
Journal of Machine Learning Research 12 (2011) 2563-2581 Submitted 7/10; Revised 2/11; Published 9/11

Kernel Analysis of Deep Networks

Grégoire Montavon GMONTAVON@CS.TU-BERLIN.DE

Mikio L. Braun MIKIO @CS.TU-BERLIN.DE

Klaus-Robert Müller ∗ KLAUS-ROBERT.MUELLER@TU-BERLIN.DE

Machine Learning Group
Technische Unversität Berlin
Franklinstr. 28/29
10587 Berlin, Germany

Editor: Yoshua Bengio

Abstract
When training deep networks it is common knowledge that an efficient and well generalizing rep-
resentation of the problem is formed. In this paper we aim to elucidate what makes the emerging
representation successful. We analyze the layer-wise evolution of the representation in a deep net-
work by building a sequence of deeper and deeper kernels thatsubsume the mapping performed by
more and more layers of the deep network and measuring how these increasingly complex kernels
fit the learning problem. We observe that deep networks create increasingly better representations
of the learning problem and that the structure of the deep network controls how fast the representa-
tion of the task is formed layer after layer.
Keywords: deep networks, kernel principal component analysis, representations

1. Introduction

Finding an appropriate representation of data is a central problem in machine learning. The rep-
resentation should ideally distill the relevant information about a learning problem in a compact
manner, such that it becomes possible to learn the data from a small number ofexamples.

Deep networks (e.g., Rumelhart et al., 1986; Hinton et al., 2006) have shown promise by auto-
matically extracting representations from raw data. Through their deep multi-layered architecture,
simpler and more accurate representations of the learning problem can be built layer after layer.
Their depth makes possible the creation of abstractions that are important in order to learn the de-
sired well-generalizing representation. Also, their flexibility offers the possibility to systematically
and structurally incorporate prior knowledge, for example, by constraining the connectivity of the
deep network (e.g., LeCun, 1989; Lang et al., 1990), by learning multiple tasks at the same time
(Caruana, 1997; Collobert and Weston, 2008) or by regularizing the solution with unlabeled samples
(Salakhutdinov and Hinton, 2007; Weston et al., 2008). Such prior knowledge can significantly im-
prove the generalization ability of deep networks, leading to state-of-the-art performance on several
complex real-world data sets.

While a considerable amount of work has been dedicated to learning efficiently deep archi-
tectures (Orr and M̈uller, 1998; Hinton et al., 2006; Bengio et al., 2006), leading to simple and
efficient training algorithms, these learning machines still lack of analytic understanding. Recently,

∗. Also at the Institute for Pure & Applied Mathematics, University of California, Los Angeles, Los Angeles, CA 90095.

c©2011 Gŕegoire Montavon, Mikio L. Braun and Klaus-Robert Müller.

MONTAVON, BRAUN AND M ÜLLER

a significant amount of research has focused on improving our theoretical understanding of deep
networks, in particular, understanding the benefits of unsupervised pretraining (Erhan et al., 2010),
understanding what are the main difficulties when training deep networks (Larochelle et al., 2009)
and studying the invariance of representations built in deep networks (Goodfellow et al., 2009).
However, quantifying how good hidden representations are and measuring how the representation
evolves layer after layer are still open questions. Overall, deep networks are thus generally assumed
to be powerful and flexible learning machines that are however not well understood theoretically
(Bengio, 2009).

In parallel to the development of deep networks, kernel methods (Müller et al., 2001; Scḧolkopf
and Smola, 2002) offer an elegant framework that decouples learning algorithms from data repre-
sentations. The kernel operatork(x,x′)—a central concept of the kernel framework—measures the
similarity between two pointsx andx′ of the input distribution, yielding an implicit kernel feature
mapx 7→ φ(x) (Scḧolkopf et al., 1999) that ideally implements all the prior knowledge of the learn-
ing problem contained in the kernel operator. This decoupling between learning algorithms and
data representations opens the door to a whole world of generic learning machines and data analy-
sis tools such as support vector machines (Cortes and Vapnik, 1995), kernel discriminant analysis
(Mika et al., 1999; Baudat and Anouar, 2000; Mika et al., 2003) and kernel principal component
analysis (Scḧolkopf et al., 1998) that can be applied independently of the data set. The kernel frame-
work has also been used as an abstraction tool for modeling complex real systems such as the visual
cortex (Smale et al., 2010).

The goal of this paper is to study in the light of the kernel framework how exactly the represen-
tation is built in a deep network, in particular, how the representation evolvesas we map the input
through more and more layers of the deep network. Here, the kernel framework is not used as an
effective learning machine, but as an abstraction tool for modeling the deep network. Our analysis
takes a trained deep networkf (x) = fL ◦ · · · ◦ f1(x) as input, defines a sequence of “deep kernels”

k0(x,x
′) = kRBF(x,x

′),

k1(x,x
′) = kRBF(f1(x), f1(x

′)),

...

kL(x,x
′) = kRBF(fL ◦ · · · ◦ f1(x), fL ◦ · · · ◦ f1(x

′))

that subsume the mapping performed by more and more layers of the deep network and outputs how
good the representations yielded by these deeper and deeper kernels are. We quantify for each kernel
how good the representation with respect to the learning problem is by measuring how much task-
relevant information is contained in the leading principal components of the kernel feature space.
This method is based on the theoretical results of Braun (2006) and Braunet al. (2008) which
show that eigenvalues and projections to eigenspaces of the kernel matrixhave small approximation
errors, even for already a small number of samples.

This analysis allows us for the first time to observe and quantify the evolution of the represen-
tation in deep networks. We use our analysis to test two hypotheses on deepnetworks:

Hypothesis 1:as the input is propagated through more and more layers of the deep net-
work, simpler and more accurate representations of the learning problem are obtained.

