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Abstract

We consider a class of learning problems regularized byuztstred sparsity-inducing norm de-
fined as the sum ofy- or /,-norms over groups of variables. Whereas much effort has peen
in developing fast optimization techniques when the graanasdisjoint or embedded in a hierar-
chy, we address here the case of general overlapping groabis end, we present two different
strategies: On the one hand, we show that the proximal ageassociated with a sum df,-
norms can be computed exactly in polynomial time by solvimgiadratic min-cost flow problem
allowing the use of accelerated proximal gradient meth@dis.the other hand, we use proximal
splitting techniques, and address an equivalent fornarattith non-overlapping groups, but in
higher dimension and with additional constraints. We psapefficient and scalable algorithms
exploiting these two strategies, which are significantstéathan alternative approaches. We illus-
trate these methods with several problems such as CUR nfattirization, multi-task learning
of tree-structured dictionaries, background subtraditiovideo sequences, image denoising with
wavelets, and topographic dictionary learning of naturelge patches.

Keywords: convex optimization, proximal methods, sparse codingicstired sparsity, matrix
factorization, network flow optimization, alternatingefition method of multipliers

1. Introduction

Sparse linear models have become a popular framework for dealing witlusamsupervised and
supervised tasks in machine learning and signal processing. In suaigylatear combinations of
small sets of variables are selected to describe the data. Regularizati@¥pyntdrm has emerged
as a powerful tool for addressing this variable selection problem, retyingoth a well-developed
theory (see Tibshirani, 1996; Chen et al., 1999; Mallat, 1999; Bickall.e2009; Wainwright,
2009, and references therein) and efficient algorithms (Efron et0él4;2Nesterov, 2007; Beck and
Teboulle, 2009; Needell and Tropp, 2009; Combettes and Pesqué), 201
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The ¢1-norm primarily encourages sparse solutions, regardless of the pbstniictural rela-
tionships (e.g., spatial, temporal or hierarchical) existing between the lewiabluch effort has
recently been devoted to designing sparsity-inducing regularizatiorableapf encoding higher-
order information about the patterns of non-zero coefficients (Cetival, 2008; Jenatton et al.,
2009; Jacob et al., 2009; Zhao et al., 2009; He and Carin, 2009;d-taal., 2009; Baraniuk et al.,
2010; Micchelli et al., 2010), with successful applications in bioinformdtlasob et al., 2009; Kim
and Xing, 2010), topic modeling (Jenatton et al., 2010a, 2011) and comysiten (Cehver et al.,
2008; Huang et al., 2009; Jenatton et al., 2010b). By considering stimsrras of appropriate
subsets, ogroups of variables, these regularizations control the sparsity patterns obligoss.
The underlying optimization is usually difficult, in part because it involvessnaoth components.

Our first strategy uses proximal gradient methods, which have provbea tdfective in this
context, essentially because of their fast convergence rates andittigirta deal with large prob-
lems (Nesterov, 2007; Beck and Teboulle, 2009). They can handéeetitiable loss functions with
Lipschitz-continuous gradient, and we show in this paper how to use themawgbularization
term composed of a sum é§-norms. The second strategy we consider exploits proximal splitting
methods (see Combettes and Pesquet, 2008, 2010; Goldfarg and Ma Ta@tlioka et al., 2011;
Qin and Goldfarb, 2011; Boyd et al., 2011, and references thevemgh builds upon an equivalent
formulation with non-overlapping groups, but in a higher dimensionalepac with additional
constraints. More precisely, we make four main contributions:

* We show that thg@roximal operatorassociated with the sum é§-norms with overlapping
groups can be computed efficiently and exactly by solviqgadratic min-cost floyproblem,
thereby establishing a connection with the network flow optimization literatdieis is the
main contribution of the paper, which allows us to use proximal gradient metimothe
context of structured sparsity.

» We prove that the dual norm of the suméaFnorms can also be evaluated efficiently, which
enables us to compute duality gaps for the corresponding optimization problems

» We present proximal splitting methods for solving structured sparséamizgd problems.

» We demonstrate that our methods are relevant for various applicatiarsevgnactical suc-
cess is made possible by our algorithmic tools and efficient implementations wirsttro-
duce a new CUR matrix factorization technique exploiting structured spegsgarization,
built upon the links drawn by Bien et al. (2010) between CUR decomposittahgdney
and Drineas, 2009) and sparse regularization. Then, we illustratdgmuitams with differ-
ent tasks: video background subtraction, estimation of hierarchicakstes for dictionary
learning of natural image patches (Jenatton et al., 2010a, 2011), wawelge denoising

1. The idea of using this class of algorithms for solving structured spaicdBems was first suggested to us by Jean-
Christophe Pesquet and Patrick-Louis Combettes. It was also sugjgeste later by Ryota Tomioka, who briefly
mentioned this possibility in Tomioka et al. (2011). It can also briefly bedon Boyd et al. (2011), and in details
in the work of Qin and Goldfarb (2011) which was conducted as the saneeaisnours. It was also used in a related
context by Sprechmann et al. (2010) for solving optimization probleitishvierarchical norms.

2. Interestingly, this is not the first time that network flow optimization toolshaen used to solve sparse regularized
problems with proximal methods. Such a connection was recently esethlighChambolle and Darbon (2009) in
the context of total variation regularization, and similarly by Hoefling (3G@0the fused Lasso. One can also find
the use of maximum flow problems for non-convex penalties in the woRetifver et al. (2008) which combines
Markov random fields and sparsity.
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with a structured sparse prior, and topographic dictionary learningtafalamage patches
(Hyvarinen et al., 2001; Kavukcuoglu et al., 2009; Garrigues and Olshaf6#&0).

Note that this paper extends a shorter version published in AdvancesiialM&ormation Process-
ing Systems (Mairal et al., 2010b), by adding new experiments (CUR mattiarfzation, wavelet
image denoising and topographic dictionary learning), presenting thénpabzplitting methods,
providing the full proofs of the optimization results, and adding numerousigiésons.

1.1 Notation

Vectors are denoted by bold lower case letters and matrices by uppemnesssaéNe define faq > 1
the fq-norm of a vectox in R™ as||x||q = (3™, |xi|9)Y/9, wherex; denotes théth coordinate ok,
nonzero elements in a vectdr|x|jo £ #{i s.t. X # 0} = limg_o+ (3™, xi|9). We consider the
Frobenius norm of a matriX in R™": || X||r = (3, zrj‘zlxﬁ)l/z, whereX;j;j denotes the entry
of X at rowi and columnj. Finally, for a scalay, we denotely), = max(y,0). For an integer
p > 0, we denote by 2P} the powerset composed of thé Qubsets of1,..., p}.

The rest of this paper is organized as follows: Section 2 presents sgdciparse models
and related work. Section 3 is devoted to proximal gradient algorithms, actib8 4 to proxi-
mal splitting methods. Section 5 presents several experiments and appliciiopsstrating the
effectiveness of our approach and Section 6 concludes the paper.

2. Structured Sparse Models

We are interested in machine learning problems where the solution is not aonkreforehand
to be sparse—that is, the solution has only a few non-zero coefficiarta)do to form non-zero
patterns with a specific structure. It is indeed possible to encode addikiooaledge in the regu-
larization other than just sparsity. For instance, one may want the norpaterns to be structured
in the form of non-overlapping groups (Turlach et al., 2005; Yuan langd 2006; Stojnic et al.,
2009; Obozinski et al., 2010), in a tree (Zhao et al., 2009; Bach,;2Z&bftton et al., 2010a, 2011),
or in overlapping groups (Jenatton et al., 2009; Jacob et al., 200gHetaal., 2009; Baraniuk
et al., 2010; Cehver et al., 2008; He and Carin, 2009), which is the settrage interested in here.

As for classical non-structured sparse models, there are basically ®@sdinresearch, that
either (A) deal with nonconvex and combinatorial formulations that aremeiggd computationally
intractable and addressed with greedy algorithms or (B) concentrateneaxcelaxations solved
with convex programming methods.

2.1 Nonconvex Approaches

A first approach introduced by Baraniuk et al. (2010) consists in imgdsiat the sparsity pattern
of a solution (i.e., its set of non-zero coefficients) is in a predefinedesudigroups of variables
G C 2{L--P} Given this a priori knowledge, a greedy algorithm (Needell and Tra@pp9) is used

3. Note that it would be more proper to Wrina\\g instead of||x||o to be consistent with the traditional notatifxy|q.
However, for the sake of simplicity, we will keep this notation unchangedanébt of the paper.
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to address the following nonconvex structured sparse decompositiblepro
1
min =|ly —Xw||3 s.t. Suppw) € G and ||w|o <Ss,
weRP 2

wheresis a specified sparsity level (number of nonzeros coefficiepte)R™ is an observed signal,
X is a design matrix ifR™P and Suppw) is the support ofv (set of non-zero entries).

In a different approach motivated by the minimum description length princpleBarron et al.,
1998), Huang et al. (2009) consider a collection of grogs 2!%P}, and define a “coding length”
for every group inG, which in turn is used to define a coding length for every patterriin-®}.
Using this tool, they propose a regularization function®®P:— R such that for a vectow in RP,
cl(w) represents the number of bits that are used for encaainghe corresponding optimization
problem is also addressed with a greedy procedure:

1
min =|ly — Xw||3 s.t. clw)<s
WeszHy 12 (w) <s,

Intuitively, this formulation encourages solutiomswhose sparsity patterns have a small coding
length, meaning in practice that they can be represented by a union of ansmmdder of groups.
Even though they are related, this model is different from the one ofnBdc&t al. (2010).

These two approaches are encoding a priori knowledge on the shapa-aero patterns that
the solution of a regularized problem should have. A different poini@f/\consists of modelling
the zero patterns of the solution—that is, define groups of variablestbatdsbe encouraged to
be set to zero together. After defining a set 2{%P} of such groups of variables, the following
penalty can naturally be used as a regularization to induce the desirezitgrop

1 ifthere existg € g such thatwv; # 0,

A (] i (] A
Pw) 2 T ngd(w), with 3(w) £ { 0 othenaice

9eG

where theng's are positive weights. This penalty was considered by Bach (201@®) sivowed that
the convex envelope of such nonconvex functions (more precisel{hysfrasitive, non-increasing
submodular functions of Supp), see Fujishige, 2005) when restricted on the dgiball, are in
fact types of structured sparsity-inducing norms which are the topic afdkesection.

2.2 Convex Approaches with Sparsity-Inducing Norms

In this paper, we are interested in convex regularizations which indusetsted sparsity. Gener-
ally, we consider the following optimization problem

min f(w) +AQ(w), (1)

WEeRP

wheref : RP — R is a convex function (usually an empirical risk in machine learning and a data-
fitting term in signal processing), af2l: RP — R is a structured sparsity-inducing norm, defined as

Q) 2 S ngllwgl., 2)
geg

of windexed byg in G, the scalars)g are positive weights, anl|| denotes thé>- or £»-norm. We
now consider different cases:
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« Wheng is the set of singletons—that & = {{1},{2},...,{p}}, and all theng are equal to
one,Q is the/;-norm, which is well known to induce sparsity. This leads for instance to the
Lasso (Tibshirani, 1996) or equivalently to basis pursuit (Chen et@89)1

 If G is a partition of{1,...,p}, that is, the groups do not overlap, variables are selected
in groups rather than individually. When the coefficients of the solutiorkaoevn to be
organized in such a way, explicitly encoding the a priori group structutbarregulariza-
tion can improve the prediction performance and/or interpretability of the ddanmodels
(Turlach et al., 2005; Yuan and Lin, 2006; Roth and Fischer, 200 iStet al., 2009; Huang
and Zhang, 2010; Obozinski et al., 2010). Such a penalty is commonly galbeip-Lasso
penalty.

