Journal of Machine Learning Research 12 (2011) 593-625 Steah6/10; Revised 9/10; Published 2/11

Regression on Fixed-Rank Positive Semidefinite Matrices:
A Riemannian Approach

Gilles Meyer G.MEYER@ULG.AC.BE
Department of Electrical Engineering and Computer Science

University of Liege

B-4000 Liége, Belgium

Silvere Bonnabel SILVERE.BONNABEL@MINES-PARISTECHFR
Robotics center

Mines ParisTech

Boulevard Saint-Michel, 60, 75272 Paris, France

Rodolphe Sepulchre R.SEPULCHREQULG.AC.BE
Department of Electrical Engineering and Computer Science

University of Liege

B-4000 Liege, Belgium

Editor: Inderjit Dhillon

Abstract

The paper addresses the problem of learning a regressioerl machmeterized by a fixed-rank
positive semidefinite matrix. The focus is on the nonlineature of the search space and on
scalability to high-dimensional problems. The mathenatitevelopments rely on the theory of
gradient descent algorithms adapted to the Riemannian eteptinat underlies the set of fixed-
rank positive semidefinite matrices. In contrast with poesgi contributions in the literature, no
restrictions are imposed on the range space of the learngtkniéhe resulting algorithms maintain
a linear complexity in the problem size and enjoy importawariance properties. We apply the
proposed algorithms to the problem of learning a distanoetfon parameterized by a positive
semidefinite matrix. Good performance is observed on daksenchmarks.

Keywords: linear regression, positive semidefinite matrices, lonkr@pproximation, Riemannian
geometry, gradient-based learning

1. Introduction

A fundamental problem of machine learning is the learning of a distance &etdega samples.
When the distance can be written as a quadratic form (either in the data(8ftalanobis dis-
tance) or in a kernel feature space (kernel distance)), the learriidem is a regression problem
on the set of positive definite matrices. The regression problem is turt@thignminimization of
the prediction error, leading to an optimization framework and gradien@sgerithms.

The present paper focuses on the nonlinear nature of the seaoeh 3pe classical framework
of gradient-based learning can be generalized provided that the remdiearch space is equipped
with a proper Riemannian geometry. Adopting this general framework, wigmi@ovel learning
algorithms on the space of fixed-rank positive semidefinite matrices, debptedr,d), whered
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is the dimension of the matrix, ands its rank. Learning a parametric model3$a(r,d) amounts
to jointly learn ar-dimensional subspace and a quadratic distance in this subspace.

The framework is motivated bipw-rank learningin large-scale applications. If the data space
is of dimensiond, the goal is to maintain a linear computational compleiy). In contrast to
the classical approach of first reducing the dimension of the data antetiraimg a distance in the
reduced space, there is an obvious conceptual advantage to p#réotwo tasks simultaneously. If
this objective can be achieved without increasing the numerical cost afghathm, the advantage
becomes also practical.

Our approach makes use of two quotient geometries of th®,$etd) that have been recently
studied by Journée et al. (2010) and Bonnabel and Sepulchre)(208Ring use of a general theory
of line-search algorithms in quotient matrix spaces (Absil et al., 2008) biadroconcrete gradient
updates that maintain the rank and the positivity of the learned model at eeatipite This is
because the update is intrinsically constrained to belong to the nonlineah sgarce, in contrast
to early learning algorithms that neglect the non linear nature of the sgaach 81 the update and
impose the constraints a posteriori (Xing et al., 2002; Globerson andiR®@95).

Not surprisingly, our approach has close connections with a numberceht contributions
on learning algorithms. Learning problems over nonlinear matrix spacesiethe learning of
subspaces (Crammer, 2006; Warmuth, 2007), rotation matrices (Ai@08),2and positive defi-
nite matrices (Tsuda et al., 2005). The space of (full-rank) positivaiteefinatricesS, (d) is of
particular interest since it coincides with our set of interest in the particalsaer = d.

The use of Bregman divergences and alternating projection has bssmntlyenvestigated for
learning inS, (d). Tsuda et al. (2005) propose to use tlen Neumanmivergence, resulting in
a generalization of the well-known AdaBoost algorithm (Schapire andegiri®99) to positive
definite matrices. The use of the so-callamfjDetdivergence has also been investigated by Davis
et al. (2007) in the context of Mahalanobis distance learning.

More recently, algorithmic work has focused on scalability in terms of dimeastgrand data
set size. A natural extension of the previous work on positive definiteiceatis thus to consider
low-rank positive semidefinite matrices. Indeed, whereas algorithms loas&dl-rank matrices
scale ag0(d®) and requireO(d?) storage units, algorithms based on low-rank matrices scale as
O(dr?) and requireD(dr) storage units (Fine et al., 2001; Bach and Jordan, 2005). This is a sig-
nificant complexity reduction as the approximation rank typically very small compared to the
dimension of the problerd.

Extending the work of Tsuda et al. (2005), Kulis et al. (2009) recerthsidered the learning
of positive semidefinite matrices. The authors consider Bregman divergaeasures that enjoy
convexity properties and lead to updates that preserve the rank asswied positive semidefinite
property. However, these divergence-based algorithms intrinsicaibticn the learning algorithm
to a fixed range space. A practical limitation of this approach is that the aobsy the learned
matrix is fixed beforehand by the initial condition of the algorithm.

The approach proposed in the present paper is in a sense more tlagsigast perform a
line-search in a Riemannian manifold) but we show how to interpret Bregiwargdnce based al-
gorithms in our framework. This is potentially a contribution of independentédstesince a general
convergence theory exists for line-search algorithms on Riemannian rasnifthe generality of
the proposed framework is of course motivated by the non-convexenattine rank constraint.

The paper is organized as follows. Section 2 presents the general opitimiframework of
Riemannian learning. This framework is then applied to the learning of socésg&ection 4),
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positive definite matrices (Section 5) and fixed-rank positive semidefinitéo@afiSection 6). The

novel proposed algorithms are presented in Section 7. Section 8 distlusselationship to existing

work as well as extensions of the proposed approach. Applicationzesented in Section 9 and
experimental results are presented in Section 10.

2. Linear Regression on Riemannian Spaces

We consider the following standard regression problem. Given
(i) data pointsX, in a linear data spack = R9*9,
(i) observationsy, in a linear output spac# = R, (or R9),
(i) aregression model = Yy (X) parameterized by a matri?¥/ in a search spac#’,
(iv) a quadratic loss functiof(y,y) = %(9— y)2,

find the optimal fitW* that minimizes thexpected cost

F(W) = Exy{65.9)} = [ £8.y) dP(X.y)

where/(y,y) penalizes the discrepancy between observations and prediction®(4ny) is the
(unknown) joint probability distribution over data and observation paifthotigh our main interest
will be in the scalar model

y=Tr(WX),

the theory applies equally to vector data points RY, y = Tr(WxxT) = x"Wx, to a regression
model parameterized by a vectare RY, y=w'x, or to a vector output spage="Wx.

As it is generally not possible to compuE€W) explicitly, batch learning algorithms minimize
instead theempirical cost

12
fa(W) = o i;(Yi —¥i)?, (1)

which is the average loss computed over a finite number of safifesyi) }i ;.

Online learning algorithms (Bottou, 2004) consider possibly infinite setbkes{ (Xt, %) }t>1,
received one at a time. At tintethe online learning algorithm minimizes the instantaneous cost

W) = 55— W2

In the sequel, we only present online versions of algorithms to shorterxpiesigon. The single
necessary change to convert an online algorithm into its batch counterparperform, at each
iteration, the minimization of the empirical coftinstead of the minimization of the instantaneous
costf;. In the sequel, we denote bythe cost function that is minimized at each iteration.

Our focus will be omonlinearsearch space®’. We only requirel’ to have the structure of a
Riemannian matrix manifold. Following Absil et al. (2008), an abstract gradiescent algorithm
can then be derived based on the update formula

Wiy1 = Rw, (—s gradf (Wy)). (2)
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The gradient grafl(W; ) is an element of the tangent spdgg 7. The scalag > O is the step size.
The retractiorRy, is @ mapping from the tangent spakg, 7 to the Riemannian manifold. Under
mild conditions on the retractioR, the classical convergence theory of line-search algorithms in
linear spaces generalizes to Riemannian manifolds (see Absil et al., 2088eC4).

