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Abstract

We study graph estimation and density estimation in highegigions, using a family of density
estimators based on forest structured undirected grdphiodels. For density estimation, we do
not assume the true distribution corresponds to a forabemrave form kernel density estimates of
the bivariate and univariate marginals, and apply Kruskafjorithm to estimate the optimal forest
on held out data. We prove an oracle inequality on the exéglssfrthe resulting estimator relative
to the risk of the best forest. For graph estimation, we aw@rsihe problem of estimating forests
with restricted tree sizes. We prove that finding a maximurghtespanning forest with restricted
tree size is NP-hard, and develop an approximation algurftir this problem. Viewing the tree
size as a complexity parameter, we then select a forest datiagsplitting, and prove bounds on ex-
cess risk and structure selection consistency of the ptwee&xperiments with simulated data and
microarray data indicate that the methods are a practitahative to Gaussian graphical models.

Keywords: kernel density estimation, forest structured Markov nekywhigh dimensional infer-
ence, risk consistency, structure selection consistency

1. Introduction

One way to explore the structure of a high dimensional distribufidor a random vectoX =
(Xa,...,Xq) is to estimate its undirected graph. The undirected g@mtssociated withP hasd
vertices corresponding to the variablgs ..., X4, and omits an edge between two nodesand

X; if and only if X; andX; are conditionally independent given the other variables. Currently, the
most popular methods for estimatiigassume that the distributidd is Gaussian. Finding the
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graphical structure in this case amounts to estimating the inverse covariatroe Mathe edge
betweenX; andXy is missing if and only ifQx = 0. Algorithms for optimizing the/;-regularized
log-likelihood have recently been proposed that efficiently producesspstimates of the inverse
covariance matrix and the underlying graph (Banerjee et al., 2008;raiee@t al., 2007).

In this paper our goal is to relax the Gaussian assumption and to develparaoretric methods
for estimating the graph of a distribution. Of course, estimating a high dimenhsimtidbution is
impossible without making any assumptions. The approach we take here reddalie graphical
structure to be a forest, where each pair of vertices is connected bysabnmeopath. Thus, we relax
the distributional assumption of normality but we restrict the family of undiregtaghs that are
allowed.

If the graph forP is a forest, then a simple conditioning argument shows that its demsian
be written as

d

_ P(Xi,X;)
P00 = T, ooy [1P0%

whereE is the set of edges in the forest (Lauritzen, 1996). H#pg, ;) is the bivariate marginal
density of variable andX;j, andp(xy) is the univariate marginal density of the varialle With
this factorization, we see that it is only necessary to estimate the bivariatsasdiate marginals.
Given any distributiorP with densityp, there is a tred and a densitypr whose graph i§ and
which is closest in Kullback-Leibler divergence po WhenP is known, then the best fitting tree
distribution can be obtained by Kruskal’s algorithm (Kruskal, 1956) tbeoalgorithms for finding
a maximum weight spanning tree. In the discrete case, the algorithm caplimslap the estimated
probability mass function, resulting in a procedure originally proposedhmyC and Liu (1968).
Here we are concerned with continuous random variables, and we estitedtivariate marginals
with nonparametric kernel density estimators.

In high dimensions, fitting a fully connected spanning tree can be expectedetit. We
regulate the complexity of the forest by selecting the edges to include usatg aglitting scheme,
a simple form of cross validation. In particular, we consider the family adgostructured densities
that use the marginal kernel density estimates constructed on the first paofittbe data, and
estimate the risk of the resulting densities over a second, held out partitienopfimal forest in
terms of the held out risk is then obtained by finding a maximum weight spanaragtffor an
appropriate set of edge weights.

A closely related approach is proposed by Bach and Jordan (2068)eva tree is estimated
for the random vectoY =W Xinstead ofX, whereW is a linear transformation, using an algorithm
that alternates between estimatiffgand estimating the treE. Kernel density estimators are used,
and a regularization term that is a function of the number of edges in the tieeluded to bias
the optimization toward smaller trees. We omit the transformatigrand we use a data splitting
method rather than penalization to choose the complexity of the forest.

While tree and forest structured density estimation has been long recogsze useful tool,
there has been little theoretical analysis of the statistical properties of susitydestimators. The
main contribution of this paper is an analysis of the asymptotic propertieseasdtfdensity estima-
tion in high dimensions. We allow both the sample sizend dimensior to increase, and prove
oracle results on the risk of the method. In particular, we assume that tveriate and bivariate
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marginal densities lie in adlder class with exponefft (see Section 4 for details), and show that

" o K +Kk d
R(Pe) —minR(pr) = Or ( log(nd) (nB/(2+2[5) T e ))

whereR denotes the risk, the expected negative Iog—likelihdACst the number of edges in the
estimated forest, andk* is the number of edges in the optimal forEstthat can be constructed in
terms of the kernel density estimates

In addition to the above results on risk consistency, we establish conditoles which

PR =R"Y) -1

asn— o, whereFJ(k) is theoracle forest—the best forest witk edges; this result allows the dimen-
sionalityd to increase as fast @s(exp(nﬁ/(”m)), while still having consistency in the selection of
the oracle forest.

