Journal of Machine Learning Research 12 (2011) 1349-1388 bm8ted 4/10; Revised 1/11; Published 4/11

Faster Algorithms for Max-Product Message-Passing

Julian J. McAuley " JULIAN.MCAULEY @NICTA.COM.AU
Tibério S. Caetand TIBERIO.CAETANO@NICTA.COM.AU
Statistical Machine Learning Group

NICTA

Locked Bag 8001
Canberra ACT 2601, Australia

Editor: Tommi Jaakkola

Abstract

Maximum A Posteriorinference in graphical models is often solved via messagsipg algo-
rithms, such as the junction-tree algorithm or loopy befisfpagation. The exact solution to this
problem is well-known to be exponential in the size of the mmt cliques of the triangulated
model, while approximate inference is typically exponahniti the size of the model’s factors. In
this paper, we take advantage of the fact that many modeésrhaximal cliques that are larger than
their constituent factors, and also of the fact that mantofaaconsist only of latent variables (i.e.,
they do not depend on an observation). This is a common casevide variety of applications
that deal with grid-, tree-, and ring-structured modelssuich cases, we are able to decrease the
exponent of complexity for message-passing Byfor both exacand approximate inference. We
demonstrate that message-passing operations in suchsrardalquivalent to some variant of ma-
trix multiplication in the tropical semiring, for which weffer anO(N2%) expected-cassolution.

Keywords: graphical models, belief-propagation, tropical matrixtiplication

1. Introduction

It is well-known that exact inference imnee-structuredgraphical models can be accomplished ef-
ficiently by message-passing operations following a simple protocol makegfube distributive
law (Aji and McEliece, 2000; Kschischang et al., 2001). It is also wetivkin that exact inference
in arbitrary graphical models can be solved by the junction-tree algorithm; its efficierytés-
mined by the size of the maximal cliques after triangulation, a quantity related tcethevidth of
the graph.

Figure 1 illustrates an attempt to apply the junction-tree algorithm to some grapiockls
containing cycles. If the graphs are not chordal ((a) and (b)), tieey to be triangulated, or made
chordal (red edges in (c) and (d)). Their cligue-graphs are themagteed to bgunction-trees
and the distributive law can be applied with the same protocol used for seegji and McEliece
(2000) for a beautiful tutorial on exact inference in arbitrary gragtiough the models in these

x. Preliminary versions of this work appeared in The 27th Internationafé@ence on Machine Learning (ICML 2010),
and the 13th International Conference on Artificial Intelligence and Stai¢itSTATS 2010), The NIPS 2009
Workshop on Learning with Orderings, The NIPS 2009 Workshop orrBie Optimization in Machine Learning,
and in Learning and Intelligent Optimization (LION 4).

t. Also at Research School of Information Sciences and Engineekimgralian National University, Canberra ACT
0200, Australia.

(©2011 Julian J. McAuley and Tério S. Caetano.

MCAULEY AND CAETANO

@ (b) (©) (d)

Figure 1: The models at left ((a) and (b)) can be triangulated ((c) d))ds6 that the junction-
tree algorithm can be applied. Despite the fact that the new models haverfaagienal
cliques, the corresponding potentials are still factored over pairs aésnodly. Our
algorithms exploit this fact.

(@) (b) (© (d)

Figure 2: Some graphical models to which our results agplstors conditioned upon observations
have fewer latent variables than purely latent factdvghite nodes correspond to latent
variables, gray nodes to an observation. In other words, factotaiogrg a gray node
encode thalata likelihood whereas factors containing only white nodes enqurars.
Expressed more simply, the ‘node potentials’ depend upon the observatiide the
‘edge potentials’ do not.

examples contain only pairwise factors, triangulation has increased tha #iser maximal cliques,
making exact inference substantially more expensive. Hence approxgoiat®ns in the original
graph (such as loopy belief-propagation, or inference in a loopy rfagtph) are often preferred
over an exact solution via the junction-tree algorithm.

Even when the model’s factors are the same size as its maximal cliques, ngdahener ap-
proximate inference algorithms take advantage of the fact that many factessst only oflatent
variables. In many models, those factors that are conditioned upon tbevatisn contain fewer
latent variables than the purely latent factors. Examples are shown ireRigurhis encompasses
a wide variety of models, including grid-structured models for optical flod stereo disparity as
well as chain and tree-structured models for text or speech.

In this paper, we exploit the fact that the maximal cliques (after triangulatifieh have po-
tentials that factor over subcliques, as illustrated in Figure 1. We will shotwthanever this is
the case, the expected computational complexity of message-passingrbstwhecliguesan be
improved(both the asymptotic upper-bound and the actual runtime).

Additionally, we will show that this result can be applied in cliquelsose factors that are
conditioned upon an observati@ontain fewer latent variables than those factors consisting purely

1350

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

of latent variables; the ‘purely latent’ factors can be pre-procesfflide, allowing us to achieve
the same benefits as described in the previous paragraph.

We show that these properties reveal themselves in a wide variety op@aladions.

A core operation encountered in the junction-tree algorithm is that of congpthim inner-
product of two vectors/; andvy. In the max-product semiring (used for MAP inference), the
‘inner-product’ becomes

ier{r;%} {Vali] x vpli]}. (1)
Our results stem from the realization that while (Equation 1) appears tdifbesa time operation,
it can be decreased ©(+/N) (in the expected case) if we know the permutations thatvsgand
v (i.e., the order statistics of, andvy). These permutations can be obtained efficiently when the
model factorizes as described above.
Preliminary versions of this work have appeared in McAuley and Cae20u®9f, McAuley and
Caetano (2010a), and McAuley and Caetano (2010b).

1.1 Summary of Results

A selection of the results to be presented in the remainder of this paper csumearized as
follows:

e Our speedups apply to the operatiorpaksing a single messagés a result, our method can
be used regardless of the message-passing protocol.

e We are able to lower the asymptotic expected running time of max-product geepaasing
for anydiscrete graphical model whose cliques factorize into lower-order terms.

e The results obtained are exactly those that would be obtained by the traditiosian of the
algorithm, that is, no approximations are used.

e Our algorithm also applies whenever factors that are conditioned upolnsanvation contain
fewer latent variables than those factors that are not conditioned upohsgrvation, as in
Figure 2 (in which case certain computations can be taken offline).

e For pairwise models satisfying the above properties, we obtain an expsmed-up ot
leastQ(v/N) (assuming\ states per nod&) denotes aasymptotic lower-bouryd For exam-
ple, in models with third-order cliques containing pairwise terms, messag#igasreduced
from ©(N®) to O(N?y/N), as in Figure 1(d). For pairwise models whose edge potential is not
conditioned upon an observation, message-passing is reduce®figf) to O(Nv/N), as in
Figure 2.

e Forcliques composed &f-ary factors, the expected speed-up generalizes to a%ésw%),
though it isnever asymptotically slowehan the original solution.

e The expected-case improvement is derived under the assumption thatdénesttistics of
different factors arindependent

o If the different factors have ‘similar’ order statistics, the performancevélbetter than the
expected case.

1351

MCAULEY AND CAETANO

o If the different factors have ‘opposite’ order statistics, the perforraavitt be worse than the
expected case, but is never asymptotically more expensive than the traldiosion of the
algorithm.

Our results do not apply for every semirifigh, ®), but only to those whose ‘addition’ oper-
ation defines an order (for example, min or max); we also assume that tmsl@rdering, our
‘multiplication’ operator® satisfies

a<bAc<d = a®c<b®d. 2

Thus our results certainly apply to theax-sunandmin-sum(‘tropical’) semirings (as well asax-
productandmin-product assuming non-negative potentials), but notsiem-productfor example).
Consequently, our approach is useful for computing MAP-states, dutat be used to compute
marginal distributions. We also assume that the domain of each ndaiste

We shall initially present our algorithm in terms péirwise graphical models such as those
shown in Figure 2. In such models message-passing is precisely equiwaleatrix-vector mul-
tiplication over our chosen semiring. Later we shall apply our results to masdels as those in
Figure 1, wherein message-passing becomes some variant of matrix multipli¢étially we shall
explore other applications besides message-passing that make usecal trogirix multiplication
as a subroutine, such all-pairs shortest-path problems.

1.2 Related Work

There has been previous work on speeding-up message-passirithalgdy exploiting different
types of structure in certain graphical models. For example, Kersting €0419) study the case
where different cliques share the same potential function. In Felzatisand Huttenlocher (2006),
fast message-passing algorithms are provided for cases in which theiglodé a 2-clique is only
dependent on thdifferenceof the latent variables (which is common in some computer vision
applications); they also show how the algorithm can be made faster if thhigahpnodel is a
bipartite graph. In Kumar and Torr (2006), the authors provide fasgerithms for the case in
which the potentials arguncated whereas in Petersen et al. (2008) the authors offer speed-ups for
models that are specifically grid-like.

The latter work is perhaps the most similar in spirit to ours, as it exploits theHattertain
factors can baortedin order to reduce the search space of a certain maximization problem.

Another course of research aims at speeding-up message-passitpalg by using ‘informed’
scheduling routines, which may result in faster convergence than tdemaschedules typically
used in loopy belief-propagation and inference in factor graphs (E&tlah, 2006). This branch of
research is orthogonal to our own in the sense that our methods caplteslapdependently of the
choice of message passing protocol.

Another closely related paper is that of Park and Darwiche (2003). Wik can be seen to
compliment ours in the sense that it exploits essentially the same type of fatitoriteat we study,
though it applies tsum-producversions of the algorithm, rather than timax-productersion that
we shall study. Kjeerulff (1998) also exploits factorization within cliques otfion-trees, albeit a
different type of factorization than that studied here.

In Section 4, we shall see that our algorithm is closely related to a well-stpdastem known
as ‘tropical matrix multiplication’ (Kerr, 1970). The worst-case complexitthig problem has been
studied in relation to the all-pairs shortest-path problem (Alon et al., 199'gefat al., 1993).

1352

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

Example | description

A;B capital letters refer to sets of nodes (or similarly, cliques);

AUB;ANB;A\B standard set operators are us@d B denotes set differ-
ence);

dom(A) the domain of a set; this is just the Cartesian product of
the domains of each element in the set;

P bold capital letters refer to arrays;

X bold lower-case letters refer to vectors;

E] vectors are indexed using square brackets;

P[n] similarly, square brackets are used to indegwa of a 2-d
array,

P[n] or a row of an(|n| + 1)-dimensional array;

PX;va superscripts are just labels, that® is an arrayy? is a
vector;

Va constantsubscripts are also labels, that isaifs a con-
stant, therv, is a constant vector;

Xi: XA variable subscripts define variables; the subscript defines
the domain of the variable;

n|x if nis a constant vector, thenjx is therestriction of that
vector to those indices corresponding to variableXin
(assuming thaX is an ordered set);

Da; Pa(Xa) a function over the variables in a s&tthe argumenka
will be suppressed if clear, given that ‘functions’ are es-
sentially arrays for our purposes;

D j (%, %)) a function over a pair of variablgs;, x;);

Pa(n[B;Xa\B) if one argument to a function is constant (hefg), then
it becomes a function over fewer variables (in this case,
only xa\g Is free);

Table 1: Notation

2. Background

The notation we shall use is briefly defined in Table 1. We shall assumegtiwatithat themax-
productsemiring is being used, though our analysis is almost identical for any sudiabiee.
MAP-inference in a graphical modél consists of solving an optimization problem of the form

X =argmax| | ®c(xc),
X eC

where C is the set of maximal cliques ig. This problem is often solved vimessage-passing
algorithms such as the junction-tree algorithm, loopy belief-propagation, erine in a factor-
graph (Aji and McEliece, 2000; Weiss, 2000; Kschischang et al., 2001

Often, the clique-potentia®c(xc) shall be decomposable into several smaller factors, that is,

CD(;(X(;) = ,J_!:CDF (XF).

