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Abstract

Recently,variational Bayesian(VB) techniques have been applied to probabilistic matrix factor-
ization and shown to perform very well in experiments. In this paper, we theoretically elucidate
properties of the VB matrix factorization (VBMF) method. Through finite-sample analysis of the
VBMF estimator, we show that two types of shrinkage factors exist in the VBMF estimator: the
positive-part James-Stein (PJS)shrinkage and thetrace-normshrinkage, both acting on each sin-
gular component separately for producing low-rank solutions. The trace-norm shrinkage is simply
induced by non-flat prior information, similarly to the maximum a posteriori (MAP) approach.
Thus, no trace-norm shrinkage remains when priors are non-informative. On the other hand, we
show a counter-intuitive fact that the PJS shrinkage factoris kept activated even with flat priors.
This is shown to be induced by thenon-identifiabilityof the matrix factorization model, that is,
the mapping between the target matrix and factorized matrices is not one-to-one. We call this
model-induced regularization. We further extend our analysis to empirical Bayes scenarios where
hyperparameters are also learned based on the VB free energy. Throughout the paper, we assume
no missing entry in the observed matrix, and therefore collaborative filtering is out of scope.

Keywords: matrix factorization, variational Bayes, empirical Bayes, positive-part James-Stein
shrinkage, non-identifiable model, model-induced regularization

1. Introduction

The goal ofmatrix factorization(MF) is to find a low-rank expression of a target matrix. MF can
be used for learning linear relation between vectors such asreduced rank regression(Baldi and
Hornik, 1995; Reinsel and Velu, 1998),canonical correlation analysis(Hotelling, 1936; Anderson,
1984),partial least-squares(Wold, 1966; Worsley et al., 1997; Rosipal and Krämer, 2006), and
multi-task learning(Chapelle and Harchaoui, 2005; Yu et al., 2005). More recently, MF is applied
to collaborative filteringfor imputing missing entries of a target matrix, for example, in the context
of recommender systems(Konstan et al., 1997; Funk, 2006) andmicroarray data analysis(Baldi
and Brunak, 1998). For these reasons, MF has attracted considerable attention these days.

∗. This paper is an extended version of our earlier conference paper (Nakajima and Sugiyama, 2010).
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1.1 MF Methods

Srebro and Jaakkola (2003) proposed theweighted low-rank approximationmethod, which is based
on theexpectation-maximization(EM) algorithm: a matrix is fitted to the data without a rank con-
straint in the E-step and it is projected back to the set of low-rank matrices bysingular value de-
composition(SVD) in the M-step. Since the optimization problem of the weighted low-rank ap-
proximation method involves a low-rank constraint, it is non-convex and thusonly a local optimal
solution may be obtained. Furthermore, SVD of the target matrix needs to be carried out in each
iteration, which may be computationally intractable for large-scale data.

Funk (2006) proposed theregularized SVDmethod that minimizes a goodness-of-fit term com-
bined with theFrobenius-normpenalty under a low-rank constraint by gradient descent (see also
Paterek, 2007). The regularized SVD method could be computationally more efficient than the
weighted low-rank approximation method in the context of collaborative filtering since only ob-
served entries are referred to in each gradient iteration.

Srebro et al. (2005) proposed to use thetrace-normpenalty instead of the Frobenius-norm
penalty, so that a low-rank solution can be obtained without having an explicit low-rank constraint.
Thanks to the convexity of thetrace-norm, a semi-definite programming formulation can be ob-
tained when thehinge-loss(Scḧolkopf and Smola, 2002) is used. See also Rennie and Srebro (2005)
for a computationally efficient variant using a gradient-based optimization method with smooth ap-
proximation.

Salakhutdinov and Mnih (2008) proposed a Bayesianmaximum a posteriori(MAP) method
based on the Gaussian noise model and Gaussian priors on the decomposed matrices. This method
actually corresponds to minimizing the squared-loss with the trace-norm penalty (Srebro et al.,
2005).

Recently, thevariational Bayesian(VB) approach (Attias, 1999) has been applied to MF (Lim
and Teh, 2007; Raiko et al., 2007), which we refer to asVBMF. The VBMF method was shown to
perform very well in experiments. However, its good performance was not completely understood
beyond its experimental success. The purpose of this paper is to providenew insight into Bayesian
MF.

1.2 MF Models and Non-identifiability

The MF models can be regarded as re-parameterization of the target matrix using low-rank matrices.
This kind of re-parameterization often significantly changes the statistical behavior of the estimator
(Gelman, 2004). Indeed, MF models possess a special structure callednon-identifiability(Watan-
abe, 2009), meaning that the mapping between the target matrix and the factorized matrices is not
one-to-one .

Previous theoretical studies on non-identifiable models investigated the behavior of multi-layer
pereptrons, Gaussian mixture models, andhidden Markov models. It was shown that when such
non-identifiable models are trained usingfull-Baysian(FB) estimation, the regularization effect is
significantly stronger than the MAP method (Watanabe, 2001; Yamazaki andWatanabe, 2003).
Since a single point in the function space corresponds to a set of points in the (redundant) param-
eter space in non-identifiable models, simple distributions such as the Gaussiandistribution in the
function space produce highly complicatedmultimodaldistributions in the parameter space. This
causes the MAP and FB solutions to be significantly different. Thus the behavior of non-identifiable
models is substantially different from that of identifiable models. For Gaussian mixture models and
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reduced rank regression models, theoretical properties of VB have also been investigated (Watanabe
and Watanabe, 2006; Nakajima and Watanabe, 2007).

1.3 Our Contribution

In this paper, following the line of Nakajima and Watanabe (2007) which investigated asymptotic
behavior of VBMF estimators and the generalization error, we provide a more precise analysis of
VB estimators. More specifically, we derivenon-asymptoticbounds of the VBMF estimator. The
obtained solution can be seen as a re-weighted singular value decomposition, and the weights in-
clude a factor induced by theBayesianinference procedure, in the same way asautomatic relevance
determination(Neal, 1996; Wipf and Nagarajan, 2008).

We show that VBMF consists of two shrinkage factors, thepositive-part James-Stein(PJS)
shrinkage (James and Stein, 1961; Efron and Morris, 1973) and thetrace-normshrinkage (Srebro
et al., 2005), operating on each singular component separately for producing low-rank solutions.

The trace-norm shrinkage is simply induced by non-flat prior information,as in the MAP ap-
proach (Salakhutdinov and Mnih, 2008). Thus, no trace-norm shrinkage remains when priors are
non-informative. On the other hand, we show a counter-intuitive fact that the PJS shrinkage factor
is still kept activated even with uniform priors. This allows the VBMF method to avoid overfitting
(or in some cases, this may cause underfitting) even when non-informativepriors are provided. We
call this regularization effectmodel-induced regularizationsince it is caused by the structure of the
model likelihood function.

We further extend the above analysis toempirical VBMF(EVBMF) scenarios, where hyperpa-
rameters in prior distributions are also learned based on theVB free energy. We derive bounds of
the EVBMF estimator, and show that the effect of PJS shrinkage is at leastdoubled compared with
the uniform prior cases.

Finally, we note that our analysis relies on the following three assumptions: First, we assume
that the given matrix isfully observed, and no missing entry exists. This means that missing entry
prediction is out of scope of our theory. Second, we require the noise tobe independent Gaussian
noise and the priors to be isotropic Gaussian. Third, we assume the column-wise independence on
the VB posterior, which is different from the standard VB assumption that only the matrix-wise
independence is required.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we formulate the MF problem and
review its Bayesian approaches including FB, MAP, VB methods, and their empirical variants. In
Section 3, we analyze the behavior of MAPMF, VBMF, and their empirical variants, and elucidate
the regularization mechanism. In Section 4, we illustrate the characteristic behavior of MF solutions
through simple numerical experiments, highlighting the influence of non-identifiability of the MF
models. Finally, we conclude in Section 5. A brief review of the James-Stein shrinkage estimator
and all the technical details are provided in Appendix.

2. Bayesian Approaches to Matrix Factorization

In this section, we give a probabilistic formulation of thematrix factorization(MF) problem and
review its Bayesian methods.
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Figure 1: Matrix factorization model.

2.1 Formulation

The goal of the MF problem is to estimate a target matrixU (∈ R
L×M) from its observation

V ∈ R
L×M.

Throughout the paper, we assume that

L ≤ M.

If L > M, we may simply re-define the transposeU⊤ asU so thatL ≤ M holds. Thus this does not
impose any restriction.

A key assumption of MF is thatU is a low-rank matrix. LetH (≤ L) be the rank ofU . Then the
matrixU can be decomposed into the product ofA∈R

M×H andB∈R
L×H as follows (see Figure 1):

U = BA⊤.

With appropriatepre-whitening(Hyvärinen et al., 2001),reduced rank regression(Baldi and
Hornik, 1995; Reinsel and Velu, 1998),canonical correlation analysis(Hotelling, 1936; Anderson,
1984),partial least-squares(Wold, 1966; Worsley et al., 1997; Rosipal and Krämer, 2006), and
multi-task learning(Chapelle and Harchaoui, 2005; Yu et al., 2005) can be seen as special cases of
the MF problem.Collaborative filtering(Konstan et al., 1997; Baldi and Brunak, 1998; Funk, 2006)
andimage processing(Lee and Seung, 1999) would be popular applications of MF. Note that, some
of these applications such ascollaborative filteringandmulti-task learningwith unshared input sets
are out of scope of our theory, since they require missing entry prediction.

Assume that the observed matrixV is subject to the following additive-noise model:

V =U +E ,

whereE (∈ R
L×M) is a noise matrix. Each entry ofE is assumed to independently follow the

Gaussian distribution with mean zero and varianceσ2. Then, the likelihoodp(V|A,B) is given by

p(V|A,B) ∝ exp

(
− 1

2σ2‖V −BA⊤‖2
Fro

)
, (1)

where‖ · ‖Fro denotes theFrobenius normof a matrix.
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2.2 Full-Bayesian Matrix Factorization (FBMF) and Its Empirical Varia nt (EFBMF)

We use the Gaussian priors on the parametersA andB:

φ(U) = φA(A)φB(B),

where

φA(A) ∝ exp

(
−

H

∑
h=1

‖ah‖2

2c2
ah

)
= exp

(
− tr(AC−1

A A⊤)

2

)
, (2)

φB(B) ∝ exp

(
−

H

∑
h=1

‖bh‖2

2c2
bh

)
= exp

(
− tr(BC−1

B B⊤)
2

)
. (3)

Here,ah andbh are theh-th column vectors ofA andB, respectively, that is,

A= (a1, . . . ,aH),

B= (b1, . . . ,bH).

c2
ah

andc2
bh

are hyperparameters corresponding to the prior variances of those vectors. Without loss
of generality, we assume that the productcahcbh is non-increasing with respect toh. We also denote
them as covariance matrices:

CA = diag(c2
a1
, . . . ,c2

aH
),

CB = diag(c2
b1
, . . . ,c2

bH
),

where diag(c) denotes the diagonal matrix with its entries specified by vectorc. tr(·) denotes the
trace of a matrix.

With the Bayes theorem and the definition of marginal distributions, theBayes posterior p(A,B|V)
can be written as

p(A,B|V) =
p(A,B,V)

p(V)
=

p(V|A,B)φA(A)φB(B)
〈p(V|A,B)〉φA(A)φB(B)

, (4)

where〈·〉p denotes the expectation overp. The full-Bayesian(FB) solution is given by theBayes
posterior mean:

ÛFB = 〈BA⊤〉p(A,B|V). (5)

We call this methodFBMF.
The hyperparameterscah and cbh may be determined so that theBayes free energy F(V) is

minimized.

F(V) =− logp(V)

=− log〈p(V|A,B)〉φA(A)φB(B). (6)

We call this method theempirical full-Bayesian MF(EFBMF). The Bayes free energy is also
referred to as themarginal log-likelihood(MacKay, 2003), theevidence(MacKay, 1992) or the
stochastic complexity(Rissanen, 1986).
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2.3 Maximum A Posteriori Matrix Factorization (MAPMF) and Its Empir ical Variant
(EMAPMF)

When computing the Bayes posterior (4), the expectation in the denominator ofEquation (4) is often
intractable due to high dimensionality of the parametersA andB. More importantly, computing the
posterior mean (5) is also intractable. A simple approach to mitigating this problem isto use the
maximum a posteriori(MAP) approximation, which we refer to as MAPMF. The MAP solution
ÛMAP is given by

ÛMAP = B̂MAP(ÂMAP)⊤,

where

(ÂMAP, B̂MAP) = argmax
A,B

p(A,B|V).

In the MAP framework, one may determine the hyperparameterscah andcbh so that the Bayes
posteriorp(A,B|V) is maximized (equivalently, the negative log posterior is minimized). We call
this methodempirical MAPMF(EMAPMF). Note that EMAPMF does not work properly, as ex-
plained in Section 3.3.

2.4 Variational Bayesian Matrix Factorization (VBMF) and Its Empiric al Variant (EVBMF)

Another approach to avoiding computational intractability of the FB method is to usethevariational
Bayes(VB) approximation (Attias, 1999; Bishop, 2006). Here, we review the VB-based MF method
(Lim and Teh, 2007; Raiko et al., 2007).

Let r(A,B|V) be atrial distribution forA andB, and we define the following functionalFVB

called theVB free energywith respect tor(A,B|V):

FVB(r|V) =

〈
log

r(A,B|V)

p(V,A,B)

〉

r(A,B|V)

. (7)

Using p(V,A,B) = p(A,B|V)p(V), we can decompose Equation (7) into two terms:

FVB(r|V) =

〈
log

r(A,B|V)

p(A,B|V)

〉

r(A,B|V)

+F(V), (8)

whereF(V) is the Bayes free energy defined by Equation (6). The first term in Equation (8) is the
Kullback-Leibler divergence(Kullback and Leibler, 1951) fromr(A,B|V) to the Bayes posterior
p(A,B|V). This is non-negative and vanishes if and only if the two distributions agreewith each
other. Therefore, the VB free energyFVB(r|V) is lower-bounded by the Bayes free energyF(V):

FVB(r|V)≥ F(V),

where the equality is satisfied if and only ifr(A,B|V) agrees withp(A,B|V).
The VB approach minimizes the VB free energyFVB(r|V) with respect to the trial distribution

r(A,B|V), by restricting the search space ofr(A,B|V) so that the minimization is computationally
tractable. Typically, dissolution of probabilistic dependency between entangled parameters (A and
B in the case of MF) makes the calculation feasible:

r(A,B|V) = rA(A|V)rB(B|V). (9)
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Then, the VB free energy (7) is written as

FVB(r|V) =

〈
log

rA(A|V)rB(B|V)

p(V|A,B)φA(A)φB(B)

〉

rA(A|V)rB(B|V)

. (10)

The resulting distribution is called theVB posterior. The VB solutionÛVB is given by theVB
posterior mean:

ÛVB = 〈BA⊤〉r(A,B|V). (11)

We call this methodVBMF.
Applying the variational method to the VB free energy shows that the VB posterior satisfies the

following conditions:

rA(A|V) ∝ φA(A)exp
(
〈logp(V|A,B)〉rB(B|V)

)
, (12)

rB(B|V) ∝ φB(B)exp
(
〈logp(V|A,B)〉rA(A|V)

)
. (13)

Recall that we are using the Gaussian priors (2) and (3). Also, Equation(1) implies that the log-
likelihood logp(V|A,B) is a quadratic function ofA when B is fixed, and vice versa. Then the
conditions (12) and (13) imply that the VB posteriorsrA(A|V) and rB(B|V) are also Gaussian.
This enables one to derive a computationally efficient algorithm called theiterated conditional
modes(Besag, 1986; Bishop, 2006), where the mean and the covariance of the parametersA and
B are iteratively updated using Equations (12) and (13) (Lim and Teh, 2007; Raiko et al., 2007).
This amounts to alternating between minimizing the free energy (10) with respectto rA(A|V) and
rB(B|V).

As in Raiko et al. (2007), we assume in our theoretical analysis that the trialdistribution
r(A,B|V) can be further factorized as

r(A,B|V) =
H

∏
h=1

rah(ah|V)rbh(bh|V). (14)

Then the update rules (12) and (13) are simplified as

rah(ah|V) ∝ φah(ah)exp
(
〈logp(V|A,B)〉r\ah

(A\ah,B|V)

)
, (15)

rbh(bh|V) ∝ φbh(bh)exp
(
〈logp(V|A,B)〉r\bh

(A,B\bh|V)

)
, (16)

wherer\ah
andr\bh

denote the VB posterior of the parametersA andB exceptah andbh, respectively.
The VB free energy also allows us to determine the hyperparametersc2

ah
andc2

bh
in a computa-

tionally tractable way. That is, instead of the Bayes free energyF(V), the VB free energyFVB(r|V)
is minimized with respect toc2

ah
andc2

bh
. We call this methodempirical VBMF(EVBMF).

