Journal of Machine Learning Research 12 (2011) 2563-2581 bm8ted 7/10; Revised 2/11; Published 9/11

Kernel Analysis of Deep Networks

Grégoire Montavon GMONTAVON@CS.TU-BERLIN.DE
Mikio L. Braun MIKIO @CS.TU-BERLIN.DE
Klaus-Robert M tller* KLAUS-ROBERT.MUELLER@TU-BERLIN.DE

Machine Learning Group
Technische Unversit Berlin
Franklinstr. 28/29

10587 Berlin, Germany

Editor: Yoshua Bengio

Abstract

When training deep networks it is common knowledge that anieffi and well generalizing rep-
resentation of the problem is formed. In this paper we ainuoigate what makes the emerging
representation successful. We analyze the layer-wiseigonlof the representation in a deep net-
work by building a sequence of deeper and deeper kernelsubatime the mapping performed by
more and more layers of the deep network and measuring h@e thereasingly complex kernels
fit the learning problem. We observe that deep networks ernieateasingly better representations
of the learning problem and that the structure of the deepar&tcontrols how fast the representa-
tion of the task is formed layer after layer.

Keywords: deep networks, kernel principal component analysis, ssptations

1. Introduction

Finding an appropriate representation of data is a central problem in medelaiming. The rep-
resentation should ideally distill the relevant information about a learninglgmoin a compact
manner, such that it becomes possible to learn the data from a small nunexangbles.

Deep networks (e.g., Rumelhart et al., 1986; Hinton et al., 2006) havenghimmise by auto-
matically extracting representations from raw data. Through their deep mydtield architecture,
simpler and more accurate representations of the learning problem cainltbeyer after layer.
Their depth makes possible the creation of abstractions that are importadeintedearn the de-
sired well-generalizing representation. Also, their flexibility offers thespmkity to systematically
and structurally incorporate prior knowledge, for example, by constgithe connectivity of the
deep network (e.g., LeCun, 1989; Lang et al., 1990), by learning multiples tat the same time
(Caruana, 1997; Collobert and Weston, 2008) or by regularizingiliméien with unlabeled samples
(Salakhutdinov and Hinton, 2007; Weston et al., 2008). Such prior letme can significantly im-
prove the generalization ability of deep networks, leading to state-ofrthpediormance on several
complex real-world data sets.

While a considerable amount of work has been dedicated to learning mtfjcoeep archi-
tectures (Orr and Mller, 1998; Hinton et al., 2006; Bengio et al., 2006), leading to simple and
efficient training algorithms, these learning machines still lack of analyticrstatteding. Recently,

x. Also at the Institute for Pure & Applied Mathematics, University of Califari.os Angeles, Los Angeles, CA 90095.

(©2011 GEgoire Montavon, Mikio L. Braun and Klaus-RobertiNer.



MONTAVON, BRAUN AND MULLER

a significant amount of research has focused on improving our theadretiderstanding of deep
networks, in particular, understanding the benefits of unsupervisédiring (Erhan et al., 2010),
understanding what are the main difficulties when training deep netwodtschelle et al., 2009)
and studying the invariance of representations built in deep networksdf€liow et al., 2009).
However, quantifying how good hidden representations are and nimg$iow the representation
evolves layer after layer are still open questions. Overall, deep nedvmoekhus generally assumed
to be powerful and flexible learning machines that are however not wdknstood theoretically
(Bengio, 2009).

In parallel to the development of deep networks, kernel methoddi¢het al., 2001; Sabikopf
and Smola, 2002) offer an elegant framework that decouples learlgagtams from data repre-
sentations. The kernel operatdi, x')—a central concept of the kernel framework—measures the
similarity between two pointg andx’ of the input distribution, yielding an implicit kernel feature
mapx — @(X) (Sclolkopf et al., 1999) that ideally implements all the prior knowledge of the learn-
ing problem contained in the kernel operator. This decoupling betweeningaalgorithms and
data representations opens the door to a whole world of generic learncigmaa and data analy-
sis tools such as support vector machines (Cortes and Vapnik, 1¥9B6g! kliscriminant analysis
(Mika et al., 1999; Baudat and Anouar, 2000; Mika et al., 2003) amddterincipal component
analysis (Sctilkopf et al., 1998) that can be applied independently of the data set.eFhel krame-
work has also been used as an abstraction tool for modeling compleyseahs such as the visual
cortex (Smale et al., 2010).

The goal of this paper is to study in the light of the kernel framework haactyx the represen-
tation is built in a deep network, in particular, how the representation evalv@ge map the input
through more and more layers of the deep network. Here, the kerneddvark is not used as an
effective learning machine, but as an abstraction tool for modeling the mtevork. Our analysis
takes a trained deep netwofkx) = i o---o f1(x) as input, defines a sequence of “deep kernels”

ko(X7XJ) = kRBF(X,X/)7
k]_(X,XJ) = kRBF( fl(X), f]_(Xl)),

kL(X,X,) = kRBF(fLO"’O fl(X), f|_O-~~O f]_(X/))

that subsume the mapping performed by more and more layers of the deepknata outputs how
good the representations yielded by these deeper and deeper kezn®le @uantify for each kernel
how good the representation with respect to the learning problem is by rmepkow much task-
relevant information is contained in the leading principal components of timekiature space.
This method is based on the theoretical results of Braun (2006) and Btaain (2008) which
show that eigenvalues and projections to eigenspaces of the kernel haatgismall approximation
errors, even for already a small number of samples.

This analysis allows us for the first time to observe and quantify the evolutitreaepresen-
tation in deep networks. We use our analysis to test two hypotheses oneteepks:

Hypothesis 1as the input is propagated through more and more layers of the deep net-
work, simpler and more accurate representations of the learning proble obtained.