Among the only other previous work analyzing tree structured graphicdetads Tan et al.
(2011) and Chechetka and Guestrin (2007). Tan et al. (2011) antlgzerror exponent in the
rate of decay of the error probability for estimating the tree, in the fixed diimersetting, and
Chechetka and Guestrin (2007) give a PAC analysis. An extension toathes@n case is given by
Tan et al. (2010).

We also study the problem of estimating forests with restricted tree sizes. lhapplications,
one is interested in obtaining a graphical representation of a high dimehdisingoution to aid in
interpretation. For instance, a biologist studying gene interaction netwatt# be interested in a
visualization that groups together genes in small sets. Such a clusterirgpepphrough density
estimation is problematic if the graph is allowed to have cycles, as this can retangial densities
to be estimated with many interacting variables. Restricting the graph to be adiocesvents the
curse of dimensionality by requiring only univariate and bivariate margiaasities. The problem
of clustering the variables into small interacting sets, each supported bg-sttuetured density,
becomes the problem of estimating a maximum weight spanning forest withiatreston the size
of each component tree. As we demonstrate, estimating restricted treereits fran also be useful
in model selection for the purpose of risk minimization. Limiting the tree size ginethar way
of regulating tree complexity that provides larger family of forest to selechfin the data splitting
procedure.

While the problem of finding a maximum weight forest with restricted tree sizebraayatural,
it appears not to have been studied previously. We prove that the prabMP-hard through a re-
duction from the problem of Exact 3-Cover (Garey and Johnsorf)1%here we are given a skt
and a familys of 3-element subsets &f, and must choose a subfamily of disjoint 3-element subsets
to coverX. While finding the exact optimum is hard, we give a practical 4-approximatigorithm
for finding the optimal tree restricted forest; that is, our algorithm outputsest whose weight is
guaranteed to be at leastv(F*), wherew(F*) is the weight of the optimal forest. This approx-
imation guarantee translates into excess risk bounds on the construastdusing our previous
analysis. Our experimental results with this approximation algorithm show tbanhibe effective
in practice for forest density estimation.

In Section 2 we review some background and notation. In Section 3 werpire@$wo-stage al-
gorithm for estimating high dimensional densities supported by forests, apdovide a theoretical
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analysis of the algorithm in Section 4, with the detailed proofs collected in agnapp In Section

5, we explain how to estimate maximum weight forests with restricted tree sizeechio 6 we

present experiments with both simulated data and gene microarray datalssis the problem is
to estimate the gene-gene association graphs.

2. Preliminaries and Notation

Let p*(x) be a probability density with respect to Lebesgue megsuy@nR® and letxD, ... X"
be n independent identically distributekf-valued data vectors sampled frgph(x) whereX(®) =
(xl('),...,xé')). Let X; denote the range Mj(') and letX = X3 x --- x Xyg. For simplicity we assume
thatXj = [0,1].

A graph is a forest if it is acyclic. IF is ad-node undirected forest with vertex Sét =
{1,...,d} and edge seE(F) C {1,...,d} x {1,...,d}, the number of edges satisfis(F)| < d,
noting that we do not restrict the graph to be connected. We say thabalility density function
p(x) is supported by a forest i the density can be written as

_ P(Xi, X))
PE(X) = (LJ_)DE(F) 506 PO k|€_JF P(X), 1)

where eaclp(x;, Xj) is a bivariate density ox; x Xj, and eactp(xy) is a univariate density of.
More details can be found in Lauritzen (1996).
Let 74 be the family of forests witkd nodes, and lefy be the corresponding family of densities:

Py = {p >0: /x p(x)dp(x) = 1, and p(x) satisfies (1) for some € fd} . 2

To bound the number of labeled spanning forestslarmdes, note that each such forest can be
obtained by forming a labeled tree dn+ 1 nodes, and then removing node- 1. From Cayley’s
formula (Cayley, 1889; Aigner and Ziegler, 1998), we then obtain theWirtig.

Proposition 1 The size of the collectiofiy of labeled forests on d nodes satisfies
|Fal < (d+2)97L,
Define the oracle forest density

g = argminD(p*(|q) 3)

ge Py

where the Kullback-Leibler divergen€® p|| q) between two densitiggandq is

D(pla) = [ pxlog & dx

under the convention that 01¢@/q) = 0, andplog(p/0) = o for p # 0. The following is proved by
Bach and Jordan (2003).
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Proposition 2 Let ¢ be defined as i3). There exists a forestt¢ 74, such that

oo PX) 4
S ST s Ui (4)

where [(x;,X;) and p'(x) are the bivariate and univariate marginal densities 6f p

For any density(x), the negative log-likelihood riskR(q) is defined as

R(g) = —Elogq(X / p*(x)logq(x)

where the expectation is defined with respect to the distributiofi of
It is straightforward to see that the densify defined in (3) also minimizes the negative log-
likelihood loss:

q" =argminD(p*||q) = arg minR(q).
qety qe Py

Let p(x) be the kernel density estimate, we also define

~ | P09 10ga(x)dx
X

We thus define the oracle risk B = R(g*). Using Proposition 2 and Equation (1), we have

