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Abstract

In the last few years, due to the growing ubiquity of unlatelata, much effort has been spent by
the machine learning community to develop better undedstgrand improve the quality of classi-
fiers exploiting unlabeled data. Following the manifoldukegization approach, Laplacian Support
Vector Machines (LapSVMs) have shown the state of the afbpaance in semi-supervised clas-
sification. In this paper we present two strategies to sdiegtimal LapSVM problem, in order
to overcome some issues of the origidakl formulation. In particular, training a LapSVM in the
primal can be efficiently performed with preconditioned jogate gradient. We speed up training
by using an early stopping strategy based on the predictionntabeled data or, if available, on
labeled validation examples. This allows the algorithmuakly compute approximate solutions
with roughly the same classification accuracy as the optimas, considerably reducing the train-
ing time. The computational complexity of the training aitfum is reduced fron®(n?) to O(kr?),
wheren is the combined number of labeled and unlabeled examplek snempirically evaluated
to be significantly smaller tham Due to its simplicity, training LapSVM in the primal can beet
starting point for additional enhancements of the origlreghSVM formulation, such as those for
dealing with large data sets. We present an extensive ewxpetal evaluation on real world data
showing the benefits of the proposed approach.

Keywords: Laplacian support vector machines, manifold regularratsemi-supervised learn-
ing, classification, optimization

1. Introduction

In semi-supervised learning one estimates a target classification/regréssation from a few
labeled examples together with a large collection of unlabeled data. In thesVasteiars there
has been a growing interest in the semi-supervised learning in the scientifibunity. Many
algorithms for exploiting unlabeled data in order to enhance the quality ofif@ashave been
recently proposed, see, for example, Chapelle et al. (2006) and rth@aldberg (2009). The
general principle underlying semi-supervised learning is that the majtabution, which can
be estimated from unlabeled data alone, may suggest a suitable way to agljtesgtt function.
The two commons assumption on such distribution that, explicitly or implicitly, are madeaby
of semi-supervised learning algorithms are thester assumptiofChapelle et al., 2003) and the
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manifold assumptio(Belkin et al., 2006). The cluster assumption states that two points are likely
to have the same class label if they can be connected by a curve through density region.
Consequently, the separation boundary between classes should lie inverediensity region of
the space. For example, this intuition underlies the Transductive SuppciaiMachines (Vapnik,
2000) and its different implementations, such as TSVM (Joachims, 199\ $Demiriz and
Bennett, 2000; Chapelle et al., 2008). The manifold assumption states tiadtgmal probability
distribution underlying the data is supported on or near a low-dimensional sichréind that the
target function should change smoothly along the tangent direction. Maph dased methods
have been proposed in this direction, but the most of them only perfomaduative inference
(Joachims, 2003; Belkin and Niyogi, 2003; Zhu et al., 2003), that is ifjads®e unlabeled data
given in training. Laplacian Support Vector Machines (LapSVMs) (Betk al., 2006) provide
a natural out-of-sample extension, so that they can classify data th@nbsavailable after the
training process, without having to retrain the classifier or resort towsheuristics.

In this paper, we focus on the LapSVM algorithm, that has been showrhievacstate of the
art performance in semi-supervised classification. The original approsed to train LapSVM
in Belkin et al. (2006) is based on the dual formulation of the problem, in atitvadl SVM-like
fashion. This dual problem is defined on a number of dual variableal ¢qu, the number of
labeled points. If the total number of labeled and unlabeled poimigiee relationship between the
| variables and the final coefficients is given by a linear systemroéquations and variables. The
overall cost of the process ®(n?).

Motivated by the recent interest in solving the SVM problem in the primal (ikéand DeCoste,
2005; Joachims, 2006; Chapelle, 2007; Shalev-Shwartz et al., 200 resent a solution to the
primal LapSVM problem that can significantly reduce training times and omeecsome issues of
the original training algorithm. Specifically, the contributions of this papettadollowing:

1. We propose two methods for solving the LapSVM problem in the primal fowoh limited
to the linear case), following the ideas presented by Chapelle (2007)/#ds &nd pointing
out some important differences resulting from an additional regularizégiom. Our Matlab
library can be downloaded from:
http://sourceforge.net/projects/lapsvmp/

First, we show how to solve the problem using the Newton’s method and confygaresult

with the supervised (SVM) case. Interestingly, it turns out that the ddgas of the Newton’s
method for the SVM problem are lost in LapSVM due to the intrinsic norm regearand

the complexity of this solution is stilD(n®), same as in the original dual formulation.

The second method is preconditioned conjugate gradient, which seemsshétterto the
LapSVM optimization problem. We see that preconditioning by the kernel maimes at
no additional cost, and each iteration has comple®ity?). Empirically, we establish that
only a small number of iterations is necessary for convergence. Comptaxitpe further
reduced if the kernel matrix is sparse, increasing the scalability of theithligor

2. We note that the quality of an approximate solution of the traditional dual &nnthe re-
sulting approximation of the target optimal function are hard to relate due tahtirege of
variables when passing to the dual problem. Training LapSVMs in the priveatomes this
issue, and it allows us to directly compute approximate solutions by controllingutiméer
of conjugate gradient iterations.
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3. An approximation of the target function with roughly the same classificatioaracy as the
optimal one can be achieved with a small number of iterations due to the infloéiice
intrinsic norm regularizer of LapSVMs on the training process. We invatgithose effects,
showing that they make common stopping conditions for iterative gradieatltzdgorithms
hard to tune, often leading to either a premature stopping of the iteration orrgesalaount
of unnecessary iterations, which do not improve classification accuretgad we suggest a
criterion dependent on trmutputof the classifier on the training data for terminating the iter-
ation of our algorithm. This criterion exploits the stability of the prediction on tHahaled
data, or the classification accuracy on validation data (if available). A nuailexperiments
on several data sets support these types of criteria, showing thategaimilar to that of
the optimal solution can be obtained in significantly reduced training time.

4. The primal solution of the LapSVM problem is based orLarhinge loss, that establishes
a direct connection to the Laplacian Regularized Least Square Clags#@ERLSC) (Belkin
et al., 2006). We discuss the similarities between primal LapSVM and LapRirCve
show that the proposed fast solution can be straightforwardly appliedgBLSC.

The rest of the paper is organized as follows. In Section 2 we recalldbie bpproach of
manifold regularization. Section 2.1 describes the LapSVM algorithm in its adigimmulation
while in Section 3 we discuss in detail the proposed solutions in the primal foha.qiality of
an approximate solution and the data based early stopping criterion aresdiddn Section 4. In
Section 5 a parallel with the primal solution of LapSVM and the solution for L#® (Regularized
Least Squares) is drawn, describing some possible future work. t&nsxe experimental analysis
is presented in Section 6, and, finally, Section 7 concludes the paper.

2. Manifold Regularization

First, we introduce some notation that will be used in this section and in thefrémt paper. We
taken = | + u to be the number ah dimensional training examples € X ¢ R™, collected in$S =
{x,i=1,...,n}. Examples are ordered so that the firehes are labeled, with labgle {—1,1},

and the remainingi points are unlabeled. We pt= £ U U, whereL = {(x,Vi),i = 1,...,1}

is the labeled data set artid = {x;,i =1 +1,...,n} is the unlabeled data set. Labeled examples
are generated accordingly to the distributlmn X x R, whereas unlabeled examples are drawn
according to the marginal distributid® of P. Labels are obtained from the conditional probability
distribution P(y|x). L is the graph Laplacian associatedpgiven byL = D —W, whereW is

the adjacency matrix of the data graph (the entry in positigris indicated withwi;) andD is

the diagonal matrix with the degree of each node (i.e., the elethefnom D is d;j = Z?:]_V\/ij).

Laplacian can be expressed in the normalized fdrm; D‘%LD‘%, and iterated to a degrae
greater that one. Bi( € R™" we denote the Gram matrix associated tornhmoints of § and the
i, j-th entry of such matrix is the evaluation of the kernel functigr,x;), k: X x X = R. The
unknown target function that the learning algorithm must estimate is indicatedfwi¥ — R,
where f is the vector of then values off on training dataf = [f(x;),x € S]7. In a classification
problem, the decision function that discriminates between classes is indicéttiedxy = g(f (x)),
where we overloaded the useyofo denote such function.

Manifold regularization approach (Belkin et al., 2006) exploits the geonwdttize marginal
distributionPx. The support of the probability distribution of data is assumed to have theajgo
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structure of a Riemannian manifols. The labels of two points that are close in the intrinsic
geometry ofPx (i.e., with respect to geodesic distancesf) should be the same or similar in
sense that the conditional probability distributiB(y|x) should change little between two such
points. This constraint is enforced in the learning process by an intriegidarizer|| f |2 that is
empirically estimated from the point cloud of labeled and unlabeled data usiggaplke Laplacian
associated to them, sin¢¥ is truly unknown. In particular, choosing exponential weights for the
adjacency matrix leads to convergence of the graph Laplacian to the eapéditami operator on
the manifold (Belkin and Niyogi, 2008). As a result, we have

n n
1= 3 5 wis(Fx) = Fx))? = LS. (1)
i=1)=I
Consider that, in general, several natural choicg§|pexist (Belkin et al., 2006).
In the established regularization framework for function learning, givkernel functiork(-, -),
its associated Reproducing Kernel Hilbert Space (RKHSYf functionsX — R with correspond-
ing norm||||a, we estimate the target function by minimizing

|
f*:argminZiv(Xi,yi,f>+vAHfH%+v|HfH|2 )
fer i=

whereV is some loss function ang is the weight of the norm of the function in the RKHS (or
ambientnorm), that enforces a smoothness condition on the possible solutiong,iarnide weight
of the norm of the function in the low dimensional manifold {otrinsic norm), that enforces
smoothness along the sampl@fl. For simplicity, we removed every normalization factor of the
weights of each term in the summation. The ambient regularizer makes therpraiel:posed,
and its presence can be really helpful from a practical point of viewwthe manifold assumption
holds at a lesser degree.

