow syntactic features — part-of-speech (POS) tags or wordfelatsses in (or around)
the phrases. These indicator features are also used in the models abdvaso in the
context-aware phrase selection model of &imaz and Mrquez (2007).

e Statistical features — features such as the lexicalized reordering [iigbékoehn et al.,
2005) and the language model probability, etc. These real-value feattgentroduced by
Tillmann and Zhang (2005) and are shown to be beneficial in capturing ¢taépbrase re-
ordering information.

Many other feature sets, such as lemma features and syntactic relatiansk{pS tags have also
been investigated, posing a feature selection problem for any learniogtiatg. Instead of inves-
tigating features sets, in this paper we concentrate on exploiting a limited segoiSlic features
with different learning agents. We proposéiatance phrase reordering mod@PR) that is also
inspired by the orientation prediction framework (Koehn et al., 2005). d@nfilong et al. (2006)
and Zens and Ney (2006) we regard phrase movements as a classificattenpand use three
multi-class learning agentssapport vector machingSVM), maximum margin regressidiviMR)
andmax-margin structure learninMMS) to perform the classification. Our goal is to find a learn-
ing agent that provides good tradeoff between classification accuitftya limited feature set and
computational efficiency. Furthermore, we also integrate the DPR modeladigidnal SMT sys-
tem, and the resulting MT system (solid line box in Figure 1) is compared with aditthe-art
SMT system (dotted line box in Figure 1) on a Chinese-to-English MT task smdemonstrate the
effectiveness of the proposed DPR model.

1.2 Contribution and Structure

This paper makes two significant contributions. The first is a comparisoerrirs of classification
accuracy and computational efficiency, between different machineihgatechniques for distance
phrase movements in machine translation. This is mainly in the paradigm of sedidéarning,
including maximum margin structure learning (MMS) and maximum margin regresMR),
which is seen as a powerful framework that takes advantage of outpetses in supervised
learning problems, in modern machine learning literature. Our second aditnbs the demon-
stration that this paradigm is effective in the task of phrase movements, ghacknowledged as
a challenging task in machine translation. This turns out to be true, both inakamnel translation
tasks and when the method is integrated into a complete end-to-end statisticaiarteahslation
system. This is sufficiently encouraging that we have made our work alea#ala public domain
software packadgNi et al., 2010a) in a form that it can be integrated into the widely used M®SE
systen?

The remainder of the paper is organised as follows: a general fratk@fitrte DPR model is
given in Section 2, which specifies the modelling of phrase movements aodbdssthe motiva-
tions of using the three learning agents. Then in Section 3 we demonstrategistimfeatures
used and the training procedure for the DPR model. Section 4 evaluatesfinmance of the DPR
model with both phrase reordering classification and machine translatienieents. Finally, we
draw conclusions and mention areas for future work in Section 5.

1. The software is available btt p: // patt erns. enm bris. ac. uk/ di st ance- phrase- r eor deri ng- f or - npses.
2. MOSES is available dit t p: / / www. st at nt . or g/ moses/ .
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2. Distance Phrase Reordering (DPR)

We adopt a discriminative model to capture the frequently occurring distesarderings (e.g.,
Figure 2). An ideal model would consider every word position as a cladspeedict the start
position of the next phrase, although in practice this is rather difficult teaehHence, we consider
a limited set of classes.

2.1 Orientation Class Definition

Following Koehn’s lexicalized reordering model, we use the phrase egagidistancel in (1)
to measure phrase movements. The distance gpacg is then split intoCp segments (i.eCo
classes) and the possible start positions of phrases are grouped tapraagbrase orientation set
Note that the more orientation classes a model has, the closer it is to the ided) huddhe smaller
amount of training samples it would receive for each class. Therefereonsider two setups: a
three-class approaadh = {d < 0,d = 0,d > 0} and one with five classe8 = {d < —5,-5< d <
0,d =0,0< d < 5,d > 5}3 (see Figure 4).

2.2 Reordering Probability Model and Learning Agents
Given a (source, target) phrase p@i_f,é,”) € Y with f_J = [fj,...,f;,] ande = [g,,...,q,], the

distance phrase reordering probabilibas the form

7 _ h(wge(f. &)
p(o‘(fj 7én)ﬂ {WO}) " 3 h(WI,(pJ( fjnaép)) )

€0

(3)

wherew, = [Wo, . .. ,wo’dim(q,)]T is the weight vector measuring features’ contribution to an orien-
tationo € O, @is the feature vector aris a pre-defined monotonic function.

Equation (3) is analogous to the well-known maximum entropy framework oatan (2). In
contrast to learningw, }oco by maximising the entropy over all phrase pairs’ orientations

max {— 5 5 p(o|f], & {wo})logp(o| ], &' {wo})},

{woe0} (fj",q‘)eYOGO
we propose using maximum-margin based approaches to {@&rheo. Under this framework,
three discriminative models are introduced, for different purposeamtiicing phrase movements.
We now describe each of these in the following subsections.

2.2.1 SUPPORTVECTORMACHINE (SVM) LEARNING

Support vector machines (SVMs) is a learning method which has becomeaepular in many
application areas over recent years (see, e.g., Cristianini and Sfegiae; 2000 for details). The
basic SVM is a binary classifier, and we learn eaglwith a separated SVM that solves the follow-
ing convex optimisation problem

3. The five-word parameter setting is designed specifically for the MEraxgents, which enables each class to have
similar sizes of samples.
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min  2w] W0+C oy (e

Wo,& fndey
st. ¢(on, )(chp( n.&) > E(f” &)
f, )

E(f",@) >0, v(f

whered(0,,0) is an embedding function for the phrase orientatgnwhich is assigned 1 i, = o
and—1 otherwise.

