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Abstract

The paper addresses the problem of learning a regression model parameterized by a fixed-rank
positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on
scalability to high-dimensional problems. The mathematical developments rely on the theory of
gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixed-
rank positive semidefinite matrices. In contrast with previous contributions in the literature, no
restrictions are imposed on the range space of the learned matrix. The resulting algorithms maintain
a linear complexity in the problem size and enjoy important invariance properties. We apply the
proposed algorithms to the problem of learning a distance function parameterized by a positive
semidefinite matrix. Good performance is observed on classical benchmarks.

Keywords: linear regression, positive semidefinite matrices, low-rank approximation, Riemannian
geometry, gradient-based learning

1. Introduction

A fundamental problem of machine learning is the learning of a distance between data samples.
When the distance can be written as a quadratic form (either in the data space(Mahalanobis dis-
tance) or in a kernel feature space (kernel distance)), the learning problem is a regression problem
on the set of positive definite matrices. The regression problem is turned into the minimization of
the prediction error, leading to an optimization framework and gradient-based algorithms.

The present paper focuses on the nonlinear nature of the search space. The classical framework
of gradient-based learning can be generalized provided that the nonlinear search space is equipped
with a proper Riemannian geometry. Adopting this general framework, we design novel learning
algorithms on the space of fixed-rank positive semidefinite matrices, denotedby S+(r,d), whered
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is the dimension of the matrix, andr is its rank. Learning a parametric model inS+(r,d) amounts
to jointly learn ar-dimensional subspace and a quadratic distance in this subspace.

The framework is motivated bylow-rank learningin large-scale applications. If the data space
is of dimensiond, the goal is to maintain a linear computational complexityO(d). In contrast to
the classical approach of first reducing the dimension of the data and thenlearning a distance in the
reduced space, there is an obvious conceptual advantage to performthe two tasks simultaneously. If
this objective can be achieved without increasing the numerical cost of thealgorithm, the advantage
becomes also practical.

Our approach makes use of two quotient geometries of the setS+(r,d) that have been recently
studied by Journée et al. (2010) and Bonnabel and Sepulchre (2009). Making use of a general theory
of line-search algorithms in quotient matrix spaces (Absil et al., 2008), we obtain concrete gradient
updates that maintain the rank and the positivity of the learned model at each iteration. This is
because the update is intrinsically constrained to belong to the nonlinear search space, in contrast
to early learning algorithms that neglect the non linear nature of the search space in the update and
impose the constraints a posteriori (Xing et al., 2002; Globerson and Roweis, 2005).

Not surprisingly, our approach has close connections with a number of recent contributions
on learning algorithms. Learning problems over nonlinear matrix spaces include the learning of
subspaces (Crammer, 2006; Warmuth, 2007), rotation matrices (Arora, 2009), and positive defi-
nite matrices (Tsuda et al., 2005). The space of (full-rank) positive definite matricesS+(d) is of
particular interest since it coincides with our set of interest in the particularcaser = d.

The use of Bregman divergences and alternating projection has been recently investigated for
learning inS+(d). Tsuda et al. (2005) propose to use thevon Neumanndivergence, resulting in
a generalization of the well-known AdaBoost algorithm (Schapire and Singer, 1999) to positive
definite matrices. The use of the so-calledLogDetdivergence has also been investigated by Davis
et al. (2007) in the context of Mahalanobis distance learning.

More recently, algorithmic work has focused on scalability in terms of dimensionality and data
set size. A natural extension of the previous work on positive definite matrices is thus to consider
low-rank positive semidefinite matrices. Indeed, whereas algorithms basedon full-rank matrices
scale asO(d3) and requireO(d2) storage units, algorithms based on low-rank matrices scale as
O(dr2) and requireO(dr) storage units (Fine et al., 2001; Bach and Jordan, 2005). This is a sig-
nificant complexity reduction as the approximation rankr is typically very small compared to the
dimension of the problemd.

Extending the work of Tsuda et al. (2005), Kulis et al. (2009) recently considered the learning
of positive semidefinite matrices. The authors consider Bregman divergence measures that enjoy
convexity properties and lead to updates that preserve the rank as well as the positive semidefinite
property. However, these divergence-based algorithms intrinsically constrain the learning algorithm
to a fixed range space. A practical limitation of this approach is that the subspace of the learned
matrix is fixed beforehand by the initial condition of the algorithm.

The approach proposed in the present paper is in a sense more classical (we just perform a
line-search in a Riemannian manifold) but we show how to interpret Bregman divergence based al-
gorithms in our framework. This is potentially a contribution of independent interest since a general
convergence theory exists for line-search algorithms on Riemannian manifolds. The generality of
the proposed framework is of course motivated by the non-convex nature of the rank constraint.

The paper is organized as follows. Section 2 presents the general optimization framework of
Riemannian learning. This framework is then applied to the learning of subspaces (Section 4),
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positive definite matrices (Section 5) and fixed-rank positive semidefinite matrices (Section 6). The
novel proposed algorithms are presented in Section 7. Section 8 discusses the relationship to existing
work as well as extensions of the proposed approach. Applications arepresented in Section 9 and
experimental results are presented in Section 10.

2. Linear Regression on Riemannian Spaces

We consider the following standard regression problem. Given

(i) data pointsX, in a linear data spaceX = R
d×d,

(ii) observationsy, in a linear output spaceY = R, (orRd),

(iii) a regression model ˆy= ŷW(X) parameterized by a matrixW in a search spaceW ,

(iv) a quadratic loss functionℓ(ŷ,y) = 1
2(ŷ−y)2,

find the optimal fitW∗ that minimizes theexpected cost

F(W) = EX,y{ℓ(ŷ,y)}=
∫

ℓ(ŷ,y) dP(X,y),

whereℓ(ŷ,y) penalizes the discrepancy between observations and predictions, andP(X,y) is the
(unknown) joint probability distribution over data and observation pairs. Although our main interest
will be in the scalar model

ŷ= Tr(WX),

the theory applies equally to vector data pointsx ∈ R
d, ŷ = Tr(WxxT) = xTWx, to a regression

model parameterized by a vectorw ∈ R
d, ŷ= wTx, or to a vector output space ˆy= Wx.

As it is generally not possible to computeF(W) explicitly, batch learning algorithms minimize
instead theempirical cost

fn(W) =
1
2n

n

∑
i=1

(ŷi −yi)
2, (1)

which is the average loss computed over a finite number of samples{(X i ,yi)}n
i=1.

Online learning algorithms (Bottou, 2004) consider possibly infinite sets of samples{(Xt ,yt)}t≥1,
received one at a time. At timet, the online learning algorithm minimizes the instantaneous cost

ft(W) =
1
2
(ŷt −yt)

2.

In the sequel, we only present online versions of algorithms to shorten the exposition. The single
necessary change to convert an online algorithm into its batch counterpart is to perform, at each
iteration, the minimization of the empirical costfn instead of the minimization of the instantaneous
cost ft . In the sequel, we denote byf the cost function that is minimized at each iteration.

Our focus will be onnonlinearsearch spacesW . We only requireW to have the structure of a
Riemannian matrix manifold. Following Absil et al. (2008), an abstract gradient descent algorithm
can then be derived based on the update formula

Wt+1 = RWt (−st gradf (Wt)). (2)
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The gradient gradf (Wt) is an element of the tangent spaceTWtW . The scalarst > 0 is the step size.
The retractionRWt is a mapping from the tangent spaceTWtW to the Riemannian manifold. Under
mild conditions on the retractionR, the classical convergence theory of line-search algorithms in
linear spaces generalizes to Riemannian manifolds (see Absil et al., 2008, Chapter 4).

Observe that the standard (online) learning algorithm for linear regression inR
d,

wt+1 = wt −st(wT
t xt −yt)xt , (3)

can be interpreted as a particular case of (2) for the linear model ˆy= wTx in the linear search space
W = R

d. The Euclidean metric turnsRd in a (flat) Riemannian manifold. For a scalar function
f : Rd → R of w, the gradient satisfies

D f (w)[δδδ] = δδδTgradf (w),

whereD f (w)[δδδ] is the directional derivative off in the directionδδδ, and the natural retraction

Rwt (−st gradf (wt)) = wt −st gradf (wt),

induces a line-search along “straight lines" which are geodesics (that ispaths of shortest length) in
linear spaces. Withf (w) = 1

2(w
Tx−y)2, one arrives at (3).