It has been shown in Belkin et al. (2006) tHatadmits an expansion in terms of thg@oints of
S,

n
f*(x) = Zaf‘k(xi,x). (3)
=
The decision function that discriminates between ctagsand—1 isy(x) = sign(f*(x)). Figure 1
shows the effect of the intrinsic regularizer on the “clock” toy data see Jupervised approach
defines the classification hyperplane just by considering the two labededpdes, and it does not
benefit from unlabeled data (Figure 1(b)). With manifold regularizatiom cthssification appears
more natural with respect to the geometry of the marginal distribution (Figaj® 1
The intrinsic norm of Equation 1 actually performs a transduction along thé&atdithat en-
forces the values of in nearby points with respect to geodesic distance$6to be the “same”.
From a merely practical point of view, the intrinsic regularizer can be ssieely strict in some
situations. Since the decision functig(x) relies only on the sign of the target functiditx), if
f has the same sign on nearby points alévigthen the graph transduction is actually complete.
Requiring thatf assumes exactly the same value on a pair of nearby points could be cotisidere
over constraining the problem. We will use this consideration in Section 4 lypstap the training
algorithm.
This intuition is closely related to some recently proposed alternative formusadicihe prob-
lem of Equation 2. In Tsang and Kwok (2006) the intrinsic regularizer $2ba@n the-insensitive
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Figure 1: (a) The two class “clock” data set. One class is the circularebafthe clock, the
other one is the hour/minute hands. A large set of unlabeled examples fojaakes)
and only one labeled example per class (red diamond, blue circle) arteseleth) The
result of a maximum margin supervised classification - (¢) The result shasgpervised
classification with intrinsic norm from manifold regularization.

loss and the problem is mapped to a Minimal Enclosing Ball (MEB) formulationfeEintly, the
Manifold Co-Regularization (MCR) framework (Sindhwani and Rosemb2008) has been intro-
duced to overcome the degeneration of the intrinsic regularizer to the aroheint some restricted
function spaces where it is not able to model some underlying geometries givén data. MCR
is based on multi-view learning, and it has been shown that it corresporatkliog some extra
slack variables in the objective function of Equation 2 to better fit the intriregialarizer. Simi-
larly, Abernethy et al. (2008) use a slack based formulation to improvedkibifity of the graph
regularizer of their spam detector.

2.1 Laplacian Support Vector Machines

LapSVMs follow the principles behind manifold regularization (Equation 2jexe the loss func-
tion V(x,y, ) is the linear hinge loss (Vapnik, 2000), bt loss. The interesting property of such
function is that well classified labeled examples are not penalized(kyy, f), independently by
the value off.

In order to train a LapSVM classifier, the following problem must be solved

|
min $ max(1—vy;f(x),0 f||% f||%. 4
fe}&i; X1 =y £(%),0) +Yall |2+ Vil fIl (4)
The functionf (x) admits the expansion of Equation 3, where an unregularized biasteam be
added as in many SVM formulations.

The solution of LapSVM problem proposed by Belkin et al. (2006) is tasethe dual form. By
introducing the slack variable€g, the unconstrained primal problem can be written as a constrained
one,

minaeRn,EeRl z%:lEi —|—yA(1TKG +V|C(TKLKO(

subject to: yi(Z?:laik(Xj,Xj)—l-b) >1-¢&, i=1,...1

& >0, i=1,....1



MELACCI AND BELKIN

After the introduction of two sets af multipliers 3, ¢, the LagrangiarLy associated to the
problem is

Lg(a,&,b,B,¢) ZE. + 10( T(2yaK 4 2y KLK)a —

_ZLBI Vi ( i K(xi,Xj) +b) —1+¢;) Zic@

In order to recover the dual representation we need to set

oL q :
%—O g i;BIyI_Ov

oL
T;ZO — 1-Bi-¢G=0 — 0<B <1,
|

where the bounds of; consider thaf;,¢ > 0, since they are Lagrange multipliers. Using the
above identities, we can rewrite the Lagrangian as a functienasfd3 only. Assuming (as stated
in Section 2) that the points i§ are ordered such that the filsare labeled and the remainirtg
are unlabeled, we define with. € R'" the matrix[l 0] wherel € R'! is the identity matrix and

0 € RV is a rectangular matrix with all zeros. Moreov¥ére R is a diagonal matrix composed
by the labelsy;,i = 1,...,l. The Lagrangian becomes

Lo(a,B) = ; T(ZVAK+ZVIKLK ZIBI Yi Z k(Xi,Xj) +b)—1) =

= %O(T(ZyAK + 2y KLK)a — aTKJILYB + ZlBi-
i=

Setting to zero the derivative with respectot@stablishes a direct relationships betweenhe
coefficients and tha ones,

%'&@‘:o —  (2yaK +2yiKLK)a —KJIYB =0

— a=(2yal +2yKL)" LI YB. (5)

After substituting back in the Lagrangian expression, we get the dublgmmowhose solution
leads to the optimgd*, that is

maxg g 3118 — 38" QB
subjectto: ¥|_;Biyi =0

0<Bi<1 i=1,..,

where
Q=YJK(2yal +2yKL)"1J]Y. (6)
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Training the LapSVM classifier requires to optimize thigariable problem, for example using
a standard quadratic SVM solver, and then to solve the linear systareqefations and variables
of Equation 5 in order to get the coefficients that define the target functiof.

The overall complexity of this solution §(n®), due to the matrix inversion of Equation 5 (and
6). Even if thel coefficients* are sparse, since they come from a SVM-like dual problem, the
expansion off * will generally involves alin coefficientsa™.

3. Training in the Primal

In this section we analyze the optimization of the primal form of the non lineaBVap problem,
following the growing interest in training SVMs in the primal of the last few ge@eerthi and
DeCoste, 2005; Joachims, 2006; Chapelle, 2007; Shalev-Shwaltz28G¥). Primal optimization
of a SVM has strong similarities with the dual strategy (Chapelle, 2007), and ilernmeptation
does not require any particularly complex optimization libraries. The fotussearchers has been
mainly on the solution of the linear SVM primal problem, showing how it can beesbfast and
efficiently. In the Modified Finite Newton method of Keerthi and DeCoste 52@te SVM problem
is optimized in the primal by a numerically robust conjugate gradient techniqueplements the
Newton iterations. In the works of Joachims (2006) and Shalev-Shwhelk €007) a cutting
plane algorithm and a stochastic gradient descent are exploited, tiesjyedviost of the existing
results can be directly extended to the non linear case by reparametrizingetireoutput function
f(X) = (w,x) + bwith w= S!_; aix and introducing the Gram matrk. However this may result
in a loss of efficiency. Other authors (Chapelle, 2007; Keerthi et ab§Phvestigated efficient
solutions for the non linear SVM case.

Primal and dual optimization are two ways different of solving the same prghbieither of
which can in general be considered a “better” approach. Therafbyeshould a solution of the
primal problem be useful in the case of LapSVM? There are three prineasons why such a
solution may be preferable. First, it allows us to efficiently solve the origirathlpm without the
need of the computations related to the variable switching. Second, it allotesvesy quickly
compute goo@pproximatesolutions, while the exact relation between approximate solutions of the
dual and original problems may be involved. Third, since it allows us totirananipulate” thea
coefficients off without passing through tHgones, greedy techniques for incremental building of
the LapSVM classifier are easier to manage (Sindhwani, 2007). We b#ligvgtudying the primal
LapSVM problem is the basis for future investigations and improvements afltsgsifier.

We rewrite the primal LapSVM problem of Equation 4 by considering theasgmtation off
of Equation 3, the intrinsic regularizer of Equation 1, and by indicating Withe i-th column of
the matrixK and with 1 the vector af elements equal to 1:

[

min ZV(xi,yi,k,-Ta +b)+yaoTKa +vyi (a"K +1Tb)L(Ka + 1b).
0ecR" beR&

For completeness, we included the bia@ the expansion off. Here and in all the following

derivationsL can be interchangeably used in its normalized or unnormalized version.

We use the squared hinge lossleloss, for the labeled examples. The differentiability of such
function and its properties have been investigated in Mangasarian (2002)pplied to kernel clas-
sifiers. Afterwards, it was also exploited by Keerthi and DeCoste (2808 Chapelle (2007).,
loss makes the LapSVM problem continuous and differentiabfeand so ina. The optimization
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problem after adding the scaling constérﬂecomes

|
min 1(Zlmax(1—yi(kiT0( +b),02+yao Ka +y (a"K+1Tb)L(Ka +1b)).  (7)
0cR"beR 2 /&

We solved such convex problem by Newton’s method and by preconditmogugate gradient,
comparing their complexities and the complexity of the original LapSVM solutiod,showing a
parallel with the SVM case. The two solution strategies are analyzed in theviiofjGubsections,
while a large set of experimental results are collected in Section 6.

3.1 Newton’s Method

The problem of Equation 7 is piecewise quadratic and the Newton's methedggpnatural choice
for an efficient minimization, since it builds a quadratic approximation of thetfan. After indi-
cating withz the vectorz= [b,a"]", each Newton’s step consists of the following update

Z=7"1-sH'O (8)

wheret is the iteration numbes is the step size, and andH are the gradient and the Hessian
of Equation 7 with respect ta We will use the symbol&lg andy, to indicate the gradient with
respect tax and tob.

Before continuing, we introduce the further concepeobr vectors(Chapelle, 2007). The set
of error vectorsE is the subset of. with the points that generatela hinge loss value greater
than zero. The classifier does not penalize all the remaining labeled pgimts, thef function
on that points produces outputs with the same sign of the correspondingiabeith absolute
value greater then or equal to it. In the classic SVM framework, errdov&correspond to support
vectors at the optimal solution. In the case of LapSVM, all points are stigpotors in the sense
that they all generally contribute to the expansiorf of

We have

D_[ O ] _( 1"¢(Ka+1b) — lzy+y1TL(Ka + 1b) >

Oa Klg(Ka+1b) —Klzy+yaKa +y KL(Ka + 1b) ©)

wherey € {—1,0,1}" is the vector that collects tHdabelsy; of the labeled training points and a set
of u zeros. The matrixz € R™" is a diagonal matrix where the only elements different from 0 (and
equal to 1) along the main diagonal are in positions corresponding to pdistshat belong toE
at the current iteration. Note that if the graph Laplacian is not normalizedyave 1L = 0" and,
equivalentlyL1 = 0.

The Hessiam is

H_ 02 Op(0a) \ _ [ 1Tgl4+yl™ll 1TgK+y1TLK
“\ Oa(Op) O3 - Klzl+yKLL  KlgK 4+ yaK +y KLK

a7 0 1T
- 0 K l£14+yLl 1zK+yal +yiLK /°

Note that the criterion function of Equation 7 is not twice differentiable evbgre, so thaH is
the generalized Hessian where the subdifferential in the breakpoine dfitige function is set to
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0. This leaves intact the least square nature of the problem, as in the Mddé#igton’s method
proposed by Keerthi and DeCoste (2005) for linear SVMs. In othedsyahe contribute to the
Hessian of the., hinge loss is the same as the one of a squared(ipssf (x;))? applied to error

vectors only.
T

Combining the last two expressions we can wiite- Hz— ( 1

K > Izy, and we can plug it into

the Newton’s update of Equation 8,

.
Z2=72"1-sHO=(1-9Z 14sH? <T< ) lzy =

0 1 oy 1T\ TT
_ _ -1 A _
=(1-92 +S<I£1+y|Ll |£K+yA|+v|LK> <o K) (K)IZy (10)

-1
=(1-9)21+s 0 r 0

The step size must be computed by solving the one-dimensional minimization of Equation 7
restricted on the ray from— to Z, with exact line search or backtracking (Boyd and Vandenberghe,
2004). Convergence is declared when the set of error vectorsmdbebange between two consec-
utive iterations of the algorithm. Exactly like in the case of primal SVMs (Chap2087), in our
experiments setting= 1 did not result in any convergence problems.