This approach has been successfully used for many tasks. Hof@vbr training examples
(phrase pairs) the computation complexity of the SVM model is somewhere dret(€oN +
N2dim(¢)) andO(CoN? 4 N2dim(@)) (Bishop, 2006). The dependence@s may cause computa-
tional problems, especially when the number of phrase orientations iecreas

2.2.2 MAXIMUM MARGIN REGRESSION(MMR) LEARNING

A good agent for learningw, }oco should adapt to the number of phrase orientatfogsenabling
Equation (3) to extend to more classes in the future. In this sense, we ioérdlde maximum
margin regression (MMR) technique, that acquifes }oco by solving the following optimisation
problem (Szedmak et al., 2006)

min ZWTWo-i-C 5 (e
&)

{Wo}oco OEO )eY
st. EO¢(0na0) ( ) >1 (f”,é”) ,
oc —
E(f",€") >0, V(f ey

o )

where ¢(on,0) is an indicator function, which is assigned 1 if the phrase reorderingtatien
satisfieso, = o0 and 0 otherwise.

The computational complexity of MMR is the complexity of a binary SVM (Szedntakl.e
2006), which is independent to the output structure (i.e., number of e)asEkis allows the ori-
entation class approach presented here to be extended, say to tréerestrucodels, whilst not
increasing the computational complexity. Furthermore, it allows the use ofimesar functions,
going beyond the approach presented in Zens and Ney (2006), ardested to provide more
flexibility in the expression of phrase features. The reader is reféorégppendix B for further
description of MMR.

2.2.3 MAX-MARGIN STRUCTURE(MMS) LEARNING

The two techniques above only consider a fixed margin to separate onétde class from the
others. However, as the phrase reordering orientations tend to besipéadient, introducing flex-
ible margins to separate different orientations sounds more reasonaiie.thke five-class setup
for example, if an example in clags< —5 is classified in class-5 < d < 5, intuitively the loss
should be smaller than when itis classified in cldss5. Therefore, learningwo }oc o is more than
a multi-class classification problem: the output (orientation) domain has areirttetructure and
the model should respect it. By this motivation, we introduce the max-marginitegiramework
proposed in Taskar et al. (2003) which is equivalent to minimising the sahadfssification errors

min N Z o( Omf €', {Wo}oco) + z ||WOH2 (4)

{Wo}oco OEO
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o Reordering > ‘\
/ orientation 3 )/
Reordering Reordering Reordering Reordering
orientation 1 orientation 2 orientation 4 | | orientation 5
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Phrase reordering distance d

Figure 5: The tree structure constructed by the distance matfax, o).

whereA > 0 is a regularisation parameter,

p(ol’h 1?]7@17 {WO}OEO) = maX{O, 9;&0)([A(On70/) +W5(p(ﬁ]7én)] _Wg—n(p(f_n7én)} (5)

is a structured margin loss and functidr(on, ') is applied to measure the “distance” between a
pseudo-orientation’ and the correct one,. In the experiments, the distance matrix is pre-defined
as
0 ifd=no,
A(op,0) =< 0.5 if o andoy, are close inO .
1 else

As shown in Figure 5, this is equivalent to constructing a heuristic treetgteuin the orientation
domain.

Theoretically, the structured loss (5) requires that the orientatiovhich is “far away” from
the true orientatioro, must be classified with a large margin(on,0'), while nearby candidates
are allowed to be classified with a smaller margin. This is an extension of thatipdoby Collins
(2002) where no distance between classes is considered/{{@,,0') = 1, V0d'), and it has been
applied successfully to phrase translation tasks (Ni et al., 2010b).

Considering the training time, we ignored the regularisation term @i.es, 0) and used a
perceptron-based structured learning (PSL) algorithm to tune the p@rafe, } oo, the pseudo-
code is demonstrated in Table 2.

Table 2 indicates that the computational complexity of PSO(sldim(@)Cy), which still de-
pends on the number of classes. However, compared with the previdusa8¥ even the MMR
models, PSL is substantially faster as in practice the number of cl@sissmuch smaller than
the number of examplds. This time efficiency is also verified by the experiment results shown in
Figure 15. _

Notice that in PSlw, k1 is tested on the examp(e, @( f", €")) which is not available for train-
ing Wo , SO if we can guarantee a low cumulative loss we are already guardirgsbgeer-fitting.

If one wished to add regularisation to further guard against over-fiting,could apply methods
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N
n=1’

Input of the learner: The sampley= {on, @(f",€")}
Initialization: k=0;wex=0 VYoe€ O;
Repeat _
randomly sampl¢f". &) eY
V= mdax{A(on,o’) +wg @1, e }
0" = arg rgax{A(on, o) +wy @&}
ifwg (@(f",€) <V then
Wo k+1lo—0, = Wo klo—o, +NQ(T
Wo,k+1|o:o* = Wo,k‘o:o* —no(f
k=k+1
until converge
Output of the learner: wok,1 € RIM®  voe O

learning rate

=]

€
€

jm]

Table 2: Pseudo-code of perceptron-based structured learnihdy (PS

such as ALMA (Gentile, 2001) or NORMA (Kivinen et al., 2004). Howeuhe requirement of
normalisingw, at each step makes the implementation intractable for a large structured learning
problem. As an alternative, the risk function (4) can be reformulated astecfnvex optimisation
problent

_ ) 6
(onin ., nax L{{Woloc o, {Zo}oco) )

with
N _
L({Wo}oc0,{Zo}oc0) = nglmax{o, OGZOZQ(A(on,o) +Wg<p(fn’é”))}
z=-1 o0=o0,
st. >0 0#0n n=1... N
200"

This min-max problem can be solved by teetra-gradientalgorithm, which is guaranteed to
converge linearly to a solution ¢fv; }oc0 and{z;}oc o under mild conditions (Taskar et al., 2006).