Indeed, as the input is mapped through more and more layers, abstréetiored by the deep
network are likely to change the perception of whether a task is simple or motexample, in

2564



KERNEL ANALYSIS OF DEEPNETWORKS

input output
@) f @) f @) f
1 2 3
O O O
O O O
=0 =1 =2
Hypothesis 1: Hypothesis 2:
=) S
o T
= : = (1) 2 deep networks with
e | - 2 o various structures

dimensionalityd layerl|

Figure 1: lllustration of our analysis. Curves on the left plot relate the siitplidimensionality)
and accuracy (error) of the representation of the learning probleachtlayer of the deep
network. The dimensionality is measured as the number of kernel prindpglanents
on which the representation is projected. The thick gray arrows indicatiotvard
path of the deep network. Hypothesis 1 states that as deeper and #eapss are
built, simpler and more accurate representations of the learning probleobtaieed.
Hypothesis 2 states that the structure of the deep network controls theevagithion is
formed layer after layer.

the context of image classification, classifying between cat and dog wppleba simpler in the
last layers of the deep network than in the first layers since irrelevatdréof variation such as
occlusion and orientation would be progressively filtered out by the itaigyaof abstractions built
in the deep network.

Hypothesis 2the structure of the deep network controls how fast the representation of
the task is formed layer after layer.

It has been empirically corroborated that carefully regularizing the trgimiocess by means of
specific learning rates, weight penalties, initial weights, shared weighgsioicted connectivity can
greatly improve the generalization of deep networks (LeCun, 1989; r@riMiiller, 1998; Hinton
et al., 2006). We hypothesize that a common aspect of these variodariegfion techniques is
to control the layer-wise evolution of the representation through the detyrk. On the other
hand, a simple unregularized deep network may make inefficient use adgresentational power
of deep networks, distributing the discrimination steps across layers iroptamal way.

These two hypotheses are illustrated in Figure 1. Testing them are, to imiwmQpof signif-
icant importance as they might shed light on the nature of deep learningnathe evay complex
problems are to be solved. This paper completes our conference pégaayon et al., 2010) by
extending the discussion on the interest of analyzing deep networks withkethel framework
and by extending the empirical study to more data sets and larger deepksetwor

2565



MONTAVON, BRAUN AND MULLER

1.1 Related Work

The concept of building kernels imitating the structure of deep architeettoesore simply, build-
ing “deep kernels"—is not new. Cho and Saul (2009) already egptedeep architectures as kernels
in order to solve a convex optimization problem and achieve large marginndisation in a deep
network. This approach differs from our work in the sense that theip dernel is not used as an
analysis tool for trained deep networks but as part of an effectivailgamachine.

The concept was also developed in Smale et al. (2010) where the agitreasrecursive defini-
tion of the neural response as hierarchy of simple kernels operatingopars of the sensory input
and in Wibisono et al. (2010) where a principal component analysis ferpeed on top of these
deep kernels in order to measure invariance properties of deep netwdfkile the last authors
focus mostly on the representation of data in static deep architectures maidelefined features,
we are considering instead trainable deep architectures.

Although not directly using the kernel framework, Goodfellow et al. @0&lso analyze the
layer-wise evolution of the representation in deep networks, showingl#ex networks trained
in an unsupervised fashion build increasing levels of invariance wittect$p several engineered
transformations of the input and to temporal transformations in video data.

2. Theory

Before being able to observe the layer-wise evolution of the represamniratieep networks, we first
need quantify how good a representation is with respect to the learnibgproThe representation

is said to begoodif simple and accurate models of the learning problem can be built on top of it. We
measure it by means of an analysis based on kernel principal compamadgsis that determines
how much of the relevant problem subspace is contained in the leadirg) keincipal components,
more precisely, how well the learning problem can be solved from the lgddimel principal
components. The analysis extends naturally to deep networks by buildeogiarsce of kernels that
subsume the mapping performed by more and more layers of the deep natvdor&peating the
analysis for these deeper and deeper kernels.

2.1 Quantifying How Good a Representation Is

In this section, we are interested in quantifying how good a representatigithisespect to the
learning problem. The representationgsod when it is possible to build models of the learning
problem on top of it that are bogimpleandaccurate

A first technical difficulty is to quantify how simple a model is. Indeed, the motibsimplicity
is highly subjective (Bousquet et al., 2004) and typically depends orhwirior knowledge on the
learning problem is taken for granted. For example, visual recognitits &@® very simple for
humans, but very complex for simple learning algorithms such as a locaidgarachine. In this
example, humans possess a form of prior on how the image should look likewe know how
to classify real images from artificial images) and a machinery to make senseeasily of this
complex data.

We choose to model this prior by isolating it into a kernel operator that mes$uow similar
two data points drawn from the input distribution are. For example, a loealigior could be
modeled with a Gaussian kernel while a more intelligent human-like predictotdsbe modeled
with a more complex kernel encoding translation invariance, rotation injagtc. Then, the

2566



KERNEL ANALYSIS OF DEEPNETWORKS

induced kernel feature map— @(x) encodes implicitly all the prior defined in the kernel with the
advantage that linear models can be built on top of it Baipf et al., 1999).

A second technical difficulty comes from the fact that accuracy and siitypéice not always
measurable in practice: accuracy of a model can only be estimated up t@ia peecision from
the finite data set and estimating the simplicity depends on whether we considexample, the
number of parameters of a model, its entropy or its algorithmic complexity. Fog teasons, we
need to restrict ourselves to a class of models whose simplicity and acocarabg easily measured
and that are expressive enough to solve the learning problem.

We choose to use the kernel principal component analysis (kernel 8€8lkopf et al., 1998)
as a basis for building measurably simple models of the learning problem. Ouodnethsists
of projecting the input distribution on the: first components (in terms of variance) of the kernel
feature space and fitting a linear model on this low-rank representati@ndrmber of components
d controls the simplicity of the model. Wheahis small, the model is simple. Whehis large,
the model is complex. The accuracy can in turn be obtained by measuringetlietipn errore(d)
of a linear predictor on top of the-component kernel representation. We refer to the parardeter
as the dimensionality of the model aa@) as the prediction error obtained with tHecomponent
model. The curve(d) gives a complete picture of how good a representation is with respect to the
learning problem. Figure 2 gives some examples of cuey@sand explains how these curves can
be interpreted.