3.1.1 GOMPLEXITY ANALYSIS

Updating thea coefficients with the Newton’s method co$n®), due to the matrix inversion in
the update rule, the same complexity of the original LapSVM solution basedecaudl problem
discussed in Section 2.1. Convergence is usually achieved in a tiny nuinbenations, no more
than 5 in our experiments (see Section 6). In order to reduce the costlviteration, a Cholesky
factorization of the Hessian can be computed before performing the finrsknmaersion, and it can
be updated using a rank-1 scheme during the following iterations, withQfo8i for each update
(Seeger, 2008). On the other hand, this does not allow us to sinkplifiyEquation 10, otherwise
the resulting matrix to be inverted will not be symmetric. Since a lot of time is wasted jordduct
by K (that is usually dense), using the update of Cholesky factorization mayeeessarily lead to
a reduction of the overall training time.

It is interesting to compare the training of SVMs in the primal with the one of La@gsYor a
better insight in the Newton’s method based solution. Given th& sdta generic iteration, SVMs
only require to compute the inverse of the block of the Hessian matrix that tedeia the error
vectors, and the complexity of the inversion is tf@f£|®) (see Chapelle, 2007). Exploiting this
useful aspect, the training algorithm can be run incrementally, reducirapthplexity of the whole
training process. In the case of LapSVM those benefits are lost due pogbence of the intrinsic
norm fTLf. The additional penaltw; (f(x) — f(x;))? makes the Hessian a full matrix, making the
block inversion impossible.

Finally, we are assuming thKtand the matrix to invert on Equation 10 are non singular, other-
wise the final expansion df will not be unique, even if the optimal value of the criterion function
of Equation 7 will be.
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3.2 Preconditioned Conjugate Gradient

Instead of performing a costly Newton'’s step, the veatéor which [0 = 0 can be computed by
Conjugate Gradient (CG) descent. In particular if we look at EquatioreS;am writell = Hz—c¢
and, consequently, we have to solve the sydtas- c,

(11)

Hye o < Mz1+y1"Ll 1TIgK4+y1TLK ) _ ( 1T|fy>‘

Klgl+yiKLL  KlgK 4+ yaK +yi KLK Klgy

The convergence rate of CG is related to the condition numbidr(@&hewchuk, 1994). In the most
general case, the presence of the telkihsK andKLK leads to a not so well conditioned system
and to a slow convergence rate.

In order to overcome this issue, Preconditioned Conjugate Gradient)(P&Goe exploited
(Shewchuk, 1994). Given a preconditiorigrthe algorithm indirectly solves the system of Equa-
tion 11 by solvingHz = & whereH = P~'H and¢= P~1c. P is selected so that the condition
number ofHz = & is improved with respect to the initial system, leading to a faster convergence
rate of the iterative method. Moreovér; 1 must be easily computable for PCG to be efficient. In
the specific case of LapSVM, we can follow a similar strategy to the one inaegstidpy Chapelle
(2007), due to the quadratic form of the intrinsic regularizer. In particwa can factorize Equa-
tion 11 as

( 1 0 ) < 1Mz14+yv1"L1 11K +y1TLK > S ( 10 > ( 1T1zy > (12)
0 K l£1+yL1l [£K 4+ yal +y LK 0 K lgy )’
1 0
0 K
of H andc, hence the termsl and¢ (and, consequently, the preconditioned gradiﬁ,ngiven by
O=Pl0=Hz— €) can be trivially computed without explicitly performing any matrix inversions.
The condition number of the preconditioned system is sensibly decredtbegpect to the one of
Equation 11, sinc&l:K andKLK are reduced tbzK andLK. Note thatH is not symmetric, and
it would not possible, for instance, to simply remove the fa&an both sides of Equation 12 and
solve it by standard CG. For those reasons, PCG is appropriate fdicdant optimization of our
problem. As in the Newton’s method, we are assuming kh& non singular, otherwise a small
ridge can be added to fix it.

The iterative solution of the LapSVM problem by means of PCG is reportedgordhm 1. For
an easier comparison with the standard formulation of PCG, consider the¢¢tas of residual
of the original and preconditioned systems correspondsii@and—L], respectively. Nevertheless,
due to our choice oP, we do not need to computeé first, and theri] = P‘1DA. We can exchapge
the order of those operations to avoid the matrix inversion, that is, firstetanpand therd = P[.
Hence,P~1 never appears in Algorithm 1.

Classic rules for the update of the conjugate direction at each step anss#idcdby Shewchuk
(1994). After several iterations the conjugacy of the descent direxctizoms to get lost due to round-
off floating point error, so a restart of the preconditioned conjugadignt algorithm is required.

The Fletcher-Reeves (FR) update is commonly used in linear optimization. Dhbe mecewise
nature of the problem, defined by thg matrix, we exploited the Polak-Ribiere (PR) formdila,

and select as a preconditioner the symmetric m&eix ( > . We can see tha& is a factor

1. Note that in the linear case FR and PR are equivalent.
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where restart can be automatically performed when the update term begegatise. In that case,
the p coefficient in Algorithm 1 becomes zero, and the following iteration conrdp to a steepest
descent one, as when PCG starts. We experimentally evaluated that fapBeM problem such
formula is generally the best choice, both for convergence speeduanerical stability.

Convergence is usually declared when the norm of the preconditiondéegrdalls below a
given threshold (Chapelle, 2007), or when the current preconddigradient is roughly orthogonal
with the real gradient (Shewchuk, 1994). We will investigate these conditioSection 4.

Algorithm 1 Preconditioned Conjugate Gradient (PCG) for primal LapSVMs.
Lett=0,2=0,E=r, (It =[-1Ty,—y"|T, d' = — [t

repeat
t=t+1
Finds* by line search on the linB~1 + sd*
Z2=272""14gd?
E={x€ L st. (ka'+b)y <1}
Ay o TMz14+91TLL TgK+y1TLK Y\ (1 lgy
lz1+yLll  IzK+yal +yLK lzy

0! =Hz—c=PHz— P& = Pt

_ DIT(ﬁtiil—l)
p—max( o217 (-1 70)

dt — 7|i|t +pdt_1
until Goal condition

3.2.1 LINE SEARCH

The optimal step lengts® on the current direction of the PCG algorithm must be computed by
backtracking or exact line search. At a generic iteratiose have to solve

s* = argminobj(Z 1 +sd 1) (13)

s>0

whereobj is the objective function of Equation 7.

The accuracy of the line search is crucial for the performance of R&&&n minimizing a
quadratic form that leads to a linear expression of the gradient, linehsearcbe computed in
closed form. In our case, we have to deal with the variations of th& gahd ofl %) for different
values ofs, so that a closed form solution cannot be derived, and we have to tenfguoptimabk
in an iterative way.

Due to the quadratic nature of Equation 13, the 1-dimensional Newton’s medimdae directly
used, but the average number of line search iterations per PCG step warybarge, even if the
cost of each of them is negligible with respect to @@?) of a PCG iteration. We can efficiently
solve the line search problem analytically, as suggested by Keerthi abdgbe(2005) for SVMs.

In order to simplify the notation, we discard the iteration intlexl in the following description.
Given the PCG directiod, we compute for each poimt € L, being it an error vector or not, the
step lengtts for which its state switches. The state of a given error vector switchen ivteaves
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Ya(s)

0 Ie’>‘1 ISz Is* IS3
S
Figure 2: Example of the piecewise linear functip(s) (blue plot). Y1 (s),...,Ws(s) are the four
linear portions of(s), ands;, sy, S3 are the break points. The optimal step length,s
the value for whichy(s) crosses zero.

the £ set, whether the state of a point initially notfiswitches when it becomes an error vector.
We refer to the set of the former points with while the latter isQ, with £L = QU Q. The
derivative of Equation 13)(s) = dobj(z+ sd)/ds, is piecewise linear, ang are the break points
of such function.

Let us consider, for simplicity, that are in a non decreasing order, discarding the negative ones.
Starting froms = 0, they define a set of intervals whepés) is linear and theE set does not change.
We indicate withy;(s) the linear portion of(s) in the j-th interval. Starting withj = 1, if the
values > 0 where the linep;(s) crosses zero is within such interval, then it is the optimal step size
s*, otherwise the following interval must be checked. The convergentteegirocess is guaranteed
by the convexity of the functionbj. See Figure 2 for a basic example.

The zero crossing ofj(s) is given bys = Wg’)"f%, where the two point$0,)j(0)) and
(1,Wj(1)) determine the lingj(s). We indicate withfg(x) the functionf (x) whose coefficients are
ind = [dp,dd]T, thatis, fg(x) = kT dg +dp, and 4 = [fa(xi),% € S]T. We have

Wj(0) = Sxez; (F(6) —¥i) fa(x) +yaa Kda +vi FLF,
Wj(1) = Yxez; (FO6) + fa(x) —yi) fa(%) +ya(a + da) TKdg + i FIL(F + f4)

whereZ; is the set of error vectors for theth interval.

Giveny1(0) andys (1), their successive values for increasingan be easily computed consid-
ering that only one point (that we indicate with) switches status moving from an interval to the
following one. From this consideration we derived the following updatesrule

Wj+1(0) = Wj(0) +v; (f(x)) —yj) fa(x;),
Wi+1(1) = (1) + v (F (X)) + fa(Xj) — Vi) fa(xj)

wherevj is —11if x; € @ anditis+1ifr € Q.