R = R() = R(pg)
* *(X|,XJ) . )
— | | ;
xp <<., ng* (%) (%) kgﬁ 0g(p" (%)) |dx
P (X, X)) . .
= = log——"027  gxdxi — | q
(LD)EEF /Xixx, 062100 56 pr (o) X kGZVF*/XkP (%) log P (xi) dx
= - (% X)) + H (X), )
(i,i)€E(F*) KEVE+
where ( |
i Xj) = _POGX)
I(X"XJ)_/JquJp (xi,X;j)lo gp< )p*(xj)dx'dxl

is the mutual information between the pair of variabgsx; and

/p )1og p* (Xi) dxc

is the entropy. While the best forest will in fact be a spanning tree, thsitiEsp*(x,x;) are

in practice not known. We estimate the marginals using finite data, in terms ohal ldensity
estimates,, (X, X;) over a training set of size;. With these estimated marginals, we consider all
forest density estimates of the form

~ p\nl(Xi,Xj) D
Pr(X) = B v\ B () P (%c)-
( ) (iyj)IE_IE(F) pnl(xi) pnl(xj) kg nl( )
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Within this family, the best density estimate may not be supported on a full sgatrei since a
full tree will in general be subject to overfitting. Analogously, in high dimenal linear regression,
the optimal regression model will generally be a fudtlimensional fit, with a nonzero parameter
for each variable. However, when estimated on finite data the variandelbfieodel will dominate
the squared bias, resulting in overfitting. In our setting of density estimatiowillveegulate the
complexity of the forest by cross validating over a held out set.

There are several different ways to judge the quality of a foresttsted density estimator. In
this paper we concern ourselves with prediction and structure estimation.

Definition 3 ((Risk consistency)) For an estimatoq, € %y, the excess risk is defined agR) — R".
The estimatof, is risk consistent with convergence raigif

lim limsupP(R(g,) —R* > Md,) =0.

M—© n e

Definition 4 ((Estimation consistency)) An estimatorg, € %y is estimation consistent with con-
vergence ratd,, with respect to the Kullback-Leibler divergence, if

lim limsup P (D(pg-

M—e n e

Definition 5 ((Structure selection consistency))An estimatort, € 4 supported by a foredt, is
structure selection consistent if

P(E(F) #E(F")) 0,
as n goes to infinity, where*Rs defined in(4).

Later we will show that estimation consistency is almost equivalent to riskstensy. If the
true density is given, these two criteria are exactly the same; otherwise, #stirnansistency
requires stronger conditions than risk consistency.

It is important to note that risk consistency is an oracle property, in theeshiag the true
densityp*(X) is not restricted to be supported by a forest; rather, the propertysassesw well a
given estimatof approximates the best forest density (the oracle) within a class.

3. Kernel Density Estimation For Forests

If the true densityp*(x) were known, by Proposition 2, the density estimation problem would be
reduced to finding the best forest structke satisfying

Fd = arg minR(pg) = arg minD(p*(| pr).
FeFqy FeFy
The optimal foresF; can be found by minimizing the right hand side of (5). Since the entropy
termH(X) = S H(X«) is constant across all forests, this can be recast as the problem iaffind
the maximum weight spanning forest for a weighted graph, where the twe{gh) of the edge
connecting nodesand j is I (X;;X;). Kruskal’s algorithm (Kruskal, 1956) is a greedy algorithm
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that is guaranteed to find a maximum weight spanning tree of a weighted. grafite setting of
density estimation, this procedure was proposed by Chow. and Liu (88G8Bjvay of constructing
a tree approximation to a distribution. At each stage the algorithm adds ac@agecting that pair
of variables with maximum mutual information among all pairs not yet visited by Itq@rithm, if
doing so does not form a cycle. When stopped early, &fted — 1 edges have been added, it yields
the besk-edge weighted forest.

Of course, the above procedure is not practical since the true deyigityis unknown. We
replace the population mutual informatibfX;; X;) in (5) by the plug-in estimatE](Xi,Xj), defined
as

10 (%, Xi :/ (X, X ) log — 02

ol J> X x X Pl J) g n(Xi) Pn Xj)
where pn(X;, Xj) and pa(X;) are bivariate and univariate kernel density estimates. Given this esti-
mated mutual information matrid, = |:|/;](X5,Xj)i| , we can then apply Kruskal’s algorithm (equiv-

alently, the Chow-Liu algorithm) to find the best forest strucfere

Since the number of edges &f controls the number of degrees of freedom in the final density
estimator, we need an automatic data-dependent way to choose it. We adfofitthing two-stage
procedure. First, randomly partition the data into two fetand?, of sizesn; andn,; then, apply
the following steps:

1. Using D4, construct kernel density estimates of the univariate and bivariate ra&gind

calculately, (X, X;) for i, j € {1,...,d} with i # j. Construct a full tred5i® ¥ with d — 1

edges, using the Chow-Liu algorithm.