Observe that the standard (online) learning algorithm for linear reigressR¢,

Wiyl =Wt — St(WtTXt —Yo)Xt, (3

can be interpreted as a particular case of (2) for the linear nyodel™x in thelinear search space
W = RY. The Euclidean metric turnR? in a (flat) Riemannian manifold. For a scalar function
f:RY - R of w, the gradient satisfies

Df(w)[8] = & gradf (w),
whereDf (w)[9] is the directional derivative of in the directiond, and the natural retraction

Ry, (—s gradf (wy)) = w; — & gradf (wy),

induces a line-search along “straight lines" which are geodesics (tpaths of shortest length) in
linear spaces. Witli(w) = 3(w"x —y)?, one arrives at (3).

This example illustrates that the main ingredients to obtain a concrete algorittooraenient
formulas for the gradient and for the retraction mapping. This papeiid@swsuch formulas for
three examples of nonlinear matrix search spaces: the Grassmann madéotbii 4), the cone
of positive definite matrices (Section 5), and the set of fixed-rank pess@midefinite matrices
(Section 6). Each of those sets will be equipped witlotient Riemannian geometritsat provide
convenient formulas for the gradient and for the retractions. Lineckeglgorithms in quotient
Riemannian spaces are discussed in detail in the book of Absil et al.)(Ze@&he readers conve-
nience, basic concepts and notations are introduced in the next section.

3. Line-Search Algorithms on Matrix Manifolds

This section summarizes the exposition of Absil et al. (2008, Chapters 8)and

Restrictions on the search space are generally encoded into optimizatioithahdgdoy means
of particular constraints or penalties expressed as a function of thehsearable. However, when
the search space is endowed with a particular manifold structure, it is [@os&sithesign an explo-
ration strategy that is consistent with the geometry of the problem and thatpaiapely turns the
problem into an unconstrained optimization problem. This approach is thegmigh optimization
algorithms defined on matrix manifolds.

Informally, a manifold 7/ is a space endowed with a differentiable structure. One usually
makes the distinction between embedded submanifolds (subsets of largesldgrahd quotient
manifolds (manifolds described by a set of equivalence classes). Ativatexample of embedded
submanifold is the sphere embedded®fh A typical example of quotient manifold is the setref
dimensional subspaceslit{, viewed as a collection atdimensional orthogonal frames that cannot
be superposed by a rotation. The rotational variants of a given fraraeléfime an equivalence class
(denoted using square bracket¥ which is identified as a single point on the quotient manifold.

To develop line-search algorithms, the notion of gradient of a scalafwostion needs to be
extended to manifolds. For that purpose, the manifisfds endowed with a metrigw (w,{w ),
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Figure 1: Gradient iteration on a Riemannian manifold. The search direegioadf (W;) belongs
to the tangent spacBy, 7/. The updated poiniV;, 1 automatically remains inside the
manifold thanks to the retraction mapping.

which is an inner product defined between eleméqtslyy of the tangent spacky W atW. The
metric induces a norm on the tangent spaggV atW:

[&wlw = 1/ 9w (&w,Ew).

The gradient of a smooth scalar functibn W — R atW € 9/ is the only element graldW) €
Tw W that satisfies
Df(W)[A] = gw(A,gradf (W)), VAeTwW,

whereA is a matrix representation of a “geometric" tangent vectpesd where

D W) A :!i_%f(WthA'[)—f(W)’

is the standard directional derivative batW in the directionA.

For quotient manifoldsiW = W/ ~, where % is the total space and is the equivalence
relation that defines the quotient, the tangent spage?’ at [W] is sufficiently described by the
directions that do not induce any displacement in the set of equivaléassegW]. This is achieved
by restricting the tangent space[®#{] to horizontal vector§w € Tw % atW that are orthogonal
to the equivalence claggv]. Provided that the metrigy in the total space is invariant along the
equivalence classes, it defines a metric in the quotient space

gw) (Ew» w)) = w (Ew, Lw).

The horizontal gradiengradf (W) is obtained by projecting the gradient gifdslV) in the total
space onto the set of horizontal vectgygs at W.

Natural displacements & in a directiony on the manifold are performed by following
geodesics (paths of shortest length on the manifold) starting ¥hbreind tangent td,y. This is
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performed by means of the exponential mapping

Wt+1 = EXRN; (&EW( )7

which induces a line-search algorithm along geodesics.
A more general update formula is obtained if we relax the constraint of medomg geodesics.
The retraction mapping
Wii1 = Rw, (5éw,),

locally approximates the exponential mapping. It provides an attractivaalies to the exponen-
tial mapping in the design of optimization algorithms on manifolds, as it reducestheutational
complexity of the update while retaining the essential properties that ensavergence results.
Wheng&yw, coincide with—gradf (W;) a gradient descent algorithm on the manifold is obtained.
Figure 1 pictures a gradient descent updatg©n

4. Linear Regression on the Grassmann Manifold

As a preparatory step to Section 6, we review the online subspace leé@jmdl992; Crammer,
2006; Warmuth, 2007) in the present framework. Ket 9 = RY, and consider the linear model

§=UUx,

with U € St(r,d) = {U € R st. UTU = I}, the Stiefel manifold of-dimensional orthonormal
bases iRY. The quadratic loss is then

- 1. 1
F(U) = 09.%) = 519 — X3 = 51 UUTx x|} @)

Because the cost (4) is invariant by orthogonal transformatien UO, O € O(r), whereO(r) =
St(r,r) is the orthogonal group, the search space is in fact a set of equieattasses

U] = {UO st. O € O(r)}.

This set is denoted by 8td)/O(r). It is a quotient representatioof the set ofr-dimensional
subspaces iiRY, that is, the Grassmann manifold(@&d). The quotient geometries of @Grd) have
been well studied (Edelman et al., 1998; Absil et al., 2004). The metric

g (&up, ) = du(u, Lu),
is induced by the standard metricl{*",
gu(A1,A2) = Tr(AJA),

which is invariant along the fibers, that is, equivalence classes. fiangetorsgyy at [U] are
represented by horizontal tangent vectbysat U:

Eu=TyA=(1—-UUT)A, AcR
Therefore, the gradient admits the simple horizontal representation

gradf (U) = My gradf (U), (5)
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where grad (U) is defined by the identity
Df (U)[A] = gu(A, gradf (U)).

A standard retraction in Gr,d) is the exponential mapping, that induces a line-search along
geodesics. The exponential map has the closed-form expression

Expy(Eu) = UV cogZ)VT + Zsin(Z)VT, (6)

which is obtained from a singular value decomposition of the horizontal lvé_gt@: Z3V'. Fol-
lowing Absil et al. (2004), an alternative convenient retraction ifr @ is given by

Ru(Eu) = [U +sEu] = af(U +Ey), (7)

where qf-) is a function that extracts the orthogonal factor of the QR-decomposititmafyument.

A possible advantage of the retraction (7) over the retraction (6) is thapntrast to the SVD

computation, the QR decomposition is computed in a fixed nu@ber?) of arithmetic operations.
With the formulas (5) and (7) applied to the cost function (4), the abstgate (2) becomes

Ury1 = af(Ug +s (1 — UUD)xex{ Uy),

which is Oja’s update for subspace tracking (Oja, 1992).

5. Linear Regression on the Cone of Positive Definite Matrices

The learning of a full-rank positive definite matrix is recast as follows. X et Rdxd andy =R,
and consider the model
y=Tr(WX),

with W € S, (d) = {W e R¥*4 st. W = WT = 0}. SinceW is symmetric, only the symmetric part
of X will contribute to the trace. The previous model is thus equivalent to

y = Tr(WSym(X)),

where Synf-) extract the symmetric part of its argument, that is, $8im= (BT +B)/2. The
guadratic loss is

N 1
F(W) = £(9,y) = 5(Tr(WSym(X)) -y)*
The quotient geometries & (d) are rooted in the matrix factorization
W =GG", GeGL(d),

where GL(d) is the set of all invertiblel x d matrices. Because the factorization is invariant by
rotation,G — GO, O € O(d), the search space is once again identified to the quotient

S;(d) ~ GL(d)/0(d),
which represents the set of equivalence classes
[G] ={GOst.0Oc O(d)}.