* When the groups overlaf is still a nhorm and sets groups of variables to zero together
(Jenatton et al., 2009). The latter setting has first been considerei@ifardhies (Zhao et al.,
2009; Kim and Xing, 2010; Bach, 2009; Jenatton et al., 2010a, 2@h1),then extended
to general group structures (Jenatton et al., 2009). Solving Equalion {iis context is a
challenging problem which is the topic of this paper.

Note that other types of structured-sparsity inducing norms have alsoiteeduced, notably the
approach of Jacob et al. (2009), which penalizes the following quantity

Q'(w) £ min Ngll&9| st. w= Y &% and Vg, Supf&?) C g.
W) E:(Eg)geGGRpx‘g‘gezg oll&l gezg HE)

This penalty, which is also a norm, can be seen as a convex relaxation refgiarization intro-
duced by Huang et al. (2009), and encourages the sparsity pattiw sdlution to be a union of a
small number of groups. Even though b@handQ’ appear under the terminology of “structured
sparsity with overlapping groups”, they have in fact significantly difiéqgurposes and algorith-
mic treatments. For example, Jacob et al. (2009) consider the problenedirsg genes in a gene
network which can be represented as the union of a few predefinedaggatlin the graph (groups
of genes), which overlap. In this case, it is natural to use the f@rinstead ofQ. On the other
hand, we present a matrix factorization task in Section 5.3, where the zstmpatterns should be
a union of groups, naturally leading to the us€bfDealing withQ’ is therefore relevant, but out
of the scope of this paper.

2.3 Convex Optimization Methods Proposed in the Literature

Generic approaches to solve Equation (1) mostly rely on subgradiecgrieschemes (see Bert-
sekas, 1999), and interior-point methods (Boyd and Vandenbe2gfd). These generic tools do
not scale well to large problems and/or do not naturally handle sparsitggthéons they return
may have small values but no “true” zeros). These two points prompt gekfoe dedicated meth-
ods.

To the best of our knowledge, only a few recent papers have a#tgsoblem Equation (1)
with dedicated optimization procedures, and in fact, only wfeis a linear combination of,-
norms. In this setting, a first line of work deals with the non-smoothnes lof expressing the
norm as the minimum over a set of smooth functions. At the cost of addingvagables (to
describe the set of smooth functions), the problem becomes more amenalpiémization. In
particular, reweighted> schemes consist of approximating the nadrby successive quadratic
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upper bounds (Argyriou et al., 2008; Rakotomamonjy et al., 2008; Jenettia., 2010b; Micchelli
et al., 2010). It is possible to show for instance that

ZW 2
aw= mn L5 )
(Zg)QGGER‘f‘Z ey X

Plugging the previous relationship into Equation (1), the optimization can thgretiermed by
alternating between the updatesvofand the additional variablegg)ge5.* When the norng is
defined as a linear combination &f-norms, we are not aware of the existence of such variational
formulations.

Problem (1) has also been addressed with working-set algorithms,(Bé@$; Jenatton et al.,
2009; Schmidt and Murphy, 2010). The main idea of these methods is to aaegquence of
increasingly larger subproblems of (1). Each subproblem consists imisgance of Equation (1)
reduced to a specific subset of variables known asatheking set As long as some predefined
optimality conditions are not satisfied, the working set is augmented with selaatdive variables
(for more details, see Bach et al., 2011).

The last approach we would like to mention is that of Chen et al. (2010) usd a smoothing
technique introduced by Nesterov (2005). A smooth approximaigof Q is used, wherQ is
a sum of¢>-norms, andu is a parameter controlling the trade-off between smoothnesy, @nd
quality of the approximation. Then, Equation (1) is solved with acceleratedignt techniques
(Beck and Teboulle, 2009; Nesterov, 2007) Qytis substituted to the regularizatiéh Depending
on the required precision for solving the original problem, this method pesvadnatural choice
for the parametep, with a known convergence rate. A drawback is that it requires to ehties
precision of the optimization beforehand. Moreover, sinég-aorm is added to the smoothéx,
the solutions returned by the algorithm might be sparse but possibly withepgatng the struc-
ture encoded b¥2. This should be contrasted with other smoothing techniques, for example, the
reweightedé, scheme we mentioned above, where the solutions are only approximatedg.spar

3. Optimization with Proximal Gradient Methods
We address in this section the problem of solving Equation (1) under thefoaassumptions:

 f is differentiable with Lipschitz-continuous gradieritor machine learning problems, this
hypothesis holds wheh is for example the square, logistic or multi-class logistic loss (see
Shawe-Taylor and Cristianini, 2004).

* Qis asum of,-norms.Even though thé>-norm is sometimes used in the literature (Jenatton
et al., 2009), and is in fact used later in Section 4, 4heorm is piecewise linear, and we
take advantage of this property in this work.

To the best of our knowledge, no dedicated optimization method has beelopled for this setting.
Following Jenatton et al. (2010a, 2011) who tackled the particular casiersrchical norms, we
propose to use proximal gradient methods, which we now introduce.

4. Note that such a scheme is interesting only if the optimization with respacisteimple, which is typically the case
with the square loss function (Bach et al., 2011). Moreover, for thisreting scheme to be provably convergent, the
variables(zg)gc g have to be bounded away from zero, resulting in solutions whose entagsave small values,
but not “true” zeros.
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3.1 Proximal Gradient Methods

Proximal methods have drawn increasing attention in the signal processmg \(Vright et al.,
2009b; Combettes and Pesquet, 2010, and numerous referencaés) tardethe machine learn-
ing communities (e.g., Bach et al., 2011, and references therein), dspbezause of their con-
vergence rates (optimal for the class of first-order techniques) airdathibty to deal with large
nonsmooth convex problems (e.g., Nesterov, 2007; Beck and Tebodig).2

These methods are iterative procedures that can be seen as an extégsaolient-based tech-
nigues when the objective function to minimize has a nonsmooth part. The siwgtsisin of this
class of methods linearizes at each iteration the fundtianound the current estimaie and this
estimate is updated as the (unigue by strong convexity) solution pfdx@nalproblem, defined as:

min f(W) 4 (w—W) " Of (W) +AQ(w) + E|yw—v~v||§.
WERP 2

The quadratic term keeps the update in a neighborhood whisrelose to its linear approximation,
andL > 0 is a parameter which is a upper bound on the Lipschitz constant of his problem can
be equivalently rewritten as:
1. 1 - 2 A
vEQﬂQDEHW_ EDf(w) —w||5+ EQ(W),
Solving efficientlyand exactly this problem allows to attain the fast convergence rates adfrox
methods, that is, reaching a precision@(fk—'-z) in k iterations® In addition, when the nonsmooth

termQ is not present, the previous proximal problem exactly leads to the stagdatignt update
rule. More generally, we define tipgoximal operator

Definition 1 (Proximal Operator)
The proximal operator associated with our regularization texfh, which we denote by Prey, is
the function that maps a vectare RP to the unique solution of
1
min é||u—w||§+m(w). 3)

welRP
This operator was initially introduced by Moreau (1962) to generalize tbegion operator onto

a convex set. What makes proximal methods appealing to solve sparsepbsition problems is
that this operator can often be computed in closed form. For instance,

* WhenQ is the ¢1-norm—that isQ(w) = ||w||1—the proximal operator is the well-known
elementwise soft-thresholding operator,

0 if Juj| <A

Vie{d,....p}, uj—signuj)(|uj|—A =9 . _
Jed P, Ui = signuy)(juj| = A)s {&gn(u,-)(\u,-\—)\) otherwise

« WhenQ is a group-Lasso penalty with-norms—that isQ(u) = ¥ oc s [|Ugl|2, with G being
a partition of{1,..., p}, the proximal problem iseparablen every group, and the solution
is a generalization of the soft-thresholding operator to groups of vasiable

0 if [Jugll2 <A
Vg€ G ,Ug> Ug—TTj < [Ug] = 9§ jugllo—n

llugll2

ug otherwise

5. Note, however, that fast convergence rates can also be achitiledsolving approximately the proximal problem
(see Schmidt et al., 2011, for more details).
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whererll <) denotes the orthogonal projection onto the ball ofdx@orm of radiush.

*+ WhenQ is a group-Lasso penalty with,-norms—that isQ(u) = ¥ g [|Ug||, with G being
a partition of{1,..., p}, the solution is a different group-thresholding operator:

vVge g, Ug — Ug — nH-HlQ\ [UQL
wherell| |, <) denotes the orthogonal projection onto theball of radiusA, which can be

solved inO(p) operations (Brucker, 1984; Maculan and de Paula, 1989). Note then w
|ugll1 <A, we have a group-thresholding effect, with— I |, <x[ug] = O.

* WhenQ is a tree-structured sum @3- or £--norms as introduced by Zhao et al. (2009)—
meaning that two groups are either disjoint or one is included in the otheplites admits
a closed form. Letk be a total order oG such that forgs, gz in G, 91 < g2 if and only if
eitherg; C g or g1 Ngx = 0.° Then, ifg; < ... < g, and if we define Prdkas (a) the
proximal operatotig — Prox, .| (Ug) on the subspace corresponding to grgumd (b) the
identity on the orthogonal, Jenatton et al. (2010a, 2011) showed that:

Prox.g = Prox@ o ...oProx,

which can be computed i@(p) operations. It also includes the sparse group Lasso (sum of
group-Lasso penalty and-norm) of Friedman et al. (2010) and Sprechmann et al. (2010).

The first contribution of our paper is to address the case of generdapping groups witli.,-norm.

3.2 Dual of the Proximal Operator

We now show that, for a setG of general overlapping groups, a convex dual of the proximal
problem (3) can be reformulated ag@adratic min-cost flow problenWe then propose an efficient
algorithm to solve it exactly, as well as a related algorithm to compute the drralefQ. We start

by considering the dual formulation to problem (3) introduced by Jenattah @010a, 2011):

Lemma 2 (Dual of the proximal problem, Jenatton et al., 2010a, 20Q1)
Givenu in RP, consider the problem

1 -
min Sfu— 5 &3 st vge g, [E%1<Ang and & =0ifj¢g, 4)
gcRrpxlgl 2 &5
where = (£%)gc is in RP*19], and &Y denotes the j-th coordinate of the vec& Then, ev-
ery solutiong” = (£"9)gc; of Equation (4) satisfies* =u—7y .5 &*, wherew* is the solution of
Equation (3) whe is a weighted sum dt.-norms.

Without loss of generality,we assume from now on that the scalafsare all non-negative, and
we constrain the entries @fto be so. Such a formulation introducpgj| dual variables which
can be much greater thanthe number of primal variables, but it removes the issue of overlapping
regularization. We now associate a graph with problem (4), on which hh@blasé? forgin G

andj in g, can be interpreted as measuring the components of a flow.

