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Abstract

In many applications involving multi-media data, the defom of similarity between items is inte-
gral to several key tasks, including nearest-neighboiesatl, classification, and recommendation.
Data in such regimes typically exhibits multiple modastisuch as acoustic and visual content of
video. Integrating such heterogeneous data to form a lw$silarity space is therefore a key
challenge to be overcome in many real-world applications.

We present a novel multiple kernel learning technique faegrating heterogeneous data into
a single, unified similarity space. Our algorithm learns atiroal ensemble of kernel transfor-
mations which conform to measurements of human perceptndhsty, as expressed by relative
comparisons. To cope with the ubiquitous problems of suivjecand inconsistency in multi-
media similarity, we develop graph-based techniques &r Similarity measurements, resulting in
a simplified and robust training procedure.

Keywords: multiple kernel learning, metric learning, similarity

1. Introduction

In applications such as content-based recommendation systems, the ddfirétigroper similarity
measure between items is crucial to many tasks, including nearest-neighimateand classifi-
cation. In some cases, a natural notion of similarity may emerge from domawidage, for ex-
ample, cosine similarity for bag-of-words models of text. However, in more tammulti-media
domains, there is often no obvious choice of similarity measure. Rather, gdlifferent aspects
of the data may lead to several different, and apparently equally valid satfasimilarity. For ex-
ample, if the corpus consists of musical data, each song or artist mayrbeesfed simultaneously
by acoustic features (such as rhythm and timbre), semantic featuredytag, or social features
(collaborative filtering, artist reviews and biographies, etc). Althougmain knowledge may be
incorporated to endow each representation with an intrinsic geometry-tfardfore, a sense of
similarity—the different notions of similarity may not be mutually consistent. In suades, there
is generally no obvious way to combine representations to form a unified stgngaace which
optimally integrates heterogeneous data.
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Without extra information to guide the construction of a similarity measure, thdisituseems
hopeless. However, if some side-information is available, for examplepaglpd by human label-
ers, it can be used to formulate a learning algorithm to optimize the similarity measure

This idea of using side-information to optimize a similarity function has receivgictat deal
of attention in recent years. Typically, the notion of similarity is captured bigtauice metric over
a vector space (e.g., Euclidean distancB%), and the problem of optimizing similarity reduces to
finding a suitable embedding of the data under a specific choice of the distaidc.Metric learn-
ing methods, as they are known in the machine learning literature, can be infoynvadous types
of side-information, including class labels (Xing et al., 2003; Goldbergat.e2005; Globerson
and Roweis, 2006; Weinberger et al., 2006), or birgmilar/dissimilar pairwise labels (Wagstaff
et al., 2001; Shental et al., 2002; Bilenko et al., 2004; Globerson angiR02007; Davis et al.,
2007). Alternatively, multidimensional scaling (MDS) techniques are typi¢atipulated in terms
of quantitative (dis)similarity measurements (Torgerson, 1952; KruskRé#;1Cox and Cox, 1994;
Borg and Groenen, 2005). In these settings, the representation ¢ dgtiemized so that distance
(typically Euclidean) conforms to side-information. Once a suitable metric bas kearned, sim-
ilarity to new, unseen data can be computed either directly (if the metric taketamqearametric
form, for example, a linear projection matrix), or via out-of-sample extesgiBangio et al., 2004).

To guide the construction of a similarity space for multi-modal data, we adojdéheof using
similarity measurements, provided by human labelers, as side-informationevdnuit has to be
noted that, especially in heterogeneous, multi-media domains, similarity may itselhiggnls
subjective concept and vary from one labeler to the next (Ellis et al2)200oreover, a single
labeler may not be able to consistently decide if or to what extent two objextsrailar, but she
may still be able to reliably produce a rank-ordering of similarity over paiengéll and Gibbons,
1990). Thus, rather than rely on quantitative similarity or hard binary ladfgdairwise similarity,
it is now becoming increasingly common to collect similarity information in the formiatiic or
relative comparisons (Schultz and Joachims, 2004; Agarwal et al., 2007), irnkbiman labelers
answer questions of the form:

“Is x more similar toy or z2?”

Although this form of similarity measurement has been observed to be moretsi@blguantitative
similarity (Kendall and Gibbons, 1990), and clearly provides a richeremsmtation than binary
pairwise similarities, it is still subject to problems of consistency and inter-labgleement. It is
therefore imperative that great care be taken to ensure some senbasihess when working with
perceptual similarity measurements.

In the present work, our goal is to develop a framework for integratintjis#modal data so as
to optimally conform to perceptual similarity encoded by relative comparisbmparticular, we
follow three guiding principles in the development of our framework:

1. The algorithm should be robust against subjectivity and inter-labelagetement.

2. The algorithm must be able to integrate multi-modal data in an optimal way, thifteis,
distances between embedded points should conform to perceptual similaagyements.

3. It must be possible to compute distances to new, unseen data as it besaitase.
We formulate this problem of heterogeneous feature integration as a lgamublem: given

a data set, and a collection of relative comparisons between pairs, wealeapresentation of
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Figure 1: An overview of our proposed framework for multi-modal featintegration. Data is
represented in multiple feature spaces (each encoded by a kerngbfyncHumans
supply perceptual similarity measurements in the form of relative pairwise axisons,
which are in turn filtered by graph processing algorithms, and then ussghasaints to
optimize the multiple kernel embedding.

the data that optimally reproduces the similarity measurements. This type of emjpgdoblem
has been previously studied by Agarwal et al. (2007) and Schultzaaahiins (2004). However,
Agarwal et al. (2007) provide no out-of-sample extension, and nestipgort heterogeneous feature
integration, nor do they address the problem of noisy similarity measurements.

A common approach to optimally integrate heterogeneous data is baseulltple kernel
learning, where each kernel encodes a different modality of the data. Hetexogs feature inte-
gration via multiple kernel learning has been addressed by previougairtavariety of contexts,
including classification (Lanckriet et al., 2004; Zien and Ong, 2007;tkdbél., 2009; Jagarlapudi
et al., 2009), regression (Sonnenburg et al., 2006; Bach, 200& <&t al., 2009), and dimension-
ality reduction (Lin et al., 2009). However, none of these methods spabifexddress the problem
of learning a unified data representation which conforms to perceptual siyniteeasurements.

1.1 Contributions

Our contributions in this work are two-fold. First, we develop gagtial order embeddindPOE)
framework (McFee and Lanckriet, 2009b), which allows us to use gtlagbretic algorithms to
filter a collection of subjective similarity measurements for consistency anthdedicy. We then
formulate a novel multiple kernel learning (MKL) algorithm which learns aseenble of feature
space projections to produce a unified similarity space. Our method is abledogernon-linear
embedding functions which generalize to unseen, out-of-sample datae Biguovides a high-level
overview of the proposed methods.

The remainder of this paper is structured as follows. In Section 2, wdageeegraphical
framework for interpreting and manipulating subjective similarity measurembng&ection 3, we
derive an embedding algorithm which learns an optimal transformation ofgéedigature space.
In Section 4, we develop a novel multiple-kernel learning formulation foresiding problems,
and derive an algorithm to learn an optimal space from heterogenetais 8action 5 provides
experimental results illustrating the effects of graph-processing on soislarity data, and the
effectiveness of the multiple-kernel embedding algorithm on a music similarikywigh human
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perception measurements. Finally, we prove hardness of dimensionalitticedin this setting in
Section 6, and conclude in Section 7.

1.2 Preliminaries

A (strict) partial order is a binary relatiorR over a seZ (RCZ?) which satisfies the following
propertiest

o Irreflexivity: (a,a) ¢ R,
e Transitivity: (a,b) € RA (b,c) e R= (a,c) € R,
e Anti-symmetry:(a,b) € R= (b,a) ¢ R.