2. Using?,, prune the tre@rgld*l) to find a foresﬁ(lk) with k edges, for < k<d-1.

Oncelfn(lk) is obtained in Step 2, we can calculﬁlgk) according to (1), using the kernel density
estimates constructed in Step 1. '

3.1 Step 1: Estimating the Marginals

Step 1 is carried out on the data €. Let K(-) be a univariate kernel function. Given an eval-
uation point(x;,X;), the bivariate kernel density estimate fof;, X;) based on the observations

{)(i(s),xj(s)}s,@l is defined as

(s) O
N 1 1 X7 =X X Xj
pnl(Xi’Xj):rTl z h%K< h2 I>K< J h2 )7 (6)

where we use a product kernel with > 0 be the bandwidth parameter. The univariate kernel
density estimat@p, (x«) for X is

o1 o1 (XY X
pnl(xk)—nlzth< h >7 (7)

se Dy
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Algorithm 1 Chow-Liu (Kruskal)

1: Input datady = {XWI, ... XM,

2: Calculatel\/lnl, accordlng to (6), (7), and (8).

3: Initialize E©) = 0

4: fork=1,...,d—1do

5. (i, j®) + argmay; ;, My, (i, j) such thaE &~ U {(i%, j¥)} does not contain a cycle
6 E® k-1 {(i(k), j(k))}

7: Output treeF® Y with edge seE (@Y.

whereh; > 0 is the univariate bandwidth. Detailed specificationskgr) andh;z, hy will be dis-
cussed in the next section.

We assume that the data lie imladimensional unit cubg = [0,1]9. To calculate the empirical
mutual informatiori]l(xi,xj), we need to numerically evaluate a two-dimensional integral. To do
so, we calculate the kernel density estimates on a grid of points. We chroegduation points on
each dimensiork;; < Xy < - -+ < Xm for theith variable. The mutual informatidTal(Xi,Xj) is then
approximated as

R l m m Xk,X
In, (X, X)) = ; P, ( thXéJ |09Apnl(—lm

By (%) P (%01) ®)

The approximation error can be made arbitrarily small by choasisgfficiently large. As a prac-
tical concern, care needs to be taken that the fagiQrswi) and pn, (X;j) in the denominator are
not too small; a truncation procedure can be used to ensure this. Orgte thewutual information

matrix My, = |:|/;]1(Xi,Xj):| is obtained, we can apply the Chow-Liu (Kruskal) algorithm to find a
maximum weight spanning tree.

3.2 Step 2: Optimizing the Forest

The full treelféf_l) obtained in Step 1 might have high variance when the dimersisnarge,
leading to overfitting in the density estimate. In order to reduce the variamcgrume the tree; that
is, we choose forest witk< d — 1 edges. The number of eddeis a tuning parameter that induces
a bias-variance tradeoff.

In order to choosé, note that in stagk of the Chow-Liu algorithm we have an edge E&? (in
the notation of the Algorithm 1) which corresponds to a fot%%)c with k edges, wher@éf)) is the

union ofd disconnected nodes. To sel&ctve choose among thbtreeslf,gf’), |§n(11)7 ,ﬁn(;“”.
Let Pn,(Xi,Xj) and pn,(Xc) be defined as in (6) and (7), but now evaluated solely based on the
held-out data inD,. For a densitypg that is supported by a forest we define the held-out negative

log-likelihood risk as

IEinz(pF) (9)
B P(Xi,Xj)
- P, (X, X})log —~ <=~ dxdx; — /p (%) log p(x«) dxc
(ivj%EF/';(iX‘Xj e (6%9) p(x%i) P(X;) J kEVF et ()
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The selected forest is theﬁ;ﬂo where

k= argmin R, (ﬁﬁn(k))
ke{0,...,d—1} 1
and Whereﬁﬁ(k) is computed using the density estim@ig constructed orD;.
nq
For computational simplicity, we can also estimigs

(8) (9
1 pn1<xi 7Xj ) o~ (s)
argmax — ' log || Pny (X7)
) bn (XJ )k "

=
I

ke{0....d-1} M2 &7, (i,j)eE® pnl()(l )

(CRVIC)
, X
T N L Y
ke{0....d-1} M2 &5, (i,j)cE® pnl()<1 )p (X] )
£(d-1)

This minimization can be efficiently carried out by iterating overdhel edges irfn;
Oncek is obtained, the final forest density estimate is given by

RO

pr pnl(XhXJ
Pn(X) = Pu(6X) g
" (i,j)eE® Py (%) Pry (X)) |_| ny

Remark 6 For computational efficiency, Step 1 can be carried out simultaneougiyStep 2. In
particular, during the Chow-Liu iteration, whenever an edge is added'th Ehe log-likelihood of
the resulting density estimator af, can be immediately computed. A more efficient algorithm to
speed up the computation of the mutual information matrix is discussed imé&igi.

