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Abstract

Recently,variational Bayesiar(VB) techniques have been applied to probabilistic mataiotdr-
ization and shown to perform very well in experiments. Irsthaper, we theoretically elucidate
properties of the VB matrix factorization (VBMF) method. rdlgh finite-sample analysis of the
VBMF estimator, we show that two types of shrinkage factotiistén the VBMF estimator: the
positive-part James-Stein (PJ&)rinkage and th#ace-normshrinkage, both acting on each sin-
gular component separately for producing low-rank sohgiorl he trace-norm shrinkage is simply
induced by non-flat prior information, similarly to the maxim a posteriori (MAP) approach.
Thus, no trace-norm shrinkage remains when priors are monaiative. On the other hand, we
show a counter-intuitive fact that the PJS shrinkage faistéept activated even with flat priors.
This is shown to be induced by timon-identifiabilityof the matrix factorization model, that is,
the mapping between the target matrix and factorized nestris not one-to-one. We call this
model-induced regularizationVe further extend our analysis to empirical Bayes scenavitere
hyperparameters are also learned based on the VB free effégmgyughout the paper, we assume
no missing entry in the observed matrix, and therefore bolative filtering is out of scope.

Keywords: matrix factorization, variational Bayes, empirical Baypssitive-part James-Stein
shrinkage, non-identifiable model, model-induced redzddaion

1. Introduction

The goal ofmatrix factorization(MF) is to find a low-rank expression of a target matrix. MF can
be used for learning linear relation between vectors suctedsced rank regressiofBaldi and
Hornik, 1995; Reinsel and Velu, 199&gnonical correlation analysiéHotelling, 1936; Anderson,
1984), partial least-squaregWold, 1966; Worsley et al., 1997; Rosipal andakrer, 2006), and
multi-task learning{Chapelle and Harchaoui, 2005; Yu et al., 2005). More recently, Mppdied

to collaborative filteringfor imputing missing entries of a target matrix, for example, in the context
of recommender systenfi§onstan et al., 1997; Funk, 2006) andcroarray data analysigBaldi

and Brunak, 1998). For these reasons, MF has attracted consedattgmtion these days.

x. This paper is an extended version of our earlier conference pdpkajima and Sugiyama, 2010).
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1.1 MF Methods

Srebro and Jaakkola (2003) proposedwteéghted low-rank approximatiomethod, which is based
on theexpectation-maximizatiofEM) algorithm: a matrix is fitted to the data without a rank con-
straint in the E-step and it is projected back to the set of low-rank matricegbular value de-
composition(SVD) in the M-step. Since the optimization problem of the weighted low-rank ap
proximation method involves a low-rank constraint, it is non-convex anddhlysa local optimal
solution may be obtained. Furthermore, SVD of the target matrix needs tafdedcaut in each
iteration, which may be computationally intractable for large-scale data.

Funk (2006) proposed thregularized SVDmethod that minimizes a goodness-of-fit term com-
bined with theFrobenius-normpenalty under a low-rank constraint by gradient descent (see also
Paterek, 2007). The regularized SVD method could be computationally rifariere than the
weighted low-rank approximation method in the context of collaborative filjesince only ob-
served entries are referred to in each gradient iteration.

Srebro et al. (2005) proposed to use trece-normpenalty instead of the Frobenius-norm
penalty, so that a low-rank solution can be obtained without having an #xtplicrank constraint.
Thanks to the convexity of thigace-norm a semi-definite programming formulation can be ob-
tained when thlinge-losqSctblkopf and Smola, 2002) is used. See also Rennie and Srebro (2005)
for a computationally efficient variant using a gradient-based optimizationauetith smooth ap-
proximation.

Salakhutdinov and Mnih (2008) proposed a Bayesismximum a posteriorfMAP) method
based on the Gaussian noise model and Gaussian priors on the decdmadsees. This method
actually corresponds to minimizing the squared-loss with the trace-nornityp€8eebro et al.,
2005).

Recently, therariational Bayesiar{VB) approach (Attias, 1999) has been applied to MF (Lim
and Teh, 2007; Raiko et al., 2007), which we refer t&/8MF. The VBMF method was shown to
perform very well in experiments. However, its good performance wasampletely understood
beyond its experimental success. The purpose of this paper is to prexidmsight into Bayesian
MF.

1.2 MF Models and Non-identifiability

The MF models can be regarded as re-parameterization of the target nsatgxaw-rank matrices.
This kind of re-parameterization often significantly changes the statistibaviie of the estimator
(Gelman, 2004). Indeed, MF models possess a special structure maliedentifiability(Watan-
abe, 2009), meaning that the mapping between the target matrix and théztttoatrices is not
one-to-one .

Previous theoretical studies on non-identifiable models investigated theidsetmulti-layer
pereptrons Gaussian mixture modelandhidden Markov modelsit was shown that when such
non-identifiable models are trained usiful-Baysian(FB) estimation, the regularization effect is
significantly stronger than the MAP method (Watanabe, 2001; YamazakiMatdnabe, 2003).
Since a single point in the function space corresponds to a set of points {rettundant) param-
eter space in non-identifiable models, simple distributions such as the Gadissidoution in the
function space produce highly complicatealltimodaldistributions in the parameter space. This
causes the MAP and FB solutions to be significantly different. Thus the/lzettd non-identifiable
models is substantially different from that of identifiable models. For Gaussigture models and
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reduced rank regression models, theoretical properties of VB havbeds investigated (Watanabe
and Watanabe, 2006; Nakajima and Watanabe, 2007).

1.3 Our Contribution

In this paper, following the line of Nakajima and Watanabe (2007) which tigated asymptotic
behavior of VBMF estimators and the generalization error, we provide & pracise analysis of
VB estimators. More specifically, we deriv@n-asymptotibounds of the VBMF estimator. The
obtained solution can be seen as a re-weighted singular value decompasitioiine weights in-
clude a factor induced by thgayesiarinference procedure, in the same wayatomatic relevance
determination(Neal, 1996; Wipf and Nagarajan, 2008).

We show that VBMF consists of two shrinkage factors, flositive-part James-SteifiPJS)
shrinkage (James and Stein, 1961; Efron and Morris, 1973) andattenormshrinkage (Srebro
et al., 2005), operating on each singular component separately ftug@ng low-rank solutions.

The trace-norm shrinkage is simply induced by non-flat prior informatsnn the MAP ap-
proach (Salakhutdinov and Mnih, 2008). Thus, no trace-norm siigmkemains when priors are
non-informative. On the other hand, we show a counter-intuitive fattiieaPJS shrinkage factor
is still kept activated even with uniform priors. This allows the VBMF methodvimicioverfitting
(or in some cases, this may cause underfitting) even when non-inforrpéative are provided. We
call this regularization effeanodel-induced regularizatiosince it is caused by the structure of the
model likelihood function.

We further extend the above analysistopirical VBMF(EVBMF) scenarios, where hyperpa-
rameters in prior distributions are also learned based oWBh&ee energy We derive bounds of
the EVBMF estimator, and show that the effect of PJS shrinkage is adeabted compared with
the uniform prior cases.

Finally, we note that our analysis relies on the following three assumptionst, #ie assume
that the given matrix isully observed, and no missing entry exists. This means that missing entry
prediction is out of scope of our theory. Second, we require the noise iodependent Gaussian
noise and the priors to be isotropic Gaussian. Third, we assume the colismmadependence on
the VB posterior, which is different from the standard VB assumption thit thhe matrix-wise
independence is required.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we formulatét#h problem and
review its Bayesian approaches including FB, MAP, VB methods, and thmgirigal variants. In
Section 3, we analyze the behavior of MAPMF, VBMF, and their empiricabwés, and elucidate
the regularization mechanism. In Section 4, we illustrate the characteristicibediMF solutions
through simple numerical experiments, highlighting the influence of non-idaitify of the MF
models. Finally, we conclude in Section 5. A brief review of the James-Steinksige estimator
and all the technical details are provided in Appendix.

2. Bayesian Approaches to Matrix Factorization

In this section, we give a probabilistic formulation of theatrix factorization(MF) problem and
review its Bayesian methods.
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Figure 1: Matrix factorization model.

2.1 Formulation

The goal of the MF problem is to estimate a target matrigc R-*M) from its observation
V e RBM,
Throughout the paper, we assume that
L<M.

If L > M, we may simply re-define the transpds$é asU so thatL < M holds. Thus this does not
impose any restriction.

A key assumption of MF is tha&l is a low-rank matrix. Let (< L) be the rank oJ. Then the
matrixU can be decomposed into the productaf RM*H andB ¢ R-*H as follows (see Figure 1):

U=BA'.

With appropriatepre-whitening(Hyvarinen et al., 2001)educed rank regressio(Baldi and
Hornik, 1995; Reinsel and Velu, 199&gnonical correlation analysiéHotelling, 1936; Anderson,
1984), partial least-squaregWold, 1966; Worsley et al., 1997; Rosipal andakrer, 2006), and
multi-task learning{Chapelle and Harchaoui, 2005; Yu et al., 2005) can be seen asls@esa of
the MF problem Collaborative filtering(Konstan et al., 1997; Baldi and Brunak, 1998; Funk, 2006)
andimage processing_ee and Seung, 1999) would be popular applications of MF. Note thag so
of these applications such esllaborative filteringandmulti-task learningvith unshared input sets
are out of scope of our theory, since they require missing entry prewlictio

Assume that the observed mat¥ixs subject to the following additive-noise model:

V=U+E,

where E (¢ R~M) is a noise matrix. Each entry & is assumed to independently follow the
Gaussian distribution with mean zero and variao€eThen, the likelihood(V|A, B) is given by

1
p(VIAB) Dexp( o IV ~BAT o ). )
where|| - ||rro denotes th&robenius nornof a matrix.
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2.2 Full-Bayesian Matrix Factorization (FBMF) and Its Empirical Varia nt (EFBMF)

We use the Gaussian priors on the parametexsdB:

®U) =oa(A)es(B),

a Dexp< Z ‘Zch2”2>— ( tr(ACglAT)>7 2

b t(BG'B")
B) O ) —— | = - . 3
e em( égm@> e(-155 ) )

Here,ay andby, are theh-th column vectors oA andB, respectively, that is,

where

A:(al,...,aH),
B=(by,...,bn).

cgh andcgh are hyperparameters corresponding to the prior variances of thoses/éWithout loss
of generality, we assume that the prodagt,, is non-increasing with respect ko We also denote
them as covariance matrices:

Ca=diagc3,...,C3,),

Cg =diag(ch....,Co,),
where diagc) denotes the diagonal matrix with its entries specified by veetdr(-) denotes the
trace of a matrix.

With the Bayes theorem and the definition of marginal distributionsB#yees posterior (A, B|V)
can be written as

PAB.Y) _ p(VIAB)oA(A)gs(B)
pV)  (PIVIAB) g am(e)

where(-), denotes the expectation over Thefull-Bayesian(FB) solution is given by th&ayes
posterior mean

P(ABV) =

(4)

UPB = (BA") pay)- (5)

We call this method*BMF.
The hyperparameters,, and c,, may be determined so that tiBayes free energy (¥) is
minimized.

F(V)=—logp(V)
—1og(p(V[A, B)) ga (A)gs(B)- (6)

We call this method the@mpirical full-Bayesian MHEFBMF). The Bayes free energy is also
referred to as thenarginal log-likelihood(MacKay, 2003), theevidence(MacKay, 1992) or the
stochastic complexitfRissanen, 1986).
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2.3 Maximum A Posteriori Matrix Factorization (MAPMF) and Its Empir ical Variant
(EMAPMF)

When computing the Bayes posterior (4), the expectation in the denomin&quaftion (4) is often
intractable due to high dimensionality of the paramegfeamdB. More importantly, computing the
posterior mean (5) is also intractable. A simple approach to mitigating this problenuge the
maximum a posterioffMAP) approximation, which we refer to as MAPMF. The MAP solution
UMAP is given by

(jMAP _ gMAP (A\MAP)T

)

where

(’AMAP ”B\MAP)

, = argmaxp(A,B|V).

AB

In the MAP framework, one may determine the hyperparametgrandcy,, so that the Bayes
posteriorp(A,B|V) is maximized (equivalently, the negative log posterior is minimized). We call
this methodempirical MAPMF(EMAPMF). Note that EMAPMF does not work properly, as ex-
plained in Section 3.3.

2.4 Variational Bayesian Matrix Factorization (VBMF) and Its Empiric al Variant (EVBMF)

Another approach to avoiding computational intractability of the FB method is tthasariational
BayeqVB) approximation (Attias, 1999; Bishop, 2006). Here, we review theb&ed MF method
(Lim and Teh, 2007; Raiko et al., 2007).

Let r(A,B|V) be atrial distribution forA andB, and we define the following function&,g
called theVB free energyvith respect ta (A, B|V):

r(ABV)
Fa(rV) = <Iog> . @)
PV.AB)/ (agv)
Using p(V,A,B) = p(A,B|V)p(V), we can decompose Equation (7) into two terms:
r(AB|V)
R (r|V :<Iog> +F(V), (8)
(V) P(ABIV) / apv) e

whereF (V) is the Bayes free energy defined by Equation (6). The first term intieoqugd) is the
Kullback-Leibler divergencéKullback and Leibler, 1951) from(A,B|V) to the Bayes posterior
p(A,B|V). This is non-negative and vanishes if and only if the two distributions agitheeach
other. Therefore, the VB free energys (r|V) is lower-bounded by the Bayes free enefgy ):

Fus(r[V) > F(V),

where the equality is satisfied if and onlyri{fA, B|V) agrees withp(A, B|V).

The VB approach minimizes the VB free eneffgys (r|V) with respect to the trial distribution
r(A,B|V), by restricting the search spacer¢A, B|V) so that the minimization is computationally
tractable. Typically, dissolution of probabilistic dependency between glet@dmparametersy(and
B in the case of MF) makes the calculation feasible:

'(ABIV) = rA(AV)ra(BV). (9)
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Then, the VB free energy (7) is written as

ra(A\V)re(B|V) >
(VIAB)Oa(A)Ps(B) /1, Av)ra(Bv)

ot - i w0

The resulting distribution is called théB posterior The VB solutionUV® is given by theVB
posterior mean

UYE = (BAT)/(apv)- (11)

We call this method/BMF.
Applying the variational method to the VB free energy shows that the VB postatisfies the
following conditions:

ra(AlV) O ga(A)exp((logp(V|AB))rg@v)) » (12)
ra(BIV) O @s(B)exp({logp(V|A,B))r,av)) - (13)

Recall that we are using the Gaussian priors (2) and (3). Also, Equdi)jamplies that the log-
likelihood logp(V|A,B) is a quadratic function oA whenB is fixed, and vice versa. Then the
conditions (12) and (13) imply that the VB posteriai(A|V) andrg(B|V) are also Gaussian.
This enables one to derive a computationally efficient algorithm calledté¢h&ted conditional
modeg(Besag, 1986; Bishop, 2006), where the mean and the covariance patameteré and
B are iteratively updated using Equations (12) and (13) (Lim and Teh7;2R8iko et al., 2007).
This amounts to alternating between minimizing the free energy (10) with respedtA|V) and
rs(B|V).