Every partial order can be equivalently represented as a directeticagsaph (DAG), where
each vertex is an elementdfand an edge is drawn froato b if (a,b) € R. For any partial ordeRR
may refer to either the set of ordered tup{€a, b)} or the graph (DAG) representation of the partial
order; the use will be clear from context.

For a directed grap@®, we denote byz™ its transitive closurethat is,G* contains an edgg, j)
if and only if there exists a path froirto j in G. Similarly, thetransitive reductior(denotedG™n)
is the minimal graph with equivalent transitivity @ that is, the graph with the fewest edges such
that (G™")” = G™.

Let X = {x1,X2,...,Xn} denote the training set afitems. AEuclidean embeddinig a function
g: X — RY which mapsX into ad-dimensional space equipped with the Euclide@ hetric:

IX=Yll2 =/ (X=y)T(x=Yy).

For any matrixB, let B; denote itsi" column vector. A symmetric matrid € R™" has a
spectral decompositioh = VAV, where/ = diag(A1,Az,...,An) is a diagonal matrix containing
the eigenvalues &, andV contains the eigenvectors Af We adopt the convention that eigenvalues
(and corresponding eigenvectors) are sorted in descending éribpositive semi-definitPSD),
denoted byA > 0, if each eigenvalue is non-negative:> 0, i = 1,...,n. Finally, a PSD matripA
gives rise to the Mahalanobis distance function

[x—ylla =/ (x—y) TA(X-y).

2. A Graphical View of Similarity

Before we can construct an embedding algorithm for multi-modal data, wefiraisestablish the
form of side-information that will drive the algorithm, that is, the similarity measwents that will
be collected from human labelers. There is an extensive body of watkedpic of constructing a
geometric representation of data to fit perceptual similarity measurementsriByithes work falls
under the umbrella of multi-dimensional scaling (MDS), in which perceptual siityiiarmodeled
by numerical responses corresponding to the perceived “distamte/ebn a pair of items, for

1. The standard definition of a (non-strict) partial order also includeseflexiveproperty:va, (a,a) € R. For reasons
that will become clear in Section 2, we take #tgct definition here, and omit the reflexive property.
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example, on a similarity scale of 1-10. (See Cox and Cox 1994 and Bor@aahen 2005 for
comprehensive overviews of MDS techniques.)

Because “distances” supplied by test subjects may not satisfy metricrpespein particular,
they may not correspond to Euclidean distances—alternatimemetricMDS (NMDS) techniques
have been proposed (Kruskal, 1964). Unlike classical or metric MDi$higaes, which seek to
preserve quantitative distances, NDMS seeks an embedding in whichnihendering of distances
is preserved.

Since NMDS only needs the rank-ordering of distances, and not thexckstahemselves, the
task of collecting similarity measurements can be simplified by asking test subjectietgairs of
points by similarity:

“Are i and ] more similar thark and¢?”
or, as a special case, the “triadic comparison”
“Is i more similar toj or £?”

Based on this kind ofelative comparisordata, the embedding problem can be formulated as fol-
lows. Given is a set of object, and a set of similarity measurements= {(i, j,k,£)} C X4,
where a tupldi, j,k, /) is interpreted asi“and j are more similar thak and¢.” (This formulation
subsumes the triadic comparisons model wherk.) The goal is to find an embedding function
g: X — RY such that

V(i i,k 0) € C: llgl) —g(i)[I?+1 < llg(k) —g(0)|% (1)

The unit margin is forced between the constrained distances for numstabilty.

Agarwal et al. (2007) work with this kind of relative comparison data aegtdbe a generalized
NMDS algorithm (GNMDS), which formulates the embedding problem as a sefinig program.
Schultz and Joachims (2004) derive a similar algorithm which solves aafiadrogram to learn
a linear, axis-aligned transformation of data to fit relative comparisons.

Previous work on relative comparison data often treats each measur@njekt’) € C as ef-
fectively independent (Schultz and Joachims, 2004; Agarwal et &7)2MHowever, due to their
semantic interpretation as encoding pairwise similarity comparisons, and thtedaa pair(i, )
may participate in several comparisons with other pairs, there may be glotved structure toC
which these previous methods are unable to exploit.

In Section 2.1, we develop a graphical framework to infer and interpeeglbbal structure
exhibited by the constraints of the embedding problem. Graph-theoretigthigerpresented in
Section 2.2 then exploit this representation to filter this collection of noisy similarigsorements
for consistency and redundancy. The final, reduced set of reladivgparison constraints defines a
partial order, making for a more robust and efficient embedding problem.

2.1 Similarity Graphs

To gain more insight into the underlying structure of a collection of compagi§owe can represent
C as a directed graph ova?. Each vertex in the graph corresponds to a fiaj) € X2, and an edge
from (i, j) to (k,¢) corresponds to a similarity measureménj, k, ¢) (see Figure 2). Interpreting
as a graph will allow us to infer properties gliobal (graphical) structure of’. In particular, two
facts become immediately apparent:
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Figure 2: The graph representation (left) of a set of relative comparig@ht).

1. If C contains cycles, then there exists no embedding which can satisfy
2. If Cis acyclic, any embedding that satisfies the transitive reducti®halso satisfieg”.

The first fact implies that no algorithm can produce an embedding whicliisst#l measure-
ments if the graph is cyclic. In fact, the converse of this statement is alsaftrgas acyclic, then
an embedding exists in which all similarity measurements are preserved (peadip A). If C
is cyclic, however, by analyzing the graph, it is possible to identify an ‘amlable” subset of
which must be violated by any embedding.

Similarly, the second fact exploits the transitive nature of distance comparifothe example
depicted in Figure 2, anythat satisfie$j, k, j,¢) and(j,/,i,k) must also satisfyj, k,i,k). In effect,
the constraintj, k,i,k) is redundant, and may also be safely omitted fidm

These two observations allude to two desirable properti€sfior embedding methoddran-
sitivity and anti-symmetry Together with irreflexivity, these fit the defining characteristics of a
partial order. Due to subjectivity and inter-labeler disagreement, however, most cotisatiarel-
ative comparisons will not define a partial order. Some graph progcggwi@sented next, based on
an approximate maximum acyclic subgraph algorithm, can reduce them to & paltia

2.2 Graph Simplification

Because a set of similarity measuremeantsontaining cycles cannot be embedded in any Euclidean
space is inherently inconsistent. Cycles ihtherefore constitute a form ¢dbel noise As noted

by Angelova (2004), label noise can have adverse effects on botklroodhplexity and general-
ization. This problem can be mitigated by detecting and pruning noisy (dagjusxamples, and
training on a reduced, but certifiably “clean” set (Angelova et al., 20@2hnevets and Barinova,
2007).

Unlike most settings, where the noise process affects each label inteylr—for example,
random classification noise (Angluin and Laird, 1988)—the graphicatstre of interrelated rel-
ative comparisons can be exploited to detect and prune inconsistentrereasts. By eliminating
similarity measurements which cannot be realized by any embedding, the optimigedicedure
can be carried out more efficiently and reliably on a reduced constedint s

Ideally, when eliminating edges from the graph, we would like to retain as mdichmiation
as possible. Unfortunately, this is equivalent to thaximum acyclic subgrapbroblem, which is
NP-Complete (Garey and Johnson, 1979)/Aapproximate solution can be achieved by a simple
greedy algorithm (Algorithm 1) (Berger and Shor, 1990).

