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Abstract
Maximum A Posterioriinference in graphical models is often solved via message-passing algo-
rithms, such as the junction-tree algorithm or loopy belief-propagation. The exact solution to this
problem is well-known to be exponential in the size of the maximal cliques of the triangulated
model, while approximate inference is typically exponential in the size of the model’s factors. In
this paper, we take advantage of the fact that many models have maximal cliques that are larger than
their constituent factors, and also of the fact that many factors consist only of latent variables (i.e.,
they do not depend on an observation). This is a common case ina wide variety of applications
that deal with grid-, tree-, and ring-structured models. Insuch cases, we are able to decrease the
exponent of complexity for message-passing by 0.5 for both exactandapproximate inference. We
demonstrate that message-passing operations in such models are equivalent to some variant of ma-
trix multiplication in the tropical semiring, for which we offer anO(N2.5) expected-casesolution.

Keywords: graphical models, belief-propagation, tropical matrix multiplication

1. Introduction

It is well-known that exact inference intree-structuredgraphical models can be accomplished ef-
ficiently by message-passing operations following a simple protocol making use of the distributive
law (Aji and McEliece, 2000; Kschischang et al., 2001). It is also well-known that exact inference
in arbitrary graphical models can be solved by the junction-tree algorithm; its efficiency isdeter-
mined by the size of the maximal cliques after triangulation, a quantity related to the tree-width of
the graph.

Figure 1 illustrates an attempt to apply the junction-tree algorithm to some graphical models
containing cycles. If the graphs are not chordal ((a) and (b)), theyneed to be triangulated, or made
chordal (red edges in (c) and (d)). Their clique-graphs are then guaranteed to bejunction-trees,
and the distributive law can be applied with the same protocol used for trees;see Aji and McEliece
(2000) for a beautiful tutorial on exact inference in arbitrary graphs. Although the models in these
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(a) (b) (c) (d)

Figure 1: The models at left ((a) and (b)) can be triangulated ((c) and (d)) so that the junction-
tree algorithm can be applied. Despite the fact that the new models have largermaximal
cliques, the corresponding potentials are still factored over pairs of nodes only. Our
algorithms exploit this fact.

(a) (b) (c) (d)

Figure 2: Some graphical models to which our results apply:factors conditioned upon observations
have fewer latent variables than purely latent factors. White nodes correspond to latent
variables, gray nodes to an observation. In other words, factors containing a gray node
encode thedata likelihood, whereas factors containing only white nodes encodepriors.
Expressed more simply, the ‘node potentials’ depend upon the observation, while the
‘edge potentials’ do not.

examples contain only pairwise factors, triangulation has increased the sizeof their maximal cliques,
making exact inference substantially more expensive. Hence approximatesolutions in the original
graph (such as loopy belief-propagation, or inference in a loopy factor-graph) are often preferred
over an exact solution via the junction-tree algorithm.

Even when the model’s factors are the same size as its maximal cliques, neither exact nor ap-
proximate inference algorithms take advantage of the fact that many factorsconsist only oflatent
variables. In many models, those factors that are conditioned upon the observation contain fewer
latent variables than the purely latent factors. Examples are shown in Figure 2. This encompasses
a wide variety of models, including grid-structured models for optical flow and stereo disparity as
well as chain and tree-structured models for text or speech.

In this paper, we exploit the fact that the maximal cliques (after triangulation)often have po-
tentials that factor over subcliques, as illustrated in Figure 1. We will show that whenever this is
the case, the expected computational complexity of message-passing between such cliquescan be
improved(both the asymptotic upper-bound and the actual runtime).

Additionally, we will show that this result can be applied in cliqueswhose factors that are
conditioned upon an observationcontain fewer latent variables than those factors consisting purely
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of latent variables; the ‘purely latent’ factors can be pre-processedoffline, allowing us to achieve
the same benefits as described in the previous paragraph.

We show that these properties reveal themselves in a wide variety of real applications.
A core operation encountered in the junction-tree algorithm is that of computing the inner-

product of two vectorsva and vb. In the max-product semiring (used for MAP inference), the
‘inner-product’ becomes

max
i∈{1...N}

{va[i]×vb[i]} . (1)

Our results stem from the realization that while (Equation 1) appears to be alinear time operation,
it can be decreased toO(

√
N) (in the expected case) if we know the permutations that sortva and

vb (i.e., the order statistics ofva andvb). These permutations can be obtained efficiently when the
model factorizes as described above.

Preliminary versions of this work have appeared in McAuley and Caetano (2009), McAuley and
Caetano (2010a), and McAuley and Caetano (2010b).

1.1 Summary of Results

A selection of the results to be presented in the remainder of this paper can besummarized as
follows:

• Our speedups apply to the operation ofpassing a single message. As a result, our method can
be used regardless of the message-passing protocol.

• We are able to lower the asymptotic expected running time of max-product message-passing
for anydiscrete graphical model whose cliques factorize into lower-order terms.

• The results obtained are exactly those that would be obtained by the traditional version of the
algorithm, that is, no approximations are used.

• Our algorithm also applies whenever factors that are conditioned upon anobservation contain
fewer latent variables than those factors that are not conditioned upon an observation, as in
Figure 2 (in which case certain computations can be taken offline).

• For pairwise models satisfying the above properties, we obtain an expectedspeed-up ofat
leastΩ(

√
N) (assumingN states per node;Ω denotes anasymptotic lower-bound). For exam-

ple, in models with third-order cliques containing pairwise terms, message-passing is reduced
from Θ(N3) to O(N2

√
N), as in Figure 1(d). For pairwise models whose edge potential is not

conditioned upon an observation, message-passing is reduced fromΘ(N2) to O(N
√

N), as in
Figure 2.

• For cliques composed ofK-ary factors, the expected speed-up generalizes to at leastΩ( 1
K N

1
K ),

though it isnever asymptotically slowerthan the original solution.

• The expected-case improvement is derived under the assumption that the order statistics of
different factors areindependent.

• If the different factors have ‘similar’ order statistics, the performance willbe better than the
expected case.
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• If the different factors have ‘opposite’ order statistics, the performance will be worse than the
expected case, but is never asymptotically more expensive than the traditional version of the
algorithm.

Our results do not apply for every semiring(⊕,⊗), but only to those whose ‘addition’ oper-
ation defines an order (for example, min or max); we also assume that underthis ordering, our
‘multiplication’ operator⊗ satisfies

a< b∧c< d ⇒ a⊗c< b⊗d. (2)

Thus our results certainly apply to themax-sumandmin-sum(‘tropical’) semirings (as well asmax-
productandmin-product, assuming non-negative potentials), but not forsum-product(for example).
Consequently, our approach is useful for computing MAP-states, but cannot be used to compute
marginal distributions. We also assume that the domain of each node isdiscrete.

We shall initially present our algorithm in terms ofpairwisegraphical models such as those
shown in Figure 2. In such models message-passing is precisely equivalent to matrix-vector mul-
tiplication over our chosen semiring. Later we shall apply our results to modelssuch as those in
Figure 1, wherein message-passing becomes some variant of matrix multiplication. Finally we shall
explore other applications besides message-passing that make use of tropical matrix multiplication
as a subroutine, such all-pairs shortest-path problems.

1.2 Related Work

There has been previous work on speeding-up message-passing algorithms by exploiting different
types of structure in certain graphical models. For example, Kersting et al.(2009) study the case
where different cliques share the same potential function. In Felzenszwalb and Huttenlocher (2006),
fast message-passing algorithms are provided for cases in which the potential of a 2-clique is only
dependent on thedifferenceof the latent variables (which is common in some computer vision
applications); they also show how the algorithm can be made faster if the graphical model is a
bipartite graph. In Kumar and Torr (2006), the authors provide faster algorithms for the case in
which the potentials aretruncated, whereas in Petersen et al. (2008) the authors offer speed-ups for
models that are specifically grid-like.

The latter work is perhaps the most similar in spirit to ours, as it exploits the factthat certain
factors can besortedin order to reduce the search space of a certain maximization problem.

Another course of research aims at speeding-up message-passing algorithms by using ‘informed’
scheduling routines, which may result in faster convergence than the random schedules typically
used in loopy belief-propagation and inference in factor graphs (Elidanet al., 2006). This branch of
research is orthogonal to our own in the sense that our methods can be applied independently of the
choice of message passing protocol.

Another closely related paper is that of Park and Darwiche (2003). Thiswork can be seen to
compliment ours in the sense that it exploits essentially the same type of factorization that we study,
though it applies tosum-productversions of the algorithm, rather than themax-productversion that
we shall study. Kjærulff (1998) also exploits factorization within cliques of junction-trees, albeit a
different type of factorization than that studied here.

In Section 4, we shall see that our algorithm is closely related to a well-studiedproblem known
as ‘tropical matrix multiplication’ (Kerr, 1970). The worst-case complexity ofthis problem has been
studied in relation to the all-pairs shortest-path problem (Alon et al., 1997; Karger et al., 1993).
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Example description

A;B capital letters refer to sets of nodes (or similarly, cliques);
A∪B;A∩B;A\B standard set operators are used (A\B denotes set differ-

ence);
dom(A) the domain of a set; this is just the Cartesian product of

the domains of each element in the set;
P bold capital letters refer to arrays;
x bold lower-case letters refer to vectors;
x[a] vectors are indexed using square brackets;
P[n] similarly, square brackets are used to index arow of a 2-d

array,
P[n] or a row of an(|n|+1)-dimensional array;
PX;va superscripts are just labels, that is,PX is an array,va is a

vector;
va constantsubscripts are also labels, that is, ifa is a con-

stant, thenva is a constant vector;
xi ;xA variablesubscripts define variables; the subscript defines

the domain of the variable;
n|X if n is a constant vector, thenn|X is therestrictionof that

vector to those indices corresponding to variables inX
(assuming thatX is an ordered set);

ΦA;ΦA(xA) a function over the variables in a setA; the argumentxA

will be suppressed if clear, given that ‘functions’ are es-
sentially arrays for our purposes;

Φi, j(xi ,x j) a function over a pair of variables(xi ,x j);
ΦA(n|B;xA\B) if one argument to a function is constant (heren|B), then

it becomes a function over fewer variables (in this case,
only xA\B is free);

Table 1: Notation

2. Background

The notation we shall use is briefly defined in Table 1. We shall assume throughout that themax-
productsemiring is being used, though our analysis is almost identical for any suitablechoice.