We will equip this quotient with two meaningful Riemannian metrics.
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5.1 AFlat Metric on S, (d)
The metric on the quotient GH)/O(d):
9)(&a): {[a]) = 86 (8, 2a),
is induced by the standard metricli{*?,
0o (A1,A2) = Tr(A[Ay),

which is invariant by rotation along the set of equivalence classes. Asasequence, it induces a
metricgig) on Sy (d). With this geometry, a tangent vectg, at[G] is represented by a horizontal
tangent vecto€g atG by _

£ =SymA)G, AcR>

The horizontal gradient of
. 1
f(G) =(9,y) = 5(Tr(GGTSym(X)) —y)?, ®)

is the unique horizontal vectgradf (G) that satisfies

DF(G)[A] = o (A, gradf (G)).

Elementary computations yield

gradf (G) = 2(9— y)Sym(X)G.
Since the metric is flat, geodesics are straight lines and the exponential géppin
Exps(86) =[G +E6) = G+ &o.
Those formulas applied to the cost (8) turns the abstract update (2) indoripke formula
Git1 = Gt — 25 (% — Y1) Sym(X¢) Gy, 9)

for an online gradient algorithm and
1 n
Giy1=Gt— zstﬁ Zl(ﬁ —Yi)Sym(X;)Gt, (10)
i=
for a batch gradient algorithm.

5.2 The Affine-Invariant Metric on S, (d)

Becauses; (d) ~ GL(d)/O(d) is the quotient of two Lie groups, its (reductive) geometric structure
can be further exploited (Faraut and Koranyi, 1994). Indeed thepg®.(d) has a natural action on
S, (d) via the transformatiolV — AWAT for any A € GL(d). The affine-invariant metric admits
interesting invariance properties to these transformations. To build suaffireinvariant metric,
the metric at identity

9 (&,¢0) =Tr(& &),
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is extended to the entire space to satisfy the invariance property
91(&1.8) = ow(WEE W2, WL W2) = gw (Ew, dw)-
The resulting metric 0%, (d) is defined by
ow (Ew,Qw) = TrEwW ZwW ™). (11)

The affine-invariant geometry @&, (d) has been well studied, in particular in the context of in-
formation geometry (Smith, 2005). Indeed, any positive definite méttix S, (d) can be iden-
tified to the multivariate normal distribution of zero meaf(0, W), whose probability density is
p(zzW) = %exp(—%zTW*lz), whereZ is a normalizing constant. Using such a metric allows to
endow the space of paramet&s(d) with a distance that reflects the proximity of the probability
distributions. The Riemannian metric thus distorts the Euclidean distances hgtasiéve defi-
nite matrices in order to reflect the amount of information between the twoias=sbprobability
distributions. If§yy is a tangent vector t&/ € S, (d), we have the following approximation for the
Kullback-Leibler divergence (up to third order terms)

1

DkL(P(Z;W)[|p(Z;W +Ew)) ~ % o' (&w.&w) = 5 ow (&w, &w),

whereg\f\,”\’I is the well-known Fisher information metric &, which coincides with the affine-
invariant metric (11) (Smith, 2005). With this geometry, tangent ved@rare expressed as

Ew =W2SymA)Wz, Ae RO,
The gradient grati(W) is given by
Df (W)[A] = gw (A, gradf (W)).
Applying this formula to (5) yields
gradf (W) = (§—y)WSym(X)W. (12)
The exponential mapping has the closed-form expression
Expyy (Ew) = W2 exp(W 2Ew W 2)W:2, (13)
Its first-order approximation provides the convenient retraction
Rw(SEw) =W —SEw. (14)

The formulas (12) and (13) applied to the cost (5) turn the abstractaig@ginto

Nl
Nl

1 " 1
W1 = W¢ exp(—s (%t — Yo WE Sym(Xe)W¢ )W
With the alternative retraction (14), the update becomes
W1 =Wt — (%t — Yt) Wi Sym(X¢) Wy,

which is the update of Davis et al. (2007) based on the LogDet diveeg@ee Section 8.1).
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5.3 The Log-Euclidean Metric onS, (d)

For the sake of completeness, we briefly review a third Riemannian geoni&@ryd, that exploits
the property

W =exp(S), S=S"eR¥
The matrix exponential thus provides a global diffeomorphism betv#¢d) and the linear space

of d x d symmetric matrices. This geometry is studied in detail in the paper (Arsigny e0alr).2
The cost function

((S) = (9.y) = H(Tr(exaS)Sym(x)) y)?

thus defines a cost function in the linear space of symmetric matrices. Tdiemraf this cost
function is given by

gradf (S) = (9t — yt)Sle(Xt),
and the retraction is
Rs(s£s) = exp(logW + £ s).

The corresponding gradient descent update is

Wii1 = exp(logW; — s (%t — Yt ) Sym(X¢)),

which is the update of Tsuda et al. (2005) based on the von Neumangeice.

6. Linear Regression on Fixed-Rank Positive Semidefinite Maices

We now present the proposed generalizations to fixed-rank positivielsgnite matrices.

6.1 Linear Regression with a Flat Geometry

The generalization of the results of Section 5.1 to theSsét, d) is a straightforward consequence
of the factorization
W=GG", GeR¥,

whereRY" = {G € R%*" st. def{G'G) # 0}. Indeed, the flat quotient geometry of the manifold
S, (d) ~ GL(d)/0(d) is generalized to the quotient geometrySfir,d) ~ RI*" /O(r) by a mere
adaptation of matrix dimension, leading to the updates (9) and (10) for ma@jceR?*". The
mathematical derivation of these updates is a straight application of the matesaihted in the
paper of Journée et al. (2010), where the quotient geomet®y @fd) ~ RI*"/O(r) is studied in
details. In the next section, we propose an alternative geometry that joiathsler-dimensional
subspace and a full-rank quadratic model in this subspace.

6.2 Linear Regression with a Polar Geometry

In contrast to the flat geometry, the affine-invariant geometr§,dfl) ~ GL(d)/O(d) does not
generalize directly t&, (r,d) ~ RY*" /O(r) becaus®?*" is not a group. However, a generalization
is possible by considering the polar matrix factorization

G=UR, Uestrd), ReSc(r).
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It is obtained from the singular value decompositiorG® ZZVT asU = ZVT andR = VZVT
(Golub and Van Loan, 1996). This gives a polar parameterizati& ofd)

W =UR?UT.
This development leads to the quotient representation
Si(r,d) = (St(r,d) x S.(r))/O(r), (15)

based on the invariance ¥ to the transformatiorfu, R?) — (UO,0OTR?0), O € O(r). It thus
describes the set of equivalence classes

[(U,R?)] = {(UO,0"R?0) st. 0 € O(r)}.

The cost function is now given by
f(U,R?) = (9.y) = 5 (Tr(URPUT Sym(x)) ~y)*. (16)

The Riemannian geometry of (15) has been recently studied by Bonmab8lepulchre (2009). A
tangent vectok = (§u,&r2)ur7 at (U, R?)] is described by a horizontal tangent vedgr =

(8u,&r2) (U Rr?) at (U,R?) by
Eu=Nub, AeRY", £ =RSymW)R, W e R™".
The metric
gw (Ew,lw)
= L Q) s e L) (17)
= 5 9uleu,Gu)+ 75 Or2(SR2,6R2)

gw) (Ewy, Qwy)

whereA € (0,1), is induced by the metric of §td) and the affine-invariant metric & (r),
Qu(B1,82) = Tr(A1A),  Ore(Wi,W2) = Tr(WiR 2WoR ).

The proposed metric is invariant along the set of equivalence clasdeb@ninduces a quotient
structure or, (r,d). Alternative metrics ors, (r) can be considered as long as the metric remains
invariant along the set of equivalence classes. For instance, thaudgiéan metric discussed in
Section 5.3 would qualify as a valid alternative.