This example illustrates that the main ingredients to obtain a concrete algorithm areconvenient
formulas for the gradient and for the retraction mapping. This paper provides such formulas for
three examples of nonlinear matrix search spaces: the Grassmann manifold (Section 4), the cone
of positive definite matrices (Section 5), and the set of fixed-rank positive semidefinite matrices
(Section 6). Each of those sets will be equipped withquotient Riemannian geometriesthat provide
convenient formulas for the gradient and for the retractions. Line-search algorithms in quotient
Riemannian spaces are discussed in detail in the book of Absil et al. (2008). For the readers conve-
nience, basic concepts and notations are introduced in the next section.

3. Line-Search Algorithms on Matrix Manifolds

This section summarizes the exposition of Absil et al. (2008, Chapters 3 and4).
Restrictions on the search space are generally encoded into optimization algorithms by means

of particular constraints or penalties expressed as a function of the search variable. However, when
the search space is endowed with a particular manifold structure, it is possible to design an explo-
ration strategy that is consistent with the geometry of the problem and that appropriately turns the
problem into an unconstrained optimization problem. This approach is the purpose of optimization
algorithms defined on matrix manifolds.

Informally, a manifoldW is a space endowed with a differentiable structure. One usually
makes the distinction between embedded submanifolds (subsets of larger manifolds) and quotient
manifolds (manifolds described by a set of equivalence classes). An intuitive example of embedded
submanifold is the sphere embedded inR

d. A typical example of quotient manifold is the set ofr-
dimensional subspaces inRd, viewed as a collection ofr-dimensional orthogonal frames that cannot
be superposed by a rotation. The rotational variants of a given frame thus define an equivalence class
(denoted using square brackets[·]), which is identified as a single point on the quotient manifold.

To develop line-search algorithms, the notion of gradient of a scalar costfunction needs to be
extended to manifolds. For that purpose, the manifoldW is endowed with a metricgW(ξW ,ζW),
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Figure 1: Gradient iteration on a Riemannian manifold. The search direction−gradf (Wt) belongs
to the tangent spaceTWtW . The updated pointWt+1 automatically remains inside the
manifold thanks to the retraction mapping.

which is an inner product defined between elementsξW ,ζW of the tangent spaceTWW at W. The
metric induces a norm on the tangent spaceTWW atW:

‖ξW‖W =
√

gW(ξW ,ξW).

The gradient of a smooth scalar functionf : W → R at W ∈W is the only element gradf (W) ∈
TWW that satisfies

D f (W)[∆∆∆] = gW(∆∆∆,gradf (W)), ∀∆∆∆ ∈ TWW ,

where∆∆∆ is a matrix representation of a “geometric" tangent vectorsξ, and where

D f (W)[∆∆∆] = lim
t→0

f (W + t∆∆∆)− f (W)

t
,

is the standard directional derivative off atW in the direction∆∆∆.
For quotient manifoldsW = W / ∼, whereW is the total space and∼ is the equivalence

relation that defines the quotient, the tangent spaceT[W]W at [W] is sufficiently described by the
directions that do not induce any displacement in the set of equivalence classes[W]. This is achieved
by restricting the tangent space at[W] to horizontal vectors̄ξW ∈ TWW at W that are orthogonal
to the equivalence class[W]. Provided that the metric ¯gW in the total space is invariant along the
equivalence classes, it defines a metric in the quotient space

g[W](ξ[W],ζ[W]), ḡW(ξ̄W , ζ̄W).

The horizontal gradientgradf (W) is obtained by projecting the gradient gradf (W) in the total
space onto the set of horizontal vectorsξ̄W atW.

Natural displacements atW in a directionξW on the manifold are performed by following
geodesics (paths of shortest length on the manifold) starting fromW and tangent toξW . This is

597



MEYER, BONNABEL AND SEPULCHRE

performed by means of the exponential mapping

Wt+1 = ExpWt
(stξWt ),

which induces a line-search algorithm along geodesics.
A more general update formula is obtained if we relax the constraint of movingalong geodesics.

The retraction mapping
Wt+1 = RWt (stξWt ),

locally approximates the exponential mapping. It provides an attractive alternative to the exponen-
tial mapping in the design of optimization algorithms on manifolds, as it reduces the computational
complexity of the update while retaining the essential properties that ensure convergence results.
WhenξWt coincide with−gradf (Wt) a gradient descent algorithm on the manifold is obtained.
Figure 1 pictures a gradient descent update onW .

4. Linear Regression on the Grassmann Manifold

As a preparatory step to Section 6, we review the online subspace learning(Oja, 1992; Crammer,
2006; Warmuth, 2007) in the present framework. LetX = Y = R

d, and consider the linear model

ŷ = UUTx,

with U ∈ St(r,d) = {U ∈ R
d×r s.t. UTU = I}, the Stiefel manifold ofr-dimensional orthonormal

bases inRd. The quadratic loss is then

f (U) = ℓ(ŷ,x) =
1
2
‖ŷ−x‖2

2 =
1
2
‖UUTx−x‖2

2. (4)

Because the cost (4) is invariant by orthogonal transformationU 7→ UO, O ∈ O(r), whereO(r) =
St(r, r) is the orthogonal group, the search space is in fact a set of equivalence classes

[U] = {UO s.t. O ∈ O(r)}.

This set is denoted by St(r,d)/O(r). It is a quotient representationof the set ofr-dimensional
subspaces inRd, that is, the Grassmann manifold Gr(r,d). The quotient geometries of Gr(r,d) have
been well studied (Edelman et al., 1998; Absil et al., 2004). The metric

g[U](ξ[U],ζ[U]), ḡU(ξ̄U, ζ̄U),

is induced by the standard metric inRd×r ,

ḡU(∆∆∆1,∆∆∆2) = Tr(∆∆∆T
1 ∆∆∆2),

which is invariant along the fibers, that is, equivalence classes. Tangent vectorsξ[U] at [U] are
represented by horizontal tangent vectorsξ̄U atU:

ξ̄U = ΠU∆∆∆ = (I −UUT)∆∆∆, ∆∆∆ ∈ R
d×r .

Therefore, the gradient admits the simple horizontal representation

gradf (U) = ΠU gradf (U), (5)
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where gradf (U) is defined by the identity

D f (U)[∆∆∆] = ḡU(∆∆∆,gradf (U)).

A standard retraction in Gr(r,d) is the exponential mapping, that induces a line-search along
geodesics. The exponential map has the closed-form expression

ExpU(ξ̄U) = UV cos(ΣΣΣ)VT +Z sin(ΣΣΣ)VT , (6)

which is obtained from a singular value decomposition of the horizontal vector ξ̄U = ZΣΣΣVT . Fol-
lowing Absil et al. (2004), an alternative convenient retraction in Gr(r,d) is given by

RU(sξ̄U) = [U+sξ̄U] = qf(U+sξ̄U), (7)

where qf(·) is a function that extracts the orthogonal factor of the QR-decomposition ofits argument.
A possible advantage of the retraction (7) over the retraction (6) is that, in contrast to the SVD
computation, the QR decomposition is computed in a fixed numberO(dr2) of arithmetic operations.

With the formulas (5) and (7) applied to the cost function (4), the abstract update (2) becomes

Ut+1 = qf(Ut +st(I −UtUT
t )xtxT

t Ut),

which is Oja’s update for subspace tracking (Oja, 1992).

5. Linear Regression on the Cone of Positive Definite Matrices

The learning of a full-rank positive definite matrix is recast as follows. LetX = R
d×d andY = R,

and consider the model
ŷ= Tr(WX),

with W ∈ S+(d) = {W ∈ R
d×d s.t. W = WT ≻ 0}. SinceW is symmetric, only the symmetric part

of X will contribute to the trace. The previous model is thus equivalent to

ŷ= Tr(WSym(X)),

where Sym(·) extract the symmetric part of its argument, that is, Sym(B) = (BT +B)/2. The
quadratic loss is

f (W) = ℓ(ŷ,y) =
1
2
(Tr(WSym(X))−y)2.

The quotient geometries ofS+(d) are rooted in the matrix factorization

W = GGT , G ∈ GL(d),

where GL(d) is the set of all invertibled× d matrices. Because the factorization is invariant by
rotation,G 7→ GO, O ∈ O(d), the search space is once again identified to the quotient

S+(d)≃ GL(d)/O(d),

which represents the set of equivalence classes

[G] = {GO s.t. O ∈ O(d)}.