MAP-inference in a graphical modelG consists of solving an optimization problem of the form

x̂ = argmax
x

∏
C∈C

ΦC(xC),

whereC is the set of maximal cliques inG . This problem is often solved viamessage-passing
algorithms such as the junction-tree algorithm, loopy belief-propagation, or inference in a factor-
graph (Aji and McEliece, 2000; Weiss, 2000; Kschischang et al., 2001).

Often, the clique-potentialsΦC(xC) shall be decomposable into several smaller factors, that is,

ΦC(xC) = ∏
F⊆C

ΦF(xF).
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Some simple motivating examples are shown in Figure 3: a model for pose estimationfrom Sigal
and Black (2006), a ‘skip-chain CRF’ from Galley (2006), and a modelfor shape-matching from
Coughlan and Ferreira (2002). In each case, the triangulated model has third-order cliques, but the
potentials are only pairwise. Other examples have already been shown in Figure 1; analogous cases
are ubiquitous in many real applications.

It will often be more convenient to express our objective function as being conditioned upon
someobservation, y. Thus our optimization problem becomes

x̂(y) = argmax
x

∏
C∈C

ΦC(xC|y) (3)

(for simplicity when we discuss ‘cliques’ we are referring to sets oflatentvariables).
Further factorization may be possible if we express (Equation 3) in terms of those factors that

depend upon the observationy, and those that do not:

x̂(y) = argmax
x

∏
C∈C

{

∏
F⊆C

ΦF(xF)

︸ ︷︷ ︸

data-independent

×∏
Q⊆C

ΦQ(xQ|y)
︸ ︷︷ ︸

data-dependent

}

,

We shall say that those factors that are not conditioned on the observation are ‘data-independent’.
Our results shall apply to message-passing equations in those cliquesC where for each data-

independent factorF we haveF ⊂ C, or for each data-dependent factorQ we haveQ⊂ C, that
is, when allF or all Q in C areproper subsets ofC. In such cases we say that the cliqueC is
factorizable.

The fundamental step encountered in message-passing algorithms is defined below. The mes-
sage from a cliqueX to an intersecting cliqueY (both sets oflatentvariables) is defined by

mX→Y(xX∩Y) = max
xX\Y

{

ΦX(xX) ∏
Z∈Γ(X)\Y

mZ→X(xX∩Z)

}

(4)

(whereΓ(X) is the set of neighbors of the cliqueX, that is, the set of cliques that intersect withX).
If such messages are computed afterX has received messages from all of its neighbors exceptY
(i.e., Γ(X) \Y), then this defines precisely the update scheme used by the junction-tree algorithm.
The same update scheme is used for loopy belief-propagation, though it is done iteratively in a
randomized fashion.

After all messages have been passed, the MAP-state for a set of latent variablesM (assumed to
be a subset of a single cliqueX) is computed using

mM(xM) = max
xX\M

{

ΦX(xX) ∏
Z∈Γ(X)

mZ→X(xX∩Z)

}

. (5)

For cliques that arefactorizable(according to our previous definition), both (Equation 4) and
(Equation 5) take the form

mM(xM) = max
xX\M

{

∏
F⊆X

ΦF(xF) ∏
Q⊆X

ΦQ(xQ|y)
}

. (6)
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(a) (b) (c)

Figure 3: (a) A model for pose reconstruction from Sigal and Black (2006); (b) A ‘skip-chain CRF’
from Galley (2006); (c) A model for deformable matching from Coughlan and Ferreira
(2002). Although the (triangulated) models have cliques of size three, theirpotentials
factorize into pairwise terms.

Note that we always haveZ∩X⊂X for messagesZ→X, meaning that the presence of the messages
has no effect on the ‘factorizability’ of (Equation 6).

Algorithm 1 gives the traditional solution to this problem, which does not exploitthe factor-
ization ofΦX(xX). This algorithm runs inΘ(N|X|), whereN is the number of states per node, and
|X| is the size of the cliqueX (for a givenxX, we treat computing∏F⊂X ΦF(xF) as a constant time
operation, as our optimizations shall not modify this cost).

In the following sections, we shall consider the two types of factorizability separately: first, in
Section 3, we shall consider cliquesX whose messages take the form

mM(xM) = max
xX\M

{

ΦX(xX) ∏
Q⊂X

ΦQ(xQ|y)
}

.

We say that such cliques areconditionally factorizable(since all conditional terms factorize); ex-
amples are shown in Figure 2. Next, in Section 4, we consider cliques whosemessages take the
form

mM(xM) = max
xX\M

∏
F⊂X

ΦF(xF).

We say that such cliques arelatently factorizable(since terms containing only latent variables fac-
torize); examples are shown in Figure 1.

3. Optimizing Algorithm 1: Conditionally Factorizable Mode ls

In order to specify a more efficient version of Algorithm 1, we begin by considering the simplest
nontrivialconditionally factorizablemodel: a pairwise model in which each latent variable depends
upon the observation, that is,

x̂(y) = argmax
x

∏
i∈N

Φi(xi |y)
︸ ︷︷ ︸

node potential

× ∏
(i, j)∈E

Φi, j(xi ,x j)

︸ ︷︷ ︸

edge potential

. (7)

This is the type of model depicted in Figure 2 and encompasses a large class of grid- and tree-
structured models. Using our previous definitions, we say that the node potentials are ‘data-dependent’,
whereas the edge potentials are ‘data-independent’.
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Algorithm 1 Brute-force computation of max-marginals
Input: a cliqueX whose max-marginalmM(xM) (whereM ⊂ X) we wish to compute; assume that

each node inX has domain{1. . .N}
1: for m ∈ dom(M) {i.e.,{1. . .N}|M|} do
2: max:=−∞
3: for z ∈ dom(X \M) do
4: if ∏F⊂X ΦF(m|F ;z|F)> maxthen
5: max:= ∏F⊂X ΦF(m|F ;z|F)
6: end if
7: end for {this loop takesΘ(N|X\M|)}
8: mM(m) := max
9: end for {this loop takesΘ(N|X|)}

10: Return: mM

Message-passing in models of the type shown in (Equation 7) takes the form

mA→B(xi) = Φi(xi |y)×max
x j

Φ j(x j |y)×Φi, j(xi ,x j) (8)

(whereA = {i, j} and B = {i,k}). Note once again that in (Equation 8) we are not concerned
solely with exact inference via the junction-tree algorithm. In many models, such as grids and
rings, (Equation 7) shall be solvedapproximatelyby means of either loopy belief-propagation, or
inference in a factor-graph, which consists of solving (Equation 8) according to protocols other than
the optimal junction-tree protocol.

It is useful to considerΦi, j in (Equation 8) as anN×N matrix, andΦ j as anN-dimensional
vector, so that solving (Equation 8) is precisely equivalent to matrix-vector multiplication in the
max-product semiring. For a particular valuexi = q, (Equation 8) becomes

mA→B(q) = Φi(q|y)×max
x j

Φ j(x j |y)
︸ ︷︷ ︸

va

×Φi, j(q,x j)
︸ ︷︷ ︸

vb

, (9)

which is precisely the ‘max-product inner-product’ operation that we claimed was critical in Section
1.

As we have previously suggested, it will be possible to solve (Equation 9) efficiently if we
know the order statistics ofva andvb, that is, if we know the permutations that sortΦ j and every
row of Φi, j in (Equation 8). SortingΦ j takesΘ(N logN), whereas sorting every row ofΦi, j takes
Θ(N2 logN) (Θ(N logN) for each ofN rows). The critical point to be made is thatΦi, j(xi ,x j) does
not depend on the observation, meaning that its order statistics can be obtainedoffline in several
applications.

The following elementary lemma is the key observation required in order to solve(Equation 1),
and therefore (Equation 9) efficiently:

Lemma 1 For any index q, the solution to p= argmaxi∈{1...N} {va[i]×vb[i]}must haveva[p]≥ va[q]
or vb[p]≥ vb[q]. Therefore, having computedva[q]×vb[q], we can find ‘p’ by computing only those
productsva[i]×vb[i] where eitherva[i]> va[q] or vb[i]> vb[q].
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Algorithm 2 Find i such thatva[i]×vb[i] is maximized
Input: two vectorsva andvb, and permutation functionspa and pb that sort them in decreasing

order (so thatva[pa[1]] is the largest element inva)
1: Initialize: start := 1, enda := p−1

a [pb[1]], endb := p−1
b [pa[1]] {if endb = k, then the largest

element inva has the same index as thekth largest element invb}
2: best:= pa[1], max:= va[best]×vb[best]
3: if va[pb[1]]×vb[pb[1]]> maxthen
4: best:= pb[1], max:= va[best]×vb[best]
5: end if
6: while start< enda {in practice, we could also stop ifstart< endb, but the version given here is

the one used for analysis in Appendix A} do
7: start := start+1
8: if va[pa[start]]×vb[pa[start]]> maxthen
9: best:= pa[start]

10: max:= va[best]×vb[best]
11: end if
12: if p−1

b [pa[start]]< endb then
13: endb := p−1

b [pa[start]]
14: end if
15: {repeat lines 8–14, interchanginga andb}
16: end while{this loop takesexpected time O(

√
N)}

17: Return: best

This observation is used to construct Algorithm 2. Here we iterate through the indices starting
from the largest values ofva andvb, stopping once both indices are ‘behind’ the maximum value
found so far (which we then know is the maximum). This algorithm is demonstratedpictorially
in Figure 4. Note that Lemma 1 only depends upon therelative values of elements inva andvb,
meaning that the number of computations that must be performed is purely a function of theirorder
statistics(i.e., it does not depend on the actual values ofva or vb).

If Algorithm 2 can solve (Equation 9) inO( f (N)), then we can solve (Equation 8) inO(N f(N)).
Determining precisely the running time of Algorithm 2 is not trivial, and will be explored in depth
in Appendix A. At this stage we shall state an upper-bound on the true complexity in the following
theorem:

Theorem 2 Theexpectedrunning time of Algorithm 2 is O(
√

N), yielding a speed-up of at least
Ω(
√

N) in cliques containing pairwise factors. This expectation is derived under the assumption
thatva andvb have independent order statistics.

Algorithm 3 uses Algorithm 2 to solve (Equation 8), where we assume that the order statistics
of the rows ofΦi, j have been obtained offline.