6. For a tree-structured s&t, such an order exists.

7. Let&* denote a solution of Equation (4). Optimality conditions of Equation (4) ddrim Jenatton et al. (2010a,
2011) show that for alj in {1,..., p}, the signs of the non-zero coeﬁicielﬁtﬁ for gin G are the same as the signs
of the entrieauj. To solve Equation (4), one can therefore flip the signs of the negadivablesu, then solve the
modified dual formulation (with non-negative variables), which givesrttagnitude of the entriﬁg (the signs of
these being known).
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3.3 Graph Model

Let G be a directed grap = (V,E,s,t), whereV is a set of verticedz CV xV a set of arcss

a source, antl a sink. For all arcs irE, we define a non-negative capacity constant, and as done
classically in the network flow literature (Ahuja et al., 1993; Bertsekas3), 9 define dlowas a
non-negative function on arcs that satisfies capacity constraints acsllthe value of the flow on

an arc is less than or equal to the arc capacity) and conservation caisstraall vertices (the sum

of incoming flows at a vertex is equal to the sum of outgoing flows) exeaephe source and the
sink. For every arein E, we also define a real-valued cost function, which depends on theafalue
the flow one. We now introduce theanonicalgraphG associated with our optimization problem:

Definition 3 (Canonical Graph)
Let G C {1,...,p} be a set of groups, anthg)gcs be positive weights. The canonical graph
G = (V,E,s,t) is the unique graph defined as follows:

1. V=V,UVy, where V is a vertex set of size p, one vertex being associated to each index
jin {1,...,p}, and \§ is a vertex set of sizg7|, one vertex per group g ig;. We thus
have|V| = |G| + p. For simplicity, we identify groups g i§ and indices jin{1,..., p} with
vertices of the graph, such that one can from now on refer to “vertex jVertex g”.

2. For every group g ing, E contains an ar¢s, g). These arcs have capacity)g and zero cost.

3. For every group g ing, and every index j in g, E contains an a(g, j) with zero cost and
infinite capacity. We denote lﬁ,)? the flow on this arc.

4. For every index j in{1,...,p}, E contains an arq(j,t) with infinite capacity and a cost
5(uj —&;)?, whereg; is the flow on(j,t).

Examples of canonical graphs are given in Figures la-c for three simmp gtructures. The
flows E? associated witls can now be identified with the variables of problem (4). Since we have
assumed the entries ofto be non-negative, we can now reformulate Equation (4) as

P 1 _ _
min “(uj—&)? st &= S & andvge G, £9 <Ang and SupgE?d) Cgy.
gcRP 19! Ecrp ;12 b gezg JGZQI : ’
(5)
Indeed,

* the only arcs with a cost are those leading to the sink, which have the(fotinwherej is

the index of a variable if1,. .., p}. The sum of these costs 35, 3(u; — ;)% which is the
objective function minimized in Equation (5);

* by flow conservation, we necessarily h@e: degﬁ? in the canonical graph;

* the only arcs with a capacity constraints are those coming out of the sound have the
form (s,g), whereg is a group inG. By flow conservation, the flow on an afs g) is zjegi?
which should be less thamg by capacity constraints;

« all other arcs have the forfy, j), whereg is in G andj is ing. Thus, Supf?) C g.
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Therefore we have shown that finding a flomnimizing the sum of the cost® such a graph is
equivalent to solving problem (4). When some groups are included imspttie canonical graph
can be simplified to yield a graph with a smaller number of edges. Specificdllgnidg are groups
with h C g, the edgesg, j) for j € hcarrying a rowE? can be removed and replaced by a single edge
(g,h) of infinite capacity and zero cost, carrying the flgu.y, Ejg. This simplification is illustrated

in Figure 1d, with a graph equivalent to the one of Figure 1c. This dosshamge the optimal value

of ? which is the quantity of interest for computing the optimal primal variaidleWe present in
Appendix A a formal definition of equivalent graphs. These simplificatemesuseful in practice,
since they reduce the number of edges in the graph and improve the $mesdigorithms.

3.4 Computation of the Proximal Operator

Quadratic min-cost flow problems have been well studied in the operatisesrah literature
(Hochbaum and Hong, 1995). One of the simplest cases, wherentains a single group as in
Figure 1a, is solved by an orthogonal projection on#heall of radiusAng. It has been shown,
both in machine learning (Duchi et al., 2008) and operations reseaodhfidum and Hong, 1995;
Brucker, 1984), that such a projection can be computéd(jp) operations. When the group struc-
ture is a tree as in Figure 1d, strategies developed in the two communities as@vdlao(Jenatton
et al., 2010a; Hochbaum and Hong, 198%hd solve the problem i®(pd) operations, wherd is
the depth of the tree.

The general case of overlapping groups is more difficult. HochbawrHamg (1995) have
shown thatquadratic min-cost flow problemsan be reduced to a specifi@@rametric max-flow
problem, for which an efficient algorithm exists (Gallo et al., 1988Yhile this generic approach
could be used to solve Equation (4), we propose to use Algorithm 1 thagedoits the fact that
our graphs have non-zero costs only on edges leading to the sinkos gihAppendix D, it it has
a significantly better performance in practice. This algorithm clearly stsamee similarities with
existing approaches in network flow optimization such as the simplified vers@®allo et al. (1989)
presented by Babenko and Goldberg (2006) that uses a divide agderostrategy. Moreover, an
equivalent algorithm exists for minimizing convex functions over polymatrei $Groenevelt,
1991). This equivalence, a priori non trivial, is uncovered througbpaesentation of structured
sparsity-inducing norms via submodular functions, which was recentfyosex by Bach (2010).

The intuition behind our algorithneonput eFl ow (see Algorithm 1), is the following: sinde=
Ygeg &9 s the only value of interest to compute the solution of the proximal opevatou — &, the

first step looks for a candidate valyéor & by solving the following relaxed version of problem (5):

o1 )
=(uj —; L <A .
argmin ;u 2(uJ yj)° s je%.yj P grng (6)

YERP |

The cost function here is the same as in problem (5), but the constraénigeaker: Any feasible
point of problem (5) is also feasible for problem (6). This problem carstlved in linear time
(Brucker, 1984). Its solution, which we dengtior simplicity, provides the lower bourjtli —vy||3/2
for the optimal cost of problem (5).

8. Note however that, while Hochbaum and Hong (1995) only consideeastructured sum d@f.-norms, the results
from Jenatton et al. (2010a) also apply for a sunefhorms.

9. By definition, a parametric max-flow problem consists in solving, fergvalue of a parameter, a max-flow problem
on a graph whose arc capacities depend on this parameter.
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Figure 1: Graph representation of simple proximal problems with diffenrentgstructures;. The
three indices 12,3 are represented as grey squares, and the ggbpe G as red (darker) discs.
The source is linked to every grogph with respective maximum capaciiyg,An, and zero cost.
Each variabley; is linked to the sink, with an infinite capacity, and with a cost= 3 (uj — &;)2.
All other arcs in the graph have zero cost and infinite capacity. Thegsept inclusion relations
in-between groups, and between groups and variables. The grgphsad (d) correspond to a
special case of tree-structured hierarchy in the sense of Jenatio(2&®a). Their min-cost flow

problems are equivalent.
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Algorithm 1 Computation of the proximal operator for overlapping groups.

input u € RP, a set of groupg;, positive weightg§ng)ge 5, andA (regularization parameter).
1: Build the initial graphGo = (Vo, Eo, S,t) as explained in Section 3.4.

2: Compute the optimal flowg «— conput eFl ow(Vo, Eo).
3: Return: w = u — & (optimal solution of the proximal problem).

Function conput eFl omV =V, UVy, E)
1: Projection stepy + arg minijevu %(uj —yj)2 St YjewY) < )\Xgevgrﬂg-

2: For all nodesj in'V,, sety; to be the capacity of the afg,t).

3: Max-flow step: Upda‘tégj)jevu by computing a max-flow on the grag¥, E, s t).

4:if 3j€Vy st & Ay, then

5:  Denote by(s,V*) and(V,t) the two disjoint subsets @¥,s,t) separated by the minimum
(s,t)-cut of the graph, and remove the arcs betwéeénandV~—. Call E* andE~ the two
remaining disjoint subsets & corresponding t& * andV .

6:  (&)jevy < computeFl ow(V T E™).

7 (&)jey, < computeFl ow(V~,E").

8: end if

9: Return: (&;)jev,.

The second step tries to construct a feasible (Ih\/i), satisfying additional capacity constraints
equal toy; on arc(j,t), and whose cost matches this lower bound; this latter problem can be cast
as a max-flow problem (Goldberg and Tarjan, 1986). If such a flontexise algorithm returns
E =, the cost of the flow reaches the lower bound, and is therefore optimsiickf a flow does
not exist, we havé # y, the lower bound is not achievable, and we build a minin{srt)-cut of
the graph (Ford and Fulkerson, 1956) defining two disjoints sets ofsnétdeandV—; V' is the
part of the graph which is reachable from the source (for every nade/*, there exists a non-
saturated path fromto j), whereas all paths going frogto nodes irV — are saturated. More details
about these properties can be found at the beginning of Appendix BiigApoint, it is possible to
show that the value of the optimal min-cost flow on all arcs betwéemndV ~ is necessary zero.
Thus, removing them yields an equivalent optimization problem, which caadmngposed into two
independent problems of smaller sizes and solved recursively by théaadisput eFl ow(V+ E™)
andconput eFl ow(V—,E~). A formal proof of correctness of Algorithm 1 and further details are
relegated to Appendix B.

The approach of Hochbaum and Hong (1995); Gallo et al. (1989)hwieicasts the quadratic
min-cost flow problem as a parametric max-flow is guaranteed to have theveanstecase com-
plexity as a single max-flow algorithm. However, we have experimentally wbdex significant
discrepancy between the worst case and empirical complexities for thesgriblems, essentially
because the empirical cost of each max-flow is significantly smaller than itetiwd cost. Despite
the fact that the worst-case guarantees for our algorithm is weakethbias (up to a factojV|), it
is more adapted to the structure of our graphs and has proven to be rstahrieour experiments
(see Appendix DY° Some implementation details are also crucial to the efficiency of the algorithm:

10. The best theoretical worst-case complexity of a max-flow is acdthiéye Goldberg and Tarjan (1986) and is
O(|V||E|log(|V|?/|E|)). Our algorithm achieves the same worst-case complexity when the cwtelhimlanced—
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» Exploiting maximal connected components When there exists no arc between two sub-
sets ofV, the solution can be obtained by solving two smaller optimization problems cor-
responding to the two disjoint subgraphs. It is indeed possible to prdlcess indepen-
dently to solve the global min-cost flow problem. To that effect, before cattie function
conput eFl om(V, E), we look for maximal connected compone(i, E;), ..., (Vn,En) and
call sequentially the proceducenput eFl ow(V;, E;) foriin {1,...,N}.

« Efficient max-flow algorithm: We have implemented the “push-relabel” algorithm of Gold-
berg and Tarjan (1986) to solve our max-flow problems, using classecaigtics that signif-
icantly speed it up in practice; see Goldberg and Tarjan (1986) andk&¥sy and Goldberg
(1997). We use the so-called “highest-active vertex selection rulealgboid gap heuris-
tics” (Goldberg and Tarjan, 1986; Cherkassky and Goldberg, 198Wgh has a worst-case
complexity of O(|V|?|E|Y/?) for a graph(V, E,s,t). This algorithm leverages the concept of
pre-flowthat relaxes the definition of flow and allows vertices to have a positivesexce

» Using flow warm-restarts. The max-flow steps in our algorithm can be initialized with any
valid pre-flow, enabling warm-restarts. This is also a key concept in ttarpric max-flow
algorithm of Gallo et al. (1989).

» Improved projection step: The first line of the procedureonput eFl ow can be replaced by
Y argmin ¥ ey, 3(Uj —vj)? St Yjev,Yj < ATgev, Ng andlyj| <Ay gsjng The idea is
to build a relaxation of Equation (5) which is closer to the original problem tharone of
Equation (6), but that still can be solved in linear time. The structure of dyghgwill indeed
not aIIoij to be greater thai y 45 ng after the max-flow step. This modified projection
step can still be computed in linear time (Brucker, 1984), and leads to betterrpance.