As in Raiko et al. (2007), we assume in our theoretical analysis that thedistibution
r(A,B|V) can be further factorized as

H
r(AB|V) = |_| ra,(anV)rp, (bn|V). (14)
h=1
Then the update rules (12) and (13) are simplified as
ray(@nV) O @a,(an) exp((10g p(V|A B))r,, (a8 ) - (15)

Moy, (bn|V) O @y, (bn) exp((log P(VIA, B)>r\bh(A,B\bh|V)> : (16)

wherer, 5, andr,p, denote the VB posterior of the parametam@ndB exceptan andbn, respectively.

The VB free energy also allows us to determine the hyperparamé];asdc%h in a computa-
tionally tractable way. That is, instead of the Bayes free enE(l}), the VB free energys (r|V)
is minimized with respect to3, andcZ . We call this methogmpirical VBMF(EVBMF).

3. Analysis of Bayesian MF Methods

In this section, we theoretically analyze the behavior of MAPMF, VBMF, BRA-, and EVBMF
solutions, and elucidate their regularization mechanism.
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3.1 MAPMF

The MAP estimatof AMAP BMAP) s the maximizer of the Bayes posterior. In our model (1), (2),
and (3), the negative log of the Bayes posterior is expressed as

LMIlo 02 H bell2
~logp(a BV) — M199%" Z (M 00 + Liogds + 1ol . LY
2 2
1 H 2
T 552 V- z bhay | + Const (17)
h=1 Fro

Differentiating Equation (17) with respect foandB and setting the derivatives to zero, we have
the following conditions:

an = <||bh||2 ) ( Z_hbh’ah/> bn, (18)
o2\

bh = (Hah‘2+2> (V - Z bh/a,;r,> an. (19)
Co, H=Zh

One may search alocal solution (i.e., a local minimum of the negative log pagteriy by iterating
Equations (18) and (19). However, as shown below, the optimal soludimhe obtained analytically
in the current setup.

When the hyperparameters are homogeneous, thabjs,, = ¢;"h=1,... H}, a closed-form
expression of the MAP estimator can be immediately obtained by combining tHesrgisen in
Srebro et al. (2005) and Cai et al. (2010). The following theorem idigktsextension that covers
heterogeneous cases (its proof is given in Appendix B):

Theorem 1 Letyy, (> 0) be the h-th largest singular value of V. Lef, andwy, be the associated
right and left singular vectors:

L
V=3 Vhwpws, (20)
h=1

The MAP estimatod MAP is given by

H
GMAP _ s AP oy ]
=]
where
o2
YMAP — max{o,yh - } . (21)
Cay, Con,

The theorem implies that the MAP solution cuts off the singular values lessofhydn,, cp, );
otherwise it reduces the singular valuesdsy (c,,Cy, ) (See Figure 2). This shrinkage effect allows
the MAPMF method to avoid overfitting.
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Figure 2: Shrinkage of the ML estimator (22), the MAP estimator (21), ani¥/Biestimator (28)
wheno? = 0.1, ¢, Cy, = 0.1, L = 100, andVl = 200.

Similarly to Theorem 1, we can show that tliaximum likelihoodML) estimator is given by
N H
UML = ZWLthwaTh,
h=1

where

WML — v, for all h. (22)

Thus the ML solution is reduced ¥whenH = L (see Figure 2):
N L
oML — zwwahw;h =V.
h=1

A parametric model is said to lidentifiableif the mapping between parameters and functions is
one-to-one; otherwise the model is said tonoe-identifiable(Watanabe, 2001). Since the decom-
positionU = BAT is redundant, the MF model is non-identifiable (Nakajima and Watanabe).2007
For identifiable models, the MAP estimator with the uniform prior is reduced to thestimator
(Bishop, 2006). On the other hand, in the MF model, a single point in theesfat corresponds
to a set of points in the joint space AfandB. For this reason, the uniform priors &mndB do not
produce the uniform prior od. Nevertheless, Equations (21) and (22) imply that MAP is reduced
to ML when the priors o\ andB are uniform (i.e.¢4,, Cp, — ).

More precisely, Equations (21) and (22) show that the prodcg, — o is sufficient for MAP
to be reduced to ML, which is weaker than bat}, ¢y, — . This implies that both priors oA
andB do not have to be uniform; only the condition that one of the priors is unifesufficient for
MAP to be reduced to ML in the MF model. This phenomenon is distinctively diffefrom the
case of identifiable models.

If the prior is uniform and the likelihood is Gaussian, then the posterior isGdscssian. Thus
the mean and mode of the posterior agree with each other due to the symmetey@dubksian
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density. For identifiable models, this fact implies that the FB and MAP solutioreeagith each
other. However, the FB and MAP solutions are generally different iridentifiable models since
the symmetry of the Gaussian density in the spadd @ no longer kept in the joint space &f
andB. In Section 4.1, we will further investigate these distinctive features of tReriMdel using
illustrative examples.

3.2 VBMF

Substituting Equations (1), (2), and (3) into Equations (15) and (16jinddehat the VB posteriors
can be expressed as follows:

A|V |_| fM\/I ah,liahvzah)
B\V |_| M bh,ubwzbh)

whereAg(+; 1, %) denotes thel-dimensional Gaussian density with mgamnd covariance matrix
2. Ma,, My Zah, andzy, satisfy

.
1
Hay = 52 (V - ;th/li;) by, (23)
h
1 T
Hioy = %o |V = ; Koy Ha, | Bay, (24)
h=h
1 2 —2 -
Zah = ? (Hl‘l’bhH +tr(zbh)) +Cah |[\/|, (25)
1 2 —2 -
Zon = | 52 (ltanll®+1r(Za)) +c52 ) I (26)

Iq denotes thé-dimensional identity matrix. One may search a local solution (i.e., alocal minimum
of the free energy (10)) by iterating Equations (23)—(26).
It is straightforward to see that the VB solutibrY® (see Equation (11)) can be expressed as

H
VB = z thligh- (27)
h=1

Then we have the following theorem (its proof is given in Appendix C):

Theorem 2 UVB is expressed as

T

VB VB
U™ =%V wbwy,

Mz

h

1

1. This theorem could be regarded as a more precise version oféFhdogiven in Nakajima and Watanabe (2007).

2592



THEORETICAL ANALYSIS OF BAYESIAN MATRIX FACTORIZATION

wherew,, and wy, are the right and the left singular vectors of V (see Equai{p®)). When
Yh > VM2, YWB (= || a, || || b, ||) is bounded as

Moz) o’y/M/L| e Ma?
maxs 0, [ 1— Vh — <Vn < <1— > Vh- (28)
{ ( Vﬁ Cay, Cby, " yzh

Otherwisey/® = 0.

The upper and lower bounds given in Equation (28) are illustrated in &@ufheorem 2 states
that, in the limit ofca, Co, — o, the lower bound agrees with the upper bound and we have

Mg?
- maxs 0, { 1— —— if yh > 0,
lim 9= { ( % )V“} " (29)
™ 0 otherwise

This is the same form as tip®sitive-part James-Stein (PJS) shrinkage estim@tames and Stein,
1961; Efron and Morris, 1973) (see Appendix A for the details of th® &stimator). The factor
Ma? is the expected contribution of the noisefe-when the target matrix id = 0, the expectation
of y2 over allhis given byMa?2. Wheny2 < Ma?, Equation (29) implies thal/® = 0. Thus, the PJS
estimator cuts off the singular components dominated by noisg? iereases, the PJS shrinkage
factorMch/y2h tends to 0, and thus the estimated singular v@ﬁebecomes close to the original
singular valuey.

Let us compare the behavior of the VB solution (29) with that of the MAP saiyi2d) when
Ca;,Co, — . Inthis case, the MAP solution merely results in the ML solution where no reagatsn
is incorporated. In contrast, VB offers PJS-type regularization eveenw,, C,, — «. Thus VB
can still mitigate overfitting (or it can possibly cause underfitting). This fairt good agreement
with the experimental results reported in Raiko et al. (2007), where nidittivgg was observed
whencgh =1 andcgh is set to large values. This counter-intuitive fact stems again from the non-
identifiability of the MF model—the Gaussian noigeimposed in the space &f possesses a very
complex surface in the joint space Afand B, in particular,multimodalstructure. This causes
the MAP solution to be distinctively different from the VB solution. We call thegularization
effect model-induced regularizationin Section 4.2, we investigate the effect of model-induced
regularization in more detail using illustrative examples.

The following theorem more precisely specifies under which condition theestBnator is
strictly positive or zero (its proof is also included in Appendix C):

Theorem 3 It holds that
We =0if yh < WP,
WEB > 0if y, > WE,

where

2

B (L+M)o? o4 (L+M)o? ot

= —LMg4. 30

¥h 2 2¢2 2 2 22c © (30)
h an b
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VB is monotone decreasing with respect gog,, and is lower-bounded as

WB> lim §WB=+vMo2
Cap Cop

As shown in Equation (21yMAP satisfies

AP 0 if yp, < AP
VAP > 0 if v, > YMAP,

where

2

AP o

Ca;, Con,

0—4

VB AP

Yh > 2 CZ :w )
v an by,

VB has a stronger shrinkage effect than MAP in terms of the vanishindjtom of singular values.
We can derive another upper boundyp®, which depends on hyperparametegsandcy, (its
proof is also included in Appendix C):

Since

Theorem 4 Wheny, > v'Mao?, B is upper-bounded as

Lo? Mgo? o?
WB 1_— 1_ ) SVh — ) 31
o= \/( Vzh ) ( yzh ¥h Cay, Con, ( )

WhenL = M andy,, > vMa?, the lower bound in Equation (28) and the upper bound in Equa-
tion (31) agree with each other. Thus, we have an analytic-form esipresfy® as follows:

Mg? o2
N maxg 0, ( 1— —— — if yh >0,
e = { ( V2 )V“ cahcbh} Vo (32)

0 otherwise

Then, the complete VB posterior can also be obtained analytically (its proogis im Appendix D):

Corollary 1 When L= M, the VB posteriors are given by
H
rA(A|V) = |_| M (ah; /J'ahv zah)a
h=1

H
re(BIV) = [ Aba (bh; pty,, Zoy,),
h=1
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where, fory® given by Equatiorf32),

Car
Ma, = £ C;ahyXB T Wap s (33)
on
Ch
lJ’bh == ?h/%]/B . wbha (34)
an
Cay, vg , O° 2 g, O
Ta = WB 4 > +402M—(A + ) Im, 35
& 205, M (yh Ca,Con, T, (35)
2 2
Con we, ©° 2 B, O
S, = —h 40-M — Im- 36
T 2, M \/(yh + Ca,Co, + Yoo Ca,Cor, M (36)
3.3 EMAPMF

In the EMAPMF framework, the hyperparametess and c,, are determined so that the Bayes
posteriorp(A, B|V) is maximized (equivalently, the negative log posterior is minimized).

Differentiating the negative log posterior (17) with respecxtioandcgh and setting the deriva-
tives to zero lead to the following optimality conditions.

2

g, = 1l 37
2

G, =1 (38)

Alternating Equations (18), (19), (37), and (38), one may learn thenpatersA, B and the hyper-
parameters,,, Cp, at the same time.

However, as pointed out in Raiko et al. (2007), EMAPMF does not wwdperly since its
objective (17) is unbounded from belowat, bn = 0 andc,,,Cy, — 0. Thus we end up in merely
finding the trivial solution &y, by = 0) unless the iterative algorithm is stuck at some local optimum.

3.4 EVBMF
For the trial distribution (14), the VB free energy (10) can be written Hevis:

42 |12 + tr(Zay)

LM H /M 1
FVB(rfvv{CghaC%h}) =5 logo® + z (2 |090§h - 5'09’Z%| +
h=1

2c3
L 1 | 2y || + tr(Zp,)
—lo —=log|z " h
+5 1090y, — 5 109|2p, | + 22
H 2
+@ V- Z thli;h
h=1 Fro
1 d 2 2
55 > (llma2tr(2s,) +tr(Za,) 1, P+ r(Za1(Zs) ), (39)
h=1
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where| - | denotes the determinant of a matrix. Differentiating Equation (39) with restp)e§ and
cﬁh and setting the derivatives to zero, we obtain the following optimality conditions:

2 _ ||ty |12 +tr(Za,)

Can v ; (40)
2
& - [[ 14t | itr(zbh). (41)

Here, we observe the invariance of Equation (39) with respect to theforam

1/2 —-1/2 — _
{(uahvubhvzamzbh)cgwcgh)} — {(%/ /J'aha% / [,l,bh,ShZah,Sn]'th,ShCZ ,%1(:%?1)} (42)

forany{sn€ R;sy >0,h=1,...,H}. This redundancy can be eliminated by fixing the ratio between
the hyperparameters to some constant—we choose 1 without loss oflggnera

Cap
C—bh =1 (43)
Then, Equations (40) and (41) yield
2 - ¢<|ru%\|2+tr<zah>L> (i) aa)
& - \/(IluahIIZ+tr(2ah)|_)|\(/lllubh||2+tr(2bh))‘ (45)

One may learn the parametéxsB and the hyperparametess, c,, by applying Equations (44) and
(45) after every iteration of Equations (23)—(26) (this gives a local mininafi Equation (39) at
convergence).

For the EVB solutionUEVB, we have the following theorem (its proof is provided in Ap-
pendix E):

Theorem 5 The EVB estimator is given by the following form:
N H
GEVB _ Z VEVBwbhwaTh-
h=1
YEVB =0if yh < yEVB, where

e = (VE+ VM) o

If o > V-V, Vi /® is upper-bounded as

e < (1— Mygz) Yh (46)

If v > VEVB, where

VB = VM -0 > VB,
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Y=V is lower-bounded as

JEVB > max{ 0, [ 1— Mo e b 47)
¥~ R(L+ M+ VIM)o?