3. Feature Extraction and Application

In this section, we describe two key steps for the method: feature extracttbmodel training.

3.1 Feature Extraction

Following (Vickrey et al., 2005; Zens and Ney, 2006), we consideer#fiit kinds of information
extracted from the phrase environment (see Table 3). To capture@wnkgrammars and syntactic
structures, some of the features would depend on the wordRdlafssmation. Mathematically,
given a sequencefrom the feature environment (e.g.= [fj_q,..., fj] in Figure 6), the features

4. The reader is referred to Appendix A for detailed inference.
5. The word-class tags are provided by the state-of-the-art SMTs{MEOSES).

10
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features for source phrage

features for target phrase —

Context features

Word n-grams within
a window (lengthd)
around the source phrase

Word n-grams (subphrases)
of the target phrasg, , ... . &, ]

edge(ji] and(j]
Word-class n-grams
within a window (lengthd)
around the source phrase
edgeji] and]j;]

Word-class
n-grams (subphrases)
of the target phrass, , .. ., &, |

Syntactic featureg

Table 3: Features extracted from the phrase environment. n-gramtewmli@avord sequence of
lengthn.

Phrase
. reordering

L

=

n

. -—a —»

.
C
[

Target word position

{00

N
]
Ll
]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
+

j+d,

jr-d I |

Source word position

Figure 6: lllustration of the phrase pa(if_j”,é“) (the word alignments are in black rectangle). The
linguistic features are extracted from the target phrase and a windavoement (blue
shadow boxes) around the source phrase.

extracted are of the form

Qu(sp) = 8(sp',u),
with the indicator functio®(-,-), p={ji—d,...,Ji, jr,..., jr +dr } and strings‘gJI =[fp, -, Tosyul-
In this way, the phrase features are distinguished by both the canéet its start positiorp.

This position-dependent linguisti@ature expression creates a very high dimensional feature
space where each exampélie}‘,é,”) is assigned a sparse feature vector. Figure 7 shows the context
feature space created for all five phrase pairs in Figure 3 and thearorfeatures for the phrase
pair (“Xiang gang”, “Hong Kong”). The whole feature space contdiB® features and only 9

11
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features are non-zero for this phrase pair. The advantage of thisdespression is the collection
of comprehensive linguistic information which may relate to phrase movemeaige\dr, the side
effect it brings in is a large set of free parameters which may causditivgy on the training data.

3.2 Training and Application

The training samplegon, (f",&")}N_, (phrase pairs up to length 8) for the DPR model are derived
from a general phrase pair extraction procedure described in Keteah (2005). At translation
time, we follow the idea of Giranez and Nrquez (2007), where the samples having the same
source phrasé are considered to be from the same cluster (cf., Figure 8 (a)). A suleimeihg

the above learning agents is then trained for each cluster. In our lasgesiment, this framework
results in training approximately 7000 sub-DPR models (Figure 8 (b)). A statistics of the number
of free parameters (features) against the number of training exampleadb cluster is depicted

in Figure 8 (c), implying a potential over-fitting risk. To avoid the over-fittiagyrior of {wo}oco

is applied to the maximum entropy (ME) model as used in Zens and Ney (20688pathe MMS
model, theearly stoppingstrategy is used which involves the careful design of the maximum
number of iterations.

_ During the decoding, the DPR model finds the corresponding sub-modal $ource phrase

f; and generates the phrase reordering probability for each orientatiss with Equation (3).

In particular, for the classification experiments, the most-confident otients selected as the
predicted class.

4. Experiments

Experiments used thearallel texts of Hong Kong laws This bilingual Chinese-Englisttorpus
consists of mainly legal and documentary texts from Hong Kong which is alighéhe sentence
level. The sizes of the corpus are shown in Figure 9. As the vocabulary ef the corpus are
very small, the content information is relatively easy to learn. Howevertaweany differences
in word order (grammar) occurring for Chinese-English, this corpuates many long distance
phrase movements (see Figure 9). In this case, the phrase reordedabsrexpected to have more
influence on the translation results, which makes this a suitable data set teeaaatydemonstrate
the effectiveness of our proposed DPR model.

For the experiments, sentences of lengths between 1 and 100 wordsxtraed and the ratio
of source/target lengths was no more than 2 : 1. The training set wasaaiamg{ 20K, 50K, 100K,
15K, 185K } sentences while the test set was fixedkatséntences.

4.1 Classification Experiments

We usedGIZA++ to produce word alignments, enabling us to compare a DPR model against a
baseline LR model (Koehn et al., 2005) that uses MLE orientation prediatidra discriminative
model that uses an ME framework (Zens and Ney, 2006). In additiom|seecompared the clas-

6. The strategy selects the maximum number of iterations and the leartémptnacross-validating on a validation set.
In our experiments, this was done on the K&entence Chinese-to-English MT task and the (max-iteration, learning
rate) with the best performance was chosen for all other MT expetimen