Indeed, as the input is mapped through more and more layers, abstractionslearned by the deep
network are likely to change the perception of whether a task is simple or not. For example, in

2564

KERNEL ANALYSIS OF DEEPNETWORKS

input output

l = 0

f1

l = 1

f2

l = 2

f3

dimensionalityd

er
ro

re
(d
)

l = 0
l = 1
l = 2

Hypothesis 1:

layer l

er
ro

re
(d

0
)

various structures
deep networks with

Hypothesis 2:

Figure 1: Illustration of our analysis. Curves on the left plot relate the simplicity (dimensionality)
and accuracy (error) of the representation of the learning problem ateach layer of the deep
network. The dimensionality is measured as the number of kernel principal components
on which the representation is projected. The thick gray arrows indicate theforward
path of the deep network. Hypothesis 1 states that as deeper and deeperkernels are
built, simpler and more accurate representations of the learning problem areobtained.
Hypothesis 2 states that the structure of the deep network controls the way the solution is
formed layer after layer.

the context of image classification, classifying between cat and dog would appear simpler in the
last layers of the deep network than in the first layers since irrelevant factors of variation such as
occlusion and orientation would be progressively filtered out by the hierarchy of abstractions built
in the deep network.

Hypothesis 2:the structure of the deep network controls how fast the representation of
the task is formed layer after layer.

It has been empirically corroborated that carefully regularizing the training process by means of
specific learning rates, weight penalties, initial weights, shared weights orrestricted connectivity can
greatly improve the generalization of deep networks (LeCun, 1989; Orr and Müller, 1998; Hinton
et al., 2006). We hypothesize that a common aspect of these various regularization techniques is
to control the layer-wise evolution of the representation through the deep network. On the other
hand, a simple unregularized deep network may make inefficient use of the representational power
of deep networks, distributing the discrimination steps across layers in a suboptimal way.

These two hypotheses are illustrated in Figure 1. Testing them are, to our opinion, of signif-
icant importance as they might shed light on the nature of deep learning and on the way complex
problems are to be solved. This paper completes our conference paper (Montavon et al., 2010) by
extending the discussion on the interest of analyzing deep networks within thekernel framework
and by extending the empirical study to more data sets and larger deep networks.

2565

MONTAVON, BRAUN AND M ÜLLER

1.1 Related Work

The concept of building kernels imitating the structure of deep architectures—or more simply, build-
ing “deep kernels”—is not new. Cho and Saul (2009) already expressed deep architectures as kernels
in order to solve a convex optimization problem and achieve large margin discrimination in a deep
network. This approach differs from our work in the sense that their deep kernel is not used as an
analysis tool for trained deep networks but as part of an effective learning machine.

The concept was also developed in Smale et al. (2010) where the authorsgive a recursive defini-
tion of the neural response as hierarchy of simple kernels operating on subparts of the sensory input
and in Wibisono et al. (2010) where a principal component analysis is performed on top of these
deep kernels in order to measure invariance properties of deep networks. While the last authors
focus mostly on the representation of data in static deep architectures made ofpredefined features,
we are considering instead trainable deep architectures.

Although not directly using the kernel framework, Goodfellow et al. (2009) also analyze the
layer-wise evolution of the representation in deep networks, showing thatdeep networks trained
in an unsupervised fashion build increasing levels of invariance with respect to several engineered
transformations of the input and to temporal transformations in video data.

2. Theory

Before being able to observe the layer-wise evolution of the representation in deep networks, we first
need quantify how good a representation is with respect to the learning problem. The representation
is said to begoodif simple and accurate models of the learning problem can be built on top of it. We
measure it by means of an analysis based on kernel principal componentanalysis that determines
how much of the relevant problem subspace is contained in the leading kernel principal components,
more precisely, how well the learning problem can be solved from the leading kernel principal
components. The analysis extends naturally to deep networks by building a sequence of kernels that
subsume the mapping performed by more and more layers of the deep networkand repeating the
analysis for these deeper and deeper kernels.

2.1 Quantifying How Good a Representation Is

In this section, we are interested in quantifying how good a representation iswith respect to the
learning problem. The representation isgoodwhen it is possible to build models of the learning
problem on top of it that are bothsimpleandaccurate.

A first technical difficulty is to quantify how simple a model is. Indeed, the notion of simplicity
is highly subjective (Bousquet et al., 2004) and typically depends on which prior knowledge on the
learning problem is taken for granted. For example, visual recognition tasks are very simple for
humans, but very complex for simple learning algorithms such as a local learning machine. In this
example, humans possess a form of prior on how the image should look like (e.g., we know how
to classify real images from artificial images) and a machinery to make sense more easily of this
complex data.

We choose to model this prior by isolating it into a kernel operator that measures how similar
two data points drawn from the input distribution are. For example, a local predictor could be
modeled with a Gaussian kernel while a more intelligent human-like predictor should be modeled
with a more complex kernel encoding translation invariance, rotation invariance, etc. Then, the

2566

KERNEL ANALYSIS OF DEEPNETWORKS

induced kernel feature mapx 7→ φ(x) encodes implicitly all the prior defined in the kernel with the
advantage that linear models can be built on top of it (Schölkopf et al., 1999).

A second technical difficulty comes from the fact that accuracy and simplicity are not always
measurable in practice: accuracy of a model can only be estimated up to a certain precision from
the finite data set and estimating the simplicity depends on whether we consider, for example, the
number of parameters of a model, its entropy or its algorithmic complexity. For these reasons, we
need to restrict ourselves to a class of models whose simplicity and accuracycan be easily measured
and that are expressive enough to solve the learning problem.