3. Analysis of Bayesian MF Methods

In this section, we theoretically analyze the behavior of MAPMF, VBMF, EMAPMF, and EVBMF
solutions, and elucidate their regularization mechanism.
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3.1 MAPMF

The MAP estimator(ÂMAP, B̂MAP) is the maximizer of the Bayes posterior. In our model (1), (2),
and (3), the negative log of the Bayes posterior is expressed as

− logp(A,B|V) =
LM logσ2

2
+

1
2

H

∑
h=1

(
M logc2

ah
+L logc2

bh
+

‖ah‖2

c2
ah

+
‖bh‖2

c2
bh

)

+
1

2σ2

∥∥∥∥∥V −
H

∑
h=1

bha
⊤
h

∥∥∥∥∥

2

Fro

+Const. (17)

Differentiating Equation (17) with respect toA andB and setting the derivatives to zero, we have
the following conditions:

ah =

(
‖bh‖2+

σ2

c2
ah

)−1
(

V − ∑
h′ 6=h

bh′a
⊤
h′

)⊤

bh, (18)

bh =

(
‖ah‖2+

σ2

c2
bh

)−1(
V − ∑

h′ 6=h

bh′a
⊤
h′

)
ah. (19)

One may search a local solution (i.e., a local minimum of the negative log posterior (17)) by iterating
Equations (18) and (19). However, as shown below, the optimal solution can be obtained analytically
in the current setup.

When the hyperparameters are homogeneous, that is,{cahcbh = c;∀h= 1, . . . ,H}, a closed-form
expression of the MAP estimator can be immediately obtained by combining the results given in
Srebro et al. (2005) and Cai et al. (2010). The following theorem is its slight extension that covers
heterogeneous cases (its proof is given in Appendix B):

Theorem 1 Let γh (≥ 0) be the h-th largest singular value of V . Letωah andωbh be the associated
right and left singular vectors:

V =
L

∑
h=1

γhωbhω
⊤
ah
. (20)

The MAP estimator̂UMAP is given by

ÛMAP =
H

∑
h=1

γ̂MAP
h ωbhω

⊤
ah
,

where

γ̂MAP
h = max

{
0,γh−

σ2

cahcbh

}
. (21)

The theorem implies that the MAP solution cuts off the singular values less thanσ2/(cahcbh);
otherwise it reduces the singular values byσ2/(cahcbh) (see Figure 2). This shrinkage effect allows
the MAPMF method to avoid overfitting.
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Figure 2: Shrinkage of the ML estimator (22), the MAP estimator (21), and theVB estimator (28)
whenσ2 = 0.1, cahcbh = 0.1, L = 100, andM = 200.

Similarly to Theorem 1, we can show that themaximum likelihood(ML) estimator is given by

ÛML =
H

∑
h=1

γ̂ML
h ωbhω

⊤
ah
,

where

γ̂ML
h = γh for all h. (22)

Thus the ML solution is reduced toV whenH = L (see Figure 2):

ÛML =
L

∑
h=1

γ̂ML
h ωbhω

⊤
ah
=V.

A parametric model is said to beidentifiableif the mapping between parameters and functions is
one-to-one; otherwise the model is said to benon-identifiable(Watanabe, 2001). Since the decom-
positionU = BA⊤ is redundant, the MF model is non-identifiable (Nakajima and Watanabe, 2007).
For identifiable models, the MAP estimator with the uniform prior is reduced to the ML estimator
(Bishop, 2006). On the other hand, in the MF model, a single point in the space ofU corresponds
to a set of points in the joint space ofA andB. For this reason, the uniform priors onA andB do not
produce the uniform prior onU . Nevertheless, Equations (21) and (22) imply that MAP is reduced
to ML when the priors onA andB are uniform (i.e.,cah,cbh → ∞).

More precisely, Equations (21) and (22) show that the productcahcbh → ∞ is sufficient for MAP
to be reduced to ML, which is weaker than bothcah,cbh → ∞. This implies that both priors onA
andB do not have to be uniform; only the condition that one of the priors is uniformis sufficient for
MAP to be reduced to ML in the MF model. This phenomenon is distinctively different from the
case of identifiable models.

If the prior is uniform and the likelihood is Gaussian, then the posterior is alsoGaussian. Thus
the mean and mode of the posterior agree with each other due to the symmetry of the Gaussian
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density. For identifiable models, this fact implies that the FB and MAP solutions agree with each
other. However, the FB and MAP solutions are generally different in non-identifiable models since
the symmetry of the Gaussian density in the space ofU is no longer kept in the joint space ofA
andB. In Section 4.1, we will further investigate these distinctive features of the MF model using
illustrative examples.

3.2 VBMF

Substituting Equations (1), (2), and (3) into Equations (15) and (16), wefind that the VB posteriors
can be expressed as follows:

rA(A|V) =
H

∏
h=1

NM(ah;µah,Σah),

rB(B|V) =
H

∏
h=1

NL(bh;µbh,Σbh),

whereNd(·;µ,Σ) denotes thed-dimensional Gaussian density with meanµ and covariance matrix
Σ. µah, µbh, Σah, andΣbh satisfy

µah =
1

σ2 Σah

(
V − ∑

h′ 6=h

µbh′µ
⊤
ah′

)⊤

µbh, (23)

µbh =
1

σ2 Σbh

(
V − ∑

h′ 6=h

µbh′µ
⊤
ah′

)
µah, (24)

Σah =

(
1

σ2

(
‖µbh‖2+ tr(Σbh)

)
+c−2

ah

)−1

IM, (25)

Σbh =

(
1

σ2

(
‖µah‖2+ tr(Σah)

)
+c−2

bh

)−1

IL. (26)

Id denotes thed-dimensional identity matrix. One may search a local solution (i.e., a local minimum
of the free energy (10)) by iterating Equations (23)–(26).

It is straightforward to see that the VB solution̂UVB (see Equation (11)) can be expressed as

ÛVB =
H

∑
h=1

µbhµ
⊤
ah
. (27)

Then we have the following theorem (its proof is given in Appendix C):1

Theorem 2 ÛVB is expressed as

ÛVB =
H

∑
h=1

γ̂VB
h ωbhω

⊤
ah
,

1. This theorem could be regarded as a more precise version of Theorem 1 given in Nakajima and Watanabe (2007).
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whereωah and ωbh are the right and the left singular vectors of V (see Equation(20)). When
γh >

√
Mσ2, γ̂VB

h (= ‖µah‖‖µbh‖) is bounded as

max

{
0,

(
1− Mσ2

γ2
h

)
γh−

σ2
√

M/L

cahcbh

}
≤ γ̂VB

h <

(
1− Mσ2

γ2
h

)
γh. (28)

Otherwise,̂γVB
h = 0.

The upper and lower bounds given in Equation (28) are illustrated in Figure 2. Theorem 2 states
that, in the limit ofcahcbh → ∞, the lower bound agrees with the upper bound and we have

lim
cahcbh

→∞
γ̂VB

h =





max

{
0,

(
1− Mσ2

γ2
h

)
γh

}
if γh > 0,

0 otherwise.
(29)

This is the same form as thepositive-part James-Stein (PJS) shrinkage estimator(James and Stein,
1961; Efron and Morris, 1973) (see Appendix A for the details of the PJS estimator). The factor
Mσ2 is the expected contribution of the noise toγ2

h—when the target matrix isU = 0, the expectation
of γ2

h over allh is given byMσ2. Whenγ2
h <Mσ2, Equation (29) implies that̂γVB

h = 0. Thus, the PJS
estimator cuts off the singular components dominated by noise. Asγ2

h increases, the PJS shrinkage
factorMσ2/γ2

h tends to 0, and thus the estimated singular valueγ̂VB
h becomes close to the original

singular valueγh.
Let us compare the behavior of the VB solution (29) with that of the MAP solution (21) when

cahcbh →∞. In this case, the MAP solution merely results in the ML solution where no regularization
is incorporated. In contrast, VB offers PJS-type regularization even whencahcbh → ∞. Thus VB
can still mitigate overfitting (or it can possibly cause underfitting). This fact isin good agreement
with the experimental results reported in Raiko et al. (2007), where no overfitting was observed
whenc2

ah
= 1 andc2

bh
is set to large values. This counter-intuitive fact stems again from the non-

identifiability of the MF model—the Gaussian noiseE imposed in the space ofU possesses a very
complex surface in the joint space ofA and B, in particular,multimodalstructure. This causes
the MAP solution to be distinctively different from the VB solution. We call this regularization
effect model-induced regularization. In Section 4.2, we investigate the effect of model-induced
regularization in more detail using illustrative examples.

The following theorem more precisely specifies under which condition the VBestimator is
strictly positive or zero (its proof is also included in Appendix C):

Theorem 3 It holds that

γ̂VB
h = 0 if γh ≤ γ̃VB

h ,

γ̂VB
h > 0 if γh > γ̃VB

h ,

where

γ̃VB
h =

√√√√√(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

+

√√√√
(
(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

)2

−LMσ4. (30)
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γ̃VB
h is monotone decreasing with respect to cahcbh, and is lower-bounded as

γ̃VB
h > lim

cahcbh
→∞

γ̃VB
h =

√
Mσ2.

As shown in Equation (21),̂γMAP
h satisfies

γ̂MAP
h = 0 if γh ≤ γ̃MAP

h ,

γ̂MAP
h > 0 if γh > γ̃MAP

h ,

where

γ̃MAP
h =

σ2

cahcbh

.

Since

γ̃VB
h >

√
σ4

c2
ah

c2
bh

= γ̃MAP
h ,

VB has a stronger shrinkage effect than MAP in terms of the vanishing condition of singular values.
We can derive another upper bound ofγ̂VB

h , which depends on hyperparameterscah andcbh (its
proof is also included in Appendix C):

Theorem 4 Whenγh >
√

Mσ2, γ̂VB
h is upper-bounded as

γ̂VB
h ≤

√(
1− Lσ2

γ2
h

)(
1− Mσ2

γ2
h

)
· γh−

σ2

cahcbh

. (31)

WhenL = M andγh >
√

Mσ2, the lower bound in Equation (28) and the upper bound in Equa-
tion (31) agree with each other. Thus, we have an analytic-form expression of γ̂VB

h as follows:

γ̂VB
h =





max

{
0,

(
1− Mσ2

γ2
h

)
γh−

σ2

cahcbh

}
if γh > 0,

0 otherwise.
(32)

Then, the complete VB posterior can also be obtained analytically (its proof is given in Appendix D):

Corollary 1 When L= M, the VB posteriors are given by

rA(A|V) =
H

∏
h=1

NM(ah;µah,Σah),

rB(B|V) =
H

∏
h=1

NM(bh;µbh,Σbh),
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where, for̂γVB
h given by Equation(32),

µah =±
√

cah

cbh

γ̂VB
h ·ωah, (33)

µbh =±
√

cbh

cah

γ̂VB
h ·ωbh, (34)

Σah =
cah

2cbhM



√(

γ̂VB
h +

σ2

cahcbh

)2

+4σ2M−
(

γ̂VB
h +

σ2

cahcbh

)
 IM, (35)

Σbh =
cbh

2cahM



√(

γ̂VB
h +

σ2

cahcbh

)2

+4σ2M−
(

γ̂VB
h +

σ2

cahcbh

)
 IM. (36)

3.3 EMAPMF

In the EMAPMF framework, the hyperparameterscah and cbh are determined so that the Bayes
posteriorp(A,B|V) is maximized (equivalently, the negative log posterior is minimized).

Differentiating the negative log posterior (17) with respect toc2
ah

andc2
bh

and setting the deriva-
tives to zero lead to the following optimality conditions.

c2
ah
=

‖ah‖2

M
, (37)

c2
bh
=

‖bh‖2

L
. (38)

Alternating Equations (18), (19), (37), and (38), one may learn the parametersA,B and the hyper-
parameterscah,cbh at the same time.

However, as pointed out in Raiko et al. (2007), EMAPMF does not workproperly since its
objective (17) is unbounded from below atah,bh = 0 andcah,cbh → 0. Thus we end up in merely
finding the trivial solution (ah,bh = 0) unless the iterative algorithm is stuck at some local optimum.

3.4 EVBMF

For the trial distribution (14), the VB free energy (10) can be written as follows:

FVB(r|V,{c2
ah
,c2

bh
}) = LM

2
logσ2+

H

∑
h=1

(
M
2

logc2
ah
− 1

2
log|Σah|+

‖µah‖2+ tr(Σah)

2c2
ah

+
L
2

logc2
bh
− 1

2
log|Σbh|+

‖µbh‖2+ tr(Σbh)

2c2
bh

)

+
1

2σ2

∥∥∥∥∥V −
H

∑
h=1

µbhµ
⊤
ah

∥∥∥∥∥

2

Fro

+
1

2σ2

H

∑
h=1

(
‖µah‖2tr(Σbh)+ tr(Σah)‖µbh‖2+ tr(Σah)tr(Σbh)

)
, (39)
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where| · | denotes the determinant of a matrix. Differentiating Equation (39) with respect to c2
ah

and
c2

bh
and setting the derivatives to zero, we obtain the following optimality conditions:

c2
ah
=

‖µah‖2+ tr(Σah)

M
, (40)

c2
bh
=

‖µbh‖2+ tr(Σbh)

L
. (41)

Here, we observe the invariance of Equation (39) with respect to the transform

{
(µah,µbh,Σah,Σbh,c

2
ah
,c2

bh
)
}
→
{
(s1/2

h µah,s
−1/2
h µbh,shΣah,s

−1
h Σbh,shc2

ah
,s−1

h c2
bh
)
}

(42)

for any{sh ∈R;sh > 0,h= 1, . . . ,H}. This redundancy can be eliminated by fixing the ratio between
the hyperparameters to some constant—we choose 1 without loss of generality:

cah

cbh

= 1. (43)

Then, Equations (40) and (41) yield

c2
ah
=

√
(‖µah‖2+ tr(Σah))(‖µbh‖2+ tr(Σbh))

LM
, (44)

c2
bh
=

√
(‖µah‖2+ tr(Σah))(‖µbh‖2+ tr(Σbh))

LM
. (45)

One may learn the parametersA,B and the hyperparameterscah,cbh by applying Equations (44) and
(45) after every iteration of Equations (23)–(26) (this gives a local minimum of Equation (39) at
convergence).

For the EVB solutionÛEVB, we have the following theorem (its proof is provided in Ap-
pendix E):

Theorem 5 The EVB estimator is given by the following form:

ÛEVB =
H

∑
h=1

γ̂EVB
h ωbhω

⊤
ah
.

γ̂EVB
h = 0 if γh < γEVB

h
, where

γEVB
h

=
(√

L+
√

M
)

σ.

If γh ≥ γEVB
h

, γ̂EVB
h is upper-bounded as

γ̂EVB
h <

(
1− Mσ2

γ2
h

)
γh. (46)

If γh ≥ γEVB
h , where

γEVB
h =

√
7M ·σ > γEVB

h
,
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γ̂EVB
h is lower-bounded as

γ̂EVB
h > max



0,


1− 2Mσ2

γ2
h−
√

γ2
h(L+M+

√
LM)σ2


γh



 . (47)

Theorem 5 implies that

γ̂EVB
h = 0 if γh < γEVB

h
,

γ̂EVB
h > 0 if γh ≥ γEVB

h .

When
γEVB

h
≤ γh < γEVB

h ,

our theoretical analysis is not precise enough to conclude whetherγ̂EVB
h is zero or not. As explained

in Section 3.3, EMAP always results in the trivial solution (i.e.,γ̂EMAP
h = 0). In contrast, Theorem 5

states that EVB gives a non-trivial solution (i.e.,γ̂EVB
h > 0) whenγh ≥ γEVB

h . Since limcahcbh
→∞ γ̃VB

h =√
Mσ2 < γEVB

h
(see Theorem 3), EVB has stronger shrinkage effect than VB with flatpriors in terms

of the vanishing condition of singular values.
It is also note worthy that the upper bound in Equation (46) is the same as thatin Theorem 2.

Thus, even when the hyperparameterscah andcbh are learned from data by EVB, the same upper
bound as the fixed-hyperparameter case in VB holds.

Another upper bound of̂γEVB
h is given as follows (its proof is also included in Appendix E):

Theorem 6 Whenγh ≥ γEVB
h

(= (
√

L+
√

M)σ), γ̂EVB
h is upper-bounded as

γ̂EVB
h <

√(
1− Lσ2

γ2
h

)(
1− Mσ2

γ2
h

)
γh−

√
LMσ2

γh
. (48)

Note that the right-hand side of (48) is strictly positive underγh ≥ γEVB
h

.
WhenL = M, the upper bound in Equation (48) is sharper than that in Equation (46), resulting

in

γ̂EVB
h <

(
1− 2Mσ2

γ2
h

)
γh. (49)

The PJS shrinkage factor of the upper bound (49) is 2Mσ2/γ2
h. On the other hand, as shown in Equa-

tion (29), the PJS shrinkage factor of the plain VB with uniform priors onA andB (i.e.,ca,cb → ∞)
is Mσ2/γ2

h, which isless than a halfof EVB. Thus, EVB provides substantially stronger regulariza-
tion effect than the plain VB with uniform priors. Furthermore, from Equation (32), we can confirm
that the upper bound (49) is equivalent to the VB solution whencahcbh = γh/M.

WhenL = M, the complete EVB posterior is obtained analytically by using the following corol-
lary (the proof is given in Appendix F):

Corollary 2 For γh ≥ 2
√

Mσ, we define

ϕ(γh) = log

(
γ2

h

Mσ2 (1−ρ−)

)
− γ2

h

Mσ2 (1−ρ−)+

(
1+

γ2
h

2Mσ2 ρ2
+

)
, (50)
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Figure 3: Equivalence class. AnyA andB such that their product is unchanged give the sameU .

where

ρ± =

√√√√1
2

(
1− 2Mσ2

γ2
h

±
√

1− 4Mσ2

γ2
h

)
.