1353

MCAULEY AND CAETANO

Some simple motivating examples are shown in Figure 3: a model for pose estifnatio8igal
and Black (2006), a ‘skip-chain CRF’ from Galley (2006), and a mddekhape-matching from
Coughlan and Ferreira (2002). In each case, the triangulated madgirdrorder cliques, but the
potentials are only pairwise. Other examples have already been showmie Eiganalogous cases
are ubiquitous in many real applications.

It will often be more convenient to express our objective function asgoeimditioned upon
someobservationy. Thus our optimization problem becomes

X(y) = afgmaxﬂ Pe(xcly) 3)
X eC

(for simplicity when we discuss ‘cliques’ we are referring to setiatédntvariables).
Further factorization may be possible if we express (Equation 3) in term®sé thactors that
depend upon the observatignand those that do not:

X(y) _argmaxJ_| J‘LGJF Xg) J‘| do xQ|y

data-independent data-dependent

We shall say that those factors that are not conditioned on the obseraaticdata-independent’.
Our results shall apply to message-passing equations in those diqubere for each data-
independent factoF we haveF C C, or for each data-dependent facQrwe haveQ C C, that
is, when allF or all Q in C are proper subsets ofC. In such cases we say that the cliqDas
factorizable
The fundamental step encountered in message-passing algorithms isl tefio@. The mes-
sage from a cliqu& to an intersecting cliqu¥ (both sets ofatentvariables) is defined by

My vy (Xxny) = maX{CDx(Xx) |_| mzﬁx(Xsz)} 4)
Xxy Zer (X)\Y

(wherel (X) is the set of neighbors of the cliqig that is, the set of cliques that intersect with
If such messages are computed aKehas received messages from all of its neighbors ex¢ept
(i.e., T (X)\Y), then this defines precisely the update scheme used by the junction-tei¢hatg
The same update scheme is used for loopy belief-propagation, thoughoihésitratively in a
randomized fashion.

After all messages have been passed, the MAP-state for a set of latitiesM (assumed to
be a subset of a single cligxg is computed using

mM(xM):maX{CDx(XX) |‘J mzﬁx(mez)}. 5)
cl (X

Xx\M 7)

For cliques that aréactorizable(according to our previous definition), both (Equation 4) and
(Equation 5) take the form

@%X{J_qu (Xg J‘LCDQ Xaly) } (6)

1354

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

(b) (c)

Figure 3: (a) A model for pose reconstruction from Sigal and BlackR§20(b) A ‘skip-chain CRF’
from Galley (2006); (c) A model for deformable matching from Coughlad Eerreira
(2002). Although the (triangulated) models have cliques of size three, gh&ntials
factorize into pairwise terms.

Note that we always haw@n X C X for messageg — X, meaning that the presence of the messages
has no effect on the ‘factorizability’ of (Equation 6).

Algorithm 1 gives the traditional solution to this problem, which does not exphaitfactor-
ization of @y (xx). This algorithm runs i®(NX!), whereN is the number of states per node, and
|X| is the size of the cliqu& (for a givenxx, we treat computing]r -x Pr (X) as a constant time
operation, as our optimizations shall not modify this cost).

In the following sections, we shall consider the two types of factorizabilipassely: first, in
Section 3, we shall consider cliqu¥svhose messages take the form

my (Xm) = max{QJx (Xx (!_LGJQ Xoly) }
Xx\M

We say that such cliques acenditionally factorizablgsince all conditional terms factorize); ex-
amples are shown in Figure 2. Next, in Section 4, we consider cliques whessages take the

form
=max[| Pr(Xg).
XX\M

We say that such cliques aiaently factorlzable(smce terms containing only latent variables fac-
torize); examples are shown in Figure 1.

3. Optimizing Algorithm 1: Conditionally Factorizable Mode Is

In order to specify a more efficient version of Algorithm 1, we begin bgsidering the simplest
nontrivial conditionally factorizablenodel: a pairwise model in which each latent variable depends
upon the observation, that is,

X(y) = argmax['] ®i(xily) x [®ij(x.x).)
e (L))eE
node potential edge potential

This is the type of model depicted in Figure 2 and encompasses a large tladd-@and tree-
structured models. Using our previous definitions, we say that the noeletjads are ‘data-dependent’,
whereas the edge potentials are ‘data-independent’.

1355

MCAULEY AND CAETANO

Algorithm 1 Brute-force computation of max-marginals
Input: a cliqueX whose max-marginahy (xv) (WwhereM C X) we wish to compute; assume that
each node irX has domaif1...N}
1: for m € domM) {i.e.,{1...N}} do
max:= —co
for z € dom(X\ M) do
if Mrcx Pr(M|F;z|r) > maxthen
max:= [rcx Pr(MlF; Z|r)
end if
end for {this loop take®©@(NX\M)}
8: my(m) :=max
9: end for {this loop take®(NX)}
10: Return: my

No aRA N

Message-passing in models of the type shown in (Equation 7) takes the form
Ma-8(%) = Pi(Xily) x max®;(xjly) x ®i (X, ;) (8)
]

(whereA = {i,j} andB = {i,k}). Note once again that in (Equation 8) we are not concerned
solely with exact inference via the junction-tree algorithm. In many modeld) asqgrids and
rings, (Equation 7) shall be solveghproximatelyby means of either loopy belief-propagation, or
inference in a factor-graph, which consists of solving (Equation &ralatg to protocols other than
the optimal junction-tree protocol.

It is useful to conside; ; in (Equation 8) as alN x N matrix and®; as anN-dimensional
vector, so that solving (Equation 8) is precisely equivalent to matrix-vector multipbican the
max-product semiring. For a particular vakge= g, (Equation 8) becomes

Ma-8(0) = Pi(aly) x max®;(xjly) x @i ;(a, X)), 9)
| N~ — N —
Va Vp

which is precisely the ‘max-product inner-product’ operation that wiendd was critical in Section
1.

As we have previously suggested, it will be possible to solve (Equatiotifi@jeatly if we
know the order statistics of; andvy, that is, if we know the permutations that sdrt and every
row of @; j in (Equation 8). Sortingp; takesO(NlogN), whereas sorting every row df; j takes
O(N?logN) (©(NlogN) for each ofN rows). The critical point to be made is th&t j(x;, ;) does
not depend on the observatiomeaning that its order statistics can be obtaioffline in several
applications.

The following elementary lemma is the key observation required in order to @edueation 1),
and therefore (Equation 9) efficiently:

Lemma 1 For any index q, the solution tosp argmax. ;. {Vali] x Vp[i]} must have/a[p] > valq]
or vp[p] > Vp[q]. Therefore, having computeg[q] x vp[q], we can find ‘p’ by computing only those

productsvy[i] x vp[i] where eithew,|i] > valqg] or vp|i] > vp|q].

1356

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

Algorithm 2 Findi such thaw,[i] x vp|i] is maximized
Input: two vectorsv, andvy, and permutation functiong, and p, that sort them in decreasing
order (so thava[pa[1]] is the largest element)

1: Initialize: start:= 1, ends := pz*[pp[1]], end; == p, [pa[1] {if end, = k, then the largest
element inv, has the same index as tki8 largest element iNp}
best:= p,[1], max:= va[best x vp[best
if Va[po[1]] X Vo[pb[1]] > maxthen

best= py[1], max:= va[best x vp[best

end if
while start< end, {in practice, we could also stopsfart < end,, but the version given here is
the one used for analysis in Appendi} Ao

7. start'=start+1

8: if va[pa[star]] x vp[pa[star] > maxthen
o: best:= pa[star]

10: max:= Va[best x vp[best

11: endif

12: if p,*[palstarf] < end, then

13: end, := p, *[pa[start]]

14: endif

15: {repeat lines 8-14, interchangiag@ndb}
16: end while {this loop takesxpected time GQ/N)}
17: Return: best

This observation is used to construct Algorithm 2. Here we iterate througimtlices starting
from the largest values of, andvy, stopping once both indices are ‘behind’ the maximum value
found so far (which we then know is the maximum). This algorithm is demonstptearially
in Figure 4. Note that Lemma 1 only depends uponrtiative values of elements imy andvy,
meaning that the number of computations that must be performed is purelgtefuaf theirorder
statistics(i.e., it does not depend on the actual valueg,afr vp,).

If Algorithm 2 can solve (Equation 9) i®(f(N)), then we can solve (Equation 8)@(N f(N)).
Determining precisely the running time of Algorithm 2 is not trivial, and will belexgd in depth
in Appendix A. At this stage we shall state an upper-bound on the true crityglethe following
theorem:

Theorem 2 Theexpectedunning time of Algorithm 2 is Q/N), yielding a speed-up of at least
Q(+v/N) in cliques containing pairwise factors. This expectation is derived under thenaption
thatv, andvy have independent order statistics.

Algorithm 3 uses Algorithm 2 to solve (Equation 8), where we assume thatrtiee statistics
of the rows of®; ; have been obtained offline.

While the offline cost of sorting is not problematic in situations where the model lie re-
peatedly reused on several observations, it can be avoided in two sitiakiwstly, many models
have a ‘homogeneous’ prior, that is, the same prior is shared amoreggtezige (or clique) of the
model. In such cases, only a single ‘copy’ of the prior needs to be soneghing that in any model

1357

MCAULEY AND CAETANO

valpalil][99]92(87]81]78]66]53]46[30[26[21]16]12]10] 8 | 6
pali] [6]2 [14]16] 9] 7 [12] 8 [10] 3 [12]13] 1 [15]4 |5

Step 1: S==a == don't search past this line

poli] [3]48]11]7 [16[13] 09 15]10(12|5 |1 |14
vy [poli]]|98]93|85]|76[71|70(67 |65 |63 |57]48]42[39(37]26[17

oW
N

va|palil][99]92(87]81]78]66[53]46[30]26[21[16[12]10] 8
pali] [6]2 [14]16] 9] 7 [12] 8 [10] 3 [12]13]1 [15]4 |5
Step 2: —

vi[ps|i]][98]93]85[76|71|70(67 65|63 (57|48 (42]39]37(26[17

va|pali]][99]92(87]81]78]66[53]46[30]26[21[16[12]10] 8

) J
Step 3: O —

v [psli]]|98]93|85]|76[71|70(67|65|63|57]48]42[39(37]26[17

va|pali]][99]92(87]81]78]66[53[46[30]26[21[16[12]10] 8

a
Step 4: - 7

vy [psli]]|98]93|85]76[71|70(67 |65 |63 |57]48]42[39(37]26 |17

va|palil][99]92(87]81]78]66[53]46[30]26[21[16[12]10] 8

Step 5: “ %Lﬁ

Figure 4: Algorithm 2, explained pictorially. The arrows beginpatstart) and py[start; the red
dashed line connecend, andend,, behind which we need not search; a dashed arrow
is used when a new maximum is found. Note that in the eventwthandv, contain
repeated elements, they can be sorted arbitrarily.

containingQ(logN) edges, speed improvements can be gained over ke imaplementation. Sec-
ondly, where an iterative algorithm (such as loopy belief-propagatidon)be used, the sorting step
need only take place prior to tHist iteration; if Q(logN) iterations of belief-propagation are to
be performed (or in a homogeneous model, if the number of edges multipliecebyuthber of

1358

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

Algorithm 3 Solve (Equation 8) using Algorithm 2
Input: a potentiakd; j(a,b) x Pj(aly;) x P;(bly;) whose max-marginat (x;) we wish to compute,
and a set of permutation functioRsuch thaP]i] sorts the™ row of ®; j (in decreasing order).
compute the permutation functigmn by sortingW¥; {takes©(NlogN)}
: for ge {1...N} do
(Va, vb) = (W}, @i j(a, % |¥i,Y;))
best:= Algorithm2(va, Vb, pa, P[d]) {O(v/N)}
Ma-8(0) = ®i(q) x ®j(besh x @ j(q, besty;,yj)
end for {this loop takeexpected time Nv/N)}
: Return: mp_.p

NoaAEwhRE

iterations isQ(logN)), we shall again gain speed improvements even when the sorting step is done
online.