We choose to use the kernel principal component analysis (kernel PCA, Scḧolkopf et al., 1998)
as a basis for building measurably simple models of the learning problem. Our method consists
of projecting the input distribution on thed first components (in terms of variance) of the kernel
feature space and fitting a linear model on this low-rank representation. The number of components
d controls the simplicity of the model. Whend is small, the model is simple. Whend is large,
the model is complex. The accuracy can in turn be obtained by measuring the prediction errore(d)
of a linear predictor on top of thed-component kernel representation. We refer to the parameterd
as the dimensionality of the model ande(d) as the prediction error obtained with thed-component
model. The curvee(d) gives a complete picture of how good a representation is with respect to the
learning problem. Figure 2 gives some examples of curvese(d) and explains how these curves can
be interpreted.

An advantage of the kernel PCA method is that there exists a theoretical framework and con-
vergence bounds for the estimation of spectral properties from a limited number of samples drawn
from the input distribution. In the case of fixed kernels, Braun et al. (2008) show that the projec-
tions to kernel principal components obtained with a finite and typically small number of samples
n are close with essentially multiplicative errors to those that would be obtained in the asymptotic
case wheren→ ∞. This result can be naturally extended to a finite set of kernels. These conver-
gence properties are desirable since the data distribution is unknown and only a finite number of
observations are available for our analysis. Appendix A gives some additional information on the
convergence of kernel principal components.

A second advantage of the kernel PCA method is the high flexibility that it offers with respect to
the nature of the learning problem. Kernel PCA is not only independent ofthe input representation
due to the kernel embedding, but also independent of the output representation. Indeed, kernel PCA
simply acts as a regularizer on the kernel feature space that limits the complexityof the subsequent
learning machine. Therefore any discriminative model can be used on top of the regularized rep-
resentation, allowing to treat various classes of problems such as binary classification, multi-class
classification or regression within the same framework.

To summarize, the kernel framework combines the four requirements of ouranalysis: (1) the
kernel operator expresses and isolates the subjective notion of simplicity,(2) the complexity of the
model is controlled by projecting the input distribution on a limited number of kernel principal
components, (3) convergence bounds allow to effectively measure the accuracy of the model and
(4) various models can be built on top of the leading kernel principal components in order to express
the various types of learning problems (regression, classification, ...) thatarise in real applications.

We present below the computation steps required to estimate how good a kernel k and its associ-
ated feature mapx 7→ φ(x) are with respect to a learning problemp(x,y). Let {(x1,y1), . . . ,(xn,yn)}
be a data set ofn points drawn independently fromp(x,y). Let X = (x1, . . . ,xn) andY = (y1, . . . ,yn)
be the matrices associated to the inputs and labels of the data set. We compute the kernel matrixK

2567

MONTAVON, BRAUN AND M ÜLLER

dimensionalityd

er
ro

re
(d
)

Scenario 1

dimensionalityd

er
ro

re
(d
)

Scenario 2

dimensionalityd

er
ro

re
(d
)

Scenario 3

Figure 2: Effect of converting a representation of the learning problemp(x,y) (gray curve) to a
new representation of the learning problemp(f (x),y) (black curve) where the inputx
is mapped tof (x). We can distinguish three scenarios: (Scenario 1) the mapping pro-
duces a better representation from which more accurate models are obtained for every
dimensionality—this is the desired behavior of deep networks,—(Scenario 2)the map-
ping concentrates the label information in the leading kernel principal components but
also loses some information—lossy feature extractors typically fall into that category—
and (Scenario 3) the mapping makes the learning problem more complex—this would be
the result of introducing noise or throwing away label information.

associated to the data set:

K =







k(x1,x1) . . . k(x1,xn)
...

...
k(xn,x1) . . . k(xn,xn)






.

The kPCA componentsu1, . . . ,un are obtained by performing an eigendecomposition ofK where
eigenvectorsu1, . . . ,un have unit length and eigenvaluesλ1, . . . ,λn are sorted by decreasing magni-
tude:

K = (u1| . . . |un) ·diag(λ1, . . . ,λn) · (u1| . . . |un)
⊤.

Let Û = (u1| . . . |ud) and Λ̂ = diag(λ1, . . . ,λd) be a d-dimensional approximation of the eigende-
composition. The space spanned by this basis approximates the space spanned by thed leading
components of the infinite-dimensional kernel feature space associated tothe probability distribu-
tion p(x). In this space, the learning problem can be solved by a standard linear orlogistic regression
model. For regression problems, we fit a linear modelβ⋆ that maps thed leading components to the
output:

β⋆ = argminβ||Ûβ−Y||2F = Û⊤Y. (1)

For classification problems, instead of fitting the model directly on the outputs, we fit the model on
the log-likelihood of classes

β⋆ = argminβ

n

∏
i=1

softmax([Ûβ]i)yi (2)

where softmax(z) = ez/∑ j e
zj converts a vectorz into a probability distribution over classes. Note

that the optimization criterion only consists of the empirical risk minimization term and lacks a

2568

KERNEL ANALYSIS OF DEEPNETWORKS

regularization term. Indeed, the regularization is implicitly carried out by the projection on thed
leading principal components. The problem is therefore well-posed only whend≪ n. Once the
modelβ⋆ is computed, the estimated outputs can be calculated as

Ŷ = Ûβ⋆

for regression problems and as

ŷi = argmax([Ûβ⋆]i) 1≤ i ≤ n

for classification problems. The training error is estimated as

e(d) =
1
n

n

∑
i=1

||ŷi−yi ||2 (3)

for regression problems and as

e(d) =
1
n

n

∑
i=1

1ŷi 6=yi (4)

for classification problems. The test error can be obtained by cross-validating the linear model on
random partitions of(x1, . . . ,xn). Training and test error can be used as approximation bounds for
the asymptotic casen→ ∞ where the modelβ⋆ would minimize the error on the real distribution
p(x,y). In the next sections, the upper and lower approximation bounds are respectively depicted as
solid and dotted lines in Figure 5, 6 and 7.