3.2.2 OMPLEXITY ANALYSIS

Each PCG iteration requires to compute ke product, leading to a complexity 6(n?) to update
the a coefficients. The termiKa can then be computed efficiently froku, since the matrix

is generally sparse. Note that, unlike the Newton’s method and the originhkdlution of the
LapSVM problem, we never have to explicitly compute thé product, always computing matrix
by vector products instead. Evenlifis sparse, when the number of training points is large or
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L is iterated several times, a large amount of computation may be saved by gvaidim matrix
by matrix product, as we will show in Section 6. Moreover, if the kernel masrigparse, the
complexity drops td(n,;), wheren,; is the maximum number of non-zero elements betw€en
andL. Note that the algorithm does not necessarily need to hold the whole riafaxdL) in
memory. The only requirement is a fast way to perform the produét with the currentx. On
the other hand, computing each kernel function evaluation on the fly maireegjlarge number of
floating-point operations, so that some caching procedures must isedev

Convergence of the conjugate gradient algorithm is theoretically dedla@®¢th) steps, but a
solution very close to the optimal one can be computed with far less iteratiomscorvergence
speed is related to the condition number of the Hessian (Shewchuk, 1198¢i},is composed by a
sum of three contributes (Equation 11). As a consequence, their canditiobers and weighting
coefficients {a, y;) have a direct influence in the convergence speed, and in particuleorid@ion
number of theK matrix. For example, using a bandwidth of a Gaussian kernel that leadto a
matrix close to the identity allows the algorithm to converge very quickly, but tharacy of the
classifier may not be sufficient.

Finally, PCG can be efficiently seeded with an initial rough estimate of the sol{aanm” or
“hot” start). For example, the solution computed for some given values ghthady, parameters
can be a good starting point when training the classifier with some just slighdyetit parameter
values (i.e., when cross-validating the model). Seeding is also crucial @mashthat allow the
classifier to be incrementally built with reduced complexity. They have begplginvestigated by
Keerthi et al. (2006) for the SVM classifier. Even if Keerthi et al. (@00se the Newton optimiza-
tion, a similar approach could be studied for LapSVMs exploiting the usedgpgsties of the PCG
algorithm.

4. Approximating the Optimal Solution

In order to reduce the training times, we want the PCG to converge assfastsaible to a good
approximationof the optimal solution. By appropriately selecting the goal condition of Algorith
1, we can discard iterations that may not lead to significant improvement inassfer quality.
This concept is widely used in optimization, where the early stop of the CG GriB€xploited to
approximately solve the Newton system in truncated Newton methods (seafmiple, the trust
region method for large-scale logistic regression of Lin et al., 2008).

The common goal conditions for the PCG algorithm and, more generally,réalient based
iterative algorithms, rely on the norm of the gradighi|| (Boyd and Vandenberghe, 2004), of the

preconditioned gradierﬂﬁH (Chapelle, 2007), on the mixed prodl:(ztﬂTD (Shewchuk, 1994).
These values are usually normalized by the first estimate of each of themallieeof the objective
functionobj or its relative decrement between two consecutive iterations can alsebleech re-
quiring some additional computations since the PCG algorithm never explicitlyesji. When
one of such “stopping” values falls below the chosen threshadsociated to it, the algorithm
terminates. Moreover, a maximum numbéhay of iterations is generally specified. Tuning these
parameters is crucial both for the time spent running the algorithm and thigyafdahe resulting
solution.

2. Thresholds associated to different conditions are obviously diffebeit, for simplicity in the description, we will
refer to a generic threshoid
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It is really hard to find a trade-off between good approximation and low rurabiterations,
sinceT andtnax are strictly problem dependent. As an example, consider that the swoiffatsg,
the objective function of Equation 7, varies among different choices paitameters. Increasing or
decreasing the valuesgf andy; canlead to a less flat or a more flat region around the optimal point.
Fixing in advance the values ofandty,x may cause an early stop too far from the optimal solution,
or it may result in the execution of a large number of iterations without a significnprovement
on the classification accuracy.

The latter situation can be particularly frequent for LapSVMs. As desdrib Section 2 the
choice of the intrinsic nornf T L introduces the soft constraifitx,) = f(x;) for nearby points,
X;j along the underlying manifold. This allows the algorithm to perform a graptsthaction and
diffuse the labels from points in to the unlabeled datal.

When the diffusion is somewhat complete and the classification hyperplarssiamed a quite
stable shape around the available training data, similar to the optimal one, thsiéntrdnm will
keep contributing to the gradient until a balance with respect to the ambient(aad to thd_, loss
on error vectors) is found. Due to the strictness of this constraint, it willrstiiliire some iterations
(sometimes many) to achieve the optimal solution Withi| = 0, even if the decision function
y(x) = sign(f(x)) will remain substantially the same. The described common goal conditions do
not “directly” take into account the decision of the classifier, so that tleayad appear appropriate
to early stop the PCG algorithm for LapSVMs.

We investigate our intuition on the “two moons” data set of Figure 3(a), wivereompare the
decision boundary after each PCG iteration (Figure 3(b)-(e)) with thimapsolution (computed by
Newton’s method, Figure 3(f)). Starting with= 0, the first iteration exploits only the gradient of
thel, loss on labeled points, since both the regularizing norms are zero. Inlkheifa iterations
we can observe the label diffusion process along the manifold. After 4iigrations we get a
perfect classification of the data set and a separating boundaryrrifobvrfathe optimal one. All
the remaining iterations until complete convergence are used to slightly assashttrence along
the manifold required by the intrinsic norm and the balancing with the smootbhéss function,
as can be observed by looking at the function values after 25 iteratiohse. mbst of changes
influences regions far from the support®f, and it is clear that an early stop after 4 PCG steps
would be enough to roughly approximate the accuracy of optimal solution.

In Figure 4 we can observe the values of the previously describedajat@pping criterion for
PCG. After 4 iterations they are still sensibly decreasing, without refleciabimprovements in
the classifier quality. The value of the objective functatj starts to become more stable only after,
say, 16 iterations, but it is still slightly decreasing even if it appears quitedrdal on the graph,
due to its scale. It is clear that fixing in advance the paramei@nslty,axis random guessing and it
will probably result in a bad trade-off between training time and accuracy.

4.1 Early Stopping Conditions

Following these considerations, we propose to early stop the PCG algorithioitimg the predic-
tions of the classifier on the available data.

Due to the high amount of unlabeled training points in the semi-supervisedhgéramework,
the stability of the decisioy(x) = sign(f(x)) , X € U, can be used as a reference to early stop
the gradient descenstability check. Moreover, if labeled validation data (s&t) is available for
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Figure 3: (a) The “two moons” data set (200 points, 2 classes, 2 labeiat$ indicated with a red
diamond and a blue circle, whereas the remaining points are unlabelee]) A(lbapSVM
classifier trained with PCG, showing the result after a fixed number of itemtithe dark
continuous line is the decision boundarfy(X) = 0) and the confidence of the classifier
ranges from redf((x) > 1) to blue f(x) < —1) - (f) The optimal solution of the LapSVM
problem computed by means of Newton’s method

classifier parameters tuning, we can formulate a good stopping conditied baghe classification
accuracy on it\alidation check that can be eventually merged to the previous omigdd check

In detail, wheny(x) becomes quite stable between consecutive iterations or emé#’), the
error rate on?/, is not decreasing anymore, then the PCG algorithm should be stoppedtoDu
their heuristic nature, it is generally better to compare the predictions évtemations and within a
certain tolerancg. As a matter of facty(x) may slightly change also when we are very close to the
optimal solution, anckrr(7/) is not necessarily an always decreasing function. Moreover, labeled
validation data in the semi-supervised setting is usually small with respect to thle thining
data, labeled and unlabeled, and it may not be enough to representtiarstiof the data set.

We propose very simple implementations of such conditions, that we used¢veadtie results
of Section 6. Starting from these, many different and more efficientnvarizan be formulated, but
it goes beyond the scope of this paper. They are sketched in Algorithn 2 awe computed the
classifier decision every/n/2 iterations and we required the classifier to impreve 7’) by one
correctly classifier example at every check, due to the usually small size 8bmetimes this can
also help to avoid a slight overfitting of the classifier.

Generating the decisioy(x) on unlabeled data does not require heavy additional machinery,
since theKa product must be necessarily computed to perform every PCG iteratiaveltall cost
is O(u). Differently, computing the accuracy on validation data requires the di@uaf the kernel
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Figure 4: PCG example on the “two moons” data set. The norm of the gradi¢nbf the precon-
ditioned gradient|d]|, the value of the objective functiasb j and of the mixed product

VO Oare displayed in function of the number of PCG iterations. The vertical lprere
sents the number of iterations after which the error rate is 0% and the delosiodary
is quite stable.

Algorithm 2 Thestability checlkfor PCG stopping.

dod 0ecRY
n+« 15%
6+« /n/2
Every8 iterations do the followings:
d=[yxj),xj€ 4, j=1,...,uT
T = (100- |d — d]|, /u)%
if T<nthen
Stop PCG
else
dold —d
end if

Algorithm 3 Thevalidation checkor PCG stopping.
Require: v
err1°d « 100%
n < 100- || 1%
0+« /n/2
Every8 iterations do the followings:
if err(7) > (err?°'d —n) then
Stop PCG
else
err10d = err(7)
end if
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function on validation points against theraining ones, an@®(| 7| - n) products, that is negligible
with respect to the cost of a PCG iteration.

Please note that even if these are generally early stopping conditiongjreesithey can help
in the opposite situation. For instance they can also detect that the classéds to move some
more steps toward the optimal solution than the ones limited by the setggied

The proposed stopping criteria could be exploited in the optimization of alteerfatmulations
of the LapSVM problem (following the improved models of Abernethy et alQ&8nd of Tsang
and Kwok, 2006), with the aim of reducing training times and getting a classiftara roughly
comparable quality to the optimal one. Even with slightly different problem féatimns, our cri-
teria are reasonably more appropriate than classical goal conditiorte their direct relationship
with the stability of the classifier prediction. In particular, some additionaliefftcsolution strate-
gies may be devised by directly working in the primal and exploitingetiresensitive loss based
intrinsic regularizer of Tsang and Kwok (2006), where manifold regzddion is applied to a large-
scale setting in the Minimum Enclosing Ball (MEB) framework. We note thesetitres for future
work.

5. Laplacian Regularized Least Squares

Laplacian Regularized Least Square Classifier (LapRLSC) has maiggaes with the proposda
hinge loss based LapSVMs. LapRLSC uses a squared loss functiondbizeewrongly classified
examples, leading to the following objective function

[
min 5" (yi — f()? +yall fIZ+ vl fIIF-
fer i<
The optimala coefficients and the optimal bids collected in the vectar, can be obtained by
solving the linear system

|£|+y1TL1 1M K+y1TLK ([ 1Ty (14)
Kl 1+yKLL KI K+yaK+yKLK ) ©7 \ Ky

wherel, is the diagonal matrix R™" with the firstl elements equal to 1 and the remainimg
elements equal to zero.

Following the notation used for LapSVMs, in LapRLSCs we have a setrof gectorsE that
is actually fixed and equal t6. As a matter of fact a LapRLSC requires the estimated function to
interpolate the given targets in order to not incur in a penalty. In a hypotigiation where all the
labeled examples always belong&aduring the training of a LapSVM classifier in the primal, then
the solution will be the same of LapRLSC.