Suppose L= M. If γh ≥ 2
√

Mσ andϕ(γh)≤ 0, then the EVB estimator of cahcbh is given by

ĉEVB
ah

ĉEVB
bh

=
γh

M
ρ+. (51)

Otherwise,̂cEVB
ah

ĉEVB
bh

→ 0. The EVB posterior is obtained by Corollary 1 with

(c2
ah
,c2

bh
) =

(
ĉEVB

ah
ĉEVB

bh
, ĉEVB

ah
ĉEVB

bh

)
.

Furthermore, whenγh ≥
√

7Mσ, it holds that

ϕ(γh)< 0. (52)

Given γh, Equation (50) and then Equation (51) are computed analytically. By substituting Equa-
tions (51) and (43) into Equations (33)–(36), the complete EVB posterior isobtained. In Section 4.3,
properties of EVBMF along with the behavior of the function (50) are further investigated through
numerical examples.

4. Illustration of Influence of Non-identifiability

In order to understand the regularization mechanism of the Bayesian MF methods more intuitively,
we illustrate the influence of non-identifiability whenL = M = H = 1 (i.e., U , V, A, andB are
merely scalars). In this case, anyA andB such that their product is unchanged form anequivalence
classand give the sameU (see Figure 3). WhenU = 0, the equivalence class has a ‘cross-shape’
profile on theA- andB-axes; otherwise, it forms a pair of hyperbolic curves.
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Figure 4: Bayes posteriors withca = cb = 100 (i.e., almost flat priors). The asterisks are the MAP
solutions, and the dashed lines indicate the ML solutions (the modes of the contour when
ca = cb = c→ ∞).
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Figure 5: Bayes posteriors withca = cb = 2. The dashed lines indicating the ML solutions are
identical to those in Figure 4.

4.1 MAPMF

First, we illustrate the behavior of the MAP estimator.
WhenL = M = H = 1, Equation (17) yields that the Bayes posteriorp(A,B|V) is given as

p(A,B|V) ∝ exp

(
− 1

2σ2(V −BA)2− A2

2c2
a
− B2

2c2
b

)
. (53)

Figure 4 shows the contour of the above Bayes posterior whenV = 0,1,2 are observed, where the
noise variance isσ2 = 1 and the hyperparameters areca = cb = 100 (i.e., almost flat priors). When
V = 0, the surface of the Bayes posterior has a cross-shape profile and itsmaximum is at the origin.
WhenV > 0, the surface is divided into the positive orthant (i.e.,A,B> 0) and the negative orthant
(i.e.,A,B< 0), and the two ‘modes’ get farther asV increases.
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For finiteca andcb, Theorem 1 and Equation (66) (in Appendix B) imply that the MAP solution
can be expressed as

ÂMAP =±
√

ca

cb
max

{
0, |V|− σ2

cacb

}
,

B̂MAP =±sign(V)

√
cb

ca
max

{
0, |V|− σ2

cacb

}
,

where sign(·) denotes the sign of a scalar. In Figure 4, the asterisks indicate the MAP estimators,
and the dashed lines indicate the ML estimators (the modes of the contour of Equation (53) when
ca = cb = c→ ∞). WhenV = 0, the Bayes posterior takes the maximum value on theA- andB-axes,
which results inÛMAP = 0. WhenV = 1, the profile of the Bayes posterior is hyperbolic and the
maximum value is achieved on the hyperbolic curves in the positive orthant (i.e., A,B> 0) and the
negative orthant (i.e.,A,B < 0); in either case,̂UMAP ≈ 1 (andÛMAP → 1 asca,cb → ∞). When
V = 2, a similar multimodal structure is observed and the solution isÛMAP ≈ 2 (andÛMAP → 2 as
ca,cb → ∞). From these plots, we can visually confirm that the MAP solution with almost flat priors
(ca = cb = 100) approximately agrees with the ML solution:ÛMAP ≈ ÛML =V (andÛMAP → ÛML

asca,cb → ∞).
Furthermore, these graphs illustrate the reason why the productcacb → ∞ is sufficient for MAP

to agree with ML in the MF setup (see Section 3.1). Supposeca is kept small, sayca = 1, in Figure 4.
Then the Gaussian ‘decay’ remains along the horizontal axis in the profile of the Bayes posterior.
However, the MAP solution̂UMAP does not change since the mode of the Bayes posterior is kept
lying on the dashed line (equivalence class). Thus, MAP agrees with ML ifeitherca or cb tends to
infinity.

Figure 5 shows the contour of the Bayes posterior whenca = cb = 2. The MAP estimators are
shifted from the ML estimators (dashed lines) toward the origin, and they aremore clearly contoured
as peaks.

4.2 VBMF

Here, we illustrate the behavior of the VB estimator, where the Bayes posterior is approximated by
a spherical Gaussian.

In the current one-dimensional setup, Corollary 1 implies that the VB posteriors rA(A|V) and
rB(B|V) can be expressed as

rA(A|V) =N (A;±
√

γ̂VBca/cb,ζca/cb),

rB(B|V) =N (B;±sign(V)
√

γ̂VBcb/ca,ζcb/ca),

whereN (·;µ,σ2) denotes the Gaussian density with meanµ and varianceσ2, and

ζ =

√(
γ̂VB

2
+

σ2

2cacb

)2

+σ2−
(

γ̂VB

2
+

σ2

2cacb

)
,

γ̂VB =





max

{
0,

(
1− σ2

V2

)
|V|− σ2

cacb

}
if V 6= 0,

0 otherwise.
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Figure 6: VB posteriors and VB solutions whenL = M = 1 (i.e., the matricesV, U , A, andB are
scalars). WhenV = 2, VB gives either one of the two solutions shown in the bottom row.

Figure 6 shows the contour of the VB posteriorr(A,B|V) = rA(A|V)rB(B|V) whenV = 0,1,2
are observed, where the noise variance isσ2 = 1 and the hyperparameters areca = cb = 100 (i.e.,
almost flat priors). WhenV = 0, the cross-shaped contour of the Bayes posterior (see Figure 4)
is approximated by a spherical Gaussian function located at the origin. Thus, the VB estimator is
ÛVB = 0, which is equivalent to the MAP solution. WhenV = 1, two hyperbolic ‘modes’ of the
Bayes posterior are approximated again by a spherical Gaussian function located at the origin. Thus,
the VB estimator is still̂UVB = 0, which is different from the MAP solution.

V = γ̃VB
h ≈

√
Mσ2 = 1 (̃γVB

h →
√

Mσ2 asca,cb →∞) is actually a transition point of the behavior
of the VB estimator. WhenV is not larger than the threshold

√
Mσ2, the VB method tries to

approximate the two ‘modes’ of the Bayes posterior by the origin-centered Gaussian function. When
V goes beyond the threshold

√
Mσ2, the ‘distance’ between two hyperbolic modes of the Bayes

posterior becomes so large that the VB method chooses to approximate one ofthe two modes in the
positive and negative orthants. As such, the symmetry is broken spontaneously and the VB solution
is detached from the origin. Note that, as discussed in Section 3,Mσ2 amounts to the expected
contribution of noiseE to the squared singular valueγ2 (=V2 in the current setup).

The bottom row of Figure 6 shows the contour of two possible VB posteriorswhenV = 2. Note
that, in either case, the VB solution is the same:ÛVB ≈ 3/2. The VB solution is closer to the origin
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than the MAP solution̂UMAP = 2, and the difference between the VB and MAP solutions tends to
shrink asV increases.

4.3 EVBMF

Next, we illustrate the behavior of the EVB estimator.
In the current one-dimensional setup, the free energy (39) is expressed as

FVB(r|V,c2
a,c

2
b) = log

c2
ac2

b

ΣaΣb
+

µ2
a+Σa

2c2
a

+
µ2

b+Σb

2c2
b

− 1
σ2Vµaµb+

1
2σ2

(
µ2

a+Σa
)(

µ2
b+Σb

)
+Const.

According to Corollary 2, if|V| ≥ 2σ andϕ(|V|)≤ 0, the EVB estimator of the hyperparameters is
given by

(ĉEVB
a )2 = (ĉEVB

b )2 = |V|ρ+, (54)

where

ϕ(|V|) = log

( |V|2
σ2 (1−ρ−)

)
− |V|2

σ2 (1−ρ−)+

(
1+

|V|2
2σ2 ρ2

+

)
,

ρ± =

√√√√1
2

(
1− σ2

|V|2 ±
√

1− 4σ2

|V|2

)
.

Based on a simple numerical evaluation (Figure 7) ofϕ(|V|), we can confirm that Equation (54)
holds if |V| ≥ γ̃EVB, where

γ̃EVB ≈ 2.22.

OtherwisêcEVB
ah

, ĉEVB
bh

→ 0. Note that̃γEVB is theoretically bounded as

(
2= 2σ2 =

)
γEVB ≤ γ̃EVB ≤ γEVB

(
=
√

7σ2 ≈ 2.64
)
,

as shown in Equation (52).
Using Corollary 1 with Equation (54), we can plot the EVB posterior. When

|V|< γ̃EVB ≈ 2.22,

the infimum of the free energy with respect to(µa,µb,Σa,Σb,c2
a,c

2
b) is attained byc2

a = c2
b = ε,

µa = µb = 0, and

Σa = Σb =
σ2

2ε

(√
1+

4nε2

σ2 −1

)
,

whereε → 0 (i.e.,c2
a = c2

b → 0, µa = µb = 0, andΣa = Σb → 0). Therefore, the Gaussian width of
the EVB posterior approaches zero (i.e.,Dirac’s delta functionlocated at the origin). The left graph
of Figure 8 illustrates the contour of the EVB posteriorr(A,B|V) = rA(A|V)rB(B|V) whenV = 2

2602



THEORETICAL ANALYSIS OF BAYESIAN MATRIX FACTORIZATION

0 1 2 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

|V |

ϕ
(|

V
|)
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Figure 7: Numerical evaluation ofϕ(|V|) whenL = M = 1 andσ2 = 1 (the blue solid curve). The
blue solid curve crosses the black dashed line (ϕ(|V|) = 0) at|V|= γ̃EVB ≈ 2.22.

is observed, where the noise variance isσ2 = 1. SinceÛMAP ≈ 2 andÛVB ≈ 1.5 under almost flat
priors (see Figure 4 and Figure 6),ÛEVB = 0 is more strongly regularized than VB and MAP.

On the other hand, when

|V| ≥ γ̃EVB ≈ 2.22,

the EVB posteriorsrA(A|V) andrB(B|V) can be expressed as

rA(A|V) =N (A;±
√

γ̂EVB,ζ),

rB(B|V) =N (B;±sign(V)
√

γ̂EVB,ζ),

where

ζ =

√(
γ̂EVB

2
+

|V|ρ−
2

)2

+σ2−
(

γ̂EVB

2
+

|V|ρ−
2

)
,

ρ− =

√√√√1
2

(
1− 2σ2

γ2
h

−
√

1− 4σ2

γ2
h

)
,

γ̂EVB =

(
1− σ2

V2 −ρ−

)
|V|.

WhenV = 3 is observed, we havêUEVB ≈ 2.28 (c2
a = c2

b ≈ 2.62,µa = µb ≈
√

2.28, andΣa = Σb ≈
0.33). The possible posteriors are plotted in the middle and the right graphs ofFigure 8. Since
ÛMAP ≈ 3 andÛVB = 3/8≈ 2.67 under almost flat priors, EVB has stronger regularization effect
than VB and MAP.
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Figure 8: EVB posteriors and EVB solutions whenL = M = 1. Left: WhenV = 2, the EVB
posterior is reduced to Dirac’s delta function located at the origin. Right: WhenV = 3,
the solution is detached from the origin and given by(A,B)≈ (

√
2.28,

√
2.28) or (A,B)≈

(−
√

2.28,−
√

2.28), which both yields the same solution̂UEVB ≈ 2.28.

4.4 FBMF

Here, we illustrate the behavior of the FB estimator.
WhenL = M = H = 1, the FB solution (5) is expressed as

ÛFB = 〈AB〉p(V|A,B)φA(A)φB(B). (55)

If V = 0,1,2,3 are observed, the FB solutions with almost flat priors are 0,0.92,1.93,2.95, re-
spectively, which were numerically computed.2 Since the corresponding MAP solutions (with the
almost flat priors) are 0,1,2,3, FB and MAP were shown to produce different solutions.

The theory by Jeffreys (1946) explains the origin ofmodel-induced regularizationin FB. Let us
consider thenon-factorizingmodel

p(V|A,B) ∝ exp

(
− 1

2σ2‖V −U‖2
Fro

)
, (56)

whereU itself is the parameter to be estimated. The Jeffreys (non-informative) priorfor this model
is uniform

φJef
U (U) ∝ 1. (57)

On the other hand, the Jeffreys prior for the MF model (1) is given by

φJef
A,B(A,B) ∝

√
A2+B2, (58)

which is illustrated in Figure 9 (see Appendix I for the derivation of Equations (57) and (58)). Note
thatφJef

U (U) andφJef
A,B(A,B) are bothimproper.

2. More precisely, we numerically calculated the FB solution (55) by sampling A and B from the almost flat prior
distributionsφA(A)φB(B) with ca = cb = 100 and taking the sample average ofAB· p(V|A,B).
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Figure 9: The Jeffreys non-informative prior of the MF model in the joint space ofA and B:
φJef(A,B) ∝

√
A2+B2. The scaling of the density value in the graph is arbitrary due

to impropriety.

Jeffreys (1946) states that the both combinations, thenon-factorizingmodel (56) with its Jeffreys
prior (57) and the MF model (1) with its Jeffreys prior (58), give the equivalent FB solution. We can
easily show that the former combination, Equations (56) and (57), gives an unregularized solution.
Thus, the FB solution in the MF model (1) with its Jeffreys prior (58) is also unregularized. Since
the flat prior on(A,B) has more probability mass around the origin than the Jeffreys prior (58) (see
Figure 9), it favors smaller|U | and regularizes the FB solution.

4.5 EMAPMF

As explained in Section 3.3, EMAPMF always results in the trivial solution,A,B= 0 andcah,cbh →
0.

4.6 EFBMF

The EFBMF solution is written as follows:

ÛEFB = 〈AB〉p(V|A,B)φA(A;ĉa)φB(B;ĉb),

where

(ĉa, ĉb) = argmin
(ca,cb)

F(V;ca,cb).

HereF(V;ca,cb) is the Bayes free energy (6).
WhenV = 0,1,2,3 are observed, the EFB solutions are 0,0.00,1.25,2.58 (̂ca = ĉb ≈ 0,0.0,1.4,

2.1), respectively, which were numerically computed.3 SinceF(V;ca,cb)→ ∞ whencacb → ∞, the

3. The model (1) and the priors (2) and (3) are invariant under the following parameter transformation

(ah,bh,cah,cbh)→ (s1/2
h ah,s

−1/2
h bh,s

1/2
h cah,s

−1/2
h cbh)

for any{sh ∈ R;sh > 0,h= 1, . . . ,H}. Here, we fixed the ratio toca/cb = 1. Forcacb = 10−2.00,10−1.99, . . . ,101.00,
we numerically computed the free energy (6), and chose the minimizerĉaĉb, with which the FB solution is computed.

2605



NAKAJIMA AND SUGIYAMA

1 2 3

1

2

3

V

Û
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Figure 10: Numerical results of the FBMF solution̂UFB, the MAPMF solutionÛMAP, the VBMF
solution ÛVB , the EFBMF solutionÛEFB, the EMAPMF solutionÛEMAP, and the
EVBMF solutionÛEVB when the noise variance isσ2 = 1. For MAPMF, VBMF, and
FBMF, the hyperparameters are set toca = cb = 100 (i.e., almost flat priors).

minimizer ofF(V;ca,cb) with respect tôca and ĉb are always finite. This implies that EFBMF is
more strongly regularized than FBMF with almost flat priors (cacb → ∞).

4.7 Summary

Finally, we summarize the numerical results of all Bayes estimators in Figure 10,including the
FBMF solutionÛFB, the MAPMF solutionÛMAP, the VBMF solutionÛVB , the EFBMF solution
ÛEFB, the EMAPMF solutionÛEMAP, and the EVBMF solution̂UEVB when the noise variance is
σ2 = 1. For MAPMF, VBMF, and FBMF, the hyperparameters are set toca = cb = 100 (i.e., almost
flat priors). Overall, the solutions satisfy

ÛEMAP ≤ ÛEVB ≤ ÛEFB ≤ ÛVB ≤ ÛFB ≤ ÛMAP,

which shows the strength of regularization effect of each method.

5. Conclusion

In this paper, we theoretically analyzed the behavior of Bayesian matrix factorization methods.
More specifically, in Section 3, we derivednon-asymptoticbounds of themaximum a posteriori ma-
trix factorization(MAPMF) estimator and thevariational Bayesian matrix factorization(VBMF)
estimator. Then we showed that MAPMF consists of thetrace-normshrinkage alone, while VBMF
consists of thepositive-part James-Stein(PJS) shrinkage and the trace-norm shrinkage.