2.2 Application to Deep Networks

In this section, we describe how the analysis of representations presented above can be used to
measure the layer-wise forming of the representation in deep networks. Let f (x) = fL ◦ · · · ◦ f1(x)
be a trained deep network ofL layers. Our analysis consists of defining a sequence of “deep kernels”

k0(x,x
′) = kRBF(x,x

′),

k1(x,x
′) = kRBF(f1(x), f1(x

′)),

...

kL(x,x
′) = kRBF(fL ◦ · · · ◦ f1(x), fL ◦ · · · ◦ f1(x

′))

that subsume the mapping performed by more and more layers of the deep network and repeating for
each kernel the analysis presented in Section 2.1. Algorithm 1 summarizes themain computational
steps of our analysis. The kernelkRBF is the standard Gaussian kernel defined askRBF(x,x′) =
exp(−||x−x′||2/2σ2).

The main prior encoded by Gaussian kernels is the smoothness of the task ofinterest in the
input space (Smola et al., 1998). Gaussian kernels are appropriate when two neighboring samples
(in terms of Euclidean distance) are likely to have the same class. It remains to see how the con-
cept of simplicity encoded by the Gaussian kernel can be understood from the perspective of the
induced prediction model. Figure 3 shows that the simplicity of the model can be related to the
number of allowed local variations in the input space. Whend increases, more variations of the

2569

MONTAVON, BRAUN AND M ÜLLER

Algorithm 1: Main computational steps of our layer-wise analysis of deep networks. At
every layer of the deep network, the same analysis is performed, returning a list of curves
e(d) capturing the evolution of the representation in the deep network.

Input : A data set{(x1,y1), . . . ,(xn,yn)}
A deep networkf : x 7→ fL ◦ · · · ◦ f1(x)

Output : The curvese(d) for each layerl
for l ∈ {1, . . . ,L} do

for σ ∈ Σ do
k(x,x′) = kRBF(σ)(fl ◦ · · · ◦ f1(x), fl ◦ · · · ◦ f1(x′))
compute the kernel matrixK associated tok(x,x′) and(x1, . . . ,xn)
do the eigendecompositionK = (u1| . . . |un) ·diag(λ1, . . . ,λn) · (u1| . . . |un)

⊤

for d ∈ {0,1,2, . . .} do
build a low rank approximation of the input̂U ← (u1| . . . |ud)
fit the modelβ⋆ that predicts(y1, . . . ,yn) from Û (cf. Equation 1 and 2)
compute the errore(d,σ) of the modelβ⋆ (cf. Equation 3 and 4)

e(d) = minσ e(d,σ)
plot the curvee(d)

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6
e(d) = 0.5 e(d) = 0.25 e(d) = 0.25 e(d) = 0 e(d) = 0 e(d) = 0

Figure 3: Interpretation of a prediction model based on the leading components of the Gaussian
kernel on a toy data set. As we add more and more leading components of the kernel, the
model becomes more flexible, creating a better decision boundary. Note that with four
leading components, all the samples are already perfectly classified.

learning problem can be encoded and the prediction improves. Figure 4 shows that by making the
problem increasingly complex—for example, by distorting it—the number of dimensions required
to approach the error of the optimal classifier becomes larger and larger.

The notion of simplicity encoded by the Gaussian kernel is meaningful for a wide range of learn-
ing problems, however, it does not explain how simple more intelligent systems perceive problems
such as vision and speech. Indeed, domain-specific regularities such as invariance to translation,
scale or occlusion can not be modeled efficiently by a Gaussian kernel. Consequently, observing
the learning problem become simpler as we build deeper and deeper kernelshighlights the capacity
of deep networks to model the regularities of the input distribution.

A last aspect that has not been discussed yet is how to choose the scaleparameterσ of the
Gaussian kernel. We decide to choose the parameterσ that minimizes the errore(d), leading to a
different scale for each dimensionality. The rationale for taking a different scale for eachd is that the

2570

KERNEL ANALYSIS OF DEEPNETWORKS

Figure 4: On the top, three increasingly complex representations of a binary classification problem.
On the bottom, the curvese(d) quantifying how good the representation of the learn-
ing problem is from the perspective of the Gaussian kernel. The originalnon-distorted
learning problem can be solved perfectly with only one kernel principal component. As
the input distribution gets distorted more and more, the number of leading components
required to solve the learning problem increases, hinting that Gaussian kernels become
progressively less suited.

optimal scale parameter typically shrinks as more leading components of the input distribution are
observed. This parameter selection method also makes our analysis scale invariant. Scale invariance
is desirable since the representation at a given layer of the deep networkcan take different scales
due to the number of nodes contained in each layer or to the multiple types of nonlinearities that
can be implemented in deep networks.

3. Methodology

In Section 2, we presented the theory and algorithms required to test our twohypotheses on the
evolution of representations in deep networks. To summarize, the main idea ofthe analysis is to
build a set of kernels that subsume the mapping performed at each layer ofthe deep network and, for
each kernel, compute how good the representation is by measuring how manyleading components
of the kernel feature space are necessary in order to model the learning problem well. It remains to
select a set of deep networks and data sets in order to test the hypotheses formulated in Section 1.

We consider the MNIST-10K and CIFAR-bw-10K data sets. These two data sets of 10000
samples each are a trimmed version of the larger MNIST handwritten digits and CIFAR image
classification data sets (LeCun et al., 1998; Krizhevsky, 2009). The MNIST-10K data set is a 10-
class classification data set that consists of 10000 grayscale images of 28×28 pixels representing
handwritten digits and their associated label (a number between 0 and 9). The CIFAR-bw-10K data
set is a 10-class classification data set that consists of 10000 grayscaleimages of 32× 32 pixels
representing different objects and their associated label (airplane, automobile, bird, cat, deer, dog,
frog, horse, ship and truck).