Solving the least squares problem of LapRLSC can be performed by rimagision, after fac-
toring and simplifying the previously defined matkxn Equation 14. Otherwise the proposed PCG
approach and the early stopping conditions can be directly used. In feighoaclassic instruments
for linear optimization apply, and the required line search of Equation 18Beaomputed in closed
form without the need of an iterative process,

__O7d
~ d"Hd

*

whered andH are no more functions cf.
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As shown by Belkin et al. (2006); Sindhwani and Rosenberg (2008)ia the experimental
section of this paper, LapRLSC, LapSVM and primal LapSVM allow us taesehsimilar clas-
sification performances. The interesting property of the LapSVM proligaimat the effect of the
regularization terms at a given iteration can be decoupled by the one okthauloction on labeled
points, since the gradient of the loss function for correctly classified pisirztsro and do not dis-
turb classifier design. This characteristic can be useful as a startingfpoithe study of some
alternative formulations of the intrinsic norm regularizer.

6. Experimental Results

We ran a wide set of experiments to analyze the proposed solution straiktfieprimal LapSVM
problem. In this section we describe the selected data sets, our experipretiabl and the details
on the parameter selection strategy. Then we show the main result of thespdogpproach, very
fast training of the LapSVM classifier with reduced complexity by meansrf espped PCG. We
compare the quality of the, hinge loss LapSVMs trained in the primal by Newton’s method with
respect to thé&; hinge loss dual formulation and LapRLSCs. Finally, we describe the ogenee
speed and the impact on performances of our early stopping conditions.

As a baseline reference for the performances in the supervised settisg)ected two popular
regularized classifiers, Support Vector Machines (SVMs) and RegethLeast Square Classifiers
(RLSCs). We implemented and tested all the algorithms using Matlab 7.6 on a 2.33&imine
with 6GB of memory. The dual problem of LapSVM has been solved usindateet version of
Libsvm (Fan et al., 2005). Multiclass classification has been performiaed tise one-against-all
approach.

6.1 Data Sets

We selected eight popular data sets for our experiments. Most of thersatathas been already
used in previous works to evaluate several semi-supervised classifiedgionthms (Sindhwani
et al., 2005; Belkin et al., 2006; Sindhwani and Rosenberg, 2008)atkhof them are available on
the Web. G50€is an artificial data set generated from two unit covariance normal distitsuwith
equal probabilities. The class means are adjusted so that the Bayeis &¥ar The COIL20 data
set is a collection of pictures of 20 different objects from the Columbia &fsity. Each object has
been placed on a turntable and at every 5 degrees of rotation a 32x82cgite image was acquired.
The USPST data set is a collection of handwritten digits form the USPS pgstahs Images are
acquired at the resolution of 16x16 pixels. USPST refers to the test $phiewriginal data set.
We analyzed the COIL20 and USPST data set in their original 20 and $8-etasions and also
in their 2-class versions, to discard the effects on performances oéldxetesd multiclass strategy.
COIL20(B) discriminates between the first 10 and the last 10 objectspabé&fSPST(B) from the
first 5 digits and the remaining ones. PCMAC is a two-class data set gathémate the famous
20-Newsgroups collection, that collects posts on Windows and Macinysstiss. MNIST3VSS8 is
the binary version of the MNIST data set, a collection of 28x28 gray seaidviritten digit images
from NIST. The goal is to separate digit 3 from digit 8. Finally, the FACEMAta set of the Center
for Biological and Computational Learning at MIT contains 19x19 gralesd®GM format, images
of faces and non-faces. The details of the described data sets@areecks Table 1.

3. It can be downloaded fromtp://people.cs.uchicago.edu/ ~ vikass/manifoldregularization.html
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Data Set Classes Size Attributes
G50C 2 550 50
COIL20(B) 2 1440 1024
PCMAC 2 1946 7511
USPST(B) 2 2007 256
COIL20 20 1440 1024
USPST 10 2007 256
MNIST3VS8 2 13966 784
FACEMIT 2 31022 361

Table 1: Details of the data sets that have been used in the experiments.

6.2 Experimental Protocol

All presented results has been obtained by averaging them on diffgoiétstof the available data.

In particular, a 4-fold cross-validation has been performed, randogiiaafold generation process
for 3 times, for a total of 12 splits. Each fold contains the same number ofl@es examples as

in the complete data set. For each split, we have 3 folds that are used fangrtie classifier
and the remaining one that constitutes the test‘&gt {Training data has been divided in labeled
(L), unlabeled {Z) and validation sets¥’), where the last one is only used to tune the classifier
parameters. The labeled and validation sets have been randomly seleotelditraining data such
that at least one example per class is assured to be present on eastm oivithout any additional
balancing constraints. A small number of labeled points has been geneasiaityesl, in order to
simulate a semi-supervised scenario where labeling data has a large ceS¥INTET3VS8 and
FACEMIT data set are already divided in training and test data, so thatfibld generation process
was not necessary, and just the random subdivision of training datades performed (balancing
the class labels on training and validation data). In particular, on the MNIS83ollection we
normalized the data vectors to unit norm, and on the FACEMIT data set viiaeged the original
training and test sets, since, as a matter of fact, the latter is sensibly largtretiarmer. In this
case our goal is just to show how we were able to handle a high amountrohgralata using
the proposed primal solution with PCG, whereas it was not possible to do ithatariginal dual
formulation of LapSVM. Due to the high unbalancing of such data set, wartrépe macro error
rates for it (1- TP/2+TN/2, whereT PandT N are the rates of true positives and true negatives).
Details are collected in Table 2.

6.3 Parameters

We selected a Gaussian kernel function in the f&(r x;) = exp(—% for each experiment,

with the exception of the MNIST3VS8 where a polynomial kernel of de§reas used, as suggest
by Decoste and Séitkopf (2002). The other parameters were selected by cross-validating
on the ¥’ set. In order to speedup this step, the values of the Gaussian kernelamidthf the
parameters required to build the graph Laplacian (the number of neigmmesnd the degree)
for the first six data sets were fixed as specified by Sindhwani andnBesg (2008). For details
on the selection of such parameters please refer to Sindhwani andiRag€B008); Sindhwani
et al. (2005). The graph Laplacian was computed by using its normalizgdssion. The optimal
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Data Set izl |ul |V |7

G50C 50 314 50 136
COIL20(B) 40 1000 40 360
PCMAC 50 1358 50 488
USPST(B) 50 1409 50 498
COIL20 40 1000 40 360
USPST 50 1409 50 498

MNIST3VS8 80 11822 80 1984
FACEMIT 2 23973 50 6997

Table 2: The number of data points in each split of the selected data setg, fivaed U are the
sets of labeled and unlabeled training points, respectiélis the labeled set for cross-
validating parameters wheredsis the out-of-sample test set.

weights of the ambient and intrinsic normg, Vi, were determined by varying them on the grid
{107%,1074,1072,10°1,1,10,100} and chosen with respect to validation error. For the FACEMIT
data set also the value 1®was considered, due to the high amount of training points. The selected
parameter values are reported in Table 9 of Appendix A for reproducibflitie experiments.

6.4 Results

Before going into further detail, in Table 3 we report the training times of MAS using the
original dual formulation and the primal training approdcfthe last column refers to LapSVMs
trained using the best (in terms of accuracy) of the proposed stoppinigties for each specific data
set. As expected, training in the primal by the Newton’s method requires tdinies similar to
those for the dual formulation. On the other hand, training by PCG with theoseml early stopping
conditions shows an appreciable reduction of training times for all datasetbe size of labeled
and unlabeled points increases, the improvement becomes very evidethie @INIST3VS8 data
set we go from roughly half an hour to two minutes. Both in the dual formulatidmapSVMs and
in the primal one solved by means of Newton’s method, a lot of time is spent inutorgphelLK
matrix product. Even it is sparse, the cost of this product could be quite high. Similar reductions
are observed for the PCMAC data set, where the training time drops froseddnds to only 2
seconds when solving with PCG. Finally, the memory requirements are alscegdsince, when
the PCG is used, there is no need to explicitly compute, store and invert te@hlefo emphasize
this point, we had no difficulty training the classifier on the FACEMIT data satguPCG. On
the other hand, the high memory requirements of dual LapSVM and prim&\spsolved with
Newton’s method, coupled with the high computational cost, made those methodssibip to
runt on our machine.

We now investigate the details of the solution of the primal LapSVM problem. dierato
compare the effects of the different loss functions of LapRLSCs, /MxStrained in the dual,
and LapSVMs trained in the primal, in Table 4 the classification errors of theritbed techniques
are reported. For this comparison, the solution of primal LapSVMs is comyteneans of the
Newton’s method. The manifold regularization based techniques lead to calbhpaesults, and,

4. For a fair comparison of the training algorithms, the Gram matrix and dipéakcian were precomputed.
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Data Set Laplacian SVMs

Dual [Original] Primal - Newton  Primal - PCG
G50C 0.155 (0.004) 0.134 (0.006) 0.043(0.006)
COIL20(B) | 0.311(0.012) 0.367 (0.097) 0.097(0.026)
PCMAC 14.82 (0.104) 15.756 (0.285) 1.967(0.269)
USPST(B) 1.196 (0.015) 1.4727 (0.2033) 0.300(0.030)
COIL20 6.321 (0.441) 7.26 (1.921) 3.487(1.734)
USPST 12.25(0.2) 17.74 (2.44) 2.032(0.434)
MNIST3VS8 | 2064.18 (3.1) 2824.174 (105.07)114.441(0.235)
FACEMIT - - 35.728(0.868)

Table 3: Our main result. Training times (in seconds) of Laplacian SVMs uiff@rent algo-
rithms (standard deviation in brackets). The time required to solve the oridjiadifor-
mulation and the primal solution with Newton’s method are comparable, wheskdsgs
the Laplacian SVMs problem in the primal with early stopped preconditionapligate
gradient (PCG) offers a noticeable speedup.

as expected, all semi-supervised approaches show a sensible impnbesareclassical supervised
classification algorithms. The error rates of primal LapSVMs and LapRL&€ quite close, due

to the described relationship of the hinge loss and the squared loss. We reported the average
number of Newton’s steps required to compute the solution in Table 5. In maéx@eriments we
have observed convergence in less than 6 steps.