3.3 Building a Forest on Held-out Data

Another approach to estimating the forest structure is to estimate the margistiete on the
training set, but only build graphs on the held-out data. To do so, we§tishate the univariate and
bivariate kernel density estimates usif¥, denoted bypn, (x) and pn, (X,X;). We also construct
a new set of univariate and bivariate kernel density estimates aingn, () and pn, (X;,X;). We
then estimate the “cross-entropies” of the kernel density estinatder each pair of variables by
computing

' pnl(xivxj)
I LX) = / Xi, Xj) l0g —————"— dx dX;
)= P09, o ) S
m
Pry (X Xej )
~ i) log kD) 10
2,2 Prlrexplog TR a0

Our method is to USE,zynl(Xi,Xj) as edge weights on a full graph and run Kruskal’s algorithm until
we encounter edges with negative weight. Zelbe the set of all forests ameh, (i, j) = IAnZ,nl(Xi , Xj).
The final forest is then

Fn, = arg maxn, (F) = arg minR,, (pr)
FeF FeF

By building a forest on held-out data, we directly cross-validate alldorests.
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4. Statistical Properties

In this section we present our theoretical results on risk consistenagtigte selection consistency,
and estimation consistency of the forest density estirpate ﬁﬁ@.
d

To establish some notation, we wrag = Q(by) if there exists a constastsuch that, > ch,
for sufficiently largen. We also writea,, =< by, if there exists a constamtsuch thata, < ch, and
b, < ca, for sufficiently largen. Given ad-dimensional functiorf on the domainx, we denote its
L2(P)-norm and sup-norm as

Il = /sz(x)dPx(X), IIfIImeEU)?\f(X)I

wherePy is the probability measure induced Ky Throughout this section, all constants are treated
as generic values, and as a result they can change from line to line.

In our use of a data splitting scheme, we always adopt equally sized sphisiplicity, so that
n; = Nz = n/2, noting that this does not affect the final rate of convergence.

4.1 Assumptions on the Density
Fix B> 0. For anyd-tuplea = (ay,...,0q) € N andx = (x1,...,Xg) € X, we definec® = [ x|".
Let D® denote the differential operator
Da _ aG1+'“+(Xd .
T X
For any real-valued-dimensional functiorf on X that is | |-times continuously differentiable at

pointxg € X, let P§E<)0(X) be its Taylor polynomial of degrel | at pointxo:

X—Xg)9
T S ]
oyt +og<[p] ~ d:

Fix L > 0, and denote b¥ (B, L,r,%o) the set of functions : X — R that are| 3 |-times continuously
differentiable atxg and satisfy

(%)~ PR, (9] < LIx—x0l8, Wx e B(xo,r)

whereB(xo,r) = {X: |[X—Xol|2 < r} is theL,-ball of radiusr centered axo. The se&(B,L,r,Xg) is
called the(B,L,r,Xo)-locally Holder class of functions. Given a s&twe define

Z(Bv L7 r? A) = mXoGAZ(B7 L7 r7 XO)
The following are the regularity assumptions we make on the true density fongti).
Assumption 1 Foranyl <i < j <d, we assume

(D1) there exist > 0and L, > O such that for any ¢ Othe true bivariate and univariate densities
satisfy

p*(XhXj) € z(BaLZC(IOgn/n)TiZ a)q XX])

and )
p'(x) € = (B, Lu.c(logn/m =1 X )
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(D2) there exists two constantg and ¢ such that

ct < inf  pr(x,x) < sup  pr(X,Xj) <c2
Xi,Xj €X X X X, X[ €X X X;

p-almost surely.

These assumptions are mild, in the sense that instead of adding constrathts jomt density
p*(x), we only add regularity conditions on the bivariate and univariate marginals

4.2 Assumptions on the Kernel

An important ingredient in our analysis is an exponential concentratiait fes the kernel density
estimate, due to Gand Guillou (2002). We first specify the requirements on the kernetim

K(-).
Let (Q, 4) be a measurable space and4ebe a uniformly bounded collection of measurable
functions.

Definition 7 ¥ is a bounded measurable VC class of functions with characteristics A antis if
separable and for every probability measure P(6h 4) and any0 < € < 1,

A \%
N (elIF L@y Tl - llme) < <s> :

where Rx) = sup. |f(x)| and N, 7, | - [|L,(p)) denotes the-covering number of the metric
space(Q, || - [l,r)); that is, the smallest number of balls of radius no larger tfgagin the norm
| - IL,p)) Needed to covef .

The one-dimensional density estimates are constructed using a Kearal the two-dimensional
estimates are constructed using the product kernel

Ka(x,y) = K(x) - K(y).
Assumption 2 The kernel K satisfies the following properties.

(K1) /K(u)du: 1, / K2(u)du < o andsupK (u) < ¢ for some constant c.

ueR

(K2) K is a finite linear combination of functions g whose epigraph$gpt {(s,u) : g(s) > u},
can be represented as a finite number of Boolean operations (uniomtardection) among
sets of the form{(s,u) : Q(s,u) > @(u)}, where Q is a polynomial o x R and @ is an
arbitrary real function.