In fact, the second of these conditions obviates the need for ‘conditfantdrizability’ (or
‘data-independence’) altogether. In other wordsingpairwise model in whicl@2(logN) iterations
of belief-propagation are to be performdiae pairwise terms need to be sorted only during the first
iteration. Thus these improvements apply to those models in Figure 1, so long as therrafmbe
iterations of belief-propagation @(logN).

4. Latently Factorizable Models
Just as we considered the simplesnditionally factorizablenodel in Section 3, we now consider
the simplest nontrividatently factorizablenodel: a clique of size three containing pairwise factors.
In such a case, our aim is to compute

m i (%, X;) :mxkaxq)i,Lk(Xianan)a (10)
which we have assumed takes the form

m j(Xi,Xj) = maxd, | (%, Xj) X Pi k(Xi, %) X Pj (X}, Xc)-

For a particular value ofx;,X;) = (a,b), we must solve

mj(a,b) = @; j(a,b) x maxd; k(a,xk) x P;j k(b,x«), (12)
b V, Vi
a b

which again is in precisely the form shown in (Equation 1).

Just as (Equation 8) resembled matrix-vector multiplication, there is a closmbénce be-
tween (Equation 11) and the problem of matrix-matrix multiplication in the max-mtegkmiring
(often referred to as ‘tropical matrix multiplication’, ‘funny matrix multiplicatioot, simply ‘max-
product matrix multiplication”). While traditional matrix multiplication is well-known to leaa
subcubic worst-case solution (see Strassen, 1969), the versionuat{&yl11) has no known sub-
cubic solution (the fastest known solution@$N3/logN), but there is no known solution that runs
in O(N3~¢) (Chan, 2007); Kerr (1970) shows that no subcubic solution existerureftain mod-
els of computation). The worst-case complexity of solving (Equation 11patsmbe shown to be

1359

MCAULEY AND CAETANO

Algorithm 4 Use Algorithm 2 to compute the max-marginal of a 3-clique containing pairwise fa

tors

Input: a potential ®; jk(a,b,c) = @ ;(a,b) x ®jk(ac) x ®jxb,c) whose max-marginal
m j(Xi,X;) we wish to compute

: forne {1...N} do

[EEY

2. computeP'[n] by sorting®; x(n, x) {takesO(NlogN)}

3. computeP![n] by sorting®; «(n,xc) {P' andP! areN x N arrays, each row of which is
a permutation;®; x(n,xc) and ®; x(n,xc) are functions ovexy, sincen is constant in this
expression

4: end for {this loop take®©(N?logN)}

5: for (a,b) € {1...N}*do

6: (Va,Vb) = (CD!’k(a,X_k),(Dj’k(b,Xk))

7. (pa.Po) = (P[al,PI[b])

8. besti= Algorithm2(va, vy, pa, Pp) {takesO(v/N)}

9 mj(ab):=d(ab)xdy(abesy x Dj(b,besh

10: end for {this loop take®O(N?\/N)}
{the total running time i©(N2logN + N2,/N), which is dominated b®(N?\/N)}

11: Return: m

o

equivalent to the all-pairs shortest-path problem, which is studied in Aloh €997). Although
we shall not improve the worst-case complexity, Algorithm 2 leads to far betpected-casper-
formance than existing solutions.

In principle Strassen’s algorithm could be used to perfesum-productinference in the set-
ting we discuss here, and indeed there has been some work on perfaumngroduct infer-
ence in graphical models that factorize (Park and Darwiche, 2003grektingly, there is also
a sub-quadratic solution to sum-product matrix-vector multiplication that resjyreprocessing
(Williams, 2007), that is, the sum-product version of the setting we disduss®&ection 3.

A prescription of how Algorithm 2 can be used to solve (Equation 10) isginédlgorithm 4.
As we mentioned in Section 3, the expected-case running time of Algorithr®@,i#), meaning
that the time taken to solve Algorithm 4@(N2/N).

5. Extensions

So far we have only considered the casepairwise graphical models, though as mentioned our
results can in principle be applied to any conditionally or latently factorizablestapdo matter the
size of the factors. Essentially our results about matrices become resultdefisors. We first treat
latently factorizable models, after which the same ideas can be applied to coalijtiactorizable
models.

5.1 An Extension to Higher-Order Cliques with Three Factors

The simplest extension that we can make to Algorithms 2, 3, and 4 is to note thatahebe
applied even when there are several overlapping terms in the factoigisknce, Algorithm 4 can

1360

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

valpalil][99]92(87]81]78]66[53]46]30[26[21]16]12]10] 8 | 6

Pa [”L] (1,2)[(4,2)|(3,2)[(4,4)] (2,1)[(1,3)[(3,4)[(2,4)] (2,2)| (4.3)[(2,3)[(3,1)[(4,1)| (3,3)[(1,4)| (1,1)
\

Step 1: Pt ==

¥
pb [2] (4,3)[(1,4)[(2,4)] (2,3)[(1,3)| (4,4)| (3,1)] (2,1)[(1,2)] (4,2)[(3,3)[(2,2)| (3,4)] (1,1)| (4,1)| (3,2)

vi[psi]]|98|93]85|76]|71]|70]67|65(63|57|48(42(39(37|26|17

Figure 5: The reasoning applied in Algorithm 2 applies even when the elemiepisand p, are
multidimensional indices.

be adapted to solve
M (%)) = MaXPij (X, %) X Pigem(Xi, X, Xm) X P jom(X} Xk, Xm) (12)

and similar variants containing three factors. Here bp#mdxy, are shared bgp; m and®; \ m. We
can follow precisely the reasoning of the previous section, except tie we sortb; x m (Similarly
®; km) for a fixed value ok, we are now sorting aarray rather than aector(Algorithm 4, lines 2
and 3); in this case, the permutation functigmsand p, in Algorithm 2 simply returnpairs of
indices. This is illustrated in Figure 5. Effectively, in this example we are spttia variablem
whose domain is dofmy) x dom(xm), which has state space of sixé.

As the number of shared terms increases, so does the improvement torthrgyrime. While
(Equation 12) would tak@(N%) to solve using Algorithm 1, it takes oni@(N?®) to solve using
Algorithm 4 (more precisely, if Algorithm 2 take8(f(N)), then (Equation 12) take®(N2f(N?)),
which we have mentioned 8(N2v/N2) = O(N3)). In general, if we hav& shared terms, then the
running time iSO(N2v/NS), yielding a speed-up d®(+/NS) over the néve solution of Algorithm 1.

5.2 An Extension to Higher-Order Cliques with Decompositions Into Three Groups

By similar reasoning, we can apply our algorithm to cases where there agdiman three factors, in
which the factors can be separated into tlgeeips For example, consider the clique in Figure 6(a),
which we shall callG (the entire graph is a clique, but for clarity we only draw an edge when the
corresponding nodes belong to a common factor). Each of the factorssigréph have been
labeled using either differently colored edges (for factors of size latga two) or dotted edges
(for factors of size two), and the max-marginal we wish to compute haslabeled using colored
nodes. We assume that it is possible to split this graph into three groupshsaavery factor is
contained within a single group, along with the max-marginal we wish to compigeré=6, (b)).

If such a decomposition is not possible, we will have to resort to furthensions to be described

in Section 5.3.

Ideally, we would like these groups to have sizdG|/3, though in the worst case they will
have size no larger tha®| — 1. We call these groupX, Y, Z, whereX is the group containing
the max-marginaM that we wish to compute. In order to simplify the analysis of this algorithm,
we shall express the running time in terms of the size of the largest gBupnax(|X|,|Y],|Z]),
and the largest differenc& = max(|Y \ X|,|Z\ X|). The max-marginal can be computed using
Algorithm 5.

The running times shown in Algorithm 5 are loose upper-bounds, givethéosake of express-
ing the running time in simple terms. More precise running times are given in Tahleyaf the

1361

MCAULEY AND CAETANO

(@) (b)

(a) We begin with a set of factors (indicated using colored lines), whieraasumed to belong to some clique in our
model; we wish to compute the max-marginal with respect to one of thetmdgindicated using colored nodes); (b)
The factors are splitinto three groups, such that every factor is entwalgained within one of them (Algorithm 5, line 1).

(©)
n

()

@
(d) (€)

(c) Any nodes contained in only one of the groups are marginalized (#hgo 5, lines 2, 3, and 4); the problem is now
very similar to that described in Algorithm 4, except thatleshave been replaced lgroups note that this essentially
introduces maximal factors M’ andz’; (d) For every valuda,b) € dom(xz,x4), WY (a,b,xs) is sorted (Algorithm 5,
lines 5-7); (e) For every valug,b) € dom(xp,x4), WZ(a,b, xs) is sorted (Algorithm 5, lines 8—10).

)

(f) For everyn € dom(X’), we choose the best value xf by Algorithm 2 (Algorithm 5, lines 11-16); (g) The result is
marginalized with respect tdl (Algorithm 5, line 17).

Figure 6: Algorithm 5, explained pictorially. In this case, the most computdtjomtensive step
is the marginalization oZ (in step (c)), which take®(N°®). However, the algorithm can
actually be appliedecursivelyto the groupZ, resulting in an overall running time of
O(N*{/N), for a max-marginal that would have tak@iN®) to compute using the ize
solution of Algorithm 1.

1362

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

Algorithm 5 Compute the max-marginal @& with respect tdM, whereG is split into three groups
Input: potentialsPg(X) = Px(Xx) x Py (Xy) x Pz(Xz); each of the factors should be contained in
exactly one of these terms, and we assumelhat X (see Figure 6)

1: Define: X" := ((YUZ)NX)UM; Y= (XUZ)NY; Z = (XUY)NZ {X’ contains the variables
in X that are shared by at least one other group; alternately, the variat{esXhappear only
in X (sim. forY” andz’)}

2: computeW” (xx/) = maxq x Px(xx) {we are marginalizing over those variablesXnthat
do not appear in any of the other groups (omM; this takes®(NS) if done by brute-force
(Algorithm 1), but may also be done by a recursive call to Algorithm 5
compute” (xy/) := maxny: Py (Xy)
compute¥? (xz) == maxy, 7 Pz (Xz)
forn e domXNY) do

computePY [n] by sorting WY (n;xynx) {takes®(S N IogN); WY (n;xynx) is free over
Xynx, and is treated as an array by ‘flattening’R¥,[n] contains thdY’\ X| = [(Y N Z)\ X|-
dimensional indices that sort it

7: end for {this loop take(S N logN)}

8: forn e dom(XNZ) do
9: computeP4[n] by sorting¥?(n; Xz x)

10: end for {this loop take®(S N°logN)}

11: forn € dom(X’) do

12: (Va,Vb) == (WY (nly/;Xynx), W(N|zii Xz x)) {nly is the ‘restriction’ of the vecton to those
indices iny’ (meaning than|y € dom(X’'NY")); hence®" (n|y/; Xy x') is free inxyn x, while
nly: is fixed}

13: (pa, pb) = (PY[n\Y/], Pz[n|zl])

14: best= Algorithm2(va, Vb, Pa, Po) {takesO(,/S,)}

15: my(n) = WYX(n) x W (bestnly:) x W (bestn|z)

16: end for

17: my(Xm) = Algorithm1(my,M) {i.e., we are using Algorithm 1 to marginalizex (Xx) with

respect tav; this takesd(NS)}

terms shown in Table 2 may be dominant. Some example graphs, and their resuitimgy times
are shown in Figure 7.

5.2.1 APPLYING ALGORITHM 5 RECURSIVELY

The marginalization steps of Algorithm 5 (lines 2, 3, and 4) may further deosenmto smaller
groups, in which case Algorithm 5 can be applied recursively. For instdhe graph in Figure 7(a)
represents the marginalization step that is to be performed in Figure 6(ox{iAlm 5, line 4). Since
this marginalization step is the asymptotically dominant step in the algorithm, applyiogithig 5
recursively lowers the asymptotic complexity.