An interesting finding was that, while the trace-norm shrinkage does not take effect when the
priors are flat, the PJS shrinkage remains activated even with flat priors.The fact that the PJS shrink-
age remains activated even with flat priors is induced by the non-identifiabilityof the MF models,
where parameters form equivalent classes. Thus, flat priors in the space of factorized matrices are
no longer flat in the space of the target (composite) matrix. Furthermore, simple distributions such
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as the Gaussian distribution in the space of the target matrix produce highly complicatedmultimodal
distributions in the space of factorized matrices.

We further extended the above analysis toempirical VBMFscenarios where hyperparameters
included in priors are optimized based on the VB free energy. We showed that the ‘strength’ of
the PJS shrinkage is more than doubled compared with the flat prior cases. We also illustrated the
behavior of Bayesian matrix factorization methods using one-dimensional examples in Section 4.

Our theoretical analysis relies on the assumption that a fully observed matrix isprovided as a
training sample. Thus, our results are not directly applicable to the collaborative filtering scenarios
where an observed matrix with missing entries is given. Our important future work is to extend the
current analysis so that the behavior of the collaborative filtering algorithms can also be explained.
The correspondence between MAPMF and the trace-norm regularization still holds even if missing
entries exist. Likewise, we hope to find a relation between VBMF and a regularization term acting
on a matrix, which results in the PJS shrinkage if a fully observed matrix is given.

Our analysis also relies on the column-wise independence constraint (14), which was also used
in Raiko et al. (2007), on the VB posterior. In principle, the weaker matrix-wise constraint (9)
which was used in Lim and Teh (2007) allows non-zero covariances between column vectors, and
can achieve a better approximation to the true Bayes posterior. How this affects the performance
and when the difference is substantial are to be investigated.

As explained in Appendix A, the PJS estimator dominates (i.e., uniformly better than) the max-
imum likelihood (ML) estimator in vector estimation. This means that, whenL = 1, VBMF with
(almost) flat priors dominates MLMF. Another interesting future direction is to investigate whether
this nice property is inherited to matrix estimation. For matrix estimation (L > 1), a variety of
estimators which shrink singular values have been proposed (Stein, 1975;Ledoit and Wolf, 2004;
Daniels and Kass, 2001), and were shown to possess nice properties under different criteria. Dis-
cussing the superiority of such shrinkage estimators including VBMF is interesting future work.

Our investigation revealed a gap between thefully-Bayesian(FB) estimator and the VB estima-
tor (see Section 4.7). Figure 10 showed that the VB estimator tends to be strongly regularized. This
could cause underfitting and degrade the performance. On the other hand, it is also possible that, in
some cases, this stronger regularization could work favorably to suppress overfitting, if we take into
account the fact that practitioners do not always choose their prior distributions based on explicit
prior information (it is often the case that conjugate priors are chosen onlyfor computational con-
venience). Further theoretical analysis and empirical investigation are needed to clarify when the
stronger regularization of the VB estimator is harmful or helpful.

Tensor factorizationis a high-dimensional extension of matrix factorization, which gathers con-
siderable attention recently as a novel data analysis tool (Cichocki et al., 2009). Among various
methods, Bayesian methods of tensor factorization have been shown to be promising (Tao et al.,
2008; Yu et al., 2008; Hayashi et al., 2009; Chu and Ghahramani, 2009). In our future work, we
will elucidate the behavior of tensor factorization methods based on a similar lineof discussion to
the current work.
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Appendix A. James-Stein Shrinkage Estimator

Here, we briefly introduce theJames-Stein(JS) shrinkage estimator and its variants (James and
Stein, 1961; Efron and Morris, 1973).

Let us consider the problem of estimating the meanµ (∈ R
d) of the d-dimensional Gaussian

distributionN (µ,σ2Id) from its independent and identically distributed samples

X n = {xi ∈ R
d | i = 1, . . . ,n}.

We measure the generalization error (or the risk) of an estimatorµ̂ by the expected squared error:

E‖µ̂−µ‖2,

whereE denotes the expectation over the samplesX n.
An estimatorµ̂ is said todominateanother estimator̂µ′ if

E‖µ̂−µ‖2 ≤ E‖µ̂′−µ‖2 for all µ,

and

E‖µ̂−µ‖2 < E‖µ̂′−µ‖2 for someµ.

An estimator is said to beadmissibleif no estimator dominates it.
Stein (1956) proved the inadmissibility of the maximum likelihood (ML) estimator (or equiva-

lently the least-squares estimator),

µ̂ML =
1
n

n

∑
i=1

xi ,

whend ≥ 3. This discovery was surprising because the ML estimator had been believed to be a
good estimator. James and Stein (1961) subsequently proposed the JS shrinkage estimatorµ̂JS,
which was proved to dominate the ML estimator:

µ̂JS=

(
1− χσ2

n‖µ̂ML‖2

)
µ̂ML , (59)

whereχ = d−2. Efron and Morris (1973) showed that the JS shrinkage estimator can be derived as
an empirical Bayes estimator. In the current paper, we refer to all estimators of the form (59) with
arbitraryχ > 0 as the JS shrinkage estimators.

Thepositive-part James-Stein(PJS) shrinkage estimator, which was shown to dominate the JS
estimator, is given as follows (Baranchik, 1964):

µ̂PJS= max

{
0,

(
1− χσ2

n‖µ̂ML‖2

)
µ̂ML

}
.

Note that the PJS estimator itself is also inadmissible, following the fact that admissible estima-
tors are necessarily smooth (Lehmann, 1983). Indeed, there exist several estimators that dominate
the PJS estimator (Strawderman, 1971; Guo and Pal, 1992; Shao and Strawderman, 1994). How-
ever, their improvement is rather minor, and they are not as simple as the PJS estimator. Moreover,
none of these estimators is admissible.
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Appendix B. Proof of Theorem 1

The MAP estimator is defined as the minimizer of the negative log (17) of the Bayes posterior. Let
us double Equation (17) and neglect some constant terms which are irrelevant to its minimization
with respect to{ah,bh}H

h=1:

LMAP({ah,bh}H
h=1) =

H

∑
h=1

(
‖ah‖2

c2
ah

+
‖bh‖2

c2
bh

)
+

1
σ2

∥∥∥∥∥V −
H

∑
h=1

bha
⊤
h

∥∥∥∥∥

2

Fro

. (60)

We use the following lemma (its proof is given in Appendix G.1):

Lemma 7 For arbitrary matrices A∈ R
M×H and B∈ R

L×H , let

BA⊤ = ΩLΓΩ⊤
R

be the singular value decomposition of the product BA⊤, whereΓ = diag(̂γ1, . . . , γ̂H) ({γ̂h} are in
non-increasing order). Remember that{cahcbh}, where CA = diag(c2

a1
, . . . ,c2

aH
) and

CB = diag(c2
b1
, . . . ,c2

bH
) are positive-definite, are also arranged in non-increasing order. Then, it

holds that

tr(AC−1
A A⊤)+ tr(BC−1

B B⊤)≥
H

∑
h=1

2̂γh

cahcbh

. (61)

Using Lemma 7, we obtain the following lemma (its proof is given in Appendix G.2):

Lemma 8 The MAP solution̂UMAP is written in the following form:

ÛMAP = B̂Â⊤ =
H

∑
h=1

γ̂hωbhω
⊤
ah
. (62)

There exists at least one minimizer that can be written as

ah = ahωah, (63)

bh = bhωbh, (64)

where{ah,bh} are scalars such that

γ̂h = ahbh ≥ 0.

Lemma 8 implies that the minimization of Equation (60) amounts to a re-weighted singularvalue
decomposition.

We can also prove the following lemma (its proof is given in Appendix G.3):

Lemma 9 Let {Hk;k = 1, . . . ,K(≤ H)} be the partition of{1, . . . ,H} such that cahcbh = cah′cbh′ if

and only if h and h′ belong to the same group (i.e.,∃k such that h,h′ ∈Hk). Suppose that(Â, B̂) is a
MAP solution. Then,

Â′ = ÂΘ⊤,

B̂′ = B̂Θ−1,
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is also a MAP solution, for anyΘ defined by

Θ =C1/2
A ΞC−1/2

A

=C−1/2
B ΞC1/2

B .

Here,Ξ is a block diagonal matrix such that the blocks are organized based on thepartition {Hk},
and each block consists of an arbitrary orthogonal matrix.

Lemma 9 states that non-orthogonal solutions (i.e.,{ah}, as well as{bh}, are not orthogonal
with each other) can exist. However, Lemma 8 guarantees that any non-orthogonal solution has its
equivalentorthogonal solution, which is written in the form of Equations (63) and (64).Here, by
equivalentsolution, we denote a solution resulting in the identicalÛMAP in Equation (62). Since
we are interested in findinĝUMAP, we regard the orthogonal solution as the representative of the
equivalentsolutions, and focus on it.

The expression (63) and (64) allows us to decompose the minimization of Equation (60) into
the minimization of the followingH separate objective functions: forh= 1, . . . ,H,

LMAP
h (ah,bh) =

(
a2

h

c2
ah

+
b2

h

c2
bh

)
+

1
σ2 (γh−ahbh)

2 .

This can be written as

LMAP
h (ah,bh) =

b2
h

c2
ah

(
ah

bh
− cah

cbh

)2

+
1

σ2

(
ahbh−

(
γh−

σ2

cahcbh

))2

+

(
2γh

cahcbh

− σ2

c2
ah

c2
bh

)
. (65)

The third term is constant with respect toah andbh. The first nonnegative term vanishes by
setting the ratioah/bh to

ah

bh
=

cah

cbh

(or bh = 0). (66)

Minimizing the second term in Equation (65), which is quadratic with respect to the productahbh

(≥ 0), we can easily obtain Equation (21), which completes the proof.

Appendix C. Proof of Theorem 2, Theorem 3, and Theorem 4

We denote byRd
+ the set of thed-dimensional vectors with non-negative elements, byR

d
++ the set

of thed-dimensional vectors with positive elements, byS
d
+ the set ofd×d positive semi-definite

symmetric matrices, and bySd
++ the set ofd×d positive definite symmetric matrices. The VB free

energy to be minimized can be expressed as Equation (39). Neglecting constant terms, we define
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the objective function as follows:

LVB({ah,bh,Σah,Σbh}) = 2FVB(r|V,{c2
ah
,c2

bh
})+Const.

=
H

∑
h=1

(
− log|Σah|+

‖µah‖2+ tr(Σah)

c2
ah

− log|Σbh|+
‖µbh‖2+ tr(Σbh)

c2
bh

)

+
1

σ2

∥∥∥∥∥V −
H

∑
h=1

µbhµ
⊤
ah

∥∥∥∥∥

2

Fro

+
1

σ2

H

∑
h=1

(
‖µah‖2tr(Σbh)+ tr(Σah)‖µbh‖2+ tr(Σah)tr(Σbh)

)
. (67)

We solve the following problem:

Given(c2
ah
,c2

bh
) ∈ R

2
++(

∀h= 1, . . . ,H),σ2 ∈ R++,

min LVB({µah,µbh,Σah,Σbh;h= 1, . . . ,H}) (68)

s.t.µah ∈ R
M,µbh ∈ R

L,Σah ∈ S
M
++,Σbh ∈ S

L
++(

∀h= 1, . . . ,H). (69)

First, we have the following lemma (its proof is given in Appendix G.4):

Lemma 10 At least one minimizer always exists, and any minimizer is a stationary point.

Given fixed{(Σah,Σbh)}, the objective function (67) is of the same form as Equation (60) if we
replace{(c2

ah
,c2

bh
)} in Equation (60) with{(c′2ah

,c′2bh
)} defined by

c′2ah
=

(
1

c2
ah

+
tr(Σbh)

σ2

)−1

, (70)

c′2bh
=

(
1

c2
bh

+
tr(Σah)

σ2

)−1

. (71)

Therefore, Lemma 8 implies that the minimizers ofµah andµbh are parallel (or zero) to the singular
vectors ofV associated with theH largest singular values.4 On the other hand, Lemma 10 guarantees
that Equations (23)–(26), which together form a necessary and sufficient condition to be a stationary
point, hold at any minimizer. Equations (25) and (26) suggest thatΣah andΣbh are proportional to
IM andIL, respectively. Accordingly, any minimizer can be written asµah = µahωah, µbh = µbhωbh,
Σah = σ2

ah
IM, andΣbh = σ2

bh
IL, whereµah, µbh, σ2

ah
, andσ2

bh
are scalars. This allows us to decompose

the problem (68) intoH separate problems: forh= 1, . . . ,H,

Given(c2
ah
,c2

bh
) ∈ R

2
++,σ

2 ∈ R++,

min LVB
h (µah,µbh,σ

2
ah
,σ2

bh
)

s.t. (µah,µbh) ∈ R
2,(σ2

ah
,σ2

bh
) ∈ R

2
++, (72)

4. As in Appendix B, we regard the orthogonal solution of the form (63) and (64) as the representative of theequivalent
solutions, and focus on it. See Lemma 9 and its subsequent paragraph.
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where

LVB
h (µah,µbh,σ

2
ah
,σ2

bh
) =−M logσ2

ah
+

µ2
ah
+Mσ2

ah

c2
ah

−L logσ2
bh
+

µ2
bh
+Lσ2

bh

c2
bh

− 2
σ2 γhµahµbh +

1
σ2

(
µ2

ah
+Mσ2

ah

)(
µ2

bh
+Lσ2

bh

)
. (73)

Moreover, the necessary and sufficient condition (23)–(26) is reduced to

µah =
1

σ2 σ2
ah

γhµbh, (74)

µbh =
1

σ2 σ2
bh

γhµah, (75)

σ2
ah
= σ2

(
µ2

bh
+Lσ2

bh
+

σ2

c2
ah

)−1

, (76)

σ2
bh
= σ2

(
µ2

ah
+Mσ2

ah
+

σ2

c2
bh

)−1

. (77)

We use the following definition:

γ̂h = µahµbh, (78)

Note that Equations (27) and (78) imply that the VB solutionÛVB can be expressed as

ÛVB =
H

∑
h=1

γ̂hωbhω
⊤
ah
.

Equations (74) and (75) imply thatµah andµbh have the same sign (or both are zero), sinceγh ≥ 0
by definition. Therefore, Equation (78) yields

γ̂h ≥ 0.

In the following, we investigate two types of stationary points. We say that(µah,µbh,σ2
ah
,σ2

bh
) =

(µ̊ah, µ̊bh, σ̊2
ah
, σ̊2

bh
) is a null stationary point if it is a stationary point resulting in the null output

(̂γh = µ̊ahµ̊bh = 0). On the other hand, we say that(µah,µbh,σ2
ah
,σ2

bh
) = (µ̆ah, µ̆bh, σ̆2

ah
, σ̆2

bh
) is apositive

stationary point if it is a stationary point resulting in a positive output (γ̂h = µ̆ahµ̆bh > 0).
Let

η̂h =

√√√√
(

µ2
ah
+

σ2

c2
bh

)(
µ2

bh
+

σ2

c2
ah

)
. (79)

The explicit form of thenull stationary point is derived as follows (its proof is given in Ap-
pendix G.5):
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Lemma 11 The uniquenull stationary point always exists, and it is given by

µ̊ah = 0, (80)

µ̊bh = 0, (81)

σ̊2
ah
=

cah

2Mcbh

{
−
(

σ2

cahcbh

−cahcbh(M−L)

)

+

√(
σ2

cahcbh

−cahcbh(M−L)

)2

+4Mσ2

}
, (82)

σ̊2
bh
=

cbh

2Lcah

{
−
(

σ2

cahcbh

+cahcbh(M−L)

)

+

√(
σ2

cahcbh

+cahcbh(M−L)

)2

+4Lσ2

}
. (83)

Next, we investigate thepositive stationary points, assuming thatµah 6= 0,µbh 6= 0. Equa-
tions (74) and (75) suggest that nopositivestationary point exists whenγh = 0. Below, we focus on
the case whenγh > 0. Let

δ̂h =
µah

µbh

. (84)

We can transform the necessary and sufficient condition (74)–(77) as follows (its proof is given in
Appendix G.6):

Lemma 12 No positivestationary point exists if

γ2
h ≤ σ2M.

When

γ2
h > σ2M, (85)

at least onepositivestationary point exists if and only if the following five equations

η̂h =

√√√√
(

γ̂hδ̂h+
σ2

c2
bh

)(
γ̂hδ̂−1

h +
σ2

c2
ah

)
, (86)

η̂2
h =

(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h, (87)

σ2

(
Mδ̂h

c2
ah

− L

c2
bh

δ̂h

)
= (M−L)(γh− γ̂h), (88)

σ2
ah
=

−
(
η̂2

h−σ2(M−L)
)
+
√
(η̂2

h−σ2(M−L))2+4Mσ2η̂2
h

2M(̂γhδ̂−1
h +σ2c−2

ah )
, (89)

σ2
bh
=

−
(
η̂2

h+σ2(M−L)
)
+
√
(η̂2

h+σ2(M−L))2+4Lσ2η̂2
h

2L(̂γhδ̂h+σ2c−2
bh
)

(90)
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have a solution with respect to(̂γh, δ̂h,σ2
ah
,σ2

bh
, η̂h) such that

(̂γh, δ̂h,σ2
ah
,σ2

bh
, η̂h) ∈ R

5
++. (91)

When a solution exists, the corresponding pair ofpositivestationary points

(µah,µbh,σ
2
ah
,σ2

bh
) = (±

√
γ̂hδ̂h,±

√
γ̂hδ̂−1

h ,σ2
ah
,σ2

bh
) (92)

exist.