While the offline cost of sorting is not problematic in situations where the model isto be re-
peatedly reused on several observations, it can be avoided in two situations. Firstly, many models
have a ‘homogeneous’ prior, that is, the same prior is shared amongst every edge (or clique) of the
model. In such cases, only a single ‘copy’ of the prior needs to be sorted, meaning that in any model
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Step 1:







 6  2 14 16  9  7 12  8 10  3 11 13  1 15  4  5

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

 3  4  8 11  7 16 13  9  6  2 15 10 12  5  1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

don't search past this line

Step 2:







 6  2 14 16  9  7 12  8 10  3 11 13  1 15  4  5

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

 3  4  8 11  7 16 13  9  6  2 15 10 12  5  1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

Step 3:







 6  2 14 16  9  7 12  8 10  3 11 13  1 15  4  5

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

 3  4  8 11  7 16 13  9  6  2 15 10 12  5  1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

Step 4:







 6  2 14 16  9  7 12  8 10  3 11 13  1 15  4  5

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

 3  4  8 11  7 16 13  9  6  2 15 10 12  5  1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

Step 5:







 6  2 14 16  9  7 12  8 10  3 11 13  1 15  4  5

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

 3  4  8 11  7 16 13  9  6  2 15 10 12  5  1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

Figure 4: Algorithm 2, explained pictorially. The arrows begin atpa[start] and pb[start]; the red
dashed line connectsenda andendb, behind which we need not search; a dashed arrow
is used when a new maximum is found. Note that in the event thatva andvb contain
repeated elements, they can be sorted arbitrarily.

containingΩ(logN) edges, speed improvements can be gained over the naı̈ve implementation. Sec-
ondly, where an iterative algorithm (such as loopy belief-propagation) isto be used, the sorting step
need only take place prior to thefirst iteration; if Ω(logN) iterations of belief-propagation are to
be performed (or in a homogeneous model, if the number of edges multiplied by the number of
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Algorithm 3 Solve (Equation 8) using Algorithm 2
Input: a potentialΦi, j(a,b)×Φi(a|yi)×Φ j(b|y j) whose max-marginalmi(xi) we wish to compute,

and a set of permutation functionsP such thatP[i] sorts theith row of Φi, j (in decreasing order).
1: compute the permutation functionpa by sortingΨ j {takesΘ(N logN)}
2: for q∈ {1. . .N} do
3: (va,vb) := (Ψ j ,Φi, j(q,x j |yi ,y j))
4: best:= Algorithm2(va,vb, pa,P[q]) {O(

√
N)}

5: mA→B(q) := Φi(q)×Φ j(best)×Φi, j(q,best|yi ,y j)
6: end for {this loop takesexpected time O(N

√
N)}

7: Return: mA→B

iterations isΩ(logN)), we shall again gain speed improvements even when the sorting step is done
online.

In fact, the second of these conditions obviates the need for ‘conditionalfactorizability’ (or
‘data-independence’) altogether. In other words, inanypairwise model in whichΩ(logN) iterations
of belief-propagation are to be performed,the pairwise terms need to be sorted only during the first
iteration. Thus these improvements apply to those models in Figure 1, so long as the number of
iterations of belief-propagation isΩ(logN).

4. Latently Factorizable Models

Just as we considered the simplestconditionally factorizablemodel in Section 3, we now consider
the simplest nontriviallatently factorizablemodel: a clique of size three containing pairwise factors.
In such a case, our aim is to compute

mi, j(xi ,x j) = max
xk

Φi, j,k(xi ,x j ,xk), (10)

which we have assumed takes the form

mi, j(xi ,x j) = max
xk

Φi, j(xi ,x j)×Φi,k(xi ,xk)×Φ j,k(x j ,xk).

For a particular value of(xi ,x j) = (a,b), we must solve

mi, j(a,b) = Φi, j(a,b)×max
xk

Φi,k(a,xk)
︸ ︷︷ ︸

va

×Φ j,k(b,xk)
︸ ︷︷ ︸

vb

, (11)

which again is in precisely the form shown in (Equation 1).
Just as (Equation 8) resembled matrix-vector multiplication, there is a close resemblance be-

tween (Equation 11) and the problem of matrix-matrix multiplication in the max-product semiring
(often referred to as ‘tropical matrix multiplication’, ‘funny matrix multiplication’,or simply ‘max-
product matrix multiplication’). While traditional matrix multiplication is well-known to have a
subcubic worst-case solution (see Strassen, 1969), the version in (Equation 11) has no known sub-
cubic solution (the fastest known solution isO(N3/ logN), but there is no known solution that runs
in O(N3−ε) (Chan, 2007); Kerr (1970) shows that no subcubic solution exists under certain mod-
els of computation). The worst-case complexity of solving (Equation 11) canalso be shown to be
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Algorithm 4 Use Algorithm 2 to compute the max-marginal of a 3-clique containing pairwise fac-
tors
Input: a potential Φi, j,k(a,b,c) = Φi, j(a,b) × Φi,k(a,c) × Φ j,k(b,c) whose max-marginal

mi, j(xi ,x j) we wish to compute
1: for n∈ {1. . .N} do
2: computePi [n] by sortingΦi,k(n,xk) {takesΘ(N logN)}
3: computeP j [n] by sortingΦ j,k(n,xk) {Pi and P j are N×N arrays, each row of which is

a permutation;Φi,k(n,xk) and Φ j,k(n,xk) are functions overxk, sincen is constant in this
expression}

4: end for {this loop takesΘ(N2 logN)}
5: for (a,b) ∈ {1. . .N}2 do
6: (va,vb) :=

(
Φi,k(a,xk),Φ j,k(b,xk)

)

7: (pa, pb) :=
(
Pi [a],P j [b]

)

8: best:= Algorithm2(va,vb, pa, pb) {takesO(
√

N)}
9: mi, j(a,b) := Φi, j(a,b)×Φi,k(a,best)×Φ j,k(b,best)

10: end for {this loop takesO(N2
√

N)}
{the total running time isO(N2 logN+N2

√
N), which is dominated byO(N2

√
N)}

11: Return: mi, j

equivalent to the all-pairs shortest-path problem, which is studied in Alon et al. (1997). Although
we shall not improve the worst-case complexity, Algorithm 2 leads to far betterexpected-caseper-
formance than existing solutions.

In principle Strassen’s algorithm could be used to performsum-productinference in the set-
ting we discuss here, and indeed there has been some work on performingsum-product infer-
ence in graphical models that factorize (Park and Darwiche, 2003). Interestingly, there is also
a sub-quadratic solution to sum-product matrix-vector multiplication that requires preprocessing
(Williams, 2007), that is, the sum-product version of the setting we discussed in Section 3.

A prescription of how Algorithm 2 can be used to solve (Equation 10) is given in Algorithm 4.
As we mentioned in Section 3, the expected-case running time of Algorithm 2 isO(

√
N), meaning

that the time taken to solve Algorithm 4 isO(N2
√

N).

5. Extensions

So far we have only considered the case ofpairwisegraphical models, though as mentioned our
results can in principle be applied to any conditionally or latently factorizable models, no matter the
size of the factors. Essentially our results about matrices become results about tensors. We first treat
latently factorizable models, after which the same ideas can be applied to conditionally factorizable
models.

5.1 An Extension to Higher-Order Cliques with Three Factors

The simplest extension that we can make to Algorithms 2, 3, and 4 is to note that they can be
applied even when there are several overlapping terms in the factors. For instance, Algorithm 4 can
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Step 1:







(1,2)

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

(4,2) (3,2) (4,4) (2,1) (1,3) (3,4) (2,4) (2,2) (4,3) (2,3) (3,1) (4,1) (3,3) (1,4) (1,1)

(4,3) (1,4) (2,4) (2,3) (1,3) (4,4) (3,1) (2,1) (1,2) (4,2) (3,3) (2,2) (3,4) (1,1) (4,1) (3,2)

Figure 5: The reasoning applied in Algorithm 2 applies even when the elementsof pa and pb are
multidimensional indices.

be adapted to solve

mi, j(xi ,x j) = max
xk,xm

Φi, j(xi ,x j)×Φi,k,m(xi ,xk,xm)×Φ j,k,m(x j ,xk,xm), (12)

and similar variants containing three factors. Here bothxk andxm are shared byΦi,k,m andΦ j,k,m. We
can follow precisely the reasoning of the previous section, except that when we sortΦi,k,m (similarly
Φ j,k,m) for a fixed value ofxi , we are now sorting anarray rather than avector(Algorithm 4, lines 2
and 3); in this case, the permutation functionspa and pb in Algorithm 2 simply returnpairs of
indices. This is illustrated in Figure 5. Effectively, in this example we are sorting the variablexk,m

whose domain is dom(xk)×dom(xm), which has state space of sizeN2.
As the number of shared terms increases, so does the improvement to the running time. While

(Equation 12) would takeΘ(N4) to solve using Algorithm 1, it takes onlyO(N3) to solve using
Algorithm 4 (more precisely, if Algorithm 2 takesO( f (N)), then (Equation 12) takesO(N2 f (N2)),
which we have mentioned isO(N2

√
N2) = O(N3)). In general, if we haveSshared terms, then the

running time isO(N2
√

NS), yielding a speed-up ofΩ(
√

NS) over the näıve solution of Algorithm 1.

5.2 An Extension to Higher-Order Cliques with Decompositions Into Three Groups

By similar reasoning, we can apply our algorithm to cases where there are more than three factors, in
which the factors can be separated into threegroups. For example, consider the clique in Figure 6(a),
which we shall callG (the entire graph is a clique, but for clarity we only draw an edge when the
corresponding nodes belong to a common factor). Each of the factors in this graph have been
labeled using either differently colored edges (for factors of size larger than two) or dotted edges
(for factors of size two), and the max-marginal we wish to compute has beenlabeled using colored
nodes. We assume that it is possible to split this graph into three groups suchthat every factor is
contained within a single group, along with the max-marginal we wish to compute (Figure 6, (b)).
If such a decomposition is not possible, we will have to resort to further extensions to be described
in Section 5.3.

Ideally, we would like these groups to have size≃ |G|/3, though in the worst case they will
have size no larger than|G| − 1. We call these groupsX, Y, Z, whereX is the group containing
the max-marginalM that we wish to compute. In order to simplify the analysis of this algorithm,
we shall express the running time in terms of the size of the largest group,S= max(|X|, |Y|, |Z|),
and the largest difference,S\ = max(|Y \X|, |Z \X|). The max-marginal can be computed using
Algorithm 5.