Another straightforward example of applying recursion in Algorithm 5 isashan Figure 8,
in which a ring-structured model is marginalized with respect to two of its nodesg so takes
O(MNZ2y/N); in contrast, solving the same problem using the junction-tree algorithm (lngtriat-
ing the graph) would tak®(MN?). Loopy belief-propagation take(MN?) per iteration, meaning

1363

MCAULEY AND CAETANO

Description | lines | time
Marginalization of®y, without recursion| 2 O(NXT
Marginalization of®y 3 o(NYh
Marginalization ofd; 4 O(NI?)

Sorting®y 5-7 | ©(Y'\X|N"'logN)
Sorting®; 8-10 | ©(|Z/\X|NZ!logN)
Running Algorithm 2 on the sorted valugsl1-16 | O(NX'Iv/NIYNZ)\XT)

Table 2: Detailed running time analysis of Algorithm 5; any of these terms magyemotically

dominant
{A complete
) graphKuy,
Graph: with pairv'\\//lise
terms
(a) (b) (c) (e)
Algorithm 1: O(N®) O(N3) O(N1Y O(NM)
Algorithm 5: O(N3y/N) O(N?yN) O(NSyN) O(N5M/6)
Speed-up: Q(NVN) Q(VN) Q(N*V/N) Q(NM/®)

Figure 7: Some example graphs whose max-marginals are to be computedspéhtr® the col-
ored nodes, using the three regions shown. Factors are indicatedlif&éngntly colored
edges, while dotted edges always indicate pairwise factors. (a) is tloa from Fig-
ure 6 (recursion is appliealgainto achieve this result); (b) is the graph used to motivate
Algorithm 4; (c) shows a query in a graph with regular structure; (djvwsh® complete
graph with six nodes; (e) generalizes this to a clique Mthodes.

that our algorithm will be faster if the number of iteration€dg/N). Naturally, Algorithm 4 could
be applied directly to the triangulated graph, which would again @#héN2/N).

5.3 A General Extension to Higher-Order Cliques

Naturally, there are cases for which a decomposition into three terms is s&ibf® such as

M k06, X, X%6) = Max® (X, X}, %) X Pi (X, X}, Xm) X
D i m(Xi5 Xic; Xm) X Pj ke m(Xj, X, Xm) (13)

(i.e., a clique of size four with all possible third-order factors). Howgifethe model contains
factors of sizeK, it must always be possible to split it intb+ 1 groups (e.g., four in the case of
Equation 13).

Our optimizations can easily be applied in these cases simply by adapting Alg@riihsolve
problems of the form

ler{qai\(l}{vl[] X Vali] x -+ x vk[i]}- (14)

1364

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

_ O(N?)
O""O“‘O
|
O @ @
Y O(2N2y/N)
6 0 <O
+

T DR oo

Figure 8: In the above example, lines 2—4 of Algorithm 5 are applied rizelysachieving a total
running time ofO(MN?+/N) for a loop withM nodes (our algorithm achieves the same
running time in the triangulated graph).

valpalill[o9]92[87]81]78]66]53]46[30]26[21[16]12]10] 8

pali] (6]2 |14]16] 9 |7 [12] 8 |10 3 [11]13| 1 [15]4 |5

‘\‘~~-_ _4—/'
' / f/ ‘~~~\
Step 1 vi[ppi]][98]93]85|76]71[70(67]65]63[57]48[42(39]37[26[17
P polt] [3]4 |8 11| 7 [16[23]9]6]2[15]10][12]5[1 [14
T T
'——¥ {{ don't search past this line

ve|peli]][97]95]81]78]75]60(55[50([44[39[37[31[30]27 26|20
peli] [11] 4 |5 |10]14]6 |9 |7 |3 |16[12] 2 [8 [13]|15]1

Figure 9: Algorithm 2 can easily be extended to cases including more tharetyesces.

Pseudocode for this extension is presented in Algorithm 6. Note carefellygt of the variable
read we are storing which indices have been read to avoid re-reading thengutliantees that
our Algorithm is never asymptotically worse than théueasolution. Figure 9 demonstrates how
such an algorithm behaves in practice. Again, we shall discuss the gutimia of this extension in
Appendix A. For the moment, we state the following theorem:

Theorem 3 Algorithm 6 generalizes Algorithm 2 to K lists with an expected running timeéléf\[%),
yielding a speed-up of at Iea@t(%N%) in cliques containing K-ary factors. It is never worse than
the ndve solution, meaning that it takeg@in(N, KN%)).

Using Algorithm 6, we can similarly extend Algorithm 5 to allow for any numbegafups
(pseudocode is not shown; all statements about the grdumsd Z simply become statements

1365

MCAULEY AND CAETANO

Algorithm 6 Findi such thaf]K_; vi[i] is maximized

Input: K vectorsv;...vk; permutation functiongs ... px that sort them in decreasing order; a
vector read indicating which indices have been read, and a unique valgeread {read is
essentially a boolean array indicating which indices have been readcsgatgthis array is
anO(N) operation, we create it externally, and reuse(i) times; settingead/i] = T indicates
that a particular index has been read; we use a different validafeach call to this function
so thatread can be reused without having to be reinitialized

1: Initialize: start:=1,

Max.= MaXpe (p,...pc} HE:le[p[l]]v
best= argmaxe(p, . pe} Mic1 V[P[1]

2: for ke {1...K} do

30 end = MaXye(p,...pc} Py o))

4. readp[l]]=T

5. end for

6

7

8

9

. while start < max{end, ...endk } do
start:= start+ 1
for ke {1...K} do

if readpy[start]] .= T then

10: continue

11: end if

12: read py[start]] =T
13: m:= MK_; vx[p«[start]
14: if m> maxthen

15: best= py[star]

16: max:=m

17: end if

18 &= MaXe(p,...p) Py [dlstart]
19: end ;= min(ex, end,)
20: end for

21: end while {see Appendix A for running timés
22: Return: best

aboutK groups{G;...Gk}, and calls to Algorithm 2 become calls to Algorithm 6). The one
remaining case that has not been considered is when the sequenceg are functions of different
(but overlapping) variables; naely, we can create a new variable whose domain is the product
space of all of the overlapping terms, and still achieve the performancewepent guaranteed by
Theorem 3; in some cases, better results can again be obtained by apgtyirgjon, as in Figure 7.

As a final comment we note that we have not provided an algorithm forsthgbowto split
the variables of a model int(K + 1)-groups. We note even if we split the groups in &eavay,
we are guaranteed to gat leastthe performance improvement guaranteed by Theorem 3, though
more ‘intelligent’ splits may further improve the performance.

Furthermore, in all of the applications we have studieds sufficiently small that it is inexpen-
sive to consider all possible splits by brute-force.

1366

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

5.4 Extensions for Conditionally Factorizable Models

Just as in Section 5.2, we can extend Algorithm 3 to factors of any sizeng@kothe purely latent
cligues contain more latent variables than those cliques that depend upobsiaeration. The
analysis for this type of model is almost exactly the same as that presentectionge2, except
that any terms consisting of purely latent variables are processed offline

As we mentioned in 5.2, if a model contains (non-maximal) factors of Siz&e will gain a
speed-up OQ(%N%). If in addition there is a factor (either maximal or non-maximal) consisting

of purely latent variables, we can still obtain a speed-u@q{%NK%l), since this factor merely
contributes an additional term to (Equation 14). Thus when our ‘datardigmt’ terms contain only
a single latent variable (i.e€ = 1), we gain a speed-up 6f(v/N), as in Algorithm 3.

6. Performance Improvements in Existing Applications

Our results are immediately compatible with several applications that rely oeimafern graphical
models. As we have mentioned, our results apphaty model whose cliques decompose into
lower-order terms

Often, potentials are defined only andesandedgesof a model. AD™M-order Markov model
has a tree-width oD, despite often containing only pairwise relationships. Similarly ‘skip-chain
CRFs’ (Sutton and McCallum, 2006; Galley, 2006), and junction-treed ins8LAM applications
(Paskin, 2003) often contain only pairwise terms, and may have low tretb-widtler reasonable
conditions. These are exampleslatently factorizablemodels. In each case, if the tree-width is
D, Algorithm 5 takesO(MNP+/N) (for a model withM nodes andN states per node), yielding a
speed-up of2(y/N).

Models for shape-matching and pose reconstruction often exhibit simdpegres (Tresadern
et al., 2009; Donner et al., 2007; Sigal and Black, 2006). In eadah taisd-order cliques factorize
into second-order terms; hence we can apply Algorithm 4 to achieve d-speef Q(v/N).

Another similar model for shape-matching is that of Felzenszwalb (2008&);rbdel again
contains third-order cliques, though it includes a ‘geometric’ term cangtgaall three variables.
Here, the third-order term imdependent of the input dataneaning that each of its rows can be
sortedoffling as described in Section 3. This is an example obditionally factorizablenodel.

In this case, those factors that depend upon the observation are pameianing that we achieve a
speed-up oQ(N%). Further applications of this type shall be explored in Section 7.4.

In Coughlan and Ferreira (2002), deformable shape-matching is sapgximately using
loopy belief-propagation. Their model has only second-order cliqueaning that inference takes
O(MN?) per iteration Although we cannot improve upon this result, we note that we can typically
doexactinference in a single iteration i@(M sz); thus our model has the same running time as
O(v/N) iterations of the original version. This result applies to all second-oraetels containing
a single loop (Weiss, 2000).

In McAuley et al. (2008), a model is presented for graph-matching usony belief-propagation;
the maximal cliques foD-dimensional matching have siZB + 1), meaning that inference takes
O(MNP+Y) per iteration (it is shown to converge to the correct solution); we improve this to
O(MNPy/N).

Interval graphscan be used to model resource allocation problems (Fulkerson and G9653;
each node encodes a request, and overlapping requests form Kidgé@sal cliques grow with the

1367

MCAULEY AND CAETANO

| Reference | description | running time [our method |
McAuley et al. (2008) D-d graph-matching | ©(MNPTY) (iter.) [O(MNP/N) (iter.)
Sutton and McCallum (2006) Width-D skip-chain O(MNP) O(MNP-1/N)
Galley (2006) Width-3 skip-chain O(MN?®) O(MNZy/N)
Tresadern et al. (2009) Deformable matching | ©(MN?) O(MN2y/N)
Coughlan and Ferreira (2002) Deformable matching | ©(MN?) (iter.) O(MN2y/N)
Sigal and Black (2006) Pose reconstruction | ©(MN?) O(MN2y/N)
Felzenszwalb (2005) Deformable matching | ©(MN?3) O(MNg) (online)
Fulkerson and Gross (1965)| Width-D interval graph| O(M NDH) O(MNPV/N)

Table 3: Some existing work to which our results can be immediately appied the number of
nodes in the modeN is the number of states per node. ‘iter” denotes that the algorithm
is iterative).

number of overlapping requests, though the constraints are only paimweaning that we again
achieve a(v/N) improvement.

Finally, in Section 7.4 we shall explore a variety of applications in which wes lgairwise
models of the form shown in (Equation 7). In all of these cases, we s@xpacted) reduction of
a®(MN?) message-passing algorithm@MN+/N).

Table 3 summarizes these results. Reported running times refleetpeeted caseNote that
we are assuming thatax-product belief-propagation is being used in a discrete madehe of the
referenced articles may use different variants of the algorithm (e.gss@aumodels, or approxi-
mate inference schemes). We believe that our improvements may reviveatttedigcrete version
as a tractable option in these cases.

7. Experiments

We present experimental results for two types of models: latently factéginaddels, whose cliques
factorize into smaller terms, as discussed in Section 4, and conditionallyizatiiermodels, whose
factorsthat depend upon the observatioontain fewer latent variables than their maximal cliques,
as discussed in Section 3.

We begin with an asymptotic analysis of the running time of our algorithm on ther jproduct’
operations of (Equation 1) and (Equation 14), in order to assessdied and 3 experimentally.

7.1 Comparison Between Asymptotic Performance and Upper-Bouis

For our first experiment, we compare the performance of Algorithms 2 smthé néave solution of
Algorithm 1. These are core subroutines of each of the other algorithnasingethat determining
their performance shall give us an accurate indication of the improvemenéxpect to obtain in
real graphical models.