We will equip this quotient with two meaningful Riemannian metrics.
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5.1 A Flat Metric on S+(d)

The metric on the quotient GL(d)/O(d):

g[G](ξ[G],ζ[G]), ḡG(ξ̄G, ζ̄G),

is induced by the standard metric inRd×d,

ḡG(∆∆∆1,∆∆∆2) = Tr(∆∆∆T
1 ∆∆∆2),

which is invariant by rotation along the set of equivalence classes. As a consequence, it induces a
metricg[G] onS+(d). With this geometry, a tangent vectorξ[G] at [G] is represented by a horizontal
tangent vector̄ξG atG by

ξ̄G = Sym(∆∆∆)G, ∆∆∆ ∈ R
d×d.

The horizontal gradient of

f (G) = ℓ(ŷ,y) =
1
2
(Tr(GGTSym(X))−y)2, (8)

is the unique horizontal vectorgradf (G) that satisfies

D f (G)[∆∆∆] = ḡG(∆∆∆,gradf (G)).

Elementary computations yield

gradf (G) = 2(ŷ−y)Sym(X)G.

Since the metric is flat, geodesics are straight lines and the exponential mapping is

ExpG(ξ̄G) = [G+ ξ̄G] = G+ ξ̄G.

Those formulas applied to the cost (8) turns the abstract update (2) into thesimple formula

Gt+1 = Gt −2st(ŷt −yt)Sym(Xt)Gt , (9)

for an online gradient algorithm and

Gt+1 = Gt −2st
1
n

n

∑
i=1

(ŷi −yi)Sym(X i)Gt , (10)

for a batch gradient algorithm.

5.2 The Affine-Invariant Metric on S+(d)

BecauseS+(d)≃ GL(d)/O(d) is the quotient of two Lie groups, its (reductive) geometric structure
can be further exploited (Faraut and Koranyi, 1994). Indeed the group GL(d) has a natural action on
S+(d) via the transformationW 7→ AWA T for anyA ∈ GL(d). The affine-invariant metric admits
interesting invariance properties to these transformations. To build such anaffine-invariant metric,
the metric at identity

gI (ξI ,ζI ) = Tr(ξI ζI ),
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is extended to the entire space to satisfy the invariance property

gI (ξI ,ζI ) = gW(W
1
2 ξI W

1
2 ,W

1
2 ζI W

1
2 ) = gW(ξW ,ζW).

The resulting metric onS+(d) is defined by

gW(ξW ,ζW) = Tr(ξWW−1ζWW−1). (11)

The affine-invariant geometry ofS+(d) has been well studied, in particular in the context of in-
formation geometry (Smith, 2005). Indeed, any positive definite matrixW ∈ S+(d) can be iden-
tified to the multivariate normal distribution of zero meanN (0,W), whose probability density is
p(z;W) = 1

Z exp(−1
2zTW−1z), whereZ is a normalizing constant. Using such a metric allows to

endow the space of parametersS+(d) with a distance that reflects the proximity of the probability
distributions. The Riemannian metric thus distorts the Euclidean distances between positive defi-
nite matrices in order to reflect the amount of information between the two associated probability
distributions. IfξW is a tangent vector toW ∈ S+(d), we have the following approximation for the
Kullback-Leibler divergence (up to third order terms)

DKL(p(z;W)||p(z;W +ξW))≈ 1
2

gFIM
W (ξW ,ξW) =

1
2

gW(ξW ,ξW),

wheregFIM
W is the well-known Fisher information metric atW, which coincides with the affine-

invariant metric (11) (Smith, 2005). With this geometry, tangent vectorsξW are expressed as

ξW = W
1
2 Sym(∆∆∆)W

1
2 , ∆∆∆ ∈ R

d×d.

The gradient gradf (W) is given by

D f (W)[∆∆∆] = gW(∆∆∆,gradf (W)).

Applying this formula to (5) yields

gradf (W) = (ŷ−y)WSym(X)W. (12)

The exponential mapping has the closed-form expression

ExpW(ξW) = W
1
2 exp(W− 1

2 ξWW− 1
2 )W

1
2 . (13)

Its first-order approximation provides the convenient retraction

RW(sξW) = W −sξW . (14)

The formulas (12) and (13) applied to the cost (5) turn the abstract update (2) into

Wt+1 = W
1
2
t exp(−st(ŷt −yt)W

1
2
t Sym(Xt)W

1
2
t )W

1
2
t .

With the alternative retraction (14), the update becomes

Wt+1 = Wt −st(ŷt −yt)WtSym(Xt)Wt ,

which is the update of Davis et al. (2007) based on the LogDet divergence (see Section 8.1).
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5.3 The Log-Euclidean Metric onS+(d)

For the sake of completeness, we briefly review a third Riemannian geometry of S+(d), that exploits
the property

W = exp(S), S= ST ∈ R
d×d.

The matrix exponential thus provides a global diffeomorphism betweenS+(d) and the linear space
of d×d symmetric matrices. This geometry is studied in detail in the paper (Arsigny et al., 2007).
The cost function

f (S) = ℓ(ŷ,y) =
1
2
(Tr(exp(S)Sym(X))−y)2,

thus defines a cost function in the linear space of symmetric matrices. The gradient of this cost
function is given by

gradf (S) = (ŷt −yt)Sym(Xt),

and the retraction is
RS(sξS) = exp(logW +sξS).

The corresponding gradient descent update is

Wt+1 = exp(logWt −st(ŷt −yt)Sym(Xt)),

which is the update of Tsuda et al. (2005) based on the von Neumann divergence.

6. Linear Regression on Fixed-Rank Positive Semidefinite Matrices

We now present the proposed generalizations to fixed-rank positive semidefinite matrices.

6.1 Linear Regression with a Flat Geometry

The generalization of the results of Section 5.1 to the setS+(r,d) is a straightforward consequence
of the factorization

W = GGT , G ∈ R
d×r
∗ ,

whereRd×r
∗ = {G ∈ R

d×r s.t. det(GTG) 6= 0}. Indeed, the flat quotient geometry of the manifold
S+(d) ≃ GL(d)/O(d) is generalized to the quotient geometry ofS+(r,d) ≃ R

d×r
∗ /O(r) by a mere

adaptation of matrix dimension, leading to the updates (9) and (10) for matricesGt ∈ R
d×r
∗ . The

mathematical derivation of these updates is a straight application of the materialpresented in the
paper of Journée et al. (2010), where the quotient geometry ofS+(r,d) ≃ R

d×r
∗ /O(r) is studied in

details. In the next section, we propose an alternative geometry that jointly learns ar-dimensional
subspace and a full-rank quadratic model in this subspace.

6.2 Linear Regression with a Polar Geometry

In contrast to the flat geometry, the affine-invariant geometry ofS+(d) ≃ GL(d)/O(d) does not
generalize directly toS+(r,d)≃R

d×r
∗ /O(r) becauseRd×r

∗ is not a group. However, a generalization
is possible by considering the polar matrix factorization

G = UR, U ∈ St(r,d), R ∈ S+(r).
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It is obtained from the singular value decomposition ofG = ZΣΣΣVT asU = ZVT andR = VΣΣΣVT

(Golub and Van Loan, 1996). This gives a polar parameterization ofS+(r,d)

W = UR2UT .

This development leads to the quotient representation

S+(r,d)≃ (St(r,d)×S+(r))/O(r), (15)

based on the invariance ofW to the transformation(U,R2) 7→ (UO,OTR2O), O ∈ O(r). It thus
describes the set of equivalence classes

[(U,R2)] = {(UO,OTR2O) s.t. O ∈ O(r)}.

The cost function is now given by

f (U,R2) = ℓ(ŷ,y) =
1
2
(Tr(UR2UTSym(X))−y)2. (16)

The Riemannian geometry of (15) has been recently studied by Bonnabel and Sepulchre (2009). A
tangent vectorξ[W] = (ξU,ξR2)[U,R2] at [(U,R2)] is described by a horizontal tangent vectorξ̄W =

(ξ̄U, ξ̄R2)(U,R2) at (U,R2) by

ξ̄U = ΠU∆∆∆, ∆∆∆ ∈ R
d×r , ξ̄R2 = RSym(ΨΨΨ)R, ΨΨΨ ∈ R

r×r .

The metric

g[W](ξ[W],ζ[W]) , ḡW(ξ̄W , ζ̄W)

=
1
λ

ḡU(ξ̄U, ζ̄U)+
1

1−λ
ḡR2(ξ̄R2, ζ̄R2), (17)

whereλ ∈ (0,1), is induced by the metric of St(r,d) and the affine-invariant metric ofS+(r),

ḡU(∆∆∆1,∆∆∆2) = Tr(∆∆∆T
1 ∆∆∆2), ḡR2(ΨΨΨ1,ΨΨΨ2) = Tr(ΨΨΨ1R−2ΨΨΨ2R−2).