Then we obtain a simpler necessary and sufficient condition for existenceof positivestationary
points (its proof is given in Appendix G.7):

Lemma 13 At least onepositivestationary point exists if and only if Equation(85)holds and

γ̂2
h+q1(̂γh) · γ̂h+q0 = 0 (93)

has any positive real solution with respect toγ̂h, where

q1(̂γh) =

−(M−L)2(γh− γ̂h)+(L+M)

√
(M−L)2(γh− γ̂h)2+ 4σ4LM

c2
ah

c2
bh

2LM
, (94)

q0 =
σ4

c2
ah

c2
bh

−
(

1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h. (95)

Any positive solution̂γh satisfies

0< γ̂h < γh. (96)

Equation (96) guarantees that

q1(̂γh)> 0.

Recall that a quadratic equation

γ̂2+q1̂γ+q0 = 0 for q1 > 0 (97)

has only one positive solution whenq0 < 0 (otherwise no positive solution exists) (see Figure 11).
The condition for the negativity of Equation (95) leads to the following lemma:

Lemma 14 At least onepositivestationary point exists if and only if

γ2
h > σ2M and

√(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γh−

σ2

cahcbh

> 0. (98)

The following lemma also holds (its proof is given in Appendix G.8):

Lemma 15 Equation(98)holds if and only if

γh > γ̃VB
h ,

wherẽγVB
h is defined by Equation(30).
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Figure 11: Quadratic functionf (̂γ) = γ̂2+q1̂γ+q0, whereq1 > 0 andq0 < 0.

Combining Lemma 10 and Lemma 14 together, we conclude that thenull stationary point (which
always exists) is the minimizer when Equation (98) does not hold. On the otherhand, when a
positivestationary point exists, we have to clarify which stationary point is the minimum. The
following lemma holds (its proof is given in Appendix G.9).

Lemma 16 Thenull stationary point is a saddle point when anypositivestationary point exists.

Combining Lemma 10, Lemma 14, and Lemma 16 together, we obtain the following lemma:

Lemma 17 When Equation(98)holds, the minimizers consist ofpositivestationary points. Other-
wise, the minimizer is thenull stationary point.

Combining Lemma 15 and Lemma 17 completes the proof of Theorem 3.

Finally, we derive bounds of thepositivestationary points (its proof is given in Appendix G.10):

Lemma 18 Equations(28)and (31)hold for anypositivestationary point.

Combining Lemma 17 and Lemma 18 completes the proof of Theorem 2 and Theorem 4.

Appendix D. Proof of Corollary 1

From Equations (78) and (84), we haveµ2
ah
= γ̂hδ̂h andµ2

bh
= γ̂h/δ̂h. WhenL = M, γ̂h is expressed

analytically by Equation (32) and̂δh = ca/cb follows from Equation (88). From these, we have
Equations (33) and (34).
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WhenL = M, Equations (137) and (138) are reduced to

σ2
ah
=

η̂h

√
η̂2

h+4σ2M− η̂2
h

2M
(

µ2
bh
+σ2/c2

ah

) , (99)

σ2
bh
=

η̂h

√
η̂2

h+4σ2M− η̂2
h

2M
(

µ2
ah
+σ2/c2

bh

) . (100)

Substituting Equation (79) into Equations (99) and (100) and using Equations (33) and (34) give
Equations (35) and (36). Because of the symmetry of the objective function (73), the twopositive
stationary points (33)–(36) give the same objective value, which completesthe proof.

Note thatequivalentnonorthogonal (with respect to{µah}, as well as{µbh}) solutions may exist
in principle. We neglect such solutions, because they almost surely do notexist; Equations (70),
(71), (35), and (36) together imply that any pair{(h,h′);h 6= h′} such that max(̂γVB

h , γ̂VB
h′ ) > 0 and

c′ah
c′bh

= c′ah′
c′bh′

can exist only whencahcbh = cah′cbh′ and γh = γh′ (i.e., two singular values of a
random matrix coincide with each other).

Appendix E. Proof of Theorem 5 and Theorem 6

The EVB estimator is the minimizer of the VB free energy (39). Neglecting constant terms, we
define the objective function as follows:

LEVB({ah,bh,Σah,Σbh,c
2
ah
,c2

bh
}) = 2FVB(r|V,{c2

ah
,c2

bh
})+Const.

=
H

∑
h=1

(
log

c2M
ah

|Σah|
+

‖µah‖2+ tr(Σah)

c2
ah

+ log
c2

bh

|Σbh|
+

‖µbh‖2+ tr(Σbh)

c2
bh

)

+
1

σ2

∥∥∥∥∥V −
H

∑
h=1

µbhµ
⊤
ah

∥∥∥∥∥

2

Fro

+
1

σ2

H

∑
h=1

(
‖µah‖2tr(Σbh)+ tr(Σah)‖µbh‖2+ tr(Σah)tr(Σbh)

)
.

We solve the following problem:

Givenσ2 ∈ R++,

min LEVB({µah,µbh,Σah,Σbh,c
2
ah
,c2

bh
;h= 1, . . . ,H}) (101)

s.t.µah ∈ R
M,µbh ∈ R

L,Σah ∈ S
M
++,Σbh ∈ S

L
++,(c

2
ah
,c2

bh
) ∈ R

2
++(

∀h= 1, . . . ,H). (102)

Define a partial minimization problem of (101) with fixed{c2
ah
,c2

bh
}:

L̃EVB({c2
ah
,c2

bh
}) = min

(µah,µbh
,Σah,Σbh

)
LEVB

h ({µah,µbh,Σah,Σbh};{c2
ah
,c2

bh
}) (103)

s.t.µah ∈ R
M,µbh ∈ R

L,Σah ∈ S
M
++,Σbh ∈ S

L
++(

∀h= 1, . . . ,H).
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This is identical to the VB estimation problem (68), and therefore, we can usethe results proved in
Appendix C. According to Lemma 10, at least one solution of the problem (103) exists. Therefore,
the following problem is equivalent to the original problem (101):

min
{c2

ah
,c2

bh
}
L̃EVB({c2

ah
,c2

bh
}) (104)

s.t. (c2
ah
,c2

bh
) ∈ R

2
++(

∀h= 1, . . . ,H).

We have proved in Appendix C that any solution of the problem (103) can be written asµah =
µahωah, µbh = µbhωbh, Σah = σ2

ah
IM, andΣbh = σ2

bh
IL, whereµah, µbh, σ2

ah
, andσ2

bh
are scalars. This

allows us to decompose the problem (101) intoH separate problems: forh= 1, . . . ,H,

Givenσ2 ∈ R++,

min LEVB
h (µah,µbh,σ

2
ah
,σ2

bh
,c2

ah
,c2

bh
)

s.t. (µah,µbh) ∈ R
2,(σ2

ah
,σ2

bh
) ∈ R

2
++,(c

2
ah
,c2

bh
) ∈ R

2
++, (105)

where

LEVB
h (µah,µbh,σ

2
ah
,σ2

bh
,c2

ah
,c2

bh
) = M log

c2
ah

σ2
ah

+
µ2

ah
+Mσ2

ah

c2
ah

+L log
c2

bh

σ2
bh

+
µ2

bh
+Lσ2

bh

c2
bh

− 2
σ2 γhµahµbh +

1
σ2

(
µ2

ah
+Mσ2

ah

)(
µ2

bh
+Lσ2

bh

)
. (106)

Let

κ =





σ2

(√(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γh

)−1

if γh >
√

σ2M,

∞ otherwise.

We divide the domain (105) into two regions (see Figure 12):

R̊ =
{
(µah,µbh,σ

2
ah
,σ2

bh
,c2

ah
,c2

bh
) ∈ R

2×R
2
++×R

2
++;cahcbh ≤ κ

}
, (107)

R̆ =
{
(µah,µbh,σ

2
ah
,σ2

bh
,c2

ah
,c2

bh
) ∈ R

2×R
2
++×R

2
++;cahcbh > κ

}
. (108)

Below, we will separately investigate the infimum ofLEVB
h overR̊ ,

L̊
EVB
h = inf

(µah ,µbh
,σ2

ah
,σ2

bh
,c2

ah
,c2

bh
)∈R̊

LEVB
h (µah,µbh,σ

2
ah
,σ2

bh
,c2

ah
,c2

bh
), (109)

and the infimum over̆R ,

L̆
EVB
h = inf

(µah ,µbh
,σ2

ah
,σ2

bh
,c2

ah
,c2

bh
)∈R̆

LEVB
h (µah,µbh,σ

2
ah
,σ2

bh
,c2

ah
,c2

bh
).

Rigorously speaking, no minimizer overR̊ exists. To make discussion simple, we approximate
R̊ by its subregion with an arbitrary accuracy; for anyε (0< ε< κ), we define anε-margin subregion
of R̊ :

R̊ε =
{
(µah,µbh,σ

2
ah
,σ2

bh
,c2

ah
,c2

bh
) ∈ R̊ ;cahcbh ≥ ε

}
.

Then the following lemma holds (its proof is given in Appendix G.11):
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cah

c
b

h

0 0.5 1 1.5
0

0.5

1

1.5

R̆

R̊

Figure 12: Division of the domain, defined by Equations (107) and (108), whenγ = 3,M = L =
σ2 = 1. The hyperbolic boundary belongs toR̊ .

Lemma 19 The minimizer over̊Rε is given by

µ̊ah = 0, (110)

µ̊bh = 0, (111)

σ̊2
ah
=

1
2M



−

(
σ2

ε
− ε(M−L)

)
+

√(
σ2

ε
− ε(M−L)

)2

+4Mσ2



 , (112)

σ̊2
bh
=

1
2L



−

(
σ2

ε
+ ε(M−L)

)
+

√(
σ2

ε
+ ε(M−L)

)2

+4Lσ2



 , (113)

c̊2
ah
= ε, (114)

c̊2
bh
= ε, (115)

and the infimum(109)overR̊ is given by

L̊
EVB
h = L+M. (116)

Note that Equations (110) and (111) result in the null output (γ̂h = µ̊ahµ̊bh = 0). Accordingly, we call
the minimizer (110)–(115) over̊Rε thenull (approximated) local minimizer.

On the other hand, we call any stationary point resulting in apositiveoutput(̂γh = µ̆ahµ̆bh > 0) a
positivestationary point. The following lemma holds (its proof is given in Appendix G.12):

Lemma 20 Anypositivestationary point lies inR̆ .

If

L̊
EVB
h < L̆

EVB
h , (117)
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thenull local minimizer is global over the whole domain (105) (more accurately, overR̊ε ∪ R̆ for
any 0< ε < κ ). If

L̊
EVB
h ≥ L̆

EVB
h , (118)

the global minimizers consist ofpositivestationary points, as the following lemma states (its proof
is given in Appendix G.13):

Lemma 21 When Equation(118)holds, the global minimizers consist ofpositivestationary points.

Now, we look for thepositivestationary points. According to Lemma 20, we can assume that
Equation (98) holds. Equations (40) and (41) are reduced to

c2
ah
=

µ2
ah
+Mσ2

ah

M
, (119)

c2
bh
=

µ2
bh
+Lσ2

bh

L
. (120)

Then, Equations (74)–(77), (119), and (120) form a necessary and sufficient condition to be a sta-
tionary point of the objective function (106). Solving these equations, wehave the following lemma
(its proof is given in Appendix G.14):

Lemma 22 At least onepositivestationary point exists if and only if

γ2
h ≥ (

√
L+

√
M)2σ2. (121)

At anypositivestationary point, c2ah
c2

bh
is given either by

c2
ah

c2
bh
= c̆2

ah
c̆2

bh
=

(
γ2

h− (L+M)σ2
)
+

√(
γ2

h− (L+M)σ2
)2−4LMσ4

2LM
, (122)

or by

c2
ah

c2
bh
= ć2

ah
ć2

bh
=

(
γ2

h− (L+M)σ2
)
−
√(

γ2
h− (L+M)σ2

)2−4LMσ4

2LM
. (123)

We categorize thepositivestationary points into two groups, based on the above two solutions
of c2

ah
c2

bh
; we say that a stationary point satisfying Equation (122) is alarge positivestationary point,

and one satisfying Equation (123) is asmall positivestationary point. Note that, when

γ2
h = (

√
L+

√
M)2σ2, (124)

it holds that ˘c2
ah

c̆2
bh
= ć2

ah
ć2

bh
, and therefore, thelarge positivestationary points and thesmall positive

stationary points coincide with each other. The following lemma allows us to focuson thelarge
positivestationary points (its proof is given in Appendix G.15.):

Lemma 23 When

γ2
h > (

√
L+

√
M)2σ2, (125)

anysmall positivestationary point is a saddle point.
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Summarizing Lemmas 19–23, we have the following lemma:

Lemma 24 When Equation(121) holds, there are two possibilities: that the global minimizers
consist oflarge positivestationary points (in the case when Equation(118)holds); or that the global
minimizer is thenull local minimizer (in the case when Equation(117)holds). When Equation(121)
does not hold, the global minimizer is thenull local minimizer.

Hereafter, we assume that Equation (121) holds. We like to clarify when Equation (118) holds,
so thatlarge positivestationary points become global minimizers. The EVB objective function (106)
is substantially more complex (see Appendix H for illustration) than the VB objective function (73)
where thenull stationary point turns from the global minimum to a saddle point no sooner thanany
positivestationary point arises.

Below, we derive a sufficient condition for anylarge positivestationary point to give a lower

objective value than̊L
EVB
h . We evaluate the difference between the objectives:

∆h(µ̆ah, µ̆bh, σ̆
2
ah
, σ̆2

bh
, c̆2

ah
, c̆2

bh
) = LEVB

h (µ̆ah, µ̆bh, σ̆
2
ah
, σ̆2

bh
, c̆2

ah
, c̆2

bh
)− L̊

EVB
h . (126)

If ∆h(µ̆ah, µ̆bh, σ̆2
ah
, σ̆2

bh
, c̆2

ah
, c̆2

bh
)≤ 0, Equation (118) holds. We obtain the following lemma (its proof

is given in Appendix G.16.):

Lemma 25 ∆h(µ̆ah, µ̆bh, σ̆2
ah
, σ̆2

bh
, c̆2

ah
, c̆2

bh
) is upper-bounded as

∆h(µ̆ah, µ̆bh, σ̆
2
ah
, σ̆2

bh
, c̆2

ah
, c̆2

bh
)< Mψ(α,β), (127)

where

ψ(α,β) = logβ+α log

(
β− (1−α)

α

)
+(1−α)+

2√
1− (α+

√
α+1)

β

−β, (128)

α =
L
M
, (129)

β =
γ2

h

Mσ2 . (130)

Furthermore, the following lemma states thatψ(α,β) is negative whenβ is large enough (its proof
is given in Appendix G.17.):

Lemma 26 ψ(α,β)< 0 for any0< α ≤ 1 andβ ≥ 7.

Combining Lemma 24 and Lemma 25, we obtain the following lemma:

Lemma 27 When the condition(127)holds, the global minimizers consist oflarge positivestation-
ary points.

Combining Lemma 26 and Lemma 27, we obtain the following lemma:

Lemma 28 Whenβ ≥ 7, the global minimizers consist oflarge positivestationary points.

Finally, we derive bounds of thelarge positivestationary points (its proof is given in Ap-
pendix G.18):

Lemma 29 Equations(46), (47), and(48)hold for anylarge positivestationary point.

Combining Lemma 24, Lemma 28, and Lemma 29 completes the proof of Theorem 5. Com-
bining Lemma 24 and Lemma 29 completes the proof of Theorem 6.
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Appendix F. Proof of Corollary 2

Assume thatL = M. Whenγh ≥ 2
√

M, Lemma 22 guarantees that at least onelarge positivesta-
tionary point exists. In this case, Equation (122) leads to

c̆ahc̆bh =
γh

M
ρ+. (131)

Its inverse can be written as

1
c̆ahc̆bh

=
γh

σ2 ρ−.

Corollary 1 provides the exact values for thepositivestationary points(µ̆ah, µ̆bh, σ̆2
ah
, σ̆2

bh
), given

(c̆2
ah
, c̆2

bh
) = (c̆ahc̆bh, c̆ahc̆bh). Therefore, we can compute the exact value of the difference (126) of

the objective values between thelarge positivestationary points and thenull local minimizer:

∆h = 2M log
( γh

Mσ2 µ̆ahµ̆bh +1
)
+

1
σ2

(
−2γhµ̆ahµ̆bh +M2c̆2

ah
c̆2

bh

)

= 2M

{
log

(
γ2

h

Mσ2 −
γh

Mc̆ahc̆bh

)
−
(

γ2
h

Mσ2 −
γh

Mc̆ahc̆bh

)
+

(
1+

nM
2σ2 c̆2

ah
c̆2

bh

)}

= 2Mϕ(γh).

Here, the first equation directly comes from Equation (172), and the last equation is obtained by
substituting Equation (131) into the second equation.

According to Lemma 24, whenγh ≥ 2
√

M and ∆h ≤ 0, the EVB solutions consist oflarge
positivestationary points; otherwise, the EVB solution is thenull local minimizer. Using Equa-
tions (114), (115), and (131), we obtain Equation (51). Equation (52)follows Lemma 26, because
ϕ(γh) = ∆h/(2M)< ψ(α,β)/2 for α = 1,β = γ2

h/(Mσ2).

Appendix G. Proof of Lemmas

In this appendix, the proofs of all the lemmas are given.