An advantage of the kernel PCA method is that there exists a theoreticavirark and con-
vergence bounds for the estimation of spectral properties from a limitederushBamples drawn
from the input distribution. In the case of fixed kernels, Braun et al082@how that the projec-
tions to kernel principal components obtained with a finite and typically small pufosamples
n are close with essentially multiplicative errors to those that would be obtained gstmptotic
case wher@ — . This result can be naturally extended to a finite set of kernels. Theserco
gence properties are desirable since the data distribution is unknowmbnd finite number of
observations are available for our analysis. Appendix A gives somiéaudd information on the
convergence of kernel principal components.

A second advantage of the kernel PCA method is the high flexibility that itsofféh respect to
the nature of the learning problem. Kernel PCA is not only independahtdhput representation
due to the kernel embedding, but also independent of the output egpaiien. Indeed, kernel PCA
simply acts as a regularizer on the kernel feature space that limits the complietkitysubsequent
learning machine. Therefore any discriminative model can be used orf thp cegularized rep-
resentation, allowing to treat various classes of problems such as biaasjfication, multi-class
classification or regression within the same framework.

To summarize, the kernel framework combines the four requirements aralysis: (1) the
kernel operator expresses and isolates the subjective notion of simgBgitiie complexity of the
model is controlled by projecting the input distribution on a limited number of kesriacipal
components, (3) convergence bounds allow to effectively measurethieagy of the model and
(4) various models can be built on top of the leading kernel principal coemts in order to express
the various types of learning problems (regression, classification, .. aribatin real applications.

We present below the computation steps required to estimate how good bBK@ndédts associ-
ated feature map+— @(X) are with respect to a learning problegyx,y). Let {(x1,y1),..., (Xn,¥Yn)}
be a data set af points drawn independently frop(x,y). Let X = (Xg,...,%y) andY = (y1,...,Yn)
be the matrices associated to the inputs and labels of the data set. We compemméheniatrixk

2567



MONTAVON, BRAUN AND MULLER

Scenario 1 Scenario 2 Scenario 3
=) =) =)
o o o
o o o
= = =
() () ()
dimensionalityd dimensionalityd dimensionalityd

Figure 2: Effect of converting a representation of the learning prolpéxny) (gray curve) to a
new representation of the learning probleff (x),y) (black curve) where the input
is mapped tof (x). We can distinguish three scenarios: (Scenario 1) the mapping pro-
duces a better representation from which more accurate models are ditairevery
dimensionality—this is the desired behavior of deep networks,—(Scenatie 2hap-
ping concentrates the label information in the leading kernel principal coems but
also loses some information—lossy feature extractors typically fall into thetjoey—
and (Scenario 3) the mapping makes the learning problem more complex—thii e
the result of introducing noise or throwing away label information.

associated to the data set:

K(X1,%1) ... K(X1,%n)
K= : :
K(Xn, 1) ... K(Xn,Xn)

The KPCA componentsy, ..., Uy are obtained by performing an eigendecompositioi afhere

eigenvectorsl, ..., U, have unit length and eigenvaluks ..., A, are sorted by decreasing magni-
tude:

K = (ug]...|un) -diagA1, ..., An) - (U1]...un) .

Let U = (uy|...|ug) andA = diag(A1,...,)Aq) be a d-dimensional approximation of the eigende-
composition. The space spanned by this basis approximates the spacedspgirthed leading
components of the infinite-dimensional kernel feature space associatssl poobability distribu-
tion p(x). In this space, the learning problem can be solved by a standard linlegistic regression
model. For regression problems, we fit a linear m@@fehat maps the leading components to the
output:

B*:argmirM]UB—YHi =U'y. (1)

For classification problems, instead of fitting the model directly on the outpet§i the model on
the log-likelihood of classes

B* = argmin _usoftmax 0By, (2)

where softmafe) = €’/ ;€4 converts a vectoz into a probability distribution over classes. Note
that the optimization criterion only consists of the empirical risk minimization term aricla

2568



KERNEL ANALYSIS OF DEEPNETWORKS

regularization term. Indeed, the regularization is implicitly carried out by tbgption on thed
leading principal components. The problem is therefore well-posed ongna < n. Once the
modelB* is computed, the estimated outputs can be calculated as

Y =Up*
for regression problems and as
gi =argmax[UB*);) 1<i<n

for classification problems. The training error is estimated as
od) = 13 19—y ©
= - i—Yi
n i;
for regression problems and as

e(d) = ﬁ_z 149 @

for classification problems. The test error can be obtained by crdsstirag the linear model on
random partitions ofxi,...,Xn). Training and test error can be used as approximation bounds for
the asymptotic case — o« where the modef* would minimize the error on the real distribution
p(x,y). In the next sections, the upper and lower approximation bounds gectaely depicted as
solid and dotted lines in Figure 5, 6 and 7.

2.2 Application to Deep Networks

In this section, we describe how the analysis of representations présartge can be used to
measure the layer-wise forming of the representation in deep network$.()te= f_ o---o f1(x)
be a trained deep network biayers. Our analysis consists of defining a sequence of “deep Kernels

kO(X,X/) = kRBF(X,X/),
k]_(X,X/) = kRBF( fl(X), fl(X/)),

kL(X,X/) = kRB|:<f|_O'--O fl(X), fLO-'-O f]_(X/))

that subsume the mapping performed by more and more layers of the deepknetd repeating for
each kernel the analysis presented in Section 2.1. Algorithm 1 summarizesitheomputational
steps of our analysis. The kerrieigr is the standard Gaussian kernel defined@s:(x,x') =
exp(—||x—X|[?/202).

The main prior encoded by Gaussian kernels is the smoothness of the tas&resét in the
input space (Smola et al., 1998). Gaussian kernels are appropriatetwt@eighboring samples
(in terms of Euclidean distance) are likely to have the same class. It remaies tww the con-
cept of simplicity encoded by the Gaussian kernel can be understowdtifi® perspective of the
induced prediction model. Figure 3 shows that the simplicity of the model canldteddo the
number of allowed local variations in the input space. WHencreases, more variations of the

2569



MONTAVON, BRAUN AND MULLER

Algorithm 1: Main computational steps of our layer-wise analysis of deep networks. At
every layer of the deep network, the same analysis is performed, rejuarliat of curves
e(d) capturing the evolution of the representation in the deep network.