We compared the error rates of LapSVMs trained in the primal by Newtortkadevith ones
of PCG training, in function of the number of gradient stepBor this comparisonja andy; were
selected by cross-validating with the former (see Appendix A), and erpats were performed
using all the described data sets. In Figure 5-7 we report the graphs itaie of the USPST,
MNIST3VS8 and COIL20 data as a reference. The horizontal line ch geaph represents the
error rate of the non-approximated solution computed with the Newton’s mefftoel number of
iterations required to converge to a solution with the same accuracy of thepproximated one is
sensibly smaller than. Convergence is achieved really fast, and only in the COIL20 data set we
experienced a relatively slower rate with respect to the other data segseriidr surface of each
binary classifier is quite flat around optimum with the selegiedndy;, leading to some round-off
errors in gradient descent based techniques, stressed by the langpemof classes and the one-
against-all approach. Moreover labeled training examples are highiplamded. As a matter of
fact, in the COIL20(B) data set we did not experience this behaviorllfiiathe FACEMIT data
set the algorithm perfectly converges in a few iterations, showing that irdétés set the most of
information is contained in the labeled data (even if it is very small), and the imtGogstraint is
easily fulfilled.

In Figure 8-9 we collected the values of the gradient ngimjj, of the preconditioned gradient

norm |||, of the mixed product/ (T [, and of the objective functionbj for each data set, nor-

malized by their respective valuestat 0. The vertical line is an indicative index of the number of
iterations after which the error rate on all partitions (U, 1/, 7) becomes equal to the one at the
stationary point (when the gradient of the objective function is zerod.clinves generally keep sen-
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Data Set Classifier u v T
SVM 9.33(2) 9.83(3.46) 10.06 (2.8)
RLSC 10.43 (5.26) 10.17 (4.86) 11.21 (4.98)
G50C LapRLSC 6.03(1.32) 6.17(3.66) 6.54(2.11)
LapSVM Dual (Original)  5.52 (1.15) 5.67 (2.67) 5.51(1.65)
LapSVM Primal (Newton) 6.16 (1.48) 6.17 (3.46)  7.27 (2.87)
SVM 16.23 (2.63) 18.54(6.2) 15.93(3)
RLSC 16.22 (2.64) 18.54(6.17) 15.97 (3.02)
COIL20(B) LapRLSC 8.067 (2.05) 7.92(3.96) 8.59(1.9)
LapSVM Dual (Original)  8.31(2.19) 8.13(4.01) 8.68(2.04)
LapSVM Primal (Newton) 8.16 (2.04) 7.92(3.96) 8.56 (1.9)
SVM 19.65 (6.91) 20.83(6.85) 20.09 (6.91)
RLSC 19.63 (6.91) 20.67 (6.95) 20.04 (6.93)
PCMAC LapRLSC 9.67(0.74) 7.67(4.08) 9.34(1.5)
LapSVM Dual (Original)  10.78 (1.83) 9.17 (4.55) 11.05(2.94
LapSVM Primal (Newton) 9.68 (0.77) 7.83(4.04) 9.37(1.51)
SVM 17 (2.74) 18.17 (5.94) 17.1(3.21)
RLSC 17.21(3.02) 17.5(5.13) 17.27 (2.72)
USPST(B) LapRLSC 8.87(1.88) 10.17 (4.55) 9.42(2.51)
LapSVM Dual (Original)  8.84 (2.2) 8.67 (4.38) 9.68(2.48)
LapSVM Primal (Newton) 8.72 (2.15) 9.33(3.85) 9.42(2.34)
SVM 29.49 (2.24) 31.46(7.79) 28.98(2.74)
RLSC 29.51 (2.23) 31.46(7.79) 28.96 (2.72)
COIL20 LapRLSC 10.35(2.3) 9.79(4.94) 11.3(2.17)
LapSVM Dual (Original)  10.51(2.06) 9.79(4.94) 11.44(2.39
LapSVM Primal (Newton) 10.54 (2.03) 9.79(4.94) 11.32(2.19
SVM 23.84 (3.26) 24.67 (4.54) 23.6(2.32)
RLSC 23.95(3.53) 25.33(4.03) 24.01(3.43)
USPST LapRLSC 15.12(2.9) 14.67(3.94) 16.44(3.53)
LapSVM Dual (Original)  14.36 (2.55) 15.17 (4.04) 14.91(®.8
LapSVM Primal (Newton) 14.98 (2.88) 15 (3.57) 15.38 (3.55)
SVM 8.82(1.11) 7.92(4.73) 8.22(1.36)
RLSC 8.82(1.11) 7.92(4.73) 8.22(1.36)
MNIST3VS8 LapRLSC 1.95(0.05) 1.67(1.44) 1.8(0.3)
LapSVM Dual (Original)  2.29(0.17) 1.67 (1.44) 1.98(0.15)
LapSVM Primal (Newton) 2.2 (0.14) 1.67 (1.44) 2.02(0.22)
SVM 39.8(2.34) 38(1.15) 34.61 (3.96)
FACEMIT RLSC 39.8(2.34) 38(1.15) 34.61 (3.96)
LapSVM Primal (PCG) 29.97 (2.51) 36 (3.46) 27.97 (5.38)

Table 4: Comparison of the accuracy of LapSVMs trained by solving ihegb({Newton’s method)
or the dual problem. The average classification error (standard devigtieported brack-
ets) is reported. Fully supervised classifiers (SVMs, RLSCs) reptrése baseline perfor-
mances.U is the set of unlabeled examples used to train the semi-supervised classifiers
v is the labeled set for cross-validating parameters whefeasthe out-of-sample test
set. Results on the labeled training gedre omitted since all algorithms correctly classify
such a few labeled training points.

1170



LAPLACIAN SVMsS TRAINED IN THE PRIMAL

Data Set Newton'’s Steps
G50C 1(0)
COIL20(B) 2.67 (0.78)
PCMAC 2.33(0.49)
USPST(B) 4.17 (0.58)
COIL20 2.67 (0.75)
USPST 4.26 (0.76)

MNIST3VS8 5 (0)

Table 5: Newton'’s steps required to compute the solution of the primal Lapl&sia problem.
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Figure 5: USPST data set: error rate 6n, v/, T of the Laplacian SVM classifier trained in
the primal by preconditioned conjugate gradient (PCG), with respect tauhwder of
gradient steps. The error rate of the primal solution computed by means of Newton'’s
method is reported as a horizontal line.

sibly decreasing even after such line, without reflecting real improveriretits classifier accuracy,
and they differ by orders of magnitude among the considered data seingtbeir strong problem
dependency (differently from our proposed conditions). As desdrib Section 4, we can see how
it is clearly impossible to define a generic threshold on them to appropriat@lyls&td®CG descent
(i.e., to find a good trade-off between number of iterations and accurdbydeover, altering the
values of the classifier parameters can sensibly change the shape obtheigction, requiring a
different threshold every time. In those data sets where points keejingréed leaving theE set
ast increases (mainly during the first steps) the norm of the gradient canatmostable behavior
between consecutive iterations, due to the piecewise nature of the prabbkimg the threshold
selection task ulteriorly complex. This is the case of the PCMAC and USPSJE({)set. In the
MNIST data, the elements of kernel matrix non belonging to the main diagomakay small due
to the high degree of the polynomial kernel, so that the gradient and tberati¢éioned gradient are
close.
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the primal by preconditioned conjugate gradient (PCG), with respect tauhwber of
gradient steps. The error rate of the primal solution computed by means of Newton’s

method is reported as a horizontal line.

Using the proposed PCG goal conditions (Section 4), we cross-valittegatimal LapSVM
classifier trained by PCG, and the selected parameters are reporteddrilaif Appendix A. In
the USPST(B), COIL20(B), and MNIST3VS8 data sets, larger valaegafor y, are selected by
the validation process, since the convergence speed of PCG is edhdndde other data sets,
parameter values remain substantially the same of the ones selected by salkitigeviNewton’s
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Figure 8: Details of each PCG iteration. The value of the objective funclignof the gradient

norm||d]|, of the preconditioned gradient noﬂtﬁ”, and of the mixed product 7 0 are
displayed in function of the number of PCG iteratiot)s The vertical line represents the
number of iterations after which the error rate on all partitioasq, v/, T) is roughly
the same to the one at the stationary point.

method, suggesting that a reliable and fast cross-validation can bermpedavith PCG and the
proposed early stopping heuristics.

In Table 6 the training times, the number of PCG and line search iterationseeen, whereas
in Table 7 the corresponding classification error rates are reported,domparison with the non-
approximated solution computed using Newton's method. As already streksddaining times
appreciably drop down when training a LapSVM in the primal using PCG andaal conditions,
independently by the data set. Early stopping allows us to obtain results citgés the New-
ton’s method or to the original two step dual formulation, showing a direcetaiion between the
proposed goal conditions and the quality of the classifier. Moreovecanditions are the same for
each problem or data set, overcoming all the issues of the previousiymasones. In the COIL20
data set we can observe performances less close to the one of the shatiputed with Newton'’s
method. This is due to the already addressed motivations, and it also sutigeshe stopping
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Data Set Laplacian SVM Training Time PCG lters LS Iters
Dual 0.155 (0.004) - -
Newton 0.134 (0.006) - -
G50C PCG [Stability Check] 0.044(0.006) 20 (0) 1(0)
PCG [Validation Check] 0.043(0.006) 20.83(2.89) 1(0)
PCG [Mixed Check] 0.044(0.006) 20.83(2.89) 1(0)
Dual 0.311 (0.012) - -
Newton 0.367 (0.097) - -
COIL20(B) PCG [Stability Check] 0.198(0.074) 74.67 (28.4) 2.41(1.83)
PCG [Validation Check] 0.097(0.026) 37.33(10.42) 1(0)
PCG [Mixed Check] 0.206(0.089) 78.67 (34.42) 2.38(1.79)
Dual 14.8203 (0.104) - -
Newton 15.756 (0.285) - -
PCMAC PCG [Stability Check] 1.897(0.040) 38.00 (0) 1.16 (0.45)
PCG [Validation Check] 1.967(0.269) 39.58 (5.48) 1.15(0.44)
PCG [Mixed Check] 1.997(0.258) 39.58 (5.48) 1.15(0.44)
Dual 1.196 (0.015) - -
Newton 1.4727 (0.2033) - -
USPST(B) PCG [Stability Check]  0.300(0.030) 58.58 (5.48) 1.74 (0.90)
PCG [Validation Check] 0.281(0.086) 55.42 (17.11) 1.68(0.90)
PCG [Mixed Check] 0.324(0.059) 63.33(12.38) 1.70(0.89)
Dual 6.321 (0.441) - -
Newton 7.26 (1.921) - -
COIL20 PCG [Stability Check] 3.297(1.471) 65.47 (30.35) 2.53(1.90)
PCG [Validation Check] 1.769(0.299) 34.07 (6.12) 3.37 (2.22)
PCG [Mixed Check] 3.487(1.734) 69.53 (35.86) 2.48(1.87)
Dual 12.25(0.2) - -
Newton 17.74 (2.44) - -
USPST PCG [Stability Check] 1.953(0.403) 41.17 (8.65) 3.11(1.73)
PCG [Validation Check] 2.032(0.434) 42,91 (9.38) 3.13(1.73)
PCG [Mixed Check] 2.158(0.535) 45.60 (11.66) 3.12(1.72)
Dual 2064.18 (3.1) - -
Newton 2824.174 (105.07) - -
MNIST3VS8 PCG [Stability Check] 114.441(0.235) 110 (0) 5.58 (2.79)
PCG [Validation Check] 124.69(0.335) 110 (0) 5.58 (2.79)
PCG [Mixed Check] 124.974(0.414) 110 (0) 5.58 (2.79)
PCG [Stability Check] 35.728(0.868) 3(0) 1(0)
FACEMIT PCG [Validation Check] 35.728(0.868) 3(0) 1(0)
PCG [Mixed Check] 35.728(0.868) 3(0) 1(0)