G.1 Proof of Lemma 7

We minimize the left-hand side of Equation (61) with respect toA andB:

min
A,B

{
tr(AC−1

A A⊤)+ tr(BC−1
B B⊤)

}
(132)

s.t. BA⊤ = ΩLΓΩ⊤
R .

We can remove the constraint by changing the variables as follows:

A→ ΩRΓT⊤C1/2
A , B→ ΩLT−1C−1/2

A ,

whereT is aH ×H non-singular matrix. Then, the problem (132) is rewritten as

min
T

{
tr
(

T⊤TΓ2
)
+ tr

(
(TT⊤)−1(CACB)

−1
)}

. (133)
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Let
T−1 =UTDTV⊤

T

be the singular value decomposition ofT−1, whereDT = diag(d1, . . . ,dH) ({dh} are in non-increasing
order). Then, the problem (133) is written as

min
UT ,DT ,VT

{
tr
(
UTD−2

T U⊤
T Γ2

)
+ tr

(
VTD2

TV⊤
T (CACB)

−1
)}

. (134)

The objective function in Equation (134) can be written with the doubly stochastic matrices

QU =UT •UT ,

QV =VT •VT ,

where• denotes the Hadamard product, as follows (Marshall et al., 2009):

(d−2
1 , . . . ,d−2

H )QU (̂γ2
1, . . . , γ̂

2
H)

⊤+(d2
1, . . . ,d

2
H)QV((ca1cb1)

−1, . . . ,(caH cbH )
−1)⊤.

Since{γ̂2
h} and{d2

h} are in non-increasing order, and{d−2
h } and(cahcbh)

−1 are in non-decreasing
order, this is minimized whenQU = QV = IH (which is attained withUT =VT = IH) for anyDT .

Thus, the problem (134) is reduced to

min
{dh}

H

∑
h=1

(
γ̂2

h

d2
h

+
d2

h

(cahcbh)
2

)
.

This is minimized whend2
h = γ̂hcahcbh,

5 and the minimum coincides to the right-hand side of Equa-
tion (61), which completes the proof.

G.2 Proof of Lemma 8

It is known that the second term of Equation (60) is minimized when

A= (
√

γ1ωa1, . . . ,
√

γHωaH )T
⊤,

B= (
√

γ1ωb1, . . . ,
√

γHωbH )T
−1,

whereT is anyH×H non-singular matrix. Since the first term of Equation (60) does not depend on
the directions of{ah,bh}, any minimizer can be written in the form of Equation (62) with{γ̂h ≥ 0}.

The degeneracy with respect toT is partly resolved by the first term of Equation (60). Suppose
that we have obtained the best set of{γ̂h}. Then, minimizing Equation (60) is equivalent to the
following problem:

Given{γ̂h ≥ 0},

min
A,B

{
tr(AC−1

A A⊤)+ tr(BC−1
B B⊤)

}
(135)

s.t. BA⊤ =
H

∑
h=1

γ̂hωbhω
⊤
ah
.

5. If γ̂h = 0, the minimum is attained by simply setting the corresponding column vectors of A andB to (ah,bh) = (0,0).
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Lemma 7 guarantees that

ah =

√
cah

cbh

γ̂hωah,

bh =

√
cbh

cah

γ̂hωbh,

give a solution for the problem (135) for any (so far unknown) set of{γ̂h}, which completes the
proof.

G.3 Proof of Lemma 9

Equation (60) can be written as

LMAP(A,B) = tr(AC−1
A A⊤)+ tr(BC−1

B B⊤)+
1

σ2

∥∥∥V −BA⊤
∥∥∥

2

Fro
.

This is invariant with respect to the transform

A→ AΘ⊤,

B→ BΘ−1,

since

tr(AΘ⊤C−1
A ΘA⊤) = tr(AC−1/2

A Ξ⊤C1/2
A C−1

A C1/2
A ΞC−1/2

A A⊤) = tr(AC−1
A A⊤),

tr(BΘ−1C−1
B (Θ−1)⊤B⊤) = tr(BC−1/2

B Ξ⊤C1/2
B C−1

B C1/2
B ΞC−1/2

B B⊤) = tr(BC−1
B B⊤),

BΘ−1ΘA= BA.

This completes the proof.

G.4 Proof of Lemma 10

Let

Σah =
M

∑
m=1

τ(ah)
m t

(ah)
m t

(ah)⊤
m ,

Σbh =
L

∑
l=1

τ(bh)
l t

(bh)
l t

(bh)⊤
l ,

be the eigenvalue decompositions ofΣah andΣbh , where

(
τ(ah)

1 , . . . ,τ(ah)
M

)
∈ R

M
++,

(
τ(bh)

1 , . . . ,τ(bh)
L

)
∈ R

L
++.
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are the eigenvalues. Then, the objective function (67) is written as

LVB({ah,bh,τ
(ah)
m ,τ(bh)

l })

=
H

∑
h=1

(
−

M

∑
m=1

logτ(ah)
m +

‖µah‖2+∑M
m=1 τ(ah)

m

c2
ah

−
L

∑
l=1

logτ(bh)
l +

‖µbh‖2+∑L
l=1 τ(bh)

l

c2
bh

)

+
1

σ2

∥∥∥∥∥V −
H

∑
h=1

µbhµ
⊤
ah

∥∥∥∥∥

2

Fro

+
1

σ2

H

∑
h=1

(
‖µah‖2

L

∑
l=1

τ(bh)
l +

M

∑
m=1

τ(ah)
m ‖µbh‖2+

(
M

∑
m=1

τ(ah)
m

)(
L

∑
l=1

τ(bh)
l

))
.

Since the second and the third terms are positive, this is lower-bounded as

LVB({ah,bh,τ
(ah)
m ,τ(bh)

l })>
H

∑
h=1

(
‖µah‖2

c2
ah

+
M

∑
m=1

(
τ(ah)

m

c2
ah

− log
τ(ah)

m

c2
ah

))

+
H

∑
h=1

(
‖µbh‖2

c2
bh

+
L

∑
l=1

(
τ(bh)

l

c2
bh

− log
τ(bh)

l

c2
bh

))
−

H

∑
h=1

(
M logc2

ah
+L logc2

bh

)
. (136)

Focusing on the first term in Equation (136), we find that

lim
‖µah‖→∞

LVB({ah,bh,τ
(ah)
m ,τ(bh)

l }) = ∞

for anyh. Further,

lim
τ(ah)

m →0

LVB({ah,bh,τ
(ah)
m ,τ(bh)

l }) = ∞,

lim
τ(ah)

m →∞
LVB({ah,bh,τ

(ah)
m ,τ(bh)

l }) = ∞,

for any (h,m), because(x− logx) ≥ 1 for any x > 0, limx→+0(x− logx) = ∞, and limx→∞(x−
logx) = ∞. The same holds for{µbh} and{τ(bh)

l } because of the second term in Equation (136).
Consequently, the objective function (67) goes to infinity when approaching to any point on the
boundary of the domain (69). Since the objective function (67) is differentiable in the domain, any
minimizer is a stationary point. For any observationV, the objective function (67) can be finite, for
example, when‖µah‖ = ‖µbh‖ = 0,Σah = IM,Σbh = IL. Therefore, at least one minimizer always
exists.

G.5 Proof of Lemma 11

Combining Equations (76) and (77) and eliminatingσ2
bh

, we obtain

M

(
µ2

bh
+

σ2

c2
ah

)
σ4

ah
+
(
η̂2

h−σ2(M−L)
)

σ2
ah
−σ2

(
µ2

ah
+

σ2

c2
bh

)
= 0.
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This has one positive and one negative solutions. Neglecting the negativeone, we obtain

σ2
ah
=

−
(
η̂2

h−σ2(M−L)
)
+
√
(η̂2

h−σ2(M−L))2+4Mσ2η̂2
h

2M(µ2
bh
+σ2c−2

ah )
. (137)

Similarly, combining Equations (76) and (77) and eliminatingσ2
ah

, we obtain

σ2
bh
=

−
(
η̂2

h+σ2(M−L)
)
+
√
(η̂2

h+σ2(M−L))2+4Lσ2η̂2
h

2L(µ2
ah
+σ2c−2

bh
)

. (138)

Note that Equations (137) and (138) are real and positive for any(µah,µbh) ∈ R
2 andη̂h ∈ R++.

Let us focus on thenull stationary points. Apparently, Equations (80) and (81) are necessary
to satisfy Equations (74) and (75) and result in thenull outputγ̂h = µ̊ahµ̊bh = 0. Substituting Equa-
tions (80) and (81) into Equations (137) and (138) leads to Equations (82) and (83).

G.6 Proof of Lemma 12

To prove the lemma, we transform the set of variables(µah,µbh,σ2
ah
,σ2

bh
) to (̂γh, δ̂h,σ2

ah
,σ2

bh
, η̂h), and

the necessary and sufficient condition (74)–(77) to (86)–(90). Thetransform (92) is obtained from
the definitions (78) and (84), which we use in the following when necessary.

First we show that Equation (91) is necessary for anypositivestationary point.̂γh andδ̂h must
be positive because Equations (74) and (75) imply thatµah andµbh have the same sign.σ2

ah
andσ2

bh

must be positive because of their original domain (72).η̂h must be positive by its definition (79).

Next, we obtain Equations (86)–(90) from Equations (74)–(77). Equation (86) simply comes
from the definition (79) of the additional variablêηh, which we have introduced for convenience.
Equations (89) and (90) are equivalent to Equations (137) and (138), which were derived from
Equations (76) and (77) in Appendix G.5. Equations (87) and (88) are derived from Equations (74)
and (75), as shown below.

Equations (137) and (138) can be rewritten as

σ2
ah
=

−
(
η̂2

h−σ2(M−L)
)
+
√
(η̂2

h+σ2(L+M))2−4σ4LM

2M(µ2
bh
+σ2c−2

ah )
, (139)

σ2
bh
=

−
(
η̂2

h+σ2(M−L)
)
+
√
(η̂2

h+σ2(L+M))2−4σ4LM

2L(µ2
ah
+σ2c−2

bh
)

. (140)
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Substituting Equations (139) and (140) into Equations (74) and (75), respectively, we have

2σ2M

(
µ2

bh
+

σ2

c2
ah

)
µah

µbh

= γh

{
−
(
η̂2

h−σ2(M−L)
)
+

√(
η2

h+σ2(L+M)
)2−4σ4LM

}
, (141)

2σ2L

(
µ2

ah
+

σ2

c2
bh

)
µbh

µah

= γh

{
−
(
η̂2

h+σ2(M−L)
)
+

√(
η2

h+σ2(L+M)
)2−4σ4LM

}
. (142)

Subtraction of Equation (142) from Equation (141) gives

2σ2(M−L)µahµbh +2σ4

(
Mµah

c2
ah

µbh

− Lµbh

c2
bh

µah

)
= 2σ2(M−L)γh,

which is equivalent to Equation (88).
The last condition (87) is derived by multiplying Equations (141) and (142)(of which the both

sides are positive):

4σ4LMη̂2
h = γ2

h

(
2η̂4

h+2η̂2
hσ2(L+M)−2η̂2

h

√
(η̂2

h+σ2(L+M))2−4σ4LM

)
.

Dividing both sides by 2̂η2
hγ2

h (> 0), we have

√
(η̂2

h+σ2(L+M))2−4σ4LM = η̂2
h+σ2(L+M)− 2σ4LM

γ2
h

. (143)

Note that the left-hand side of Equation (143) is always real and positivesince

(η̂2
h+σ2(L+M))2−4σ4LM = (η̂2

h−σ2(M−L))2+4Mσ2η̂2
h

> 0.

Therefore, the right-hand side of Equation (143) is non-negative when Equation (143) holds:

η̂2
h+σ2(L+M)− 2σ4LM

γ2
h

≥ 0. (144)

To obtain Equation (87) from Equation (143), we square Equation (143):

(η̂2
h+σ2(L+M))2−4σ4LM =

(
η̂2

h+σ2(L+M)− 2σ4LM

γ2
h

)2

. (145)

Note that this is equivalent to Equation (143) only when Equation (144) holds. Equation (145) leads
to

σ4LM

γ2
h

− (η̂2
h+σ2(L+M))+ γ2

h = 0.
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Solving this with respect tôη2
h results in Equation (87). Equation (87) cannot hold with any real and

positive value of̂ηh whenσ2L ≤ γ2
h ≤ σ2M. Further, substituting Equation (87) into Equation (144)

gives

γ2
h−

σ4LM

γ2
h

≥ 0.

Therefore, Equation (87) satisfies Equation (144) only whenγ2
h ≥ σ2

√
LM. Accordingly, when

Equation (85) holds, Equation (87) is equivalent to Equation (143). Otherwise, Equation (143)
cannot hold, and nopositivestationary point exists.

G.7 Proof of Lemma 13

Squaring both sides of Equation (86) (which are positive) and substitutingEquation (87) into it, we
have

γ̂2
h+

σ2

cahcbh

(
cbhδ̂h

cah

+
cah

cbhδ̂h

)
γ̂h

+

(
σ4

c2
ah

c2
bh

−
(

1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h

)
= 0. (146)

Multiplying both sides of Equation (88) bŷδh (> 0) and solving it with respect tôδh, we obtain

δ̂h =

(M−L)(γh− γ̂h)+

√
(M−L)2(γh− γ̂h)2+ 4σ4LM

c2
ah

c2
bh

2σ2Mc−2
ah

(147)

as a positive solution. We neglect the other solution, since it is negative. Substituting Equation (147)
into Equation (146) gives Equation (93). Thus, we have transformed thenecessary and sufficient
condition Equations (86)–(90) to (93), (87), (147), (89), and (90). This proves the necessity.

Assume that Equation (85) holds and a positive real solutionγ̂h of Equation (93) exists. Then,
a positive real̂ηh satisfying Equation (87) exists. For any existing(̂γh, η̂h) ∈ R

2
++, a positive real

δ̂h satisfying Equation (147) exists. For any existing(̂γh, δ̂h, η̂h) ∈ R
3
++, positive realσ2

ah
andσ2

bh

satisfying Equations (89) and (90) exist. Thus, whenever a positive real solution̂γh of Equation (93)
exists, the corresponding point(̂γh, δ̂h,σ2

ah
,σ2

bh
, η̂h) ∈ R

5
++ satisfying the necessary and sufficient

condition (93), (87), (147), (89), and (90) exists. This proves the sufficiency.
Finally, suppose that we obtain a solution satisfying Equations (86)–(90) inthe domain (91).

Then, Equation (87) implies that

γh > η̂h.

Moreover, ignoring the positive termsσ2/c2
bh

andσ2/c2
ah

in Equation (86), we have

η̂h > γ̂h.

Therefore, Equation (96) holds.
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G.8 Proof of Lemma 15

Assume thatγ2
h > σ2M. Then, the second inequality in Equation (98) holds if and only if

(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h−
σ4

c2
ah

c2
bh

> 0.

The left-hand side can be factorized as

γ−2
h

(
γ2

h−
(

κ+
√

κ2−LMσ4
))(

γ2
h−
(

κ−
√

κ2−LMσ4
))

> 0, (148)

where

κ =
(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

.

Since

κ−
√

κ2−LMσ4 < Mσ2 < κ+
√

κ2−LMσ4,

Equation (148) holds if and only if

γ2
h > κ+

√
κ2−LMσ4,

which leads to Equation (30).

G.9 Proof of Lemma 16

We show that the Hessian of the objective function (73) has at least one negative and one positive
eigenvalues at thenull stationary point, when anypositivestationary point exists. We only focus on
the 2-dimensional subspace spanned by(µah,µbh). The partial derivatives of Equation (73) are given
by

1
2

∂LVB
h

∂µah

=
µah

c2
ah

+

(
−γhµbh +(µ2

bh
+Lσ2

bh
)µah

σ2

)
,

1
2

∂LVB
h

∂µbh

=
µbh

c2
bh

+

(
−γhµah +(µ2

ah
+Mσ2

ah
)µbh

σ2

)
.