Theorem 5 implies that

VB =0if v <y "%,
VEVB > 0if yy > VEVE.
When

VB < <1

our theoretical analysis is not precise enough to conclude Whﬁ]ﬁ%is zero or not. As explained
in Section 3.3, EMAP always results in the trivial solution (i“A" = 0). In contrast, Theorem 5
states that EVB gives a non-trivial solution (i¥® > 0) wheny, >y V2. Since lim,, g, Vi ° =

VMao? < yEVB (see Theorem 3), EVB has stronger shrinkage effect than VB withrilats in terms
of the vanlshlng condition of singular values.

It is also note worthy that the upper bound in Equation (46) is the same as fhla€orem 2.
Thus, even when the hyperparametegsandcy,, are learned from data by EVB, the same upper
bound as the fixed-hyperparameter case in VB holds.

Another upper bound gVE is given as follows (its proof is also included in Appendix E):

Theorem 6 Wheny, > Y-V® (= (VL +v/M)0), ¥};® is upper-bounded as

VB < \/<1— Ly?) (1— Mygz)yh— \/?02. (48)

Note that the right-hand side of (48) is strictly positive unger y-'E.
WhenL = M, the upper bound in Equation (48) is sharper 1 than that in Equation @&i)iting

in
VEVB < (1— 2'\:'/202> Vh. (49)
h

The PJS shrinkage factor of the upper bound (49M9%/y2h. On the other hand, as shown in Equa-
tion (29), the PJS shrinkage factor of the plain VB with uniform prior&\amdB (i.e., Cy, Cp — ©)
is Moz/yﬁ, which isless than a halbf EVB. Thus, EVB provides substantially stronger regulariza-
tion effect than the plain VB with uniform priors. Furthermore, from Equafig), we can confirm
that the upper bound (49) is equivalent to the VB solution wtety, = yn/M.

WhenL = M, the complete EVB posterior is obtained analytically by using the following corol-
lary (the proof is given in Appendix F):

Corollary 2 For y, > 2v/Mo, we define

d(yh) = I09<Y2 (1- p)) Myzl p)+ ( L pi>7 (50)

2Ma?
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Figure 3: Equivalence class. AyandB such that their product is unchanged give the seme

where

1 2Mo? 4AM G2
pr=|z(1- 1 1- ).
i} J2< Vi Vﬁ>

Suppose k= M. If yy > 2v/Mo andd(yh) < 0, then the EVB estimator of,&y, is given by

Yh
Can Gy = 3P (51)

Otherwise 5565 V® — 0. The EVB posterior is obtained by Corollary 1 with

2 2 ~EVBAEVB AEVBAEVB
(Cah’cbh) = (Cah Co, Cay Cby, )

Furthermore, whery, > +/7Ma, it holds that

¢ (yn) <O. (52)

Giveny,, Equation (50) and then Equation (51) are computed analytically. By subwittiqua-
tions (51) and (43) into Equations (33)—(36), the complete EVB posterutnt&gned. In Section 4.3,
properties of EVBMF along with the behavior of the function (50) are frrihvestigated through
numerical examples.

4. lllustration of Influence of Non-identifiability

In order to understand the regularization mechanism of the Bayesian Medsatiore intuitively,
we illustrate the influence of non-identifiability whén=M =H =1 (i.e.,U, V, A, andB are
merely scalars). In this case, aAyandB such that their product is unchanged formesuivalence
classand give the samé (see Figure 3). Wheld = 0, the equivalence class has a ‘cross-shape’
profile on theA- andB-axes; otherwise, it forms a pair of hyperbolic curves.
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Figure 4: Bayes posteriors witly = ¢, = 100 (i.e., almost flat priors). The asterisks are the MAP
solutions, and the dashed lines indicate the ML solutions (the modes of theicaiten
Ca=Cp=C—> ),
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Figure 5: Bayes posteriors witty = ¢, = 2. The dashed lines indicating the ML solutions are
identical to those in Figure 4.

4.1 MAPMF

First, we illustrate the behavior of the MAP estimator.
WhenL =M =H = 1, Equation (17) yields that the Bayes postepoA, B|V) is given as

(A,B|V) O ex —i(v—BA)Z—A—Z—B—2 (53)
P P\ " 202 2c3 2¢2)°

Figure 4 shows the contour of the above Bayes posterior Wher0, 1,2 are observed, where the
noise variance is? = 1 and the hyperparameters age= c, = 100 (i.e., almost flat priors). When
V =0, the surface of the Bayes posterior has a cross-shape profile amakitum is at the origin.
WhenV > 0, the surface is divided into the positive orthant (i#eB > 0) and the negative orthant
(i.e.,A,B < 0), and the two ‘modes’ get farther ¥sincreases.
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For finitec, andcp, Theorem 1 and Equation (66) (in Appendix B) imply that the MAP solution

can be expressed as
AMAP Ca 02
A =+ =max< 0,|V|— ,
Co CaCp

2
I§MAP—isign(V)\/2bmax{O,|V]— ° },

a CaCp

where sigfi-) denotes the sign of a scalar. In Figure 4, the asterisks indicate the MAP ®sima
and the dashed lines indicate the ML estimators (the modes of the contour atidfg(b53) when
Ca = Cp = C— ). WhenV = 0, the Bayes posterior takes the maximum value otrendB-axes,
which results inOMAP = 0. WhenV = 1, the profile of the Bayes posterior is hyperbolic and the
maximum value is achieved on the hyperbolic curves in the positive orthaniX(ig> 0) and the
negative orthant (i.eA,B < 0); in either caselJMAP ~ 1 (andUMAP — 1 asca, Cp — ©). When
V = 2, a similar multimodal structure is observed and the soluti®&® ~ 2 (andUMAP — 2 as
Ca, Cp — ). From these plots, we can visually confirm that the MAP solution with almdgtrilers
(ca = cp = 100) approximately agrees with the ML solutidsi™AP ~ UML = v (andUMAP —, gML
ascCy, Cp — ).

Furthermore, these graphs illustrate the reason why the progliyct> « is sufficient for MAP
to agree with ML in the MF setup (see Section 3.1). Suppg$ekept small, sag, = 1, in Figure 4.
Then the Gaussian ‘decay’ remains along the horizontal axis in the profie @Bayes posterior.
However, the MAP solutiotyMAP does not change since the mode of the Bayes posterior is kept
lying on the dashed line (equivalence class). Thus, MAP agrees with Kithiérc, or ¢, tends to
infinity.

Figure 5 shows the contour of the Bayes posterior whes ¢, = 2. The MAP estimators are
shifted from the ML estimators (dashed lines) toward the origin, and theypare clearly contoured
as peaks.

4.2 VBMF

Here, we illustrate the behavior of the VB estimator, where the Bayes pasteaipproximated by
a spherical Gaussian.

In the current one-dimensional setup, Corollary 1 implies that the VB postep (A|V) and
rg(B|V) can be expressed as

ra(AV) = N(A £4/YVBca/Cb,{Ca/ ),

re(B|V) = A(B; £sign(V)/Y'Bcy/Ca, {Cb/Ca),

whereA((-; 4, 0%) denotes the Gaussian density with mgaand variance?, and

VB 2 \2 VB 2
_ (Y-, 9 2 (Y O
Z_\/< 2 +2cacb) ta ( 2 Jrancb>’

2 2
e _ max{o, (132> V| 0} if V£ 0,

Cacb
0 otherwise
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1 /e \o 1 /Q %\%
=0 "Z Qw\j\\ =0 Z Qj\j‘\\
AN I
% o0 0 4O
-2 -2
-3 -3
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
A A
VB posterior (V = 2) VB posterior (V = 2)
3 3
/leo
2 (ff’;—_\;o‘x 2} VB estimator :
(% ))7 % (4.B)~ (~VI5 —VT9
1 : > 1
K\; LSl 3¢
o8
Q0 o Q0
-1 VB estimator : -1
(A, B) ~ (VI5 VIS
-2 -2
-3 -3
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
A A

Figure 6: VB posteriors and VB solutions when=M =1 (i.e., the matrice¥, U, A, andB are
scalars). WheWN = 2, VB gives either one of the two solutions shown in the bottom row.

Figure 6 shows the contour of the VB posteni¢A,B|V) =ra(AV)rg(B|V) whenV =0,1,2
are observed, where the noise variance?s= 1 and the hyperparameters axe= c, = 100 (i.e.,
almost flat priors). WheW = 0, the cross-shaped contour of the Bayes posterior (see Figure 4)
is approximated by a spherical Gaussian function located at the origirs, TheiVB estimator is
UVB = 0, which is equivalent to the MAP solution. Whh= 1, two hyperbolic ‘modes’ of the
Bayes posterior are approximated again by a spherical Gaussian fuloci&ed at the origin. Thus,
the VB estimator is stilUY® = 0, which is different from the MAP solution.

V =\B ~VvMo2=1\B — vVMo? asc,,c, — ) is actually a transition point of the behavior
of the VB estimator. WheW is not larger than the thresholdMao?, the VB method tries to
approximate the two ‘modes’ of the Bayes posterior by the origin-centeaedstan function. When
V goes beyond the thresholdMao?, the ‘distance’ between two hyperbolic modes of the Bayes
posterior becomes so large that the VB method chooses to approximatetheevwd modes in the
positive and negative orthants. As such, the symmetry is broken spoatyand the VB solution
is detached from the origin. Note that, as discussed in Sectidfiod,amounts to the expected
contribution of noiseE to the squared singular valyé (= V2 in the current setup).

The bottom row of Figure 6 shows the contour of two possible VB posteribevV = 2. Note
that, in either case, the VB solution is the saitd&® ~ 3/2. The VB solution is closer to the origin
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than the MAP solutiotyMAP — 2. and the difference between the VB and MAP solutions tends to
shrink asV increases.

4.3 EVBMF

Next, we illustrate the behavior of the EVB estimator.
In the current one-dimensional setup, the free energy (39) is equies

CACE  MBa+3a M+
V,c2 @) = log 2 2
FVB (r’ » an Cb) 0g Zazb + 202 ZC%

Viek + 55 (ua+Za) (M5 + Zp) + Const
According to Corollary 2, ifV| > 20 and¢$(|V|) < 0, the EVB estimator of the hyperparameters is
given by

(€5V8)% = (&5"®)* = Vo, (54)
where

(!V\)—Iog<| ’ (1-p- ))—Nf(l—p->+<1+|;/£p+>

1 02 402
= Z (1= +,/1-= ).
- ¢2< VP2 rv2>

Based on a simple numerical evaluation (Figure 7p@¥|), we can confirm that Equation (54)
holds if V| > Y£VB, where

VB~ 222

Otherwisec5 8,658 — 0. Note that/="® is theoretically bounded as

(2:202 :)YEVB <VEVB < yEVB( Vo ~264)

as shown in Equation (52).
Using Corollary 1 with Equation (54), we can plot the EVB posterior. When

V] <YVBax 222
the infimum of the free energy with respect (i, ko, Za, Zp, C2,C2) is attained bycz = ¢ = &,

Ma = Hp =0, and
2 2
za:zb:0< 1+42€—1)

whereg — 0 (i.e.,C3 = ¢ — 0, o = [ = 0, andZ, = =, — 0). Therefore, the Gaussian width of

the EVB posterior approaches zero (il@irac’s delta functiorlocated at the origin). The left graph
of Figure 8 illustrates the contour of the EVB postenioA, B|V) = ra(A\V)rg(B|V) whenV = 2
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~ EVB

Figure 7: Numerical evaluation @f(|V|) whenL = M = 1 anda? = 1 (the blue solid curve). The
blue solid curve crosses the black dashed IE\|) = 0) at|V| = VFVB ~ 2.22.

is observed, where the noise variancets= 1. SincelUMAP ~ 2 andU"B ~ 1.5 under almost flat
priors (see Figure 4 and Figure 6)FVB = 0 is more strongly regularized than VB and MAP.
On the other hand, when

V| >VVB~222
the EVB posteriorsa (A|V) andrg(B|V) can be expressed as
ra(AV) = N(A £4/¥EVB, ),
rs(BIV) = AU(B; £sign(V),/¥EYE, 0),

where

() ()

1 202 402
p/J 2 (1“w%— 1__ﬁ§>a

= (1-%-p- )V
= NE p_ )

WhenV = 3 is observed, we hawg®8 ~ 2.28 (2 = 2 ~ 2.62, iy = Wb ~ /2.28, andZ, = I ~
0.33). The possible posteriors are plotted in the middle and the right grapgfigue 8. Since
UMAP ~ 3 andUVB = 3/8 ~ 2.67 under almost flat priors, EVB has stronger regularization effect
than VB and MAP.
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EVB posterior (V = 2) EVB posterior (V = 3) EVB posterior (V = 3)
3 3 3
EVB estimator : (4, B) = (0,0) /’i’e‘l\\&&
2 12 o 2
Qg;k b > EVB estimator :
1 I \e% 1l (A, B) ~ (- v2.28 — V2.39)
Q0 S0} Q0
EVB estimator :
-1 -1 -1
(A, B) ~ (VZ.2R V2.29)
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Figure 8: EVB posteriors and EVB solutions when=M = 1. Left: WhenV = 2, the EVB
posterior is reduced to Dirac’s delta function located at the origin. RightetWwh= 3,
the solution is detached from the origin and giver(ByB) ~ (1/2.28,1/2.28) or (A,B) ~
(—v/2.28,—1/2.28), which both yields the same solutiarFV® ~ 2.28.

4.4 FBMF

Here, we illustrate the behavior of the FB estimator.
WhenL =M =H =1, the FB solution (5) is expressed as

UF® = (AB) v/ 8)gn (A1 (B)- (55)

If V =0,1,2,3 are observed, the FB solutions with almost flat priors af@92,1.93 2.95, re-
spectively, which were numerically computédince the corresponding MAP solutions (with the
almost flat priors) are,d, 2, 3, FB and MAP were shown to produce different solutions.

The theory by Jeffreys (1946) explains the origimafdel-induced regularizatioim FB. Let us
consider thaon-factorizingmodel

1
p(VIAB) Dexp( 5 IV U ). (56)

whereU itself is the parameter to be estimated. The Jeffreys (non-informative)fpritris model
is uniform

U)oL (57)
On the other hand, the Jeffreys prior for the MF model (1) is given by
G (A B) O VA4 B2, (58)

which is illustrated in Figure 9 (see Appendix | for the derivation of Equati®@?Y) and (58)). Note
that@f(U) and@®; (A, B) are bothimpropet

2. More precisely, we numerically calculated the FB solution (55) by sam@liand B from the almost flat prior
distributionsga (A)@s (B) with ca = ¢, = 100 and taking the sample averageA®- p(V|A, B).
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Figure 9: The Jeffreys non-informative prior of the MF model in the joipdce ofA and B:
@ef(A,B) O vVA2+B2. The scaling of the density value in the graph is arbitrary due
to impropriety.