3.5 Computation of the Dual Norm

The dual nornQ* of Q, defined for any vectak in RP by

Q*(K) 2 maxz'k,
Q(z)<1

is a key quantity to study sparsity-inducing regularizations in many resp&atsinstance, dual
norms are central in working-set algorithms (Jenatton et al., 2009; Baalh 2011), and arise as
well when proving theoretical estimation or prediction guarantees (Negadtoal., 2009).

In our context, we use it to monitor the convergence of the proximal methodghra duality

gap, hence defining a proper optimality criterion for problem (1). As & beiminder, the duality
gap of a minimization problem is defined as the difference between the primhaluah objective
functions, evaluated for a feasible pair of primal/dual variables (se#o8dc5, Boyd and Vanden-
berghe, 2004). This gap serves as a certificate of (sub)optimality: if gualeo zero, then the
optimum is reached, and provided that strong duality holds, the convetrseeias well (see Sec-
tion 5.5, Boyd and Vandenberghe, 2004). A description of the algoritermse in the experiments
(Beck and Teboulle, 2009) along with the integration of the computation ofuaktyl gap is given
in Appendix C.

thatis|V*| ~ |V~ |~ |V|/2, but we lose a factd¥ | when it is not the case. The practical speed of such algorithms is
however significantly different than their theoretical worst-case caxitf@e (see Boykov and Kolmogorov, 2004).
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We now denote byf* the Fenchel conjugate of (Borwein and Lewis, 2006), defined by
f*(k) £ sup[z'k — f(2)]. The duality gap for problem (1) can be derived from standard Fetnch
duality arguments (Borwein and Lewis, 2006) and it is equal to

f(w) +AQ(w) + f*(—k) for w,k in RP with Q*(k) <A.

Therefore, evaluating the duality gap requires to compute effici€ditlin order to find a feasible
dual variable (the gap is otherwise equal e~ and becomes non-informative). This is equivalent
to solving another network flow problem, based on the following variaticrah@ilation:

Q'(k)=mint sty g =k, andvge G, [|IE%1 <Tng with &/ =0if j¢g.  (7)
EQRPX\G‘ geg

In the network problem associated with (7), the capacities on the(su@s g € G, are set tang,
and the capacities on the arGst), j in {1,..., p}, are fixed tok;. Solving problem (7) amounts
to finding the smallest value af such that there exists a flow saturating all the capacities the
arcs leading to the sirtk Equation (7) and Algorithm 2 are proven to be correct in Appendix B.

Algorithm 2 Computation of the dual norm.

input Kk € RP, a set of groupg;, positive weight§ng)geg.
1: Build the initial graphGo = (Vo, Eo, S,t) as explained in Section 3.5.
2: T + dual Nor I’T'(Vo, Eo).
3: Return: Tt (value of the dual norm).

Function dual Nor m(V =V, U Vg, E)
L T (Yjev,Kj)/ (Zgevy Ng) @and set the capacities of arsg) to tng for all gin Vgr.

Max-flow step: Updat€g; ) jev, by computing a max-flow on the gragh, E, s,t).
if 3jeW st & #k;then
Define(V*,E*) and(V~,E™) as in Algorithm 1, and sat+ dual Norm(V~,E™).
end if
Return: T.

4. Optimization with Proximal Splitting Methods

We now present proximal splitting algorithms (see Combettes and Pesquéf,ZZ®; Tomioka
et al., 2011; Boyd et al., 2011, and references therein) for solvinguttamn (1). Differentiability
of f is not required here and the regularization function can either be a séiga of /,-norms.
However, we assume that:

(A) eitherf can be writtenf (w) = S, fi(w), where the functiong; are such that prgx can be
obtained in closed form for ajl > 0 and alli—that is, for allu in R™, the following problems
admit closed form solutions: mjpgm % [|u — v||2+ yfi(v).

(B) or f can be writtenf (w) = f(Xw) for all w in RP, whereX in R"™*P is a design matrix, and
one knows how to efficiently compute prgxor all y > 0.
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It is easy to show that this condition is satisfied for the square and hingéulossons, making it
possible to build linear SVMs with a structured sparse regularization. Tdesemptions are not
the same as the ones of Section 3, and the scope of the problems addréssesfore slightly dif-
ferent. Proximal splitting methods seem indeed to offer more flexibility regattie regularization
function, since they can deal with sums®@tnorms*! However, proximal gradient methods, as
presented in Section 3, enjoy a few advantages over proximal splitting nsetedely: automatic
parameter tuning with line-search schemes (Nesterov, 2007), knowergemce rates (Nesterov,
2007; Beck and Teboulle, 2009), and ability to provide sparse solutmpsrgximate solutions
obtained with proximal splitting methods often have small values, but not “zerss).

4.1 Algorithms

We consider a class of algorithms which leverage the concept of variglitting (see Combettes
and Pesquet, 2010; Bertsekas and Tsitsiklis, 1989; Tomioka et al.,.20hé)key is to introduce
additional variableg? in R!9, one for every grougin G, and equivalently reformulate Equation (1)
as

\Ar/Q]iQp f(w)+A S ngll2¥) st.vge G, 29 =wg, (8)
2Rl for ge G 9cg

The issue of overlapping groups is removed, but new constraints deelaand as in Section 3, the
method introduces additional variables which induce a memory c@tpfc ; [g|)-

To solve this problem, it is possible to use the so-called alternating direction dnetmoulti-
pliers (ADMM) (see Combettes and Pesquet, 2010; Bertsekas and Tsits88i3; Tomioka et al.,
2011; Boyd et al., 2011% It introduces dual variables? in RI9 for all g in G, and defines the
augmented Lagrangian:

L(w, (2)geg, (Wgeg) £ HW)+ 5 [Angl2%]-+ V8" (29— wg) + 1 |28 — w 3],
geg

wherey > 0 is a parameter. It is easy to show that solving Equation (8) amounts to fiadaddle-
point of the augmented LagrangidhThe ADMM algorithm finds such a saddle-point by iterating
between the minimization of with respect to each primal variable, keeping the other ones fixed,
and gradient ascent steps with respect to the dual variables. Maisglyeit can be summarized as:

1. Minimize £ with respect tov, keeping the other variables fixed.

11. We are not aware of any efficient algorithm providing the exactisolof the proximal operator associated to a sum
of ¢»-norms, which would be necessary for using (accelerated) proxgnagdient methods. An iterative algorithm
could possibly be used to compute it approximately (e.g., see Jenatibn 2010a, 2011), but such a procedure
would be computationally expensive and would require to be able to dealapjiloximate computations of the
proximal operators (e.g., see Combettes and Pesquet, 2010; $ehmlid 2011, and discussions therein). We have
chosen not to consider this possibility in this paper.

12. This method is used by Sprechmann et al. (2010) for computingrthéngal operator associated to hierarchical
norms, and independently in the same context as ours by Boyd et &1)(@0d Qin and Goldfarb (2011).

13. The augmented Lagrangian is in fact the classical Lagrangial¢sekand Vandenberghe, 2004) of the following
optimization problem which is equivalent to Equation (8):

. Y 2
min f(w)+A 2|+ 2|8 —wg|5 sit. Vge G, 29 =wy.
sy, 1O 3 gl F127—wlf st ¥ 6. 20—
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2. Minimize £ with respect to the¥'s, keeping the other variables fixed. The solution can be

obtained in closed form: for af in G, 29 < ProXng | [wg — %vg}.
).

3. Take a gradient ascent step.onvith respect to the9's: v9 < v9+y(z9 —wy).
4. Go back to step 1.

Such a procedure is guaranteed to converge to the desired solutidhvialuea ofy > 0 (however,
tuningy can greatly influence the convergence speed), but solving efficigapylscan be difficult.
To cope with this issue, we propose two variations exploiting assumg#grend(B).

4.1.1 SLITTING THE LOSSFUNCTION f

We assume conditiofA)—that is, we havef (w) = S, fi(w). For example, wheri is the square
loss functionf (w) = 3|ly — Xw/|3, whereX in R™P is a design matrix angl is in R", we would
define for alli in {1,...,n} the functionsf; : R — R such thatfi(w) £ 1(y; — xw)?, wherex; is
thei-th row of X.

We now introduce new variables in RP fori = 1,...,n, and replace (w) in Equation (8) by
Sitq ﬁ(vi), with the additional constraints thelt= w. The resulting equivalent optimization prob-
lem can now be tackled using the ADMM algorithm, following the same methodologgepted
above. It is easy to show that every step can be obtained efficienthyngsatoone knows how to
compute the proximal operator associated to the functfpimsclosed form. This is in fact the case
for the square and hinge loss functions, wherethe number of training points. The main problem
of this strategy is the possible high memory usage it requires wielarge.

4.1.2 DEALING WITH THE DESIGN MATRIX

If we assume conditioriB), another possibility consists of introducing a new variablen R",
such that one can replace the functibfw) = f(Xw) by f(v) in Equation (8) with the additional
constrainy = Xw. Using directly the ADMM algorithm to solve the corresponding problem implies
adding a ternk " (v — Xw) + ¥||[v — Xw||3 to the augmented Lagrangiah wherek is a new dual
variable. The minimization of with respect tor is now obtained by «+ prox%f[Xw — K], which

is easy to compute according (). However, the design matriX in the quadratic term makes the
minimization of L with respect tov more difficult. To overcome this issue, we adopt a strategy
presented by Zhang et al. (2011), which replaces at itertibe quadratic tern§ |[v — Xw/||3 in the
augmented Lagrangian by an additional proximity te&tiv — Xw||3 + ¥[lw — wX||3, wherewX is

the current estimate of, and||w —w¥||4 = (w—w¥) TQ(w —w¥), whereQ is a symmetric positive
definite matrix. By choosin@ = 8l — X " X, with & large enough, minimizing. with respect tav
becomes simple, while convergence to the solution is still ensured. More degtailse found in
Zhang et al. (2011).

5. Applications and Experiments

In this section, we present various experiments demonstrating the applicahilitthe benefits of
our methods for solving large-scale sparse and structured regularaei@éms.
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5.1 Speed Benchmark

We consider a structured sparse decomposition problem with overlapinggof/..-norms, and
compare the proximal gradient algorithm FISTA (Beck and Teboulle, P@@# our proximal op-
erator presented in Section 3 (referred to as ProxFlow), two variapi®rimal splitting methods,
(ADMM) and (Lin-ADMM) respectively presented in Section 4.1.1 and 4.had two generic
optimization techniques, namely a subgradient descent (SG) and an ipteinomethod:* on a
regularized linear regression problem. SG, ProxFlow, ADMM and LinvVA\D are implemented
in C++.15 Experiments are run on a single-cor® ZHz CPU. We consider a design matkxin
R"™P puilt from overcomplete dictionaries of discrete cosine transforms (D@figh are naturally
organized on one- or two-dimensional grids and display local correfatidhe following families
of groups@ using this spatial information are thus considered: (1) every contigusmpsesce of
length 3 for the one-dimensional case, and (2) everg-3quare in the two-dimensional setting. We
generate vectorgin R" according to the linear modgl= Xwg -+ €, wheree ~ A(0,0.01]|Xwp||3).
The vectomwg has about 20% percent nonzero components, randomly selected, @gpiéeting the
structure ofG, and uniformly generated ir-1,1].