Table 6: Training time comparison among the Laplacian SVMs trained in the@ual){ LapSVM
trained in the primal by means of Newton’s method (Newton) and by mean obipdi-
tioned conjugate gradient (PCG) with the proposed early stopping cond{tiosguare
brackets). Average training times (in seconds) and their standard desiatiie number
of PCG iterations, and of Line Search (LS) iterations (per each PCGaneeg¢ported.
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Data Set Laplacian SVM u v T
Newton 6.16 (1.48) 6.17(3.46) 7.27(2.87)
G50C PCG [Stability Check] 6.13(1.46) 6.17 (3.46) 7.27(2.87)
PCG [Validation Check] 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)
PCG [Mixed Check] 6.16 (1.48) 6.17(3.46) 7.27(2.87)
Newton 8.16 (2.04) 7.92(3.96) 8.56(1.9)
COIL20(B) PCG [Stability Check]  8.81(2.23) 8.13(3.71) 8.84(1.93)
PCG [Validation Check] 8.32(2.28) 8.96 (4.05) 8.45(1.58)
PCG [Mixed Check] 8.84 (2.28) 8.13(3.71) 8.84(1.96)
Newton 9.68 (0.77) 7.83(4.04) 9.37(1.51)
PCMAC PCG [Stability Check]  9.65(0.78) 7.83(4.04) 9.42(1.50)
PCG [Validation Check] 9.67 (0.76) 7.83(4.04) 9.40 (1.50)
PCG [Mixed Check] 9.67 (0.76) 7.83(4.04) 9.40(1.50)
Newton 8.72(2.15) 9.33(3.85) 9.42(2.34)
USPST(B) PCG [Stability Check]  9.11(2.14) 10.50 (4.36) 9.70 (2.55)
PCG [Validation Check] 9.10(2.17) 10.50(4.36) 9.75(2.59)
PCG [Mixed Check] 9.09 (2.17) 10.50 (4.36) 9.70 (2.55)
Newton 10.54 (2.03) 9.79(4.94) 11.32(2.19)
COIL20 PCG [Stability Check] 12.42 (2.68) 10.63 (4.66) 12.92 (2.14)
PCG [Validation Check] 13.07 (2.73) 12.08 (4.75) 13.52(2.12)
PCG [Mixed Check] 12.43 (2.69) 10.42(4.63) 12.87 (2.20)
Newton 14.98 (2.88) 15 (3.57) 15.38 (3.55)
USPST PCG [Stability Check] 15.60 (3.45) 15.67 (3.60) 16.11 (3.95)
PCG [Validation Check] 15.40(3.38) 15.67 (3.98) 15.94 (4.04)
PCG [Mixed Check] 15.45 (3.53) 15.50(3.92) 15.94 (4.08)
Newton 2.2 (0.14) 1.67 (1.44) 2.02(0.22)
PCG [Stability Check] 2.11(0.06) 1.67(1.44) 1.93(0.2)
MNIST3VS8 PCG [Validation Check] 2.11(0.06) 1.67(1.44) 1.93(0.2)
PCG [Mixed Check] 2.11(0.06) 1.67(1.44) 1.93(0.2)
PCG [Stability Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)
FACEMIT PCG [Validation Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)
PCG [Mixed Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)

Table 7: Average classification error (standard deviation is reporeazkéts) of Laplacian SVMs
trained in the primal by means of Newton’s method (Newton) and of preconddicon-
jugate gradient (PCG) with the proposed early stopping conditions (ireduackets).

U is the set of unlabeled examples used to train the classifiéris the labeled set for
cross-validating parameters wher@ass the out-of-sample test set. Results on the labeled
training setZ are omitted since all algorithms correctly classify such a few labeled training
points.
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Figure 9: Details of each PCG iteration. The value of the objective funclignof the gradient

norm||d]|, of the preconditioned gradient noﬂtﬁ”, and of the mixed product 7 0 are
displayed in function of the number of PCG iteratiots The vertical line represents the
number of iterations after which the error rate on all partitioasq, v/, T) is roughly
the same to the one at the stationary point.

condition should probably be checked while training in parallel the 20 bidassifiers, instead of
separately checking it on each of them. A better tuning of the goal conditioamslifferent formu-
lation of them can move the accuracy closer to the one of primal LapSVM traiitt Newton’s
method, but it goes beyond to the scope of this paper.

The number of PCG iterations is noticeably smaller thanObviously it is function of the
gap between each checking of a stopping criterion, that we sghf@. The number of iterations
from the stability check is sometimes larger that the one from the validation ¢k¥2Kk 20(B),
USPST, COIL20). As a matter of fact, labeled validation data is more informtian a stable, but
unknown, decision on the unlabeled one. On the other hand validationaldthnot represent test
data enough accurately. Using a mixed strategy makes sense in thoseasasas be observed in
the COIL20 data set. In our experiments the mixed criterion has generallgiielsehavior of the
most strict of the two heuristics for each specific set of data. In the FATEMta set complete
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Data Set Laplacian RLSC Training Time PCG lters T
Matrix Inversion 14.21 (0.067) - 9.34 (1.5)
PCMAC PCG [Stability Check] 1.818(0.016) 38 (0) 9.34 (1.46)
PCG [Validation Check] 1.82(0.05) 38 (0) 9.34 (1.46)
PCG [Mixed Check] 1.821(0.047)  38(0) 9.34 (1.46)

Table 8: Training time comparison among the Laplacian RLSCs trained by sdbgogtion 14
with matrix inversion and by means of preconditioned conjugate gradier@)R@h the
proposed early stopping conditions (in square brackets). Averaigegdimes (in sec-
onds), the number of PCG iterations, and the average classification etestalatal are
shown. Standard deviations are reported brackets.

convergence is achieved in just a few iterations, independently by thisties: The number of line
search iterations is usually very small and negligible with respect to the cotomatacost of the
training algorithm.

For the sake of completeness, we show an example of the application afrbus®pped PCG
to LapRLSC, as described in Section 5. In Table 8 we report the training,tiheePCG iterations,
and the error rate (on test points) in the case of PCMAC data. The redwdticaining times is
significant, and positively influenced by the non iterative line searchegure.

7. Conclusions and Future Work

In this paper we described investigated in detail two strategies for solvingptivaization prob-
lem of Laplacian Support Vector Machines (LapSVMSs) in the primal. A viasf solution can be
achieved using preconditioned conjugate gradient coupled with an éaplyisg criterion based on
the stability of the classifier decision. Detailed experimental results on radd wata show the
validity of such strategy. The computational cost for solving the problefuaes fromO(n®) to
O(knz), wheren is the total number of training points, both labeled and unlabeled kasam-
pirically evaluated to be significantly smaller thanwithout the need of storing in memory the
Hessian matrix and its inverse. Training times are significantly reduced cgledted benchmarks,
in particular, as the amount of training data increases. This solution cambefd starting point
for applying greedy techniques for incremental classifier building osfodying the effects of a
sparser kernel expansion of the classification function. Moreoweregecently proposed domain
decomposition techniques for large scale RLSC (Li et al., 2007) couldvestigated to solve the
primal LapSVM problem, that we will address in future work.
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Appendix A.

This Appendix collects all the parameters selected using our experimeatiat ok, for reproducibil-
ity of the experiments (Table 9 and Table 10). Details of the cross-validatimegure are described
in Section 6.

In the most of the data sets, parameter values selected using the PCG sauotain sub-
stantially the same of the ones selected by solving the primal problem with the iNgewiethod,
suggesting that a reliable and fast cross-validation can be performedP@iEhand the proposed
early stopping heuristics. In the USPST(B), COIL20(B), and MNISE8Wata sets, larger val-
ues forya ory, are selected when using PCG, since the convergence speed of goetieant is
enhanced.

To emphasize this behavior, the training times and the resulting error ratesBCE solution
computed usinga andy; tuned by means of the Newton’s method (instead of the ones computed by
PCG with each specific goal condition) are reported in Table 11 and in T&bl€omparing these
results with the ones presented in Section 6, it can be appreciated that datintrergence speed
(Table 6) and the accuracy of the PCG solution (Table 7) benefit frorpanopriate parameter
selection. Note that the performance gaps between Newton’s method &dfRCgiven data set
sometimes are slightly different amorig, 7/, andZ. As a matter of fact, the balancing of class
labels may not be exactly the same among the three sets, due to the randomgsafmiglifand L)
from non-test data, as described in Section 6.

References

J. Abernethy, O. Chapelle, and C. Castillo. Witch: A new approach to yaim sletectionTechni-
cal Report 2008-001, Yahoo! Resear2h08.

M. Belkin and P. Niyogi. Using manifold stucture for partially labeled clasdifica Advances in
Neural Information Processing Systemages 953—-960, 2003.

M. Belkin and P. Niyogi. Towards a theoretical foundation for Lapladdased manifold methods.
Journal of Computer and System Scien@@g8):1289-1308, 2008.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geomefriamework for
learning from labeled and unlabeled exampléfe Journal of Machine Learning Researéh
2399-2434, 2006.

S.P. Boyd and L. Vandenbergh€onvex OptimizationCambridge university press, 2004.

O. Chapelle. Training a support vector machine in the prinhbdural Computation19(5):1155—
1178, 2007.

O. Chapelle, J. Weston, and B. Stkopf. Cluster kernels for semi-supervised learningdivances
in Neural Information Processing Systemages 585-592. Cambridge, MA, USA: MIT Press,
2003.

O. Chapelle, B. Sdtikopf, and A. Zien.Semi-supervised learnind/IT press, 2006.

O. Chapelle, V. Sindhwani, and S.S. Keerthi. Optimization techniques for s@peirvised support
vector machinesThe Journal of Machine Learning Resear&i203—-233, 2008.