Jeffreys (1946) states that the both combinationsptimefactorizingnodel (56) with its Jeffreys
prior (57) and the MF model (1) with its Jeffreys prior (58), give theiegjent FB solution. We can
easily show that the former combination, Equations (56) and (57), givesi@gularized solution.
Thus, the FB solution in the MF model (1) with its Jeffreys prior (58) is alsegularized. Since
the flat prior on(A, B) has more probability mass around the origin than the Jeffreys prior (&8) (s
Figure 9), it favors smallei | and regularizes the FB solution.

4.5 EMAPMF

As explained in Section 3.3, EMAPMF always results in the trivial solutho = 0 andc,,, Cp, —
0.

4.6 EFBMF

The EFBMF solution is written as follows:

U = (AB) v iae)gu (Aca s (B:5):
where

(Ca,Cp) = argminF (V; ca, Cp).
(Ca,Cp)
HereF (V;ca,p) is the Bayes free energy (6).
WhenV =0, 1,2, 3 are observed, the EFB solutions ar8.00,1.25,2.58 (¢, = ¢, ~ 0,0.0,1.4,
2.1), respectively, which were numerically compufesiinceF (V; ¢y, cp) — 0 whencaC, — o, the

3. The model (1) and the priors (2) and (3) are invariant under th@vimg parameter transformation

~1/2

(ah, bn, Cay; Cp,) — (§11/2ah7§1 1/2

~1/2
bh7§1 Cayy Sy / Cbh)
forany{s, € R;s, > 0,h=1,...,H}. Here, we fixed the ratio toy/cy = 1. Forcacy = 107290107199 10100,

we numerically computed the free energy (6), and chose the mini@jggrwith which the FB solution is computed.
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bm .-

Figure 10: Numerical results of the FBMF solutioif®, the MAPMF solutionJMAP | the VBMF
solution UVB, the EFBMF solutionJEFB, the EMAPMF solutionUEMAP and the
EVBMF solutionUEVB when the noise variance & = 1. For MAPMF, VBMF, and
FBMF, the hyperparameters are set{e= ¢, = 100 (i.e., almost flat priors).

minimizer of F(V;ca,Cp) With respect tac; andcy, are always finite. This implies that EFBMF is
more strongly regularized than FBMF with almost flat priargcg — ).

4.7 Summary

Finally, we summarize the numerical results of all Bayes estimators in FigurendQgding the
FBMF solutionUFB, the MAPMF solutionUMAP the VBMF solutionU VB, the EFBMF solution
UEFB, the EMAPMF solutiodldEMAP and the EVBMF solutiot VB when the noise variance is
0?2 = 1. For MAPMF, VBMF, and FBMF, the hyperparameters are sefte c, = 100 (i.e., almost
flat priors). Overall, the solutions satisfy

TEMAP TEVB TEFB VB TFB “TMAP
U < UEVB < JEFB < (VB < (JFB < gMAP,

which shows the strength of regularization effect of each method.

5. Conclusion

In this paper, we theoretically analyzed the behavior of Bayesian matrigrization methods.
More specifically, in Section 3, we derivedn-asymptotibounds of thenaximum a posteriori ma-
trix factorization(MAPMF) estimator and thgariational Bayesian matrix factorizatiof/BMF)
estimator. Then we showed that MAPMF consists oftthee-normshrinkage alone, while VBMF
consists of thgositive-part James-Ste{RJS) shrinkage and the trace-norm shrinkage.

An interesting finding was that, while the trace-norm shrinkage does netetééct when the
priors are flat, the PJS shrinkage remains activated even with flat pFieedact that the PJS shrink-
age remains activated even with flat priors is induced by the non-identifiabilittye MF models,
where parameters form equivalent classes. Thus, flat priors in #oe 1 factorized matrices are
no longer flat in the space of the target (composite) matrix. Furthermorelesthgpributions such
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as the Gaussian distribution in the space of the target matrix produce highplicatedmultimodal
distributions in the space of factorized matrices.

We further extended the above analysistopirical VBMFscenarios where hyperparameters
included in priors are optimized based on the VB free energy. We shove¢dhth ‘strength’ of
the PJS shrinkage is more than doubled compared with the flat prior casessillustrated the
behavior of Bayesian matrix factorization methods using one-dimensioaal@gs in Section 4.

Our theoretical analysis relies on the assumption that a fully observed maprigvigled as a
training sample. Thus, our results are not directly applicable to the collaofidtering scenarios
where an observed matrix with missing entries is given. Our important futark i& to extend the
current analysis so that the behavior of the collaborative filtering algositten also be explained.
The correspondence between MAPMF and the trace-norm regulanzdiiidholds even if missing
entries exist. Likewise, we hope to find a relation between VBMF and a nézatian term acting
on a matrix, which results in the PJS shrinkage if a fully observed matrix isgive

Our analysis also relies on the column-wise independence constrainiiidéh was also used
in Raiko et al. (2007), on the VB posterior. In principle, the weaker matise constraint (9)
which was used in Lim and Teh (2007) allows non-zero covarianceseketaolumn vectors, and
can achieve a better approximation to the true Bayes posterior. How thissatffie performance
and when the difference is substantial are to be investigated.

As explained in Appendix A, the PJS estimator dominates (i.e., uniformly betterttrmmax-
imum likelihood (ML) estimator in vector estimation. This means that, whenl, VBMF with
(almost) flat priors dominates MLMF. Another interesting future direction isuestigate whether
this nice property is inherited to matrix estimation. For matrix estimatiop- (1), a variety of
estimators which shrink singular values have been proposed (Stein, U&¥&t and Wolf, 2004;
Daniels and Kass, 2001), and were shown to possess nice propedesdifferent criteria. Dis-
cussing the superiority of such shrinkage estimators including VBMF is sttegefuture work.

Our investigation revealed a gap betweenfthily-Bayesian(FB) estimator and the VB estima-
tor (see Section 4.7). Figure 10 showed that the VB estimator tends to bglgtregularized. This
could cause underfitting and degrade the performance. On the othkritiaralso possible that, in
some cases, this stronger regularization could work favorably to ssgppverfitting, if we take into
account the fact that practitioners do not always choose their pritibdisons based on explicit
prior information (it is often the case that conjugate priors are chosenfengomputational con-
venience). Further theoretical analysis and empirical investigation adededo clarify when the
stronger regularization of the VB estimator is harmful or helpful.

Tensor factorizatiotis a high-dimensional extension of matrix factorization, which gathers con-
siderable attention recently as a novel data analysis tool (Cichocki e08B).2 Among various
methods, Bayesian methods of tensor factorization have been shown torbisipg (Tao et al.,
2008; Yu et al., 2008; Hayashi et al., 2009; Chu and Ghahramani,)200%ur future work, we
will elucidate the behavior of tensor factorization methods based on a similasfloiscussion to
the current work.
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Appendix A. James-Stein Shrinkage Estimator

Here, we briefly introduce th@ames-SteirfdS) shrinkage estimator and its variants (James and
Stein, 1961; Efron and Morris, 1973).

Let us consider the problem of estimating the mgafe RY) of the d-dimensional Gaussian
distribution\’(u, 3°lg) from its independent and identically distributed samples

X"={x;eRY|i=1,...,n}.
We measure the generalization error (or the risk) of an estimahyrthe expected squared error:
~ 2
Ellg —pll,

whereRE denotes the expectation over the sampiés
An estimatoru is said todominateanother estimatag’ if

E||fi— | < El|@ — | for all g,
and
E|fi — || < EJ|fi’ — s for somey.

An estimator is said to badmissiblef no estimator dominates it.
Stein (1956) proved the inadmissibility of the maximum likelihood (ML) estimator ¢oiiva-
lently the least-squares estimator),

1 n
~ML __ -+ )
j7 —ni:E Ij,

whend > 3. This discovery was surprising because the ML estimator had beendatliebe a
good estimator. James and Stein (1961) subsequently proposed the JS shréskiagatorzi’S,
which was proved to dominate the ML estimator:

2

~JS X0 >AML

pr=(1-—s |, (59)
< n|| ML |2

wherex = d — 2. Efron and Morris (1973) showed that the JS shrinkage estimatorecdertved as
an empirical Bayes estimator. In the current paper, we refer to all estisnafttne form (59) with
arbitraryx > 0 as the JS shrinkage estimators.

The positive-part James-Ste{i®JS) shrinkage estimator, which was shown to dominate the JS
estimator, is given as follows (Baranchik, 1964):

2

~PJS X0 ~ML

i :max{o, (1_A>u }
nj| ML |12

Note that the PJS estimator itself is also inadmissible, following the fact that adimisstbma-
tors are necessarily smooth (Lehmann, 1983). Indeed, there exésakestimators that dominate
the PJS estimator (Strawderman, 1971; Guo and Pal, 1992; Shao andestream, 1994). How-
ever, their improvement is rather minor, and they are not as simple as thetihigter. Moreover,
none of these estimators is admissible.

2608



THEORETICAL ANALYSIS OF BAYESIAN MATRIX FACTORIZATION

Appendix B. Proof of Theorem 1

The MAP estimator is defined as the minimizer of the negative log (17) of thesBaysterior. Let
us double Equation (17) and neglect some constant terms which aredrretevits minimization
with respect to{an, bn}

2

H
v-S bhay (60)
h=1

2
=\ Can

H 2 2
MAP H o\ _ l|anl| | bn| 1
L% ({anbnthg) = H ( + 2 t52

Fro

We use the following lemma (its proof is given in Appendix G.1):

Lemma 7 For arbitrary matrices Ac RM*H and Be R-<H let
BA" = Q QL

be the singular value decomposition of the product Biherel” = diag(yi,...,Y4) ({Ya} are in
non-increasing order). Remember thdfc,,cn,}, where G = diag(cgl, e ,cﬁH) and
Cg = diag(cf, ...,ch) are positive-definite, are also arranged in non-increasing order. nT lite

holds that

2Yn
Cay, Con, ‘

tr(AC,*A") +-tr(BG'BT) > i (61)
h=1

Using Lemma 7, we obtain the following lemma (its proof is given in Appendix G.2):

Lemma 8 The MAP solutiotd MAP is written in the following form:
A~ AN H o~
UMAP — BAT = > VoW, (62)
=1

There exists at least one minimizer that can be written as

bh = bnwp,,, (64)
where{ap, b} are scalars such that
Yh = anbn > 0.

Lemma 8 implies that the minimization of Equation (60) amounts to a re-weighted sirvguuer
decomposition.
We can also prove the following lemma (its proof is given in Appendix G.3):

Lemma9 Let {#H;k=1,...,K(< H)} be the partition of{1,...,H} such that g ¢y, = Ca,Cp,, if
and only if h and hbelong to the same group (i.€k such that i € #). Suppose tha(t,&, I§) isa
MAP solution. Then,

A=A0",

B =Bo !
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is also a MAP solution, for an@ defined by

@=cy?z=c,?

_ Cgl/ZE 1/2

Here, = is a block diagonal matrix such that the blocks are organized based quetttigion { H},
and each block consists of an arbitrary orthogonal matrix.

Lemma 9 states that non-orthogonal solutions ({.an}, as well as{by}, are not orthogonal
with each other) can exist. However, Lemma 8 guarantees that any timgonal solution has its
equivalentorthogonal solution, which is written in the form of Equations (63) and (6#re, by
equivalentsolution, we denote a solution resulting in the identld¥*" in Equation (62). Since
we are interested in findin@MAP, we regard the orthogonal solution as the representative of the
equivalentsolutions, and focus on it.

The expression (63) and (64) allows us to decompose the minimization ofi&y@0) into
the minimization of the followingd separate objective functions: foe=1,... . H,

2 b2 1
LVAP (@, by) = (a; + ;) + 5 (vn — anbn)?.
Cah Cbh (0}

This can be written as

B (an ci )2 1 > \\° [ 2n o
MAP (o ) — —h <_ah il b, — - ) — - . 65
Ly (an, bn) 2\ o) T2\ @ o)) TG 2Z (65)

The third term is constant with respectdg andb,,. The first nonnegative term vanishes by
setting the rati@y /by, to

ah Cy,
— = or by = 0). 66
oo =0 (66)

Minimizing the second term in Equation (65), which is quadratic with respectet@tbductay,bp
(> 0), we can easily obtain Equation (21), which completes the proof. |

Appendix C. Proof of Theorem 2, Theorem 3, and Theorem 4

We denote byRY the set of thed-dimensional vectors with non-negative elementsREy, the set
of the d-dimensional vectors with positive eIements,Sj&the set ofd x d positive semi-definite
symmetric matrices, and [8f , the set ofd x d positive definite symmetric matrices. The VB free
energy to be minimized can be expressed as Equation (39). Neglectingmoiesms, we define
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the objective function as follows:
LY8({an, bn, Za,, Zn,}) = 2Rvs 1|V, {c5 , 5 }) + Const

K +1tr(x Uy, ||© (2
=z<—logzah|+” wl UEa) jog5,,| 4 Ieml7 1(Zn)
h=1 an bn

2

H
-
— [V - Z b g,
h= Fro
H

Z [ 1 (Zy ) +tr(Zay ) |y |+t (Zay )tr(Zp, ) (67)

We solve the following problem:

Given(cs ,ch) €eRZ, ("h=1,...,H),0? € R |,
min  £VB({uay, ttoy, Za, Zo;h=1,...,H}) (68)
St pa, € RM pp, € RE 3, € SY, 5, €SE, (Yh=1,....H). (69)

First, we have the following lemma (its proof is given in Appendix G.4):
Lemma 10 At least one minimizer always exists, and any minimizer is a stationary point.