(K3) K has a compact support and for ahy 1 and1 < ¢ < |B]
/mB K (t)]dt < oo, and/\K(t)yfdt <o, /tf’K(t)dt _o.
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Assumptions (K1), (K2) and (K3) are mild. As pointed out by Nolan and Pbi{&987), both
the pyramid (truncated or not) kernel and the boxcar kernel satisfy thidoilows from (K2) that
the classes of functions

1 u—-
o= {th <hl> "UER, h1>0}

1 u—- t—-\ .
are bounded VC classes, in the sense of Definition 7. Assumption (K8htiy says that the
kernelK(-) should beB-valid; see Tsybakov (2008) and Definition 6.1 in Rigollet and Vert (2009)
for further details about this assumption. Kernels satisfying (K2) includefiinear combinations
of functions of the formp(p(x)) wherep is a polynomial andp is a bounded function of bounded
variation (Giré and Guillou, 2002; Nolan and Pollard, 1987). Therefore, the keooeistructed in
terms of Legendre polynomials as in Riggolet and Vert (2009) and Tsyb@008), satisfy (K2)
and (K3).

We choose the bandwidtlig andh, used in the one-dimensional and two-dimensional kernel
density estimates to satisfy

1
hy = ('Ogn>“B (12)
n
1
hy, = ("f”) . (13)

This choice of bandwidths ensures the optimal rate of convergence.

4.3 Risk Consistency

Given the above assumptions, we first present a key lemma that estatiishates of convergence
of bivariate and univariate kernel density estimates in the sup norm. lé @frthis and our other
technical results are provided in Appendix A.

Lemma 8 Under Assumptions 1 and 2, and choosing bandwidths satis{jlidpand (13), the
bivariate and univariate kernel density estimafgs;,x;) and p(xx) in (6) and (7) satisfy

max sup p(Xi, %) — p* (X, Xj)| >¢€
((iJ)E{l~-=d}x{1»~--=d}(xi,xj)e)qxxj‘ (6 1) = B (6., )

2 5 02
< cpd“exp| —czn*F(logn) ke

fore > 4c4hg. Hence, choosing

logn-+logd
e=0 <4C4 nB/<1+B)>
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we have that

~ logn+logd
max su Xi,Xi) — P (X%, %j)| =0 B 14
(i.)E{Lyd} X {L,....d} (Xi,xj)e,'?xxj P0G, X) = P (%,%3)| = Op < nB/(1+B) ) (14)

Similarly,

B (| _max, suplp(x) — p(x)] > ¢ | < csdexp( —coni ogn) e
|€{l ,,,,, d}xiem

_ logn—+logd
—p =0 — o | - 15
(G o PO — P P(\/ 2B/ (1+28) ) (15)

To describe the risk consistency result,ﬂé?*l) = P4 be the family of densities that are sup-
ported by forests with at most— 1 edges, as already defined in (2). For & < d —1, we define

?ék) as the family ofd-dimensional densities that are supported by forests with at knedges.
Then

and

PO ceMc...ca®Y. (16)

Now, due to the nesting property (16), we have

inf R(ge) > inf R(ge)>---> inf R(gr).
arery’ grery” grery’

We first analyze the forest density estimator obtained using a fixed nurleeigesk < d;
specifically, consider stopping the Chow-Liu algorithm in Stage 1 dfteerations. This is in
contrast to the algorithm described in 3.2, where the pruned tree size matidally determined
on the held out data. While this is not very realistic in applications, since thegtpairametek is
generally hard to choose, the analysis in this case is simpler, and candibydirploited to analyze
the more complicated data-dependent method.

Theorem 9 (Risk consistency)Let ﬁFA<k) be the forest density estimate vv\iEE(lfd(k))| =Kk, obtained
d

after the first k iterations of the Chow-Liu algorithm, for some kO,...,d — 1}. Under Assump-
tions 1 and 2, we have

R(Pew)— inf R(gr) =Op

k
d Or€®y )

K logn+logd logn+logd
nB/ (1+B) n2B/(1+2p)

Note that this result allows the dimensidto increase at a rate( \/n?B/(1+28) /1og n) and the

number of edgek to increase at a rataz( \/nB/(1+B) /1og n), with the excess risk still decreasing
to zero asymptotically.

The above results can be used to prove a risk consistency result atdrelependent pruning
method using the data-splitting scheme described in Section 3.2.
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Theorem 10 Let ﬁx be the forest density estimate using the data-dependent pruning method in

Section 3.2, and Iqu be the estimate wntE(Fd )| = k obtained after the first k iterations of the
Chow-Liu algorithm. Under Assumptions 1 and 2, we have

p((k*+? Iogn+|ogd+d Iogn+|ogd>

R(Pe) = o i R(Pego) = B R e ey

0<k<d-1
where K = arg miry,.4_1 R(ﬁﬁék)).