The running times shown in Algorithm 5 are loose upper-bounds, given for the sake of express-
ing the running time in simple terms. More precise running times are given in Table 2; any of the
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5 6
8

7

4
3

2
1

(a) (b)

(a) We begin with a set of factors (indicated using colored lines), which are assumed to belong to some clique in our
model; we wish to compute the max-marginal with respect to one of these factors (indicated using colored nodes); (b)
The factors are split into three groups, such that every factor is entirelycontained within one of them (Algorithm 5, line 1).

(c) (d) (e)

(c) Any nodes contained in only one of the groups are marginalized (Algorithm 5, lines 2, 3, and 4); the problem is now
very similar to that described in Algorithm 4, except thatnodeshave been replaced bygroups; note that this essentially
introduces maximal factors inY′ andZ′; (d) For every value(a,b) ∈ dom(x3,x4), ΨY(a,b,x6) is sorted (Algorithm 5,
lines 5–7); (e) For every value(a,b) ∈ dom(x2,x4), ΨZ(a,b,x6) is sorted (Algorithm 5, lines 8–10).

c

b
a

M

(f) (g)

(f) For everyn ∈ dom(X′), we choose the best value ofx6 by Algorithm 2 (Algorithm 5, lines 11–16); (g) The result is

marginalized with respect toM (Algorithm 5, line 17).

Figure 6: Algorithm 5, explained pictorially. In this case, the most computationally intensive step
is the marginalization ofZ (in step (c)), which takesΘ(N5). However, the algorithm can
actually be appliedrecursivelyto the groupZ, resulting in an overall running time of
O(N4

√
N), for a max-marginal that would have takenΘ(N8) to compute using the naı̈ve

solution of Algorithm 1.
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Algorithm 5 Compute the max-marginal ofG with respect toM, whereG is split into three groups
Input: potentialsΦG(x) = ΦX(xX)×ΦY(xY)×ΦZ(xZ); each of the factors should be contained in

exactly one of these terms, and we assume thatM ⊆ X (see Figure 6)
1: Define: X′ := ((Y∪Z)∩X)∪M; Y′ := (X∪Z)∩Y; Z′ := (X∪Y)∩Z {X′ contains the variables

in X that are shared by at least one other group; alternately, the variables inX \X′ appear only
in X (sim. forY′ andZ′)}

2: computeΨX(xX′) := maxX\X′ ΦX(xX) {we are marginalizing over those variables inX that
do not appear in any of the other groups (or inM); this takesΘ(NS) if done by brute-force
(Algorithm 1), but may also be done by a recursive call to Algorithm 5}

3: computeΨY(xY′) := maxY\Y′ ΦY(xY)
4: computeΨZ(xZ′) := maxZ\Z′ ΦZ(xZ)
5: for n ∈ dom(X∩Y) do
6: computePY[n] by sorting ΨY(n;xY′\X) {takesΘ(S\N

S\ logN); ΨY(n;xY′\X) is free over
xY′\X, and is treated as an array by ‘flattening’ it;PY[n] contains the|Y′ \X|= |(Y∩Z)\X|-
dimensional indices that sort it}

7: end for {this loop takesΘ(S\N
SlogN)}

8: for n ∈ dom(X∩Z) do
9: computePZ[n] by sortingΨZ(n;xZ′\X)

10: end for {this loop takesΘ(S\N
SlogN)}

11: for n ∈ dom(X′) do
12: (va,vb) :=

(
ΨY(n|Y′ ;xY′\X′),ΨZ(n|Z′ ;xZ′\X′)

)
{n|Y′ is the ‘restriction’ of the vectorn to those

indices inY′ (meaning thatn|Y′ ∈ dom(X′∩Y′)); henceΨY(n|Y′ ;xY′\X′) is free inxY′\X′ , while
n|Y′ is fixed}

13: (pa, pb) :=
(
PY[n|Y′ ],PZ[n|Z′ ]

)

14: best:= Algorithm2(va,vb, pa, pb) {takesO(
√

S\)}
15: mX(n) := ΨX(n)×ΨY(best;n|Y′)×ΨZ(best;n|Z′)
16: end for
17: mM(xM) := Algorithm1(mX,M) {i.e., we are using Algorithm 1 to marginalizemX(xX) with

respect toM; this takesΘ(NS)}

terms shown in Table 2 may be dominant. Some example graphs, and their resultingrunning times
are shown in Figure 7.

5.2.1 APPLYING ALGORITHM 5 RECURSIVELY

The marginalization steps of Algorithm 5 (lines 2, 3, and 4) may further decompose into smaller
groups, in which case Algorithm 5 can be applied recursively. For instance, the graph in Figure 7(a)
represents the marginalization step that is to be performed in Figure 6(c) (Algorithm 5, line 4). Since
this marginalization step is the asymptotically dominant step in the algorithm, applying Algorithm 5
recursively lowers the asymptotic complexity.

Another straightforward example of applying recursion in Algorithm 5 is shown in Figure 8,
in which a ring-structured model is marginalized with respect to two of its nodes. Doing so takes
O(MN2

√
N); in contrast, solving the same problem using the junction-tree algorithm (by triangulat-

ing the graph) would takeΘ(MN3). Loopy belief-propagation takesΘ(MN2) per iteration, meaning
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Description lines time

Marginalization ofΦX, without recursion 2 Θ(N|X|)
Marginalization ofΦY 3 Θ(N|Y|)
Marginalization ofΦZ 4 Θ(N|Z|)
SortingΦY 5–7 Θ(|Y′\X|N|Y′| logN)

SortingΦZ 8–10 Θ(|Z′\X|N|Z′| logN)

Running Algorithm 2 on the sorted values11–16 O(N|X
′|
√

N|(Y′∩Z′)\X′|)

Table 2: Detailed running time analysis of Algorithm 5; any of these terms may be asymptotically
dominant

Graph:

{A complete
graphKM,

with pairwise
terms}

(a) (b) (c) (d) (e)
Algorithm 1: Θ(N5) Θ(N3) Θ(N11) Θ(N6) Θ(NM)

Algorithm 5: O(N3
√

N) O(N2
√

N) O(N6
√

N) O(N5) O(N5M/6)

Speed-up: Ω(N
√

N) Ω(
√

N) Ω(N4
√

N) Ω(N) Ω(NM/6)

Figure 7: Some example graphs whose max-marginals are to be computed with respect to the col-
ored nodes, using the three regions shown. Factors are indicated usingdifferently colored
edges, while dotted edges always indicate pairwise factors. (a) is the region Z from Fig-
ure 6 (recursion is appliedagain to achieve this result); (b) is the graph used to motivate
Algorithm 4; (c) shows a query in a graph with regular structure; (d) shows a complete
graph with six nodes; (e) generalizes this to a clique withM nodes.

that our algorithm will be faster if the number of iterations isΩ(
√

N). Naturally, Algorithm 4 could
be applied directly to the triangulated graph, which would again takeO(MN2

√
N).

5.3 A General Extension to Higher-Order Cliques

Naturally, there are cases for which a decomposition into three terms is not possible, such as

mi, j,k(xi ,x j ,xk) = max
xm

Φi, j,k(xi ,x j ,xk)×Φi, j,m(xi ,x j ,xm)×

Φi,k,m(xi ,xk,xm)×Φ j,k,m(x j ,xk,xm) (13)

(i.e., a clique of size four with all possible third-order factors). However, if the model contains
factors of sizeK, it must always be possible to split it intoK +1 groups (e.g., four in the case of
Equation 13).

Our optimizations can easily be applied in these cases simply by adapting Algorithm2 to solve
problems of the form

max
i∈{1...N}

{v1[i]×v2[i]×·· ·×vK [i]} . (14)
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O(N2)

+

O(2N2
√

N)

+

O(4N2
√

N) (by Algorithm 4)

Figure 8: In the above example, lines 2–4 of Algorithm 5 are applied recursively, achieving a total
running time ofO(MN2

√
N) for a loop withM nodes (our algorithm achieves the same

running time in the triangulated graph).

Step 1:







 6  2 14 16  9  7 12  8 10  3 11 13  1 15  4  5

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

 3  4  8 11  7 16 13  9  6  2 15 10 12  5  1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

don't search past this line

11  4  5 10 14  6  9  7  3 16 12  2  8 13 15  1

97 95 81 78 75 60 55 50 44 39 37 31 30 27 26 20

Figure 9: Algorithm 2 can easily be extended to cases including more than two sequences.

Pseudocode for this extension is presented in Algorithm 6. Note carefully the use of the variable
read: we are storing which indices have been read to avoid re-reading them; thisguarantees that
our Algorithm is never asymptotically worse than the naı̈ve solution. Figure 9 demonstrates how
such an algorithm behaves in practice. Again, we shall discuss the running time of this extension in
Appendix A. For the moment, we state the following theorem:

Theorem 3 Algorithm 6 generalizes Algorithm 2 to K lists with an expected running time of O(KN
K−1

K ),
yielding a speed-up of at leastΩ( 1

K N
1
K ) in cliques containing K-ary factors. It is never worse than

the näıve solution, meaning that it takes O(min(N,KN
K−1

K )).

Using Algorithm 6, we can similarly extend Algorithm 5 to allow for any number ofgroups
(pseudocode is not shown; all statements about the groupsY and Z simply become statements
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Algorithm 6 Find i such that∏K
k=1vk[i] is maximized

Input: K vectorsv1 . . .vK ; permutation functionsp1 . . . pK that sort them in decreasing order; a
vector read indicating which indices have been read, and a unique valueT /∈ read {read is
essentially a boolean array indicating which indices have been read; sincecreatingthis array is
anO(N) operation, we create it externally, and reuse itO(N) times; settingread[i] = T indicates
that a particular index has been read; we use a different value ofT for each call to this function
so thatreadcan be reused without having to be reinitialized}

1: Initialize: start := 1,
max:= maxp∈{p1...pK}∏K

k=1vk[p[1]],
best:= argmaxp∈{p1...pK}∏K

k=1vk[p[1]]
2: for k∈ {1. . .K} do
3: endk := maxq∈{p1...pK} p−1

k [q[1]]
4: read[pk[1]] = T
5: end for
6: while start< max{end1 . . .endK} do
7: start := start+1
8: for k∈ {1. . .K} do
9: if read[pk[start]] := T then

10: continue
11: end if
12: read[pk[start]] := T
13: m := ∏K

x=1vx[pk[start]]
14: if m> maxthen
15: best:= pk[start]
16: max:= m
17: end if
18: ek := maxq∈{p1...pK} p−1

k [q[start]]
19: endk := min(ek,endk)
20: end for
21: end while{see Appendix A for running times}
22: Return: best

aboutK groups{G1 . . .GK}, and calls to Algorithm 2 become calls to Algorithm 6). The one
remaining case that has not been considered is when the sequencesv1 · · ·vK are functions of different
(but overlapping) variables; naı̈vely, we can create a new variable whose domain is the product
space of all of the overlapping terms, and still achieve the performance improvement guaranteed by
Theorem 3; in some cases, better results can again be obtained by applyingrecursion, as in Figure 7.