7. The original corpus is availablefatt p: / / proj ect s. | dc. upenn. edu/ Chi nese/ hkl aws. ht m which however con-
tains some sentence alignment errors. The corpus has been fueidueeda up and aligned at the sentence level by
the authors. This refined corpus is now available upon request.
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Context (source) / Position -3 -2 -1 1 2 3
Zhou 0 1 0 0 0 0
liu 0 0 1 0 0 0
xiang 0 0 0 0 0 0
gang 0 0 0 0 0 0
yi 0 0 0 1 0 0
min 0 0 0 0 1 0
ju 0 0 0 0 0 1
fa 0 0 0 0 0 0
sheng 0 0 0 0 0 0
huo 0 0 0 0 0 0
zai 0 0 0 0 0 0
Zhou liu 0 1 0 0 0 0
liu Xiang 0 0 0 0 0 0
Xiang gang 0 0 0 0 0 0
gang Vi 0 0 0 0 0 0
yi min 0 0 0 1 0 0
min ju 0 0 0 0 1 0
jufa 0 0 0 0 0 0
fa sheng 0 0 0 0 0 0
sheng huo 0 0 0 0 0 0
huo zai 0 0 0 0 0 0
Zhou liu Xiang 0 0 0 0 0 0
liu Xiang gang 0 0 0 0 0 0
Xiang gang yi 0 0 0 0 0 0
gang yi min 0 0 0 0 0 0
yi min ju 0 0 0 1 0 0
min ju fa 0 0 0 0 0 0
ju fa sheng 0 0 0 0 0 0
fa sheng huo 0 0 0 0 0 0
sheng huo zai 0 0 0 0 0 0

Figure 7: An example of the linguistic feature space created for all phiagégure 3 and the non-
zero features for the phrase pair (“Xiang gang”, “Hong Kong”).eDa space limitation,
this example only demonstrates the context features for the source plitasehe top
left block in Table 3).

13
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Cluster %> (Chinese character)
label an quan (Chinese pinyin)
¢z an quan - safet
Training q ¥
an quan - safely
Samples
N=4 an quan - safety of
an quan - safe
5 (a)
E T T § &
ot ; g
iy | 2
e ]
1 B
B nen ] 7
i 3 P
E’a 77777777 J IE3 e "
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3 " E | =
E., g 0 i I i i i
e 1 2 3 4 5 & 1 15 2 25 3 35 4 4.5 5 55
2 source Phrase (cluster) Index <" Number of features (log10)
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Figure 8: (a) A cluster for the source phrase “an quan” and its traimimgptes (phrase pairs). Note
that the linguistic features for the samples are not demonstrated in this exdb)ple
number of training samples for each cluster (phrases are extracted 88tChinese-
English sentence pairs). (c) The statistics of the number of featuresati@mumber of
training samples (phrases are extracted fromKL8hinese-English sentence pairs).

>

Statistics Chinese | English g
Sentence Pairs 216,250 2
Running Words | 9.76M | 7.00M %
Vocabulary Size | 8,120 | 23,025 5

Figure 9: The data statistics for thmarallel texts of Hong Kong lawsorpus (left) and the statistics
of phrase reordering distandefor all consistent phrase pairs (up to length 8) extracted
from the corpus (right). The word alignments are provided by the wordmiént toolkit
GIZA+ +. The right figure shows that short distance phrase movementsi(ked) only
take up 62% of the whole phrase movements.
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Chinese-to-English task
Training set Test set

20K 50K 100K | 150K | 18K | 20K | 50K | 10K | 15K | 18X
d<0 0.17M | 0.45M | 0.82M | 1.25M | 1.63M | 13K | 16K | 16K 17K 17K
d=0 0.4MM | 1.11M | 2.10M | 3.30M | 4.04M | 28K | 33K | 34K | 38K | 38
d>0 0.12M | 0.32M | 0.61IM | 0.90M | 1.11M 9K 10K | 11K 11K 11K
d<-5 80K | 0.20M | 0.38M | 0.56M | 0.70M | 6.0K | 6.5K | 7.3K | 7.5K | 7.4K
—5<d<0| 90K | 0.25M | 0.44M | 0.69M | 0.83M | 7.0K | 9.5K | 8.7K | 9.5K | 9.6K
d=0 41M | 1.11M | 2.10M | 3.30M | 4.04M | 28K | 33K | 34K | 38K | 38&
0<d<5 40K | 0.10M | 0.20M | 0.27M | 0.31M | 25K | 2.8K | 25K | 24K | 2.2K
d>5 80K | 0.22M | 0.41M | 0.63M | 0.80M | 6.5K | 7.2K | 85K | 8.6K | 8.8K

Orientations

Table 4: The training and the test sizes (phrase pairs) for three-elags(top) and five-class setup
(bottom), where K” indicates thousand and\” indicates million.

sification performance and the computational efficiency among the thregngagents for DPR:
SVM,B MMR and MMS, where the goal was to find the best learning agent for thexperiments.

Two orientation classification tasks were carried out: one with three-otisp and one with
five-class setup. We discarded points that had long distance reordeting15, representing less
than 8% of the data) to avoid some alignment errors causdéalBf++. This results in data sizes
shown in Table 4. The classification performance was measured by eall@recision across all
orientation classes and the class-specific F1 measures and the expenerentpeated three times
to asses variance.

4.1.1 G®OMPARISON OFOVERALL PRECISIONS AND THECLASS-SPECIFICF1-SCORES

Figure 10 shows classification accuracies at different sizes of trasetsgand we observed a mono-
tonic increase with the amount of training data used. In addition, all discriméatodels perform
better than the generative LR model. The MMS approach achieves thelagsification perfor-
mance, with an absolute ®% average improvement with three-class setup and an absolidte 8
average improvement with five classes. Similar improvements are obsereedexamining class-
specific F1 scores on Table 5 and Table 6; the DPR model with the MMS Igaagient achieves
the best results. However, the DPR models with SVM and MMR techniquestdoenform very
well in the experiments, possibly due to the feature expression we usee. (ginstructing a kernel
using the sparse feature expression usually results in a very spanst tkatrix where little sim-
ilarity between samples is presented, SVM and MMR might not extract ateegquarmation for
modelling phrase movements.