The proposed metric is invariant along the set of equivalence classes and thus induces a quotient
structure onS+(r,d). Alternative metrics onS+(r) can be considered as long as the metric remains
invariant along the set of equivalence classes. For instance, the log-Euclidean metric discussed in
Section 5.3 would qualify as a valid alternative.

A retraction is provided by distinct retractions onU andR2,

RU(sξ̄U) = qf(U+sξ̄U) (18)

RR2(sξ̄R2) = Rexp(sR−1ξ̄R2R−1)R. (19)

One should observe that this retraction is not the exponential mapping ofS+(r,d). This illustrates
the interest of considering more general retractions than the exponentialmapping. Indeed, as dis-
cussed in the paper of Bonnabel and Sepulchre (2009), the geodesics (and therefore the exponential
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Batch regression Online regression

Input: {(X i ,yi)}n
i=1

Require: G0 or (U0,R0), λ
1: t = 0
2: repeat
3:
4:
5:
6:
7: Compute Armijo stepsA from (22)
8: Perform update (10) or (21) usingsA
9:

10:
11: t = t +1
12: until stopping criterion (24) is satisfied
13: return G t

Input: {(Xt ,yt)}t≥1
Require: G0 or (U0,R0), λ, p, s, t0, T
1: t = 0,count= p
2: while t ≤ T do
3: if count> 0 then
4: Accumulate gradient
5: count= count−1
6: else
7: Compute step sizest according to (23)
8: Perform update (9) or (20) usingst

9: count= p
10: end if
11: t = t +1
12: end while
13: return G T

Figure 2: Pseudo-codes for the proposed batch and online algorithms.

mapping) do not appear to have a closed form in the considered geometry.Combining the gradient
of (16) with the retractions (18) and (19) gives

Ut+1 = qf
(

Ut −2λst(ŷt −yt)(I −UtUT
t )Sym(Xt)UtR2

t

)

,

R2
t+1 = Rt exp

(

−(1−λ)st(ŷt −yt)RtUT
t Sym(Xt)UtRt

)

Rt .

A factorizationRt+1RT
t+1 of R2

t+1 is obtained thanks to the property of matrix exponential, exp(A)
1
2 =

exp(1
2A). UpdatingRt+1 instead ofR2

t+1 is thus more efficient from a computational point of view,
since it avoids the computation of a square root a each iteration. This yields the online gradient
descent algorithm

Ut+1 = qf
(

Ut −2λst(ŷt −yt)(I −UtUT
t )Sym(Xt)UtR2

t

)

,

Rt+1 = Rt exp

(

−1
2
(1−λ)st(ŷt −yt)RtUT

t Sym(Xt)UtRt

)

,
(20)

and the batch gradient descent algorithm

Ut+1 = qf

(

Ut −2λst
1
n

n

∑
i=1

(ŷi −yi)(I −UtUT
t )Sym(X i)UtR2

t

)

,

Rt+1 = Rt exp

(

−1
2
(1−λ)st

1
n

n

∑
i=1

(ŷi −yi)RtUT
t Sym(X i)UtRt

)

.

(21)

7. Algorithms

This section documents implementation details of the proposed algorithms. Genericpseudo-codes
are provided in Figure 2 and Table 1 summarizes computational complexities.
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Data type Input space Batch flat (10) Batch polar (21) Online flat (9) Online polar (20)

X R
d×d O(d2rn) O(d2r2n) O(d2rp) O(d2r2p)

xxT
R

d O(drn) O(dr2n) O(drp) O(dr2p)

Table 1: Computational costs of the proposed algorithms.

7.1 From Subspace Learning to Distance Learning

The update expressions (21) and (20) show thatλ, the tuning parameter of the Riemannian metric
(17), acts as a weighting factor on the search direction. A proper tuning of this parameter allows us
to place more emphasis either on the learning of the subspaceU or on the distance in that subspace
R2. In the caseλ = 1, the algorithm only performs subspace learning. Conversely, in the caseλ = 0,
the algorithm learns a distance for a fixed range space (see Section 8.1).Intermediate values ofλ
continuously interpolate between the subspace learning problem and the distance learning problem
at fixed range space.

A proper tuning ofλ is of interest when a good estimate of the subspace is available (for instance
a subspace given by a proper dimension reduction technique) or when too few observations are
available to jointly estimate the subspace and the distance within that subspace. In the latter case,
one has the choice to favor either subspace or distance learning.

Experimental results of Section 10 recommend the valueλ = 0.5 as the default setting.

7.2 Invariance Properties

A nice property of the proposed algorithms is their invariance with respect torotationsW 7→OTWO,
∀O ∈ O(d). This invariance comes from the fact that the chosen metrics are invariantto rotations.
A practical consequence is that a rotation of the input matrixX 7→ OXOT (for instance a whitening
transformation of the vectorsx 7→ Ox if X = xxT) will not affect the behavior of the algorithms.

Besides being invariant to rotations, algorithms (20) and (21) are invariant with respect to scal-
ingsW 7→ µW with µ> 0. Consequently, a scaling of the input data(X,y) 7→ (µX,µy), such as a
change of units, will not affect the behavior of these algorithms.

7.3 Mini-Batch Extension of Online Algorithms

We consider a mini-batch extension of stochastic gradient algorithms. It consists in performing each
gradient step with respect top ≥ 1 examples at a time instead of a single one. This is a classical
speedup and stabilization heuristic for stochastic gradient algorithms. In theparticular casep= 1,
one recovers plain stochastic gradient descent. Givenp samples(Xt,1,yt,1), ...,(Xt,p,yt,p), received
at timet, the abstract update (2) becomes

Wt+1 = RWt

(

−st
1
p

p

∑
i=1

gradℓ(ŷt,i ,yt,i)

)

.

7.4 Strategies for Choosing the Step Size

We here present strategies for choosing the step size in both the batch andonline cases.
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7.4.1 BATCH ALGORITHMS

For batch algorithms, classical backtracking methods exist (see Nocedaland Wright, 2006). In this
paper, we use the Armijo stepsA defined at each iteration by the condition

f (RWt (−sA gradf (Wt)))≤ f (Wt)+c‖gradf (Wt)‖2
Wt
, (22)

whereWt ∈ S+(r,d) is the current iterate,c ∈ (0,1), f is the empirical cost (1) andRW is the
chosen retraction. In this paper, we choose the particular valuec= 0.5 and repetitively divide by 2
a specified maximum step sizesmax until condition (22) is satisfied for the considered iteration. In
order to reduce the dependence onsmax in a particular problem, it is chosen inversely proportional
to the norm of the gradient at each iteration,

smax=
s0

‖gradf (Wt)‖Wt

.

A typical value ofs0 = 100 showed satisfactory results for all the considered problems.

7.4.2 ONLINE ALGORITHMS

For online algorithms, the choice of the step size is more involved. In this paper, the step size
schedulest is chosen as

st =
s

µ̂grad
× nt0

nt0+ t
, (23)

wheres> 0, n is the number of considered learning samples, ˆµgrad is an estimate of the average
gradient norm‖gradf (W0)‖W0, andt0 > 0 controls the annealing rate ofst . During a pre-training
phase of our online algorithms, we select a small subset of learning samplesand try the values 2k

with k = −3, ...,3 for boths andt0. The values ofs andt0 that provide the best decay of the cost
function are selected to process the complete set of learning samples.

7.5 Stopping Criterion

Batch algorithms are stopped when the value or the relative change of the empirical cost f is small
enough, or when the relative change in the parameter variation is small enough,

f (Wt+1)≤ εtol, or
f (Wt+1)− f (Wt)

f (Wt)
≤ εtol, or

‖Gt+1−Gt‖F

‖Gt‖F
≤ εtol. (24)

We foundεtol = 10−5 to be a good trade-off between accuracy and convergence time.
Online algorithms are run for a fixed number of epochs (number of passesthrough the set of

learning samples). Typically, a few epochs are sufficient to attain satisfactory results.

7.6 Convergence

Gradient descent algorithms on matrix manifolds share the well-characterized convergence proper-
ties of their analog inRd. Batch algorithms converge linearly to a local minimum of the empirical
cost that depends on the initial condition. Online algorithms converge asymptotically to a local
minimum of the expected loss. They intrinsically have a much slower convergence rate than batch
algorithms, but they generally decrease faster the expected loss in the large-scale regime (Bottou
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and Bousquet, 2007). The main idea is that, given a training set of samples,an inaccurate solution
may indeed have the same or a lower expected cost than a well-optimized one.