As a final comment we note that we have not provided an algorithm for choosinghow to split
the variables of a model into(K +1)-groups. We note even if we split the groups in a naı̈ve way,
we are guaranteed to getat leastthe performance improvement guaranteed by Theorem 3, though
more ‘intelligent’ splits may further improve the performance.

Furthermore, in all of the applications we have studied,K is sufficiently small that it is inexpen-
sive to consider all possible splits by brute-force.
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5.4 Extensions for Conditionally Factorizable Models

Just as in Section 5.2, we can extend Algorithm 3 to factors of any size, so long as the purely latent
cliques contain more latent variables than those cliques that depend upon theobservation. The
analysis for this type of model is almost exactly the same as that presented in Section 5.2, except
that any terms consisting of purely latent variables are processed offline.

As we mentioned in 5.2, if a model contains (non-maximal) factors of sizeK, we will gain a
speed-up ofΩ( 1

K N
1
K ). If in addition there is a factor (either maximal or non-maximal) consisting

of purely latent variables, we can still obtain a speed-up ofΩ( 1
K+1N

1
K+1 ), since this factor merely

contributes an additional term to (Equation 14). Thus when our ‘data-dependent’ terms contain only
a single latent variable (i.e.,K = 1), we gain a speed-up ofΩ(

√
N), as in Algorithm 3.

6. Performance Improvements in Existing Applications

Our results are immediately compatible with several applications that rely on inference in graphical
models. As we have mentioned, our results apply toany model whose cliques decompose into
lower-order terms.

Often, potentials are defined only onnodesandedgesof a model. ADth-order Markov model
has a tree-width ofD, despite often containing only pairwise relationships. Similarly ‘skip-chain
CRFs’ (Sutton and McCallum, 2006; Galley, 2006), and junction-trees used in SLAM applications
(Paskin, 2003) often contain only pairwise terms, and may have low tree-width under reasonable
conditions. These are examples oflatently factorizablemodels. In each case, if the tree-width is
D, Algorithm 5 takesO(MND

√
N) (for a model withM nodes andN states per node), yielding a

speed-up ofΩ(
√

N).
Models for shape-matching and pose reconstruction often exhibit similar properties (Tresadern

et al., 2009; Donner et al., 2007; Sigal and Black, 2006). In each case, third-order cliques factorize
into second-order terms; hence we can apply Algorithm 4 to achieve a speed-up ofΩ(

√
N).

Another similar model for shape-matching is that of Felzenszwalb (2005); this model again
contains third-order cliques, though it includes a ‘geometric’ term constraining all three variables.
Here, the third-order term isindependent of the input data, meaning that each of its rows can be
sortedoffline, as described in Section 3. This is an example of aconditionally factorizablemodel.
In this case, those factors that depend upon the observation are pairwise, meaning that we achieve a
speed-up ofΩ(N

1
3 ). Further applications of this type shall be explored in Section 7.4.

In Coughlan and Ferreira (2002), deformable shape-matching is solvedapproximately using
loopy belief-propagation. Their model has only second-order cliques,meaning that inference takes
Θ(MN2) per iteration. Although we cannot improve upon this result, we note that we can typically
doexactinference in a single iteration inO(MN2

√
N); thus our model has the same running time as

O(
√

N) iterations of the original version. This result applies to all second-ordermodels containing
a single loop (Weiss, 2000).

In McAuley et al. (2008), a model is presented for graph-matching usingloopy belief-propagation;
the maximal cliques forD-dimensional matching have size(D+1), meaning that inference takes
Θ(MND+1) per iteration (it is shown to converge to the correct solution); we improve this to
O(MND

√
N).

Interval graphscan be used to model resource allocation problems (Fulkerson and Gross, 1965);
each node encodes a request, and overlapping requests form edges. Maximal cliques grow with the
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Reference description running time our method
McAuley et al. (2008) D-d graph-matching Θ(MND+1) (iter.) O(MND

√
N) (iter.)

Sutton and McCallum (2006) Width-D skip-chain O(MND) O(MND−1
√

N)

Galley (2006) Width-3 skip-chain Θ(MN3) O(MN2
√

N)

Tresadern et al. (2009) Deformable matching Θ(MN3) O(MN2
√

N)

Coughlan and Ferreira (2002) Deformable matching Θ(MN2) (iter.) O(MN2
√

N)

Sigal and Black (2006) Pose reconstruction Θ(MN3) O(MN2
√

N)

Felzenszwalb (2005) Deformable matching Θ(MN3) Θ(MN
8
3 ) (online)

Fulkerson and Gross (1965) Width-D interval graph O(MND+1) O(MND
√

N)

Table 3: Some existing work to which our results can be immediately applied (M is the number of
nodes in the model,N is the number of states per node. ‘iter.’ denotes that the algorithm
is iterative).

number of overlapping requests, though the constraints are only pairwise, meaning that we again
achieve anΩ(

√
N) improvement.

Finally, in Section 7.4 we shall explore a variety of applications in which we have pairwise
models of the form shown in (Equation 7). In all of these cases, we see an(expected) reduction of
a Θ(MN2) message-passing algorithm toO(MN

√
N).

Table 3 summarizes these results. Reported running times reflect theexpected case. Note that
we are assuming thatmax-product belief-propagation is being used in a discrete model; some of the
referenced articles may use different variants of the algorithm (e.g., Gaussian models, or approxi-
mate inference schemes). We believe that our improvements may revive the exact, discrete version
as a tractable option in these cases.

7. Experiments

We present experimental results for two types of models: latently factorizable models, whose cliques
factorize into smaller terms, as discussed in Section 4, and conditionally factorizable models, whose
factorsthat depend upon the observationcontain fewer latent variables than their maximal cliques,
as discussed in Section 3.

We begin with an asymptotic analysis of the running time of our algorithm on the ‘inner product’
operations of (Equation 1) and (Equation 14), in order to assess Theorems 2 and 3 experimentally.

7.1 Comparison Between Asymptotic Performance and Upper-Bounds

For our first experiment, we compare the performance of Algorithms 2 and 6to the näıve solution of
Algorithm 1. These are core subroutines of each of the other algorithms, meaning that determining
their performance shall give us an accurate indication of the improvements we expect to obtain in
real graphical models.

For each experiment, we generateN i.i.d. samples from[0,1) to obtain the listsv1 . . .vK . N is
the domain size; this may refer to a single node, or agroupof nodes as in Algorithm 6; thus large
values ofN may appear even for binary-valued models.K is the number of lists in (Equation 14);
we can observe this number of lists only if we are working in cliques of sizeK +1, and then only
if the factors are of sizeK (e.g., we will only seeK = 5 if we have cliques of size 6 with factors
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Figure 10: Performance of our algorithm and bounds. ForK = 2, the exact expectation is shown,
which appears to precisely match the average performance (over 100 trials). The dotted
lines show the bound of (Equation 23). While the bound is close to the true performance
for K = 2, it becomes increasingly loose for largerK.

of size 5); therefore smaller values ofK are probably more realistic in practice (indeed, all of the
applications in Section 6 haveK = 2).

The performance of our algorithm is shown in Figure 10, forK = 2 to 4 (i.e., for 2 to 4 lists).
WhenK = 2, we execute Algorithm 2, while Algorithm 6 is executed forK ≥ 3. The performance
reported is simply the number of elements read from the lists (which is at mostK× start). This
is compared toN itself, which is the number of elements read by the naı̈ve algorithm. The upper-
bounds we obtained in (Equation 23) are also reported, while the true expected performance (i.e.,
Equation 19) is reported forK = 2. Note that the variablereadwas introduced into Algorithm 6 in
order to guarantee that it can never be asymptotically slower than the naı̈ve algorithm. If this variable
is ignored, the performance of our algorithm deteriorates to the point that itclosely approaches the
upper-bounds shown in Figure 10. Unfortunately, this optimization provedoverly complicated to
include in our analysis, meaning that our upper-bounds remain highly conservative for largeK.

7.2 Performance Improvement for Dependent Variables

The expected-case running time of our algorithm was derived under the assumption that each list
has independent order statistics, as was the case for our previous experiment. We suggested that we
will obtain worse performance in the case of negatively correlated variables, and better performance
in the case of positively correlated variables; we shall assess these claimsin this experiment.

Figure 11 shows how the order statistics ofva andvb can affect the performance of our algo-
rithm. Essentially, the running time of Algorithm 2 is determined by the level of ‘diagonalness’ of
the permutation matrices in Figure 11; highly diagonal matrices result in better performance than
the expected case, while highly off-diagonal matrices result in worse performance. The expected
case was simply obtained under the assumption that every permutation is equallylikely.

We report the performance for two lists (i.e., for Algorithm 2), where each(va[i],vb[i]) is an
independent sample from a 2-dimensional Gaussian with covariance matrix

Σ =

[
1 c
c 1

]

,
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← best case

permutation:

operations: 1 1 3 3 5

worst case→

permutation

operations: 7 7 9 10 10

Figure 11: Different permutation matrices and their resulting cost (in terms ofentries
read/multiplications performed). Each permutation matrix transforms thesortedval-
ues of one list into the sorted values of the other, that is, it transformsva as sorted bypa

into vb as sorted bypb. The red (lighter) squares show the entries that must be read be-
fore the algorithm terminates (each corresponding to one multiplication). See Figure 23
for further explanation.

meaning that the two lists are correlated with correlation coefficientc (here we are working in the
max-sum semiring). This dependence between the values of the two lists leadsto a dependence in
their order statistics, so that in the case of Gaussian random variables, thecorrelation coefficient
precisely captures the ‘diagonalness’ of the matrices in Figure 11. Performance is shown in Fig-
ure 12 for different values ofc (c = 0, is not shown, as this is the case observed in the previous
experiment).

7.3 Message-Passing in Latently Factorizable Models

In this section we present experiments in models whose cliques factorize into smaller terms, as
discussed in Section 4.