In our experiments, the regularization paramaté chosen to achieve the same level of spar-
sity (20%). For SG, ADMM and Lin-ADMM, some parameters are optimized twide the low-
est value of the objective function after 1000 iterations of the respeaty@rithms. For SG,
we take the step size to be equalapk + b), wherek is the iteration number, anth,b) are
the pair of parameters selected 03, ...,10} x {10?,10%,10*}. Note that a step size of the
form a/(v/t + b) is also commonly used in subgradient descent algorithms. In the conteit of h
erarchical norms, both choices have led to similar results (Jenatton etHl). Zlhe parameter
for ADMM is selected in{1072,...,10°}. The parametergy,d) for Lin-ADMM are selected in
{1072,...,10%} x {1071,...,10%}. For interior point methods, since problem (1) can be cast either
as a quadratic (QP) or as a conic program (CP), we show in Figure 2shés for both formu-
lations. On three problems of different sizes, withp) € {(100,10°), (1024 10%), (1024 10°)},
our algorithms ProxFlow, ADMM and Lin-ADMM compare favorably with the etmethods, (see
Figure 2), except for ADMM in the large-scale setting which yields an divedunction value
similar to that of SG after f0seconds. Among ProxFlow, ADMM and Lin-ADMM, ProxFlow
is consistently better than Lin-ADMM, which is itself better than ADMM. Note tratthe small
scale problem, the performance of ProxFlow and Lin-ADMM is similar. Initéaid, note that QP,
CP, SG, ADMM and Lin-ADMM do not obtain sparse solutions, whereasPiow doest®

5.2 Wavelet Denoising with Structured Sparsity

We now illustrate the results of Section 3, where a single large-scale projraedtor p ~ 250 000)
associated to a sum d@f,-norms has to be computed. We choose an image denoising task with
an orthonormal wavelet basis, following an experiment similar to one pegpirsJenatton et al.
(2011). Specifically, we consider the following formulation

1 ,
Vg;;lgpé\\y—XWHerm(W),

14. In our simulations, we use the commercial softwdsek, ht t p: / / www. nosek. conl

15. Our implementation of ProxFlow is availablehat p: / / waw. di . ens. fr/wi | | ow SPAVS/ .

16. To reduce the computational cost of this experiment, the curvesteepare the results of one single run. Similar
types of experiments with several runs have shown very small variafBigggh et al., 2011).
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n=100, p=1000, one-dimensional DCT n=1024, p=10000, one-dimensional DCT n=1024, p=100000, one-dimensional DCT
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S 0 0
g 0 - = = ADMM € € .
=] -©-Lin-ADMM| 2 2 -
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Figure 2: Speed comparisons: distance to the optimal primal value ver&l8rG®(log-log scale).
Due to the computational burden, QP and CP could not be run on evdigpro

wherey in RP is a noisy input imagey represents wavelets coefficientsin RP*P is an orthonor-

mal wavelet basisXw is the estimate of the denoised image, & a sparsity-inducing norm.
Since here the basis is orthonormal, solving the decomposition problem bwitstdacomputing

W* = prox,o[X "y]. This makes of Algorithm 1 a good candidate to solve it wkkis a sum of

l-norms. We compare the following candidates for the sparsity-inducings@r

» the/;-norm, leading to the wavelet soft-thresholding of Donoho and John§1@95).

» a sum off,-norms with a hierarchical group structure adapted to the wavelet deafficas
proposed in Jenatton et al. (2011). Considering a natural quadetregfelet coefficients
(see Mallat, 1999), this norm takes the form of Equation (2) with one gpmrpwavelet
coefficient that contains the coefficient and all its descendants in theWwreeall this norm
Qtree

» a sum of¢,-norms with overlapping groups representing 2 spatial neighborhoods in the
wavelet domain. This regularization encourages neighboring waveddfiaients to be set
to zero together, which was also exploited in the past in block-thresholgimgpaches for
wavelet denoising (Cai, 1999). We call this nofgig.

We consider Daubechies3 wavelets (see Mallat, 1999) for the métnisse 12 classical standard
test imaged,/ and generate noisy versions of them corrupted by a white Gaussianafoiag-
ancec?. For each image, we test several values\cf Ziom, with i taken in the range
{—15-14,...,15}. We then keep the paramefegiving the best reconstruction error on average
on the 12 images. The factor/logp is a classical heuristic for choosing a reasonable regulariza-
tion parameter (see Mallat, 1999). We provide reconstruction results in t6fA8NR in Table 18
Unlike Jenatton et al. (2011), who set all the weighgsin Q equal to one, we tried exponential
weights of the fornrmg = pK, with k being the depth of the group in the wavelet tree, piisitaken

in {0.25,0.5,1,2,4}. As for A, the value providing the best reconstruction is kept. The wavelet
transforms in our experiments are computed with the matlabPyrTools softivarerestingly, we
observe in Table 1 that the results obtained g are significantly better than those obtained

17. These images are used in classical image denoising benchmeelglaBal et al. (2009).

18. Denoting by MSE the mean-squared-error for images whose itesrese between 0 and 255, the PSNR is defined
as PSNR= 10log; (255 /MSE) and is measured in dB. A gain of 1dB reduces the MSE by approximatéty 20

19. The matlabPyrTools can be founchat p: / / www. cns. nyu. edu/ $\ si nseer o/ st eer pyr/ .
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PSNR IPSNR vs./;
o {1 Qtree | Qgrid l Qtree Qgrid
5 | 35.67| 35.98| 36.15| 0.00+.0 | 0.31+.18 | 0.48+.25
10 | 31.00| 31.60| 31.88| 0.004+.0 | 0.61+.28 | 0.88+.28
25 | 25.68| 26.77| 27.07| 0.00+.0 | 1.094+.32 | 1.38+.26
50 | 22.37| 23.84| 24.06| 0.00+.0 | 1.47+.34 | 1.68+ .41
100 | 19.64| 21.49| 21.56| 0.00+.0 | 1.85+.28 | 1.92+.29

Table 1: PSNR measured for the denoising of 12 standard images wheytharization function
is the/;1-norm, the tree-structured norfee, and the structured norfyig, and improvement in
PSNR compared to the-norm (IPSNR). Best results for each level of noise and each wiaygele
are in bold. The reported values are averaged over 5 runs with diffecése realizations.

with Quee, meaning that encouraging spatial consistency in wavelet coefficientsres effective
than using a hierarchical coding. We also note that our approach ivedydtst, despite the high
dimension of the problem. Solving exactly the proximal problem Wkliq for an image with
p=512x512= 262144 pixels (and therefore approximately the same number of groles) ta
approximately~ 4 — 6 seconds on a single core of a 3.07GHz CPU.

5.3 CUR-like Matrix Factorization

In this experiment, we show how our tools can be used to perform thdlso-€AJR matrix decom-
position (Mahoney and Drineas, 2009). It consists of a low-rankamation of a data matrixX

in R"P in the form of a product of three matrices—thatisx CUR. The particularity of the CUR
decomposition lies in the fact that the matri€es R"*¢ andR € R"*P are constrained to be respec-
tively a subset o€ columns and rows of the original matrixX. The third matrixU € R®*" is then
given byC*XR™, whereA™ denotes a Moore-Penrose generalized inverse of the nfatfiiiorn
and Johnson, 1990). Such a matrix factorization is particularly appeatieg the interpretability
of the results matters (Mahoney and Drineas, 2009). For instance, stindying gene-expression
data sets, it is easier to gain insight from the selection of actual patienteasd,gather than from
linear combinations of them.

In Mahoney and Drineas (2009), CUR decompositions are computeddmaliag procedure
based on the singular value decompositioXofn a recent work, Bien et al. (2010) have shown that
partial CUR decompositions, that is, the selection of either rows or columiXs cén be obtained
by solving a convex program with a group-Lasso penalty. We proposgtémd this approach to
the simultaneous selection of both rows and columns,afith the following convex problem:

: 1 2 A . i A i )

wo., EHX — XWX|g+ rowi;I [[WHJeo +Acol gl [Wjleo- 9)
In this formulation, the two sparsity-inducing penalties controlled by the paeasieonw andicol
set to zero some entire rows and columns of the solutions of problem (@).1&tas denote bW, ;
in RN the submatrix oW reduced to its nonzero rows and columns, respectively indexed by
I C{1,...,p} and JC {1,...,n}. We can then readily identify the three components of the CUR
decomposition oK, namely

XWX =CW|3;R =~ X.
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Problem (9) has a smooth convex data-fitting term and brings into play sityp@aducing norm
with overlapping groups of variables (the rows and the columna/pf As a result, it is a partic-
ular instance of problem (1) that can therefore be handled with the optirmzaks introduced
in this paper. We now compare the performance of the sampling proceduneMahoney and
Drineas (2009) with our proposed sparsity-based approach. Tothiswe consider the four gene-
expression data sedsTunor s, Brai n_Tunor s1, Leukem al andSRBCT, with respective dimensions
(n,p) € {(60,5727),(90,5921), (72,5328), (83,2309 }.2° In the sequel, the matri is normalized
to have unit Frobenius-norm while each of its columns is centered. To bétjinwe run our ap-
proacht! over a grid of values fok,qw andAce in order to obtain solutions with different sparsity
levels, that is, ranging frorfi| = p and|J| = ndown to|l| = |J| = 0. For each pair of valugd|, |J|],
we then apply the sampling procedure from Mahoney and Drineas (2008ally, the variance
explained by the CUR decompositions is reported in Figure 3 for both metBaute the sampling
approach involves some randomness, we show the average and dtdadation of the results
based on five initializations. The conclusions we can draw from the expssmeatch the ones
already reported in Bien et al. (2010) for the partial CUR decompositiom.c&vi indeed see that
both schemes perform similarly. However, our approach has the adeantd to be randomized,
which can be less disconcerting in the practical perspective of analgzampgle run of the algo-
rithm. It is finally worth being mentioned that the convex approach we devaopis flexible and
can be extended in different ways. For instance, we can imagine to atiérflow-rank/sparsity
constraints oW thanks to sparsity-promoting convex regularizations.

5.4 Background Subtraction

Following Cehver et al. (2008); Huang et al. (2009), we considerckdraund subtraction task.
Given a sequence of frames from a fixed camera, we try to segmermtregtéund objects in a new
image. If we denote by € R" this image composed of pixels, we model as a sparse linear
combination ofp other imageX € R"*P, plus an error terne in R", that is,y ~ Xw + e for some
sparse vectow in RP. This approach is reminiscent of Wright et al. (2009a) in the contedas f
recognition, where is further made sparse to deal with small occlusions. The ¥rnaccounts
for backgroundparts present in botyandX, while e contains specific, dioreground objects iny.
The resulting optimization problem is given by

) 1 )
min —Hy—XW—eH%+)\1HWHl+}\2{HeH1+Q(e)}, with A1,A2 > 0. (20)

weRP ecR 2

In this formulation, the only;-norm penalty does not take into account the fact that neighboring
pixels iny are likely to share the same label (background or foreground), whighead to scattered
pieces of foreground and background regions (Figure 4). Weftiterput an additional structured
regularization termQ on e, where the groups iG are all the overlapping 833-squares on the
image. For the sake of comparison, we also consider the regulariiatimhere the groups are
non-overlappingx 3-squares.