For each experiment, we generata.i.d. samples fronj0, 1) to obtain the lista/;...vk. N is
the domain size; this may refer to a single node, graup of nodes as in Algorithm 6; thus large
values ofN may appear even for binary-valued modd{sis the number of lists in (Equation 14);
we can observe this number of lists only if we are working in cliques ofsizel, and then only
if the factors are of siz& (e.g., we will only seek =5 if we have cliques of size 6 with factors

1368

Number of entries read

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

Performance and bounds for 2 lists

Performance and bounds for 3 lists

Performance and bounds for 4 lists

T =
-
-
-
-

— N

EY(M)

— experimental
n

== min(N,2VN) |

Number of entries read

300

o

S

=]
T

200

3
=]
T

100

o
T

— N

— experimental
n

== min(N,3N%) [

Number of entries read

100

IS
T

300

200

— N -
H == min(N,4NT) .

— experimental i4

n
600 800

1000

0

0

L . n
200 400 600 800

1000

0

L !
0 200 800

1000

N N N

Figure 10: Performance of our algorithm and bounds. Kcef 2, the exact expectation is shown,
which appears to precisely match the average performance (over 16} fize dotted
lines show the bound of (Equation 23). While the bound is close to the trimpance
for K = 2, it becomes increasingly loose for lardgér

of size 5); therefore smaller values fare probably more realistic in practice (indeed, all of the
applications in Section 6 have = 2).

The performance of our algorithm is shown in Figure 10,Koe 2 to 4 (i.e., for 2 to 4 lists).
WhenK = 2, we execute Algorithm 2, while Algorithm 6 is executed Kor> 3. The performance
reported is simply the number of elements read from the lists (which is at kngsttar). This
is compared tiN itself, which is the number of elements read by thévealgorithm. The upper-
bounds we obtained in (Equation 23) are also reported, while the truetedpeerformance (i.e.,
Equation 19) is reported fdf = 2. Note that the variableead was introduced into Algorithm 6 in
order to guarantee that it can never be asymptotically slower thaniealgorithm. If this variable
is ignored, the performance of our algorithm deteriorates to the point tblasitly approaches the
upper-bounds shown in Figure 10. Unfortunately, this optimization provedy complicated to
include in our analysis, meaning that our upper-bounds remain highlgoa@iive for largeK.

7.2 Performance Improvement for Dependent Variables

The expected-case running time of our algorithm was derived undesguengtion that each list

has independent order statistics, as was the case for our previaringapt. We suggested that we
will obtain worse performance in the case of negatively correlated ‘asiaénd better performance
in the case of positively correlated variables; we shall assess these irldhissexperiment.

Figure 11 shows how the order statisticsvgfandvy, can affect the performance of our algo-
rithm. Essentially, the running time of Algorithm 2 is determined by the level of @i@ness’ of
the permutation matrices in Figure 11; highly diagonal matrices result in bettfermpance than
the expected case, while highly off-diagonal matrices result in worderpgince. The expected
case was simply obtained under the assumption that every permutation is digablly

We report the performance for two lists (i.e., for Algorithm 2), where e@ghi], vp[i]) is an
independent sample from a 2-dimensional Gaussian with covariance matrix

-5 5]

1369

1 ¢
c 1

MCAULEY AND CAETANO

+ best case
[T g [T [
‘

[1

operations: 1 1

ST BT A .
permutation] EaE . Hﬂ

operations: 7 7 9 10 10

permutation:

Figure 11: Different permutation matrices and their resulting cost (in termsemtfies
read/multiplications performed). Each permutation matrix transformsahted val-
ues of one list into the sorted values of the other, that is, it transfegras sorted by,
into vy, as sorted bypy,. The red (lighter) squares show the entries that must be read be-
fore the algorithm terminates (each corresponding to one multiplication). i§eeR23
for further explanation.

meaning that the two lists are correlated with correlation coefficg€here we are working in the
max-sum semiring). This dependence between the values of the two listsdemdependence in
their order statistics, so that in the case of Gaussian random variablegyrte&tion coefficient
precisely captures the ‘diagonalness’ of the matrices in Figure 11. rBenf@e is shown in Fig-
ure 12 for different values af (c = 0, is not shown, as this is the case observed in the previous
experiment).

7.3 Message-Passing in Latently Factorizable Models

In this section we present experiments in models whose cliques factorizenaites terms, as
discussed in Section 4.

7.3.1 2-DMENSIONAL GRAPH-MATCHING

Naturally, Algorithm 5 has additional overhead compared to thigensolution, meaning that it
will not be beneficial for smalN. In this experiment, we aim to assess the extent to which our
approach is faster in real applications. We reproduce the model froftuldyg et al. (2008), which
performs 2-dimensional graph-matching, using a loopy graph with cligugigethree, containing
only second-order potentials (as described in Section 6)@iNM?3) performance of McAuley

et al. (2008) is reportedly state-of-the-art. We also show the perfarenama graphical model with
randompotentials, in order to assess how the results of the previous experimeneflacted in
terms of actual running time.

1370

Performance and bounds for ¢ = 0.2

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

Performance and bounds for ¢ = 0.5

Performance and bounds for ¢ = 1.0

=
S
T

el - T« T - -
© ’ © © ’
o P o o
.640’ ,” 6 6 /”
g ’ g — N g ,/ — N
L ’ ’ A — ’ A

530 , 5 . EY(M) 5 - , EY(M)
3 0 3 M == min(N,2VN) 3 M = - min(N,2VN)
€20 ’ — N 2 o X o o) 1
g , g experimental g experimental
2 |, EY(M) 2 2

10 ii# == min(N,2VN) [{

=)

ot
=]
T

=
-]

experimental
n

=

=

0

L
200

.
400
N

800 1000

Performance and bounds for ¢ = —0.2

%

L
200

.
400
N

L
600

Performance and bounds for ¢ = —0.5

!
800 1000

%

n
200

n
400
N

n
600

Performance and bounds for ¢ = —1.0

n
800 1000

=

Number of entries read

)
=]

®
=]
T

@
T

IS
T

N
E'(M) |
min(N, 2v'N)

experimental

Number of entries read

200

-
ot

100

o
T

— N

EY(M)

= = min(N,2VN)

— experimental

-
-
-

INUITIUET Ul EHUIES Teau

1000

800 |

=

=3

S
T

400 |

)

=]

S
T

— N

— experimental

EY(M)
min(N, 2v/N)

0

L
200

|
400

800 1000

0

0

L |
200 400

|
800 1000

0

0

|
800 1000

‘ ‘
600 600
N N

N

Figure 12: Performance of our algorithm for different correlationfioacients. The top three plots
show positive correlation, the bottom three show negative correlatiomel@ton coef-
ficients ofc = 1.0 andc = —1.0 capture precisely the best and worst-case performance
of our algorithm, resulting i©(1) and®(N) performance, respectively (wher= —1.0
the linear curve obscures the experimental curve).

We perform matching betweerntemplategraph withM nodes, and targetgraph withN nodes,
which requires a graphical model wikh nodes andN states per node (see McAuley et al. 2008 for
details). We fixM = 10 and varyN.

Figure 13 (left) shows the performance on random potentials, that isetf@imance we hope
to obtain if our model assumptions are satisfied. Figure 13 (right) showstfermance for graph-
matching, which closely matches the expected-case behavior. Fitted avevdsown together with
the actual running time of our algorithm, confirming@MN?2/N) performance. The coefficients
of the fitted curves demonstrate that our algorithm is useful even for mealegs ofN.

We also report results for graph-matching using graphs from the MPE&a set (Bai et al.,
2009), which consists of 1,400 silhouette images (Figure 14). Again wé #x10 (i.e., 10 points
are extracted in each template graph) and Wfghe number of points in the target graph). This
experiment confirms that even when matching real-world graphs, thenptien of independent
order statistics appears to be reasonable.

7.3.2 HGHER-ORDER MARKOV MODELS

In this experiment, we construct a simple Markov model for text denoisiagdBm noise is applied
to a text segment, which we try to correct using a prior extracted from adegus. For instance

1371

MCAULEY AND CAETANO

Random potentials (5 iterations) 2D Graph matching

450 T T T 500 T T
B—& naive method B—8 naive method
4000 . 0.00000079N? (r = 546.33) AN I | RO 0.00000083N? (r = 361.61)
2 350 || e our method 1 g 400r|e—e ourmethod]
5 - = 0.00000388N2>? (r = 30.06) ‘ 5 - = 0.00000422N2? (r = 11.60)
S 300 108
EXr 1 E
T 200 | R T
2 2 200
S 150 i 5
N N
2 2
< 100 A 1 <ot
0 -
0 0 100 200 300 400 500 600 700 800 0 0 100 200 300 400 500 600 700 800
N (number of states) N (size of target graph)

Figure 13: The running time of our method on randomly generated potentradsoraa graph-
matching experiment (both graphs have the same topology). Fitted cuesatsarob-
tained by performing least-squares regression; the residualreimdrcates the ‘good-
ness’ of the fitted curve.

2D Graph matching (MPEG-7 data)

w
ot

B—8 naive method
30H - 0.00000018N?3 (r = 14.73556)

g e—e our method
§ 251 == 0.00000095N%° (r =0.01651)
(0]
2
o 20
E
T L
g 15
(0]
(o]
S0t
4
<

5 .

0 | | !

0 100 200 300 400 500

N (size of target graph)

Figure 14: The running time of method our on graphs from the MPEG-7 d#ata s

wondrous sight of th4 ivory Pequod is corrected towondrous sight of the ivory
Pequod.

In such a model, we would like to exploit higher-order relationships betwbaracters, though
the amount of data required to construct an accurate prior grows empailty with the size of the
maximal cliques. Instead, our prior consists entirely of pairwise relatioa$igifween characters (or
‘bigrams’); higher-order relationships are encoded by including higraf non-adjacent characters.

1372

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

Named entity recognition

Part of speech tagging

Observation

Figure 15: Left: Our model for denoising. Its computational complexity is simdathat of a
skip-chain CRF, and models for named-entity recognition (right).

Specifically, our model takes the form

IX|-1 IX|—2
Dy (Xx) = D i1(X, Xip1) ¥ Dii2(X, X4 2)
M N

where

@i (%, X}) = Wi (%, Xj) P(xi|0i) p(Xj[0;).
Hereu is ourprior (extracted from text statistics), apds our ‘noise model’ (given the observation
0). The computational complexity of inference in this model is similar to that of thedkain CRF
shown in Figure 3(b), as well as models for part-of-speech tagginghamdd-entity recognition,
as in Figure 15. Text denoising is useful for the purpose of demonstratinglgorithm, as there
are several different corpora available in different languagesyiipus to explore the effect that
the domain size (i.e., the size of the language’s alphabet) has on running time.

We extracted pairwise statistics based on 10,000 characters of text, eshdhissto correct a
series of 25 character sequences, with 1% random noise introduceel texth The domain was
simply the set of characters observed in each corpus. The Japatesetdwas not included, as the
©(MN?2) memory requirements of the algorithm made it infeasible Witk 2000; this is addressed
in Section 7.4.1.

The running time of our method, compared to thévaasolution, is shown in Figure 16. One
might expect that texts from different languages would exhibit diffedapendence structures in
their order statistics, and therefore deviate from the expected case inrssiar@es. However, the
running times appear to follow the fitted curve closely, that is, we are achieyiproximately the
expected-case performance in all cases.

Since the priow; i+1(Xi,Xi+1) is data-independenwe shall further discuss this type of model
in reference to Algorithm 3 in Section 7.4.

7.4 Experiments with Conditionally Factorizable Models

In each of the following experiments we perform belief-propagation in maufdle form given in
(Equation 7). Thus each model is completely specified by defining the raddet@lsd; (X |y;), the
edge potential®; ;(x;,%;), and the topologyA(,) of the graph.