InpUt . Adata Set{ (Xl7yl)7 EEE) (XnaYn)}
A deep networkf : x+— fo---o f1(x)
Output: The curves(d) for each layet
forl € {1,...,L} do
foroezdo
k(x,X') = krpr(o)(fio---o fi(x), fo---o f1 (X))
compute the kernel matrik associated t&(x,x') and(xy,...,Xn)
do the eigendecompositidi= (uy|...|up) - diagA1,...,An) - (Ug|...|un) "
forde {0,1,2,...} do
build a low rank approximation of the inpUt < (uy) ... |ug)
fit the modelp* that predictgy, ..., yn) fromU (cf. Equation 1 and 2)
compute the errog(d, o) of the modelB* (cf. Equation 3 and 4)

e(d) = minge(d,0)
| plot the curvee(d)

Figure 3: Interpretation of a prediction model based on the leading comtsonEthe Gaussian
kernel on a toy data set. As we add more and more leading components eftieg khe
model becomes more flexible, creating a better decision boundary. Noteithdbur
leading components, all the samples are already perfectly classified.

learning problem can be encoded and the prediction improves. Figu@avé shat by making the
problem increasingly complex—for example, by distorting it—the number of déines required
to approach the error of the optimal classifier becomes larger and larger.

The notion of simplicity encoded by the Gaussian kernel is meaningful fad@nmange of learn-
ing problems, however, it does not explain how simple more intelligent systernsipe problems
such as vision and speech. Indeed, domain-specific regularities suctaaiance to translation,
scale or occlusion can not be modeled efficiently by a Gaussian kernakeGoently, observing
the learning problem become simpler as we build deeper and deeper Keghdilghts the capacity
of deep networks to model the regularities of the input distribution.

A last aspect that has not been discussed yet is how to choose theacaieeteio of the
Gaussian kernel. We decide to choose the paransetieat minimizes the errog(d), leading to a
different scale for each dimensionality. The rationale for taking a difteseale for eacH is that the

2570



KERNEL ANALYSIS OF DEEPNETWORKS

05— 05— 05
0.4 1 0.4 1 0.4 f
S o3| 1 Zos} S 03}
- - et
€ 02f 1 go2f 02t
g ) by
011 1 01t g 0.1}
0.0 0.0 0.0

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
dimensionality d dimensionality d dimensionality d

Figure 4: On the top, three increasingly complex representations of & luliaasification problem.
On the bottom, the curvex(d) quantifying how good the representation of the learn-
ing problem is from the perspective of the Gaussian kernel. The origpradistorted
learning problem can be solved perfectly with only one kernel principalponent. As
the input distribution gets distorted more and more, the number of leading cemigon
required to solve the learning problem increases, hinting that Gaussiagikéecome
progressively less suited.

optimal scale parameter typically shrinks as more leading components of thalispibution are
observed. This parameter selection method also makes our analysis sgasimscale invariance
is desirable since the representation at a given layer of the deep natamtike different scales
due to the number of nodes contained in each layer or to the multiple types lofesoiiies that
can be implemented in deep networks.

3. Methodology

In Section 2, we presented the theory and algorithms required to test olnypatheses on the
evolution of representations in deep networks. To summarize, the main idea ahalysis is to
build a set of kernels that subsume the mapping performed at each laerd#fep network and, for
each kernel, compute how good the representation is by measuring howeading components
of the kernel feature space are necessary in order to model the paroisiem well. It remains to
select a set of deep networks and data sets in order to test the hygdireselated in Section 1.

We consider the MNIST-10K and CIFAR-bw-10K data sets. These twa slets of 10000
samples each are a trimmed version of the larger MNIST handwritten digits E#dRRGmage
classification data sets (LeCun et al., 1998; Krizhevsky, 2009). ThéSWHIOK data set is a 10-
class classification data set that consists of 10000 grayscale images @828ixels representing
handwritten digits and their associated label (a number between 0 andeOLIFAR-bw-10K data
set is a 10-class classification data set that consists of 10000 graiymegies of 32 32 pixels
representing different objects and their associated label (airplat@mabile, bird, cat, deer, dog,
frog, horse, ship and truck).

2571



MONTAVON, BRAUN AND MULLER

State-of-the-art performance on these data sets is achieved with aiieisemade of several
layers, suggesting that these data sets are well suited to test the firdidgipstated earlier in the
paper, that is, the progressive simplification of the learning problenogeed by deep networks.
The second hypothesis on the effect of the structure of deep netaankise tested by taking a set
of structured and unstructured deep networks and observing howytBieviése evolution of the
representation differs between these deep networks. We consider aysulpiaceptron (MLP), a
pretrained multilayer perceptron (PMLP) and a convolutional neuralar&t(CNN).

The multilayer perceptron (MLP, Rumelhart et al., 1986) is built by alternditiegr transfor-
mations and nonlinearities applied element-wise to the output of the linear tnawagions. On the
MNIST data set, we apply successively the functions

fl(X) = sigm(wl - X+ bl),
fz(X) = sigm(wz - X4+ bz),
f3(X) = softmaxv- x)

to the input where weight matriceg , w»,v and biase$;,b, are learned from data and where the
size of hidden layers is set to 1600. The sigmoid and softmax functionséined as sigrx) =
e‘/(1+¢€") and softmaxx) = €/ 5 €9. On the CIFAR data set, the sigmoid nonlinearity is replaced
by the rectifying function defined as recti%) = max0,x) and the size of hidden layers is set to
3600. Since it has been observed that overparameterizing deep keyesrerally improves the
generalization error, the size of layers is chosen large with the only eimstf computational
cost. The MLP is mostly unstructured as any type of solution can emergelirandom weights
initialization.