Once a consistent subset of similarity measurements has been produmsed b simplified
further by pruning redundancies. In the graph view of similarity measunesne=dundancies can
be easily removed by computing the transitive reduction of the graph (Ahlg 4972).
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Algorithm 1 Approximate maximum acyclic subgraph (Aho et al., 1972)

Input: Directed graptG = (V,E)
Output: Acyclic graphG
E'+0
for each(u,v) € E in random ordedo

if E’U{(u,v)} is acyclicthen

E' + E'U{(uv)}

end if
end for
G « (V,E)

By filtering the constraint set for consistency, we ensure that embeddijogithms are not
learning from spurious information. Additionally, pruning the constraintbsetransitive reduc-
tion focuses embedding algorithms on the most important core set of cotsstrdiite reducing
overhead due to redundant information.

3. Partial Order Embedding

Now that we have developed a language for expressing similarity betwees, itee are ready to
formulate the embedding problem. In this section, we develop an algorithm #nasla represen-
tation of data consistent with a collection of relative similarity measurements, llngsdo map
unseen data into the learned similarity space after learning. In order tanplisb this, we will
assume a feature representation for By parameterizing the embedding functignn terms of
the feature representation, we will be able to applp any point in the feature space, thereby
generalizing to data outside of the training set.

3.1 Linear Projection

To start, we assume that the data originally lies in some Euclidean space, that BP. There are
of course many ways to define an embedding funagioR® — RY. Here, we will restrict attention
to embeddings parameterized by a linear projection matrizo that for a vectox € RP,

g(x) = Mx.

Collecting the vector representations of the training set as columns of a atriRP*", the inner
product matrix of the embedded points can be characterized as

A=XTMTMX.

Now, for a relative comparisofi, j,k, ¢), we can express the distance constraint (1) between
embedded points as follows:

(% = X)) TMTM(X = X}) + 1 < (X = X) TMTM (X — X0).

These inequalities can then be used to form the constraint set of an optimigediziem to solve
for M. Because, in generaf; may not be satisfiable by a linear projection.6f we soften the
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constraints by introducing a slack variallg, > 0 for each constraint, and minimize the empirical
hinge loss over constraint violatiodsc| 5 ~&ijk¢. This choice of loss function can be interpreted as
a convex approximation to a generalization of the area under an ROC(see/éppendix C).

To avoid over-fitting, we introduce a regularization terhrf M), and a trade-off paramet@r>
0 to control the balance between regularization and loss minimization. Thisteead®gularized
risk minimization objective:

- T Bor
Mn,ygo tr(M M)‘FE;EIJM (2)
st (X =X)TMTM(X —Xj) +1 < (Xc—X) TMTM (X — %) + &ijies
V(i, ik, 0) € C.

After learningM by solving this optimization problem, the embedding can be extended to out-of-
sample pointx’ by applying the projectionx’ — MX'.

Note that the distance constraints in (2) involve differences of quadratisiend are therefore
not convex. However, sindd only appears in the foriM ™M in (2), the optimization problem can
be expressed in terms of a positive semi-definite mattix MTM. This change of variables results
in Algorithm 2, a (convex) semi-definite programming (SDP) problem (Baydl ¥andenberghe,
2004), since objective and constraints are lined¥irincluding the linear matrix inequality > 0.
The corresponding inner product matrix is

A=XTWX.

Finally, after the optimaWV is found, the embedding functian: RP — RP can be recovered
from the spectral decomposition \bf:

W=VAVT = gx =AYATx

and ad-dimensional approximation can be recovered by taking the leabi@genvectors ofV.

Algorithm 2 Linear partial order embedding (LPOE)
Input: nobjectsXx,
partial orderC,
data matrixX € RP*"n,
>0
Output: mappingg : X — RY

, B
Tv'? tr (W) + il ;Eijkf

d(4,%)) = (X —Xj)TW (% —X;)
d(xi,Xj) +1 < d(X, %) + &ijke
&ijke >0 v(i,j,k0) e C
W>=0
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3.2 Non-linear Projection via Kernels

The formulation in Algorithm 2 can be generalized to support non-linear ddibgs by the use
of kernels, following the method of Globerson and Roweis (2007): weriep the data into a
reproducing kernel Hilbert space (RKH#) via a feature mapwith corresponding kernel function
K(X,y) = (@(X),@(y))4; then, the data is mapped Rf by a linear projectioM : # — RY. The
embedding functio : X — RY is the therefore the composition of the projectMrwith ¢

Becausep may be non-linear, this allows us to learn a non-linear embedgling
More precisely, we consid&t as being comprised ofelements of#, thatis,{ws, wy,...,wy} C
H. The embedding can thus be expressed as

90%) = ({00, @X)) )

where(-)‘lf‘):1 denotes concatenation.

Note that in generalX may be infinite-dimensional, so directly optimizildg may not be
feasible. However, by appropriately regularizit we may invoke the generalized representer
theorem (Schdlkopf et al., 2001). Our choice of regularization is the HiBehmidt norm ofM,

which, in this case, reduces to
d

IMlfEs = > (0, Wp) g
p=1

With this choice of regularization, it follows from the generalized represaineorem that at an
optimum, eaclwy, must lie in the span of the training data, that is,

n
wp =Y Npig(x), p=1,...,d,
P i; o]} |

for some real-valued matrid € R%<". If ® is a matrix representation of in # (i.e., ® = @(x)
for x; € X), then the projection operatdt can be expressed as

M=NoT. (3

We can now reformulate the embedding problem as an optimizatiorNorgher tharM. Using
(3), the regularization term can be expressed as

IM[|2g =tr(®NTN®T) = tr(NTNDT®) = tr(NTNK),
whereK is the kernel matrix ovek:
K=oTo, with Kij = (0(x), 0(x)) s = k(X X;).

To formulate the distance constraints in term$ofve first express the embeddigdn terms ofN
and the kernel function:

9(x) = M(9(x)) = NPT (@(x)) = N ({1, @(x)) 5)i_1 = N (K(%, X)Ly = NKy,
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whereKy is the column vector formed by evaluating the kernel funckiai x against the training
set. The inner product matrix of embedded points can therefore bessepras

A=KNTNK,
which allows to express the distance constraints in ternisarfid the kernel matrik:
(Ki —Kj)TNTN(K; — Kj) +1 < (K — K¢) TNTN(Kg — Ky).

The embedding problem thus amounts to solving the following optimization probl&hamdg;:

. B
min  tr(NTNK)+ =5 & 4
st (Ki—Kj)TNTN(K = Kj) +1 < (Kk — K¢) "TNTN(Ky — Kp) 4 Eijke,

v(i, ],k ) € C.

Again, the distance constraints in (4) are non-convex due to the diffesesf quadratic terms.
And, as in the previous sectioN, only appears in the form of inner produd#s N in (4)—both
in the constraints, and in the regularization term—so we can again derivevaxcoptimization
problem by changing variables W = NTN = 0. The resulting embedding problem is listed as
Algorithm 3, again a semi-definite programming problem (SDP), with an obgftinction and
constraints that are linear W'

After solving forW, the matrixN can be recovered by computing the spectral decomposition
W =VAVT, and defining = AY2VT. The resulting embedding function takes the form:

g(x) = AY2VTK,.

As in Schultz and Joachims (2004), this formulation can be interpreted asniga Maha-
lanobis distance metri®W®T over #. More generally, we can view this as a form of kernel
learning, where the kernel matrixis restricted to the set

A€ {KWK : W 0}. (5)

3.3 Connection to GNMDS

We conclude this section by drawing a connection between Algorithm 3 argktieralized non-
metric MDS (GNMDS) algorithm of Agarwal et al. (2007).