7.3.1 2-DIMENSIONAL GRAPH-MATCHING

Naturally, Algorithm 5 has additional overhead compared to the naı̈ve solution, meaning that it
will not be beneficial for smallN. In this experiment, we aim to assess the extent to which our
approach is faster in real applications. We reproduce the model from McAuley et al. (2008), which
performs 2-dimensional graph-matching, using a loopy graph with cliques of size three, containing
only second-order potentials (as described in Section 6); theΘ(NM3) performance of McAuley
et al. (2008) is reportedly state-of-the-art. We also show the performance on a graphical model with
randompotentials, in order to assess how the results of the previous experiments are reflected in
terms of actual running time.

1370



FASTER ALGORITHMS FORMAX -PRODUCT MESSAGE-PASSING

0 200 400 600 800 1000
N

0

10

20

30

40

50

60
N

u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for c = 0.2

N

E1(M)

min(N, 2
√

N)

experimental

0 200 400 600 800 1000
N

0

10

20

30

40

50

60

N
u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for c = 0.5

N

E1(M)

min(N, 2
√

N)

experimental

0 200 400 600 800 1000
N

0

10

20

30

40

50

60

N
u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for c = 1.0

N

E1(M)

min(N, 2
√

N)

experimental

0 200 400 600 800 1000
N

0

20

40

60

80

100

N
u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for c = −0.2

N

E1(M)

min(N, 2
√

N)

experimental

0 200 400 600 800 1000
N

0

50

100

150

200
N

u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for c = −0.5

N

E1(M)

min(N, 2
√

N)

experimental

0 200 400 600 800 1000
N

0

200

400

600

800

1000

N
u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for c = −1.0

N

E1(M)

min(N, 2
√

N)

experimental

Figure 12: Performance of our algorithm for different correlation coefficients. The top three plots
show positive correlation, the bottom three show negative correlation. Correlation coef-
ficients ofc= 1.0 andc=−1.0 capture precisely the best and worst-case performance
of our algorithm, resulting inO(1) andΘ(N) performance, respectively (whenc=−1.0
the linear curve obscures the experimental curve).

We perform matching between atemplategraph withM nodes, and atargetgraph withN nodes,
which requires a graphical model withM nodes andN states per node (see McAuley et al. 2008 for
details). We fixM = 10 and varyN.

Figure 13 (left) shows the performance on random potentials, that is, the performance we hope
to obtain if our model assumptions are satisfied. Figure 13 (right) shows the performance for graph-
matching, which closely matches the expected-case behavior. Fitted curvesare shown together with
the actual running time of our algorithm, confirming itsO(MN2

√
N) performance. The coefficients

of the fitted curves demonstrate that our algorithm is useful even for modest values ofN.
We also report results for graph-matching using graphs from the MPEG-7 data set (Bai et al.,

2009), which consists of 1,400 silhouette images (Figure 14). Again we fixM = 10 (i.e., 10 points
are extracted in each template graph) and varyN (the number of points in the target graph). This
experiment confirms that even when matching real-world graphs, the assumption of independent
order statistics appears to be reasonable.

7.3.2 HIGHER-ORDER MARKOV MODELS

In this experiment, we construct a simple Markov model for text denoising. Random noise is applied
to a text segment, which we try to correct using a prior extracted from a textcorpus. For instance
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Figure 13: The running time of our method on randomly generated potentials, and on a graph-
matching experiment (both graphs have the same topology). Fitted curves are also ob-
tained by performing least-squares regression; the residual errorr indicates the ‘good-
ness’ of the fitted curve.
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Figure 14: The running time of method our on graphs from the MPEG-7 data set.

wondrous sight of th4 ivory Pequod is corrected to wondrous sight of the ivory
Pequod.

In such a model, we would like to exploit higher-order relationships betweencharacters, though
the amount of data required to construct an accurate prior grows exponentially with the size of the
maximal cliques. Instead, our prior consists entirely of pairwise relationships between characters (or
‘bigrams’); higher-order relationships are encoded by including bigrams of non-adjacent characters.
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Figure 15: Left: Our model for denoising. Its computational complexity is similarto that of a
skip-chain CRF, and models for named-entity recognition (right).

Specifically, our model takes the form

ΦX(xX) =
|X|−1

∏
i=1

Φi,i+1(xi ,xi+1)×
|X|−2

∏
i=1

Φi,i+2(xi ,xi+2)

where
Φi, j(xi ,x j) = ψi, j(xi ,x j)p(xi |oi)p(x j |o j).

Hereψ is ourprior (extracted from text statistics), andp is our ‘noise model’ (given the observation
o). The computational complexity of inference in this model is similar to that of the skip-chain CRF
shown in Figure 3(b), as well as models for part-of-speech tagging andnamed-entity recognition,
as in Figure 15. Text denoising is useful for the purpose of demonstratingour algorithm, as there
are several different corpora available in different languages, allowing us to explore the effect that
the domain size (i.e., the size of the language’s alphabet) has on running time.

We extracted pairwise statistics based on 10,000 characters of text, and used this to correct a
series of 25 character sequences, with 1% random noise introduced to the text. The domain was
simply the set of characters observed in each corpus. The Japanese data set was not included, as the
Θ(MN2) memory requirements of the algorithm made it infeasible withN≃ 2000; this is addressed
in Section 7.4.1.

The running time of our method, compared to the naı̈ve solution, is shown in Figure 16. One
might expect that texts from different languages would exhibit different dependence structures in
their order statistics, and therefore deviate from the expected case in someinstances. However, the
running times appear to follow the fitted curve closely, that is, we are achieving approximately the
expected-case performance in all cases.

Since the priorψi,i+1(xi ,xi+1) is data-independent, we shall further discuss this type of model
in reference to Algorithm 3 in Section 7.4.

7.4 Experiments with Conditionally Factorizable Models

In each of the following experiments we perform belief-propagation in modelsof the form given in
(Equation 7). Thus each model is completely specified by defining the node potentialsΦi(xi |yi), the
edge potentialsΦi, j(xi ,x j), and the topology(N ,E) of the graph.

Furthermore we assume that the edge potentials arehomogeneous, that is, that the potential for
each edge is the same, or rather that they have the same order statistics (forexample, they may
differ by a multiplicative constant). This means that sorting can be doneonline without affecting
the asymptotic complexity. When subject to heterogeneous potentials we need merely sort them
offline; the online cost shall be similar to what we report here.
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Figure 16: The running time of our method compared to the naı̈ve solution. A fitted curve is also
shown, whose coefficient estimates the computational overhead of our model.

7.4.1 CHAIN -STRUCTUREDMODELS

In this section, we considerchain-structuredgraphs. Here we have nodesN = {1. . .Q}, and edges
E = {(1,2),(2,3) . . .(Q−1,Q)}. The max-product algorithm is known to compute the maximum-
likelihood solution exactly for tree-structured models.

Figure 17 (left) shows the performance of our method on a model withrandompotentials, that
is, Φi(xi |yi) = U [0,1), Φi,i+1(xi ,xi+1) = U [0,1), whereU [0,1) is the uniform distribution. Fitted
curves are superimposed onto the running time, confirming that the performance of the standard
solution grows quadratically with the number of states, while ours grows at a rate ofN

√
N. The

residual errorr shows how closely the fitted curve approximates the running time; in the case of
random potentials, both curves have almost the same constant.

Figure 17 (right) shows the performance of our method on the text denoising experiment. This
experiment is essentially identical to that shown in Section 7.3.2, except that the model is a chain
(i.e., there is noΦi,i+2), and we exploit the notion of data-independence (i.e., the fact thatΦi,i+1

does not depend on the observation). Since the sameΦi,i+1 is used for every adjacent pair of nodes,
there is no need to perform the ‘sorting’ step offline—only a single copy ofΦi,i+1 needs to be sorted,
and this is included in the total running time shown in Figure 17.

7.4.2 GRID-STRUCTUREDMODELS

Similarly, we can apply our method togrid-structuredmodels. Here we resort to loopy belief-
propagation to approximate the MAP solution, though indeed the same analysis applies in the case
of factor-graphs (Kschischang et al., 2001). We construct a 50×50 grid model and perform loopy
belief-propagation using a random message-passing schedule for fiveiterations. In these experi-
ments our nodes areN = {1. . .50}2, and our edges connect the 4-neighbors, that is, the node(i, j)
is connected to both(i+1, j) and(i, j +1) (similar to the grid shown in Figure 2(a)).
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Figure 17: Running time of inference in chain-structured models: random potentials (left), and text
denoising (right). Fitted curves confirm that the exponent of 1.5 given theoretically is
maintained in practice (r denotes the sum of residuals, that is, the ‘goodness’ of the fitted
curve).

Figure 18 (left) shows the performance of our method on a grid with randompotentials (similar
to the experiment in Section 7.4.1). Figure 18 (right) shows the performanceof our method on an
optical flow task (Lucas and Kanade, 1981). Here the states encodeflow vectors: for a node with
N states, the flow vector is assumed to take integer coordinates in the square[−

√
N/2,

√
N/2)2 (so

that there areN possible flow vectors). For the unary potential we have

Φ(i, j)(x|y) =
∥
∥Im1[i, j]− Im2[(i, j)+ f (x)]

∥
∥,

whereIm1[a,b] andIm2[a,b] return the gray-level of the pixel at(a,b) in the first and second images
(respectively), andf (x) returns the flow vector encoded byx. The pairwise potentials simply encode
the Euclidean distance between two flow vectors. Note that a variety of low-level computer vision
tasks (including optical flow) are studied in Felzenszwalb and Huttenlocher(2006), where the highly
structured nature of the potentials in question often allows for efficient solutions.

Our fitted curves in Figure 18 showO(N
√

N) performance for both random data and for optical
flow. Clearly the fitted curve for optical flow deviates somewhat from that obtained for random data;
naturally the potentials are highly structured in this case, as exploited by Felzenszwalb and Hutten-
locher (2006); it appears that some aspect of this structure is slightly harmful to our algorithm,
though a more thorough analysis of this type of potential remains as future work. More ‘harmful’
structures are explored in the following section.

7.4.3 FAILURE CASES

In our previous experiments on graph-matching, text denoising, and optical flow we observed run-
ning times similar to those for random potentials, indicating that there is no prevalent dependence
structure between the order statistics of the messages and the potentials.
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Figure 18: Running time of inference in grid-structured models: random potentials (left), and opti-
cal flow (right).

In certain applications the order statistics of these terms are highly dependent in a way that
is detrimental to our algorithm. This behavior is observed for certain types ofconcave potentials
(or convex potentials in a min-sum formulation). For instance, in a stereo disparity experiment,
the unary potentials encode the fact that the output should be ‘close to’ a certain value; the pairwise
potentials encode the fact that neighboring nodes should take similar values(Scharstein and Szeliski,
2001; Sun et al., 2003).