Given fixed{(Z,,,2p,)}, the objective function (67) is of the same form as Equation (60) if we
replace{(c3,,c5 )} in Equation (60) with{(cZ,ci2 )} defined by

1 tr(Zy)\
cgfh—(cthr (ozh)) , (70)
1 t(Za))
2 M2a,
a-(g-) "
h

Therefore, Lemma 8 implies that the minimizerggf anduy, are parallel (or zero) to the singular
vectors ol associated with thid largest singular valugsOn the other hand, Lemma 10 guarantees
that Equations (23)—(26), which together form a necessary andisuffcondition to be a stationary
point, hold at any minimizer. Equations (25) and (26) suggestihaandZy, are proportional to

Im andly, respectively. Accordingly, any minimizer can be writteryas = Ha,wa,, Hb, = Mo, Wby,

Za, = 03, Im, andZy, = GghIL, wherepy,, Uo,, 0%, andogh are scalars. This allows us to decompose
the problem (68) intdd separate problems: ftr=1,...,H,

Given(cs,c5) € RE,, 0 € Ry,
min  £® (Y, loy, O3, O, )
S.t. (May, Mo,) € R%, (05,05 ) € RZ (72)

4. As in Appendix B, we regard the orthogonal solution of the form (6i8) @4) as the representative of thguivalent
solutions, and focus on it. See Lemma 9 and its subsequent paragraph.
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where
2 2
2 +Moaj3 , M5 +Log
VB (g, pbh,oah,obh) Mlogcraht—iCah —Llogog, + ——— Cﬁh n
2 1 5 2\ (12 2
= gaVhHabo, + o (W, + Moy ) (5, +Lop).  (73)

Moreover, the necessary and sufficient condition (23)—(26) iscesdito

1
t@=gﬁmm, (74)
1
Moy = 500, Yhbl, (75)
o2\ *
o;::oz<ua_tLoa4-dz> , (76)
ah
2 -1
Ga:&<%+M%ﬁ ) . (77)
bh

We use the following definition:
Yh = Hag Koy, (78)

Note that Equations (27) and (78) imply that the VB solutibf® can be expressed as

H
VB G T
U™ =% Vhwp,w
h=1

Equations (74) and (75) imply that, andpy,, have the same sign (or both are zero), sipce 0
by definition. Therefore, Equation (78) yields

Yh > 0.

In the following, we investigate two types of stationary points. We say({egfHy,, ogh, ogh) =
(D, ftbh,é’fah,é’fb ) is anull stationary point if it is a stationary point resulting in the null output
(Yh = [la,flo, = 0). On the other hand, we say ttgt, , Hp,, OF, obh) (P, pbh,o 02 ) is apositive
stationary point if it is a stationary point resulting in a posmve OUtIWEL [, o, > 0)

Let
A > , O 79

The explicit form of thenull stationary point is derived as follows (its proof is given in Ap-
pendix G.5):
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Lemma 11 The uniquenull stationary point always exists, and it is given by

flah =0, (80)
P, =0, (81)
2
o2 Cay, o
= - — M—L
Oan 2M Co, { ( CanCby, Cay, Cbh( ))
02 2
+ < — Ca,Co, (M — L)> +4Ma? 5, (82)
Can Con,
. Y o + Ca, Co, (M — L)
02 2
- < + Ca,,C, (M — L)) +4L0? ;. (83)
Cay, Con,

Next, we investigate th@ositive stationary points, assuming thgs, # O,p,, # 0. Equa-
tions (74) and (75) suggest that positivestationary point exists whep = 0. Below, we focus on
the case whewg, > 0. Let

~ uah
B = 0. 84
h h (84)

We can transform the necessary and sufficient condition (74)—6/follaws (its proof is given in
Appendix G.6):

Lemma 12 No positivestationary point exists if
Ve < 0°M.
When
Ve > 02M, (85)

at least ongositivestationary point exists if and only if the following five equations

N s 0%\ (.-, O
Nh= || Ydn+—= | | W&, + = | (86)
ct c3,

" <l_ fg) <l_ 0\?) o (87)

o (g_cgtg) =M =L)(h—¥h), (38)

Ggh _ - (ﬁﬁ — 02(|\/| — L)) —I—A\/\(_ﬁ;ﬁ — 02(_|\2/| —1))2 +4M02ﬁﬁ’ o
2M (Yh®y, ~ +0%Ca;)

Ga:-mﬁ+qu—L»+3(mg+qu_4Jy+4uﬂﬁ% n
2L (Yndh +0%¢,, %)
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have a solution with respect {§h, dn, 03,05, , in) such that

(Vh75ha0§h7cgh,ﬁh) € Ri+ (91)

When a solution exists, the corresponding paipokitivestationary points

(Man, Hon> O3, 08, ) = (£1/ Ydh, 1/ Vhdy - 05, 05, ) (92)
exist.

Then we obtain a simpler necessary and sufficient condition for existémpesitivestationary
points (its proof is given in Appendix G.7):

Lemma 13 At least ongpositivestationary point exists if and only if Equati¢85) holds and
o+ 0w(Vh) - Yh+Go=0 (93)

has any positive real solution with respeciytp where

~(M = L0 =)+ (L), (M= L2+

qu(Yh) = LM ; (94)
4 2 2
qo:c;?:cgh_<l_oyz:> (1-‘3\/%\/'>y2h. (95)
Any positive solutio, satisfies
0 < Vh < Yh. (96)
Equation (96) guarantees that
di(Yh) > 0.
Recall that a quadratic equation
V' +0iy+do=0forgs >0 (97)

has only one positive solution whep < 0 (otherwise no positive solution exists) (see Figure 11).
The condition for the negativity of Equation (95) leads to the following lemma:

Lemma 14 At least ongoositivestationary point exists if and only if

2 _ L (oM
Ve > 0°M and \/<1 y2h><1 v Vh cahcbh>0' (98)

The following lemma also holds (its proof is given in Appendix G.8):

Lemma 15 Equation(98) holds if and only if
Yh > VhlB7

wherey!B is defined by Equatio(80).
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N P4+@d+g =0

A\ 4

—q1+ V@ —4ge
2

Figure 11: Quadratic functioh(y) = ¥ + g1y + go, Whereg; > 0 andgp < O.

Combining Lemma 10 and Lemma 14 together, we conclude thauthstationary point (which
always exists) is the minimizer when Equation (98) does not hold. On the bémet, when a
positive stationary point exists, we have to clarify which stationary point is the minimunme Th
following lemma holds (its proof is given in Appendix G.9).

Lemma 16 Thenull stationary point is a saddle point when apgsitivestationary point exists.

Combining Lemma 10, Lemma 14, and Lemma 16 together, we obtain the following lemma:

Lemma 17 When Equatiorf98) holds, the minimizers consist pbsitivestationary points. Other-
wise, the minimizer is theull stationary point.

Combining Lemma 15 and Lemma 17 completes the proof of Theorem 3.
Finally, we derive bounds of thgositivestationary points (its proof is given in Appendix G.10):

Lemma 18 Equationg28) and (31) hold for anypositivestationary point.
Combining Lemma 17 and Lemma 18 completes the proof of Theorem 2 and fWhéore |

Appendix D. Proof of Corollary 1

From Equations (78) and (84), we hau@ = Vion andyg = Vh/3h. WhenL = M, Vi, is expressed

analytically by Equation (32) and, = Ca/Cp follows from Equation (88). From these, we have
Equations (33) and (34).
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WhenL = M, Equations (137) and (138) are reduced to

~ Any/MR+40°M — 17 (99)

2M (uﬁh +02/c§h) 7

/a0 00

" oM (12, +0%/c2 )

Substituting Equation (79) into Equations (99) and (100) and using Eqsaid®) and (34) give
Equations (35) and (36). Because of the symmetry of the objective fn@Gt8), the twopositive
stationary points (33)—(36) give the same objective value, which completgsoof. |

Note thatequivalennonorthogonal (with respect {gu4, }, as well ag i, }) solutions may exist
in principle. We neglect such solutions, because they almost surely dexisdt Equations (70),
(71), (35), and (36) together imply that any péih,h');h  h'} such that mag)®,y/®) > 0 and
d%dbh = c’ah, cgh, can exist only whert,, Cy, = Ca,Cy, andyn = yiv (i.€., two singular values of a
random matrix coincide with each other).

2
Oa,

Appendix E. Proof of Theorem 5 and Theorem 6

The EVB estimator is the minimizer of the VB free energy (39). Neglecting cahstams, we
define the objective function as follows:
LEVB({an, bn, Za,, Zn,, C5 . G5 }) = 2Rve (r|V, {4 .G }) + Const

_ 5 (10g G e P4 t(Za) o0 Sy P+ t(E,)
h=1 |Zah| Cgh |th| Cﬁh
2

1 H T
+ oz |V D HbnKa,
h=1 Fro
1 H
+ 55> (a0 (Z0,) +Ur(Za, |y, |2+ tr(Za (2,)
h=1

We solve the following problem:

Givenc? e R, ,,
min  L5VB({pa,, Loy Zays Zon, o, Co N =1,...,H}) (101)
St pa, € RM pp, e RN 3, €S 5y €85 (65,5 ) eRE, (h=1,...,H).  (102)

Define a partial minimization problem of (101) with fix¢dZ, ,cZ }:

LB, e = min _ LEYB({pa, po, Zay Zo,}i {C5.C5 1) (103)
(Bap My, Zay - Zby)

st pta, €RM pp e RY 5, e SM 5, eSh, (Th=1,... H).
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This is identical to the VB estimation problem (68), and therefore, we cathesesults proved in
Appendix C. According to Lemma 10, at least one solution of the probleR) @Xists. Therefore,
the following problem is equivalent to the original problem (101):
min L58({c5,,c.}) (104)
{c%,<, }

st.(G5.ch) eRE, (Th=1,... H).

We have proved in Appendix C that any solution of the problem (103) eawiiitten asu,, =
Han@ays My, = MWy, Za, = 05, Im, @ndZp, = of I, wherep, , Wy, 03, andof, are scalars. This
allows us to decompose the problem (101) iHtgeparate problems: ftr=1,... H,

: 2
Giveno“ e R,

; EVB 2 2 2 2
min - £7" (Ka,, Moy, O, , Of, » Ca,» Chy,)

S.t. (May, Mo,) € R?, (05,05 ) €R% (5 ,Ch ) €RE (105)
where
2 M2 +Mag 2 W +Lof
[ﬁEVB(UamImeUghaO%hanhaC%h):Mlogoizh‘i'“ah CZ ah"i'l—logo_izh"i_ hcz "
an ah bn bn
2 1
— aVnbak, + 5 (15, + MO ) (G +Lop).  (106)
Let

() ) e vaw

o0 otherwise

We divide the domain (105) into two regions (see Figure 12):

R = {(May, Mo, 05, O, , Car : Chy,) € RZ X R, x RE ;CaCoyy < K}, (107)
R. = {(May, Moy, 05, O, . Ca, - Chy,) € RZ X R, X RY €, Coy, > K} (108)

Below, we will separately investigate the infimumgf'® overRg,

° EVB ; EVB 2 2 2 2
éh = Il’lzf b\ o Lh (M?pbhacahaobmcamcbh)a (109)
(I»la|17l.lbh,0621h70-bh,cgh,cbh)6K

and the infimum ovegR
©EVB

; EVB 2 2 2 2
éh = , |r]2f . th (uahyubhao.ahao-bmcamcbh)‘
(Hah7th~,0ah70bh 7cah 7Cbh)eK

. Rigorously speaking, no minimizer ové@ exists. To make discussion simple, we approximate
R by its subregion with an arbitrary accuracy; for & < € < k), we define arg-margin subregion
of R

o

Re = {(uah,ubh,oih,cﬁh,%h,%h) € R;CarCoy > 8}.

Then the following lemma holds (its proof is given in Appendix G.11):
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15

Cbhy,

0.5¢

Figure 12: DIVISIOI’] of the domain, defined by Equations (107) and (MBgny =3 M =L =
0? = 1. The hyperbolic boundary belongsm

Lemma 19 The minimizer ovef;{£ is given by

fla, = O, (110)
flo, = O, (111)
1 o? 2
o 9 - _ e 2
G20 = o1 ( - + e(M— L)> +4Mao? 3 (112)
1 02 2
02 _ o o 2
th oL { < € +\/ )) +4Lo } ) (113)
& =, (114)
& =« (115)
and the infimun@lOQ)overf{ is given by
=L (116)

Note that Equations (110) and (111) result in the null outps({is, [, = 0). Accordingly, we call
the minimizer (110)—(115) ove%g thenull (approximated) local minimizer.

On the other hand, we call any stationary point resultingpositiveoutput(yh = [la, b, > 0) @
positivestationary point. The following lemma holds (its proof is given in Appendix G.12)

Lemma 20 Any positivestationary point lies irﬁ(.

If

Ly® <Ly, (117)
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the null local minimizer is global over the whole domain (105) (more accurately, m'eﬂ;{ for
any O<e<k). If

o EVB -
P> (118)

the global minimizers consist @ositivestationary points, as the following lemma states (its proof
is given in Appendix G.13):

Lemma 21 When Equatioti118)holds, the global minimizers consistpbsitivestationary points.

Now, we look for thepositivestationary points. According to Lemma 20, we can assume that
Equation (98) holds. Equations (40) and (41) are reduced to

2 2
+Mo
2 2
b +Lo

g =t i by (120)

Then, Equations (74)—(77), (119), and (120) form a necessahgafficient condition to be a sta-
tionary point of the objective function (106). Solving these equations)ave the following lemma
(its proof is given in Appendix G.14):

Lemma 22 At least ongoositivestationary point exists if and only if
Ve > (VL+VM)%02. (121)

At anypositivestationary point, écﬁh is given either by

_ 2 _ 2\2 _ o4
23 :(;Z(;gh:(yz“ (L+M)0)+\/(ZVEM(L+M)G) 4M | 122)

or by

(B~ (L+M)a?) —/ (B — (L+M)0?)? —4LM*
2LM ’
We categorize thpositivestationary points into two groups, based on the above two solutions
of cghcgh; we say that a stationary point satisfying Equation (122)#ge positivestationary point,
and one satisfying Equation (123) is@all positivestationary point. Note that, when

¥a = (VL+VM)%0?, (124)

it holds thatc?, & = ¢ & , and therefore, thiarge positivestationary points and tremall positive
stationary points coincide with each other. The following lemma allows us to focubkelarge
positivestationary points (its proof is given in Appendix G.15.):

C3,Ch, = G465, = (123)

Lemma 23 When
Yo > (VL+VM)?0?, (125)

anysmall positivestationary point is a saddle point.
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Summarizing Lemmas 19-23, we have the following lemma:

Lemma 24 When Equatior(121) holds, there are two possibilities: that the global minimizers
consist oflarge positivestationary points (in the case when Equat{@i8)holds); or that the global
minimizer is thenull local minimizer (in the case when Equati@i7)holds). When Equatiofi21)
does not hold, the global minimizer is thall local minimizer.

Hereafter, we assume that Equation (121) holds. We like to clarify wheati€o (118) holds,
so thatarge positivestationary points become global minimizers. The EVB objective function (106)
is substantially more complex (see Appendix H for illustration) than the VB obgfuinction (73)
where thenull stationary point turns from the global minimum to a saddle point no sooneathan
positivestationary point arises.