The pretrained multilayer perceptron (PMLP, Hinton et al., 2006; Bengib, ,€2006) referred
in this paper as PMLP is a multilayer perceptron that has been pretraingdaudeep belief net-
work (DBN, Hinton et al., 2006) and then fine-tuned on the discriminatiie tise pretraining
procedure aims to build a deep generative model of the input that caredess starting point to
learn the supervised task. In order to use the same architecture asNticFhauring the fine-tuning
procedure, we set the visible and hidden units of the DBN to be binary dd&T data set and
respectively Gaussian and rectified linear (Nair and Hinton, 2010) o€ tR&R data set. Here,
the structure of the deep network is implicitly given by the weights initializationesgiosnt to the
unsupervised pretraining.

The convolutional neural network (CNN, LeCun et al., 1998) is a dedtwark inspired by
the structure of the primary visual cortex (Hubel and Wiesel, 1962). dtqular convolutional
structure exploits the spatial invariance of images in order to learn wellglienieg solutions from
few labeled samples. It is built by alternating (1) convolutional layetsw ® x+ b transforming
a set of input features magsq, Xz, ... } into a set of output features magg,y», ...} such that
Yi = ¥ jWij xX; +bj and wheren;j are convolution kernels, (2) detection layers where a nonlinearity
is applied element-wise to the output of the convolutions in order to extract iemdeatures and
(3) pooling layers subsampling each feature map by a given factor. OMMIET data set, we
apply successively the functions

f1(x) = pooling(sigm(w; ® X+ b)),
f2(x) = pooling(sigm(w, ® X+ b)),
f3(x) = softmaxv- x)

2572



KERNEL ANALYSIS OF DEEPNETWORKS

to the input where weight tensovg , w,, weight matrixv and biase®;, b, are learned from data,
convolution kernels have sizex55, pooling layers downsample the input by a factor two and the
number of feature maps in each layer is set to 100. On the CIFAR data s&igitihad nonlinearity

is replaced by the rectifying function described above.

The deep networks described above are trained on a supervised ithskaskpropagation
(Rumelhart et al., 1986) and stochastic gradient descent (Bottou) $8@ilminibatches of size
20. The last layer has a L2 weight penalty. The softmax module (Bish@6,) Itimizes the deep
network for maximum likelihood. Weights of each layeare initialized so that the output is of
constant magnitude, thus falling into the correct regime of the subsecomdiviearity. These deep
networks are analyzed in two different settings:

e Supervised learningthe deep network is trained in a supervised fashion on the target task
(digit classification for the MNIST data set and image classification for tiA\RIdata set).

e Transfer learning:the deep network is trained in a supervised fashion on a binary classi-
fication task that consists of determining whether the sample has been flipgedy or
not.

These settings allow us to measure how the structure contained in deepksaffects different
aspects of learning such as the layer-wise organization of the learheidis@r the transferability
of features from one task to another.

3.1 Experimental Setup

We train the deep networks on the 10000 samples of the data set until a traimngf 25% is
reached. Such stopping criterion ensures that the subsequent sohdima constant complexity
and that the limited capacity of the deep network has no side effect on tictus&rof the solution.
As a sanity check, each architecture has been trained with the regujesteaping criterion on the
full MNIST and CIFAR-bw data sets, leading to test errors that are owjith results published
in the literature for similar architectureMIST-MLP: 1.6%, MNIST-PMLP: 1.3%, MNIST-CNN:
0.9%, CIFAR-bw-MLP: 48.1%, CIFAR-bw-PMLP; 46.8%, CIFAR-bw-CNN: 32.4%).

In our analysis, we estimate the kernel principal components with the 1@00ples used for
training the deep network. Therefore, the empirical estimate ofl ieading kernel principal com-
ponents takes the form af 10000-dimensional vectors, or similarly, of a data set of 10600
dimensional mapped samples. A lower boune(af) is obtained by fitting and evaluating the linear
model with the 10000 mapped samples. An upper boune{df is obtained by two-fold cross-
validation (5000 samples to fit the model and the 5000 remaining samples totevgluhe set of
candidate kernel widths is composed of the, @.5 and 09 quantiles of the distribution of distances
between pairs of points. It turns out that the effect of the kernel ssakther small and that no
further scale parameters are required. The layers of interest argtitadata [ = 0) and the output
of each layerl(=1,2,...).

4. Results

In this section, we present the results of our analysis on the evolution oépinesentation in deep
networks. Section 4.1 discusses the empirical observation that deepketvained on the super-
vised task produce gradually simpler and more accurate representdtitireslearning problem.

2573



MONTAVON, BRAUN AND MULLER

Effect of the learning rate Effect of the capacity
025} = 0.02 1 025} 400 HU
_ 020} =004 1 _o20f J00HU
=) _ = 1600 HU
S =008 = —2500 HU
1015} — 7y =0.16 [| 015} H
= =
= 010 1 =olof
<) S
& £
®0.05f 1 ® 0.05f
0.00 b__. ‘ ‘ L 0.00 b, ‘ ‘ ‘
0 1 2 out 0 1 2 out
layer ! layer !
Effect of the training time Effect of the weight penalty
07 it=100 || 0251 A=01
| it = 1000 | A =0.01
g 00 it = 10000 S —A = 0.001
I 0151 *—it = 100000 || I 0151 *— A =0.0001 ||
= =
= 010 ] = 010
E £
v 005 : v 005
0.00 b__. ‘ ‘ A 0.00 b, ‘ ‘ ‘
0 1 2 out 0 1 2 out
layer [ layer [

Figure 5: Effect of the learning rate, of the capacity, of the training timecdie weight penalty
on the layer-wise evolution of the representation built by an MLP on the NINIE
data set. Solid and dotted lines respectively represent the upper andalggveximation
bounds of the analysis. As the learning rate increases, the solution tentxkéouse
primarily of the first layers of the deep network. The same effect is ebdavhen we
reduce the capacity, increase the weight penalty or increase the training time

Then, Section 4.2 compares side-by-side the evolution of the represaritatidferent deep net-
works and discusses the empirical observation that the structure of épendévork controls the
layer-wise evolution of the representation in the deep network.