When learning a matrixW ∈ S+(d), the problem is convex and the proposed algorithms con-
verge toward a global minimum of the cost function, regardless of the initial condition. When
learning a low-rank matrixW ∈ S+(r,d), with r < d, the proposed algorithms converge to a local
minimum of the cost function. This is not the case for heuristic methods proposed in the literature,
which first reduce the dimensionality of the data before fitting a full-rank model on the reduced data
(Davis and Dhillon, 2008; Weinberger and Saul, 2009).

For batch algorithms, the local convergence results follow from the convergence theory of line-
search algorithms on Riemannian manifolds (see, for example, Absil et al., 2008).

For online algorithms, one can prove that the algorithm based on the flat geometry enjoys almost
sure asymptotic convergence to a local minimum of the expected cost. In that case, the parameter
G belongs to an Euclidean space and the convergence results presented by Bottou (1998) apply (see
Appendix A for the main ideas of the proof).

In contrast, when the polar parameterization is used, the convergence results presented by Bot-
tou (1998) do not apply directly because of the quotient nature of the search space. Because the
extension would require technical arguments beyond the scope of the present paper, we refrain
from stating a formal convergence result for the online algorithm based on the polar geometry, even
though the result is quite plausible.

Due to the nonconvex nature of the considered rank-constrained problems, the convergence re-
sults are only local and little can be presently said about the global convergence of the algorithms. A
global analysis of the critical points of the cost functions studied in the present paper is nevertheless
not hopeless and could be facilitated by the considered low-rank parameterizations. For instance,
global convergence properties have been established for PCA algorithms from an explicit analy-
sis of the critical points (Chen et al., 1998). Also, recent results suggest good global convergence
properties for closely related rank minimization problems (Recht et al., 2010). Experimental results
suggest the same conclusions for the algorithms considered in this paper, which means that further
research on global convergence results is certainly deserved.

8. Discussion

This section presents connections with existing works and extensions of theregression model.

8.1 Closeness-Based Approaches

A standard derivation of learning algorithms is as follows (Kivinen and Warmuth, 1997). The
(online) update at timet is viewed as an (approximate) solution of

Wt+1 = argmin
W∈W

D(W,Wt) + st ℓ(ŷ,yt), (25)

whereD is a well-chosen measure of closeness between elements ofW andst is a trade-off param-
eter that controls the balance between the conservative termD(W,Wt) and the innovation (or data
fitting) termℓ(ŷ,yt). One solves (25) by solving the algebraic equation

gradD(W,Wt) =−st gradℓ(ŷt+1,yt), (26)
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which is a first-order (necessary) optimality condition. If the search space W is a Riemannian
manifold and if the closeness measureD(W,Wt) is the Riemannian distance, the solution of (26) is

Wt+1 = ExpWt
(−st gradℓ(ŷt+1,yt)).

Because ˆyt+1 must be evaluated inWt+1, this update equation is implicit. However, ˆyt+1 is generally
replaced by ˆyt (which is equal to ˆyt+1 up to first order terms inst), which gives the update (2) where
the exponential mapping is chosen as a retraction.

Bregman divergences have been popular closeness measures forD(W,Wt) because they render
the optimization of (25) convex. Bregman divergences on the cone of positive definite matrices
include the von Neumann divergence

DvN(W,Wt) = Tr(W logW −W logWt −W +Wt),

and the LogDet divergence

Dld(W,Wt) = Tr(WW−1
t )− logdet(WW−1

t )−d.

We have shown in Section 5 that the resulting updates can be interpreted as line-search updates for
the log-Euclidean metric and the affine-invariant metric ofS+(d) and for specific choices of the
retraction mapping.

Likewise, the algorithm (9) can be recast in the framework (25) by considering the closeness

D f lat(W,Wt) = ‖G−Gt‖2
F ,

whereW = GGT andWt = GtGT
t . Algorithm (20) can be recast in the framework (25) by consid-

ering the closeness

Dpol(W,Wt) = λ
r

∑
i=1

θ2
i + (1−λ) ‖ logR−1

t R2R−1
t ‖2

F .

where theθi ’s are the principal angles between the subspaces spanned byW andWt (Golub and
Van Loan, 1996), and the second term is the affine-invariant distance of S+(d) between matricesR2

andR2
t involved in the polar representation ofW andWt .

Obviously, these closeness measures are no longer convex due to the rank constraint. However
they reduce to the popular divergences in the full-rank case, up to second order terms. In particular,
whenλ = 1, the subspace is fixed and one recovers the setup of learning low-rank matrices of a
fixed range space (Kulis et al., 2009). Thus, the algorithms introduced in the present paper can be
viewed as generalizations of the ones presented in the paper of Kulis et al.(2009), where the issue of
adapting the range space is presented as an open research question. Each of the proposed algorithms
provides an efficient workaround for this problem at the expense of the (potential) introduction of
local minima.

8.2 Handling Inequalities

Inequalities ˆy ≤ y or ŷ ≥ y can be considered by treating them as equalities when they are not
satisfied. This is equivalent to the minimization of the continuously differentiablecost function

f (W) = ℓ(ŷ,y) =
1
2

max(0,ρ(ŷ−y))2,

whereρ =+1 if ŷ≤ y is required andρ =−1 if ŷ≥ y is required.
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8.3 Kernelizing the Regression Model

In this paper, we have not considered the kernelized model

ŷ= Tr(Wφ(x)φ(x)T),

whose predictions can be extended to new input dataφ(x) in the feature spaceF induced by the
nonlinear mappingφ : x ∈ X 7→ φ(x) ∈ F . This is potentially a useful extension of the regression
model that could be investigated in the light of recent theoretical results in thisarea (for example
Chatpatanasiri et al., 2010; Jain et al., 2010).

8.4 Connection with Multidimensional Scaling Algorithms

Given a set ofmdissimilarity measuresD = {δi j}m betweenn data objects, multidimensional scal-
ing algorithms search for ar-dimensional embedding of the data objects into an Euclidean space
representationG ∈ R

n×r (Cox and Cox, 2001; Borg and Groenen, 2005). Each rowg of G is the
coordinates of a data object in a Euclidean space of dimensionr.

Multidimensional scaling algorithms based on gradient descent are equivalent to algorithms (9)
and (10) whenX = (ei −ej)(ei −ej)

T , whereei is thei-th unit vector (see Section 9.1), and when
the multidimensional scaling reduction criterion is the SSTRESS

SSTRESS(G) = ∑
(i, j)∈D

(‖gi −g j‖2
2−δi j )

2.

Vectorsgi andg j are thei-th and j-th rows of matrixG. Gradient descent is a popular technique
in the context of multidimensional scaling algorithms. A stochastic gradient descent approach for
minimizing the SSTRESS has also been proposed by Matsuda and Yamaguchi (2001). A potential
area of future work is the application of the proposed online algorithm (9) for adapting a batch
solution to slight modifications of the dissimilarities over time. This approach has a much smaller
computational cost than recomputing the offline solution at every time step. It further allows to
keep the coordinate representation coherent over time since the solution donot brutally jumps from
a local minimum to another.

9. Applications

The choice of an appropriate distance measure is a central issue for manydistance-based classifi-
cation and clustering algorithms such as nearest neighbor classifiers, support vector machines or
k-means. Because this choice is highly problem-dependent, numerous methods have been proposed
to learn a distance function directly from data. In this section, we present two important distance
learning applications that are compatible with the considered regression model and review some
relevant literature on the subject.

9.1 Kernel Learning

In kernel-based methods (Shawe-Taylor and Cristianini, 2004), the datasamplesx1, ...,xn are first
transformed by a nonlinear mappingφ : x ∈ X 7→ φ(x) ∈ F , whereF is a new feature space that is
expected to facilitate pattern detection into the data.

The kernel function is then defined as the dot product between any two samples inF ,

κ(xi ,x j) = φ(xi) ·φ(x j).
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In practice, the kernel function is represented by a positive semidefinite matrix K ∈ R
n×n whose

entries are defined asK i j = φ(xi) ·φ(x j). This inner product information is used solely to compute
the relevant quantities needed by the algorithms based on the kernel. For instance, a distance is
implicitly defined by any kernel function as the Euclidean distance between thesamples in the new
feature space

dφ(xi ,x j) = ‖φ(xi)−φ(x j)‖2 = κ(xi ,xi)+κ(x j ,x j)−2κ(xi ,x j),

which can be evaluated using only the elements of the kernel matrix by the formula

dφ(xi ,x j) = K ii +K j j −2K i j = Tr
(

K(ei −ej)(ei −ej)
T) ,

which fits into the considered regression model.
Learning a kernel consists in computing the kernel (or Gram) matrix from scratch or improv-

ing a existing kernel matrix based on side-information (in a semi-supervised setting for instance).
Data samples and class labels are generally exploited by means of equality or inequality constraints
involving pairwise distances or inner products.