First, we observe that thieh column,K;, of the kernel matriX can be expressed in termskf
and the'" standard basis vecter:

Ki =Kg.
From this, it follows that distance computations in Algorithm 3 can be equithglerpressed as
d(x,%)) = (Ki — Kj)TW(K; —K;)

(K(e —€))'W(K(e —&j))
(& —€)"KTWK(e —e)). 6)
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Algorithm 3 Kernel partial order embedding (KPOE)
Input: nobjectsX,
partial orderC,
kernel matrixK,
B>0
Output: mappingg: X — R"

, B
tr(WK) + — i
r\pv? r( )+‘C|%E|Jk1f

d(x,Xj) = (Ki —Kj) "W (Ki = Kj)
d(xi,%;) +1 < d(Xk, %) + &ijke
&ijke >0 v(i,j,k ) eC
W>0

If we consider the extremal case whéte= I, that is, we have no prior feature-based knowledge of
similarity between points, then Equation 6 simplifies to

d(xi,x;) = (& — &) "IW (& — &) = Wi +Wj; =W —Wj.

Therefore, in this setting, rather than defining a feature transform&talirectly encodes the inner
products between embedded training points. Similarly, the regularization tomies

tr(WK) = tr(WI) = tr(W).

Minimizing the regularization term can be interpreted as minimizing a convex upperd on
the rank ofW (Boyd and Vandenberghe, 2004), which expresses a prefefeniosv-dimensional
embeddings. Thus, by settitkg= 1 in Algorithm 3, we directly recover the GNMDS algorithm.

Note that directly learning inner products between embedded training dats pather than a
feature transformation does not allow a meaningful out-of-sample extensiembed unseen data
points. On the other hand, by Equation 5, it is clear that the algorithm optimizgstize entire
cone of PSD matrices. Thus, { defines a DAG, we could exploit the fact that a partial order
over distances always allows an embedding which satisfies all constraip{sée Appendix A) to
eliminate the slack variables from the program entirely.

4. Multiple Kernel Embedding

In the previous section, we derived an algorithm to learn an optimal prajelttion a kernel space

H toRY such that Euclidean distance between embedded points conforms totpatsapilarity.

If, however, the data is heterogeneous in nature, it may not be realisisuma that a single feature
representation can sufficiently capture the inherent structure in theFdataxample, if the objects

in question are images, it may be natural to encode texture information byeboéfsatures, and

color in another, and it is not immediately clear how to reconcile these two digpsources of

information into a single kernel space.
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However, by encoding each source of information independently bgraepfeature spaces
HL H?,...—equivalently, kernel matrica§!, K2, ...—we can formulate a multiple kernel learn-
ing algorithm to optimally combine all feature spaces into a single, unified emlgesipace. In this
section, we will derive a novel, projection-based approach to multipleekéearning and extend
Algorithm 3 to support heterogeneous data in a principled way.

4.1 Unweighted Combination

LetK® K2,...,K™be a set of kernel matrices, each with a corresponding featurepPreapl RKHS
HP, forpel,...,m One natural way to combine the kernels is to look at the product spaas) wh
is formed by concatenating the feature maps:

O(x) = (@04), @ ()., (%)) = (%)) ps.

Inner products can be computed in this space by summing across each faaju

m

(@06),006)) = 5 (@6),0(X])) gy
p=1
resulting in thesum-kernel-also known as thaverage kernebr product space kernellhe corre-
sponding kernel matrix can be conveniently represented as the unwkgihteof the base kernel

matrices:
m

K = 3y KP. (7)

SinceK is a valid kernel matrix itself, we could ugeas input for Algorithm 3. As a result, the
algorithm would learn a kernel from the family

e {3 (i) o

m
:{ z KPWKAY : WEO}.
p,

=1

4.2 Weighted Combination

Note that%k; treats each kernel equally; it is therefore impossible to distingyostu features (i.e.,
those which can be transformed to bestdjtfrom bad features, and as a result, the quality of
the resulting embedding may be degraded. To combat this phenomenon, ritrisocoto learn a
scheme for weighting the kernels in a way which is optimal for a particular Tdskmost common
approach to combining the base kernels is to take a positive-weighted sum

m
z Upr (p-p Z 0)7
p=1

where the weightp, are learned in conjunction with a predictor (Lanckriet et al., 2004; Sulpurg
et al., 2006; Bach, 2008; Cortes et al., 2009). Equivalently, this catelaeed as learning a feature

map
m

O4) = (VHp@ (%)) s
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where each base feature map has been scaled by the corresponiginig, \&.

Applying this reasoning to learning an embedding that conforms to perdegitnitarity, one
might consider a two-stage approach to parameterizing the embeddingg(Bi@)): first construct
a weighted kernel combination, and then project from the combined kepaek. Lin et al. (2009)
formulate a dimensionality reduction algorithm in this way. In the present settilgwould be
achieved by simultaneously optimiziig andp, to choose an inner product matéxfrom the set

m m
%:{<z Upr>W<Z U-pr) Wioana UpZO}
p=1 p=1

m
:{ z HpKPW hKY © W = 0, Vp, ppzo}.
p.a=1

The corresponding distance constraints, however, contain diffeseofcterms cubic in the opti-
mization variable$V andy:

pzq (Kip _ ij>T LW 1 (Kiq _ qu) pz KP) ppW W (K — K7,

and are therefore non-convex and difficult to optimize. Even simplifyingcthss by removing
cross-terms, that is, restrictifgto the form

m
= { > HKPWKP © W - 0,vp, ppzo},
p=1

still leads to a non-convex problem, due to the difference of positivergtiaderms introduced by
distance calculations:

m
Zl(KP Kp) L2W (upKip—K )+1< Z P KP) T L2W (ppKP —KP)
p:

However, a more subtle problem with this formulation lies in the assumption thagke sieight
can characterize the contribution of a kernel to the optimal embeddingnbraedifferent kernels
may be more or less informative on different subset& @i different regions of the corresponding
feature space. Constraining the embedding to a single nwtmgth a single weight, for each
kernel may be too restrictive to take advantage of this phenomenon.

4.3 Concatenated Projection

We now return to the original intuition behind Equation 7. The sum-kerneksgmts the inner
product between points in the space formed by concatenating the bage feapsp®. The setsk>
and %3 characterize projections of the weighted combination space, and turnritlte amenable
to efficient optimization (Figure 3(a)). This can be seen as a consegjoépoematurely combining
kernels prior to projection.

Rather than projecting the (weighted) concatenatiopP6f), we could alternatively concatenate
learned projectionMP(@P(+)), as illustrated by Figure 3(b). Intuitively, by defining the embedding
as the concatenation of different projections, we allow the algorithm to learn an ensemble of
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projections, each tailored to its corresponding domain space and jointly ogdingizeroduce an

optimal space. By contrast, the previously discussed formulations apgentesly the same pro-
jection to each (weighted) feature space, and are thus much less flexibuttaroposed approach.
Mathematically, an embedding function of this form can be expressed asribatenation

9(x) = (MP(¢P(x))) -y -

Now, given this characterization of the embedding function, we can adgptithm 3 to opti-
mize over multiple kernels. As in the single-kernel case, we introduce migatian terms for each
projection operatoiP

o 2
S IMPII2s
p=1
to the objective function. Again, by invoking the representer theoreradohMP, it follows that
MP = NP (oP)T,

for some matriX\NP, which allows to reformulate the embedding problem as a joint optimization over
NP, p=1,...,mrathertharMP, p=1,...,m. Indeed, the regularization terms can be expressed as

3 M7= 5 tr (N TNPIKE). ®)

The embedding function can now be rewritten as

9(x) = (MP(¢P(x)))py = (NPKR)LLs (9)

and the inner products between embedded points take the form:

Aj = (9(x).9(x)) = § (NPKP)T (NPKP)

p=1

3

(KP)T(NP)T(NP)(KP).
1

-
I

Similarly, squared Euclidean distance also decomposes by kernel:

m

o) ~ g = 3 (KP—KF) " (NTNP) (K- KP). 10)
2

Finally, since the matricdd®, p=1,...,monly appear in the form of inner products in (8) and
(10), we may instead optimize over PSD matriéés= (NP)T(NP). This renders the regularization
terms (8) and distances (10) linear in the optimization variaM@sExtending Algorithm 3 to this
parameterization of(-) therefore results in an SDP, which is listed as Algorithm 4. To solve the
SDP, we implemented a gradient descent solver, which is described iméAipi

The class of kernels over which Algorithm 4 optimizes can be expressetysasithe set

m
M:{zKp\Npr : Vp, szo}
p=1
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Kernel class Learned kernel matrix

K= {3 pqKPWKI} KT+ K24+ K™ W] [KT+KZ 4+ K™
TR W W e W K1

%o = {3 p.qHplgKPWKI} K_2 U2H.1W IBW : K.2
LK ]| Cogw | Lkm
Tkr1T[wWw 0 - 0 K1

Kz = {3 pHEKPWKP} K_Z <_) LW : K_2
LK™ [ o 2w | [ K™
k11T [W 0 .. 0 Kl

%o = {3 pKPWPKP} K2 0 w2 K2
L km _ 0 ) wm K.m

Table 1: Block-matrix formulations of metric learning for multiple-kernel forntiolas (X1—%z).
EachWP is taken to be positive semi-definite. Note that all sets are equal when there is
only one base kernel.

Note that%y contains%3 as a special case when AP are positive scalar multiples of each-other.
However, %3 leads to a convex optimization problem, whé&@does not.

Table 1 lists the block-matrix formulations of each of the kernel combinatios ddscribed in
this section. Itis worth noting that it is certainly valid to first form the unweidtgembination ker-
nelK and then use; (Algorithm 3) to learn an optimal projection of the product space. However
as we will demonstrate in Section 5, our proposed multiple-kernel formulaf@gmoutperforms the
simple unweighted combination rule in practice.

4.4 Diagonal Learning

The MKPOE optimization is formulated as a semi-definite program ovéifferentnxn matrices
WP—aor, as shown in Table 1, a singlenxmnPSD matrix with a block-diagonal sparsity structure.
Scaling this approach to large data sets can become problematic, as thiey ogduizing over
multiple high-dimensional PSD matrices.

To cope with larger problems, the optimization problem can be refined to aons@achwP
to the set of diagonal matrices. WP are all diagonal, positive semi-definiteness is equivalent to
non-negativity of the diagonal values (since they are also the eigesvafittee matrix). This allows
the constraint§VP = 0 to be replaced by linear constraim#’ > 0, and the resulting optimization
problem is a linear program (LP), rather than an SDP. This modificatiamcesdthe flexibility of
the model, but leads to a much more efficient optimization procedure.

505



MCFEE AND LANCKRIET

(a) Weighted combination) (b) Concatenated projectiorkg)

Figure 3: Two variants of multiple-kernel embedding. (a) A data poimtX is mapped intonfea-
ture spaces vig', ¢, ...,@", which are then scaled by, b, . . ., um to form a weighted
feature spacé(*, which is subsequently projected to the embedding spadd vi{a) x is
first mapped into each kernel’s feature space and then its image in eaehisplrectly
projected into a Euclidean space via the corresponding projedddnshe projections
are jointly optimized to produce the embedding space.

Algorithm 4 Multiple kernel partial order embedding (MKPOE)
Input: nobjectsXx,
partial orderC,
mkernel matrice&®, K2, ... . K™,
B>0
Output: mappingg: X — R™"

min g tr (Wpr) + £ z Eijk!z’
p=1 C

WP.E C|
m T
d0xx) = 3 (KP—KP) WP (kP —K;
3 (1) (i)
d(xi,Xj) +1 < d(Xe, Xe) + &ijke
&ijke >0 v(i,j,kl) e C
Wpio p:172,...,m

More specifically, our implementation of Algorithm 4 operates by alternatinggsadlient de-
scent onWP and projection onto the feasible a8’ = 0 (see Appendix B for details). For full
matrices, this projection is accomplished by computing the spectral decompasitachwP, and
thresholding the eigenvalues at 0. For diagonal matrices, this projectiooamalished simply by

WP — max{0,WP},

which can be computed i@(mn) time, compared to th@(mn?) time required to compute spectral
decompositions.

Restricting/VP to be diagonal not only simplifies the problem to linear programming, but sarrie
the added interpretation of weighting the contribution of each (kernel, tgajpdint) pair in the
construction of the embedding. A large value/\#f corresponds to pointbeing a landmark for the
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Sneaker

Hat % Clothing

White shoe

X-mas teddy

Pink@mys Al
Ball

Big smurf

Lemon

Pear > Fruit

Orange

Figure 4: The label taxonomy for the experiment in Section 5.1.

features encoded iKP. Note that each of the formulations listed in Table 1 has a corresponding
diagonal variant, however, as in the full matrix case, ofifyand %3 lead to convex optimization
problems.

5. Experiments

To evaluate our framework for learning multi-modal similarity, we first test thédtipte kernel
learning formulation on a simple toy taxonomy data set, and then on a real-vedaldet of musical
perceptual similarity measurements.

5.1 Toy Experiment: Taxonomy Embedding

For our first experiment, we generated a toy data set from the Amsterittaiary_of Object Images
(ALOI) data set (Geusebroek et al., 2005). ALOI consists of RGB imafi@000 classes of objects
against a black background. Each class corresponds to a singl¢, alnig¢examples are provided
of the object under varying degrees of out-of-plane rotation.

In our experiment, we first selected 10 object classes, and from kmsh sampled 20 examples.
We then constructed an artificial taxonomy over the label set, as depictedure®. Using the
taxonomy, we synthesized relative comparisons to span subtrees via #sticéenmon ancestor.
For example,

(Lemor#l, Lemonr#2, Lemor#l, Pear#l),
(Lemor#l, Peart, 1, Lemor¥#1, Sneake#l),

and so on. These comparisons are consistent and therefore cgrdserged as a directed acyclic
graph. They are generated so as to avoid redundant, transitiveiadgegraph.

For features, we generated five kernel matrices. The first is a simple keeael over the
grayscale intensity values of the images, which, roughly speaking, cesphjects by shape. The
other four are Gaussian kernels over histograms in the (backgradnicksted) red, green, blue, and
intensity channels, and these kernels compare objects based on theardntensity distributions.

We augment this set of kernels with five “noise” kernels, each of whichgemerated by sam-
pling random points from the unit sphere®3 and applying the linear kernel.

The data was partitioned into five 80/20 training and test set splits. Tofume further
split the training set for 5-fold cross-validation, and swept d¥er {1072,107%,...,10°}. For
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each fold, we learned a diagonally-constrained embedding with Algorithrsidg the subset of
relative comparisonsi, j,k,¢) with i, j,k and ¢ restricted to the training set. After learning the
embedding, the held out data (validation or test) was mapped into the spd¢keatcuracy of the
embedding was determined by counting the fraction of correctly predickasiil’eecomparisons. In
the validation and test sets, comparisons were processed to only incimgarsons of the form
(i, j,1,k) wherei belongs to the validation (or test) set, anandk belong to the training set.

We repeat this experiment for each base kernel individually (that tsn@ging over %1 with
a single base kernel), as well as the unweighted sum ke#gelith all base kernels), and finally
MKPOE (%3 with all base kernels). The results are averaged over all training/titst smd col-
lected in Figure 5. For comparison purposes, we include the predictiomamgcachieved by com-
puting distances in each kernel's native space before learning. meese, the optimized space
indeed achieves higher accuracy than the corresponding native ¢@dcourse, the random noise
kernels still predict randomly after optimization.)