4.1 Better Representations are Built Layer After Layer

It is still an open question how the complex and multimodal form of intelligencerobd in liv-
ing organisms emerges from randomly disposed and locally scoped seukdechine learning
researchers similarly pointed out that emergent properties also occtificiad neural networks
when trained with simple local algorithms such as Hebbian learning or bamkgation, without
having to explicitly define the role of each individual neuron. Also, thellitglio simultaneously
specialize on specific tasks in output nodes and grow new functionalitiestidden nodes hints
that information contained in the underlying distribution of sensed data sheuldbiquitous, yet
parsimonious where discrimination takes place.

It can be hypothesized that the organization of mapped data distributioris thighneural net-
work forms a continuum between general purpose distributions in the miéldte metwork and

2574



KERNEL ANALYSIS OF DEEPNETWORKS

MNIST-10K CIFAR-bw-10K
10F ‘ i LOF ‘
c
o
a 0.75
0~ =
S = =
Q A% Y
E_ § 0.5 § 0.8
) z by
B 0.25
E
= 00k ‘ . 0.6 & ‘ .
0 5 10 0 5 10
dimensionality d dimensionality d

Figure 6: Layer-wise evolution of the error as a function of the numbdiménsions when trained
on the target task. Solid and dotted lines respectively represent the apgdower
approximation bounds of the analysis. As we move from the first to the lastsathe
class information concentrates in the leading components of the mapped té#tatits.
This observation confirms the first hypothesis depicted in Figure 1.

MNIST-10K CIFAR-bw-10K
o 0.25f —oMLD 10T ey
c | =aPMLP || | =aPMLP ||
% = 0.20 +4CNN = 0.8 +4CNN
Al i

Q II0.15 1 06 1
3 = =
9 S 010f 1 S 04f 1
- &
L 2005} 1 v o2} 1
>
o 0.00F ‘ ‘ . 0.0k :

0 1 2 out 0 1 2 out

layer ! layer !
MNIST-10K CIFAR-bw-10K
025} ~eMLP | 081 eeMLP

o s-aPMLP =aPMLP
c = +~—aCNN = ~4CNN
c — —
g I
L =02¢ 1 Z07¢ 1
— © <
- ‘é
c 2 3
5]
= 0.15 | ] 06+ i

0 1 2 out 0 1 2 out

layer [ layer [

Figure 7: Layer-wise evolution of the error obtained for each trainingguiure fod = 10. Solid
and dotted lines respectively represent the upper and lower approxinbatimds of the
analysis. We observe that the particular structure of the CNN and of tHePRidn-
trols the layer-wise evolution of the representation. This confirms the ddogothesis
depicted in Figure 1.

2575



MONTAVON, BRAUN AND MULLER

task specific distributions at its discriminative edges. Reformulating this hgpistlin the case
of a simple multilayer feedforward network trained on image classification, tisededistribution
would evolve progressively from a distribution representing pixels waldistribution representing
classes well as the distribution is mapped to more and more layers.

We can observe in Figure 6 that this hypothesis holds within the span okperimental setup
and that simultaneously lower-dimensional and more accurate models of kheatabe obtained
layer after layer. This means that the task-relevant information, initiallyasipoger a large number
of principal components, converges progressively towards the lgadimponents of the mapped
data distribution.

This layer-wise preservation of the statistical tractability of the learninglenoland its progres-
sive simplification is a theoretical motivation for using these deep networkswolar way (Caru-
ana, 1997; Weston et al., 2008; Collobert and Weston, 2008): additrmtules can be plugged on
top of intermediate representations and still make sense of it.

4.2 Role of the Structure of Deep Networks

Training deep networks is a complex nonconvex learning problem with neaspnable solutions.
As it can be seen in Figure 5, even simple hyperparameters such as thiadeate or the L2
weight penalty can greatly influence the layer-wise structure of the solufading to the fact
that those are only a fraction of the hyperparameters that needs to bidrnoreer to achieve high
generalization (e.g., importance of reconstruction error, orthogonalltidden representations), it
can therefore be tricky—if not, impossible—to find an appropriate combinafibgperparameters
that leads to a well-structured solution for the learning problem.

On the other hand, the unsupervised pretraining proposed by Hintbri28@6) finds a network
of latent variables that better represents the underlying distribution. Assequence, the structure
of the pretrained deep network already contains a certain part of theoso(lLarochelle et al.,
2009) and possibly makes better use of each layer. Similarly, in the cotitexoential data, we
can postulate that dedicating the early layers of the architecture to a cbhomalypreprocessing is
also a more effective (LeCun, 1989; Serre et al., 2005) and biologigkiysible (Ringach, 2002)
way of solving the learning problem. Both approaches have shown eniigiticaroduce better
generalization (LeCun, 1989; Salakhutdinov and Hinton, 2007).

We corroborate this argument by comparing in Figure 7 the layer-wise texolof the repre-
sentation for different deep networks: a multilayer perceptron (MLRye#rained MLP (PMLP)
and a convolutional neural network (CNN). On one side, the MLP doeembed any precondi-
tioning on the learning problem. On the other side, the PMLP and the CNN erabpéctively a
generative model of the input and a spatial invariance prior on the pnoblge can think of the
mechanisms implemented by the PMLP and the CNN as complex regularizers ofutiensof the
learning problem.

Figure 7 (top) shows the evolution of the representation with respect todhsirlg problem
when the deep network has been trained on the target task. We obsarveettevolution of the
representation of the MLP follows a different trend than the representhtiiit by the PMLP and
the CNN. The MLP tends to solve the MNIST problem greedily, discriminatinigfitee first layers
while the PMLP and the CNN postpone the discrimination to the last layers. Orttibeltand,
on the CIFAR data set, the MLP doesn’t discriminate until the last layer whildPtieP and
the CNN spread the discrimination to more layers. Figure 7 (bottom) shows dhgien of the

2576



KERNEL ANALYSIS OF DEEPNETWORKS

representation with respect to the learning problem when the deep ndta®itleen trained on the
transfer task. On both data sets, the representation built by the MLP dbisprove as the deep
network specializes on the transfer task while the PMLP and the CNN still builtkifirst layers
a better representation of the learning problem, corroborating the effdee PMLP and the CNN
on structure of the solution.