In these applications, the permutation matrices that transform the sorted values of va to the
sorted values ofvb are block-off-diagonal (see the sixth permutation in Figure 11). In suchcases,
our algorithm only decreases the number of multiplication operations by a multiplicative constant,
and may in fact be slower due to its computational overhead. This is preciselythe behavior shown
in Figure 19 (left), in the case of stereo disparity.

It should be noted that there exist algorithms specifically designed for this class of potential
functions (Kolmogorov and Shioura, 2007; Felzenszwalb and Huttenlocher, 2006), which are prefer-
able in such instances.

We similarly perform an experiment on image denoising, where the unary potentials are again
convex functions of the input (see Geman and Geman, 1984; Lan et al., 2006). Instead of using a
pairwise potential that merely encodes smoothness, we extract the pairwisestatistics from image
data (similar to our experiment on text denoising); thus the potentials are no longer concave. We see
in Figure 19 (right) that even if a small number of entries exhibit some ‘randomness’ in their order
statistics, we begin to gain a modest speed improvement over the naı̈ve solution (though indeed, the
improvements are negligible compared to those shown in previous experiments).

7.5 Other Applications of Tropical Matrix Multiplication

As we have mentioned, our improvements to message-passing in graphical models arise from a
fast solution to matrix multiplication in the max-product semiring. In this section we discuss other
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Figure 19: Two experiments whose potentials and messages have highly dependent order statistics:
stereo disparity (left), and image denoising (right).

problems which include max-product (or ‘tropical’) matrix multiplication as a subroutine. Williams
and Williams (2010) discusses the relationship between this type of matrix multiplication problem
and various other problems.

7.5.1 MAX -PRODUCT L INEAR PROGRAMMING

In Sontag et al. (2008), a method is given for exact MAP-inference in graphical models using LP-
relaxations. Where exact solutions cannot be obtained by considering only pairwise factors, ‘clus-
ters’ of pairwise terms are introduced in order to refine the solution. Message-passing in these clus-
ters turns out to take exactly the form that we consider, as third-order (or larger) clusters are formed
from pairwise terms. Although a number of applications are presented in Sontag et al. (2008), we
focus on protein design, as this is the application in which we typically observethe largest domain
sizes. Other applications with larger domains may yield further benefits.

Without going into detail, we simply copy the two equations from Sontag et al. (2008) to which
our algorithm applies. The first of these is concerned with passing messages between clusters, while
the second is concerned with choosing new clusters to add. Below are the two equations, reproduced
verbatim from Sontag et al. (2008):

λc→e(xe) ← − 2
3

(
λe→e(xe)+ ∑

c′ 6=c,e∈c′
λc′→e(xe)

)
+

1
3

max
xc\e

[

∑
e′∈c\e

(
λe′→e′(xe′)+ ∑

c′ 6=c,e′∈c′
λc′→e′(xe′)

)]

(15)
(see Sontag et al., 2008, Figure 1, bottom), which consists of marginalizing acluster (c) that decom-
poses into edges (e), and

d(c) = ∑
e∈c

max
xe

be(xe)−max
xc

[

∑
e∈c

be(xe)

]

, (16)
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(see Sontag et al., 2008, (Equation 4)), which consists of finding the MAP-state in a ring-structured
model.

As the code from Sontag et al. (2008) was publicly available, we simply replaced the appropriate
functions with our own (in order to provide a fair comparison, we also replaced their implementation
of the näıve algorithm, as ours proved to be faster than the highly generic matrix libraryused in their
code).

In order to improve the running time of our algorithm, we made the following two modifications
to Algorithm 2:

• We used anadaptive sorting algorithm(i.e., a sorting algorithm that runs faster on nearly-
sorted data). While Quicksort was used during the first iteration of message-passing, sub-
sequent iterations used insertion sort, as the optimal ordering did not change significantly
between iterations.

• We added an additional stopping criterion to the algorithm. Namely, we terminate thealgo-
rithm if va[pa[start]]×vb[pb[start]]<max. In other words, we check how large the maximum
could begiven the best possible permutation of the next elements (i.e., if they have the same
index); if this value could not result in a new maximum, the algorithm terminates. This check
costs us an additional multiplication, but it means that the algorithm will terminate faster in
cases where a large maximum is found early on.

Results for these two problems are shown in Figure 20. Although our algorithm consistently
improves upon the running time of Sontag et al. (2008), the domain size of the variables in question
is not typically large enough to see a marked improvement. Interestingly, neither method follows
the expected running time closely in this experiment. This is partly due to the fact that there is
significant variation in the variable size (note thatN only shows theaveragevariable size), but it
may also suggest that there is a complicated structure in the potentials which violates our assumption
of independent order statistics.

7.5.2 ALL -PAIRS SHORTEST-PATH

The ‘all-pairs shortest-path’ problem consists of finding the shortest path between every pair of
nodes in a graph. Although the most commonly used solution is probably the well-known Floyd-
Warshall algorithm (Floyd, 1962), the state-of-the-artexpected-casesolution to this problem is that
of Karger et al. (1993), whose expected-case running time isO(N2 logN) when applied to graphs
with distances sampled from the uniform distribution.

Unfortunately, the solution of Karger et al. (1993) requires a Fibonacci heap or similar data
structure in order to achieve the reported running time (i.e., a heap withO(1) insertion and decrease-
key operations); such data structures are known to be inefficient in practice (Fredman and Tarjan,
1987). When their algorithm is implemented using a standard priority queue, it has running time
O(N2 log2N).

In Aho et al. (1983), a transformation is shown between the all-pairs shortest-path problem
and min-sum matrix multiplication. Using our algorithm, this gives us an expected-caseO(N2

√
N)

solution to the all-pairs shortest-path problem, assuming that the subproblems created by this trans-
formation have i.i.d. order statistics; this assumption is notably different than theassumption of
uniformity made in Karger et al. (1993).
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Figure 20: The running time of our method on protein design problems from Sontag et al. (2008).
In this figure,N reflects theaveragedomain size amongst all variables involved in the
problem; fitted curves are not shown due to the highly variable nature of thedomain
sizes included in each problem instance.

In Figure 21, we show the performance of our method on i.i.d. uniform graphs, compared to the
Floyd-Warshall algorithm, and that of Karger et al. (1993). On graph sizes of practical interest, our
algorithm is found to give the fastest performance, in spite of its more expensive asymptotic cost.
Our solution is comparable to that of Karger et al. (1993) for the largest graph size shown; larger
graph sizes could not be shown due to memory constraints. Note that while these algorithms are fast
in practice, each hasΘ(N3) worst-caseperformance; more ‘exotic’ solutions that improve upon the
worst-case bound are discussed in Alon et al. (1997) and Chan (2007), among others, though none
are truly subcubic (i.e.,O(N3−ε)).

It should also be noted that the transformations given in Aho et al. (1983)apply in both direc-
tions, that is, solutions to the all-pairs shortest-path problem can be used to solve min-sum matrix
multiplication. Thus any subcubic solution to the all-pairs shortest-path problemcan be applied to
the inference problems in graphical models presented in Section 4. However, the transformation
of Aho et al. (1983) introduces a very high computational overhead (namely, solving min-sum ma-
trix multiplication for anN×N matrix requires solving all-pairs shortest-path in a graph with 3N
nodes), and moreover it violates the assumptions on the graph distribution required for fast infer-
ence given in Karger et al. (1993). In practice, we were unable to produce an implementation of
min-sum matrix multiplication based on this transformation that was faster than the naı̈ve solution.

Interestingly, a great deal of attention has been focused on expected-case solutions to all-pairs
shortest-path, while to our knowledge ours is the first work to approach the expected-case analy-
sis of min-sum matrix multiplication. Given the strong relationship between the two problems, it
remains a promising open problem to assess whether the analysis from thesesolutions to all-pairs
shortest-path can be applied to produce max-product matrix multiplication algorithms with similar
asymptotic running times.
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Figure 21: Our algorithm applied to the ‘all-pairs shortest-path’ problem. The expected-case run-
ning times of each algorithm are shown at right.

7.5.3 L∞ DISTANCES

The problem of computing an inner product in the max-sum semiring is closely related to computing
theL∞ distance between two vectors

||va−vb||∞ = max
i∈{1...N}

∣
∣va[i]−vb[i]

∣
∣. (17)

Näıvely, we would like to solve (Equation 17) by applying Algorithm 2 tova and−vb with the mul-
tiplication operator replaced bya×b= |a+b|, however this violates the condition of (Equation 2),
since the optimal solution may arise either when bothva[i] and−vb[i] are large, or when bothva[i]
and−vb[i] are small (in fact, this operation violates the semiring axiom of associativity).

We address this issue by running Algorithm 2twice, first considering thelargestvalues ofva

and−vb, before re-running the algorithm starting from thesmallestvalues. This ensures that the
maximum solution is found in either case.

Pseudocode for this solution is given in Algorithm 7, which adapts Algorithm 4to the problem
of computing anL∞ distance matrix. Similarly, we can adapt Algorithm 3 to solveL∞ nearest-
neighbor problems, where an array ofM points inRN is processed offline, allowing us compute the
distance of a query point to allM other pointsO(M

√
N).

Figure 22 shows the running time of our algorithm for computing anL∞ distance matrix (where
M = N), and the online cost of performing a nearest-neighbor query. Again the expected speedup
over the näıve solution isΩ(

√
N) for both problems, though naturally our algorithm requires larger

values ofN than does Algorithm 4 in order to be beneficial, since Algorithm 2 must be executed
twice in order to solve (Equation 17).

A similar trick can be applied to compute message in the max-product semiring evenfor poten-
tials that contain negative values, though this may require up to four executions of Algorithm 2, so
it is unlikely to be practical.
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Algorithm 7 Use Algorithm 2 to compute anL∞ distance matrix

Input: anM×N arrayA containingM points inRN

1: initialize anM×M distance matrixD := 0
2: for x∈ {1. . .M} do
3: compute

−→
P [x] by sortingA[x] {takesΘN logN}

4: compute
←−
P [x] by sorting−A[x] {i.e.,

−→
P [x] in reverse order}

5: end for {this loop takesΘ(MN logN)}
6: for x∈ {1. . .M} do
7: for y∈ {x+1. . .M} do

8: best1 := Algorithm2
(

A[x],−A[y],
−→
P [x],

←−
P [y]

)

{takesO(
√

N); Algorithm 2 uses the operatora×b= |a+b|}
9: best2 := Algorithm2

(

A[y],−A[x],
−→
P [y],

←−
P [x]

)

10: D[x,y] := max
(∣
∣A[x,best1]−A[y,best1]

∣
∣,
∣
∣A[x,best2]−A[y,best2]

∣
∣
)

11: D[y,x] := D[x,y]
12: end for
13: end for {this loop takes expected timeO(M2

√
N)}
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Figure 22: The running time of our method compared to the naı̈ve solution. A fitted curve is also
shown, whose coefficient estimates the computational overhead of our model.