When the training sample size is large, the ME model performs better than allledneing
agents except MMS, showing its good ability in exploiting features. But whenraining sample
size is small (e.g., 30-sentence task), its results are worse than that of SVM, possibly due to the
over-fitting on the training data. This reveals the importance of choosingrities for the ME
models: a simple prior may not be helpful while a complicated prior usually malkesaiming

8. The multi-class SVM model is trained by SVM-Multiclass (Tsochantarida.e2004).
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Orientations Training | Generative mode Discriminative models
Data LR MMR SVM ME MMS
20K 57.2+0.8 63.7+06 | 6414+0.9 | 639+05 | 64.74+0.6
50K 585+0.1 65.6+0.6 | 65.8+0.7 | 6569+05 | 67.4+0.1
d<0 10K 616+1.1 69.6+14 | 706+1.3 | 71.8+£1.3 | 742+0.3
150K 63.84+0.6 723+08 | 73.04+:0.6 | 75.3£1.3 | 7654+1.0
18K 63.3+0.8 722+12 | 731408 | 75710 | 76.84+-1.0
20K 80.1+0.3 836+0.1 | 843+0.2 | 837+0.2 | 847+0.2
50K 80.0+0.1 834405 | 845+0.2 | 8454+0.3 | 855+0.2
d=0 100K 81.74+0.2 8574+0.6 | 87.0+0.3 | 87.84+:-0.3 | 88.6+0.3
150K 83.0+0.3 86.84+0.4 | 88.1+0.3 | 89.0+0.4 | 89.9+0.4
18K 829+0.2 869+0.2 | 882+0.3 | 8954+0.3 | 90.3+0.2
20K 44.24-0.8 55940.7 | 56.6+0.8 | 5564+-0.6 | 58.1+1.0
50K 44.34-0.3 549405 | 56.7+0.2 | 56.14+:0.2 | 59.3+0.5
d>0 10K 484420 63.6+06 | 65140.2 | 665+0.1 | 6874+0.1
150K 51.44+0.6 64.7+03 | 665+0.2 | 685+05 | 70.8+0.3
18K 492+1.0 649+15 | 665+0.3 | 696+15 | 71.5+1.6
P-value in T-test
Orientations Generative mode Discriminative models
LR MMR SVM ME
d<0 1.02e-8 2.75%—-5| 7.27e—5 | 1.00e—4
d=0 8.66e— 10 8.3%—7 | 155-5| 21%-6
d>0 197e-9 1.45—-6 | 7.19e—6 | 3.84e—9

Table 5: Classification performance on the Chinese-English corpus:labg-specific F1-scores
[%)] for three-class setup. Bold numbers refer to the best resbimlues ofT-test for
statistical significance in the differences between MMS and other modedbane in the
lower table.

time increase dramatically. Hence, how to choose the appropriate pridviEfar order to balance
training speed and performance is often difficult. Alternatively, using #rfy estopping strategy
DPR with MMS does not over-fit the training data, indicating that the PSL alkgorin company
with early stopping already guards against over-fitting.

Figure 11 further demonstrates the average precision for each negrdiestanced on the 18K-
sentence task (five-class setup), using the results provided by LRpMBERBR with MMS respec-
tively. It shows that even for long distance reordering, the DPR mddepsrforms well, while
the LR baseline usually performs badly (more than half examples are cldssif@rectly). With
so many classification errors, the effect of this baseline in an SMT systenadibt, even with a
powerful language model. Meanwhile, we observed that results faaforphrase movements (i.e.,
d < 0) are better than those for backward reorderings @.e.,0). We postulate this is because the
reordering patterns for backward reorderings also depend onith@aiion classes of the phrases
nearby. For example, in Figure 3, the phrase “on a building” would bedrwdrd reordering” if
it does not meet another “forward” phrase “a fire has taken plackis dbservation shows that a
richer feature set including a potential orientation class of nearby @hraay help the reordering
classification and will be investigated in our future work.
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Figure 10: The overall classification precision of three-class setuprgi@)) and five-class setup

(Figure (b)), whereK” indicates thousand and the error bars show the variances.
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Figure 11: Five-class classification precision with respedtdn the 18K-sentence task. A similar

trend is also observed on the three-class classification precision.
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Orientations Training | Generative mode Discriminative models
Data LR MMR SVM ME MMS
20K 409+2.4 462+18 | 47.2+24 | 456+19 | 47.0+15
50K 41.04+0.2 465406 | 481+04 | 47.5+0.3 | 496+0.7
d<-5 100K 46.9+0.1 547+15 | 56.3+£0.8 | 57.3+0.5 | 58.7+0.8
15K 476109 571+11 | 589+14 | 605+13 | 621+1.1
18X 478+0.3 576+0.4 | 593+0.3 | 618+0.7 | 634+0.7
20K 350+15 4464+16 | 452+13 | 466+1.1 | 476+10
50K 408+15 523+1.2 | 524+0.8 | 538+0.7 | 5554+0.2
—-5<d<0| 10K 433+0.5 553+1.2 | 561+15 | 587+1.4 | 609+0.5
15K 478+17 60.84+42.0 | 61.84+2.0 | 651+25 | 66.1+2.0
18K 457+15 502+15 | 610+15| 648+16 | 66.0+15
20K 799+0.3 836+0.2 | 840+0.2 | 839+0.2 | 847+0.3
50K 80.0+0.1 837+0.2 | 843+0.2 | 844+0.2 | 8554+0.2
d=0 10K 814+0.1 86.0+0.6 | 86.8+0.5 | 87.6+0.4 | 886+0.4
150K 827+0.3 872+0.3 | 879+0.3 | 888+0.5 | 89.8+0.3
18K 8274+0.2 872+0.1 | 882+0.2 | 8954+0.3 | 90.4+0.2
20K 134+1.8 392+3.0 | 428+35 | 410+3.0 | 463+25
50K 220+17 445410 | 476+0.6 | 455+0.4 | 50.8+0.6
0<d<5 10K 192+24 509+0.9 | 536+15 | 5464+13 | 581+1.1
15K 238+0.7 502+0.9 | 544+0.7 | 56.8+1.7 | 604+1.1
18K 196428 478+28 | 514+30 | 562+37 | 60.0+3.0
20K 41.44+0.9 479435 | 507+1.1| 499+10 | 508+21
50K 394+0.8 495+0.2 | 50.9+05 | 50.8+0.4 | 554+0.5
d>5 10K 47.0+13 509+0.1 | 612+0.6 | 627+0.6 | 6454+0.8
15K 488+05 620+0.1 | 6384+0.2 | 652+0.6 | 67.1+0.2
18K 494106 629+13 | 649+13 | 67.2+1.4 | 688+1.2