A retraction is provided by distinct retractions brandR?,

Ru(Eu) = qf(U+sku) (18)
Rrz2(fr2) = Rexp(sR™EzRR. (19)
One should observe that this retraction is not the exponential mappig(ofl). This illustrates

the interest of considering more general retractions than the exponmiajigding. Indeed, as dis-
cussed in the paper of Bonnabel and Sepulchre (2009), the gen(msictherefore the exponential
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Batch regression \ Online regression
Input: {(Xi,yi)}y Input: {(Xt,%)}t>1
Require: Gg or (Up,Ro), A Require: Ggor (Ug,Rp), A, p,S to, T
1:t=0 1: t=0,count =p
2: repeat 2: whilet <T do
3: 3:  if count > Othen
4: 4: Accumulate gradient
5: 5: count = count — 1
6: 6: else
7 Compute Armijo stega from (22) 7 Compute step sizg according to (23)
8 Perform update (10) or (21) usisg 8: Perform update (9) or (20) usirsg
9: 9: count =p
10: 10:  endif
11: t=t+1 11: t=t+1
12: until stopping criterion (24) is satisfied 12: end while
13: return Gy 13: return Gt

Figure 2: Pseudo-codes for the proposed batch and online algorithms.

mapping) do not appear to have a closed form in the considered geo@etnpining the gradient
of (16) with the retractions (18) and (19) gives

U1 = af (Ur — 2% — Yo (I - BUT ) SymXo URY) ,

RZ.1 = Reexp(—(1—A)s (% — yi)ReU Sym(X;)UiRy) Ry
A factorizationRtHRtT+1 of th+l is obtained thanks to the property of matrix exponential(AXé =
exp(%A). UpdatingR;.; instead oiRtZ+1 is thus more efficient from a computational point of view,

since it avoids the computation of a square root a each iteration. This yi@dmtime gradient
descent algorithm

Urs1 = gf (U — 20 (% — yo) (I — UeU{ ) Sym(X ) UtR?)

1 N T (20)
Rt+1 = Rt exp —é(l—)\)st(yt _yt)RtUt Sym(Xt)Uth s
and the batch gradient descent algorithm
18 . T 2
U1 =df Ut_Z)\S{ﬁ ZL(Yi—Yi)U = UUp )Sym(Xi)UtRY |,
" (21)

n

1 1 .
Ri+1 = Reexp <—2(1—)\)Stn21(Yi —yi)RtUtTSym(Xi)Uth> .

7. Algorithms

This section documents implementation details of the proposed algorithms. Geseuito-codes
are provided in Figure 2 and Table 1 summarizes computational complexities.
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Datatype Inputspace Batchflat(10) Batch polar (21) Onliae(8) Online polar (20)

X RY*d O(d?rn) O(d?r?n) O(d?rp) O(d?r?p)
xx" RY O(drn) O(dr?n) O(drp) O(dr?p)

Table 1: Computational costs of the proposed algorithms.

7.1 From Subspace Learning to Distance Learning

The update expressions (21) and (20) show Ahdhe tuning parameter of the Riemannian metric
(17), acts as a weighting factor on the search direction. A proper tufhifigsgarameter allows us
to place more emphasis either on the learning of the subspac®n the distance in that subspace
R?. In the cas@ = 1, the algorithm only performs subspace learning. Conversely, in tieé\ca¥,
the algorithm learns a distance for a fixed range space (see SectiohnBetinediate values of
continuously interpolate between the subspace learning problem andtdrecditearning problem
at fixed range space.

A proper tuning ofA is of interest when a good estimate of the subspace is available (for instance
a subspace given by a proper dimension reduction technique) or wbeevtoobservations are
available to jointly estimate the subspace and the distance within that subspdice.ldtter case,
one has the choice to favor either subspace or distance learning.

Experimental results of Section 10 recommend the valge0.5 as the default setting.

7.2 Invariance Properties

A nice property of the proposed algorithms is their invariance with respeatatonsw — OTWO,
VO € O(d). This invariance comes from the fact that the chosen metrics are inveiestations.
A practical consequence is that a rotation of the input matrix OXOT (for instance a whitening
transformation of the vectoss— Ox if X = xx") will not affect the behavior of the algorithms.

Besides being invariant to rotations, algorithms (20) and (21) are invavitmrespect to scal-
ingsW — pW with u> 0. Consequently, a scaling of the input d&Xay) — (X, Hy), such as a
change of units, will not affect the behavior of these algorithms.

7.3 Mini-Batch Extension of Online Algorithms

We consider a mini-batch extension of stochastic gradient algorithms.distein performing each
gradient step with respect {o> 1 examples at a time instead of a single one. This is a classical
speedup and stabilization heuristic for stochastic gradient algorithms. pattieular case = 1,

one recovers plain stochastic gradient descent. Gvsamples Xt 1,¥1), .., (Xt,p, Yt.p), received

at timet, the abstract update (2) becomes

12 .
Wiy1 = Ry, <—$¢ pi;gradg(yt’i’yt’i)> .

7.4 Strategies for Choosing the Step Size

We here present strategies for choosing the step size in both the batohleredcases.
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7.4.1 BATCH ALGORITHMS

For batch algorithms, classical backtracking methods exist (see Nausdi&V/right, 2006). In this
paper, we use the Armijo ste defined at each iteration by the condition

f(Rw, (—sa gradf (W1))) < f(Wy) +c||gradf (W)l [y, (22)

whereW; € S, (r,d) is the current iterateg € (0,1), f is the empirical cost (1) anBy is the
chosen retraction. In this paper, we choose the particular €atu@.5 and repetitively divide by 2

a specified maximum step sisgax until condition (22) is satisfied for the considered iteration. In
order to reduce the dependencespgx in a particular problem, it is chosen inversely proportional
to the norm of the gradient at each iteration,

So

M= gradt (W) v,

A typical value ofsy = 100 showed satisfactory results for all the considered problems.

7.4.2 ONLINE ALGORITHMS

For online algorithms, the choice of the step size is more involved. In this pHyestep size

schedules is chosen as
S Nty

= = X —_,
Hgraa Nio+t
wheres > 0, n is the number of considered learning sampl|ggq’is an estimate of the average
gradient norm|gradf (Wo)||w,, andtp > O controls the annealing rate g§f During a pre-training
phase of our online algorithms, we select a small subset of learning saamulésy the values'2
with k = —3, ..., 3 for boths andty. The values of andtg that provide the best decay of the cost
function are selected to process the complete set of learning samples.

(23)

7.5 Stopping Criterion

Batch algorithms are stopped when the value or the relative change of thcahgwost f is small
enough, or when the relative change in the parameter variation is smatjlgnou

f(Wig1) — F(Wy) IGt+1— Gtl|e
f(W < < — < &gl 24

We foundey, = 10~° to be a good trade-off between accuracy and convergence time.
Online algorithms are run for a fixed number of epochs (number of péissagyh the set of
learning samples). Typically, a few epochs are sufficient to attain satsfaesults.

7.6 Convergence

Gradient descent algorithms on matrix manifolds share the well-charackenngergence proper-
ties of their analog iiRY. Batch algorithms converge linearly to a local minimum of the empirical
cost that depends on the initial condition. Online algorithms converge astogtiioto a local
minimum of the expected loss. They intrinsically have a much slower convegate than batch
algorithms, but they generally decrease faster the expected loss in thestaig regime (Bottou
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and Bousquet, 2007). The main idea is that, given a training set of saraplesccurate solution
may indeed have the same or a lower expected cost than a well-optimized one.

When learning a matri¥V € S, (d), the problem is convex and the proposed algorithms con-
verge toward a global minimum of the cost function, regardless of the iniadliion. When
learning a low-rank matri3V € S, (r,d), with r < d, the proposed algorithms converge to a local
minimum of the cost function. This is not the case for heuristic methods pedgonghe literature,
which first reduce the dimensionality of the data before fitting a full-rank fnaiéhe reduced data
(Davis and Dhillon, 2008; Weinberger and Saul, 2009).

For batch algorithms, the local convergence results follow from the cgewee theory of line-
search algorithms on Riemannian manifolds (see, for example, Absil et @8).20

For online algorithms, one can prove that the algorithm based on the flaeggoenjoys almost
sure asymptotic convergence to a local minimum of the expected cost. Irefgttbe parameter
G belongs to an Euclidean space and the convergence results preseBtetbin (1998) apply (see
Appendix A for the main ideas of the proof).

In contrast, when the polar parameterization is used, the convergesudts iresented by Bot-
tou (1998) do not apply directly because of the quotient nature of thelsspace. Because the
extension would require technical arguments beyond the scope of teenpreaper, we refrain
from stating a formal convergence result for the online algorithm baseldeopolar geometry, even
though the result is quite plausible.