The proof of this theorem is given in the appendix. A parallel result @aoliained for the
method described in Section 3.3, which builds the forest by running Kraskgorithm on the
heldout data.

Theorem 11 Let Fn2 be the forest obtained using Kruskal's algorithm on held-out data, and let
— |Fn,| be the number of edges i,. Then

. . =~ [logn+logd logn—+logd
R(Be, ) — MInR(pr) = p(<k +R) 2 kR )

min B/ (L+B) 28/ (1+28)

where Kk = |F*| is the number of edges in the optimal forest arg min: . » R(Pr ).

4.4 Structure Selection Consistency

In this section, we provide conditions guaranteeing that the proceduteitduse selection con-
sistent. Again, we do not assume the true dengi{) is consistent with a forest; rather, we are
interested in comparing the estimated forest structure to the oracle forestmvimimizes the risk.
In this way our result differs from that in Tan et al. (2011), althoughgtere similarities in the
analysis.

By Proposition 2, we can define

p:<k> = arg minR(gE ).

T et

Thust(k) is the optimal forest withirﬂ’ék) that minimizes the negative log-likelihood loss. lI:‘AéF)
be the estimated forest structure, fixing the number of edges\at want to study conditions under

which
PR =F¥) -1

Let us first consider the population version of the algorithm—if the algorittrmot recover

the best foresFofk) in this ideal case, there is no hope for stable recovery in the data verden.
key observation is that the graph selected by the Chow-Liu algorithm oplgras on the relative
order of the edges with respect to mutual information, not on the specifiahiafarmation values.
Let

E = {{(i,j),(k,ﬂ)} i< jandk< 4, j#£andi,j,k (e {1,...,d}}.

The cardinality ofE is
|E| = O(d%).
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Lete= (i, ) be an edge; the corresponding mutual information associatedevisttdenoted as

le. If for all (e,€) € E, we havele # |g, the population version of the Chow-Liu algorithm will
always obtain the unique solutidﬂ(k). However, this condition is, in a sense, both too weak and
too strong. It is too weak because the sample estimates of the mutual informelties will only
approximate the population values, and could change the relative ordésome edges. However,
the assumption is too strong because, in fact, the relative order of maayailg might be changed
without affecting the graph selected by the algorithm. For instance, Whe8 andl. andley are

the largest two mutual information values, it is guaranteeddlaaid€e’ will both be included in the
learned foresFék) whetherg > lg Or lg < lg.

Define thecrucial sety C ‘£ to be a set of pairs of edgés €) such thale # |¢ and flipping the
relative order of¢ andlg changes the learned forest structure in the population Chow-Liu algorithm,
with positive probability. Here, we assume that the Chow-Liu algorithm rarglselects an edge
when a tie occurs.

The cardinality| 7| of the crucial set is a function of the true densify(x), and we can expect
|7] < |E|. The next assumption provides a sufficient condition for the two-stageegure to be
structure selection consistent.

Assumption 3 Let the crucial sey be defined as before. Suppose that

((i,j).,(k,é))ej‘( i) — (X Xe)| N

B /logn+logd
WhereLF,_Q< M)

This assumption is strong, but is satisfied in many cases. For example, phangth population

mutual informations differing by a constant, the assumption holds. Assumptidridafly satisfied
nB/(1+B)

it logn+logd -

Theorem 12 (Structure selection consistency) et Fofk) be the optimal forest Withiﬁ’ék) that min-

imizes the negative log-likelihood loss. LI%Q‘) be the estimated forest wilk-«| = k. Under
d
Assumptions 1, 2, and 3, we have
P(RIY = F) 1
as n— oo,

The proof shows that our method is structure selection consistent as doting alimension
increases ag = o (exp(n®/(1*P))); in this case the error decreases at the rate

0 (exp<4logd —c(log n)?lﬁ Iogd)) .

4.5 Estimation Consistency

Estimation consistency can be easily established using the structure selectgistency result

above. Define the everfif = {Ifd(k) = Fofk)}. Theorem 12 shows that(247) — 0 asn goes to
infinity.
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Lemma 13 Let ﬁﬁw be the forest-based kernel density estimate for some fixefk...,d — 1},
d
and let

P 1 = arg minR(qg ).
R grel

Under the assumptions of Theorem 12,
D(p:d(m I 5,fd<k)) = R(ﬁ,fd(lo) - R(p;d(w)

on the eveniMy.

Proof According to Bach and Jordan (2003), for a given fofesind a target distributiop*(x),
D(p*|lar) = D(p"|| pr) + D(Pe oF) 17)

for all distributionsgr that are supported by. We further have

D(p*(|a) /p )logp*(x /p ) loga(x)dx= /p )logp*(x)dx+R(q) (18)
for any distributiong. Using (17) and (18), and conditioning on the evéfi, we have
D(F’%k)”ﬁﬁd(k)) = D(p*Hﬁ,fd(k))*D(p*H p;;ék))

= [ P 00logp" (ot R(Begn) = [ P (010gp ()= R(p o)
= R(p\ﬁék))_R(p:;d(k))y

which gives the desired result. |

The above lemma combined with Theorem 9 allows us to obtain the following estimatien c
sistency result, the proof of which is omitted.