P-value in T-test

Orientations

Generative mode

Discriminative models

LR MMR SVM ME
d<-5 6.1%—7 3.93e—-5 | 9.30e—3 | 7.8%—-10
—-5<d<0 7.77e—10 3.07e—7 | 3.6%—-7 | 2.02e-5
d=0 114e-9 1.19%—-6 | 3.50e—6 | 89%—-11
0<d<5 2.36e—11 521e—8 | 850e—5| 9.51e—9
d>5 4.76e—8 4.25%—7 | 856e—4 | 1.00e—3

lower table.

4.1.2 EXPLORING DPRWITH MMS

18

Table 6: Classification performance on the Chinese-English corpus:labe-specific F1-scores
[%] for five-class setup. Bold numbers refer to the best resitsalues of T-test for
statistical significance in the differences between MMS and other modedtana in the

With the above general view, the DPR model with the MMS learning agenttoagnsto be the best
classifier. Here we further explore its advantages by analysing moriéedetsults.
Figure 12 first illustrates the relative improvements of DPR with MMS over LE,aid DPRs

with MMR and SVM on the switching classes (i.€. # 0), where we observed that the relative
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Figure 12: The average relative improvements of DPR with MMS over (afhFDPR with MMR,
(c) DPR with SVM and (d) ME on the switching classes (ice# 0) for three-class setup
(Red dashed lines) and five-class setup (Blue solid lings).irfdicates thousand and
the error bars show the variances.

improvement with five-class setup is usually greater than that with threesgags. This implies
the more orientation classes DPR has, the better performance MMS actwewpared with other
models. This observation makes MMS the most promising learning agent intowe fvork where
we expect to extend the orientation set further.

We then compared the DPR model with MMS with the LR and the ME models accamling
the overall precision of each cluster on Figure 13. Compared with theatereemodel LR, DPR
performs better in many of the clusters, especially when given enouginttaamples (the black
lines in the figure). This verifies the advantage of discriminative modelsarticplar, the number
of larger circles which imply greater ambiguity in target translations is greader ttiat of larger
rectangles; indicating MMS performs better in these ambiguous clusters, igghan the target
translations also contain useful information about phrase movements.

Comparing the two discriminative models, the cluster improvement of DPR ovesgifgaller
than that over LR, represented by the reduced number of circles aitctkased number of rect-
angles. However, DPR with MMS still achieves a stable improvement overMis.is especially
true when the training samples are not adequate (represented by mtag icif€igure 13 (c) than
in Figure 13 (d)), where the ME model is more likely to over-fit while the DPR WitklS still
performs well.

Finally we illustrate three examples on Figure 14, where we observed aigng@vement
of DPR over LR. The first (top) example demonstrates the benefit fronatiget translations as
by translating the Chinese source phrase “you guan” into differenligbngiords (i.e., “relating”,
“relates” or “relevant”), the phrase pairs usually have differentrbgtilar movements. The second
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Figure 13: Scatter-plots comparing the cluster accuracies of DPR with MithShve LR (top) and
ME (bottom) models on 30-sentence task (left) and 1%&6sentence task (right). Each
circle/rectangle/point represents a cluster that contains all phrasewstira unique
source phrase (e.g., Figure 8 (a)). Those clusters for which therperhce difference
(x-axes) is greater thanDare shown as rectangles and circles, the areas of which are
proportional to the number of target translations in them. The y-axes steoauthber
of training samples (in log 10 scale) for each cluster.
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Source Phrase: %
(CH pinyin: you guan)
Target translations:

1. relating
2. relates
3. relevant
Training examples: 1060
Classification accuracy:
LR: 37.5% DPR: 75%

| #% || wiE
‘X d>0
‘A complaint‘ | relating to |
(5[ Jlex] [mAan]
d<0

Lﬂ\person‘ ‘who“relates t0|

CESNE -m
v
‘re]evant | ‘ regulation l

LR [ = [N | /927

—]

d>

Names of

Source Phrase: {T-{
(CH pinyin: ren he)
Target translations:
any of
Training examples:
10493
Classification accuracy:
LR: 54.9% DPR: 85.2%

any of | [the persons|[ ***

d<0

HE| [ R ] [

[Any of | [therights|] |vestedin| [an employee|

d<0

4] rFyu|l4m1ﬁ=-éH

|uny of | Ithe fol]owing| order

‘Maintenance order [ means

(199148 || || 1H |

Source Phrase: 19914F
(CH pinyin: 1991 nian)
Target translations:
1991
Training examples: 211
Classification accuracy:
LR: 91.6% DPR: 100%

d>0

(19917 | | &6 |
d>0

|Ordinance | |I99] \

ENEEIREEE ]|?§E||1991$|

|W11cre | |thc re]evant| |data| |occurm

Figure 14: Phrase movements captured by the DPR model with MMS on Ksé&ttence task.
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(middle) example shows a grammatical structure captured by the DPR model:lishBhg phrase
“any of” usually stays in front of the subjects (or objects) it modifies. émeral, when given
enough training samples a discriminative model such as DPR is able to cagtiotes\grammatical
structures (modelled by phrase movements) better than a generative mdaefindl (bottom)
example depicts one type of phrase movements caused by the constagsexs in different
languages (e.g., date expression). Although such expressions camdved manually with a rule-
based MT system, they can easily be captured by a DPR model as well. ,hancenclude that
the frequent phrase movements, whether caused by different granminsaticéures or rule-based
expressions, can be captured and the movement information is then pagseah MT decoder to
organise the target sentence structures.