As illustrated in Figure 5, taking the unweighted combination of kernels significdegrades
performance (relative to the best kernel) both in the native space (&ctlBacy versus 0.862 for
the linear kernel) and the optimized sum-kernel space (0.861 accuratyefeum versus 0.951 for
the linear kernel), that is, the unweighted sum kernel optimized by Algorithro@/ever, MKPOE
(%) correctly identifies and omits the random noise kernels by assigning thgligible weight,
and achieves higher accuracy (0.984) than any of the single kerr@ld (@r the linear kernel, after
learning).

5.2 Musical Artist Similarity

To test our framework on a real data set, we applied the MKPOE algorithne tash of learning
a similarity function between musical artists. The artist similarity problem is motivatestveral
real-world applications, including recommendation and playlist-generatioorfine radio. Be-
cause artists may be represented by a wide variety of different fegeugestags, acoustic features,
social data), such applications can benefit greatly from an optimally inezsamilarity metric.

The training data is derived from treset400corpus of Ellis et al. (2002), which consists of
412 popular musicians, and 16385 relative comparisons of the(fiojm, k). Relative comparisons
were acquired from human test subjects through a web survey; subgeipresented with a query
artist (), and asked to choose what they believe to be the most similar gitigsbn a list of 10
candidates. From each single response, 9 relative comparisonstlressged, indicating thgtis
more similar ta than the remaining 9 artistk)(which were not chosen.

Our experiments here replicate and extend previous work on this datslceeé and Lanck-
riet, 2009a). In the remainder of this section, we will first give an ovengéthe various types of
features used to characterize each artist in Section 5.2.1. We will thessltbauexperimental pro-
cedure in more detail in Section 5.2.2. The MKL embedding results are peeserSection 5.2.3,
and are followed by an experiment detailing the efficacy of our constyeapth processing approach
in Section 5.2.4.

5.2.1 FEATURES

We construct five base kernels over the data, incorporating acoustiensic, and social views of
the artists.
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Intensity ' 1 8
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Figure 5: Mean test set accuracy for the experiment of Section 5.br Bars correspond to one
standard deviation across folds. Accuracy is computed by countingabtofn of cor-
rectly predicted relative comparisons in the native space of each bass, kend then in
the optimized space produced by KPOE (with a single base kernel). The unweighted
combination of kernelsJun) significantly degrades performance in both the native and
optimized spaces. MKPOBVKL, %3) correctly rejects the random kernels, and signifi-
cantly outperforms the unweighted combination and the single best kernel.

e MFCC: for each artist, we collected between 1 and 10 songs (mean 4). Forseagh
we extracted a short clip consisting of 10000 half-overlapping 23ms wisdd~or each
window, we computed the first 13 Mel Frequency Cepstral CoefficidhiCs) (Davis and
Mermelstein, 1990), as well as their first and second instantaneowstiless. This results
in a sequence of 39-dimensional vectors (delta-MFCCs) for each sBagh artisti was
then summarized by a Gaussian mixture model (GMivver delta-MFCCs extracted from
the corresponding songs. Each GMM has 8 components and diagmaaiac@e matrices.
Finally, the kernel between artistandj is the probability product kernel (Jebara et al., 2004)
between their corresponding delta-MFCC distributipng;:

Kirjnfcc:/\/mdx

e Auto-tags (AT): Using the MFCC features described above, we applied the automatic tagging
algorithm of Turnbull et al. (2008), which for each song yields a multinowfigttibution over
a setT of 149 musically-relevant tag wordauto-tag$. Artist-level tag distributions; were
formed by averaging model parameters (i.e., tag probabilities) acrosstladl ebngs of artist
i. The kernel between artistisand | for auto-tags is a radial basis function applied to the
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x2-distance between the multinomial distributiapsndg;:

at_ @) —qit)?
Kijt_ exp( Ute g ('[) o (t) ) .

In these experiments, we fixed= 256.

e Social tags (ST) For each artist, we collected the top 100 most frequently used tag words
from Last.fm? a social music website which allows users to label songs or artists with ar-
bitrary tag words ossocial tags After stemming and stop-word removal, this results in a
vocabulary of 7737 tag words. Each artist is then represented by-afhagrds vector in
R’737 and processed by TF-IDF. The kernel between artists for socmigabe cosine sim-
ilarity (linear kernel) between TF-IDF vectors.

e Biography (Bio): Last.fm also provides textual descriptions of artists in the form of user-
contributed biographies. We collected biographies for each artist imsb&l00data set,
and after stemming and stop-word removal, we arrived at a vocabuld§7&3 biography
words. As with social tags, the kernel between artists is the cosine similatitger TF-IDF
bag-of-words vectors.

e Collaborative filtering (CF) : Celma (2008) collected collaborative filtering data from Last.fm
in the form of a bipartite graph over users and artists, where each us&sdsiated with the
artists in her listening history. We filtered this data down to include only the aset4i6es,
of which all but 5 were found in the collaborative filtering graph. Theultasg graph has
336527 users and 407 artists, and is equivalently represented byrg ivia@ix where each
row i corresponds to an artist, and each colupaorresponds to a user. Thieentry of this
matrix is 1 if we observe a user-artist association, and 0 otherwise. Thelketween artists
in this view is the cosine of the angle between corresponding rows in the malich can
be interpreted as counting the amount of overlap between the sets ofisisnigg to each
artist and normalizing for overall artist popularity. For the 5 artists notfoin the graph, we
fill in the corresponding rows and columns of the kernel matrix with the identityixa

5.2.2 EXPERIMENTAL PROCEDURE

The data was randomly partitioned into ten 90/10 training/test splits. Given theeimtambiguity
in the task, and format of the survey, there is a great deal of conflictiogniration in the survey
responses. To obtain a more accurate and internally consistent sehmigirgomparisons, directly
contradictory comparisons (e.di, j,i,k) and(i,k,i, j)) were removed from both the training and
test sets. Each training set was further cleaned by finding an acycketsabcomparisons and
taking its transitive reduction, resulting in a minimal partial order. (No furihr@cessing was
performed on test comparisons.)

After training, test artists were mapped into the learned space (by Equadtian®accuracy
was measured by counting the number of measurentienis, k) correctly predicted by distance in
the learned space, wherbelongs to the test set, afdk belong to the training set.

For each experimen@,is chosen fron{1072,1071,...,10"} by holding out 30% of the training
constraints for validation. (Validation splits are generated from the uepsed training set, and the

2. Last.fm can be found attp://last.fm
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Figure 6: aset400 embedding results for each of the base kernelsradgds computed in each
kernel's native feature space, as well as the space produced byngpAlgorithm 3
(i.e., optimizing over%i with a single kernel) with either the diagonal or full-matrix
formulation. Error bars correspond to one standard deviation aceasm/test splits.

remaining training constraints are processed as described above jiddteg the best-performing
B3, the embedding is trained on the full (processed) training set.

5.2.3 BYBEDDING RESULTS

For each base kernel, we evaluate the test-set performance in the spatoe (i.e., by distances
calculated directly from the entries of the kernel matrix), and by learnedasgboth diagonal and
full (optimizing over X3 with a single base kernel). Figure 6 illustrates the results.

We then repeated the experiment by examining different groupings efk®sels: acoustic
(MFCC and Auto-tags), semantic (Social tags and Bio), social (Colléierfter), and combina-
tions of the groups. The different sets of kernels were combined by kigo# (optimizing over
Ka). The results are listed in Figure 7.