Below, we derive a sufficient condition for amgrge positivestationary point to give a lower

. ° EVB , o
objective value tha,, . We evaluate the difference between the objectives:

2 <2 EVB 2 X2 ° EVB
(uah p'bhvo-amo-bwcawcbh) Lh (”ﬁh l-lbhvo-ahﬂo-bh?cah?cbh) éh : (126)

If An(Pay,, oy, » oah,obwcgh? “bh) <0, Equation (118) holds. We obtain the following lemma (its proof
is given in Appendix G.16.):

Lemma 25 An(fa,, Py, 05,65, , &, €5, ) is upper-bounded as

an
Dn(Pay Fo,, 05,05, . G, 65 ) < My(a,B), (127)
where

_ B-(1-a) _ 2 _

Y(a,B) = IogB+ang< o ) +(1—0a)+ - (‘”\Bﬁ“) B, (128)
L
a= (129)
_ W

B= 1oz (130)

Furthermore, the following lemma states tigt, ) is negative whef is large enough (its proof
is given in Appendix G.17.):

Lemma 26 Y(a,B) <Oforany0O<a <landf>7.
Combining Lemma 24 and Lemma 25, we obtain the following lemma:

Lemma 27 When the conditiofi127)holds, the global minimizers consistlaige positivestation-
ary points.

Combining Lemma 26 and Lemma 27, we obtain the following lemma:
Lemma 28 Whenp > 7, the global minimizers consist ¢drge positivestationary points.

Finally, we derive bounds of thiarge positivestationary points (its proof is given in Ap-
pendix G.18):

Lemma 29 Equationg46), (47), and(48) hold for anylarge positivestationary point.

Combining Lemma 24, Lemma 28, and Lemma 29 completes the proof of Theorewn®. C
bining Lemma 24 and Lemma 29 completes the proof of Theorem 6.
[ |
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Appendix F. Proof of Corollary 2

Assume that. = M. Wheny, > 2¢/M, Lemma 22 guarantees that at least targe positivesta-
tionary point exists. In this case, Equation (122) leads to

v v h
o, = 110+ (131)
Its inverse can be written as
1 Yh
= — P
CayCo, O

Corollary 1 provides the exact values for ghesitivestationary point§f,, pbh,agh, c“r%h), given
(€5,,6 ) = (CayCoy, CayCh,). Therefore, we can compute the exact value of the difference (#26) o
the objective values between tlzege positivestationary points and thaull local minimizer:

o 1 o 0 s
Ap =2Mlog (My—gzuahubh + 1) + o2 (—2thahubh + Mzcghcgh)

Vi Yh Ve Yh M, .
=2M {log (MOZ - Méahébh> - (M02 - Méahébh> + <1+m2°§hcbh>}
= 2M (Yh)-

Here, the first equation directly comes from Equation (172), and the dasttien is obtained by
substituting Equation (131) into the second equation.

According to Lemma 24, wheg, > 2v/M and A < 0, the EVB solutions consist dérge
positivestationary points; otherwise, the EVB solution is tindl local minimizer. Using Equa-
tions (114), (115), and (131), we obtain Equation (51). Equationf@@®ws Lemma 26, because

d(yh) =An/(2M) < W(a,B)/2 fora = 1, = y2/(Ma?). [ ]

Appendix G. Proof of Lemmas

In this appendix, the proofs of all the lemmas are given.

G.1 Proof of Lemma 7
We minimize the left-hand side of Equation (61) with resped tindB:
min {tr(Ac,;lAT) +tr(BcE;15T)} (132)
AB
st.BA" = QIFQL.
We can remove the constraint by changing the variables as follows:
1/2

A— QrITTCY?, B—Q T 'C,"?

whereT is aH x H non-singular matrix. Then, the problem (132) is rewritten as

mTin{tr (TTTFZ) tr ((TTT)—l(CAcB)—l) } (133)
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Let
T 1=uUDrVy

be the singular value decompositioriTof!, whereDt = diag(dy, . ..,dy ) ({dn} are in non-increasing
order). Then, the problem (133) is written as

,min, {tr <UT D72U{ r2> Tr (VT D2\ (CACB)*) } . (134)

The objective function in Equation (134) can be written with the doubly s&iahenatrices
Qu =UreUr,
Qv =Vre\fr,

wheree denotes the Hadamard product, as follows (Marshall et al., 2009):
(A%, dg2)Qu(VE, - Ya) T +(af, - dR)Qv((CayCo) s (Can o) ) T
Since{y2} and{d?} are in non-increasing order, agd, ?} and(c,,Cs,)* are in non-decreasing
order, this is minimized whe®y = Qy = Iy (which is attained withdt =V = Iy) for anyDr.
Thus, the problem (134) is reduced to

H o 2
min <V2h+ dy >

{0h} H=1 dT% (CaCop)?

This is minimized whem? = YiCa, Cs,,> and the minimum coincides to the right-hand side of Equa-
tion (61), which completes the proof.
|

G.2 Proof of Lemma 8

It is known that the second term of Equation (60) is minimized when

A: (\/VTW&U ceny \/yiHWaH)TT,
B= (\/\leblv ce \/THU-’bH )T_17
whereT is anyH x H non-singular matrix. Since the first term of Equation (60) does not dkpen
the directions of an, by}, any minimizer can be written in the form of Equation (62) wiifi > 0}.
The degeneracy with respectTas partly resolved by the first term of Equation (60). Suppose

that we have obtained the best set{@f}. Then, minimizing Equation (60) is equivalent to the
following problem:

Given {yh > 0},
min {tr(AC,;lAT) +tr(BcE;1|3T)} (135)

y

H
s.t.BA" = z VhwbhwaTh‘
h=1

5. If yh = 0, the minimum is attained by simply setting the corresponding column vedt8raraiB to (an, by) = (0,0).
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Lemma 7 guarantees that

Cah/\
an = 7thah 9
Chn,

Cb, ~
bh =\ | —Yhwh,,
Cap

give a solution for the problem (135) for any (so far unknown) sefya, which completes the
proof. |

G.3 Proof of Lemma 9
Equation (60) can be written as

_ _ 1 2
LM (A, B) = tr(AGY'AT) + tr(BG5 'BT) + Hv —BA’

Fro '

This is invariant with respect to the transform

A—AO",
B—BOL,
since
tr(A@TCTOAT) = tr(AC, 2= TC/’CiC /P =C, Y PAT) = tr(ACLIAT),
tr(BO1c;1(@ 1) TBT) = tr(BC; Y%= T’ et/ 2=c; M?BT) = tr(BC; 1BT),
BO loA=BA
This completes the proof. |

G.4 Proof of Lemma 10
Let

M

o=y Tt
m=1
L

T, = 3 ()
I=1

be the eigenvalue decompositionsgf andZy, , where
(r(la“),...,r,(\ﬁh)) cRY, (T(lb“),...,rﬁb“)) cR:,.
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are the eigenvalues. Then, the objective function (67) is written as
LVB({ahvbthEn 1))

H an) bn)
z( 3 logr® a2 ;zmrm Z,Ogtlbh 1,1 tzz' Al )
bn

2
1
i

H
V=S unpg,
h=1

Fro
1 H L b M M L b

+ 55 (a2 S 1™+ S 1,24 T ) (S ).
O h=1 =1 m=1 m=1 =1

Since the second and the third terms are positive, this is lower-bounded as

H 2 M (@n) (@n)
T T
L£YB({an, bp, 1 1) > M+ " g™
! th %, rrgl Ca, cz

||ubh||2 (1 1)) - S (Mioge2 2)
+ —log — Mlogcg +Llogc ). (136)
2 T2\ g e ) ) 2 (Mo, h

Focusing on the first term in Equation (136), we find that

lim £V ({an,bn, 18 1™}) = oo
[Pyl

for anyh. Further,

lim £VB({an, bn, T 1) = o,

IST?“)—>O

lim  £Y8({an, b, T2, 1™}) = o,

(@)

Tm  —

for any (h,m), becausgx —logx) > 1 for anyx > 0, limy_,o(X —logx) = oo, and lim_,e. (X —
logx) = . The same holds fofuy, } and {Tl(bh)} because of the second term in Equation (136).
Consequently, the objective function (67) goes to infinity when appiogdo any point on the
boundary of the domain (69). Since the objective function (67) is difteable in the domain, any
minimizer is a stationary point. For any observatibrthe objective function (67) can be finite, for
example, when|pa, || = ||, || = 0,24, = Im, 2, = L. Therefore, at least one minimizer always
exists. [ |

G.5 Proof of Lemma 11
Combining Equations (76) and (77) and eIiminat'crfg, we obtain

2 o2
M<u§h+gz)o§,‘h+(ﬁﬁ—oz(M—L))o (Uah+ ) 0.
b

ah h
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This has one positive and one negative solutions. Neglecting the negadyave obtain

- (2~ 02(M—L)) +/ (A2 — 02(M — L))+ 4Ma?R? -
2M(12 +0%ca,) '

Similarly, combining Equations (76) and (77) and eIiminam'rgg, we obtain

2 _
Oh, =

— (AR +0%(M - L)) + /(7 + 0%(M — L))? - 4Lo?A

22 1 0%6,”) (138)

Note that Equations (137) and (138) are real and positive fol gyl ) € R? andip € R, ;.

Let us focus on thewull stationary points. Apparently, Equations (80) and (81) are necessary
to satisfy Equations (74) and (75) and result in il outputy, = iy, fln, = 0. Substituting Equa-
tions (80) and (81) into Equations (137) and (138) leads to Equations(82(83).

[ |

G.6 Proof of Lemma 12

To prove the lemma, we transform the set of variallgg, k,, 03, 05, ) to (Vh,éh,oz op, - Nn), and
the necessary and sufficient condition (74)—(77) to (86)—(90).timsform (92) is obtalned from
the definitions (78) and (84), which we use in the following when necessar

First we show that Equation (91) is necessary for pagitivestationary pointyh andSh must
be positive because Equations (74) and (75) imply haéndpy,, have the same siglur.glh andogh
must be positive because of their original domain (TR2)must be positive by its definition (79).

Next, we obtain Equations (86)—(90) from Equations (74)—(77). Egug86) simply comes
from the definition (79) of the additional variabifg, which we have introduced for convenience.
Equations (89) and (90) are equivalent to Equations (137) and ,(¥88¢h were derived from
Equations (76) and (77) in Appendix G.5. Equations (87) and (88)eneed! from Equations (74)
and (75), as shown below.

Equations (137) and (138) can be rewritten as

, —(B=0?(M—L))+/(A2+02(L+M))2—40LM
02 = ML oo , (139)
M, +0°Ca;)
Ne+0%(M—L)) ++/(R2+ 0%(L + M))2 — 404LM
of = ~ (@ VG . (140)

2L (14 + 02cbh )
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Substituting Equations (139) and (140) into Equations (74) and (7%pecésely, we have

2
20°M (u§h+ ° ) at

c3,/ Ho,
:yh{—(ﬁﬁ—oz(M—L))+\/(nﬁ+02(L+M))2—4c4LM}, (141)

2 > | 0%\ Uy,
:yh{—(ﬁﬁ+oz(M—L))+\/(nﬁ+02(L+M))2—4o4LM}. (142)

Subtraction of Equation (142) from Equation (141) gives

MPa,  LIb 2
20%(M — L) g, o, 4 20% — | =20%(M — L)yh,
Hay, Hoy, 2t Cghuah
which is equivalent to Equation (88).

The last condition (87) is derived by multiplying Equations (141) and (1d2)vhich the both
sides are positive):

mmﬁﬁ—vﬁ(Zﬁﬁ+zﬁﬁ02<L+M>—zﬁﬁmﬁmmM>>2—4°“LM>'

Dividing both sides by 82y2 (> 0), we have

20%LM
v

Note that the left-hand side of Equation (143) is always real and positice

V(24 02(L + M))2— 40%LM =2 + 0%(L + M) - (143)

(Ma+0%(L+M))? —40*LM = (f3 — 0*(M —L))*+ 4Ma?n
> 0.

Therefore, the right-hand side of Equation (143) is hon-negativeigeiation (143) holds:

4
R2ra?Lim)— 2T M oo (144)
Y
To obtain Equation (87) from Equation (143), we square Equation (143)
4 2
(RZ+0?(L+M))?—40*LM = (ﬁﬁ+oz(L+M)2°y2LM) : (145)
h

Note that this is equivalent to Equation (143) only when Equation (144 shé&duation (145) leads
to

c*LM

Vi

—(M2+0*(L+M))+¥=0.
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Solving this with respect tq2 results in Equation (87). Equation (87) cannot hold with any real and
positive value ofj, whena?L < y2 < 6?M. Further, substituting Equation (87) into Equation (144)
gives

4
yﬁ_wzo'

Vi
Therefore, Equation (87) satisfies Equation (144) only wifer 02v/LM. Accordingly, when

Equation (85) holds, Equation (87) is equivalent to Equation (143). r@tke, Equation (143)
cannot hold, and npositivestationary point exists. |

G.7 Proof of Lemma 13
Squaring both sides of Equation (86) (which are positive) and substititjngtion (87) into it, we

have
) ~
~ (e} Ch, 5h C —~
Yo+ 2
h
Cay, Co, Ca, Co,Oh

+ (cgiigh — (1—‘22‘) (1—"\2") yﬁ) =0. (146)

Multiplying both sides of Equation (88) tﬁh (> 0) and solving it with respect tﬁ1 we obtain

(M —L)(Yh—¥h) + \/(M —L)2(yh—Vh)2 + 4:&

oh = 147
" 202Mc,? (147)

as a positive solution. We neglect the other solution, since it is negativstitting Equation (147)
into Equation (146) gives Equation (93). Thus, we have transformeddbessary and sufficient
condition Equations (86)—(90) to (93), (87), (147), (89), and.(9®)s proves the necessity.

Assume that Equation (85) holds and a positive real soligiasf Equation (93) exists. Then,
a positive reahy, satisfying Equation (87) exists. For any existifyg, Nn) € ]R%r 4, a positive real
3y, satisfying Equation (147) exists. For any existif§g, &, An) € R3 ,, positive realo?, andof
satisfying Equations (89) and (90) exist. Thus, whenever a positatsotutiony,, of Equation (93)
exists, the corresponding poi(fnq,gh,ogh,ogh,ﬁh) € R, satisfying the necessary and sufficient
condition (93), (87), (147), (89), and (90) exists. This proves tlicgency.