These observations suggest that the complex regularizers implementedRiMitie and the
CNN have the effect of facilitating the construction of a structured solutiontrolling the rate
of discrimination at every layer. Erhan et al. (2010) already desctibedMLP as a regularized
version of the MLP and showed how it improves the generalization ability ep aetworks. Our
analysis completes the study, providing a layer-wise perspective onféut afd the role of reg-
ularization in deep networks and a unified view on the very differentlaggers implemented by
the PMLP and the CNN.

5. Conclusion and Discussion

We introduce a method for analyzing deep networks that combines kerti@baseand descriptive
statistics in order to quantify the layer-wise evolution of the representatioadp detworks. Our
method abstracts deep networks as a sequence of deeper and eéeeglsrdubsuming the mapping
performed by more and more layers. The kernel framework exprélsse®lation between the
representation built in the deep network and the learning problem.

Our analysis is able to detect and quantify the progressive and layetraissformation of the
input performed by the deep network. In particular, we find that pfgpeined deep networks
progressively simplify the statistics of complex data distributions, building in tasirlayers rep-
resentations that are both simple and accurate.

The analysis also corroborates the hypothesis that a suitable struatute fdeep network
allows to make efficient use of its representational power by controllingatieeof discrimination at
each layer of the deep network. This observation provides a new uwnifiecon the role and effect
of regularizers in deep networks.

Conceptually, our analysis is not only restricted to artificial neural nédsvovWe believe that
performing a similar analysis on different levels of processing in a biolbgiearal architecture
may reveal interesting parallels between artificial and biological neustss.

Appendix A. More Background Information on kPCA Convergence

In this section, we briefly give some additional results on the convergeoperties of kernel PCA.
For the full account, please refer to Braun (2006) and Braun et@08(2

The rationale behind using the number of KPCA components as an estimatelwh#éresional-
ity rather than simpler metrics such as counting the number of support vet@tsained SVM is
that the first method provides an estimate of the dimensionality that is provatigtrim the number
of samples used in the analysis. This interesting fact was derived fromdarfental result on the
approximation error of scalar products with eigenvectors of the kerntehweth respect to their
asymptotic counterparts.

More concretely, ik, ..., X, € X are points drawn i.i.d. from some probability distributieg,
we define the kernel matrik of a Mercer kernek by

Kij = k(xi,X;) for1<i,j<n.

2577



MONTAVON, BRAUN AND MULLER

As n — oo, the eigenvalues and eigenvector&atonverge to those of the integral operator

Tk(f):/xexk(.,x)f(x)dPX

in an appropriate measure. In particular, it has been shown by Br@06)that the approximation
error between thigh eigenvalu@,; of K (in descending order) and corresponding eigenvialoTy
scales essentially multiplicatively, that is,

‘}\i — |i| < C(n)h —|—8(h),

whereC(n) — 0, €(n) — 0 asn — o, and even for smal, £(n) is small.

So, even for a small number of points, the structure of the principal coemiein feature space
are very similar compared to the asymptotic case. Moreover, as the nelxistesvs, the same also
holds for the location of the sample vector of a function with respect to thegigees.

As shown by Braun et al. (2008), for a bounded functgiomhich lies in the range ofi (that is,
there exists & such thafli(h) = g), one can bound the scalar products between the sample vector
G=(9(x1),---,9(Xn)) and the eigenvectors (normalized to unit length) ok by

W6l <AC(n) +e(m).
whereg(n) — 0 asn — . Note that the scalar products with the eigenfunctipnsf T also decay
asO(l;), which are again linked t&; by the results discussed above.

In essence, this result shows that the scalar products between anplds@mooth function
decays as quickly as the eigenvalues of the kernel matrix, such that trenatfon about is
contained in the leading kPCA components only. Here, smoothness meagid¢lan the range of
Ty such that it is a smoothed version of some functi@fter convolution with the kernel functida
On the other hand, any noise which is independent oktieeuniformly distributed over all kPCA
components. In summary, if one plots the produgt¥ with the label vectol = (yi,...,yn), One
obtains a decomposition of the label informatiomith respect to the kPCA components. From the
above considerations, it follows that the spectrum will typically consist ftdta'noise bed” from
which the relevant information in the leading components can clearly be distiregli This result
is illustrated in Figure 8 for a small toy example.

References

Gaston Baudat and Fatiha Anouar. Generalized discriminant analys aisiarnel approach.
Neural Computation12(10):2385—-2404, 2000.

Yoshua Bengio. Learning deep architectures forAdundations and Trends in Machine Learnjng
2(1):1-127, 20009.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelleedrlayer-wise training
of deep networks. Iddvances in Neural Information Processing Systemspages 153-160,
2006.

Christopher M. BishopNeural Networks for Pattern Recognitio@xford University Press, 1996.

2578



KERNEL ANALYSIS OF DEEPNETWORKS

Y|

Idimensionality
:of the problem

X b T noise bed

Figure 8: lllustration of the concept of relevant dimensions in kernelifesspaces (Braun et al.,
2008). On the left, samples drawn from a toy distributjax,y). On the right, label
contributions of each KPCA componant . .., u,. It can be observed that a small number
of leading principal components containing relevant label information emfesg a flat
noise bed.

Léon Bottou. Stochastic gradient learning in neural networksProteedings of Neuroiles
1991.

Olivier Bousquet, Siphane Boucheron, anda@or Lugosi. Introduction to statistical learning the-
ory. In Olivier Bousquet, Ulrike von Luxburg, and GunnaatBch, editorsAdvanced Lectures
on Machine Learningvolume 3176, pages 169—-207. Springer, 2004.