Due to the nonconvex nature of the considered rank-constraineteprefthe convergence re-
sults are only local and little can be presently said about the global cemer®f the algorithms. A
global analysis of the critical points of the cost functions studied in theeptgmper is nevertheless
not hopeless and could be facilitated by the considered low-rank parérat@tans. For instance,
global convergence properties have been established for PCA atgsritbm an explicit analy-
sis of the critical points (Chen et al., 1998). Also, recent results stigges! global convergence
properties for closely related rank minimization problems (Recht et al., 2@&kperimental results
suggest the same conclusions for the algorithms considered in this pdpsr,means that further
research on global convergence results is certainly deserved.

8. Discussion

This section presents connections with existing works and extensions refgtession model.

8.1 Closeness-Based Approaches

A standard derivation of learning algorithms is as follows (Kivinen andrivdh, 1997). The
(online) update at timeis viewed as an (approximate) solution of

W'[+1 = argmin D(vat) + & €(9>Yt)a (25)
Wew

whereD is a well-chosen measure of closeness between elemeftsasfds is a trade-off param-
eter that controls the balance between the conservativeD¢wh W;) and the innovation (or data
fitting) term£(y,y;). One solves (25) by solving the algebraic equation

gradD(W,W;) = —s grad /(i1 %), (26)

607



MEYER, BONNABEL AND SEPULCHRE

which is a first-order (necessary) optimality condition. If the searchespélcis a Riemannian
manifold and if the closeness meas@V, W) is the Riemannian distance, the solution of (26) is

Wi = EXp\Nt(_St grad/(Yi+1,¥t))-

Becauss;’; 1 must be evaluated W 1, this update equation is implicit. However, 1 is generally
replaced by, (which is equal tox’ 1 up to first order terms ig), which gives the update (2) where
the exponential mapping is chosen as a retraction.

Bregman divergences have been popular closeness measubg8\fow; ) because they render
the optimization of (25) convex. Bregman divergences on the cone dfvgodefinite matrices
include the von Neumann divergence

Dun(W,W;) = Tr(WlogW — W logW; — W +W,),
and the LogDet divergence
Dig (W, W;) = Tr(WW, 1) — logde{Www, 1) —d.

We have shown in Section 5 that the resulting updates can be interpreted-asdirch updates for
the log-Euclidean metric and the affine-invariant metricSofd) and for specific choices of the
retraction mapping.

Likewise, the algorithm (9) can be recast in the framework (25) by cernisig the closeness

Diat (W, W;) = |G — Gy 2,

whereW = GG andW; = G;G{ . Algorithm (20) can be recast in the framework (25) by consid-
ering the closeness

r
Dol (W, W¢) = A Zleiz + (1-2) |[logR I R?R 2.
i=

where thed;’s are the principal angles between the subspaces spannéddndW; (Golub and
Van Loan, 1996), and the second term is the affine-invariant distdr&egd) between matriceR?
andR? involved in the polar representation\af andWy.

Obviously, these closeness measures are no longer convex due toklvematraint. However
they reduce to the popular divergences in the full-rank case, up tagecder terms. In particular,
whenA = 1, the subspace is fixed and one recovers the setup of learning l&wnanices of a
fixed range space (Kulis et al., 2009). Thus, the algorithms introducee iprésent paper can be
viewed as generalizations of the ones presented in the paper of Kuli$20@8), where the issue of
adapting the range space is presented as an open research questioof the proposed algorithms
provides an efficient workaround for this problem at the expenseeofgbtential) introduction of
local minima.

8.2 Handling Inequalities

Inequalitiesy’< y or y > y can be considered by treating them as equalities when they are not
satisfied. This is equivalent to the minimization of the continuously different@dgefunction

(W) = £(5.) = 3max0.p(7 - y))?

wherep = +1if § <yis required angp = —1 if § >y is required.
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8.3 Kernelizing the Regression Model

In this paper, we have not considered the kernelized model

y=Tr(We(x)p(x)"),

whose predictions can be extended to new input @éta in the feature spacg induced by the
nonlinear mapping: x € X — @x) € #. This is potentially a useful extension of the regression
model that could be investigated in the light of recent theoretical results imtéés (for example
Chatpatanasiri et al., 2010; Jain et al., 2010).

8.4 Connection with Multidimensional Scaling Algorithms

Given a set omdissimilarity measure® = {g;; }™ betweem data objects, multidimensional scal-
ing algorithms search for edimensional embedding of the data objects into an Euclidean space
representatios € R™" (Cox and Cox, 2001; Borg and Groenen, 2005). Eachgamf G is the
coordinates of a data object in a Euclidean space of dimemnsion

Multidimensional scaling algorithms based on gradient descent are Emqtit@algorithms (9)
and (10) wherX = (e —ej)(e —&j)T, wheres is thei-th unit vector (see Section 9.1), and when
the multidimensional scaling reduction criterion is the SSTRESS

SSTRES®)= Y (lgi—gil3—3)>
(i,5)eD

Vectorsg; andg; are thei-th andj-th rows of matrixG. Gradient descent is a popular technique
in the context of multidimensional scaling algorithms. A stochastic gradienedeapproach for
minimizing the SSTRESS has also been proposed by Matsuda and Yam&u@h). (A potential
area of future work is the application of the proposed online algorithma®adlapting a batch
solution to slight modifications of the dissimilarities over time. This approach hasch smaller
computational cost than recomputing the offline solution at every time stepurthtef allows to
keep the coordinate representation coherent over time since the solution lotally jumps from
a local minimum to another.

9. Applications

The choice of an appropriate distance measure is a central issue fordistaryce-based classifi-
cation and clustering algorithms such as nearest neighbor classifipmmrsuector machines or
k-means. Because this choice is highly problem-dependent, numerougsibtwe been proposed
to learn a distance function directly from data. In this section, we presenintyortant distance
learning applications that are compatible with the considered regressior amatesview some
relevant literature on the subject.

9.1 Kernel Learning

In kernel-based methods (Shawe-Taylor and Cristianini, 2004), thesdatples, ..., X, are first
transformed by a nonlinear mappigpg x € X — @(X) € F, where¥ is a new feature space that is
expected to facilitate pattern detection into the data.

The kernel function is then defined as the dot product between anyaiwplss in7,

K(Xi,X}) = @(%i) - @(x})-
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In practice, the kernel function is represented by a positive semidefiniiéxnkac R"*" whose
entries are defined d&§; = @(x;) - ®(x;). This inner product information is used solely to compute
the relevant quantities needed by the algorithms based on the kernel. forcemsa distance is
implicitly defined by any kernel function as the Euclidean distance betweesathples in the new
feature space

do(xi, X}) = [0(xi) = @(x;) > = K (i, Xi) + K (X}, X}) = 2K (Xi, %)),
which can be evaluated using only the elements of the kernel matrix by thelformu
de(xi,Xj) = Kii + Kjj — 2Kjj = TI’(K(Q —ej)(8 —ej)T) ,

which fits into the considered regression model.

Learning a kernel consists in computing the kernel (or Gram) matrix fraatat or improv-
ing a existing kernel matrix based on side-information (in a semi-supervetgdgsfor instance).
Data samples and class labels are generally exploited by means of equaléguality constraints
involving pairwise distances or inner products.

Most of the numerous kernel learning algorithms that have been propasé in the so-called
transductive setting, that is, it is not possible to generalize the learnedlKanction to new data
samples (Kwok and Tsang, 2003; Lanckriet et al., 2004; Tsuda et0fl5; Zhuang et al., 2009;
Kulis et al., 2009). In that setting, the total number of considered samplesverkin advance and
determines the size of the learned matrix. Recently, algorithms have be@seddp learn a kernel
function that can be extended to new points (Chatpatanasiri et al., 28ihCstJal., 2010). In this
paper, we only consider the kernel learning problem in the transdissitieg.