4.1.3 A COMPARISON OF THETRAINING TIME
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Figure 15: The training time of MMR, ME, MMS (coded in Python) and SVMded in C++) to
reach the same training error tolerance.

As a comparison, we plot on Figure 15 the training time of MMS, MMR, ME an1S¥ reach
the same training error tolerangeFor the DPR model, MMS is the fastest as expected where in
contrast the SVM technique is the slowest. Moreover, training a DPR matleMMS is faster
than training an ME model, especially when the number of classes increhgeis because the
generalised iterative scalin@GIS) algorithm for an ME model requires going through all samples
twice at each round: one is for updating the conditional distributfesf;, &) and the other is for
updating{wo }oco. Alternatively, the PSL algorithm only goes through all examples oncedit ea
round, making it faster and more applicable for larger data sets.

9. The MMS, MMR and ME models are coded in Python while SVM-multiclaseded in C++.
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4.2 Machine Translation Experiments

We now test the effectiveness of the DPR model in an MT system, using ao$tdite-art SMT
system—MOSES (Koehn et al., 2005) that models phrase movements with the d&lsnas a
baseline system. To keep the comparison fair, our MT system just repV@8&S’s LR models
with DPR while sharing all other components (i.e., a phrase translation plibbatodel, a 4-gram
language model (Stolcke, 2002) and the beam search decoderditioadwe also compared the
DPR model with the ME model in Zens and Ney (2006) on thKs@ntence MT task, where the
results confirmed that DPR can lead to improvement performance.

We chose MMS as the learning agent for the DPR model in consideration pfoisinent
classification performance. In detail, all consistent phrase pairs (updthl8) were extracted from
the training sentence pairs and form the sample pool. The DPR model wasdimea by the PSL
algorithm and the functioh(z) = exp(z) was applied to Equation (3) to transform the prediction
scores.

To make use of the phrase reordering probabilities, two strategies weliedapone is to use
the probabilities directly as the reordering cost (dotted line in Figure 1) hwikialso used in Xiong
et al. (2006); Zens and Ney (2006); the other is to use them to adjustdle distance-based
reordering cost (solid line in Figure 1), where the reordering costseinience is computed as

— dm

he(P,8) = - _On
(f]m«a_mz)e(flé‘) Bp(o| me?Qm)

(7)

with tuning parametef. Intuitively, if the DPR model has a large orientation set (i.e., the phrase
movements are modelled in a precise way) and the orientation predictions @ieesgough, it
is reasonable to use the reordering probabilities directly. However, axpexienced in Section
4.1, the DPR predictions with five-class setup still need improvement, espdoiallye switching
orientations (i.e.d # 0). On the other hand, if the DPR model only uses a small orientation set (e.g.,
three-class setup), itis able to provide very good orientation predictuisll long distance phrase
movements will have the same reordering probabilities, which may mislead the 86bter and
spoil the translations. In this case, the distance-sensitive expresigrafie to fill the deficiency
of a small-class setup of DPR by penalising long distance phrase movemesise kh the MT
experiments, we used the five-class phrase reordering probabilitieshdindile the three-class
probabilities were used to adjust the word distance-based reordeshg co

For parameter tuning, minimume-error-rating training (MERT) (Och, 2003kexuo tune the
parameters. Note that there are seven parameters which need tuning BES%QR models, while
there is only one for DPR. The translation performance is evaluated lsystandard MT mea-
surements, namehyord error rate (WER) (Tillmann et al., 1997)BLEU (Papineni et al., 2002),
NIST (Doddington, 2002) antMETEOR(Banerjee and Lavie, 2005). In effect, WER and NIST
weight more on word/phrase translation accuracy; BLEU biases tovita@naslation fluency; and
METEOR emphasises translation adequacy (i.e., word/phrase translat#ih). réhe reader is re-
ferred to Callison-Burch et al. (2007) and Ni (2010) for detailed dis@mns on these measurements.

We first demonstrate on Table 7 a comparison of the DPR model with the LR anlEh
models on the 3Q-sentence Chinese-to-English MT task. The improvements on most evagiation
over LR and ME are consistent with what are observed on the reogdgessification experiments.
However, the MT results show no difference between three-classaediive-class setup, possibly
due to the low classification accuracy of DPR with five-class setup (edlpemimthe switching
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DPR ME
Measure MOSES 3-class 5-class 3-class 5-class
WER [%)] 24.3+06 | 246+15 | 247+11 | 253+1.7 | 26.0+2.1
BLEU [%] 445+12 | 471+£13 | 475+12 | 4617+1.7 | 450+25
NIST 8.734+0.11 | 9.044+-0.26 | 9.034+-0.32 | 8.72+0.26 | 8.49+0.49
METEOR [%] | 66.14+0.8 | 6644+11 | 661+11 | 650+17 | 639+26

Table 7: The comparison of the DPR model with the LR and the ME models on Ks&@ence
MT task.

classes). How to improve the classification accuracy of DPR with a large st8p is hence a
main challenge for our future work.