Mikio L. Braun. Accurate bounds for the eigenvalues of the kernel mattournal of Machine
Learning Researchv:2303—-2328, 2006.

Mikio L. Braun, Joachim Buhmann, and Klaus-RoberilMr. On relevant dimensions in kernel
feature spaceslournal of Machine Learning Resear@®11875-1908, 2008.

Rich Caruana. Multitask learningachine Learning28(1):41-75, 1997.

Youngmin Cho and Lawrence Saul. Kernel methods for deep learningAdVances in Neural
Information Processing Systems, pages 342—-350, 2009.

Ronan Collobert and Jason Weston. A unified architecture for naturgliéage processing: deep
neural networks with multitask learning. Rroceedings of the 25th International Conference on
Machine Learningpages 160-167, 2008.

Corinna Cortes and Vladimir Vapnik. Support-vector netwoMachine Learning20(3):273-297,
1995.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Mankagascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learnilmnal of Machine
Learning Research. 1:625-660, 2010.

lan Goodfellow, Quoc Le, Andrew Saxe, and Andrew Y. Ng. Measuivariances in deep net-
works. InAdvances in Neural Information Processing Systempgages 646—654, 2009.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast legraigorithm for deep belief
nets.Neural Computationl8(7):1527-1554, 2006.

2579



MONTAVON, BRAUN AND MULLER

David H. Hubel and Torsten N. Wiesel. Receptive fields, binocular intieraand functional archi-
tecture in the cat’s visual corteXhe Journal of Physiology60:106—154, January 1962.

Alex Krizhevsky. Learning multiple layers of features from tiny images.hhézal report, Univer-
sity of Toronto, 2009.

Kevin J. Lang, Alex H. Waibel, and Geoffrey E. Hinton. A time-delay nénsawork architecture
for isolated word recognitiorNeural Networks3(1):23—-43, 1990.

Hugo Larochelle, Yoshua Bengicg@dme Louradour, and Pascal Lamblin. Exploring strategies for
training deep neural networkdournal of Machine Learning Researct0:1-40, 2009.

Yann LeCun. Generalization and network design strategieSohmectionism in PerspectivElse-
vier, 1989. An extended version was published as a technical refgbe tniversity of Toronto.

Yann LeCun, leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-baseditegapplied
to document recognitiorProceedings of the IEEB6(1):2278—-2324, 1998.

Sebastian Mika, Gunnard&gsch, Jason Weston, Bernhard 8kbpf, and Klaus-Robert Mler.
Fisher discriminant analysis with kernels. Neural Networks for Signal Processing 1X, 1999.
Proceedings of the 1999 IEEE Signal Processing Society Workphgps 41-48, 1999.

Sebastian Mika, Gunnard®sch, Jason Weston, Bernhard 8kbpf, Alex J. Smola, and Klaus-
Robert Miller. Learning discriminative and invariant nonlinear featune£E Transactions on
Pattern Analysis and Machine Intelligen@b(5):623-628, 2003.

Grégoire Montavon, Mikio Braun, and Klaus-RobertiNér. Layer-wise analysis of deep networks
with Gaussian kernels. IAdvances in Neural Information Processing System$ages 1678—
1686, 2010.

Klaus-Robert Miller, Sebastian Mika, Gunnarai&sch, Koji Tsuda, and Bernhard Stkopf. An
introduction to kernel-based learning algorithifSEE Transactions on Neural Networki2(2):
181-202, 2001.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restrictetlZBnann machines.
In Proceedings of the 27th International Conference on Machine Leaypemges 807-814, 2010.

Genevieve B. Orr and Klaus-Robertiiler, editors.Neural Networks: Tricks of the Trageolume
1524 ofLecture Notes in Computer Sciend®98. Springer. This book is an outgrowth of a 1996
NIPS workshop.

Dario L. Ringach. Spatial structure and symmetry of simple-cell recepéigsfin macaque primary
visual cortex.The Journal of Neurophysiolog88(1):455-463, 2002.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learnimgesentations by
back-propagating errordlature 323(6088):533-536, 1986.

Ruslan Salakhutdinov and Geoffrey Hinton. Learning a nonlinear enmgdhy preserving class
neighbourhood structure. IRAroceedings of the International Conference on Atrtificial Intelli-
gence and Statisticsolume 11, 2007.

2580



KERNEL ANALYSIS OF DEEPNETWORKS

Bernhard Scblkopf and Alexander J. Smola_earning with Kernels: Support Vector Machines,
Regularization, Optimization, and BeyondIT Press, 2002.

Bernhard Scblkopf, Alexander Smola, and Klaus-RobertiNer. Nonlinear component analysis as
a kernel eigenvalue problemleural Computation10(5):1299-1319, 1998.

Bernhard Sctilkopf, Sebastian Mika, Chris J. C. Burges, Philipp Knirsch, KlauseRioMuller,
Gunnar Ritsch, and Alex J. Smola. Input space versus feature space in kaged-methods.
IEEE Transactions on Neural Network0(5):1000-1017, 1999.

Thomas Serre, Lior Wolf, and Tomaso Poggio. Object recognition with fesiaspired by visual
cortex. InProceedings of the 2005 IEEE Computer Society Conference on Carvigite and
Pattern Recognitionvolume 2, pages 994-1000, 2005.

Steve Smale, Lorenzo Rosasco, Jack Bouvrie, Andrea Caponnetfboaraso Poggio. Mathemat-
ics of the neural responsBoundations of Computational Mathematid®(1):67-91, 2010.

Alex J. Smola, Bernhard Soétkopf, and Klaus-Robert Mler. The connection between regulariza-
tion operators and support vector kernégural Networks11(4):637—649, 1998.

Jason Weston, Etéric Ratle, and Ronan Collobert. Deep learning via semi-supervised embedd
In Proceedings of the 25th International Conference on Machine Learmages 1168-1175,
2008.

Andre Wibisono, Jake Bouvrie, Lorenzo Rosasco, and Tomaso Pdgggoning and invariance in
a family of hierarchical kernels. Technical report, MassachusettitLitesof Technology, 2010.

2581