When low-rank matrices are considered, kernel learning algorithmsecaegarded as dimen-
sionality reduction methods. Very popular unsupervised algorithms in tinéxtoare kernel prin-
cipal component analysis (Scholkopf et al., 1998) and multidimensiondhgd&ox and Cox,
2001; Borg and Groenen, 2005). Other kernel learning techniqe&simthe maximum variance
unfolding algorithm (Weinberger et al., 2004) and its semi-supervisesiore(Song et al., 2007),
and the kernel spectral regression framework (Cai et al., 2007 hvemicompasses many reduction
criterion (for example, linear discriminant analysis (LDA), locality pressgwrojection (LPP),
neighborhood preserving embedding (NPE)). See the survey of (2&@$) for a more complete
state-of-the-art in this area.

Since our algorithms are able to compute a low-rank kernel matrix from datactén be used
for unsupervised or semi-supervised dimensionality reduction, depewndiiather or not the class
labels are exploited through the imposed constraints.

9.2 Mahalanobis Distance Learning

Mahalanobis distances generalize the usual Euclidean distance as it @ltreasform the data
with an arbitrary rotation and scaling before computing the distancex;bet € RY be two data
samples, the (squared) Mahalanobis distance between these two sam@emmstprized by a
positive definite matriA € R9<4 and writes as

dA(Xi,Xj):(Xi—Xj)TA (Xi—Xj). (27)

In the particular case oA being equal to the identity matrix, the standard Euclidean distance is
obtained. A frequently used matrix &= Z~1, the inverse of the sample covariance matrix. For
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centered data features, computing this Mahalanobis distance is equigafgrform a whitening
of the data before computing the Euclidean distance.

For low-rank Mahalanobis matrices, computing the distance is equivalenstpdirform a lin-
ear data reduction step before computing the Euclidean distance on tivedethtd. Learning a
low-rank Mahalanobis matrix can thus be seen as learning a linear prdjeatds used for dimen-
sion reduction.

In contrast to kernel functions, Mahalanobis distances easily geretalizew data samples
since the sole knowledge &f determines the distance function.

In recent years, Mahalanobis distance learning algorithms have besulgjeet of many contri-
butions that cannot be all enumerated here. We review a few of them, nestrrefor the present
paper. The first proposed methods have been based on sucgesgeions onto a set of large mar-
gin constraints (Xing et al., 2002; Shalev-Shwartz et al., 2004). The metiopdsed by Globerson
and Roweis (2005) seeks a Mahalanobis matrix that maximizes the betwesssdiéstance while
forcing to zero the within classes distance. A simpler objective is pursuehlebglgorithms that
optimize the Mahalanobis distance for the spedifitearest neighbor classifier (Goldberger et al.,
2004; Torresani and Lee, 2006; Weinberger and Saul, 2009)gnigxe projection based methods
minimize a particular Bregman divergence under distance constraints. Btith (Davis et al.,
2007) and online (Jain et al., 2008) formulations have been proposéghfoing full-rank matri-
ces. Low-rank matrices have also been considered with Bregman eligag but only when the
range space of the matrix is fixed in the first place (Davis and Dhillon, 200l et al., 2009).

10. Experiments

Data Set Samples Features Classes Reference

GyrB 52 - 3 Tsudaetal. (2005)

Digits 300 16 3 Asuncion and Newman (2007)
Wine 178 13 13 Asuncion and Newman (2007)
lonosphere 351 33 2 Asuncion and Newman (2007)
Balance Scale 625 4 3 Asuncion and Newman (2007)
Iris 150 4 3 Asuncion and Newman (2007)
Soybean 532 35 17 Asuncion and Newman (2007)
USPS 2,007 256 10 LeCunetal. (1989)

Isolet 7,797 617 26  Asuncion and Newman (2007)
Prostate 322 15,154 2 Petricoin et al. (2002)

Table 2: Considered data sets

In this section, we illustrate the potential of the proposed algorithms on $éemahmark
experiments. First, the proposed algorithms are evaluated on toy data, thibgrare compared
to state-of-the-art kernel learning and Mahalanobis distance learlgogthms on real data sets.
Overall, the experiments support that a joint estimation of a subspace aftiif@nsional distance
in that subspace is a major advantage of the proposed algorithms over m#thbéstimate the
matrix for a subspace that is fixed beforehand.

1. In the low-rank case, one should rigorously refer to (27) as adpsdistance. Indeed, one hag(x;,xj) = 0 with
Xi # Xj whenever(x; — xj) lies in the null space oA.

611



MEYER, BONNABEL AND SEPULCHRE

Table 2 summarizes the different data sets that have been consideradhofmalization step,
the data features are centered and rescaled to unit standard deviation.

The implementation of the proposed algorithfres well as the experiments of this paper are
performed with Matlab. The implementations of algorithms MYKSR* LMNN,® and ITML®
have been rendered publicly available by Weinberger et al. (2004¢t@hk (2007), Weinberger and
Saul (2009) and Davis et al. (2007) respectively. Algorithms POLAal@hRShwartz et al., 2004),
LogDet-KL (Kulis et al., 2009) and LEGO (Jain et al., 2008) have been imetged on our own.

10.1 Toy Data

In this section, the proposed algorithms are evaluated on synthetic liegrpssblems. The data
vectorsxy, ..., xn € RY and the target matriw* € S, (r,d) are generated with entries drawn from a
standard Gaussian distributiog(0, 1). Observations follow

yi = (X W) (1+vi), i=1,..,n, (28)

wherev; is drawn fromA((0,0.01). A multiplicative noise model is preferred over an additive one
to easily control that observations remain nonnegative after the sigiopaf noise.

10.1.1 LEARNING THE SUBSPACE VS FIXING THE SUBSPACEUP FRONT

As an illustrative example, we show the difference between two appredohétting the data to
observations when a target modfél € S, (3,3) is approximated with a parametf € S (2, 3).

A naive approach to tackle that problem is to first project the dataR3 on a subspace of
reduced dimension and then to compute a full-rank model based on thetpdoflata. Recent
methods compute that subspace of reduced dimension using principal mem@malysis (Davis
and Dhillon, 2008; Weinberger and Saul, 2009), that is, a subspatesiptaires a maximal amount
of variance in the data. However, in general, there is no reason whylispace spanned by the
top principal components should coincide with the subspace that is defintt llarget model.
Therefore, a more appropriate approach consists in learning jointly bepace and a distance in
that subspace that best fits the data to observations within that subspace.

To compare the two approaches, we generate a set of learning sditxplgs } 2%, with x; € R3
andy; that follows (28). The target model is

wW* = UAUT

whereU is a random 3 3 orthogonal matrix and\ is a diagonal matrix with two dominant values
N11,\22 > N33 > 0 (for this specific example11 = 4, A2 = 3 andAsz3 = 0.01). Observations
y; are thus nearly generated by a rank-2 model, suchwhashould be well approximated with a
matrix W € S, (2,3) that minimizes the train error.

Results are presented in Figure 3. The top plot shows that the learrgzhsel{which identifies
with the target subspace) is indeed very different from the subspac@ed by the top two principal
components. Moreover, the bottom plots clearly demonstrate that the fit is Inetteln when the

2. The source code is available framt p: / / ww. mont ef i ore. ul g. ac. be/ ~meyer.

3. MVU is available fromht t p: / / ww. cse. wust | . edu/ ~ki | i an/ Downl oads/ WU. ht i .
4. KSR is available fronht t p: / / www. cs. ui uc. edu/ homes/ dengcai 2/ SR/ .

5. LMNN is available frormht t p: / / www. cse. wust | . edu/ ~ki | i an/ Downl oads/ LM\N. ht m .
6. ITML is available fromht t p: / / wwv. ¢s. ut exas. edu/ users/pjain/itm/.
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Figure 3: Learning vs fixing the subspac&op: the learned subspace is very different from the
subspace computed from a classical heuri@amttom left: fit after projection of the data
onto a subspace fixed up frorBottom right: fit obtained with a join estimation of the
subspace and a distance within that subspace.

subspace and the distance in that subspace are learned jointly. Thendifés also significant in
terms of the train error. This simple example shows that heuristic methods tlfa¢ fiange space
in the first place may converge to a solution that is very different from a mimratithe desired
cost function. For visualization purpose, the two dimensional model issepted by the ellipse

. . 5 _ UT .
T —{%cR?:XR% =1}, where %=1,
Vi

and(U,R?) are computed with algorithm (21), either in the setting 0 that fixes the subspace to
the PCA subspace (left) or in the setting= 0.5 that simultaneously learndd andB (right). A
perfect fit is obtained when & are located orE, which is the locus of points whegge = ;.
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10.1.2 NFLUENCE OFA ON THE ALGORITHM BASED ON THEPOLAR GEOMETRY
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Figure 4: Influence oA.