Furthermore we assume that the edge potentiale@reogeneoyghat is, that the potential for
each edge is the same, or rather that they have the same order statistesa(fpie, they may
differ by a multiplicative constant). This means that sorting can be datire without affecting
the asymptotic complexity. When subject to heterogeneous potentials we neglgt soat them
offline the online cost shall be similar to what we report here.

1373

MCAULEY AND CAETANO

Text denoising
1200 ‘

B B naive methog Korean
1000H 0.00000076 N (r = 6.35880)
= ® @ our method
T - = 0.00000146N%? (r = 0.00079)
o 800
[$]
@
L
0.6 —
£ 6001 o5f]
= 04
‘_g 03} ,//‘—
— 400 0.2——#',’ i
I}
5 0.1f. E
= 0.0 L
70 80 90 100 110 120 130 140 150 .*
200
ettt e =T L
0() 200 400 600 800 1000 1200

N (alphabet size)

Figure 16: The running time of our method compared to thigenaolution. A fitted curve is also
shown, whose coefficient estimates the computational overhead of oed.mod

7.4.1 (HAIN-STRUCTUREDMODELS

In this section, we considehain-structuredyraphs. Here we have nod®8§= {1...Q}, and edges
E=4{(1,2),(2,3)...(Q—1,Q)}. The max-product algorithm is known to compute the maximum-
likelihood solution exactly for tree-structured models.

Figure 17 (left) shows the performance of our method on a modelraitiompotentials, that
is, Pi(xilyi) =U[0,1), ®iji1(Xi,X%+1) =U[0,1), whereU|0,1) is the uniform distribution. Fitted
curves are superimposed onto the running time, confirming that the perfoentd the standard
solution grows quadratically with the number of states, while ours grows atieaofNv/N. The
residual error shows how closely the fitted curve approximates the running time; in the case of
random potentials, both curves have almost the same constant.

Figure 17 (right) shows the performance of our method on the text degaseriment. This
experiment is essentially identical to that shown in Section 7.3.2, except thatdtel is a chain
(i.e., there is nad; j;2), and we exploit the notion of data-independence (i.e., the factithat
does not depend on the observation). Since the sBme is used for every adjacent pair of nodes,
there is no need to perform the ‘sorting’ step offline—only a single coply, pf; needs to be sorted,
and this is included in the total running time shown in Figure 17.

7.4.2 (RID-STRUCTUREDMODELS

Similarly, we can apply our method wrid-structuredmodels. Here we resort to loopy belief-
propagation to approximate the MAP solution, though indeed the same analghéesan the case
of factor-graphs (Kschischang et al., 2001). We constructa 50 grid model and perform loopy
belief-propagation using a random message-passing schedule fiefatons. In these experi-
ments our nodes at® = {1...50}2, and our edges connect the 4-neighbors, that is, the fipge
is connected to botfi + 1, j) and(i, j + 1) (similar to the grid shown in Figure 2(a)).

1374

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

Random potentials (2500 node chain) Text denoising

B8 naive method ® ® naive method Japanese
350 0.00002N2 (r = 0.00514)] TOF o 0.00002N2 (r = 0.15)
. &=e our method . ® e our method :
0 3.0 L 1 o 60 .
° - = 0.00002N'? (r = 0.00891) g - = 0.00015N'? (r = 5.38)
o o
S 25 8 501
2 @l
0.60
qg) 20 OE) 40 F
= = 0.45 |- . i
I T sl
15} 30 | 030 .
5 s |l
8 s 0.15 -
© 10} © 20 g0 .\
90 105 120 135 150 KOrean L |
0.5 10} i -7
It
0.0 o . . _ o Lo s s s
0 100 200 300 400 500 0 500 1000 1500 2000
N (number of states) N (alphabet size)

Figure 17: Running time of inference in chain-structured models: randdempals (left), and text
denoising (right). Fitted curves confirm that the exponent.bfdiven theoretically is
maintained in practice denotes the sum of residuals, that is, the ‘goodness’ of the fitted
curve).

Figure 18 (left) shows the performance of our method on a grid with ranmientials (similar
to the experiment in Section 7.4.1). Figure 18 (right) shows the perfornmarm& method on an
optical flow task (Lucas and Kanade, 1981). Here the states eflcydgectors for a node with
N states, the flow vector is assumed to take integer coordinates in the $quéxe’2,/N/2)? (so
that there aré\ possible flow vectors). For the unary potential we have

@y (xly) = || Imai, j] = Img[(i, j) + £(x)]]],
wherelm;[a, b] andim;[a, b] return the gray-level of the pixel &, b) in the first and second images
(respectively), and (x) returns the flow vector encoded kyThe pairwise potentials simply encode
the Euclidean distance between two flow vectors. Note that a variety of imb/demputer vision
tasks (including optical flow) are studied in Felzenszwalb and Huttenl§2B86), where the highly
structured nature of the potentials in question often allows for efficientisoki

Our fitted curves in Figure 18 sho@®(N+/N) performance for both random data and for optical
flow. Clearly the fitted curve for optical flow deviates somewhat from thédioed for random data;
naturally the potentials are highly structured in this case, as exploited bynselzalb and Hutten-
locher (2006); it appears that some aspect of this structure is slightigfllato our algorithm,
though a more thorough analysis of this type of potential remains as futuke Wore ‘harmful’
structures are explored in the following section.

7.4.3 RILURE CASES

In our previous experiments on graph-matching, text denoising, andabfitie’ we observed run-
ning times similar to those for random potentials, indicating that there is no pnéwlpendence
structure between the order statistics of the messages and the potentials.

1375

MCAULEY AND CAETANO

Random potentials (50 x 50 grid, 5 iterations) Optical flow (50 x 50 grid, 5 iterations)

100

90 T T
B—8 naive method | B—8 naive method

8o 0.00034N? (r = 24.26) 4 | R 0.00038N® (r = 28.04)
— 70| ®=e our method 1 = 80| e=e our method]
T || -- 000252N' (r = 15.26) S - - 0.00386N'? (r = 1.76)
Q 60]
5] 3 6ol
Z 2
o 0T o
£ E
Z 40 =
E] T 0
R =
o o
F ool =

20 20

10

0 . ‘ ‘ . _ 0 . ‘ ‘ . _
0 100 200 300 400 500 0 100 200 300 400 500
N (number of states) N (number of states)

Figure 18: Running time of inference in grid-structured models: randdengials (left), and opti-
cal flow (right).

In certain applications the order statistics of these terms are highly depgendenvay that
is detrimental to our algorithm. This behavior is observed for certain typesrafave potentials
(or convex potentials in a min-sum formulation). For instance, in a sterearitisgxperiment,
the unary potentials encode the fact that the output should be ‘closeddtaarcvalue; the pairwise
potentials encode the fact that neighboring nodes should take similar y@trestein and Szeliski,
2001; Sun et al., 2003).

In these applications, the permutation matrices that transform the sorted wdlug to the
sorted values of}, are block-off-diagonal (see the sixth permutation in Figure 11). In sasks,
our algorithm only decreases the number of multiplication operations by a multipdic@nstant,
and may in fact be slower due to its computational overhead. This is prethsebehavior shown
in Figure 19 (left), in the case of stereo disparity.

It should be noted that there exist algorithms specifically designed for léds of potential
functions (Kolmogorov and Shioura, 2007; Felzenszwalb and Hutteatp2006), which are prefer-
able in such instances.

We similarly perform an experiment on image denoising, where the unarpt$eare again
convex functions of the input (see Geman and Geman, 1984; Lan et @6). 20istead of using a
pairwise potential that merely encodes smoothness, we extract the pastaiiséics from image
data (similar to our experiment on text denoising); thus the potentials are gerlooncave. We see
in Figure 19 (right) that even if a small number of entries exhibit some ‘ramess’ in their order
statistics, we begin to gain a modest speed improvement overiveswution (though indeed, the
improvements are negligible compared to those shown in previous experiments)

7.5 Other Applications of Tropical Matrix Multiplication

As we have mentioned, our improvements to message-passing in graphicelsradde from a
fast solution to matrix multiplication in the max-product semiring. In this section weudgsother

1376

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

Stereo disparity (50 x 50 grid, 5 iterations) Image denoising (50 x 50 grid, 5 iterations)

100

120 T
m—8 naive method m—a naive method
w0l 0.00033N% (r=15.21) | A4 || 0.00037N? (r = 43.63)
- e=—e our method 1 = 80| e=® our method
° - - 0.00852N'5 (r = 253.57) ° - - 0.00727N'5 (r = 14.04)
o 80]
[S] [S]
8 & oor
g o =
E § 401
s f =
s s %
20
0 L . L L - L — 0 L L L - L —
0 100 200 300 400 500 0 100 200 300 400 500
N (number of states) N (number of states)

Figure 19: Two experiments whose potentials and messages have higahdeaporder statistics:
stereo disparity (left), and image denoising (right).

problems which include max-product (or ‘tropical’) matrix multiplication as arlsutine. Williams
and Williams (2010) discusses the relationship between this type of matrix multipfiqgartidlem
and various other problems.

7.5.1 MAX-PRODUCTLINEAR PROGRAMMING

In Sontag et al. (2008), a method is given for exact MAP-inferencedplycal models using LP-
relaxations. Where exact solutions cannot be obtained by consideringairwise factors, ‘clus-
ters’ of pairwise terms are introduced in order to refine the solution. Mesgassing in these clus-
ters turns out to take exactly the form that we consider, as third-ord&rger) clusters are formed
from pairwise terms. Although a number of applications are presented agenal. (2008), we
focus on protein design, as this is the application in which we typically obskeviargest domain
sizes. Other applications with larger domains may yield further benefits.

Without going into detail, we simply copy the two equations from Sontag et al8j20@vhich
our algorithm applies. The first of these is concerned with passing messbatyveen clusters, while
the second is concerned with choosing new clusters to add. Below arextegtations, reproduced
verbatim from Sontag et al. (2008):

2 1
)\cae(xe) — — § ()\e—>e(xe) —|—C/7ége€d)\cl_>e(xe)) + = Tch{elezc\e()\g_)e/ (Xer) —I—c/#(:’ze(ed)\c’ae’ (Xe’))]
(15)

(see Sontag et al., 2008, Figure 1, bottom), which consists of marginaliziogter €) that decom-
poses into edgeg), and

d(c) = z maxbe(xe) — maxlz be(xe)] , (16)

éc X %

1377

MCAULEY AND CAETANO

(see Sontag et al., 2008, (Equation 4)), which consists of finding the-sate in a ring-structured
model.

As the code from Sontag et al. (2008) was publicly available, we simplycegldne appropriate
functions with our own (in order to provide a fair comparison, we also ogaléheir implementation
of the nave algorithm, as ours proved to be faster than the highly generic matrix libsagin their
code).

In order to improve the running time of our algorithm, we made the following two nuaditins
to Algorithm 2:

e We used aradaptive sorting algorithngi.e., a sorting algorithm that runs faster on nearly-
sorted data). While Quicksort was used during the first iteration of megsasgsing, sub-
sequent iterations used insertion sort, as the optimal ordering did nogetsignificantly
between iterations.

e We added an additional stopping criterion to the algorithm. Namely, we terminasdgihe
rithm if v4[pa[start] x vp[pp[starf] < max In other words, we check how large the maximum
could begiven the best possible permutation of the next elements (i.e., if they havartiee s
index); if this value could not result in a new maximum, the algorithm terminatds.chieck
costs us an additional multiplication, but it means that the algorithm will terminatier fias
cases where a large maximum is found early on.

Results for these two problems are shown in Figure 20. Although our algoddmsistently
improves upon the running time of Sontag et al. (2008), the domain size chittables in question
is not typically large enough to see a marked improvement. Interestingly, neigtbod follows
the expected running time closely in this experiment. This is partly due to the fcthigre is
significant variation in the variable size (note tiNabnly shows theaveragevariable size), but it
may also suggest that there is a complicated structure in the potentials whidbsmla assumption
of independent order statistics.