In all cases, MKPOE improves over the unweighted combination of baselkerMoreover,
many combinations outperform the single best kernel (SA7T+ 0.02 after optimization), and
the algorithm is generally robust in the presence of poorly-performimgeke (MFCC and AT).
Note that the poor performance of MFCC and AT kernels may be expezseithey derive from
song-level rather than artist-level features, whereas ST providésldigl semantic descriptions
which are generally more homogeneous across the songs of an artifticazwld CF are directly
constructed at the artist level. For comparison purposes, we trained snetrithe sum kernel
with K3 (Algorithm 3), resulting in accuracies of@¥6+ 0.05 (diagonal) and .65+ 0.03 (full).
The proposed approach (Algorithm 4) applied to all kernels results7isda- 0.03 (diagonal), and
0.795+0.02 (full).

Figure 8 illustrates the weights learned by Algorithm 4 using all five kernedsdsagonally-
constrainedVP matrices. Note that the learned metrics are both sparse (many 0 weight®rand n
uniform across different kernels. In particular, the (lowest-penfog) MFCC kernel is eliminated
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Figure 7. aset400 embedding results with multiple kernel learning: the leane&tts are opti-
mized over%y by Algorithm 4. Nativecorresponds to distances calculated according to
the unweighted sum of base kernels.

by the algorithm, and the majority of the weight is assigned to the (highestrpenig) social tag
(ST) kernel.

A t-SNE (van der Maaten and Hinton, 2008) visualization of the spaceupsatiby MKPOE
is illustrated in Figure 9. The embedding captures a great deal of highgewuee structure: for
example, theclassic rockandmetalgenres lie at the opposite end of the space fpmpand hip-
hop.

5.2.4 (RAPH PROCESSINGRESULTS

To evaluate the effects of processing the constraint set for consisaerdcredundancy, we repeat
the experiment of the previous section with different levels of processipdjed toC. Here, we
focus on the Biography kernel, since it exhibits the largest gap in pedoce between the native
and learned spaces.

As a baseline, we first consider the full set of similarity measurements a&ledoby human
judgements, including all inconsistencies. To first deal with what appdag the most egregious
inconsistencies, we prune all directly inconsistent training measuremeatts, twheneveti, j, i, k)
and (i,k,i, j) both appear, both are removédFinally, we consider the fully processed case by
finding a maximal consistent subset (partial orderf@nd removing all redundancies. Table 2 lists
the number of training constraints retained by each step of processieigagad over the random
splits).

Using each of these variants of the training set, we test the embedding atgoevith both
diagonal and full-matrix formulations. The results are presented in Tabka2h level of graph
processing results in a significant reduction in the number of training césoepar(and, therefore,

3. A more sophisticated approach could be used here, for examplaitsngoting, provided there is sufficient over-
sampling of comparisons. The aset400 data lacks sufficient ovestlisanfor majority voting, so we default to this
relatively simple approach.
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Figure 8: The weighting learned by Algorithm 4 using all five kernels andathialWP. Each bar
plot contains the diagonal of the corresponding kernel's learned mdthie.horizontal
axis corresponds to the index in the training set, and the vertical axissporrds to the
learned weight in each kernel space.

Accuracy
C |C| (Avg.) Diagonal Full
Full 8951.3 0.6220.05 0.7130.04

Length-2 6684.5 0.6300.05 0.714-0.04
Processed 48145 0.628.05 0.716:0.04

Table 2: aset400 embedding results (Biography kernel) for three p@ssiinements of the con-
straint set.Full includes all similarity measurements, with no pruning for consistency or
redundancylLength-2removes all length-2 cycles (i.€i, j,k,¢) and(k, ¢,i, j)). Processed
finds an approximate maximal consistent subset, and removes reduodsinats.

computational overhead of Algorithm 3), while not degrading the quality efrésulting embed-
ding.

Finally, to test the sensitivity of the algorithm to randomness in the acyclic aphgoutine, we
repeated the above experiment ten times, each with a different random rhagirolic constraint
set and the full matrix formulation of the algorithm. As depicted in Figure 10,dhdomness in
the constraint generation has little impact on the accuracy of the learned:rtiedriargest standard
deviation is 0.007 (split #7).
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Figure 9: t-SNE visualizations of an embedding of aset400 produced By®E The embedding
is constructed by optimizing oveky with all five base kernels. The two clusters shown
roughly correspond to (a) pop/hip-hop, and (b) classic rock/metakge®ut-of-sample
points are indicated by a red +.
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Figure 10: Accuracy of the learned embedding for each training/test apétaged over ten tri-
als with random maximal acyclic constraint subgraphs. Error bars paomesto one
standard deviation.

6. Hardness of Dimensionality Reduction

The algorithms given in Sections 3 and 4 attempt to produce low-dimensidotibss by regular-
izing W, which can be seen as a convex approximation to the rank of the embedidiggneral,
because rank constraints are not convex, convex optimization tecknigueot efficiently mini-
mize dimensionality. This does not necessarily imply other techniques couldarkt So, it is
natural to ask if exact solutions of minimal dimensionality can be found eftlgigrarticularly in
the multidimensional scaling scenario, that is, wKesa | (Section 3.3).

As a special case, one may wonder if any instaf¢eC) can be satisfied iR!. As Figure 11
demonstrates, not all instances can be realized in one dimension. Evenwaoshow that it is
NP-Complete to decide if a givefi can be satisfied ilR1. Given an embedding, it can be verified
in polynomial time whethet is satisfied or not by simply computing the distances between all pairs
and checking each comparisondh so the decision problem is in NP. It remains to show that the
R? partial order embedding problem (hereafter referred tb-BOE) is NP-Hard. We reduce from
the Betweennegsroblem (Opatrny, 1979), which is known to be NP-complete.

Definition 1 (Betweenness)Given a finite set Z and a collection T of ordered tripl@sb,c) of
distinct elements from Z, is there a one-to-one functioZ f~ R such that for eaclia,b,c) € T,
either f(a) < f(b) < f(c) or f(c) < f(b) < f(a)?

Theorem 1 1-POE is NP-Hard.

Proof Let (Z,T) be an instance of Betweenness. Leét= Z, and for eacha,b,c) € T, intro-
duce constraintga, b, a,c) and(b,c,a,c) to C. Since Euclidean distance &' is simply line dis-
tance, these constraints forgé) to lie betweerg(a) andg(c). Therefore, the original instance
(Z,T) € Betweenness if and only if the new instar{¢e, C) € 1-POE. Since Betweenness is NP-
Hard, 1-POE is NP-Hard as well. |

Since 1-POE can be reduced to the general optimization problem of findieghbedding of
minimal dimensionality, we can conclude that dimensionality reduction subjecttialgader con-
straints is also NP-Hard.
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@

Figure 11: (a) The vertices of a squareRA. (b) The partial order over distances induced by the
square: each side is less than each diagonal. This constraint set barsatisfied in
RL.

7. Conclusion

We have demonstrated a novel method for optimally integrating heterogedatzug conform to
measurements of perceptual similarity. By interpreting a collection of relatnigasity compar-
isons as a directed graph over pairs, we are able to apply graphtibéechniques to isolate and
prune inconsistencies in the training set and reduce computational addolieeliminating redun-
dant constraints in the optimization procedure.

Our multiple-kernel formulation offers a principled way to integrate multiple featoiodalities
into a unified similarity space. Our formulation carries the intuitive geometric ireg&apon of con-
catenated projections, and results in a semidefinite program. By incorgpdgdigonal constraints
as well, we are able to reduce the computational complexity of the algorithm, anddemodel
which is both flexible—only using kernels in the portions of the space wheyedte informative—
and interpretable—each diagonal weight corresponds to the contritbatibe optimized space due
to a single point within a single feature space. Table 1 provides a unifispgetive of multiple
kernel learning formulations for embedding problems, but it is clearly aotgete. It will be the
subject of future work to explore and compare alternative generalizatiod restrictions of the
formulations presented here.