Finally, suppose that we obtain a solution satisfying Equations (86)—(9Dgiglomain (91).
Then, Equation (87) implies that

Yh > Nh.
Moreover, ignoring the positive ternag/c; ando?/c3, in Equation (86), we have
Nh > Vh.

Therefore, Equation (96) holds. |

2627



NAKAJIMA AND SUGIYAMA

G.8 Proof of Lemma 15
Assume that? > g2M. Then, the second inequality in Equation (98) holds if and only if

o2L o?M ag*
1-2-) (-2 -2 s
(%) (%2 ¥ 22

The left-hand side can be factorized as
Vi 2 (yﬁ - (K +VK2— LM04>) (yﬁ - (K —VK2— LMO’4>> >0, (148)

where

_ (L+M)a? N a*
B 2 2c

Since

—VK2—LM0* < Mo? < K+ VK2 — LMad?,

Equation (148) holds if and only if

Ve > K+ VK2 - LMo#,

which leads to Equation (30). |

G.9 Proof of Lemma 16

We show that the Hessian of the objective function (73) has at leastagative and one positive
eigenvalues at theull stationary point, when anyositivestationary point exists. We only focus on
the 2-dimensional subspace spannedihy, i, ). The partial derivatives of Equation (73) are given

by

104° (vhubh+(u§h+'-0§h)uah>

2 Ops, C3 02
1040 b, —YhHa, + (5, +MOZ, )Ho,
2 0y, cbh RE '

Then, the Hessian is given by

7—‘7_[ - aZHaKI/ ub

1111'3

%6;1,3haubh 2 (Opy, )2
Cz + (U5, +LOE )  —Yh+ 2t
"\ 2y by Z 4+ (K3, +MaZ)

(149)

g

2628



THEORETICAL ANALYSIS OF BAYESIAN MATRIX FACTORIZATION

The determinant of Equation (149) is written as

1 e 1 (0? 2 2 o? 2 2 1 2
57[ = %JF(thH—th) %JF(H‘%?LMU%) —@(zuahubh—yh)
h
11 EVRY:
_m o (2Uay Mo, —Yh) <5 (150)

where Equations (76) and (77) are used in the second equation.
The determinant (150) of the Hessian at il stationary point, given by Equations (80)—(83),
is written as

1 ! Ve. (151)

‘15_[VB 1
— 22 82 4
2 0%0p, O

Assume the existence of apgsitivestationary point, for which it holds that

s

h O_gho_gh ( )
This is obtained by substituting Equation (75) into Equation (74) and dividinity ksides by
pahaghagh/o“ (> 0). Note that Equation (152) is not required for tal stationary point where
fla, = 0. Substituting Equation (152) into Equation (151), we have

1 1
= % ) e - . 153
63,65, G405, (459

10
7-,]_[VB
2

Multiplying Equations (139) and (140) leads to

1

2 2
0,0, = ——=
2 bn 4ALMnZ

{— (RE2—o*(M-L)) + \/(nﬁ+02(L+M))2—4o4LM}

X {— (A2 +0*(M—L)) + \/(nﬁ+02(L+ M))2—404LM}

= 50 {ﬁﬁ+oZ(L+M) - \/(ﬁﬁ+02(|_+ M))2—404LM} ,
which is decreasing with respect fp. Equation (79) implies thaf), is larger at anypositive
stationary point than at theull stationary point. Thereofore, it holds théf 67 > 63 65, and
Equation (153) is negative. This means that the Hes&ldR has one negative and one positive
eigenvalues.

Consequently, Fhe Hessian of the_ obje_zctive function (73) with respe{w%h,.ogh,oﬁh) has
at least one negative and one positive eigenvalues atuhestationary point, which proves the
lemma. |

G.10 Proof of Lemma 18

We rely on the monotonicity of the positive solution of the quadratic equatiopw@h respect
to 1 andqo; the positive solutiory of (97) is a monotone decreasing functioncqpfandqg (see
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Figure 11). Although Equation (93) is not really quadratic with respegt tiecause Equation (94)
depends oy, we can bound the positive solutions of Equation (93) by replacing thiéicierts

g1 andqgp with their bounds. Equation (93) might have multiple positive solutions if the lkfidh
side oscillates when crossing the horizontal axis in Fig.11. However,gproach bounds all the
positive solutions, and Lemma 17 guarantees that the minimizers consist ofo§dheam when
Equation (98) holds.

First we derive an upper-boundiﬁ Let us lower-bound Equation (94) by ignoring the positive

term 45*LM/(c5,¢5, ):

(M= L20n =) (L4 M) (M= L2+ 22

o~

da(Yh) =

2LM

—(M —L)2(yh —¥h) + (L+M) /(M — L)?(Yh — ¥h)?
2LM

>

— (1) =

We also lower-bound Equation (95) by ignoring the positive tefif(c; cf ). Then we can obtain
an upper-bound oj:

¥ <V
whereVJhp is the larger solution of the following equation:
M M oL 0’M
i (2 -awir ¢ (- 5) (% o
( h ) L h L yzh yzh h

This can be factorized as

() ()

Thus, the larger solution of this equation,
oM
thp = <1 - y2> Yh,
h

gives the upper-bound in Equation (28).
Similarly, we derive a lower-bound §. Let us upper-bound Equation (94) by using the relation

VX +Y?2 </ + Y2+ 2xy < x+yforx,y > 0:

—(M —L)Z(vh—vh>+<L+M>¢<M —L)2(yh— )2+ A2

~ 3 by
_ — ML=+ (L4 M) (M=) =) + 26
= 2LM
L . 20%(L+M)VLM
- (1_ |v|> N VTN
L . a}(L+M)
—(1—= ) (=) + =L
( |V|> (Yo =¥h) V/LMcg, Cp,
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We also upper-bound Equation (95) by adding a non-negative term

(M —L)o? ( 1 +02\/W>

LCa, Co, Ca, Chy, Vh
Then we can obtain a lower-boundypf
Vh > VP,

whereVr? is the larger solution of the following equation:

2
L§o)2 + ((M Ly ZEEMIY WL)V@

Cay, Con,

+

Mio*  a*MM-L)yM/L <1— 02") (1—02M>Vﬁ=0-

LcZ ch YhCay, Chy,

Vi

This can be factorized as

(V’r?— <1—0;:A> yh+W> (LVﬁUrM (1—02L>yh+02'vl\/m) =0,

Cay, Con, Vﬁ Can, Co,

Thus, the larger solution of this equation,

o= <1_02|v|>yh_02 M/L

yzh Cay, Con,

gives the lower-bound in Equation (28).
The coefficient of the second term of Equation (146),

02 [ Cp,0n L Ca
= 9
Ca;, Cby, Cay, Chy, oh

o~ C.
O = -,
Cop,

is minimized when

Then we can obtain another upper-boungipf
/y\h S thpv

wherey, " is the larger solution of the following equation:

202 \ ot oL oM
(V“p)2+< ) p+—(1—> (1—)\/2—0.
" Cai, Con " Cghcgh yzh y2h "
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This can be factorized as
2 2 2
—~up o<L oM o
w3 e
< " \/ Vi Vi Car Coy
2 2 2
~up o<L oM o
« (e <1_) (1_>yh+ o
( n \/ Vﬁ yzh Can Con,

Thus, the larger solution of this equation,

2 2 2
~up o-L oM o)
(-5 (-
" \/ yﬁ yﬁ Cay, Chy,

gives the upper-bound in Equation (31). |

G.11 Proof of Lemma 19

Consider the two-step minimization, (103) and (104). Lemma 17 implies that the miniofize
Equation (103) is theull stationary point for any give(rgh,cgh) in . Thenull stationary point is
explicitly given by Lemma 11. Substituting Equations (80)—(83) into Equatiog)fjives

LMAa0)
T8 (Ch,00h,) = M(—100Aa1 +Aar) +L(—10gAns + Aps) +—— 0. (154)

where

1 o?
A —_ = ) - M—L
ak(Ca,Cop) oM (Cathh)k{ (Cahcbh Ca, Co, ( ))

o? 2
+ < cahcbh(ML)) +4Mo? 3,
Can Con,

1 02
A = - M-—L
b,k(CanCon) 2L(Cathh)k { <Cathh + Ca Con ( ))

o? 2
+ < +cahcbh(M—L)> +4Lo? 5.
Cay, Coy,

Note thatA,x > 0, Apk > O for anyk, and that Equation (154) dependsccip andcﬁh only through
their productc,Cy, .
Consider a decreasing mapping- 6/(c5, c5 ) (> 0). Thena1 andAp 3 are written as

2
-1 (X (L+M)) — \/;>;A+(L+M)) e

2
1 M)~ \/(2><L+(L+M)) —_
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Since they are increasing with respectx{oh,1 and A, 1 are decreasing with respect ¢g,C,.
Further,Aa1 andAy 1 are upper-bounded as
. e B
Aa1(Ca,Co,) < Cahggrfg+0)\a,l(cahcbh) = )I(m}‘a,l(x) =1,
Mb1(CaCh,) <  NiM Ap1(Ca,Ch,) = )I(i_r}rgo)\gvl(x) =1

Cay, cbh%+0

Since(—logA +A) is decreasing in the range<OA < 1, the first two terms in Equation (154) are
increasing with respect t, Cy,,, and lower-bounded as

M(—logAa1+Aa1) > lim  M(—logAa1+2Aa1) =M, (155)
’ CathhH+0 ’

L(—logAp1+Ap1) > lim  L(—logAp1+Ap1) =L. (156)
’ cahcbh—>+0 ’

Similarly, using the same decreasing mapping, we have

2
00 Naol0) = oy (06 (L) =y (L M)2—aLm ).

Since this is decreasing with respectxt@nd lower-bounded by zerda oAp o is increasing with
respect tac,,Cp, and lower-bounded as

Aa0(Ca,Coy,) - Ab,0(Ca; Coy) > Cah(!ti)rtl+0)\a’o(cah(;bh) “Ab,0(Cay,Co,) = im)\/a,O(x) 'M),O(X) =0.

Therefore, the third term in Equation (154) is increasing with respegi tg,, and lower-bounded
as

LMAg0A . LMAZ0A
a,0/\b,0 > lim a,0/\b,0 _

o Cay, Co, —+0 o? 0. (157)

Now we have found that Equation (154) is increasing with respec tg, , because it consists
of the increasing terms. Equations (114) and (115) miniroige,, over X when Equation (43)

is adopted. Therefore, they minimize Equation (154). Equations (1119)-¢re obtained by sub-
stituting Equations (114) and (115) into Equations (80)—(83). Since thmanfl55)—(157) of the
three terms of Equation (154) are obtained at the same time with the minimizer in the ligrit wh
€ — 40, we have Equation (116). |
G.12 Proof of Lemma 20

Existence of anyositivestationary point lying irR contradicts with Lemma 14. |

G.13 Proof of Lemma 21

Assume that Equation (118) holds. Then, any global minimizer or poinesegugiving the global
infimum LEVB exists inR. Let us investigate the objective function (106). It is differentiable in the
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domain (102), and lower-bounded as

1 1 1 1
EVB 2 2 2 2 2 2 2 2
Lh (“ahaubhacahvobmcah?c’bh) > Uah <CZ+ O.ZLth> +p‘bh <C2+0.2M0ah)

an bn
02, 02, o2 op 1
+M (Cﬁh —log C§h> +L (C%h Iog c2 (LMoahobh YVP) - (158)

Note that each term is lower-bounded by a finite value, sfreelogx) > 1 for anyx > 0.

Since any sequence such thgt—> Oor cﬁh — 0 goes intaR, it cannot giveLEVB. Accordingly,
we neglect such sequences. Then, we find that the lower-boungddés to infinity WherivgIh -0
or oﬁh — 0, because of the third and the fourth terms (note that ling(x — logx) = o). Further, it
goes to infinity Whemgh — 00 Or Gﬁh — oo, because of the fifth term. It also goes to infinity when
|Ma, | — 0 OF |Hg, | — o0, because of the first and the second terms. Finally, it goes to infinity when
c3, — @ orcj — o, because of the third and the fourth terms.

The above mean that the objective function (106) goes to infinity whermagpping to any point
on the domain boundary included &1 Consequently, the minimizers consist of stationary points
in R. According to Lemma 14 and Lemma 16, thell stationary points irR are saddle points.
Therefore, the minimizers consist pbsitivestationary points. |

G.14 Proof of Lemma 22
Substituting Equation (75) into Equation (74) gives

a*
V= ——s. (159)
0%,%,
Substituting Equations (76) and (77) into Equation (159), we have
2 2 O 2 , O
V2h= Uah+M0'ah+% th—i-LO'bh—i-% . (160)
h h
Substituting Equations (119) and (120) into Equation (160) gives
2 2
V= <Mc§h+(‘:’2> (chh+ o >
b c,
From this, we have
LMcg cb, — (Vo — (L+M)o?) ¢ c§, +0% =0. (161)
Solving Equation (161) with respect ¢§ cf, , we obtain two solutions:
Ve —(L+M)o —(L+M)0?2)” —4LMo?
2t = ( \/ %) . (162)
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On the other hand, because of the redundancy with respect to theotran@f2), we can fix
the ratio of the hyperparameters as in Equation (43). Thus, we havéomaes! the necessary and
sufficient condition (74)—(77), (119), and (120) to (74)—(774 &162). Since

V(B (L+M)0?)?— aLMo
— |/ (B~ (VT VW202) (- (VM - VI 202)

and
(VM —=V1)202 < VMa?,

the two solutions (162) are real and positive if and only if Equation (121dsh This proves the
necessity.

Suppose that Equation (121) holds. Then, the two solutions (162) exis.inverse of the
smaller solution (123) is written as

1 (e \/ L+M02) — 4L Mg*

(163)

S < g(yﬁ—(LJrM)cz).
h
Using this bound, we have
02L> ( 02M> o?
1-— )| 1- Yh— =
\/( V2h Vﬁ Cay, Con,

> \/yﬁ(L+M)02+ L'\$204 —/V2— (L+M)o?
h

> 0.