Most of the numerous kernel learning algorithms that have been proposed work in the so-called
transductive setting, that is, it is not possible to generalize the learned kernel function to new data
samples (Kwok and Tsang, 2003; Lanckriet et al., 2004; Tsuda et al., 2005; Zhuang et al., 2009;
Kulis et al., 2009). In that setting, the total number of considered samples is known in advance and
determines the size of the learned matrix. Recently, algorithms have been proposed to learn a kernel
function that can be extended to new points (Chatpatanasiri et al., 2010; Jain et al., 2010). In this
paper, we only consider the kernel learning problem in the transductivesetting.

When low-rank matrices are considered, kernel learning algorithms can be regarded as dimen-
sionality reduction methods. Very popular unsupervised algorithms in that context are kernel prin-
cipal component analysis (Schölkopf et al., 1998) and multidimensional scaling (Cox and Cox,
2001; Borg and Groenen, 2005). Other kernel learning techniques include the maximum variance
unfolding algorithm (Weinberger et al., 2004) and its semi-supervised version (Song et al., 2007),
and the kernel spectral regression framework (Cai et al., 2007) which encompasses many reduction
criterion (for example, linear discriminant analysis (LDA), locality preserving projection (LPP),
neighborhood preserving embedding (NPE)). See the survey of Yang(2006) for a more complete
state-of-the-art in this area.

Since our algorithms are able to compute a low-rank kernel matrix from data, they can be used
for unsupervised or semi-supervised dimensionality reduction, depending whether or not the class
labels are exploited through the imposed constraints.

9.2 Mahalanobis Distance Learning

Mahalanobis distances generalize the usual Euclidean distance as it allowsto transform the data
with an arbitrary rotation and scaling before computing the distance. Letxi ,x j ∈ R

d be two data
samples, the (squared) Mahalanobis distance between these two samples is parameterized by a
positive definite matrixA ∈ R

d×d and writes as

dA(xi ,x j) = (xi −x j)
TA (xi −x j). (27)

In the particular case ofA being equal to the identity matrix, the standard Euclidean distance is
obtained. A frequently used matrix isA = ΣΣΣ−1, the inverse of the sample covariance matrix. For
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centered data features, computing this Mahalanobis distance is equivalentto perform a whitening
of the data before computing the Euclidean distance.

For low-rank Mahalanobis matrices, computing the distance is equivalent to first perform a lin-
ear data reduction step before computing the Euclidean distance on the reduced data.1 Learning a
low-rank Mahalanobis matrix can thus be seen as learning a linear projectorthat is used for dimen-
sion reduction.

In contrast to kernel functions, Mahalanobis distances easily generalize to new data samples
since the sole knowledge ofA determines the distance function.

In recent years, Mahalanobis distance learning algorithms have been thesubject of many contri-
butions that cannot be all enumerated here. We review a few of them, most relevant for the present
paper. The first proposed methods have been based on successiveprojections onto a set of large mar-
gin constraints (Xing et al., 2002; Shalev-Shwartz et al., 2004). The methodproposed by Globerson
and Roweis (2005) seeks a Mahalanobis matrix that maximizes the between classes distance while
forcing to zero the within classes distance. A simpler objective is pursued bythe algorithms that
optimize the Mahalanobis distance for the specifick-nearest neighbor classifier (Goldberger et al.,
2004; Torresani and Lee, 2006; Weinberger and Saul, 2009). Bregman projection based methods
minimize a particular Bregman divergence under distance constraints. Both batch (Davis et al.,
2007) and online (Jain et al., 2008) formulations have been proposed for learning full-rank matri-
ces. Low-rank matrices have also been considered with Bregman divergences but only when the
range space of the matrix is fixed in the first place (Davis and Dhillon, 2008;Kulis et al., 2009).

10. Experiments

Data Set Samples Features Classes Reference

GyrB 52 - 3 Tsuda et al. (2005)
Digits 300 16 3 Asuncion and Newman (2007)
Wine 178 13 13 Asuncion and Newman (2007)
Ionosphere 351 33 2 Asuncion and Newman (2007)
Balance Scale 625 4 3 Asuncion and Newman (2007)
Iris 150 4 3 Asuncion and Newman (2007)
Soybean 532 35 17 Asuncion and Newman (2007)
USPS 2,007 256 10 LeCun et al. (1989)
Isolet 7,797 617 26 Asuncion and Newman (2007)
Prostate 322 15,154 2 Petricoin et al. (2002)

Table 2: Considered data sets

In this section, we illustrate the potential of the proposed algorithms on several benchmark
experiments. First, the proposed algorithms are evaluated on toy data. Then, they are compared
to state-of-the-art kernel learning and Mahalanobis distance learning algorithms on real data sets.
Overall, the experiments support that a joint estimation of a subspace and low-dimensional distance
in that subspace is a major advantage of the proposed algorithms over methods that estimate the
matrix for a subspace that is fixed beforehand.

1. In the low-rank case, one should rigorously refer to (27) as a pseudo-distance. Indeed, one hasdA(xi ,x j ) = 0 with
xi 6= x j whenever(xi −x j ) lies in the null space ofA.
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Table 2 summarizes the different data sets that have been considered. Asa normalization step,
the data features are centered and rescaled to unit standard deviation.

The implementation of the proposed algorithms,2 as well as the experiments of this paper are
performed with Matlab. The implementations of algorithms MVU,3 KSR,4 LMNN,5 and ITML,6

have been rendered publicly available by Weinberger et al. (2004), Cai et al. (2007), Weinberger and
Saul (2009) and Davis et al. (2007) respectively. Algorithms POLA (Shalev-Shwartz et al., 2004),
LogDet-KL (Kulis et al., 2009) and LEGO (Jain et al., 2008) have been implemented on our own.

10.1 Toy Data

In this section, the proposed algorithms are evaluated on synthetic regression problems. The data
vectorsx1, ...,xn ∈ R

d and the target matrixW∗ ∈ S+(r,d) are generated with entries drawn from a
standard Gaussian distributionN (0,1). Observations follow

yi = (xT
i W∗xi)(1+νi), i = 1, ...,n, (28)

whereνi is drawn fromN (0,0.01). A multiplicative noise model is preferred over an additive one
to easily control that observations remain nonnegative after the superposition of noise.

10.1.1 LEARNING THE SUBSPACE VS. FIXING THE SUBSPACEUP FRONT

As an illustrative example, we show the difference between two approaches for fitting the data to
observations when a target modelW∗ ∈ S+(3,3) is approximated with a parameterW ∈ S+(2,3).

A naive approach to tackle that problem is to first project the dataxi ∈ R
3 on a subspace of

reduced dimension and then to compute a full-rank model based on the projected data. Recent
methods compute that subspace of reduced dimension using principal component analysis (Davis
and Dhillon, 2008; Weinberger and Saul, 2009), that is, a subspace that captures a maximal amount
of variance in the data. However, in general, there is no reason why the subspace spanned by the
top principal components should coincide with the subspace that is defined by the target model.
Therefore, a more appropriate approach consists in learning jointly the subspace and a distance in
that subspace that best fits the data to observations within that subspace.

To compare the two approaches, we generate a set of learning samples{(xi ,yi)}200
i=1, with xi ∈R

3

andyi that follows (28). The target model is

W∗ = ŨΛΛΛŨT

whereŨ is a random 3×3 orthogonal matrix andΛΛΛ is a diagonal matrix with two dominant values
Λ11,Λ22 ≫ Λ33 > 0 (for this specific example,Λ11 = 4,Λ22 = 3 andΛ33 = 0.01). Observations
yi are thus nearly generated by a rank-2 model, such thatW∗ should be well approximated with a
matrixW ∈ S+(2,3) that minimizes the train error.