2571

MONTAVON, BRAUN AND M ÜLLER

State-of-the-art performance on these data sets is achieved with architectures made of several
layers, suggesting that these data sets are well suited to test the first hypothesis stated earlier in the
paper, that is, the progressive simplification of the learning problem performed by deep networks.
The second hypothesis on the effect of the structure of deep networkscan be tested by taking a set
of structured and unstructured deep networks and observing how the layer-wise evolution of the
representation differs between these deep networks. We consider a multilayer perceptron (MLP), a
pretrained multilayer perceptron (PMLP) and a convolutional neural network (CNN).

The multilayer perceptron (MLP, Rumelhart et al., 1986) is built by alternatinglinear transfor-
mations and nonlinearities applied element-wise to the output of the linear transformations. On the
MNIST data set, we apply successively the functions

f1(x) = sigm(w1 ·x+b1),

f2(x) = sigm(w2 ·x+b2),

f3(x) = softmax(v·x)

to the input where weight matricesw1,w2,v and biasesb1,b2 are learned from data and where the
size of hidden layers is set to 1600. The sigmoid and softmax functions are defined as sigm(x) =
ex/(1+ex) and softmax(x) = ex/∑ j e

x j . On the CIFAR data set, the sigmoid nonlinearity is replaced
by the rectifying function defined as rectify(x) = max(0,x) and the size of hidden layers is set to
3600. Since it has been observed that overparameterizing deep networks generally improves the
generalization error, the size of layers is chosen large with the only constraint of computational
cost. The MLP is mostly unstructured as any type of solution can emerge fromthe random weights
initialization.

The pretrained multilayer perceptron (PMLP, Hinton et al., 2006; Bengio etal., 2006) referred
in this paper as PMLP is a multilayer perceptron that has been pretrained using a deep belief net-
work (DBN, Hinton et al., 2006) and then fine-tuned on the discriminative task. The pretraining
procedure aims to build a deep generative model of the input that can be used as a starting point to
learn the supervised task. In order to use the same architecture as for theMLP during the fine-tuning
procedure, we set the visible and hidden units of the DBN to be binary on theMNIST data set and
respectively Gaussian and rectified linear (Nair and Hinton, 2010) on theCIFAR data set. Here,
the structure of the deep network is implicitly given by the weights initialization subsequent to the
unsupervised pretraining.

The convolutional neural network (CNN, LeCun et al., 1998) is a deep network inspired by
the structure of the primary visual cortex (Hubel and Wiesel, 1962). Its particular convolutional
structure exploits the spatial invariance of images in order to learn well-generalizing solutions from
few labeled samples. It is built by alternating (1) convolutional layersy= w⊛ x+b transforming
a set of input features maps{x1,x2, . . .} into a set of output features maps{y1,y2, . . .} such that
yi = ∑ j wi j ∗x j +bi and wherewi j are convolution kernels, (2) detection layers where a nonlinearity
is applied element-wise to the output of the convolutions in order to extract important features and
(3) pooling layers subsampling each feature map by a given factor. On theMNIST data set, we
apply successively the functions

f1(x) = pooling(sigm(w1⊛x+b1)),

f2(x) = pooling(sigm(w2⊛x+b2)),

f3(x) = softmax(v·x)

2572

KERNEL ANALYSIS OF DEEPNETWORKS

to the input where weight tensorsw1,w2, weight matrixv and biasesb1,b2 are learned from data,
convolution kernels have size 5×5, pooling layers downsample the input by a factor two and the
number of feature maps in each layer is set to 100. On the CIFAR data set, thesigmoid nonlinearity
is replaced by the rectifying function described above.

The deep networks described above are trained on a supervised task with backpropagation
(Rumelhart et al., 1986) and stochastic gradient descent (Bottou, 1991) with minibatches of size
20. The last layer has a L2 weight penalty. The softmax module (Bishop, 1996) optimizes the deep
network for maximum likelihood. Weights of each layerl are initialized so that the output is of
constant magnitude, thus falling into the correct regime of the subsequent nonlinearity. These deep
networks are analyzed in two different settings:

• Supervised learning:the deep network is trained in a supervised fashion on the target task
(digit classification for the MNIST data set and image classification for the CIFAR data set).

• Transfer learning: the deep network is trained in a supervised fashion on a binary classi-
fication task that consists of determining whether the sample has been flipped vertically or
not.

These settings allow us to measure how the structure contained in deep networks affects different
aspects of learning such as the layer-wise organization of the learned solution or the transferability
of features from one task to another.

3.1 Experimental Setup

We train the deep networks on the 10000 samples of the data set until a trainingerror of 2.5% is
reached. Such stopping criterion ensures that the subsequent solutions have a constant complexity
and that the limited capacity of the deep network has no side effect on the structure of the solution.
As a sanity check, each architecture has been trained with the regular early stopping criterion on the
full MNIST and CIFAR-bw data sets, leading to test errors that are on par with results published
in the literature for similar architectures (MNIST-MLP: 1.6%, MNIST-PMLP: 1.3%, MNIST-CNN:
0.9%,CIFAR-bw-MLP: 48.1%,CIFAR-bw-PMLP: 46.8%,CIFAR-bw-CNN: 32.4%).

In our analysis, we estimate the kernel principal components with the 10000 samples used for
training the deep network. Therefore, the empirical estimate of thed leading kernel principal com-
ponents takes the form ofd 10000-dimensional vectors, or similarly, of a data set of 10000d-
dimensional mapped samples. A lower bound ofe(d) is obtained by fitting and evaluating the linear
model with the 10000 mapped samples. An upper bound ofe(d) is obtained by two-fold cross-
validation (5000 samples to fit the model and the 5000 remaining samples to evaluate it). The set of
candidate kernel widths is composed of the 0.1, 0.5 and 0.9 quantiles of the distribution of distances
between pairs of points. It turns out that the effect of the kernel scaleis rather small and that no
further scale parameters are required. The layers of interest are the input data (l = 0) and the output
of each layer (l = 1,2, . . .).