8. Discussion and Future Work

We have briefly discussed the application of our algorithm to the all-pairs shortest-path problem, and
also mentioned that a variety of other problems are related to max-product matrix multiplication via
a series of subcubic transformations (Williams and Williams, 2010). To our knowledge, of all these
problems only all-pairs shortest-paths has received significant attention interms of expected-case
analysis. The analysis in question centers around two types of model: theuniform model, where
edge weights are sampled from a uniform distribution, and theendpoint-independent model, which
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essentially makes an assumption on the independence of outgoing edge weights from each vertex
(Moffat and Takaoka, 1987), which seems very similar to our assumption of independent order
statistics. It remains to be seen whether this analysis can lead to better solutionsto the problems
discussed here, and indeed if the analysis applied to uniform models can beapplied in our setting to
uniformmatrices.

It is interesting to consider the fact that our algorithm’s running time is purely afunction of the
input data’sorder statistics, and in fact does not depend on thedata itself. While it is pleasing that
our assumption of independent order statistics appears to be a weak one,and is satisfied in a wide
variety of applications, it ignores the fact that stronger assumptions may bereasonable in many
cases. In factors with a high dynamic range, or when different factorshave different scales, it may
be possible to identify the maximum value very quickly, as we attempted to do in Section 7.5.1.
Deriving faster algorithms that make stronger assumptions about the input data remains a promising
avenue for future work.

Our algorithm may also lead to faster solutions forapproximatelypassing a single message.
While the stopping criterion of our algorithmguaranteesthat the maximum value is found, it is
possible to terminate the algorithm earlier and state that the maximum hasprobablybeen found.
A direction for future work would be to adapt our algorithm to determine the probability that the
maximum has been found after a certain number of steps; we could then allow the user to specify
an error probability, or a desired running time, and our algorithm could be adapted accordingly.

9. Conclusion

We have presented a series of approaches that allow us to improve the performance of exact and
approximate max-product message-passing for models with factors smaller than their maximal
cliques, and more generally, for models whose factorsthat depend upon the observationcontain
fewer latent variables than their maximal cliques. We arealwaysable to improve the expected com-
putational complexity in any model that exhibits this type of factorization, no matterthe size or
number of factors.
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Appendix A. Asymptotic Performance of Algorithm 2 and Extensions

In this section we shall determine the expected-case running times of Algorithm 2and Algorithm 6.
Algorithm 2 traversesva andvb until it reaches the smallest value ofm for which there is some
j ≤ m for which m≥ p−1

b [pa[ j]]. If M is a random variable representing this smallest value ofm,
then we wish to findE(M). While E(M) is the number of ‘steps’ the algorithms take, each step
takesΘ(K) when we haveK lists. Thus the expected running time isΘ(KE(M)).

To aid understanding our algorithm, we show the elements being read for specific examples of
va andvb in Figure 23. This figure reveals that the actualvaluesin va andvb are unimportant, and
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Figure 23: (a) The listsva andvb before sorting; (b) Black squares show corresponding elements
in the sorted lists (va[pa[i]] andvb[pb[i]]); red squares indicate the elements read during
each step of the algorithm (va[pa[start]] andvb[pb[start]]). We can imagine expanding a
gray box of sizestart×start until it contains an entry; note that the maximum is found
during the first step.

(a) (b) (c) (d)

Figure 24: (a) As noted in Figure 23, a permutation can be represented asan array, where there is
exactly one non-zero entry in each row and column; (b) We want to find thesmallest
value ofm such that the gray box includes a non-zero entry; (c) Apair of permutations
can be thought of as a cube, where every two-dimensional plane contains exactly one
non-zero entry; we are now searching for the smallest gray cube that includes a non-zero
entry; the faces show the projections of the points onto the exterior of the cube (the third
face is determined by the first two); (d) For the sake of establishing an upper-bound, we
consider a shaded region of widthf (N) and heightm.

it is only the order statistics of the two lists that determine the performance of ouralgorithm. By
representing a permutation of the digits 1 toN as shown in Figure 24 ((a), (b), and (d)), we observe
that m is simply the width of the smallest square (expanding from the top left) that includes an
element of the permutation (i.e., it includesi andp[i]).

Simple analysis reveals that the probability of choosing a permutation that does not contain a
value inside a square of sizem is

P(M > m) =
(N−m)!(N−m)!

(N−2m)!N!
. (18)

This is precisely 1−F(m), whereF(m) is the cumulative density function ofM. It is immediately
clear that 1≤M ≤ ⌊N/2⌋, which defines the best and worst-case performance of Algorithm 2.
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Using the identityE(X) = ∑∞
x=1P(X ≥ x), we can write down a formula for the expected value

of M:

E(M) =
⌊N/2⌋

∑
m=0

(N−m)!(N−m)!
(N−2m)!N!

. (19)

The case where we are sampling from multiple permutations simultaneously (i.e., Algorithm 6)
is analogous. We considerK−1 permutations embedded in aK-dimensional hypercube, and we
wish to find the width of the smallest shaded hypercube that includes exactly one element of the
permutations (i.e.,i, p1[i], . . . , pK−1[i]). This is represented in Figure 24(c) forK = 3. Note carefully
thatK is the number oflists in (Equation 14); if we haveK lists, we requireK−1 permutations to
define a correspondence between them.

Unfortunately, the probability that there is no non-zero entry in a cube of size mK is not trivial
to compute. It is possible to write down an expression that generalizes (Equation 18), such as

PK(M > m) =
1

N!K−1 × ∑
σ1∈SN

· · · ∑
σK−1∈SN

m∧

i=1

(

max
k∈{1...K−1}

σk(i)> m

)

(20)

(in which we simply enumerate over all possible permutations and ‘count’ whichof them do not fall
within a hypercube of sizemK), and therefore state that

EK(M) =
∞

∑
m=0

PK(M > m). (21)

However, it is very hard to draw any conclusions from (Equation 20), and in fact it is intractable
even to evaluate it for large values ofN and K. Hence we shall instead focus our attention on
finding an upper-bound on (Equation 21). Finding more computationally convenient expressions
for (Equation 20) and (Equation 21) remains as future work.

A.1 An Upper-Bound on EK(M)

Although (Equation 19) and (Equation 21) precisely define the running timesof Algorithm 2 and
Algorithm 6, it is not easy to ascertain the speed improvements they achieve, as the values to which
the summations converge for largeN are not obvious. Here, we shall try to obtain an upper-bound
on their performance, which we assessed experimentally in Section 7. In doing so we shall prove
Theorems 2 and 3.
Proof [Proof of Theorem 2] (see Algorithm 2) Consider the shaded region in Figure 24(d). This
region has a width off (N), and its heightm is chosen such that it contains precisely one non-zero
entry. LetṀ be a random variable representing the height of the gray region neededin order to
include a non-zero entry. We note that

E(Ṁ) ∈O( f (N)) ⇒ E(M) ∈O( f (N));

our aim is to find the smallestf (N) such thatE(Ṁ) ∈ O( f (N)). The probability that none of the
first msamples appear in the shaded region is

P(Ṁ > m) =
m

∏
i=0

(

1− f (N)

N− i

)

.
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Next we observe that if the entries in ourN×N grid do not define a permutation, but we instead
choose arandomentry in each row, then the probability (now forM̈) becomes

P(M̈ > m) =

(

1− f (N)

N

)m

(22)

(for simplicity we allowm to take arbitrarily large values). We certainly have thatP(M̈ > m) ≥
P(Ṁ > m), meaning thatE(M̈) is an upper-bound onE(Ṁ), and therefore onE(M). Thus we
compute the expected value

E(M̈) =
∞

∑
m=0

(

1− f (N)

N

)m

.

This is just a geometric progression, which sums toN/ f (N). Thus we need to findf (N) such that

f (N) ∈O

(
N

f (N)

)

.

Clearly f (N) ∈O(
√

N) will do. Thus we conclude that

E(M) ∈O(
√

N).

Proof [Proof of Theorem 3] (see Algorithm 6) We would like to apply the same reasoning in the
case of multiple permutations in order to compute a bound onEK(M). That is, we would like to
considerK−1 randomsamples of the digits from 1 toN, rather thanK−1 permutations, as random
samples are easier to work with in practice.

To do so, we begin with some simple corollaries regarding our previous results. We have shown
that in a permutation of lengthN, we expect to see a value less than or equal tof afterN/ f steps.
There are nowf −1 other values that are less than or equal tof amongst the remainingN−N/ f
values; we note that

f −1

N− N
f

=
f
N
.

Hence we expect to see thenextvalue less than or equal tof in the nextN/ f steps also. A conse-
quence of this fact is that we not only expect to see thefirst value less than or equal tof earlier in
a permutation than in a random sample, but that when we samplem elements, we expectmoreof
them to be less than or equal tof in a permutation than in a random sample.

Furthermore, when considering themaximumof K−1 permutations, we expect the firstm el-
ements to contain more values less than or equal tof than the maximum ofK− 1 random sam-
ples. (Equation 20) is concerned with precisely this problem. Therefore,when working in aK-
dimensional hypercube, we can considerK−1 random samples rather thanK−1 permutations in
order to obtain an upper-bound on (Equation 21).

Thus we defineM̈ as in (Equation 22), and conclude that

P(M̈ > m) =

(

1− f (N,K)K−1

NK−1

)m

.
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Thus the expected value of̈M is again a geometric progression, which this time sums to(N/ f (N,K))K−1.
Thus we need to findf (N,K) such that

f (N,K) ∈O

((
N

f (N,K)

)K−1
)

.

Clearly

f (N,K) ∈O
(

N
K−1

K

)

will do. As mentioned, each step takesΘ(K), so the final running time isO(KN
K−1

K ).

To summarize, for problems decomposable intoK +1 groups, we will need to find the index
that chooses the maximal product amongstK lists; we have shown an upper-bound on the expected
number of steps this takes, namely

EK(M) ∈O
(

N
K−1

K

)

. (23)
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