Since the three-class DPR achieves the same translation quality but it is fastiwe other
MT tasks we only used DPR with three-class setup as the phrase reordestej. Figure 16
illustrates the comparison of the DPR MT system with the baseline MOSES augdodthe four
MT evaluations, where we observed consistent improvements on mosagvatl Furthermore,
the larger the sample size is, the better results DPR will achieve. This agaus ghe learning
ability of the DPR model when given enough samples. In particular, boteragsproduce similar
predictions in sentence content (represented by similar WERS), but ©wsystem does better at
phrase reordering and produces more fluent translations (refeddmnbetter BLEUS).

However, if the sample size is small (e.g., thek2€entence task), DPR is unable to collect
adequate phrase reordering information. In this case the applicationRt®@& MT system may
involve a risk of a reduction in translation quality (represented by the lovitgsaon WER and
METEOR).

5. Conclusions and Future Work

We have proposed a distance phrase reordering (DPR) model usiags#ication scheme and
trained and evaluated it in a structured learning framework. The pheasdearing classification
tasks have shown that DPR is better at capturing phrase movements oi& émel ME models.
The MMS learning agent in particular, achieves outstanding perforniarieems of classification
accuracy and computational efficiency. An analysis of performanoéirows that the proposed
MMS method is shown to perform particularly well when there is a large amofunhining data,
and on translation examples with large ambiguity in the target language domain.

Machine translation experiments carried out on the Chinese-Englishsipw that DPR gives
more fluent translation results, which confirms its effectiveness. On tlee b#md, when training
data is sparse, the process may involve a risk of a reduction in translagtyqu

For future work, we aim to improve the prediction accuracy of the fivesctasup before apply-
ing it to an MT system, as DPR can be more powerful if it is able to provide ma&iqe phrase
positions for the decoder. We also aim to formulate the phrase reordenbtem as an ordinal
regression problem rather than a classification one proposed in this gayp¢ghermore, we will
refine the learning framework of DPR by carefully designing or automatitzdisning the distance
matrix A (0n,0'). A richer feature set to better characterise the grammar reorderinge & diec-
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tion of our current investigations. Finally we will try the DPR model on largepora (e.g., the
NIST Chinese-English corpus), with the purpose of verifying its ability @liag up to large data
collections.
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Appendix A.

In this appendix we infer the optimisation problem (6) from (4).

To consider adding a regularisation term, we upper bound the norm bfreaby ||w,| < R.
Then minimising (5) with respect tw, }oco is equivalent to solving the following optimisation
problem

min_L({Wo}oco), (8)

[[wol|<R

where the cumulative lods({Wo}oc0) = ¥ p(0n, I, &, {Wo}oc0)-
n p— —
We can then express the sub maximisation problemfhgos, 0) +wg @( ", €")] —w{ (", &")

0#£0p
in Equation (5) as &near programmingproblem

max zozﬁ[ (0n,0) + WM, &)]

s.t. %zﬂ 0 ' )

Ln=-1
22 >0,0€{0\on}

Let Z, denote the closed setaf, z= {z;,...,2y} andZ = Z; x ... x Zy, substituting (9) into (8)
yields a natural saddle-point form

min maxL({w, 7
Iwo|| <R z€z ({Wo}oco,{Zo}oc0)

with

L({Wo}oc0:{Zo}oco) =

which is the optimisation problem (6).
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Appendix B.

In this appendix, we describe more details about maximum margin regre SHibR )
To illuminate the background of the MMR, let the constraints

S.t. z ¢<On,0)Wg(p(ﬁ],§1) Z 1_5(1?]7@)
ocQ_ _
E(fn e >0 v(fhed ey
be transformed into an inner product based form

S d(on, 0w (", &) > 1-&(", @)
o0

_ _ 10

= (¢ (on), We(f",€)) > 1-¢(f", ") (o)
where the following short hand notations are appliat:= {w] } € RI0*dim@ s a matrix in which
the rows correspond to the row vectar}, andd (o,) = (¢(0n,0)), 0 € O'is a vector of the indicator
values.

To give a possible interpretation to the inner product based constraimg&leo the well known
cosine rule connecting the inner product and the distance via norms;in@m space, hamely for
every pair of vectors, b of this space the following hold& — b||3 = [|a/|3+ ||b|3 — 2(a, b). Ex-
ploiting this equality the inner product based constraints (10) can bedramsdl into an equivalent,
norm based one

16(0n) 13+ W7, 8|3 — 2+ 2(, &) > [|$(0n) — W 1, &)]3 . (11)

Constraints (11) state that the squared distance between the vector negdteskntation of the
outputs and the image of the input vectors with respect to the linear operatox kvais bounded
above by summing of the square norm of outputs, the norm of the input inmaiggetalerance given
by the margin. Therefore if the Frobenius normvigfis minimised then the constraints force the
distance between the outputs and the image of the inputs to be small. If the naliowatputs are
the same this minimisation works uniformly, otherwise larger distance error iselfov outputs
with greater norm.

The optimisation problem of MMR allows to use implicit representation not onlytfeiinputs
but also for the outputs. To see that one can introduce Lagrangian mustjipli’, €"), to each
constraints and write up the dual problem for MMR

Kim Kim
min %(fn@)(f_mz )a(f_vén)a(f_m7ém><¢(on)7¢(0m>><(p(f_nﬂén)7(p(f_m7ém)>
~ s a(fhe :
(f2.e") _
wrt a(fa), v & ey

wherek®, andkém stand for the inner products between the input and the output pairstieshe
Therefore, to solve the dual problem requires only the knowledge ofahues of inner products
of the output pairs and not their concrete feature representationukerfmotivations behind the
formulation of MMR in Szedmak and Hussain (2009).
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