This optimization problem can be viewed as an instance of problem (1), witpatiular
design matrix{X, 1] in R™(P*"  defined as the columnwise concatenatiorXodnd the identity

20. The data sets are freely availablétp: / / ww. gens- system org/ .
21. More precisely, since the penalties in problem (9) shrink the coeffica W, we follow a two-step procedure: We
first run our approach to determine the sets of nonzero rows and gsjand then comput®,; = CTXR™T.
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Figure 3: Explained variance of the CUR decompositions obtained forpausisy-based approach
and the sampling scheme from Mahoney and Drineas (2009). For the \adtegport the average
and standard deviation of the results based on five initializations. From lefjliband top to
bottom, the curves correspond to the data 8€fsnor s, Brai n_Tunor s1, Leukeni al andSRBCT.

matrix. As a result, we could directly apply the same procedure as the odéruiee other ex-
periments. Instead, we further exploit the specific structure of prokil®m Notice that for a fixed
vectore, the optimization with respect w is a standard Lasso problem (with the vector of obser-
vationsy — €),%2 while for w fixed, we simply have a proximal problem associated to the sum of
Q and the/1-norm. Alternating between these two simple and computationally inexpensp& ste
that is, optimizing with respect to one variable while keeping the other one fixgdiaranteed to
converge to a solution of (16¥. In our simulations, this alternating scheme has led to a significant
speed-up compared to the general procedure.

A data set with hand-segmented images is used to illustrate the efféctofFor simplicity,
we use a single regularization parameter, thatis: A2, chosen to maximize the number of pixels

22. Since successive frames might not change much, the colunxnexdfibit strong correlations. Consequently, we use
the LARS algorithm (Efron et al., 2004) whose complexity is independgtite level of correlation irX.

23. More precisely, the convergence is guaranteed since the nasttspaot in (10) isseparablewith respect tav ande
(Tseng, 2001). The result from Bertsekas (1999) may also be dppdiee, after reformulating (10) as a smooth
convex problem under separable conic constraints.

24. Data set can be found dittp://research.m crosoft.con en-us/un people/jckrunmm wallfl ower/
testimges. htm
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matching the ground truth. We consider= 200 images witm = 57600 pixels (i.e., a resolution
of 120x 160, times 3 for the RGB channels). As shown in Figure 4, ad@ngnproves the back-
ground subtraction results for the two tested images, by removing the sdattéfacts due to the
lack of structural constraints of thig-norm, which encodes neither spatial nor color consistency.
The group sparsity regularizatidh also improves upon th&-norm but introduces block-artefacts
corresponding to the non-overlapping group structure.

5.5 Topographic Dictionary Learning

Letus consider asat= [y, ...,y"] in R™" of nsignals of dimensiom. The problem of dictionary
learning, originally introduced by Olshausen and Field (1996), is a matrbotiaation problem
which aims at representing these signals as linear combinatiatistminary elementthat are the
columns of a matrixX = [x%,...,xP] in R™P. More precisely, the dictionar¥ is learnedalong
with a matrix ofdecomposition coefficien® = [w?,...,w"] in RP*", so thaty' ~ Xw' for every
signaly'. Typically, nis large compared tm andp. In this experiment, we consider for instance a
database ofi = 100000 natural image patches of sime= 12 x 12 pixels, for dictionaries of size
p = 400. Adapting the dictionary to specific data has proven to be useful in eygpljcations,
including image restoration (Elad and Aharon, 2006; Mairal et al., 2088)ning image features
in computer vision (Kavukcuoglu et al., 2009). The resulting optimizationlprolzan be written

5 3l Wl A2, CEY

XECWERPX”

where(C is a convex set of matrices iR™P whose columns hav&-norms less than or equal to
one?° \ is a regularization parameter afids a sparsity-inducing norm. Whéhis the/;-norm, we
obtain a classical formulation, which is known to produce dictionary elemeatsth reminiscent

of Gabor-like functions, when the columnsYfare whitened natural image patches (Olshausen and
Field, 1996).

Another line of research tries to put a structure on decomposition coafBdiestead of consid-
ering them as independent. Jenatton et al. (2010a, 2011) have forcastiabedded dictionary ele-
ments into a tree, by using a hierarchical norm (Zhao et al., 2009).fathis model encodes a rule
saying that a dictionary element can be used in the decomposition of a sigypélits ancestors in
the tree are used as well. In the related context of independent contjaoradysis (ICA), Hywrinen
et al. (2001) have arranged independent components (correésgdoddictionary elements) on a
two-dimensional grid, and have modelled spatial dependencies between YWeen learned on
whitened natural image patches, this model exhibits “Gabor-like” functidnishware smoothly or-
ganized on the grid, which the authors call a topographic map. As showtatykcuoglu et al.
(2009), such a result can be reproduced with a dictionary learnimguiation, using a structured
norm for Q. Following their formulation, we organize thedictionary elements on &p x ,/p
grid, and considep overlapping groups that are<33 or 4x 4 spatial neighborhoods on the grid (to
avoid boundary effects, we assume the grid to be cyclic). We d&fiae a sum of,-norms over
these groups, since thg-norm has proven to be less adapted for this task. Another formulation
achieving a similar effect was also proposed by Garrigues and Olshé2B£0) in the context of
sparse coding with a probabilistic model.

25. Since the quadratic term in Equation (11) is invariant by multipl{drgy a scalar andlV by its inverse, constraining
the norm ofX has proven to be necessary in practice to prevent it from being ailpiteage.
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(c) 41, 87.1%.

(d) £1 + € (non-overlapping), 98%. (e) {1+ Q (overlapping), 989%. () Q, another frame.

(i) £1, 90.5%.

0] 148 (non-overlapping), 95%. (k) 41 + Q (overlapping), 938%. () Q, another frame.

Figure 4: Background subtraction results. For two videos, we prakendriginal imagey, the
estimated background (i.eXw) reconstructed by our method, and the foreground (i.e., the sparsity
pattern ofe as a mask on the original image) detected WittY, + Q (non-overlapping groups) and
with ¢1 4+ Q. Figures (f) and (I) present another foreground found \idtton a different image, with

the same values a@f;, A, as for the previous image. Best seen in color.
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Figure 5. Topographic dictionaries with 400 elements, learned on a databa2x 12 whitened
natural image patches withx33 (left) and 4x 4 (right) cyclic overlapping groups.

As Kavukcuoglu et al. (2009) and Olshausen and Field (1996), wsidena projected stochas-
tic gradient descent algorithm for learniXg—that is, at iteration, we randomly draw one signgl
from the databas¥, compute a sparse codé = argmin, ge %llyt — Xw!||3 +AQ(w), and up-
dateX as follows: X < M[X —p(Xw! —y )w! ], wherep is a fixed learning rate, arfd denotes
the operator performing orthogonal projections onto the(seln practice, to further improve the
performance, we use a mini-batch, drawing 500 signals at eatch iteratteadnsf one (see Mairal
et al., 2010a). Our approach mainly differs from Kavukcuoglu et @092 in the way the sparse
codesw! are obtained. Whereas Kavukcuoglu et al. (2009) uses a subgrddiaent algorithm to
solve them, we use the proximal splitting methods presented in Section 4. Thal iraage patches
we use are also preprocessed: They are first centered by remogingnéan value (often called
DC component), and whitened, as often done in the literature dktyen et al., 2001; Garrigues
and Olshausen, 2010). The paramétés chosen such that in averalig — Xw'||» ~ 0.4]|y' || for
all new patch considered by the algorithm. Examples of obtained resultis@awe sn Figure 5, and
exhibit similarities with the topographic maps of Hyninen et al. (2001). Note that even though
Equation (11) is convex with respect to each variablandW when one fixes the other, it is not
jointly convex, and one can not guarantee our method to find a global optiDespite its intrinsic
non-convex nature, local minima obtained with various optimization procedaee been shown
to be good enough for many tasks (Elad and Aharon, 2006; Mairal @0819; Kavukcuoglu et al.,
20009).

5.6 Multi-Task Learning of Hierarchical Structures

As mentioned in the previous section, Jenatton et al. (2010a) have regrpbsed to use a hierar-
chical structured norm to learn dictionaries of natural image patchesnhttdn et al. (2010a), the
dictionary elements are embedded ipradefinedreeZ’, via a particular instance of the structured
norm Q, which we refer to it afdyee, and callG the underlying set of groups. In this case, using
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the same notation as in Section 5.5, each sighatimits a sparse decomposition in the form of a
subtree of dictionary elements.

Inspired by ideas from multi-task learning (Obozinski et al., 2010), vep@se to learn the
tree structurel by pruning irrelevant parts of a larger initial trég. We achieve this by using an
additional regularization terjoin; across the different decompositions, so that subtre€s will
simultaneouslype removed for all signalg’. With the notation from Section 5.5, the approach of
Jenatton et al. (2010a) is then extended by the following formulation:

n

(e G X 1400|422 (W), (12)
whereW £ [w!, ..., w"] is the matrix of decomposition coefficientsk®*". The new regularization
term operates on the rows 8 and is defined ajoint(W) £ ¥ g g MaXeyy,... ) [Wyl.2° The overall
penalty onW, which results from the combination Ofiee andQjoint, is itself an instance d? with
general overlapping groups, as defined in Equation (2).

To address problem (12), we use the same optimization scheme as Jenattd@@&t0a), that
is, alternating betweeK andW, fixing one variable while optimizing with respect to the other.
The task we consider is the denoising of natural image patches, with the starsetand protocol
as Jenatton et al. (2010a). We study whether learning the hierarchy afidtionary elements
improves the denoising performance, compared to standard sparsg ¢oglinwhenQyee is the
Z1-norm andA, = 0) and the hierarchical dictionary learning of Jenatton et al. (2010s9cban
predefined trees (i.eA, = 0). The dimensions of the training set—50000 patches of siz8 8
for dictionaries with up tg = 400 elements—impose to handle extremely large graphs,|®ijtis
IV| a2 4.10". Since problem (12) is too large to be solved exactly sufficiently many time ettt siee
regularization paramete(,A;) rigorously, we use the following heuristics: we optimize mostly
with the currently pruned tree held fixed (i.&3 = 0), and only prune the tree (i.&.; > 0) every
few steps on a random subset of 10000 patches. We consider the mmareties as in Jenatton
et al. (2010a), involving between 30 and 400 dictionary elements. Th#aréation parameter;
is selected on the validation set of 25000 patches, for both sparse dédtgand hierarchical
dictionary learning (Tree). Starting from the tree giving the best perfocedin this case the
largest one, see Figure 6), we solve problem (12) following our h@sjdor increasing values
of A». As shown in Figure 6, there is a regime where our approach performficagtly better than
the two other compared methods. The standard deviation of the noige(ib@ pixels have values
in [0,1]); no significant improvements were observed for lower levels of noise. eXperiments
use the algorithm of Beck and Teboulle (2009) based on our proximaatmpewith weights)g set
to 1. We present this algorithm in more details in Appendix C.

6. Conclusion

We have presented new optimization methods for solving sparse structatgems involving sums

of /»- or {»-norms of any (overlapping) groups of variables. Interestingly, thesismew light on
connections between sparse methods and the literature of network flow @pittmizin particular,

the proximal operator for the sum 6f-norms can be cast as a specific form of quadratic min-cost
flow problem, for which we proposed an efficient and simple algorithm.

26. The simplified case whetRyree and Qjoin; are thel1- and mixed?; /¢>-norms (Yuan and Lin, 2006) corresponds to
Sprechmann et al. (2010).
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Figure 6: Left: Hierarchy obtained by pruning a larger tree of 76 elemdRight. Mean square
error versus dictionary size. The error bars represent two shdesaiations, based on three runs.

In addition to making it possible to resort to accelerated gradient metho@fficéiant compu-
tation of the proximal operator offers more generally a certain modularity,anititan be used
as a building-block for other optimization problems. A case in point is dictioteagning where
proximal problems come up and have to be solved repeatedly in an innerilatepesting future
work includes the computation of other structured norms such as the onduoga by Jacob et al.
(2009), or total-variation based penalties, whose proximal operateralsm based on minimum
cost flow problems (Chambolle and Darbon, 2009). Several experirdenisnstrate that our al-
gorithm can be applied to a wide class of learning problems, which haveeratdrldressed before
with convex sparse methods.
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Appendix A. Equivalence to Canonical Graphs
Formally, the notion of equivalence between graphs can be summarized fofithving lemma:

Lemma 4 (Equivalence to canonical graphs.)