Results are presented in Figure 3. The top plot shows that the learned subspace (which identifies
with the target subspace) is indeed very different from the subspace spanned by the top two principal
components. Moreover, the bottom plots clearly demonstrate that the fit is muchbetter when the

2. The source code is available fromhttp://www.montefiore.ulg.ac.be/~meyer.
3. MVU is available fromhttp://www.cse.wustl.edu/~kilian/Downloads/MVU.html.
4. KSR is available fromhttp://www.cs.uiuc.edu/homes/dengcai2/SR/.
5. LMNN is available fromhttp://www.cse.wustl.edu/~kilian/Downloads/LMNN.html.
6. ITML is available fromhttp://www.cs.utexas.edu/users/pjain/itml/.
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Figure 3: Learning vs fixing the subspace.Top: the learned subspace is very different from the
subspace computed from a classical heuristic.Bottom left: fit after projection of the data
onto a subspace fixed up front.Bottom right : fit obtained with a join estimation of the
subspace and a distance within that subspace.

subspace and the distance in that subspace are learned jointly. The difference is also significant in
terms of the train error. This simple example shows that heuristic methods that fixthe range space
in the first place may converge to a solution that is very different from a minimum of the desired
cost function. For visualization purpose, the two dimensional model is represented by the ellipse

E = {x̃i ∈ R
2 : x̃T

i R2x̃i = 1}, where x̃i =
UTxi√

yi
,

and(U,R2) are computed with algorithm (21), either in the settingλ = 0 that fixes the subspace to
the PCA subspace (left) or in the settingλ = 0.5 that simultaneously learnedU andB (right). A
perfect fit is obtained when allx̃i are located onE , which is the locus of points where ˆyi = yi .
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10.1.2 INFLUENCE OFλ ON THE ALGORITHM BASED ON THEPOLAR GEOMETRY
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Figure 4: Influence ofλ.

In theory, the parameterλ should not influence the algorithm since it has no effect on the first-
order optimality conditions except for its two extreme valuesλ = 0 andλ = 1. In practice however,
a sensitivity to this parameter is observed due to the finite tolerance of the stopping criterion: the
looser the tolerance, the more sensitive toλ.

To investigate the sensitivity toλ, we try to recover a target parameterW∗ ∈ S+(5,10) using
pairs(xi ,yi) generated according to (28). We generate 10 random regression problems with 1000
samples partitioned into 500 learning samples and 500 test samples. We compute the mean test
error and the mean convergence time as a function ofλ for different values ofεtol. The results are
presented in Figure 4. Asεtol decrease, the test error becomes insensitive toλ, but an influence is
observed on the convergence time of the algorithm.

In view of these results, we recommend the value 0.5 as the default setting forλ. Unless speci-
fied otherwise, we therefore use this particular value for all experiments inthis paper.

10.1.3 ONLINE VS. BATCH

This experiment shows that when a large amount of sample is available (80,000 training samples
and 20,000 test samples for learning a parameterW∗ in S+(10,50)), online algorithms minimize
the test error more rapidly than batch ones. It further shows that the mini-batch extension allows
to improve significantly the performance compared to the plain stochastic gradient descent setting
(p= 1). We observe that the mini-batch sizep= 32 generally gives good results. Figure 5 report the
test error as a function of the learning time, that is, the time after each iteration for batch algorithm
and the time after each epoch for online algorithms. For the algorithm based onthe polar geometry,
the mini-batch extension is strongly recommended to amortize the larger cost of each update.

10.2 Kernel Learning

In this section, the proposed algorithms are applied to the problem of learninga kernel matrix
from pairwise distance constraints between data samples. As mentioned earlier, we only consider
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Figure 5: Online vs Batch. For a large number of samples, online algorithms reduce the test error
much more rapidly than batch ones. Using the mini-batch extension generally improve
significantly the performance.

this problem in the transductive setting, that is, all samplesx1, ...xn are available up front and the
learned kernel do not generalize to new samples.

10.2.1 EXPERIMENTAL SETUP

After transformation of the data with the kernel mapx 7→ φ(x), the purpose is to compute a fixed-
rank kernel matrix based on a limited amount of pairwise distances in the kernel feature space and
on some information about class labels.

Distance constraints are generated as ˆyi j ≤ yi j (1−α) for identically labeled samples and ˆyi j ≥
yi j (1+α) for differentially labeled samples, whereα ≥ 0 is a scaling factor,yi j = ‖φ(xi)−φ(x j)‖2

andŷi j = Tr(W(ei −ej)(ei −ej)
T) = (ei −ej)

TW(ei −ej).

We investigate both the influence of the amount of side-information provided,the influence of
the approximation rank and the computational time required by the algorithms.

To quantify the performance of the learned kernel matrix, we perform either a classification or
a clustering of the samples based on the learned kernel. For classification, we compute the test set
accuracy of ak-nearest neighbor classifier (k= 5) using a two-fold cross-validation protocol (results
are averaged over 10 random splits). For clustering, we use theK-means algorithm with the number
of clusters equal to the number of classes in the problem. To overcome K-means local minima, 10
runs are performed in order to select the result that has lead to the smaller value of the K-means
objective. The quality of the clustering is measured by the normalized mutual information (NMI)
shared between the random variables of cluster indicatorsC and target labelsT (Strehl et al., 2000),

NMI =
2 I(C;T)

(H(C)+H(T))
,
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whereI(X1;X2) = H(X1)−H(X1|X2) is the mutual information between the random variablesX1

andX2, H(X1) is the Shannon entropy ofX1, andH(X1|X2) is the conditional entropy ofX1 given
X2. This score ranges from 0 to 1, the larger the score, the better the clustering quality.

10.2.2 COMPARED METHODS

We compare the following methods:

1. Batch algorithms (10) and (21), adapted to handle inequalities (see Section 8.2),

2. The kernel learning algorithm LogDet-KL (Kulis et al., 2009) which learn kernel matrices of
fixed range space for a given set of distance constraints.

3. The kernel spectral regression (KSR) algorithm of Cai et al. (2007) using a similarity matrix
N constructed as follows. LetN be the adjacency matrix of a 5-NN graph based on the initial
kernel. We modifyN according to the set of available constraints:Ni j = 1 if samplesxi and
x j belong to the same class (must-link constraint),Ni j = 0 if samplesxi andx j do not belong
to the same class (cannot-link constraint).

4. The Maximum Variance Unfolding (MVU) algorithm (Weinberger et al., 2004),

5. The Kernel PCA algorithm (Schölkopf et al., 1998).

The last two algorithms are unsupervised techniques that are provided asbaselines.
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Figure 6: Left : full-rank kernel learning on the Gyrb data set. The algorithm based on the polar
geometry competes with LogDet-KL.Right: low-rank kernel learning on the Digits data
set. The proposed algorithms outperform the compared methods as soon asa sufficiently
large number of constraints is provided.

10.2.3 RESULTS

The first experiment is reproduced from Tsuda et al. (2005) and Kuliset al. (2009). The goal is
to reconstruct the GyrB kernel matrix based on distance constraints only.This matrix contains
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information about the proteins of three bacteria species. The distance constraints are randomly gen-
erated from the original kernel matrix withα = 0. We compare the proposed batch methods with
the LogDet-KL algorithm, the only competing algorithm that also learns directly from distance
constraints. This algorithm is the best performer reported by Kulis et al. (2009) for this experiment.
All algorithms start from the identity matrix that do not encode any domain information. Figure 6
(left) reports thek-NN classification accuracy as a function of the number of distance constraints
provided. In this full-rank learning setting, the algorithm based on the polargeometry compete
with the LogDet-KL algorithm. The convergence time of the algorithm based on the polar geom-
etry is however much faster (0.15 seconds versus 58 seconds for LogDet-KL when learning 1000
constraints). The algorithm based on the flat geometry has inferior performance when too few con-
straints are provided. This is because in the kernel learning setting, updates of this algorithm only
involve the rows and columns that correspond to the set of points for whichconstraints are pro-
vided. It may thus result in a partial update of the kernel matrix entries. Thisissue disappears as the
number of provided constraints increases.

The second experiment is reproduced from Kulis et al. (2009). It aims at improving an existing
low-rank kernel using limited information about class labels. A rank-16 kernel matrix is computed
for clustering a database of 300 handwritten digits randomly sampled from the3, 8 and 9 digits of
the Digits data set (since we could not find out the specific samples that havebeen selected by Kulis
et al. (2009), we made our own samples selection). The distance constraints are randomly sampled
from a linear kernel on the input dataK = XXT andα = 0.25. The results are presented in Figure 6
(right). The figure shows that KSR, LogDet-KL and the algorithm based on the polar geometry with
λ = 0 perform similarly. These methods are however outperformed by the proposed algorithms (flat
geometry and polar geometry withλ = 0.5) when the number of constraints is large enough. This
experiment also enlightens the flexibility of the polar geometry, which allows us tofix the subspace
in situations where too few constraints are available.
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Figure 7: Clustering the USPS data set.Left: clustering score versus number of constraints.Right:
clustering score versus approximation rank. When the number of provided constraints is
large enough, the proposed algorithms perform as good as the KSR algorithm. It outper-
forms the LogDet-KL algorithm and baselines.
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Finally, we tackle the kernel learning problem on a larger data set. We use the test set of the
USPS data set,7 which contains 2007 samples of handwritten zip code digits. The data are first
transformed using the kernel mapκ(xi ,x j) = exp(−γ‖xi − x j‖2

2) with γ = 0.001 and we further
center the data in the kernel feature space. Pairwise distance constraintsare randomly sampled from
that kernel matrix withα = 0.5. Except KSR that has its own initialization procedure, algorithms
start from the kernel matrix provided by kernel PCA.