Then, the Hessian is given by

1
2
H VB =




1
2

∂2LVB
h

(∂µah)
2

1
2

∂2LVB
h

∂µah∂µbh

1
2

∂2LVB
h

∂µah∂µbh

1
2

∂2LVB
h

(∂µbh
)2




= σ2




σ2

c2
ah
+(µ2

bh
+Lσ2

bh
) −γh+2µahµbh

−γh+2µahµbh
σ2

c2
bh

+(µ2
ah
+Mσ2

ah
)


 . (149)
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The determinant of Equation (149) is written as

∣∣∣∣
1
2
H VB

∣∣∣∣=
1

σ4

(
σ2

c2
ah

+(µ2
bh
+Lσ2

bh
)

)(
σ2

c2
bh

+(µ2
ah
+Mσ2

ah
)

)
− 1

σ4 (2µahµbh − γh)
2

=
1

σ2
ah

σ2
bh

− 1
σ4 (2µahµbh − γh)

2 , (150)

where Equations (76) and (77) are used in the second equation.
The determinant (150) of the Hessian at thenull stationary point, given by Equations (80)–(83),

is written as
∣∣∣∣
1
2
H̊ VB

∣∣∣∣=
1

σ̊2
ah

σ̊2
bh

− 1
σ4 γ2

h. (151)

Assume the existence of anypositivestationary point, for which it holds that

γ2
h =

σ4

σ̆2
ah

σ̆2
bh

. (152)

This is obtained by substituting Equation (75) into Equation (74) and dividing both sides by
µ̆ahσ̆2

ah
σ̆2

bh
/σ4 (> 0). Note that Equation (152) is not required for thenull stationary point where

µ̊ah = 0. Substituting Equation (152) into Equation (151), we have
∣∣∣∣
1
2
H̊ VB

∣∣∣∣=
1

σ̊2
ah

σ̊2
bh

− 1

σ̆2
ah

σ̆2
bh

. (153)

Multiplying Equations (139) and (140) leads to

σ2
ah

σ2
bh
=

1

4LMη̂2
h

{
−
(
η̂2

h−σ2(M−L)
)
+

√(
η2

h+σ2(L+M)
)2−4σ4LM

}

×
{
−
(
η̂2

h+σ2(M−L)
)
+

√(
η2

h+σ2(L+M)
)2−4σ4LM

}

=
1

2LM

{
η̂2

h+σ2(L+M)−
√(

η̂2
h+σ2(L+M)

)2−4σ4LM

}
,

which is decreasing with respect tôηh. Equation (79) implies that̂ηh is larger at anypositive
stationary point than at thenull stationary point. Therefore, it holds thatσ̊2

ah
σ̊2

bh
> σ̆2

ah
σ̆2

bh
, and

Equation (153) is negative. This means that the HessianH̊ VB has one negative and one positive
eigenvalues.

Consequently, the Hessian of the objective function (73) with respect to(µah,µbh,σ2
ah
,σ2

bh
) has

at least one negative and one positive eigenvalues at thenull stationary point, which proves the
lemma.

G.10 Proof of Lemma 18

We rely on the monotonicity of the positive solution of the quadratic equation (97) with respect
to q1 andq0; the positive solution̂γ of (97) is a monotone decreasing function ofq1 andq0 (see
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Figure 11). Although Equation (93) is not really quadratic with respect toγ̂h because Equation (94)
depends on̂γh, we can bound the positive solutions of Equation (93) by replacing the coefficients
q1 andq0 with their bounds. Equation (93) might have multiple positive solutions if the left-hand
side oscillates when crossing the horizontal axis in Fig.11. However, our approach bounds all the
positive solutions, and Lemma 17 guarantees that the minimizers consist of someof them when
Equation (98) holds.

First we derive an upper-bound ofγ̂2
h. Let us lower-bound Equation (94) by ignoring the positive

term 4σ4LM/(c2
ah

c2
bh
):

q1(̂γh) =

−(M−L)2(γh− γ̂h)+(L+M)

√
(M−L)2(γh− γ̂h)2+ 4σ4LM

c2
ah

c2
bh

2LM

>
−(M−L)2(γh− γ̂h)+(L+M)

√
(M−L)2(γh− γ̂h)2

2LM

=

(
1− L

M

)
(γh− γ̂h).

We also lower-bound Equation (95) by ignoring the positive termσ4/(c2
ah

c2
bh
). Then we can obtain

an upper-bound of̂γh:

γ̂h < γ̂up
h ,

wherêγup
h is the larger solution of the following equation:

(̂γup
h )2+

(
M
L
−1

)
γĥγup

h − M
L

(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h = 0.

This can be factorized as
(

γ̂up
h −

(
1− σ2M

γ2
h

)
γh

)(
γ̂up

h +
M
L

(
1− σ2L

γ2
h

)
γh

)
= 0.

Thus, the larger solution of this equation,

γ̂up
h =

(
1− σ2M

γ2
h

)
γh,

gives the upper-bound in Equation (28).
Similarly, we derive a lower-bound ofγ̂2

h. Let us upper-bound Equation (94) by using the relation√
x2+y2 ≤

√
x2+y2+2xy≤ x+y for x,y≥ 0:

q1(̂γh) =

−(M−L)2(γh− γ̂h)+(L+M)

√
(M−L)2(γh− γ̂h)2+ 4σ4LM

c2
ah

c2
bh

2LM

≤
−(M−L)2(γh− γ̂h)+(L+M)

(
(M−L)(γh− γ̂h)+

2σ2
√

LM
cahcbh

)

2LM

=

(
1− L

M

)
(γh− γ̂h)+

2σ2(L+M)
√

LM
2LMcahcbh

=

(
1− L

M

)
(γh− γ̂h)+

σ2(L+M)√
LMcahcbh

.
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We also upper-bound Equation (95) by adding a non-negative term

(M−L)σ2

Lcahcbh

(
1

cahcbh

+
σ2

√
LM

γh

)
.

Then we can obtain a lower-bound ofγ̂h:

γ̂h ≥ γ̂lo
h ,

wherêγlo
h is the larger solution of the following equation:

L(̂γlo
h )

2
+

(
(M−L)γh+

σ2(L+M)
√

M/L

cahcbh

)
γ̂lo

h

+
M2σ4

Lc2
ah

c2
bh

+
σ4M(M−L)

√
M/L

γhcahcbh

−M

(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h = 0.

This can be factorized as
(

γ̂lo
h −

(
1− σ2M

γ2
h

)
γh+

σ2
√

M/L

cahcbh

)(
Lγ̂lo

h +M

(
1− σ2L

γ2
h

)
γh+

σ2M
√

M/L

cahcbh

)
= 0.

Thus, the larger solution of this equation,

γ̂lo
h =

(
1− σ2M

γ2
h

)
γh−

σ2
√

M/L

cahcbh

,

gives the lower-bound in Equation (28).
The coefficient of the second term of Equation (146),

σ2

cahcbh

(
cbhδ̂h

cah

+
cah

cbhδ̂h

)
,

is minimized when

δ̂h =
cah

cbh

.

Then we can obtain another upper-bound ofγ̂h:

γ̂h ≤ γ̂′up
h ,

wherêγ′up
h is the larger solution of the following equation:

(̂γ′up
h )2+

(
2σ2

cahcbh

)
γ̂′up

h +
σ4

c2
ah

c2
bh

−
(

1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h = 0.
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This can be factorized as
(

γ̂′up
h −

√(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γh+

σ2

cahcbh

)

×
(

γ̂′up
h +

√(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γh+

σ2

cahcbh

)
= 0.

Thus, the larger solution of this equation,

γ̂′up
h =

√(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γh−

σ2

cahcbh

,

gives the upper-bound in Equation (31).

G.11 Proof of Lemma 19

Consider the two-step minimization, (103) and (104). Lemma 17 implies that the minimizer of
Equation (103) is thenull stationary point for any given(c2

ah
,c2

bh
) in R̊ . Thenull stationary point is

explicitly given by Lemma 11. Substituting Equations (80)–(83) into Equation (106) gives

˚̃LEVB
h (c2

ah
,c2

bh
) = M (− logλa,1+λa,1)+L(− logλb,1+λb,1)+

LMλa,0λb,0

σ2 . (154)

where

λa,k(cahcbh) =
1

2M(cahcbh)
k

{
−
(

σ2

cahcbh

−cahcbh(M−L)

)

+

√(
σ2

cahcbh

−cahcbh(M−L)

)2

+4Mσ2

}
,

λb,k(cahcbh) =
1

2L(cahcbh)
k

{
−
(

σ2

cahcbh

+cahcbh(M−L)

)

+

√(
σ2

cahcbh

+cahcbh(M−L)

)2

+4Lσ2

}
.

Note thatλa,k > 0, λb,k > 0 for anyk, and that Equation (154) depends onc2
ah

andc2
bh

only through
their productcahcbh.

Consider a decreasing mappingx= σ2/(c2
ah

c2
bh
) (> 0). Then,λa,1 andλb,1 are written as

λ′
a,1(x) = 1−

(x+(L+M))−
√
(x+(L+M))2−4ML

2M
,

λ′
b,1(x) = 1−

(x+(L+M))−
√
(x+(L+M))2−4ML

2L
.
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Since they are increasing with respect tox, λa,1 and λb,1 are decreasing with respect tocahcbh.
Further,λa,1 andλb,1 are upper-bounded as

λa,1(cahcbh)< lim
cahcbh

→+0
λa,1(cahcbh) = lim

x→∞
λ′

a,1(x) = 1,

λb,1(cahcbh)< lim
cahcbh

→+0
λb,1(cahcbh) = lim

x→∞
λ′

b,1(x) = 1.

Since(− logλ+λ) is decreasing in the range 0< λ < 1, the first two terms in Equation (154) are
increasing with respect tocahcbh, and lower-bounded as

M(− logλa,1+λa,1)> lim
cahcbh

→+0
M(− logλa,1+λa,1) = M, (155)

L(− logλb,1+λb,1)> lim
cahcbh

→+0
L(− logλb,1+λb,1) = L. (156)

Similarly, using the same decreasing mapping, we have

λ′
a,0(x) ·λ′

b,0(x) =
σ2

2LM

(
(x+(L+M))−

√
(x+(L+M))2−4LM

)
.

Since this is decreasing with respect tox and lower-bounded by zero,λa,0λb,0 is increasing with
respect tocahcbh and lower-bounded as

λa,0(cahcbh) ·λb,0(cahcbh)> lim
cahcbh

→+0
λa,0(cahcbh) ·λb,0(cahcbh) = lim

x→∞
λ′

a,0(x) ·λ′
b,0(x) = 0.

Therefore, the third term in Equation (154) is increasing with respect tocahcbh, and lower-bounded
as

LMλa,0λb,0

σ2 > lim
cahcbh

→+0

LMλa,0λb,0

σ2 = 0. (157)

Now we have found that Equation (154) is increasing with respect tocahcbh, because it consists
of the increasing terms. Equations (114) and (115) minimizecahcbh over R̊ε when Equation (43)
is adopted. Therefore, they minimize Equation (154). Equations (110)–(113) are obtained by sub-
stituting Equations (114) and (115) into Equations (80)–(83). Since the infima (155)–(157) of the
three terms of Equation (154) are obtained at the same time with the minimizer in the limit when
ε →+0, we have Equation (116).

G.12 Proof of Lemma 20

Existence of anypositivestationary point lying inR̊ contradicts with Lemma 14.

G.13 Proof of Lemma 21

Assume that Equation (118) holds. Then, any global minimizer or point sequence giving the global

infimum L̆
EVB
h exists inR̆. Let us investigate the objective function (106). It is differentiable in the
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domain (102), and lower-bounded as

LEVB
h (µah,µbh,σ

2
ah
,σ2

bh
,c2

ah
,c2

bh
)≥ µ2

ah

(
1

c2
ah

+
1

σ2Lσ2
bh

)
+µ2

bh

(
1

c2
bh

+
1

σ2Mσ2
ah

)

+M

(
σ2

ah

c2
ah

− log
σ2

ah

c2
ah

)
+L

(
σ2

bh

c2
bh

− log
σ2

bh

c2
bh

)
+

1
σ2

(
LMσ2

ah
σ2

bh
− γ2

h

)
. (158)

Note that each term is lower-bounded by a finite value, since(x− logx)≥ 1 for anyx> 0.

Since any sequence such thatc2
ah
→ 0 orc2

bh
→ 0 goes intoR̊, it cannot giveL̆

EVB
h . Accordingly,

we neglect such sequences. Then, we find that the lower-bound (158) goes to infinity whenσ2
ah
→ 0

or σ2
bh
→ 0, because of the third and the fourth terms (note that limx→+0(x− logx) = ∞). Further, it

goes to infinity whenσ2
ah
→ ∞ or σ2

bh
→ ∞, because of the fifth term. It also goes to infinity when

|µah| → ∞ or |µbh| → ∞, because of the first and the second terms. Finally, it goes to infinity when
c2

ah
→ ∞ or c2

bh
→ ∞, because of the third and the fourth terms.

The above mean that the objective function (106) goes to infinity when approaching to any point
on the domain boundary included in̆R. Consequently, the minimizers consist of stationary points
in R̆. According to Lemma 14 and Lemma 16, thenull stationary points inR̆ are saddle points.
Therefore, the minimizers consist ofpositivestationary points.

G.14 Proof of Lemma 22

Substituting Equation (75) into Equation (74) gives

γ2
h =

σ4

σ2
ah

σ2
bh

. (159)

Substituting Equations (76) and (77) into Equation (159), we have

γ2
h =

(
µ2

ah
+Mσ2

ah
+

σ2

c2
bh

)(
µ2

bh
+Lσ2

bh
+

σ2

c2
bh

)
. (160)

Substituting Equations (119) and (120) into Equation (160) gives

γ2
h =

(
Mc2

ah
+

σ2

c2
bh

)(
Lc2

bh
+

σ2

c2
ah

)
.

From this, we have

LMc4
ah

c4
bh
−
(
γ2

h− (L+M)σ2)c2
ah

c2
bh
+σ4 = 0. (161)

Solving Equation (161) with respect toc2
ah

c2
bh

, we obtain two solutions:

c2
ah

c2
bh
=

(
γ2

h− (L+M)σ2
)
±
√(

γ2
h− (L+M)σ2

)2−4LMσ4

2LM
. (162)
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On the other hand, because of the redundancy with respect to the transform (42), we can fix
the ratio of the hyperparameters as in Equation (43). Thus, we have transformed the necessary and
sufficient condition (74)–(77), (119), and (120) to (74)–(77), and (162). Since

√(
γ2

h− (L+M)σ2
)2−4LMσ4

=

√(
γ2

h− (
√

L+
√

M)2σ2
)(

γ2
h− (

√
M−

√
L)2σ2

)

and

√
(
√

M−
√

L)2σ2 <
√

Mσ2,

the two solutions (162) are real and positive if and only if Equation (121) holds. This proves the
necessity.

Suppose that Equation (121) holds. Then, the two solutions (162) exist. The inverse of the
smaller solution (123) is written as

1

ć2
ah

ć2
bh

=

(
γ2

h− (L+M)σ2
)
+

√(
γ2

h− (L+M)σ2
)2−4LMσ4

2σ4 . (163)

This is upper-bounded as

1

ć2
ah

ć2
bh

<
1

σ4

(
γ2

h− (L+M)σ2) .

Using this bound, we have

√(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γh−

σ2

ćahćbh

>

√
γ2

h− (L+M)σ2+
LMσ4

γ2
h

−
√

γ2
h− (L+M)σ2

> 0.

This means that Equation (98) holds. The same holds for the larger solution (122), since

1
c̆ahc̆bh

≤ 1
ćahćbh

.

Consequently, Lemma 14 guarantees the existence of at least onepositive stationary point
(µ̆ah, µ̆bh, σ̆2

ah
, σ̆2

bh
) ∈ R

2 ×R
2
++ satisfying Equations (74)–(77), given any(c2

ah
,c2

bh
) ∈ R

2
++ con-

structed from Equation (43) and either of the two solutions (162). Thus, we have shown the ex-
istence of at least onepositivestationary point satisfying the necessary and sufficient condition
(74)–(77), and (162) when Equation (121) holds. This proves the sufficiency.
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G.15 Proof of Lemma 23

We show that, when Equation (125) holds, the Hessian of the objective function (106) has at least
one negative and one positive eigenvalues at anysmall positivestationary point. We only focus on
the 4-dimensional subspace spanned by(µah,µbh,c

2
ah
,c2

bh
). The partial derivatives of the objective

function (106) are

1
2

∂LEVB
h

∂µah

=
µah

c2
ah

+
−γhµbh +(µ2

bh
+Lσ2

bh
)µah

σ2 ,

1
2

∂LEVB
h

∂µbh

=
µbh

c2
bh

+
−γhµah +(µ2

ah
+Mσ2

ah
)µbh

σ2 ,

1
2

∂LEVB
h

∂c2
ah

=
1
2

(
M
c2

ah

−
(µ2

ah
+Mσ2

ah
)

c4
ah

)
,

1
2

∂LEVB
h

∂c2
bh

=
1
2

(
L

c2
bh

−
(µ2

bh
+Lσ2

bh
)

c4
bh

)
.