In theory, the parameteér should not influence the algorithm since it has no effect on the first-
order optimality conditions except for its two extreme valdes 0 andA = 1. In practice however,
a sensitivity to this parameter is observed due to the finite tolerance of thergjapijterion: the
looser the tolerance, the more sensitiva to

To investigate the sensitivity ty, we try to recover a target parametar € S, (5,10) using
pairs(X;,y;) generated according to (28). We generate 10 random regressiolempsowith 1000
samples partitioned into 500 learning samples and 500 test samples. We conepoteatt test
error and the mean convergence time as a functionfof different values ot;,. The results are
presented in Figure 4. A&, decrease, the test error becomes insensitive tut an influence is
observed on the convergence time of the algorithm.

In view of these results, we recommend the valleds the default setting far. Unless speci-
fied otherwise, we therefore use this particular value for all experimetitésipaper.

10.1.3 ONLINE VS. BATCH

This experiment shows that when a large amount of sample is availablRO@@aining samples
and 20000 test samples for learning a paramétér in S, (10,50)), online algorithms minimize
the test error more rapidly than batch ones. It further shows that the ich+lextension allows
to improve significantly the performance compared to the plain stochastic graldiscent setting
(p=1). We observe that the mini-batch size- 32 generally gives good results. Figure 5 report the
test error as a function of the learning time, that is, the time after each iteratibatch algorithm
and the time after each epoch for online algorithms. For the algorithm badéd polar geometry,
the mini-batch extension is strongly recommended to amortize the larger ce@stro@ipdate.

10.2 Kernel Learning

In this section, the proposed algorithms are applied to the problem of leaankggnel matrix
from pairwise distance constraints between data samples. As mentioned aaxlanly consider
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Figure 5: Online vs Batch. For a large number of samples, online algorittduseehe test error
much more rapidly than batch ones. Using the mini-batch extension generallgvienpr
significantly the performance.

this problem in the transductive setting, that is, all sampgies.x,, are available up front and the
learned kernel do not generalize to new samples.

10.2.1 EXPERIMENTAL SETUP

After transformation of the data with the kernel map+ @(x), the purpose is to compute a fixed-
rank kernel matrix based on a limited amount of pairwise distances in thel featiere space and
on some information about class labels.

Distance constraints are generated;as<y;; (1 — o) for identically labeled samples anyyg >
yij (1+a) for differentially labeled samples, whese> 0 is a scaling factorj = ||@(xi) — @(x;)||?
andyij = Tr(W(e —ej) (g —€)) = (& — &) "W(e — ).

We investigate both the influence of the amount of side-information providednfluence of
the approximation rank and the computational time required by the algorithms.

To quantify the performance of the learned kernel matrix, we perforneredélitliassification or
a clustering of the samples based on the learned kernel. For classificagiconpute the test set
accuracy of &-nearest neighbor classifide-£ 5) using a two-fold cross-validation protocol (results
are averaged over 10 random splits). For clustering, we ude-theans algorithm with the number
of clusters equal to the number of classes in the problem. To overcome Ksrueal minima, 10
runs are performed in order to select the result that has lead to the snadilerof the K-means
objective. The quality of the clustering is measured by the normalized mutaahiafion (NMI)
shared between the random variables of cluster indic&ard target label¥ (Strehl et al., 2000),

21(C;T)

N CTOETTa)k
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wherel (Xg; X2) = H(X1) — H(X1|X2) is the mutual information between the random variafdes
andXz, H(X;) is the Shannon entropy &, andH (X;|Xy) is the conditional entropy oX; given
Xo. This score ranges from 0 to 1, the larger the score, the better the tiggeality.

10.2.2 @MPARED METHODS
We compare the following methods:
1. Batch algorithms (10) and (21), adapted to handle inequalities (seer5@@)p

2. The kernel learning algorithm LogDet-KL (Kulis et al., 2009) which fekernel matrices of
fixed range space for a given set of distance constraints.

3. The kernel spectral regression (KSR) algorithm of Cai et al. {Q6ing a similarity matrix
N constructed as follows. L& be the adjacency matrix of a 5-NN graph based on the initial
kernel. We modifyN according to the set of available constrairitg; = 1 if samplesx; and
X;j belong to the same class (must-link constraiNt),= 0 if samplesx; andx; do not belong
to the same class (cannot-link constraint).

4. The Maximum Variance Unfolding (MVU) algorithm (Weinberger et al.020
5. The Kernel PCA algorithm (Schélkopf et al., 1998).

The last two algorithms are unsupervised techniques that are provitedeames.

100¢ 1r
. 90r
X
S t =0.8
> 80 =
g 70r =
(O]
g 603 506
g 50 )
S I > Y. 2iiaRRettis Batch flat geometry . ... ____.
,S 40 5 : -e-Batch polar geometry (A = 0.5)
2 30 ——Batch flat geometry 2 ~=Batch polar geometry (A = 0)
@ =)
< 20f -e-Batch polar geometry 0 0.2 —~~LogDet-KL
o ——LogDet-KL KSR
10 ha L
0 - --Original kernel 0 ---Original Kernel
0 100 200 300 400 500 600 700 800 9001000 0 500 1000 1500 2000 2500 3000
Number of constraints Number of constraints

Figure 6: Left: full-rank kernel learning on the Gyrb data set. The algorithm based epdtar
geometry competes with LogDet-KRight: low-rank kernel learning on the Digits data
set. The proposed algorithms outperform the compared methods as soeuafisiently
large number of constraints is provided.

10.2.3 RESULTS

The first experiment is reproduced from Tsuda et al. (2005) and leul@. (2009). The goal is
to reconstruct the GyrB kernel matrix based on distance constraints @hig. matrix contains
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information about the proteins of three bacteria species. The distansgaiots are randomly gen-
erated from the original kernel matrix witlh= 0. We compare the proposed batch methods with
the LogDet-KL algorithm, the only competing algorithm that also learns directlsn fdistance
constraints. This algorithm is the best performer reported by Kulis et@9)Xor this experiment.
All algorithms start from the identity matrix that do not encode any domain infoomaFigure 6
(left) reports thek-NN classification accuracy as a function of the number of distance edmtstr
provided. In this full-rank learning setting, the algorithm based on the mmEametry compete
with the LogDet-KL algorithm. The convergence time of the algorithm based @pdlar geom-
etry is however much faster (0.15 seconds versus 58 seconds fBel-&d. when learning 1000
constraints). The algorithm based on the flat geometry has inferiorrpefaece when too few con-
straints are provided. This is because in the kernel learning settingtespafathis algorithm only
involve the rows and columns that correspond to the set of points for wdaioktraints are pro-
vided. It may thus result in a partial update of the kernel matrix entries.ig$ug disappears as the
number of provided constraints increases.

The second experiment is reproduced from Kulis et al. (2009). It ainmspoving an existing
low-rank kernel using limited information about class labels. A rank-16&denatrix is computed
for clustering a database of 300 handwritten digits randomly sampled frof) thand 9 digits of
the Digits data set (since we could not find out the specific samples thabbemeselected by Kulis
et al. (2009), we made our own samples selection). The distance cotsti@mandomly sampled
from a linear kernel on the input daita= XX anda = 0.25. The results are presented in Figure 6
(right). The figure shows that KSR, LogDet-KL and the algorithm basetthe polar geometry with
A = 0 perform similarly. These methods are however outperformed by thegedmlgorithms (flat
geometry and polar geometry with= 0.5) when the number of constraints is large enough. This
experiment also enlightens the flexibility of the polar geometry, which allows fits tiee subspace
in situations where too few constraints are available.
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[¢}] ()
5 0.6] 506
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0 0.2 ——LogDet-KL 002 KSR
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Figure 7: Clustering the USPS data detft. clustering score versus number of constraiRigiht:
clustering score versus approximation rank. When the number of pobemestraints is

large enough, the proposed algorithms perform as good as the KSRraigait outper-
forms the LogDet-KL algorithm and baselines.
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Finally, we tackle the kernel learning problem on a larger data set. We adedhset of the
USPS data sé€twhich contains 2007 samples of handwritten zip code digits. The data are firs
transformed using the kernel maggxi,x;) = exp(—Y||xi — x;||3) with y = 0.001 and we further
center the data in the kernel feature space. Pairwise distance congtrairaadomly sampled from
that kernel matrix witho = 0.5. Except KSR that has its own initialization procedure, algorithms
start from the kernel matrix provided by kernel PCA.