Figure 7 (left) shows the clustering performance as a function of the number of constraints
provided when the approximation rank is fixed tor = 25. Figure 7 (right) reports the clustering
performance as a function of the approximation rank when the number of constraints provided is
fixed to 100K. When the number of provided constraints is large enough, the proposedalgorithms
perform as good as KSR and outperform the LogDet-KL method that learna kernel of fixed-range
space. Average computational times for learning a rank-6 kernel from 100K constraints are 0.57
seconds for KSR, 3.25 seconds for the algorithm based on the flat geometry, 46.78 seconds for
LogDet-KL and 47.30 seconds for the algorithm based on the polar geometry. In comparison,the
SDP-based MVU algorithm takes 676.60 seconds to converge.

10.3 Mahalanobis Distance Learning

In this section, we tackle the problem of learning from data a Mahalanobis distance for supervised
classification and compare our methods to state-of-the-art Mahalanobis metric learning algorithms.

10.3.1 EXPERIMENTAL SETUP

For the considered problem, the purpose is to learn the parameterW of a Mahalanobis distance
dW(xi ,x j) = (xi −x j)

TW(xi −x j), such that the distance satisfies as much as possible a given set of
constraints. As in the paper of Davis et al. (2007), we generate the constraints from the learning set
of samples asdW(xi ,x j) ≤ l for same-class pairs anddW(xi ,x j) ≥ u for different-class pairs. The
scalarsu andl estimate the 95-th and 5-th percentiles of the distribution of Mahalanobis distances
parameterized by a chosen baselineW0. The performance of the learned distance is then quantified
by the test error rate of ak-nearest neighbor classifier based on the learned distance. All experiments
use the settingk = 5, breaking ties arbitrarily. Unless for the Isolet data set for which a specific
train/test partition is provided, error rates are computed using two-fold cross validation. Results are
averaged over 10 random partitions.

10.3.2 COMPARED METHODS

We compare the following distance learning algorithms:

1. Batch algorithms (10) and (21),

2. ITML (Davis et al., 2007),

3. LMNN (Weinberger and Saul, 2009),

4. Online algorithms (9) and (20),

5. LEGO (Jain et al., 2008),

7. We use the ZIP code data fromhttp://www-stat-class.stanford.edu/~tibs/ElemStatLearn/data.html.
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6. POLA (Shalev-Shwartz et al., 2004).

When some methods require the tuning of an hyper-parameter, this is performed by a two-fold cross-
validation procedure. The slack parameter of ITML as well as the step sizeof POLA are selected
in the range of values 10k with k=−3, ...,3. The step size of LEGO is selected in this same range
of value for the UCI data sets, and in the range of value 10k with k=−10, ...,−5 for the larger data
sets Isolet and Prostate.

10.3.3 RESULTS
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Figure 8: Full-rank distance learning on the UCI data sets. The proposedalgorithms compete with
state-of-the-art methods for learning a full-rank Mahalanobis distance.

Reproducing a classical benchmark experiment from Kulis et al. (2009), we demonstrate that
the proposed batch algorithms compete with state-of-the-art full-rank Mahalanobis distance learn-
ing algorithms on several UCI data sets (Figure 8). We have not included the online versions of our
algorithms in this comparison because we consider that the batch approaches are more relevant on
such small data sets. Except POLA and LMNN which do not learn from provided pairwise con-
straints, all algorithms process 40c(c−1) constraints, wherec is the number of classes in the data.
We choose the Euclidean distance (W0 = I ) as the baseline distance for initializing the algorithms.
Figure 8 reports the results. The two proposed algorithms compete favorably with the other full-
rank distance learning techniques, achieving the minimal average error for 4 of the 5 considered
data sets.

We finally evaluate the proposed algorithms on higher-dimensional data sets inthe low-rank
regime (Figure 9). The distance constraints are generated as in the full-rank case, but the initial
baseline matrix is now computed asW0 = G0GT

0 , whereG0’s columns are the top principal direc-
tions of the data. For the Isolet data set, 100K constraints are generated, and 10K constraints are
generated for the Prostate data set. For scalability reasons, algorithms LEGO, LMNN and ITML
must proceed in two steps: the data are first projected onto the top principaldirections and then
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Figure 9: Low-rank Mahalanobis distance learning. For low values of therank, the proposed al-
gorithms perform much better than the methods that project the data on the top principal
directions and learn a full-rank distance on the projected data.

a full-rank distance is learned within the subspace spanned by these top principal directions. In
contrast, our algorithms are initialized with the top principal direction, but they operate on the data
in their original feature space. Overall, the proposed algorithms achieve much better performance
than the methods that first reduce the data. This is particularly striking when therank is very
small compared to problem size. The performance gap reduces as the rank increases. However,
for high-dimensional problems, one is usually interested in efficient low-rank approximations that
gives satisfactory results.

11. Conclusion

In this paper, we propose gradient descent algorithms to learn a regression model parameterized by
a fixed-rank positive semidefinite matrix. The rich Riemannian geometry of the set of fixed-rank
PSD matrices is exploited through a geometric optimization approach.

The resulting algorithms overcome the main difficulties encountered by the previously proposed
methods as they scale to high-dimensional problems, and they naturally enforce the rank constraint
as well as the positive definite property while leaving the range space of thematrix free to evolve
during optimization.

We apply the proposed algorithms to the problem of learning a distance function from data,
when the distance is parameterized by a fixed-rank positive semidefinite matrix. The good perfor-
mance of the proposed algorithms is illustrated over several benchmarks.
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Appendix A. Convergence Proof of Algorithm(9)

Bottou (1998) reviews the mathematical tools required to prove almost sure convergence, that is
asymptotic convergence with probability one, of stochastic gradient algorithms. Almost sure con-
vergence follows from the following five assumptions:

(A1) F(G) = EX,y{ℓ(ŷ,y)} ≥ 0 is three times differentiable with bounded derivatives,

(A2) the step sizes satisfy∑∞
t=1 η2

t < ∞ and∑∞
t=1 ηt = ∞,

(A3) EX,y{‖gradf (G)‖2
F} ≤ k1+k2‖G‖2

F , where f (G) = ℓ(ŷ,y),

(A4) ∃h1 > 0, inf
‖G‖2

F>h1

Tr(GT
EX,y{gradf (G)})> 0,

(A5) ∃h2 > h1,∀(X,y) ∈ X ×Y , sup
‖G‖2

F<h2

‖gradf (G)‖F ≤ k3,

where‖ · ‖F is the Frobenius norm. Provided that algorithm (9) is equipped with an adaptive step
sizest = ηt/max(‖Gt‖2

F ,1), whereηt satisfy (A2), we have the following convergence result.

Proposition 1 For bounded data(X,y), algorithm(9) equipped with the step size st defined above
converges almost surely to the set of stationary points of the cost functionEX,y{(ŷ−y)2/2}.

Proof The proof is completed in two steps. First, it is shown that the stochastic sequence

ut = max(h2,‖Gt‖2
F),

defines a Lyapunov process (always positive and decreasing on average) which is bounded almost
surely byh2. This implies thatGt is almost surely confined within distance

√
h2 from the ori-

gin and provides almost sure bounds on all continuous functions ofGt . In Bottou (1998), con-
finement is essentially based on (A3) and (A4). In the current proof, we rely on the fact that
EX,y{‖gradf (G)/max(‖G‖2

F ,1)‖2
F} ≤ k1+k2‖G‖2

F .
Second, the Lyapunov processvt =F(Gt)≥ 0 is proved to converge almost surely. Convergence

of F(Gt) is then used to show thatwt = gradF(Gt) tends to zero almost surely. Technical details
are adapted from the paper of Bottou (1998).

In practice, saddle points and local maxima are unstable solutions while convergence to asymp-
totic plateaus is excluded by (A4). As a result, almost sure convergence toa local minimum of the
expected cost is obtained.
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