7.5.2 ALL-PAIRS SHORTESTFPATH

The ‘all-pairs shortest-path’ problem consists of finding the shortdst Ipetween every pair of
nodes in a graph. Although the most commonly used solution is probably thd&meslin Floyd-
Warshall algorithm (Floyd, 1962), the state-of-theegpected-cassolution to this problem is that
of Karger et al. (1993), whose expected-case running tin@ & logN) when applied to graphs
with distances sampled from the uniform distribution.

Unfortunately, the solution of Karger et al. (1993) requires a Fibdriagap or similar data
structure in order to achieve the reported running time (i.e., a hea{dthinsertion and decrease-
key operations); such data structures are known to be inefficient atigggFredman and Tarjan,
1987). When their algorithm is implemented using a standard priority queuas itumning time
O(N?log?N).

In Aho et al. (1983), a transformation is shown between the all-pairdesigrath problem
and min-sum matrix multiplication. Using our algorithm, this gives us an expeasetN2/N)
solution to the all-pairs shortest-path problem, assuming that the subprobieatesdcby this trans-
formation have i.i.d. order statistics; this assumption is notably different thaaskigmption of
uniformity made in Karger et al. (1993).

1378

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

Protein design (Equation 15) Protein design (Equation 16)

co
o

T 25 T
= B ® naive method B ® naive method -
<]]
= 3.0/ ® ® ourmethod g ® e our method
& % 20F
= el
g 25 o 5 "
1] (0]
° K2 []
g 20 gl°
) = .
o 15 I
s 10
£ " o =
T 10} ® @ °
s] 5] =
(0] z <
= [] = < 5] o
SR °
5 0.5
< . [}
0.0 . . ‘ s s s 0 . s ‘ s s s
20 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90
N (average variable size) N (average variable size)

Figure 20: The running time of our method on protein design problems fronta§et al. (2008).
In this figure,N reflects theaveragedomain size amongst all variables involved in the
problem; fitted curves are not shown due to the highly variable nature afdhmin
sizes included in each problem instance.

In Figure 21, we show the performance of our method on i.i.d. uniformhgagmpared to the
Floyd-Warshall algorithm, and that of Karger et al. (1993). On grapdssof practical interest, our
algorithm is found to give the fastest performance, in spite of its more skmeasymptotic cost.
Our solution is comparable to that of Karger et al. (1993) for the largegthgsize shown; larger
graph sizes could not be shown due to memory constraints. Note that wisieglyorithms are fast
in practice, each ha®(N3) worst-caseperformance; more ‘exotic’ solutions that improve upon the
worst-case bound are discussed in Alon et al. (1997) and Chan)(208@ng others, though none
are truly subcubic (i.eQ(N37%)).

It should also be noted that the transformations given in Aho et al. (1883y in both direc-
tions, that is, solutions to the all-pairs shortest-path problem can be uselyéonsin-sum matrix
multiplication. Thus any subcubic solution to the all-pairs shortest-path protd@ne applied to
the inference problems in graphical models presented in Section 4. Howleedransformation
of Aho et al. (1983) introduces a very high computational overheaséha solving min-sum ma-
trix multiplication for anN x N matrix requires solving all-pairs shortest-path in a graph with 3
nodes), and moreover it violates the assumptions on the graph distributigireceépr fast infer-
ence given in Karger et al. (1993). In practice, we were unable tdym® an implementation of
min-sum matrix multiplication based on this transformation that was faster thanitreestdution.

Interestingly, a great deal of attention has been focused on expe$edsolutions to all-pairs
shortest-path, while to our knowledge ours is the first work to approacktpected-case analy-
sis of min-sum matrix multiplication. Given the strong relationship between the toldgms, it
remains a promising open problem to assess whether the analysis fronsohgsms to all-pairs
shortest-path can be applied to produce max-product matrix multiplication algeritlith similar
asymptotic running times.

1379

MCAULEY AND CAETANO

All-Pairs Shortest-Path

g — Floyd/Warshall O(N?)

§ e—e Karger et al. w/ Fibonacci heap O(N%log N)
8 a—a Karger et al. w/ std::set O(N?log® N)
g — Aho et al. w/ naive method O(N?)

§ *—x Aho et al. w/ our method O(N?*V/N)*

* assumes that subproblems have i.i.d. order statistics

28 2‘9 2‘10 2‘11 212
N (size of graph)

Figure 21: Our algorithm applied to the ‘all-pairs shortest-path’ problene é&tpected-case run-
ning times of each algorithm are shown at right.

7.5.3 L* DISTANCES

The problem of computing an inner product in the max-sum semiring is closlalgd to computing
theL” distance between two vectors

|[Va — Vp||o = Eqai\(l}wa — vpli]. (17)

Naively, we would like to solve (Equation 17) by applying Algorithm 2tpand—vy, with the mul-
tiplication operator replaced kayx b = |a-+ b|, however this violates the condition of (Equation 2),
since the optimal solution may arise either when bgfif and—vy|i] are large, or when boty]i]
and—vy|i] are small (in fact, this operation violates the semiring axiom of associativity).

We address this issue by running Algorithmwéce, first considering théargestvalues ofv,
and —vy, before re-running the algorithm starting from thmallestvalues. This ensures that the
maximum solution is found in either case.

Pseudocode for this solution is given in Algorithm 7, which adapts Algoritiimte problem
of computing anL” distance matrix. Similarly, we can adapt Algorithm 3 to solve nearest-
neighbor problems, where an arrayMfpoints inRN is processed offline, allowing us compute the
distance of a query point to @l other pointsO(M+/N).

Figure 22 shows the running time of our algorithm for computind @wlistance matrix (where
M = N), and the online cost of performing a nearest-neighbor query. Agaiexpected speedup
over the nive solution isQ(y/N) for both problems, though naturally our algorithm requires larger
values ofN than does Algorithm 4 in order to be beneficial, since Algorithm 2 must beuéxéc
twicein order to solve (Equation 17).

A similar trick can be applied to compute message in the max-product semirindoeyesten-
tials that contain negative values, though this may require up to four exesuticAlgorithm 2, so
it is unlikely to be practical.

1380

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

Algorithm 7 Use Algorithm 2 to compute ali” distance matrix
Input: anM x N arrayA containingM points inRN

1: initialize anM x M distance matribD := 0

2: for xe {1...M} do
computeﬁ[x] by sortingA[x] {takesONlogN}

3:

4 computeg[x] by sorting—A|[X] {i.e.,?[x] in reverse order
5: end for {this loop take®©(MNIogN) }

6: for xe {1...M} do

7. forye{x+1...M} do

8 best = Algorithm2(A[x], ~Aly, PN, ?[y})

{takesO(+/N); Algorithm 2 uses the operatarx< b = |a+b|}
o besp:= AIgorithmZ(A[y],—A[x], Blyl, ?[x})
10: D[x,y] := max(|A[x,best] — Ay, best]|, |A[x,best] — Aly,besp]|)
11: Dly,x] .= D[x,y]
12 end for
13: end for {this loop takes expected tin@M?/N)}

)

L*> nearest neighbor L*> distance matrix

T T T
naive method naive method

5.4¢ — 09N2 (r = 0.00002) R e 276 — 09NB (r = 0.76253)
our method % 200 | our method £
1.9¢ — 0TNV/N (r = 0.00008) 8.3¢ — 08N2V/N (r = 2.07389) :

o o

w w

o ot
—

I I : I

X :

I I

.

f=]

[}

(<3

I
—
IS
o
T

015} 100

Average wall time (seconds)
L
Average wall time (seconds

je=}
—
o
I
SN
o
T

b
o=}
[S3
T
I

0 1000 2000 3000 4000 5000 6000 7000 8000 00 500 1000 1500 2000 2500 3000 3500 4000
N (dimensionality of each vector) N (dimensionality of each vector)

Figure 22: The running time of our method compared to thigenaolution. A fitted curve is also
shown, whose coefficient estimates the computational overhead of oed.mod

8. Discussion and Future Work

We have briefly discussed the application of our algorithm to the all-pairtestigpath problem, and
also mentioned that a variety of other problems are related to max-product mattiplication via

a series of subcubic transformations (Williams and Williams, 2010). To owletlye, of all these
problems only all-pairs shortest-paths has received significant attenttemiis of expected-case
analysis. The analysis in question centers around two types of modalniteem model, where
edge weights are sampled from a uniform distribution, ancktigpoint-independent mog&thich

1381

MCAULEY AND CAETANO

essentially makes an assumption on the independence of outgoing edgésviigheach vertex
(Moffat and Takaoka, 1987), which seems very similar to our assumpfiemdependent order
statistics. It remains to be seen whether this analysis can lead to better solottbesproblems
discussed here, and indeed if the analysis applied to uniform models egpled in our setting to
uniform matrices

It is interesting to consider the fact that our algorithm’s running time is puréiyetion of the
input data'sorder statisticsand in fact does not depend on ti&ta itself While it is pleasing that
our assumption of independent order statistics appears to be a weakndrs,satisfied in a wide
variety of applications, it ignores the fact that stronger assumptions magasenable in many
cases. In factors with a high dynamic range, or when different fabimrs different scales, it may
be possible to identify the maximum value very quickly, as we attempted to do in B&chdL.
Deriving faster algorithms that make stronger assumptions about the iaifaLtesinains a promising
avenue for future work.

Our algorithm may also lead to faster solutions &mproximatelypassing a single message.
While the stopping criterion of our algorithguaranteeghat the maximum value is found, it is
possible to terminate the algorithm earlier and state that the maximurmrblaably been found.
A direction for future work would be to adapt our algorithm to determine thodalility that the
maximum has been found after a certain number of steps; we could then aflavgehto specify
an error probability, or a desired running time, and our algorithm couldlbptad accordingly.

9. Conclusion

We have presented a series of approaches that allow us to improve theragrce of exact and
approximate max-product message-passing for models with factors smalfethbir maximal
cliques, and more generally, for models whose factbhes depend upon the observationntain
fewer latent variables than their maximal cliques. Weadweaysable to improve the expected com-
putational complexity in any model that exhibits this type of factorization, no mtteesize or
number of factors.

Acknowledgments

We would like to thank Pedro Felzenszwalb, Johnicholas Hines, and Damtd@for comments on
initial versions of this paper, and James Petterson and Roslyn Lau fduhgifcussions. NICTA
is funded by the Australian GovernmenBsacking Australia’s Abilityinitiative, and the Australian
Research Council’kKCT Centre of Excellencgrogram.

Appendix A. Asymptotic Performance of Algorithm 2 and Extengons

In this section we shall determine the expected-case running times of Algoriémuh Rlgorithm 6.
Algorithm 2 traversew, andvy until it reaches the smallest value wffor which there is some
j < mfor whichm> pgl[pa[j]]. If M is a random variable representing this smallest valua,of
then we wish to findE(M). While E(M) is the number of ‘steps’ the algorithms take, each step
takes®(K) when we hav lists. Thus the expected running time3sKE(M)).

To aid understanding our algorithm, we show the elements being read ffispgamples of
V4 andvy in Figure 23. This figure reveals that the actualuesin v, andvy are unimportant, and

1382

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

start=1 start=2 start=3 start=4
03[72/42323125[18 4) 03[72/42[323125[18 4) 03[72[42[32[31]25[18[4) 93[7242[3231]25[18[4)

@) (b)

Figure 23: (a) The listg; andvy before sorting; (b) Black squares show corresponding elements
in the sorted lists\a[pali]] andvy[ppli]]); red squares indicate the elements read during
each step of the algorithmr{] p;[starf] andvp|pp[start]]). We can imagine expanding a
gray box of sizestart x start until it contains an entry; note that the maximum is found
during the first step.

I g W)

Be" aeafllene yeeefl==s" -,

@) (b) (© (d)

.