4. Results

In this section, we present the results of our analysis on the evolution of therepresentation in deep
networks. Section 4.1 discusses the empirical observation that deep networks trained on the super-
vised task produce gradually simpler and more accurate representations of the learning problem.

2573

MONTAVON, BRAUN AND M ÜLLER

Figure 5: Effect of the learning rate, of the capacity, of the training time andof the weight penalty
on the layer-wise evolution of the representation built by an MLP on the MNIST-10K
data set. Solid and dotted lines respectively represent the upper and lower approximation
bounds of the analysis. As the learning rate increases, the solution tends tomake use
primarily of the first layers of the deep network. The same effect is observed when we
reduce the capacity, increase the weight penalty or increase the training time.

Then, Section 4.2 compares side-by-side the evolution of the representation in different deep net-
works and discusses the empirical observation that the structure of the deep network controls the
layer-wise evolution of the representation in the deep network.

4.1 Better Representations are Built Layer After Layer

It is still an open question how the complex and multimodal form of intelligence observed in liv-
ing organisms emerges from randomly disposed and locally scoped neurons. Machine learning
researchers similarly pointed out that emergent properties also occur in artificial neural networks
when trained with simple local algorithms such as Hebbian learning or backpropagation, without
having to explicitly define the role of each individual neuron. Also, their ability to simultaneously
specialize on specific tasks in output nodes and grow new functionalities from hidden nodes hints
that information contained in the underlying distribution of sensed data shouldbe ubiquitous, yet
parsimonious where discrimination takes place.

It can be hypothesized that the organization of mapped data distributions within the neural net-
work forms a continuum between general purpose distributions in the middle of the network and

2574

KERNEL ANALYSIS OF DEEPNETWORKS

M
ul

til
ay

er
pe

rc
ep

tr
on

Figure 6: Layer-wise evolution of the error as a function of the number ofdimensions when trained
on the target task. Solid and dotted lines respectively represent the upper and lower
approximation bounds of the analysis. As we move from the first to the last layers, the
class information concentrates in the leading components of the mapped data distribution.
This observation confirms the first hypothesis depicted in Figure 1.

S
up

er
vi

se
d

le
ar

ni
ng

T
ra

ns
fe

r
le

ar
ni

ng

Figure 7: Layer-wise evolution of the error obtained for each training procedure ford = 10. Solid
and dotted lines respectively represent the upper and lower approximation bounds of the
analysis. We observe that the particular structure of the CNN and of the PMLP con-
trols the layer-wise evolution of the representation. This confirms the second hypothesis
depicted in Figure 1.

2575

MONTAVON, BRAUN AND M ÜLLER

task specific distributions at its discriminative edges. Reformulating this hypothesis in the case
of a simple multilayer feedforward network trained on image classification, the sensed distribution
would evolve progressively from a distribution representing pixels well toa distribution representing
classes well as the distribution is mapped to more and more layers.

We can observe in Figure 6 that this hypothesis holds within the span of our experimental setup
and that simultaneously lower-dimensional and more accurate models of the task can be obtained
layer after layer. This means that the task-relevant information, initially spread over a large number
of principal components, converges progressively towards the leading components of the mapped
data distribution.

This layer-wise preservation of the statistical tractability of the learning problem and its progres-
sive simplification is a theoretical motivation for using these deep networks in amodular way (Caru-
ana, 1997; Weston et al., 2008; Collobert and Weston, 2008): additional modules can be plugged on
top of intermediate representations and still make sense of it.

4.2 Role of the Structure of Deep Networks

Training deep networks is a complex nonconvex learning problem with many reasonable solutions.
As it can be seen in Figure 5, even simple hyperparameters such as the learning rate or the L2
weight penalty can greatly influence the layer-wise structure of the solution. Adding to the fact
that those are only a fraction of the hyperparameters that needs to be tuned in order to achieve high
generalization (e.g., importance of reconstruction error, orthogonality ofhidden representations), it
can therefore be tricky—if not, impossible—to find an appropriate combinationof hyperparameters
that leads to a well-structured solution for the learning problem.

On the other hand, the unsupervised pretraining proposed by Hinton et al. (2006) finds a network
of latent variables that better represents the underlying distribution. As a consequence, the structure
of the pretrained deep network already contains a certain part of the solution (Larochelle et al.,
2009) and possibly makes better use of each layer. Similarly, in the context of sequential data, we
can postulate that dedicating the early layers of the architecture to a convolutional preprocessing is
also a more effective (LeCun, 1989; Serre et al., 2005) and biologicallyplausible (Ringach, 2002)
way of solving the learning problem. Both approaches have shown empirically to produce better
generalization (LeCun, 1989; Salakhutdinov and Hinton, 2007).

We corroborate this argument by comparing in Figure 7 the layer-wise evolution of the repre-
sentation for different deep networks: a multilayer perceptron (MLP), apretrained MLP (PMLP)
and a convolutional neural network (CNN). On one side, the MLP does not embed any precondi-
tioning on the learning problem. On the other side, the PMLP and the CNN embed respectively a
generative model of the input and a spatial invariance prior on the problem. We can think of the
mechanisms implemented by the PMLP and the CNN as complex regularizers on the solution of the
learning problem.

Figure 7 (top) shows the evolution of the representation with respect to the learning problem
when the deep network has been trained on the target task. We observe that the evolution of the
representation of the MLP follows a different trend than the representation built by the PMLP and
the CNN. The MLP tends to solve the MNIST problem greedily, discriminating from the first layers
while the PMLP and the CNN postpone the discrimination to the last layers. On the other hand,
on the CIFAR data set, the MLP doesn’t discriminate until the last layer while thePMLP and
the CNN spread the discrimination to more layers. Figure 7 (bottom) shows the evolution of the

2576

KERNEL ANALYSIS OF DEEPNETWORKS

representation with respect to the learning problem when the deep networkhas been trained on the
transfer task. On both data sets, the representation built by the MLP does not improve as the deep
network specializes on the transfer task while the PMLP and the CNN still build inthe first layers
a better representation of the learning problem, corroborating the effectof the PMLP and the CNN
on structure of the solution.