Figure 7 (left) shows the clustering performance as a function of the nuoflb@nstraints
provided when the approximation rank is fixedrte- 25. Figure 7 (right) reports the clustering
performance as a function of the approximation rank when the numbemeframts provided is
fixed to 10K. When the number of provided constraints is large enough, the propégaithms
perform as good as KSR and outperform the LogDet-KL method that kelennel of fixed-range
space. Average computational times for learning a rank-6 kernel f@0 tonstraints are .87
seconds for KSR, .25 seconds for the algorithm based on the flat geometry,846econds for
LogDet-KL and 4730 seconds for the algorithm based on the polar geometry. In compattigon,
SDP-based MVU algorithm takes 666 seconds to converge.

10.3 Mahalanobis Distance Learning

In this section, we tackle the problem of learning from data a Mahalanohi&ndes for supervised
classification and compare our methods to state-of-the-art Mahalanobis le&tning algorithms.

10.3.1 EXPERIMENTAL SETUP

For the considered problem, the purpose is to learn the paramet#ra Mahalanobis distance

dw (xi,X;j) = (Xi —Xj) TW(x; — Xj), such that the distance satisfies as much as possible a given set of
constraints. As in the paper of Davis et al. (2007), we generate th&aims from the learning set

of samples ashy (xj,Xj) < | for same-class pairs aryy (xj,x;) > u for different-class pairs. The
scalarau and| estimate the 95-th and 5-th percentiles of the distribution of Mahalanobis distanc
parameterized by a chosen baselg. The performance of the learned distance is then quantified
by the test error rate oflanearest neighbor classifier based on the learned distance. Aliegres

use the settingg = 5, breaking ties arbitrarily. Unless for the Isolet data set for which aifipe
train/test partition is provided, error rates are computed using two-fokbarlidation. Results are
averaged over 10 random partitions.

10.3.2 G®MPARED METHODS
We compare the following distance learning algorithms:
1. Batch algorithms (10) and (21),
2. ITML (Davis et al., 2007),
3. LMNN (Weinberger and Saul, 2009),
4. Online algorithms (9) and (20),

5. LEGO (Jain et al., 2008),

7. We use the ZIP code data frdmt p: / / www st at - ¢l ass. stanford. edu/ ~ti bs/ El enfSt at Learn/ data. htni .
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6. POLA (Shalev-Shwartz et al., 2004).

When some methods require the tuning of an hyper-parameter, this is pedfoyragwo-fold cross-
validation procedure. The slack parameter of ITML as well as the steEROLA are selected

in the range of values ¥@vith k = —3, ..., 3. The step size of LEGO is selected in this same range
of value for the UCI data sets, and in the range of valleviith k = —10, ..., —5 for the larger data
sets Isolet and Prostate.

10.3.3 RESULTS

35
Il Batch flat geometry
Il Batch polar geometry
30 JimML
[CJLEGO
;\E? 25 [CJrPoLA
< EELVMNN
2 Bl Euclidean baseline
w 20
c
o
815
k7
3
o 10
5

Wine lonosphere Bal. Scale Iris Soybean

Figure 8: Full-rank distance learning on the UCI data sets. The promdgedthms compete with
state-of-the-art methods for learning a full-rank Mahalanobis distance.

Reproducing a classical benchmark experiment from Kulis et al. (2089)3emonstrate that
the proposed batch algorithms compete with state-of-the-art full-rank listabizis distance learn-
ing algorithms on several UCI data sets (Figure 8). We have not incluéeshime versions of our
algorithms in this comparison because we consider that the batch apm@mehaore relevant on
such small data sets. Except POLA and LMNN which do not learn fromiged pairwise con-
straints, all algorithms processe{@ — 1) constraints, where is the number of classes in the data.
We choose the Euclidean distan®®d = I) as the baseline distance for initializing the algorithms.
Figure 8 reports the results. The two proposed algorithms compete favaviti the other full-
rank distance learning techniques, achieving the minimal average errérdbthe 5 considered
data sets.

We finally evaluate the proposed algorithms on higher-dimensional data sts iow-rank
regime (Figure 9). The distance constraints are generated as in thenkiléage, but the initial
baseline matrix is now computed %% = GoG/, whereGg's columns are the top principal direc-
tions of the data. For the Isolet data set, KOfbnstraints are generated, and1€onstraints are
generated for the Prostate data set. For scalability reasons, algorithn@, ILRGNN and ITML
must proceed in two steps: the data are first projected onto the top pridaipetions and then
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Figure 9: Low-rank Mahalanobis distance learning. For low values ofdhk, the proposed al-
gorithms perform much better than the methods that project the data on thértcipadr
directions and learn a full-rank distance on the projected data.

a full-rank distance is learned within the subspace spanned by theseirioalr directions. In
contrast, our algorithms are initialized with the top principal direction, but tipeyaie on the data
in their original feature space. Overall, the proposed algorithms achieeb batter performance
than the methods that first reduce the data. This is particularly striking wheranlkeis very
small compared to problem size. The performance gap reduces as khecerases. However,
for high-dimensional problems, one is usually interested in efficient low-egproximations that
gives satisfactory results.

11. Conclusion

In this paper, we propose gradient descent algorithms to learn asiegresodel parameterized by
a fixed-rank positive semidefinite matrix. The rich Riemannian geometry ofahef dixed-rank
PSD matrices is exploited through a geometric optimization approach.

The resulting algorithms overcome the main difficulties encountered by thimpstywproposed
methods as they scale to high-dimensional problems, and they naturallgettierrank constraint
as well as the positive definite property while leaving the range space afidlréx free to evolve
during optimization.

We apply the proposed algorithms to the problem of learning a distance farfobimn data,
when the distance is parameterized by a fixed-rank positive semidefinite métiexgood perfor-
mance of the proposed algorithms is illustrated over several benchmarks.
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Appendix A. Convergence Proof of Algorithm (9)

Bottou (1998) reviews the mathematical tools required to prove almost sovergence, that is
asymptotic convergence with probability one, of stochastic gradient algwithlmost sure con-
vergence follows from the following five assumptions:

(A1) F(G) =Exy{¢(y,y)} > Ois three times differentiable with bounded derivatives,
(A2) the step sizes satisfyy* 1 nZ < o andy 4N = o,
(A3) Exy{llgradf (G)[} < ki+kl|G|[Z, wheref (G) = ((3,y),

(A4) 3h; >0, inf Tr(G"Ex{gradf(G)}) >0,

IGI[E>hy

(A5) 3hy > hy,V(X,y) e X x 9, sup |gradf(G)||r <ks,
IG|IE<he

where|| - ||r is the Frobenius norm. Provided that algorithm (9) is equipped with an adagitp
sizes = nt/ max(||Gt||2,1), wheren, satisfy (A2), we have the following convergence result.

Proposition 1 For bounded datdX,y), algorithm(9) equipped with the step sizedefined above
converges almost surely to the set of stationary points of the cost fum?:x@p{(y—y)z/Z}.

Proof The proof is completed in two steps. First, it is shown that the stochasticrsemjue
U = max(hy, [|G¢[?),

defines a Lyapunov process (always positive and decreasingeoag®) which is bounded almost
surely byh,. This implies thatG; is almost surely confined within distanggh, from the ori-
gin and provides almost sure bounds on all continuous functiora;.ofin Bottou (1998), con-
finement is essentially based on (A3) and (A4). In the current proefrely on the fact that
Ex y{llgradf (G)/ max(|[G|[Z, 1) |8} < ki + ke[| G|E.

Second, the Lyapunov process-= F(G;) > 0 is proved to converge almost surely. Convergence
of F(Gy) is then used to show tha = gradF (G;) tends to zero almost surely. Technical details
are adapted from the paper of Bottou (1998). |

In practice, saddle points and local maxima are unstable solutions whilergenege to asymp-
totic plateaus is excluded by (A4). As a result, almost sure convergerctal minimum of the
expected cost is obtained.
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