1178
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Data Set Classifier o nn p Vva Vi
SVM 175 - - 10! -
RLSC 175 - - 1 -

G50C LapRLSC 175 50 5 16 102

LapSVM Dual (Original) 175 50 5 1 10
LapSVM Primal (Newton) 175 50 5 18 10

SVM 06 - - 106 -
RLSC 06 - - 10% -
COIL20(B) LapRLSC 06 2 1 166 1
LapSVM Dual (Original) 06 2 1 10¢° 100
LapSVM Primal (Newton) 06 2 1 1¢ 1
SVM 27 - - 10% -
RLSC 27 - - 10% -
PCMAC LapRLSC 27 50 5 16 1072

LapSVM Dual (Original) 2.7 50 5 166 10°*
LapSVM Primal (Newton) 2.7 50 5 1§ 1

SVM 94 - - 106 -
RLSC 94 - - 101! -
USPST(B) LapRLSC 94 10 2 100 101

LapSVM Dual (Original) 9.4 10 2 16 1072
LapSVM Primal (Newton) 9.4 10 2 1§ 10°7?

SVM 06 - - 10% -
RLSC 06 - - 108 -
COIL20 LapRLSC 06 2 1 108 1
LapSVM Dual (Original) 06 2 1 168 10
LapSVM Primal (Newton) 06 2 1 16 1
SVM 94 - - 10! -
RLSC 94 - - 100 -
USPST LapRLSC 94 10 2 1 10!

LapSVM Dual (Original) 9.4 10 2 166 1072
LapSVM Primal (Newton) 9.4 10 2 1d 1

SVM 9 - - 10° -
RLSC 9 - - 10° -
MNIST3VS8 LapRLSC 9 20 3 10° 1072

LapSVM Dual (Original) 9 20 3 10f 10?2
LapSVM Primal (Newton) 9 20 3 10 10?2

SVM 43 - - 10° -
FACEMIT RLSC 43 - - 10°% -
LapSVM Primal (PCG) 43 6 1 16 108

Table 9: Parameters selected by cross-validation for supervised afgsr{tivM, RLSC) and
semi-supervised ones based on manifold regularization, using differemtfunctions
(LapRLSC, LapSVM trained in the dual formulation and in the primal one bynsed
Newton’s method). The parameteris the bandwidth of the Gaussian kernel or, in the
MNIST3VS8, the degree of the polynomial one.
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Data Set Laplacian SVM VA Vi
Newton 10t 10
G50C PCG [Stability Check]  10' 10
PCG [Validation Check] 10 10
PCG [Mixed Check] 10t 10
Newton 106 1
PCG [Stability Check] ~ 10° 1
COIL20(B) b pvalidation Check] 1 100
PCG [Mixed Check] 106
Newton 106 1
PCG [Stability Check]  10* 1
PCMAC PCG [Validation Check] 10* 1
PCG [Mixed Check] 106 10!
Newton 106 102
PCG [Stability Check]  10° 1
USPST(®B)  peg [Validation Check] 166 1
PCG [Mixed Check] 106 1
Newton 106 1
PCG [Stability Check] ~ 10° 1
COIL20 PCG [Validation Check] 166 1
PCG [Mixed Check] 108 1
Newton 104 1
PCG [Stability Check] ~ 10* 1
USPST PCG [Validation Check] 10* 1
PCG [Mixed Check] 104 1
Newton 106 102
_ge 6 1
MNIST3VSS PCG [Stability Check] 10° 10

PCG [Validation Check] 10° 101
PCG [Mixed Check] 106 1071t

PCG [Stability Check]  10° 1078
FACEMIT PCG [Validation Check] 10° 1078
PCG [Mixed Check] 106 108

Table 10: A comparison of the parameters selected by cross-validatibagtacian SVMs trained
in the primal by means of Newton’s method (Newton) and preconditioned gatgyra-
dient (PCG) with the proposed early stopping conditions (in square éisjck
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Data Set Laplacian SVM Training Time PCG lters LS Iters
Dual 0.155 (0.004) - -
Newton 0.134 (0.006) - -

G50C PCG [Stability Check] 0.044 (0.006) 20 (0) 1(0)
PCG [Validation Check] 0.043 (0.006) 20.83 (2.89) 1(0)
PCG [Mixed Check] 0.044 (0.006) 20.83 (2.89) 1(0)
Dual 0.311 (0.012) - -
Newton 0.367 (0.097) - -

COIL20(B)  PCG [Stability Check] 0.198 (0.074) 74.67 (28.4) 2.41(1.83
PCG [Validation Check] 0.095 (0.018) 36 (7.24) 3.26 (2.21)
PCG [Mixed Check] 0.206 (0.089) 78.67 (34.42) 2.38(1.79)
Dual 14.8203 (0.104) - -
Newton 15.756 (0.285) - -

PCMAC PCG [Stability Check] 1.901 (0.022) 38.00 (0) 1.18 (0.45)
PCG [Validation Check] 1.970 (0.265) 39.58 (5.48) 1.1840.4
PCG [Mixed Check] 1.969 (0.268) 39.58 (5.48) 1.18 (0.44)
Dual 1.196 (0.015) - -
Newton 1.4727 (0.2033) - -

USPST(B) PCG [Stability Check] 0.496 (0.172) 95.00 (33.40) 6.5683.1
PCG [Validation Check] 0.279 (0.096) 52.25(18.34) 6.8343.
PCG [Mixed Check] 0.567 (0.226) 107.67 (43.88) 6.49 (3.15)
Dual 6.321 (0.441) - -
Newton 7.26 (1.921) - -

CoIL20 PCG [Stability Check] 3.297 (1.471) 65.47 (30.35) 2.53Q).9
PCG [Validation Check] 1.769 (0.299) 34.07 (6.12) 3.37R.2
PCG [Mixed Check] 3.487 (1.734) 69.53 (35.86) 2.48(1.87)
Dual 12.25(0.2) - -
Newton 17.74 (2.44) - -

USPST PCG [Stability Check] 1.953 (0.403) 41.17 (8.65) 3.11 (.73
PCG [Validation Check] 2.032 (0.434) 42.91 (9.38) 3.138).7
PCG [Mixed Check] 2.158 (0.535) 45.60 (11.66) 3.12(1.72)
Dual 2064.18 (3.1) - -
Newton 2824.174 (105.07) - -

MNIST3VS8 PCG [Stability Check] 188.775 (0.237) 165 (0) 6.78 (3.65)
PCG [Validation Check] 207.986 (35.330) 183.33 (31.75) 56&57)
PCG [Mixed Check] 207.915 (35.438) 183.33(31.75) 6.65qB.5
PCG [Stability Check] 35.728 (0.868) 3(0) 1(0)

FACEMIT PCG [Validation Check] 35.728 (0.868) 3(0) 1(0)
PCG [Mixed Check] 35.728 (0.868) 3(0) 1(0)

Table 11: Training time comparison among the Laplacian SVMs trained in the (Gwsll),
LapSVM trained in the primal by means of Newton’s method (Newton) and byhmea
of preconditioned conjugate gradient (PCG) with the proposed earlpispponditions
(in square bracketsParameters of the classifiers were tuned using the Newton’s method
Average training times (in seconds) and their standard deviations, the n@nBEG
iterations, and of Line Search (LS) iterations (per each PCG one) goeted.
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Data Set Laplacian SVM u v T
Newton 6.16 (1.48) 6.17(3.46) 7.27(2.87)
G50C PCG [Stability Check]  6.13(1.46) 6.17 (3.46) 7.27 (2.87)
PCG [Validation Check] 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)
PCG [Mixed Check] 6.16 (1.48) 6.17(3.46) 7.27(2.87)
Newton 8.16 (2.04) 7.92(3.96) 8.56(1.9)
COIL20(B) PCG [Stability Check]  8.81(2.23) 8.13(3.71) 8.84(1.93)
PCG [Validation Check] 8.97 (2.32) 9.17(3.74) 8.96 (1.64)
PCG [Mixed Check] 8.84 (2.28) 8.13(3.71) 8.84(1.96)
Newton 9.68 (0.77) 7.83(4.04) 9.37(1.51)
PCMAC PCG [Stability Check]  9.65(0.76) 7.83(4.04) 9.42 (1.43)
PCG [Validation Check] 9.65(0.76) 7.83(4.04) 9.40(1.43)
PCG [Mixed Check] 9.65(0.76) 7.83(4.04) 9.40(1.43)
Newton 8.72(2.15) 9.33(3.85) 9.42(2.34)
USPST(B) PCG [Stability Check] 11.07 (2.27) 13.33(4.21) 11.49 (2.55)
PCG [Validation Check] 12.02 (2.22) 14.67 (2.99) 12.01 (2.14)
PCG [Mixed Check] 10.81(2.39) 12.83(4.78) 11.31(2.71)
Newton 10.54 (2.03) 9.79(4.94) 11.32(2.19)
COIL20 PCG [Stability Check] 12.42 (2.68) 10.63 (4.66) 12.92 (2.14)
PCG [Validation Check] 13.07 (2.73) 12.08 (4.75) 13.52(2.12)
PCG [Mixed Check] 12.43 (2.69) 10.42(4.63) 12.87 (2.20)
Newton 14.98 (2.88) 15 (3.57) 15.38 (3.55)
USPST PCG [Stability Check] 15.60 (3.45) 15.67 (3.60) 16.11 (3.95)
PCG [Validation Check] 15.40(3.38) 15.67 (3.98) 15.94 (4.04)
PCG [Mixed Check] 15.45 (3.53) 15.50(3.92) 15.94 (4.08)
Newton 2.2 (0.14) 1.67 (1.44) 2.02(0.22)
MNIST3VSS PCG [Sta_blllt_y Check] 3.16(0.15) 2.5(1.25) 2.4 (0.38)
PCG [Validation Check] 2.89 (0.62) 2.50(1.25) 2.37(0.44)
PCG [Mixed Check] 2.89(0.62) 25(1.25)  2.37(0.44)
PCG [Stability Check]  29.97 (2.51) 36 (3.46) 27.97 (5.38)
FACEMIT PCG [Validation Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)
PCG [Mixed Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)

Table 12: Average classification error (standard deviation is reporsatdts) of Laplacian SVMs
trained in the primal by means of Newton’s method and of preconditioned gatajgra-
dient (PCG) with the proposed early stopping conditions (in square &g cRarameters
of the classifiers were tuned using the Newton’s methdds the set of unlabeled ex-
amples used to train the classifierB.is the labeled set for cross-validating parameters
whereadT is the out-of-sample test set. Results on the labeled training as¢ omitted
since all classifiers perfectly fit such few labeled training points.
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