Figure 24: (a) As noted in Figure 23, a permutation can be represensedaasay, where there is
exactly one non-zero entry in each row and column; (b) We want to findrtredlest
value ofm such that the gray box includes a non-zero entry; (paf of permutations
can be thought of as a cube, where every two-dimensional plane coetactly one
non-zero entry; we are now searching for the smallest gray cube thadl@s a non-zero
entry; the faces show the projections of the points onto the exterior of thee(the third
face is determined by the first two); (d) For the sake of establishing agrdggund, we
consider a shaded region of widffiN) and heighim.

it is only the order statistics of the two lists that determine the performance aflgorithm. By
representing a permutation of the digits IN@s shown in Figure 24 ((a), (b), and (d)), we observe
that m is simply the width of the smallest square (expanding from the top left) that ieslad
element of the permutation (i.e., it includiesnd pJi]).

Simple analysis reveals that the probability of choosing a permutation that dbesmntain a
value inside a square of sizeis

N—m)!(N—m)!
(N —2m)IN!

P(M>m)= ((18)

This is precisely - F(m), whereF (m) is the cumulative density function ®. It is immediately
clear that 1< M < |N/2|, which defines the best and worst-case performance of Algorithm 2.

1383

MCAULEY AND CAETANO

Using the identitye(X) = 51 P(X > x), we can write down a formula for the expected value
of M:
IN/2] (N =)T (N = m)!
E(M) = z (N—m)!(N—m)!
(N —2m)!N!

m=0

(19)

The case where we are sampling from multiple permutations simultaneously (i.eritihg 6)
is analogous. We consid&r — 1 permutations embedded inkadimensional hypercube, and we
wish to find the width of the smallest shaded hypercube that includes exaetlglement of the
permutations (i.ei, p1i],. .., pk—1li]). This is represented in Figure 24(c) #r= 3. Note carefully
thatK is the number ofistsin (Equation 14); if we hav& lists, we requirek — 1 permutations to
define a correspondence between them.

Unfortunately, the probability that there is no non-zero entry in a cub&ens® is not trivial
to compute. It is possible to write down an expression that generalizeatf&gl8), such as

1 m
PKM>m)= —— x ZN (max ok(i)>m> (20)
NIK=1 7 £ GK—:I_ZES\Ii/:\]. ke{l.K—1}

(in which we simply enumerate over all possible permutations and ‘count’ vdiitttem do not fall
within a hypercube of size), and therefore state that

EX(M) = i PK(M > m). (21)
m=0

However, it is very hard to draw any conclusions from (Equation 269, ia fact it is intractable
even to evaluate it for large values Nfand K. Hence we shall instead focus our attention on
finding an upper-bound on (Equation 21). Finding more computationallyectoent expressions
for (Equation 20) and (Equation 21) remains as future work.

A.1 An Upper-Bound on EX(M)

Although (Equation 19) and (Equation 21) precisely define the running tihé&¢gorithm 2 and
Algorithm 6, it is not easy to ascertain the speed improvements they achéee @alues to which
the summations converge for larjeare not obvious. Here, we shall try to obtain an upper-bound
on their performance, which we assessed experimentally in Section 7ing sio we shall prove
Theorems 2 and 3.

Proof [Proof of Theorem 2] (see Algorithm 2) Consider the shaded regiorigaré 24(d). This
region has a width of (N), and its heighim is chosen such that it contains precisely one non-zero
entry. LetM be a random variable representing the height of the gray region néededer to
include a non-zero entry. We note that

E(M) € O(f(N)) = E(M) e O(f(N));

our aim is to find the smallest(N) such thate(M) € O(f(N)). The probability that none of the
first m samples appear in the shaded region is

P(M >m):iﬂ<1—m>.

1384

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

Next we observe that if the entries in oNrx N grid do not define a permutation, but we instead
choose aandomentry in each row, then the probability (now figh) becomes

P(M>m) = (1— f(,\l'\')>m (22)

(for simplicity we allowm to take arbitrarily large values). We certainly have tREM > m) >

P(M > m), meaning thaE(M) is an upper-bound o& (M), and therefore ofe(M). Thus we

compute the expected value
e - 5 (100"
m=0 N '

This is just a geometric progression, which sumslfd (N). Thus we need to find(N) such that

f(N)eO<f(NI\I)).

Clearly f (N) € O(+v/N) will do. Thus we conclude that
E(M) € O(VN).

Proof [Proof of Theorem 3] (see Algorithm 6) We would like to apply the sameaiag in the
case of multiple permutations in order to compute a boun&'dfM). That is, we would like to
consideK — 1 randomsamples of the digits from 1 td, rather thark — 1 permutations, as random
samples are easier to work with in practice.

To do so, we begin with some simple corollaries regarding our previous redldtsave shown
that in a permutation of lengtR, we expect to see a value less than or equdl afterN/f steps.
There are nowf — 1 other values that are less than or equal #imongst the remaininly — N/ f

values; we note that
f-1 f

N-& N
Hence we expect to see thextvalue less than or equal toin the nextN/f steps also. A conse-
guence of this fact is that we not only expect to seefitlsevalue less than or equal toearlier in
a permutation than in a random sample, but that when we samplements, we expeahore of
them to be less than or equal tan a permutation than in a random sample.

Furthermore, when considering theaximumof K — 1 permutations, we expect the firstel-
ements to contain more values less than or equdl ttean the maximum oK — 1 random sam-
ples. (Equation 20) is concerned with precisely this problem. Therefdren working in ak-
dimensional hypercube, we can considler 1 random samples rather thEkn— 1 permutations in
order to obtain an upper-bound on (Equation 21).

Thus we definé as in (Equation 22), and conclude that

P(M>m) = (l— f(l\ll\;r_)fl>m.

1385

MCAULEY AND CAETANO

Thus the expected value bfis again a geometric progression, which this time sungslyd (N, K))K’l.
Thus we need to find(N,K) such that

f(N,K)eo(<MNNM>K1>.

F(N,K) eo(N%)

Clearly

will do. As mentioned, each step tak@¢K), so the final running time i@(KN%). [|

To summarize, for problems decomposable ikte- 1 groups, we will need to find the index
that chooses the maximal product amongdists; we have shown an upper-bound on the expected
number of steps this takes, hamely

EK(M) eo(NKil). (23)

References

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullmabata Structures and Algorithm#ddison-
Wesley, 1983.

Srinivas M. Aji and Robert J. McEliece. The generalized distributive IEREE Transactions on
Information Theory46(2):325-343, 2000.

Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all paimstelst path problem.
Journal of Computer and System Sciené&gg2):255-262, 1997.

Xiang Bai, Xingwei Yang, Longin Jan Latecki, Wenyu Liu, and Zhuowen Tearning context-
sensitive shape similarity by graph transductidiEEE Transactions on Pattern Analysis and
Machine Intelligence32(5):861-874, 2009.

Timothy M. Chan. More algorithms for all-pairs shortest paths in weighteghgralnAnnual ACM
Symposium on Theory of Computipages 590-598, 2007.

James M. Coughlan and Sabino J. Ferreira. Finding deformable sihgipgdaopy belief propaga-
tion. INECCV, 2002.

Rere Donner, Georg Langs, and Horst Bischof. Sparse MRF appeanaodels for fast anatomical
structure localisation. IBMVC, 2007.

Gal Elidan, lan Mcgraw, and Daphne Koller. Residual belief propagatidormed scheduling for
asynchronous message passingJid, 2006.

Pedro F. Felzenszwalb. Representation and detection of deformapkssiizEE Transactions on
Pattern Analysis and Machine Intelligen@y¥(2):208-220, 2005.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient beligfggation for early vision.
International Journal of Computer Visipi0(1):41-54, 2006.

1386

FASTERALGORITHMS FORMAX-PRODUCT MESSAGEPASSING

Robert W. Floyd. Algorithm 97: Shortest patBommunications of the ACNb(6):345, 1962.

Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps airdues in improved network
optimization algorithmsJournal of the ACM34(3):596—-615, 1987.

Delbert R. Fulkerson and O. A. Gross. Incidence matrices and intgraphs. Pacific Journal of
Mathematics(15):835-855, 1965.

Michel Galley. A skip-chain conditional random field for ranking meetingratiees by importance.
In EMNLP, 2006.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributitimegvalyesian restora-
tion of images.IEEE Transactions on Pattern Analysis and Machine Intellige6¢g):721-741,
1984.

David R. Karger, Daphne Koller, and Steven J. Phillips. Finding the hiddém pime bounds for
all-pairs shortest path&IAM Journal of Computing22(6):1199-1217, 1993.

Leslie R. Kerr. The effect of algebraic structure on the computatiomaptexity of matrix multi-
plication. PhD Thesis1970.

Kristian Kersting, Babak Ahmadi, and Sriraam Natarajan. Counting bel@gwation. InUAI,
2009.

Uffe Kjeerulff. Inference in bayesian networks using nested juncticestrénProceedings of the
NATO Advanced Study Institute on Learning in Graphical Mqd98.

Vladimir Kolmogorov and Akiyoshi Shioura. New algorithms for the dual of ¢bavex cost net-
work flow problem with application to computer vision. Technical report,\vgrsity College
London, 2007.

Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loelfegector graphs and the sum-
product algorithmlEEE Transactions on Information Theg#j7(2):498-519, 2001.

M. Pawan Kumar and Philip Torr. Fast memory-efficient generalized hmitgfagation. IFECCV,
2006.

Xiang-Yang Lan, Stefan Roth, Daniel P. Huttenlocher, and MichaelaktkB Efficient belief prop-
agation with learned higher-order markov random fields£@CV, 2006.

Bruce D. Lucas and Takeo Kanade. An iterative image registration taghmiijh an application to
stereo vision. INJCAI, 1981.

Julian J. McAuley and Tiério S. Caetano. Exact inference in graphical models: is there more to it?
CoRR abs/0910.3301, 2009.

Julian J. McAuley and Tiério S. Caetano. Exploiting within-clique factorizations in junction-tree
algorithms.AISTAT$2010a.

Julian J. McAuley and Tiério S. Caetano. Exploiting data-independence for fast belief-pabioag
ICML, 2010b.

1387

MCAULEY AND CAETANO

Julian J. McAuley, Tilgrio S. Caetano, and Marconi S. Barbosa. Graph rigidity, cyclic belad-p
agation and point pattern matchin@gEE Transactions on Pattern Analysis and Machine Intelli-
gence 30(11):2047-2054, 2008.

Alistair Moffat and Tadao Takaoka. An all pairs shortest path algorithithh wxpected time
O(n?logn). SIAM Journal of Computingl6(6):1023-1031, 1987.

James D. Park and Adnan Darwiche. A differential semantics for jointgeeithms. InNIPS
2003.

Mark A. Paskin. Thin junction tree filters for simultaneous localization and mappin IJCAI,
2003.

Kersten Petersen, Janis Fehr, and Hans Burkhardt. Fast gerndiaikef propagation for MAP
estimation on 2D and 3D grid-like markov random fieldsDIAGM, 2008.

Daniel Scharstein and Richard S. Szeliski. A taxonomy and evaluatiomeede/o-frame stereo
correspondence algorithmiaiternational Journal of Computer Visipa7(1-3):7—42, 2001.

Leonid Sigal and Michael J. Black. Predicting 3D people from 2D pictuesMDO, 2006.

David Sontag, Talya Meltzer, Amir Globerson, Tommi Jaakkola, and Yair $Velsghtening LP
relaxations for MAP using message passingUKl, 2008.

Volker Strassen. Gaussian elimination is not optimidlumerische Mathematiki4(3):354-356,
1969.

Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. Stereo matchirg helief propagation.
IEEE Transactions on Pattern Analysis and Machine Intellige@8¢7):787—800, 2003.

Charles Sutton and Andrew McCallurmtroduction to Conditional Random Fields for Relational
Learning MIT Press, 2006.

Philip A. Tresadern, Harish Bhaskar, Steve A. Adeshina, Chris JoiTaynd Tim F. Cootes. Com-
bining local and global shape models for deformable object matchingMMC, 2009.

Yair Weiss. Correctness of local probability propagation in graphicaleisodith loops. Neural
Computation12:1-41, 2000.

Ryan Williams. Matrix-vector multiplication in sub-quadratic time (some prepracgsequired).
In SODA pages 1-11, 2007.

Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences betwath, matrix,
and triangle problems. IROCS 2010.

1388