These observations suggest that the complex regularizers implemented in thePMLP and the
CNN have the effect of facilitating the construction of a structured solution,controlling the rate
of discrimination at every layer. Erhan et al. (2010) already describedthe PMLP as a regularized
version of the MLP and showed how it improves the generalization ability of deep networks. Our
analysis completes the study, providing a layer-wise perspective on the effect and the role of reg-
ularization in deep networks and a unified view on the very different regularizers implemented by
the PMLP and the CNN.

5. Conclusion and Discussion

We introduce a method for analyzing deep networks that combines kernel methods and descriptive
statistics in order to quantify the layer-wise evolution of the representation in deep networks. Our
method abstracts deep networks as a sequence of deeper and deeper kernels subsuming the mapping
performed by more and more layers. The kernel framework expressesthe relation between the
representation built in the deep network and the learning problem.

Our analysis is able to detect and quantify the progressive and layer-wise transformation of the
input performed by the deep network. In particular, we find that properly trained deep networks
progressively simplify the statistics of complex data distributions, building in theirlast layers rep-
resentations that are both simple and accurate.

The analysis also corroborates the hypothesis that a suitable structure for the deep network
allows to make efficient use of its representational power by controlling the rate of discrimination at
each layer of the deep network. This observation provides a new unifiedview on the role and effect
of regularizers in deep networks.

Conceptually, our analysis is not only restricted to artificial neural networks. We believe that
performing a similar analysis on different levels of processing in a biological neural architecture
may reveal interesting parallels between artificial and biological neural systems.

Appendix A. More Background Information on kPCA Convergence

In this section, we briefly give some additional results on the convergenceproperties of kernel PCA.
For the full account, please refer to Braun (2006) and Braun et al. (2008).

The rationale behind using the number of kPCA components as an estimate of thedimensional-
ity rather than simpler metrics such as counting the number of support vectorsof a trained SVM is
that the first method provides an estimate of the dimensionality that is provably robust to the number
of samples used in the analysis. This interesting fact was derived from a fundamental result on the
approximation error of scalar products with eigenvectors of the kernel matrix with respect to their
asymptotic counterparts.

More concretely, ifx1, . . . ,xn ∈ X are points drawn i.i.d. from some probability distributionPX ,
we define the kernel matrixK of a Mercer kernelk by

Ki j = k(xi ,x j) for 1≤ i, j ≤ n.

2577

MONTAVON, BRAUN AND M ÜLLER

As n→ ∞, the eigenvalues and eigenvectors ofK converge to those of the integral operator

Tk(f) =
∫

x∈X
k(. ,x) f (x)dPX

in an appropriate measure. In particular, it has been shown by Braun (2006) that the approximation
error between theith eigenvalueλi of K (in descending order) and corresponding eigenvaluel i of Tk

scales essentially multiplicatively, that is,

|λi− l i | ≤C(n)l i + ε(n),

whereC(n)→ 0, ε(n)→ 0 asn→ ∞, and even for smalln, ε(n) is small.
So, even for a small number of points, the structure of the principal components in feature space

are very similar compared to the asymptotic case. Moreover, as the next result shows, the same also
holds for the location of the sample vector of a function with respect to the eigenspaces.

As shown by Braun et al. (2008), for a bounded functiong which lies in the range ofTk (that is,
there exists ah such thatTk(h) = g), one can bound the scalar products between the sample vector
G= (g(x1), . . . ,g(xn)) and the eigenvectorsui (normalized to unit length) ofK by

1√
n
|u⊤i G| ≤ λiC(n)+ ε(n),

whereε(n)→ 0 asn→∞. Note that the scalar products with the eigenfunctionsψi of Tk also decay
asO(l i), which are again linked toλi by the results discussed above.

In essence, this result shows that the scalar products between a subsampled smooth function
decays as quickly as the eigenvalues of the kernel matrix, such that the information aboutg is
contained in the leading kPCA components only. Here, smoothness means thatg lies in the range of
Tk such that it is a smoothed version of some functionh after convolution with the kernel functionk.
On the other hand, any noise which is independent of thexi is uniformly distributed over all kPCA
components. In summary, if one plots the productsu⊤i Y with the label vectorY = (y1, . . . ,yn), one
obtains a decomposition of the label informationY with respect to the kPCA components. From the
above considerations, it follows that the spectrum will typically consist of aflat “noise bed” from
which the relevant information in the leading components can clearly be distinguished. This result
is illustrated in Figure 8 for a small toy example.

References

Gaston Baudat and Fatiha Anouar. Generalized discriminant analysis using a kernel approach.
Neural Computation, 12(10):2385–2404, 2000.

Yoshua Bengio. Learning deep architectures for AI.Foundations and Trends in Machine Learning,
2(1):1–127, 2009.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training
of deep networks. InAdvances in Neural Information Processing Systems 19, pages 153–160,
2006.

Christopher M. Bishop.Neural Networks for Pattern Recognition. Oxford University Press, 1996.

2578

KERNEL ANALYSIS OF DEEPNETWORKS

b

bb

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

bb b

b

b

b b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b
b

b b

b

b

b

b
bb

b
b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b
b

b

b

b

b b

b

b

b

b

b

b

b

bb

b

b b

b

b

b
b

b

b

b

b

b

b

b
b

b

b

b

y

x

dimensionality
of the problem

noise bed
i

|uT
i Y|

Figure 8: Illustration of the concept of relevant dimensions in kernel feature spaces (Braun et al.,
2008). On the left, samples drawn from a toy distributionp(x,y). On the right, label
contributions of each kPCA componentu1, . . . ,un. It can be observed that a small number
of leading principal components containing relevant label information emerge from a flat
noise bed.