Let G=(V, E,s,t) be the canonical graph corresponding to a group structird.et G = (V,E’, s t)
be a graph sharing the same set of vertices, source and sink as Githw different arc set E We
say that Gis equivalent to G if and only if the following conditions hold:

« Arcs of E outgoing from the source are the same as in E, with the same costs andtizspac
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« Arcs of E going to the sink are the same as in E, with the same costs and capacities.

» For every arc(g, j) in E, with (g, j) in Vigr x VW, there exists a unique path in Eom g to |
with zero costs and infinite capacities on every arc of the path.

« Conversely, if there exists a path irf Between a vertex g ingvand a vertex j in '\, then
there exists an ar¢g, j) in E.

Then, the cost of the optimal min-cost flow on G aridi@ the same. Moreover, the values of the
optimal flow on the arc§j,t), j inV,, are the same on G and'G

Proof We first notice that on botfs andG/, the cost of a flow on the graph only depends on the
flow on the arcgj,t), j in \,, which we have denoted Hyin E.

We will prove that finding a feasible flowm on G with a costc(m) is equivalent to finding a
feasible flowr’ on G’ with the same cost(1) = c(17). We now use the concept péath flow which
is a flow vector inG carrying the same positive value on every arc of a directed path between tw
nodes ofG. It intuitively corresponds to sending a positive amount of flow alongla pithe graph.

According to the definition of graph equivalence introduced in the Lemmagiasy to show
that there is a bijection between the arc€inand the paths it’ with positive capacities on every
arc. Given now a feasible flom in G, we build a feasible flowt on G’ which is asumof path
flows. More precisely, for every amin E, we consider its equivalent path i, with a path flow
carrying the same amount of flow asTherefore, each a in E’ has a total amount of flow that
is equal to the sum of the flows carried by the path flows going avdt is also easy to show that
this construction builds a flow 08’ (capacity and conservation constraints are satisfied) and that
this flow 7 has the same cost asthat is,c(m) = c(17).

Conversely, given a flom' on G/, we use a classical path flow decomposition (see Bertsekas,
1998, Proposition 1.1), saying that there exists a decompositinhas a sum of path flows i&’.
Using the bijection described above, we know that each path in the prestious corresponds to a
unique arc irE. We now build a flowrtin G, by associating to each path flow in the decomposition
of 17, an arc inE carrying the same amount of flow. The flow of every other ar€ is set to zero.

It is also easy to show that this builds a valid flonGrthat has the same costds |

Appendix B. Convergence Analysis

We show in this section the correctness of Algorithm 1 for computing the proxipgaator, and of
Algorithm 2 for computing the dual norif2*.

B.1 Computation of the Proximal Operator

We first prove that our algorithm converges and that it finds the optinatiso of the proximal
problem. This requires that we introduce the optimality conditions for probBnddrived from
Jenatton et al. (2010a, 2011) since our convergence proof edlgectiiecks that these conditions
are satisfied upon termination of the algorithm.

Lemma 5 (Optimality conditions of the problem (4) from Jenatton et al.2010a, 2011)
The primal-dual variable$w, §) are respectively solutions of the primal (3) and dual problems (4)
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if and only if the dual variabl€ is feasible for the problem (4) and

W=U—Yg &

W!’e (; I|g7
’ { Ol Wg — 0.

Note that these optimality conditions provide an intuitive view of our min-cost fiooblem.
Solving the min-cost flow problem is equivalent to sending the maximum amddlavwoin the
graph under the capacity constraints, while respecting the rul¢hddliow coming from a group g
should always be directed to the variableswith maximum residuakj — XgegE?- This point can
be more formaly seen by noticing that one of the optimality conditions abovespmnds to the
case of equality in thé; /¢, HOlder inequality.

Before proving the convergence and correctness of our algorithralseaecall classical prop-
erties of the min capacity cuts, which we intensively use in the proofs of tipisrp@he procedure
conput eFl ow of our algorithm finds a minimungs,t)-cut of a graphG = (V, E,s,t), dividing the
setV into two disjoint party/ " andV . V™ is by construction the sets of nodesMrsuch that there
exists a non-saturating path frasto V, while all the paths fronsto V~ are saturated. Conversely,
arcs fromV* tot are all saturated, whereas there can be non-saturated arce freo. Moreover,
the following properties, which are illustrated on Figure 7, hold

 There is no arc going frotdd* to V. Otherwise the value of the cut would be infinite (arcs
insideV have infinite capacity by construction of our graph).

 There is no flow going fronv~ toV™" (see Bertsekas, 1998).

 The cut goes through all arcs going frafit tot, and all arcs going fromtoV .

Figure 7: Cut computed by our algorithid™ =V~ UVgr, with Vg = {g}, V" ={1,2}, andV ™~ =
Vi UV, with Vg = {h}, Vi ={3}. Arcs going fromsto V™~ are saturated, as well as arcs going
fromV™ tot. Saturated arcs are in bold. Arcs with zero flow are dotted.
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Recall that we assume (cf. Section 3.3) that the scalaase all non negative, and that we add
non-negativity constraints ap With the optimality conditions of Lemma 5 in hand, we can show
our first convergence result.

Proposition 6 (Convergence of Algorithm 1)
Algorithm 1 converges in a finite and polynomial number of operations.

Proof Our algorithm splits recursively the graph into disjoints parts and prosesse part recur-
sively. The processing of one part requires an orthogonal profectito an¢1-ball and a max-flow
algorithm, which can both be computed in polynomial time. To prove that the guoeeonverges,
it is sufficient to show that when the procedem@mut eFl ow is called for a graplV,E,s,t) and
computes a cufv ™,V ), then the components™ andV ~ are both non-empty.

Suppose for instance thdt = 0. In this case, the capacity of the min-cut is equajtey,, Yj,

and the value of the max-flow f§;;, Ej. Using the classical max-flow/min-cut theorem (Ford and
Fulkerson, 1956), we have equality between these two terms. Sincefibijidie of bothy and§,
we have for allj in V, Ej <Yy;, we obtain a contradiction with the existencejah V,, such that
& # Y-

Conversely, suppose now thdt = 0. Then, the value of the max-flow is stmjevuzj, and
the value of the min-cut i& y gy, Ng. Using again the max-flow/min-cut theorem, we have that

Y jevu&j = A Ygevy Ng- Moreover, by definition of, we also havijevugj <SiewY) <A T gevy No
leading to a contradiction with the existencejah V, satisfyingg; # y;. We remind the reader of

the fact that such & € V,, exists since the cut is only computed when the current estifnist@ot
optimal yet. This proof holds for any graph that is equivalent to the danbaone. |

After proving the convergence, we prove that the algorithm is corréhtthhe next proposition.

Proposition 7 (Correctness of Algorithm 1)
Algorithm 1 solves the proximal problem of Equation (3).

Proof For a group structure;, we first prove the correctness of our algorithm if the graph used is
its associated canonical graph that we der@je= (Vo, Ep,s,t). We proceed by induction on the
number of nodes of the graph. The induction hypoth25(k) is the following:

For all canonical graphs G= (V = VW, U Vy,E,s,t) associated with a group structurg, with
weights(ng)ge g, such thatV| <k, conput eFl ow(V, E) solves the following optimization prob-
lem:

1
min “uj— § &2 stvgeVy, § &9<An,and&9=0,Vj¢g  (13)
;u 2 : g’;gr : & J;u : ’ J

(E?)jevu,gevgr ]

SinceGy, = G, itis sufficient to show tha#{(|\Vp|) to prove the proposition.

We initialize the induction byH (2), corresponding to the simplest canonical graph, for which
IVgr| = [Vu| = 1). Simple algebra shows th#f(2) is indeed correct.

We now suppose that/ (k') is true for allk’ < k and consider a grapB = (V,E,st), V| = k.
The first step of the algorithm computes the variglylgjcv, by a projection on thé;-ball. This is
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itself an instance of the dual formulation of Equation (4) in a simple case, witlymup containing
all variables. We can therefore use Lemma 5 to characterize the optimaam pfy,, which yields

Yieve(Uj—Y))Y; = (maxiey, uj —Vj\) Yiew Y and Y ey, Y; = A3 gev, Nos
. (14)
oruj—y;=0,Vj eV,

The algorithm then computes a max-flow, using the scalaes capacities, and we now have two
possible situations:

1. If & =y for all j inV, the algorithm stops; we writer; = u; — &; for j in \,, and using
Equation (14), we obtain

Y jeve Wi = (MaXjey, Wjl) T jev, &5 and 3jev, & = A Ygevy Nos
or wj =0, VjeW.

We can rewrite the condition above as

3 SwE= Y (maxw )y &
g€Vyr J€9 gEVor 1€V JEVU

Since all the quantities in the previous sum are positive, this can only holdaflfg € Vg,
;€] = (max|wj]) z &j.
J€EVU J 1€V i€Vu :

Moreover, by definition of the max flow and the optimality conditions, we have

Vg € Vgr, &y < Ang, and &=\ Ng;
jgu : J;u : g€Vyr
which leads to
&0

By Lemma 5, we have shown that the problem (13) is solved.

2. Let us now consider the case where there existy/, such than #Y;- The algorithm splits
the vertex seV into two partsV*™ andV~, which we have proven to be non-empty in the
proof of Proposition 6. The next step of the algorithm removes all edgmeserV + andV ~
(see Figure 7). Processifg*,E™) and(V~,E~) independently, it updates the value of the
flow matrix E?, j €Vu, g € Vyr, and the corresponding flow vect?)jr, j €W. AsforV, we

denote by;” = VT NVy, Vi =V NVyandVg = VTNV, Vgr £V NV

Then, we notice thafy™,E™,s,t) and(V~,E~,s t) are respective canonical graphs for the
group structuregyy+ = {gNV," | g € Vgr}, andGy- = {gNV, | 9 € Vir}-

Writing wj = u; —EJ- for j in Vi, and using the induction hypothes&g|V*|) andH (|V~|),

we now have the following optimality conditions deriving from Lemma 5 applied qunaE
tion (13) respectively for the graplfg *,E*) and(V~,E™):

Wy &y = [Wylle Y jeg&] and 3 jeq€] = Ang,

15
or wy =0, (15)

vgeVy,d 9NV, {
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and
Teg _ 9 9_
Wyly = [IWg llo Y jeg€] aNd 3 jeg€j = Ang,

or wy =0. (16)

Vg e Vg, g £9nVy, {
We will now combine Equation (15) and Equation (16) into optimality conditionsEfpua-
tion (13). We first notice thagnNV,;” = g since there are no arcs betw&éhandV ~ in E (see
the properties of the cuts discussed before this proposition). It is trengbssible to replace
d by gin Equation (15). We will show that it is possible to do the same in Equation $6),
that combining these two equations yield the optimality conditions of Equation (13).

More precisely, we will show that for alj € Vg, and j € gNVy", [wj| < maxcgqy, Wi,

in which caseg’ can be replaced by in Equation (16). This result is relatively intuitive:
(s,V*)and(V~,t) being an(s,t)-cut, all arcs betweemandV ~ are saturated, while there are
unsaturated arcs betwesandV *; one therefore expects the residua]isrij to decrease on
theV side, while increasing on thé~ side. The proof is nonetheless a bit technical.