Acknowledgments

The authors acknowledge support from NSF Grant DMS-MSPA 082%#d eHarmony, Inc.

Appendix A. Embedding Partial Orders

In this appendix, we prove that any sétwith a partial order over distance&scan be embedded
into R" while satisfying all distance comparisons.

In the special case wher@is a total ordering over all pairs (i.e., a chain graph), the problem
reduces to non-metric multidimensional scaling (Kruskal, 1964), and arearissatisfying em-
bedding can always be found by the constant-shift embedding algoritiiRoth et al. (2003). In
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Algorithm 5 Naive total order construction
Input: objectsX, partial orderC
Output: symmetric dissimilarity matriA € R™"

for eachiin1...ndo
AR 0

end for

for each(k, ¢) in topological ordedo
if in-degre€k, /) = 0then

Akg,Agk +—1
else
A NAY R ~max Aij +1
(i,j,k0)ecC
end if
end for

general,C is not a total order, but g-respecting embedding can always be produced by reducing
the partial order to a (weak) total order by topologically sorting the gragé Algorithm 5).

LetA be the dissimilarity matrix produced by Algorithm 5 on an instaf®eC). An embedding
can be found by first applying classical multidimensional scaling (MDSk @l Cox, 1994) td:

1
A=—-HAH
2 )
whereH =1 — %11T is then x n centering matrix, and is a vector of 1s. Shifting the spectrum of

Avyields
A—M(AI=A = 0,
whereAn(A) is the minimum eigenvalue oh. The embedding can be found by decomposing

A=VAVT, so thatg(x) is thei" column of/A\l/ZVT; this is the solution constructed by the constant-
shift embedding non-metric MDS algorithm of Roth et al. (2003).
Applying this transformation té affects distances by

1904) = G04)II” = Ai + Ajj = 275 = (Ai = Aa) + (Ajj —An) — 24
= Aii +Ajj — 2Aij — 2\,
Since adding a constant-RAp) preserves the ordering of distances, the total order (and h@énce

is preserved by this transformation. Thus, for any instgrice”), an embedding can be found in
RM-1,

Appendix B. Solver

Our implementation of Algorithm 4 is based on a simple projected (sub)gradésnedt. To sim-
plify exposition, we show the derivation of the single-kernel SDP versidihe algorithm (Algo-
rithm 3) with unit margins. (It is straightforward to extend the derivation tontlugétiple-kernel and
LP settings.)

517



MCFEE AND LANCKRIET

We first observe that a kernel matrix colurincan be expressed &' e whereg is theit"
standard basis vector. We can then denote the distance calculations in fdfnabenius inner
products:

d(x, %)) = (Ki —Kj)TW(K; - K;)
= (8 — )TKWK(a g)
— tr(KWK(e — &) (6 — &)T) = tr(WKE; K)
— (WK K),

whereE; = (e —¢gj)(e — &) .
A margin constrainti, j,k, ) can now be expressed as:
d(xi,xj) +1 < d(X, %) + &ijke
= (W,KEijK) . +1 < (W, KEK) g +&ijike
= Eijke > 1+ (W, K(Ejj — Ex)K) - .

The slack variable§;jx, can be eliminated from the program by rewriting the objective in terms
of the constraints:

Vrv;rcl)f(W) wheref (W) = tr(WK) + Z;h(H (W,K(Ejj —Ex)K)e)
where
h(x):{o x<0
X x>0

is the hinge loss.

The gradientdf has two components: one due to regularization, and one due to the hinge loss
The gradient due to regularization is simpdy The loss term decomposes linearly, and for each
(i,],k,¢) € C, a sub-gradient direction can be defined:

0 d(xi,Xj) +1 < d(x, %)

. (11)
K(Eij —Ex)K otherwise

g3+ A0 x) —dx X)) = {

Rather than computing each gradient direction independently, we oltbatveach violated con-
straint contributes a matrix of the forf(E;; — Ex/)K. By linearity, we can collect allEj; — Ex/)
terms and then pre- and post-multiply Kyto obtain a more efficient calculation bff :

0

(i,jk0)e

where( is the set of all currently violated constraints.

After each gradient stefy — W —alf, the updatedlV is projected back onto the set of positive
semidefinite matrices by computing its spectral decomposition and thresholdieigémyalues by
Ai — max(0,A;).
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To extend this derivation to the multiple-kernel case (Algorithm 4), we céinele

m
dxi,xj) = dP(x, X)),
p=1
and exploit linearity to compute each partial derivagdy@WP independently.
For the diagonally-constrained case, it suffices to substitute

K(Eij — Ekg)K — diag(K(Eij — Ekg)K)

in Equation 11. After each gradient step in the diagonal case, the PSfra&ioh onW can be
enforced by the projection; — max(0,W;).

Appendix C. Relationship to AUC

In this appendix, we formalize the connection between partial ordersdistances and query-by-
example ranking. Recall that Algorithm 2 minimizes the 1§58 ¥ - &ijk¢, where eacRj, > 0 is a
slack variable associated with a margin constraint

d(i, j)+1<d(k,0) + &jke-

As noted by Schultz and Joachims (2004), the fraction of relative conmparisatisfied by an
embeddingy is closely related to the area under the receiver operating charactenistic(@UC).
To make this connection precise, consider the following information retrgneddlem. For each
pointx; € X, we are given a partition of \ {i}:

X" ={xj : x; € X relevant forx }, and
X~ ={X : X € X irrelevant forx; }.

If we embed eachly; € X into a Euclidean space, we can then rank the rest of thexdatgq } by
increasing distance from. Truncating this ranked list at the tapelements (i.e., closestpoints

to x;) will return a certain fraction of relevant points (true positives), anéléwant points (false
positives). Averaging over all values oidefines the familiar AUC score, which can be compactly
expressed as:

AUC(x[g) = 1{llg0x) — g3 < flg0x) — g3 1]

1
ERIEER I

Intuitively, AUC can be interpreted as an average over all gajtsy) € X;" x X,~ of the number
of timesx; was mapped closer to a relevant poipthan an irrelevant point. This in turn can be
conveniently expressed by a set of relative comparisons forgaci:

V(xj, %) € 5T x X 1 (i, ],i,k).

An embedding which satisfies a complete set of constraints of this form wdivean AUC score
of 1, since every relevant point must be closex;tthan every irrelevant point.

Now, returning to the more general setting, we do not assume binary mekegaores or com-
plete observations of relevance for all pairs of points. However, wededine the generalized
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AUC score (GAUC) as simply the average number of correctly orderied (@muivalently, satisfied
constraints) given a set of relative comparisons:

GAUC(g) = Iél(i,,%)ec]l lg0%) — a3l < [lg0%) — ax) ]

Like AUC, GAUC is bounded between 0 and 1, and the two scores coincadglgin the previously
described ranking problem. A corresponding loss function can beedkffiy reversing the order of
the inequality, that is,

Loauc(g) = !ém,j,émﬂ [lax) — a0 > ll9() — g(xe) ]

Note thatLgauc takes the form of a sum over indicators, and can be interpreted as trageave
0/1-loss overC. This function is clearly not convex ig, and is therefore difficult to optimize.
Algorithms 2, 3 and 4 instead optimize a convex upper boundgc by replacing indicators by
the hinge loss.

As in SVM, this is accomplished by introducing a unit margin and slack var&flefor each
(i,],k,0) € ¢, and minimizingY/|c| 5 ¢ &ijke-
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