Léon Bottou. Stochastic gradient learning in neural networks. InProceedings of Neuro-N̂ımes,
1991.

Olivier Bousquet, St́ephane Boucheron, and Gábor Lugosi. Introduction to statistical learning the-
ory. In Olivier Bousquet, Ulrike von Luxburg, and Gunnar Rätsch, editors,Advanced Lectures
on Machine Learning, volume 3176, pages 169–207. Springer, 2004.

Mikio L. Braun. Accurate bounds for the eigenvalues of the kernel matrix. Journal of Machine
Learning Research, 7:2303–2328, 2006.

Mikio L. Braun, Joachim Buhmann, and Klaus-Robert Müller. On relevant dimensions in kernel
feature spaces.Journal of Machine Learning Research, 9:1875–1908, 2008.

Rich Caruana. Multitask learning.Machine Learning, 28(1):41–75, 1997.

Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. InAdvances in Neural
Information Processing Systems 22, pages 342–350, 2009.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep
neural networks with multitask learning. InProceedings of the 25th International Conference on
Machine Learning, pages 160–167, 2008.

Corinna Cortes and Vladimir Vapnik. Support-vector networks.Machine Learning, 20(3):273–297,
1995.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning?Journal of Machine
Learning Research, 11:625–660, 2010.

Ian Goodfellow, Quoc Le, Andrew Saxe, and Andrew Y. Ng. Measuring invariances in deep net-
works. InAdvances in Neural Information Processing Systems 22, pages 646–654, 2009.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets.Neural Computation, 18(7):1527–1554, 2006.

2579

MONTAVON, BRAUN AND M ÜLLER

David H. Hubel and Torsten N. Wiesel. Receptive fields, binocular interaction and functional archi-
tecture in the cat’s visual cortex.The Journal of Physiology, 160:106–154, January 1962.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Univer-
sity of Toronto, 2009.

Kevin J. Lang, Alex H. Waibel, and Geoffrey E. Hinton. A time-delay neural network architecture
for isolated word recognition.Neural Networks, 3(1):23–43, 1990.

Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin. Exploring strategies for
training deep neural networks.Journal of Machine Learning Research, 10:1–40, 2009.

Yann LeCun. Generalization and network design strategies. InConnectionism in Perspective. Else-
vier, 1989. An extended version was published as a technical report of the University of Toronto.

Yann LeCun, Ĺeon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition.Proceedings of the IEEE, 86(1):2278–2324, 1998.

Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, and Klaus-Robert M̈uller.
Fisher discriminant analysis with kernels. InNeural Networks for Signal Processing IX, 1999.
Proceedings of the 1999 IEEE Signal Processing Society Workshop, pages 41–48, 1999.

Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex J. Smola, and Klaus-
Robert M̈uller. Learning discriminative and invariant nonlinear features.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(5):623–628, 2003.

Grégoire Montavon, Mikio Braun, and Klaus-Robert Müller. Layer-wise analysis of deep networks
with Gaussian kernels. InAdvances in Neural Information Processing Systems 23, pages 1678–
1686, 2010.

Klaus-Robert M̈uller, Sebastian Mika, Gunnar Rätsch, Koji Tsuda, and Bernhard Schölkopf. An
introduction to kernel-based learning algorithms.IEEE Transactions on Neural Networks, 12(2):
181–202, 2001.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted Boltzmann machines.
In Proceedings of the 27th International Conference on Machine Learning, pages 807–814, 2010.

Genevieve B. Orr and Klaus-Robert Müller, editors.Neural Networks: Tricks of the Trade, volume
1524 ofLecture Notes in Computer Science, 1998. Springer. This book is an outgrowth of a 1996
NIPS workshop.

Dario L. Ringach. Spatial structure and symmetry of simple-cell receptive fields in macaque primary
visual cortex.The Journal of Neurophysiology, 88(1):455–463, 2002.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors.Nature, 323(6088):533–536, 1986.

Ruslan Salakhutdinov and Geoffrey Hinton. Learning a nonlinear embedding by preserving class
neighbourhood structure. InProceedings of the International Conference on Artificial Intelli-
gence and Statistics, volume 11, 2007.

2580

KERNEL ANALYSIS OF DEEPNETWORKS

Bernhard Scḧolkopf and Alexander J. Smola.Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2002.

Bernhard Scḧolkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as
a kernel eigenvalue problem.Neural Computation, 10(5):1299–1319, 1998.

Bernhard Scḧolkopf, Sebastian Mika, Chris J. C. Burges, Philipp Knirsch, Klaus-Robert Müller,
Gunnar R̈atsch, and Alex J. Smola. Input space versus feature space in kernel-based methods.
IEEE Transactions on Neural Networks, 10(5):1000–1017, 1999.

Thomas Serre, Lior Wolf, and Tomaso Poggio. Object recognition with features inspired by visual
cortex. InProceedings of the 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 2, pages 994–1000, 2005.

Steve Smale, Lorenzo Rosasco, Jack Bouvrie, Andrea Caponnetto, and Tomaso Poggio. Mathemat-
ics of the neural response.Foundations of Computational Mathematics, 10(1):67–91, 2010.

Alex J. Smola, Bernhard Schölkopf, and Klaus-Robert M̈uller. The connection between regulariza-
tion operators and support vector kernels.Neural Networks, 11(4):637–649, 1998.

Jason Weston, Fréd́eric Ratle, and Ronan Collobert. Deep learning via semi-supervised embedding.
In Proceedings of the 25th International Conference on Machine Learning, pages 1168–1175,
2008.

Andre Wibisono, Jake Bouvrie, Lorenzo Rosasco, and Tomaso Poggio. Learning and invariance in
a family of hierarchical kernels. Technical report, Massachusetts Institute of Technology, 2010.

2581