Let us show first that for aly) in Vg, [[wgll,, < maxey, [uj —y;|. We split the se¥* into
disjoint parts:

Vor' £ {9 Vg st [Iwgll,, < maxju; -y},
Vit &{jeV st 3geVvyt, jegl,
Vg—’;_ :VgT \Vg—t+ = {g EVgT S.t. ”WgHoo > rjgeij _yj|}7

Vu+7 = Vu+ \Vu++-

As previously, we denoté ™~ £ V; UV~ andV Tt 2V UV T, We want to show that
Vgt* is necessarily empty. We reason by contradiction and assum‘ég‘pha;té a.

According to the definition of the different sets above, we observe thates are going from
VT toV*, thatis, for allgin Vi, gNV;~ = &. We observe as well that the flow from
Vgr ~ oV is the null flow, because optimality conditions (15) imply that for a grgumly
nodesj € g such thaiwvj = ||wg]|. receive some flow, which excludes node¥jn" provided
VgJ;‘ # @; Combining this fact and the inequalilygeng Mg > ¥ jevs Vj (Which is a direct
consequence of the minimufg t)-cut), we have as well

> Mg= >y

geVyr jeva ™

LetjeV,,if EJ- = 0 then for some < VgT such thatj receives some flow frorg, which

from the optimality conditions (15) implies/j = ||wg||.; by definition of Vg ~, [[Wgllew >

uj —y;. Butsince at the optimunw;j = u; 731., this implies thaﬁj <y, and in turn that
Y jevi— &) = A Tgeys- Ng- Finally,

A ng= Y &< 3

9eVgr JeW g #0 e

and this is a contradiction.
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We now have that for alyin Vg, [|wgl[,, < maxey, [uj — ;|- The proof showing that for aj
inVgr, [[Wgll,, > maXxjey, [Uj —Y;l, uses the same kind of decomposition¥or, and follows

along similar arguments. We will therefore not detail it.

To summarize, we have shown that for gl Vg and j € gnVy', [wj| < max g [wil.
Since there is no flow frorr ~ to V™', that is Eg OforginyV, andj in V", we can now
replace the definition af in Equation (16) byy’ £ gnV,, the combination of Equation (15)
and Equation (16) gives us optimality conditions for Equation (13).

The proposition being proved for the canonical graph, we extend itfapan equivalent graph
in the sense of Lemma 4. First, we observe that the algorithm gives the samee wéy for two
equivalent graphs. Then, it is easy to see that the V@lgieen by the max-flow, and the chosen
(s,t)-cut is the same, which is enough to conclude that the algorithm performsautie steps for
two equivalent graphs. |

B.2 Computation of the Dual Norm Q*

As for the proximal operator, the computation of dual nddican itself be shown to solve another
network flow problem, based on the following variational formulation, whixtereds a previous
result from Jenatton et al. (2009):

Lemma 8 (Dual formulation of the dual-norm Q*.)
Letk € RP. We have

Q"(K)= min 1T st ZEg K, andvg € G, ||&%|1 < tng with Eg 0ifj ¢ 9.
EcRPXIGl 1eR §cG

Proof By definition of Q*(k), we have

By introducing the primal variable§g)geg € RI9!, we can rewrite the previous maximization
problem as
Q*(K)= max K'z, st VYgeaq, |zlo<ag,
(0=, max G, |17l < g
with the additional G| conic constraintgzg|l. < ag. This primal problem is convex and satisfies
Slater’s conditions for generalized conic inequalities, which implies thatgutaality holds (Boyd

and Vandenberghe, 2004). We now consider the Lagrangidefined as

L(2,0g,T,¥5,€) =K 2+T(1- ¥ ngag) + ¥ <Zg> (;/g>
9

geg g9eg

with the dual variablest, (Vg)ge . &} € R, xR!9/xRP*I9] such that foralg e G, &) =01if j ¢ g
and ||€9|1 < yg. The dual function is obtalned by taking the derivatives‘ofvith respect to the
primal variableg and(ag)qc g and equating them to zero, which leads to

VjE{l)--wp}7 KJ+ZQEGE? =0
Vge G, Tg-yg =0
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After simplifying the Lagrangian and flipping the sign&fthe dual problem then reduces to

i o g g _ s
min T st Vie{l,...,p}Kj=3geg&] and&; =01if j£g,
EcRPXI6] TeR Vg e g7HEg”1§Tn97

which is the desired result. |
We now prove that Algorithm 2 is correct.

Proposition 9 (Convergence and correctness of Algorithm 2)
Algorithm 2 computes the value @Qf in a finite and polynomial number of operations.

Proof The convergence of the algorithm only requires to show that the cardimdiiyin the
different calls of the functiomonput eFl ow strictly decreases. Similar arguments to those used in
the proof of Proposition 6 can show that each part of the @utsV ) are both non-empty. The
algorithm thus requires a finite number of calls to a max-flow algorithm anderges in a finite
and polynomial number of operations.

Let us now prove that the algorithm is correct for a canonical grapk. pviiceed again by
induction on the number of nodes of the graph. More precisely, we cartbielinduction hypothesis
H'(k) defined as:

for all canonical graphs G= (V, E, s,t) associated with a group structuge andsuch thatV| <Kk,
dual Nor mAux (V =V, UVy, E) solves the following optimization problem:

mint s.t. VjeV,Kj= Z &9, andvg € Vg, Z gl <tmg with &/=0if j¢g.  (17)
& 9€Vgr J€VL

We first initialize the induction by (2) (i.e., with the simplest canonical graph, such thgt| =
[Vu| = 1). Simple algebra shows th2f(2) is indeed correct.

We next consider a canonical graBh= (V, E, s,t) such thatV| =k, and suppose that’ (k— 1)
is true. After the max-flow step, we have two possible cases to discuss:

1. If Ej =y; for all j in'V, the algorithm stops. We know that any scalauch that the con-
straints of Equation (17) are all satisfied necessarily verffieg, Tng > 5 joy, Kj. We have
indeed tha 4.\, Tng is the value of arfs,t)-cut in the graph, an¥ ;, Kj is the value of the
max-flow, and the inequality follows from the max-flow/min-cut theorem (Faond Fulker-
son, 1956). This gives a lower-bound arSince this bound is reachedis optimal.

2. We now consider the case where there exjsits V, such thatfj # Kj, meaning that for
the given value oft, the constraint set of Equation (17) is not feasible §oand that the
value oft should necessarily increase. The algorithm splits the verteY satio two non-
empty partsV ™ andV~ and we remark that there are no arcs going fidmto V—, and
no flow going fromV~ to V*. Since the arcs going fromto V~ are saturated, we have
that 3 soy. g < Yjey; Kj-  Let us now consider* the solution of Equation (17). Us-
ing the induction hypothesig{’(|V~|), the algorithm computes a new valuethat solves
Equation (17) when replacing by V~ and this new value satisfies the following inequality
Ygevg TNg = Yjey; Kj- The value oft” has therefore increased and the updated §ovow
satisfies the constraints of Equation (17) and thereforet*. Since there are no arcs going
fromV ™ toV~, 1" is feasible for Equation (17) when replaci¥igby V~ and we have that
™ > 1 and thert’ = 1*.
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To prove that the result holds for any equivalent graph, similar argtsriethose used in the proof
of Proposition 6 can be exploited, showing that the algorithm computes thesdnes oft and
same(s,t)-cuts at each step. [ |

Appendix C. Algorithm FISTA with Duality Gap

In this section, we describe in details the algorithm FISTA (Beck and Teh@@@9) when applied
to solve problem (1), with a duality gap as the stopping criterion. The algordakimplemented in
the experiments, is summarized in Algorithm 3.

Without loss of generality, let us assume we are looking for models of tine Xav, for some
matrix X € R™P (typically, a linear model wherX¥ is the design matrix composedmbbservations
in RP). Thus, we can consider the following primal problem

min f(Xw) +AQ(w), (18)

WeRP

in place of problem (1). Based on Fenchel duality arguments (Borwei.ewis, 2006),
f(Xw) +AQ(wW) + f*(—k), forw € RP, k € R" andQ* (X "k) <A,

is a duality gap for problem (18), wheff& (k) = sup,[z"k — f(2)] is the Fenchel conjugate df
(Borwein and Lewis, 2006). Given a primal variabie a good dual candidate can be obtained
by looking at the conditions that have to be satisfied by the (paik) at optimality (Borwein and
Lewis, 2006). In particular, the dual varialdes chosen to be

K = —p 'Of (Xw), with p £ max{A~*Q* (X 'Of (Xw)), 1}.

Consequently, computing the duality gap requires evaluating the dual Q6yras explained in
Algorithm 2. We sum up the computation of the duality gap in Algorithm 3. Moreowerrefer
to the proximal operator associated wkf2 as proxq.2’ In our experiments, we choose the line-
search parameterto be equal to 5.

Appendix D. Speed Comparison of Algorithm 1 with ParametricMax-Flow Solvers

As shown by Hochbaum and Hong (1995), min-cost flow problems, armhiticular, the dual
problem of (3), can be reduced to a spedifazametric max-flowproblem. We thus compare our
approach (ProxFlow) with the efficient parametric max-flow algorithm psegd by Gallo et al.
(1989) and a simplified version of the latter proposed by Babenko andh&gid2006). We refer
to these two algorithms as GGT and SIMP respectively. The benchmark lidigtstal on the same
data sets as those already used in the experimental section of the papsy;: () three data sets
built from overcomplete bases of discrete cosine transforms (DCT), asihectively 16, 10° and
10° variables, and (2) images used for the background subtraction taskosed of 57600 pixels.
For GGT and SIMP, we use thpar aF software which is &++ parametric max-flow implementa-
tion available aht t p: / / waw. avgl ab. conf andrew' sof t . ht m . Experiments were conducted on

27. As a brief reminder, it is defined as the function that maps the vadtoiRP to the (unique, by strong convexity)
solution of Equation (3).
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Algorithm 3 FISTA procedure to solve problem (18).

1: Inputs: initial wg) € RP, Q, A > 0, £gap > O (precision for the duality gap).

2: Parametersv > 1,Lg > 0.

3: Outputs: solutionw.

4: Initialization : Y1) = W(0), t1=1,k=1.

5: while { conput eDual i t yGap(Wk_1)) > €gapj dO

Find the smallest integex > 0 such that )
F(Proxag) (k) < F(Yo) +80 OF (V) + 511800 113,
with £ £ Ly andA g £y g —Proxag (Yo )-

Ly < Lg_1v¥.

100 Wk < ProXpg) (Yik))-

11 g+ (144/1+t2) /2.

120 Y1) < W+ E(W(k) —W(k_1))-

i1
13: k<< k+1.
14: end while
15: Return: w <= wW_1).

Procedureconput ebual i t yGap(w)
1 K+ —p~10f (Xw), with p £ max{A~1Q*(X'Of (Xw)), 1}.
2: Return: f(Xw)+AQ(w) + f*(—k).

a single-core 2.33 Ghz. We report in the following table the average gaedime in seconds of
each algorithm for 5 runs, as well as the statistics of the corresponddbteprs:

| Number of variablep || 10000 | 200000] 1000000 | 57600 |

V| 20000 | 200000/ 2000000 | 57600

|E| 110000| 500000| 11000000| 579632
ProxFlow (in sec.) 0.4 3.1 1130 17
GGT (in sec.) 24 26.0 5250 16.7
SIMP (in sec.) 12 131 284.0 8.31

Although we provide the speed comparison for a single valagthfe one used in the corresponding
experiments of the paper), we observed that our approach consisietgrforms GGT and SIMP
for values ofA corresponding to different regularization regimes.
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