This means that Equation (98) holds. The same holds for the larger sollifig) €ince
1 1
= < —.
Cay, Con, Cay, Con,

Consequently, Lemma 14 guarantees the existence of at leagiosite/e stationary point
(Hay oy, 05,02 ) € R? x R3, satisfying Equations (74)—(77), given a3 ,cZ ) € R3, con-
structed from Equation (43) and either of the two solutions (162). Theshave shown the ex-
istence of at least onpositive stationary point satisfying the necessary and sufficient condition
(74)—(77), and (162) when Equation (121) holds. This proves tfiigismcy. |
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G.15 Proof of Lemma 23

We show that, when Equation (125) holds, the Hessian of the objectietidnr(106) has at least
one negative and one positive eigenvalues atsangll positivestationary point. We only focus on
the 4-dimensional subspace spanned iy, pbh,cgh,cgh). The partial derivatives of the objective
function (106) are

10LEYE o, | —Yhblo, + (5, +LOP e

2 Oda, C3 0?2 ’
LOLE a5, + Mo
2 Oy, cgh 02 ’
1988 1 (M_ (uthrMogh))
2 0c; 2\ ci Ca. ’
10488 1L (H+Lop)
2 oc2  2\c o

h h h

Then, the Hessian is given by

PLEVB | PLEVB g PEVB g GPLEVB
(OMa,)?  20HaOlo,  20Ma 0C3 2 0p, 6(:%1
PLEVB 1 GPLEVB g PLEVE g G2LEV

2 (0Hb,)?  20Mp, 03 20y, 0C2
PLEB g PLEVB (2rEVE g 92EY
0c% Op, 203 Opp, 2(3¢3)% 2 acg\hacgé]
PLEB g PLEVE g 2rEVE  q 2EY
acﬁhauah 2 acghapbh 2 acﬁh oz 2 (dcﬁh )2

= g/EVB _

NI NI NP G
|
=
=)
F

Mg, +Lop 2y, Hop, — Y
C%_i_ h02 bn M’ﬂhdzh h _% 0
Hploy—¥h 1 H+MOG 0 oy
A S &,
= " 213 +Ma? )—Mc2 " (164)
T d 0 2c6alh = 0
2 %
0 gy 0 2(pg, +Lop )-Lc
h

At any positivestationary point, Equations (74)—(77), (119), and (120) hold. Substit&Equa-
tions (76), (77), (119), and (120) into (164), we have

1 Yh—2ap by, Hay 0
032 0?2 G,
WP, 1 0t
1 F{EVB _ o? %, %,
2 Moy 0 M 9
%, 2,
0 Hon 0 L
icS 2,
h h
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Its determinant is calculated as
Hay, M Yh—2Hay, H,
a0 & —cu:hjh
}HEVB _ Moo _Hon 0 +L Yh—2Ha, o,y 1 0
2 T4 cﬁh 2t 02 o
bh | 1 Yh—2Mayboy My bn Ha, 0“ M
% 7 4 q, 4,
_ 1 (“g**”%h Mig, LG +LM( A zuahub)2>>
cicp \ChCh 203Cp 20pch  40*\ 03 0% "
Multiplying both sides of Equation (74) by, gives
2
O3, ~
HiZ?a;Vth,
and therefore
2 ~
o _ Yoo (165)
(o}
an
Similarly from Equation (75), we obtain
K, Yivh
— = (166)
o5 02
By using Equations (78), (84), (159), (165), and (166), we obtain
1 1 Y ovivh [(M&2 L\ LM .
SHEVE| = n— +—= |+ =5 (W —W) | - (167)
: g \dd 27\ d 4 ) o
Since R R
M2 L762>2\/LM
Cop  Ca S,

for anyg2 > 0, Equation (167) is upper-bounded by
1 V2 WhvVIM LM
e <C4h4 —yZ 2 2 +7(VhW_V2h)
ah by ahcbh Y Cah bn Y
_ Yh ( 1
il \G&G, O
At any small positivestationary point, Equation (123) is upper-bounded as
2
Q@ 2
ah bh /LM
when Equation (125) holds. Therefore, Equation (168) is written as

SC{< ! +\F>Vh— \/mvh},

<

1 EVB
2

+
2 2
c3, cﬁh o}

\/W> { ( L m)% \/cl;jMVh}. (168)

‘ } g:[EVB
22 ¢ 2 2
2 cahcgh o o
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with a positive factor

c_ W 1 VM
“ag\gg o )

Using Equation (31), we have

1- 1 LM Lo? M2 02
L] <ol (Gl Y (([(1-19) (1M
VLM
- 0_2 Yh

2 2 2 A/
—c —,0,3+\/(1—L°) (1—M0 ) VAV
c%hcbh yzh yzh Cahcgh Cathh
v LM < L02> < M02>
_ 1= (1= =) (=2 v
0? Y Y
2 2 2
<< et <1—L°> (I—MG),W,'—\/LM .
Canlo, \ G V2 V2 / €aCon

At the last inequality, we neglected the negative last term in the curly braces

Using Equation (163), we have

29752 <~ rom) - am), (169)
where
, ¥C
C_Zczgahébh’
(1 WM vDe? \/ (LrM)e2\? aLmot
”V*”‘(l 7 )* (-557) -5

o= o) (%)
) J (1_ (L+y2:A)02> +\/<1_ (L+VI%/I)02>2_ 4L\I>/Iﬁ04'
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SinceC’, f(yn), andg(yn) are positive, the right-hand side of Equation (169) is negativé((fi,) —
g?(yh) > 0. This is shown below.

12(yh) — GP(Vh) = ((1Wv%m%2> +\/<1(L+\/2';")"2>24L\'\//'ﬁ°4)2
() ) () )

ViNe? [ VINo?
Vi Va

(o Sy )

=2

> 0.

Consequently, it holds tha#/EVB| < 0. This means that/EVB has at least one negative and
one positive eigenvalues. Therefore, the Hessian of the objectiatidan(106) with respect to
(uah., Mo, , O3, - qﬁh,cﬁh,cﬁh) has at least one negative and one positive eigenvalues atiipositive
stationary point, when Equation (125) holds. This proves the lemma. |

G.16 Proof of Lemma 25

Substituting Equations (106) and (116) into Equation (126), we have

Mom %2 22 %2 X EVB/» ~» %2 %2 <2 x2
Ah(uahaubhao-ahacbhvcghvcﬁh) :L’h (uamubhaoah)o-bhvcahvcbh)_(L+M)
=2 62 “2 =2 2 552
C + Mo +Lo
% +Llog b“+“a“v2 R

52 &2 &
cah obh Cah Cgh

= Mlog
1 oo o S\ e .
+ — (=2l o, + (G, + M%) ({6, +185,)) — (L+M).  (170)

Substituting Equations (119) and (120) into Equation (170), we have

[, i3 1
An=Mlog (Mégh +1> +Llog (Lé% +1> + 2 (—2Yhfa, Flo, + LME & ) . (171)
h

Substituting Equations (165) and (166) into Equation (171) and usingtiegu&8), we have
~ ~ 1 - 0 <
A= Mlog <%yh + 1) +Llog (%yh + 1) (2w LMER).  (172)
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Using the bounds (28), Equation (172) is upper-bounded as

Ah<MIog< Vi (1 M02>+1>+Llog(v2 (1—'\/\'/%’2>+1>
( 1_M)yh—W>+LMé§hcgh>

(i
) 19
ol

oM 02\/M L 2 x
2¥h (Vh— = / >+|—MC§hC%h>

Can, Con,

_Mlog( Vi >+Llog<—M+l>+2M+2\/W 2y2 LME G B

2" 2
L Ca,C o o

Sincey/x2 —y2 > x—yfor x >y > 0, Equation (122) yields

2 @ _ Y- (LM +ViIM)o?

C5.Ch, = M (173)
Ignoring the positive terml4Ma* in Equation (122), we obtain
2w Yo (L+M)d?
C5,Ch, < BTV (174)
Equations (173) and (174) result in
Ve —(L+M+VLM)o? i b < Y2 —(L+M)o?
LM = e LM
Using these bounds, we obtain
2\,/M/L
Ah<MIog< Vi >+Llog<y2—M+1>+2M+ / Yh
L \/yzhf(L+M+\/W)02
T
2v;
— 2R (L+M)
_Mlog< Vi >+Llog<yz2 M+1)+M—L+ M —ﬁ.
L 2 02
1_ (LEM+VIM)o
Vi
Using Equations (128), (129), and (130), we obtain Equation (127). |
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G.17 Proof of Lemma 26

For 0< a < 1andp > 7, Equation (128) is increasing with respecttdecause

oy(a,B) B—1+ B-1 (Va+1/2)
az( :Iog< a a)(ﬁ—l—l—a) +B\/a<l_a(a+\{36+1)>3/2
>Iog<l3;l+1>—2+[13
2Iog([3)—2+[13
> 0.

Here, we used the numerical estimation that B)g- 2+ 1/ ~ 0.0888 when3 = 7, and the fact
that log ) — 2+ 1/ is increasing with respect whenp > 1.

For 0< a <1 andp > 3, Equation (128) is decreasing with respedBttecause

W) 1w e
op B B-1+0a) 2(1__@i1§i9>w2
I |
B (B—1+a)
~_(B-1+va)(B-1-va)
B(B—1+a)
<0.

Consequently, itp(l,ﬁ) < 0, it holds thatp(a,B) < O for any O< a <1 andp > E The fact
that(1,7) ~ —0.462< 0 completes the proof. |

G.18 Proof of Lemma 29

Since the upper-bound in Equation (28) does not deper(di)n:ﬁh), Equation (46) holds.

Since the lower-bound in Equation (28) is nondecreasing with respexg)dg, substituting
Equation (173) into Equation (28) yields

Yh > max{ 0, (1— GZM) Yh — oM .
Vi V¥~ (LM + VEM)o?

It holds that

o’M o’M o’M

Yh \/yzh—(L+M+\/W)02 yh—\/(L+M+\/W)02’
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where the positive terniL +M ++/LM)o? is subtracted in the first inequality and the relation
VX2 —y2 > x—yforx>y> 0is used in the second inequality. Then we have

- 20°M
Vh > maxq 0, yh — )
Vh*\/(L+M+\/L|\/|)02

which leads to Equation (47).
Substituting Equation (174) into Equation (31), we obtain

ey () (- S
(-5 (-

where the positive terniL + M)a? is ignored in the second inequality. This gives Equation (48),
and completes the proof. [ |

Appendix H. lllustration of EVB Objective Function

Here we illustrate the EVB objective function (106). Let us consider ighgrminimized objective
function:

L’hEVB(Cathh) = (tey “bmlcrz] o2 )L’l”IIEVB(pahaubhvo-ghvoghacahcbhacahcbh)’ (175)
'FDp M ay bh

According to Lemma 19, the infimum at thell local minimizer is given by

. ~EVB o ° EVB .
Cahl(lzghn_mbn (CayCoy) =Lp =L+M. (176)
Figure 13 depicts the partially minimized objective function (175)whenM =H =1,0% =1,
andV =1.5,2.0,2.1,2.7. Corollary 1 provides the exact values for drawing these grapleslarde
and thesmall positivestationary points, specified by Equations (122) and (123), resplgctare
also plotted in the graphs if they exist. When

v21.5(< 2:(ﬁ+\/ﬂ)o),

Equation (121) does not hold. In this case, the objective function (i@&no stationary point as
Lemma 22 states (the upper-left graph of Figure 13). The curve is ideftida< V < 2.0.

WhenV = 2.0 (the upper-right graph), Equation (124) holds. In this case, thegdunction
(175) has a stationary point@j,c,, = 1. This corresponds to the coincidéerige andsmall positive
stationary point. Still no local minimum exists.

WhenV = 2.1 (the lower-left graph), Equation (125) holds. In this case, therdseaisrge
positivestationary point (which is a local minimum) a4, c,, ~ 1.37, as well as amall positive
stationary point (which is a local maximum)@jt cy, ~ 0.73. However, we see that

IEVB(137)~224>2=1;"
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vV =1.50,9 EVE .00 vV =2.00,9 EVE .00
° ° X Large S
arge
. Small SH
4 4
m 8 /M 3
> e /M
e [Eaf
Q Q
2 2
1 1
0 0
0 1 2 3 0 1 2 3
Ca,Cb, CapChy,
v =2.10,73 EVB 0.00 vV =270,7 EVE 189
5 5
X Large SP X Large SP
$> Small S $> Small S
4 4
m 8 as] 3
> >
[€2fe M<
Q M Q
2 2
1 1
0 0
0 1 2 3 0 1 2 3

CapChy, CapCop

Figure 13: lllustration of the partially minimized objective function (175) whee M =H =1,
0?=1, andV = 1.5,2.0,2.1,2.7. The convergenc&""®(cs,Cy,) = L+M (= 2) as
Ca,Co, — O is observed (see Equation (176)). 'Large SP’ and 'Small SP’ inditegte
large and thesmall positivestationary points, respectively.

Therefore, thewull local minimizer €4,cy, — 0) is still global, resulting i5VE = 0.

WhenV = 2.7 (the lower-right graph)y, > v/ 7M - 0 holds. As Lemma 28 stateslaage positive
stationary point ata,Cp, ~ 2.26 gives the global minimum:

IEVB(2.26)~052<2=1; ",

resulting in gpositiveoutputy="® ~ 1.89.

Appendix |. Derivation of Equations (57) and (58)

Let p(v|@) be a model distribution, where is a random variable anl € RY is ad-dimensional
parameter vector. Thieffreys non-informative priofJeffreys, 1946) is defined as

@6) 0|7, 177)

2643



NAKAJIMA AND SUGIYAMA

where# € R9%9 js the Fisher information matrix defined by

_ [0logp(v|6) dlogp(v|6)
Fic— [ %) b0, Plvlo)dv. (178)

Let us first derive the Jeffreys prior for the non-factorizing model:
1
pu(V|U) Dexp(—(V U) ) (179)

In this model, the parameter vector is one-dimensioat:U. Since

dlogpy(VIU) V-U
ou g2

the Fisher information (178) is given by

This is constant over the parameter space. Therefore, the Jeffiey§ly7) for the model (179) is
given by Equation (57).
Let us move on to the MF model:

pas(VI|A,B) Dexp( ! 5-(V—AB) > (180)

In this model, the parameter vectords= (A,B). Since

dlog pAéE;(\Y\A, B) _ iz(y AB)B,
dlogpas(Y|AB) _ 1
AaBé AB) _ 7(Y AB)A,

the Fisher information matrix is given by

Fag— L B> AB
AB= 52 \AB &)

whose eigenvalues ace?v/A2 +B2 and 0.
The common (over the parameter space) zero-eigenvalue comes fronaaharine of the MF
model (180) under the transfor(A, B) — (sA s™!B) for anys > 0. Neglecting it, we re-define the

Jeffreys prior by
@°(6) 0 \/MZ1A;,

whereA; is the j-th largest eigenvalue of the Fisher information matrix. Thus, we obtain-Equa
tion (58).
[ |
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