Then, the Hessian is given by

1
2
H EVB =




1
2

∂2LEVB
h

(∂µah)
2

1
2

∂2LEVB
h

∂µah∂µbh

1
2

∂2LEVB
h

∂µah∂c2
ah

1
2

∂2LEVB
h

∂µah∂c2
bh

1
2

∂2LEVB
h

∂µbh
∂µah

1
2

∂2LEVB
h

(∂µbh
)2

1
2

∂2LEVB
h

∂µbh
∂c2

ah

1
2

∂2LEVB
h

∂µbh
∂c2

bh

1
2

∂2LEVB
h

∂c2
ah

∂µah

1
2

∂2LEVB
h

∂c2
ah

∂µbh

1
2

∂2LEVB
h

(∂c2
ah
)2

1
2

∂2LEVB
h

∂c2
ah

∂c2
bh

1
2

∂2LEVB
h

∂c2
bh

∂µah

1
2

∂2LEVB
h

∂c2
bh

∂µbh

1
2

∂2LEVB
h

∂c2
bh

∂c2
ah

1
2

∂2LEVB
h

(∂c2
bh
)2




=




1
c2

ah

+
µ2

bh
+Lσ2

bh
σ2

2µahµbh
−γh

σ2 −µah
c4

ah

0

2µahµbh
−γh

σ2
1

c2
bh

+
µ2

ah
+Mσ2

ah
σ2 0 −µbh

c4
bh

−µah
c4

ah
0

2(µ2
ah
+Mσ2

ah
)−Mc2

ah
2c6

ah

0

0 −µbh
c4

bh

0
2(µ2

bh
+Lσ2

bh
)−Lc2

bh

2c6
bh




. (164)

At anypositivestationary point, Equations (74)–(77), (119), and (120) hold. Substituting Equa-
tions (76), (77), (119), and (120) into (164), we have

1
2
H EVB =




1
σ2

ah

γh−2µahµbh
σ2 −µah

c4
ah

0
γh−2µahµbh

σ2
1

σ2
bh

0 −µbh
c4

bh

−µah
c4

ah
0 M

2c4
ah

0

0 −µbh
c4

bh

0 L
2c4

bh



.
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Its determinant is calculated as

∣∣∣∣
1
2
H EVB

∣∣∣∣=−µbh

c4
bh

∣∣∣∣∣∣∣∣∣

−µah
c4

ah
0 M

2c4
ah

0 −µbh
c4

bh

0

1
σ2

ah

γh−2µahµbh
σ2 −µah

c4
ah

∣∣∣∣∣∣∣∣∣
+

L

2c4
bh

∣∣∣∣∣∣∣∣∣

1
σ2

ah

γh−2µahµbh
σ2 −µah

c4
ah

γh−2µahµbh
σ2

1
σ2

bh

0

−µah
c4

ah
0 M

2c4
ah

∣∣∣∣∣∣∣∣∣

=
1

c4
ah

c4
bh

(
µ2

ah
µ2

bh

c4
ah

c4
bh

−
Mµ2

bh

2σ2
ah

c4
bh

−
Lµ2

ah

2σ2
bh

c4
ah

+
LM
4σ4

(
σ4

σ2
ah

σ2
bh

− (γh−2µahµbh)
2

))
.

Multiplying both sides of Equation (74) byµah gives

µ2
ah
=

σ2
ah

σ2 γĥγh,

and therefore

µ2
ah

σ2
ah

=
γĥγh

σ2 . (165)

Similarly from Equation (75), we obtain

µ2
bh

σ2
bh

=
γĥγh

σ2 . (166)

By using Equations (78), (84), (159), (165), and (166), we obtain
∣∣∣∣
1
2
H EVB

∣∣∣∣=
1

c4
ah

c4
bh

(
γ̂2

h

c4
ah

c4
bh

− γĥγh

2σ2

(
Mδ̂−2

c4
bh

+
Lδ̂2

c4
ah

)
+

LM
σ4

(
γ̂hγh− γ̂2

h

)
)
. (167)

Since
Mδ̂−2

c4
bh

+
Lδ̂2

c4
ah

≥ 2
√

LM

c2
ah

c2
bh

for any δ̂2 > 0, Equation (167) is upper-bounded by
∣∣∣∣
1
2
H EVB

∣∣∣∣≤
1

c4
ah

c4
bh

(
γ̂2

h

c4
ah

c4
bh

− γĥγh
√

LM

σ2c2
ah

c2
bh

+
LM
σ4

(
γ̂hγh− γ̂2

h

)
)

=
γ̂h

c4
ah

c4
bh

(
1

c2
ah

c2
bh

−
√

LM
σ2

){(
1

c2
ah

c2
bh

+

√
LM
σ2

)
γ̂h−

√
LM
σ2 γh

}
. (168)

At anysmall positivestationary point, Equation (123) is upper-bounded as

ć2
ah

ć2
bh
<

σ2
√

LM

when Equation (125) holds. Therefore, Equation (168) is written as
∣∣∣∣
1
2
H́ EVB

∣∣∣∣≤C

{(
1

ć2
ah

ć2
bh

+

√
LM
σ2

)
γ̂h−

√
LM
σ2 γh

}
,
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with a positive factor

C=
γ̂h

ć4
ah

ć4
bh

(
1

ć2
ah

ć2
bh

−
√

LM
σ2

)
.

Using Equation (31), we have

∣∣∣∣
1
2
H́ EVB

∣∣∣∣≤C

{(
1

ć2
ah

ć2
bh

+

√
LM
σ2

)(√(
1− Lσ2

γ2
h

)(
1− Mσ2

γ2
h

)
γh−

σ2

ćahćbh

)

−
√

LM
σ2 γh

}

=C

{
− σ2

ć3
ah

ć3
bh

+

√(
1− Lσ2

γ2
h

)(
1− Mσ2

γ2
h

)
γh

ć2
ah

ć2
bh

−
√

LM
ćahćbh

−
√

LM
σ2

(
1−
√(

1− Lσ2

γ2
h

)(
1− Mσ2

γ2
h

))
γh

}

<
C

ćahćbh

(
− σ2

ć2
ah

ć2
bh

+

√(
1− Lσ2

γ2
h

)(
1− Mσ2

γ2
h

)
γh

ćahćbh

−
√

LM

)
.

At the last inequality, we neglected the negative last term in the curly braces.

Using Equation (163), we have

∣∣∣∣
1
2
H́ EVB

∣∣∣∣<−C′( f (γh)−g(γh)), (169)

where

C′ =
γ2

hC

2σ2ćahćbh

,

f (γh) =

(
1− (

√
M−

√
L)2σ2

γ2
h

)
+

√(
1− (L+M)σ2

γ2
h

)2

− 4LMσ4

γ4
h

,

g(γh) =

√
2

(
1− Lσ2

γ2
h

)(
1− Mσ2

γ2
h

)

×

√√√√
(

1− (L+M)σ2

γ2
h

)
+

√(
1− (L+M)σ2

γ2
h

)2

− 4LMσ4

γ4
h

.
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SinceC′, f (γh), andg(γh) are positive, the right-hand side of Equation (169) is negative iff 2(γh)−
g2(γh)> 0. This is shown below.

f 2(γh)−g2(γh) =



(

1− (
√

M−
√

L)2σ2

γ2
h

)
+

√(
1− (L+M)σ2

γ2
h

)2

− 4LMσ4

γ4
h




2

−2

(
1− Lσ2

γ2
h

)(
1− Mσ2

γ2
h

)

(

1− (L+M)σ2

γ2
h

)
+

√(
1− (L+M)σ2

γ2
h

)2

− 4LMσ4

γ4
h




= 2

√
LMσ2

γ2
h

(
2−

√
LMσ2

γ2
h

)

×



(

1− (L+M)σ2

γ2
h

)
+

√(
1− (L+M)σ2

γ2
h

)2

− 4LMσ4

γ4
h




> 0.

Consequently, it holds that|H́ EVB| < 0. This means that́H EVB has at least one negative and
one positive eigenvalues. Therefore, the Hessian of the objective function (106) with respect to
(µah,µbh,σ2

ah
,σ2

bh
,c2

ah
,c2

bh
) has at least one negative and one positive eigenvalues at anysmall positive

stationary point, when Equation (125) holds. This proves the lemma.

G.16 Proof of Lemma 25

Substituting Equations (106) and (116) into Equation (126), we have

∆h(µ̆ah, µ̆bh, σ̆
2
ah
, σ̆2

bh
, c̆2

ah
, c̆2

bh
) = LEVB

h (µ̆ah, µ̆bh, σ̆
2
ah
, σ̆2

bh
, c̆2

ah
, c̆2

bh
)− (L+M)

= M log
c̆2

ah

σ̆2
ah

+L log
c̆2

bh

σ̆2
bh

+
µ̆2

ah
+Mσ̆2

ah

c̆2
ah

+
µ̆2

bh
+Lσ̆2

bh

c̆2
bh

+
1

σ2

(
−2γhµ̆ahµ̆bh +

(
µ̆2

ah
+Mσ̆2

ah

)(
µ̆2

bh
+Lσ̆2

bh

))
− (L+M). (170)

Substituting Equations (119) and (120) into Equation (170), we have

∆h = M log

(
µ̆2

ah

Mσ̆2
ah

+1

)
+L log

(
µ̆2

bh

Lσ̆2
bh

+1

)
+

1
σ2

(
−2γhµ̆ahµ̆bh +LMc̆2

ah
c̆2

bh

)
. (171)

Substituting Equations (165) and (166) into Equation (171) and using Equation (78), we have

∆h = M log
( γh

Mσ2 γ̂h+1
)
+L log

( γh

Lσ2 γ̂h+1
)
+

1
σ2

(
−2γĥγh+LMc̆2

ah
c̆2

bh

)
. (172)
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Using the bounds (28), Equation (172) is upper-bounded as

∆h < M log

(
γ2

h

Mσ2

(
1− Mσ2

γ2
h

)
+1

)
+L log

(
γ2

h

Lσ2

(
1− Mσ2

γ2
h

)
+1

)

+
1

σ2

(
−2γh

((
1− σ2M

γ2
h

)
γh−

σ2
√

M/L

c̆ahc̆bh

)
+LMc̆2

ah
c̆2

bh

)

= M log

(
γ2

h

Mσ2

)
+L log

(
γ2

h

Lσ2 −
M
L
+1

)

+
1

σ2

(
−2γh

(
γh−

σ2M
γh

− σ2
√

M/L

c̆ahc̆bh

)
+LMc̆2

ah
c̆2

bh

)

= M log

(
γ2

h

Mσ2

)
+L log

(
γ2

h

Lσ2 −
M
L
+1

)
+2M+

2
√

M/L

c̆ahc̆bh

γh−
2γ2

h

σ2 +
LMc̆2

ah
c̆2

bh

σ2 .

Since
√

x2−y2 > x−y for x> y> 0, Equation (122) yields

c̆2
ah

c̆2
bh
≥ γ2

h− (L+M+
√

LM)σ2

LM
. (173)

Ignoring the positive term 4LMσ4 in Equation (122), we obtain

c̆2
ah

c̆2
bh
<

γ2
h− (L+M)σ2

LM
. (174)

Equations (173) and (174) result in

√
γ2

h− (L+M+
√

LM)σ2

LM
≤ c̆ahc̆bh <

√
γ2

h− (L+M)σ2

LM
.

Using these bounds, we obtain

∆h < M log

(
γ2

h

Mσ2

)
+L log

(
γ2

h

Lσ2 −
M
L
+1

)
+2M+

2
√

M/L√
γ2
h−(L+M+

√
LM)σ2

LM

γh

− 2γ2
h

σ2 + γ2
h− (L+M)

= M log

(
γ2

h

Mσ2

)
+L log

(
γ2

h

Lσ2 −
M
L
+1

)
+M−L+

2M√
1− (L+M+

√
LM)σ2

γ2
h

− γ2
h

σ2 .

Using Equations (128), (129), and (130), we obtain Equation (127).
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G.17 Proof of Lemma 26

For 0< α ≤ 1 andβ ≥ 7, Equation (128) is increasing with respect toα, because

∂ψ(α,β)
∂α

= log

(
β−1+α

α

)
−
(

β−1
β−1+α

)
−1+

(
√

α+1/2)

β
√

α
(

1− (α+
√

α+1)
β

)3/2

> log

(
β−1

α
+1

)
−2+

1
β

≥ log(β)−2+
1
β

> 0.

Here, we used the numerical estimation that log(β)−2+1/β ≈ 0.0888 whenβ = 7, and the fact
that log(β)−2+1/β is increasing with respect toβ whenβ > 1.

For 0< α ≤ 1 andβ > 3, Equation (128) is decreasing with respect toβ, because

∂ψ(α,β)
∂β

=
1
β
+

α
(β−1+α)

−
(α+

√
α+1)

β2

2
(

1− (α+
√

α+1)
β

)3/2
−1

<
1
β
+

α
(β−1+α)

−1

=−(β−1+
√

α)(β−1−√
α)

β(β−1+α)
< 0.

Consequently, ifψ(1, β̃) < 0, it holds thatψ(α,β) < 0 for any 0< α ≤ 1 andβ ≥ β̃. The fact
thatψ(1,7)≈−0.462< 0 completes the proof.

G.18 Proof of Lemma 29

Since the upper-bound in Equation (28) does not depend on(c2
ah
,c2

bh
), Equation (46) holds.

Since the lower-bound in Equation (28) is nondecreasing with respect tocahcbh, substituting
Equation (173) into Equation (28) yields

γ̂h ≥ max



0,

(
1− σ2M

γ2
h

)
γh−

σ2M√
γ2

h− (L+M+
√

LM)σ2



 .

It holds that

−σ2M
γh

>− σ2M√
γ2

h− (L+M+
√

LM)σ2
>− σ2M

γh−
√
(L+M+

√
LM)σ2

,
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where the positive term(L+M+
√

LM)σ2 is subtracted in the first inequality and the relation√
x2−y2 > x−y for x> y> 0 is used in the second inequality. Then we have

γ̂h > max



0,γh−

2σ2M

γh−
√
(L+M+

√
LM)σ2



 ,

which leads to Equation (47).
Substituting Equation (174) into Equation (31), we obtain

γ̂h <

√(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γh−

σ2
√

LM√
γ2

h− (L+M)σ2

<

√(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γh−

σ2
√

LM
γh

,

where the positive term(L+M)σ2 is ignored in the second inequality. This gives Equation (48),
and completes the proof.

Appendix H. Illustration of EVB Objective Function

Here we illustrate the EVB objective function (106). Let us consider a partially minimized objective
function:

L̃EVB
h (cahcbh) = min

(µah,µbh
,σ2

ah
,σ2

bh
)
LEVB

h (µah,µbh,σ
2
ah
,σ2

bh
,cahcbh,cahcbh). (175)

According to Lemma 19, the infimum at thenull local minimizer is given by

lim
cahcbh

→0
L̃EVB

h (cahcbh) = L̊
EVB
h = L+M. (176)

Figure 13 depicts the partially minimized objective function (175) whenL=M =H = 1,σ2 = 1,
andV = 1.5,2.0,2.1,2.7. Corollary 1 provides the exact values for drawing these graphs. The large
and thesmall positivestationary points, specified by Equations (122) and (123), respectively, are
also plotted in the graphs if they exist. When

V = 1.5
(
< 2= (

√
L+

√
M)σ

)
,

Equation (121) does not hold. In this case, the objective function (175)has no stationary point as
Lemma 22 states (the upper-left graph of Figure 13). The curve is identical for 0 ≤V < 2.0.

WhenV = 2.0 (the upper-right graph), Equation (124) holds. In this case, the objective function
(175) has a stationary point atcahcbh = 1. This corresponds to the coincidentlargeandsmall positive
stationary point. Still no local minimum exists.

WhenV = 2.1 (the lower-left graph), Equation (125) holds. In this case, there exists a large
positivestationary point (which is a local minimum) atcahcbh ≈ 1.37, as well as asmall positive
stationary point (which is a local maximum) atcahcbh ≈ 0.73. However, we see that

L̃EVB
h (1.37)≈ 2.24> 2= L̊

EVB
h .
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Figure 13: Illustration of the partially minimized objective function (175) whenL = M = H = 1,
σ2 = 1, andV = 1.5,2.0,2.1,2.7. The convergencẽLEVB

h (cahcbh) → L+M (= 2) as
cahcbh → 0 is observed (see Equation (176)). ’Large SP’ and ’Small SP’ indicatethe
largeand thesmall positivestationary points, respectively.

Therefore, thenull local minimizer (cahcbh → 0) is still global, resulting in̂γEVB
h = 0.

WhenV = 2.7 (the lower-right graph),γh ≥
√

7M ·σ holds. As Lemma 28 states, alarge positive
stationary point atcahcbh ≈ 2.26 gives the global minimum:

L̃EVB
h (2.26)≈ 0.52< 2= L̊

EVB
h ,

resulting in apositiveoutput̂γEVB
h ≈ 1.89.

Appendix I. Derivation of Equations (57)and (58)

Let p(v|θ) be a model distribution, wherev is a random variable andθ ∈ R
d is a d-dimensional

parameter vector. TheJeffreys non-informative prior(Jeffreys, 1946) is defined as

φJef(θ) ∝
√
|F |, (177)
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whereF ∈ R
d×d is the Fisher information matrix defined by

F jk =
∫ ∂ logp(v|θ)

∂θ j

∂ logp(v|θ)
∂θk

p(v|θ)dv. (178)

Let us first derive the Jeffreys prior for the non-factorizing model:

pU(V|U) ∝ exp

(
− 1

2σ2(V −U)2
)
. (179)

In this model, the parameter vector is one-dimensional:θ =U . Since

∂ logpU(V|U)

∂U
=

V −U
σ2 ,

the Fisher information (178) is given by

FU =
1

σ2 .

This is constant over the parameter space. Therefore, the Jeffreys prior (177) for the model (179) is
given by Equation (57).

Let us move on to the MF model:

pA,B(V|A,B) ∝ exp

(
− 1

2σ2(V −AB)2
)
. (180)

In this model, the parameter vector isθ = (A,B). Since

∂ logpA,B(Y|A,B)
∂A

=
1

σ2(Y−AB)B,

∂ logpA,B(Y|A,B)
∂B

=
1

σ2(Y−AB)A,

the Fisher information matrix is given by

FA,B =
1

σ2

(
B2 AB
AB A2

)
,

whose eigenvalues areσ−2
√

A2+B2 and 0.
The common (over the parameter space) zero-eigenvalue comes from the invariance of the MF

model (180) under the transform(A,B)→ (sA,s−1B) for anys> 0. Neglecting it, we re-define the
Jeffreys prior by

φJef(θ) ∝
√

∏d−1
j=1 λ j ,

whereλ j is the j-th largest eigenvalue of the Fisher information matrix. Thus, we obtain Equa-
tion (58).
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