Corollary 14 (Estimation consistency) Under Assumptions 1, 2, and 3, we have

i~ B logn+logd logn+logd
D(pFék)H p,fd(k)) =0Op (k \/I’]B/(HB) +d \/nzﬁ/(l‘i‘zﬁ)

conditioned on the everi.

5. Tree Restricted Forests

We now turn to the problem of estimating forests with restricted tree sizes. Agssisd in the
introduction, clustering problems motivate the goal of constructing fotegitared density estima-
tors where each connected component has a restricted number of 8dgestimating restricted
tree size forests can also be useful in model selection for the purpds& ofinimization, since the
maximum subtree size can be viewed as an additional complexity parameter.
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Algorithm 2 Approximate Max Weight-Restricted Forest

1: Input graphG with positive edge weights, and positive integjer 2.
2: Sort edges in decreasing order of weight.
3: Greedily add edges in decreasing order of weight such that

(a) the degree of any node is at mbstl;
(b) no cycles are formed.

The resulting forest i§" = {T1, T2, ..., Tm}-
4: Output R =U;TreePartition(Tj,t).

Definition 15 A t-restricted forest of a graph G is a subgraphdech that

1. R is the disjoint union of connected componefils, ..., T}, each of which is a tree;
2. |Ti| <t for each i< m, whergT;| denotes the number of edges in the ith component.

Given a weight wassigned to each edge of G, an optimal t-restricted forgstdtisfies

w(F*) = max w(F
(R") emax (F)

where WF ) = S o We is the weight of a forest F ang (G) denotes the collection of all t-restricted
forests of G.

Fort =1, the problem is maximum weighted matching. However foi7, we show that finding
an optimalk-restricted forest is an NP-hard problem; however, this problem appeato have been
previously studied. Our reduction is from Exact 3-Cover (X3C), shtmbe NP-complete by Garey
and Johnson 1979). In X3C, we are given aXset family § of 3-element subsets &f, and we
must choose a subfamily of disjoint 3-element subsets to cév@ur reduction constructs a graph
with special tree-shaped subgraphs cafladgetssuch that each gadget corresponds to a 3-element
subset ins. We show that finding a maximum weightestricted forest on this graph would allow
us to then recover a solution to X3C by analyzing how the optimal forest nawstign each of the
gadgets.

Given the NP-hardness for finding optintalestricted forest, it is of interest to study approx-
imation algorithms for the problem. Our first algorithm is Algorithm 2, which runsnia stages.
In the first stage, a forest is greedily constructed in such a way thiatresmte has degree no larger
thant (a property that is satisfied by dHrestricted forests). However, the trees in the forest may
have more thah edges; hence, in the second stage, each tree in the forest is partiticaredpA
timal way by removing edges, resulting in a collection of trees, each of wlaslsize at most
The second stage employs a procedure weTeakPartiti on that takes a tree and returns the
optimalt-restricted subforesflreePartition is a divide-and-conquer procedure of Lukes (1974)
that finds a carefully chosen set of forest partitions for each chilttesblt then merges these sets
with the parent node one subtree at a time. The details dfrtbePar ti ti on procedure are given
in Appendix A.
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Theorem 16 Let k be the output of Algorithm 2, and lef fbe the optimal t-restricted forest. Then
1
w(R) = ZW(R").

In Appendix A.7, we present a proof of the above result. In that sectienalso present an
improved approximation algorithm, one based on solving linear programdijrilatat-restricted
forestR such thatv(R/) > %W(Ft*). Although we cannot guarantee optimality in theory, algorithm 2
performs very well in practice. In Figure 1, we can see that the appraximgicks out d-restricted
forest that is close to optimal among the set otakstricted forests.

Histogram of Forest Weights

50000
|

count
30000
|

- The solution of
our algorithm

l

[ T T T T T 1
0.00 005 0.10 0.5 020 025 0.30

10000
|

0
L

mutual information weight

Figure 1: Histogram distribution of weights of &lfestricted forests on 11 nodes witk- 7. Edge
weights are the mutual informations computed on the training data.

5.1 Pruning Based ort-Restricted Forests

For a givent, after producing an approximate maximum weiginestricted foresk using Dy, we
prune away edges usirip. To do so, we first construct a new set of univariate and bivariatecke
density estimates using,, as before,pn,(x) and pn,(X,xj). Recall that we define the “cross-
entropies” of the kernel density estimafgs for each pair of variables as

Pry (X, X))

I LX) = / Xi,Xi ) log — i dx dx;
o 2) = [ PreX00 o ) X
122 Pry (Xiis X¢j)

~ — ,X lo /\1—’1

me kzl =] Py (a.x¢1)log Py (Xki) Pry (Xej)

We then eliminate all edges, j) in R/ for which Inz,nl(Xi,Xj) < 0. For notational simplicity, we
denote the resulting pruned forest agairFAby
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Algorithm 3 t-Restricted Forest Density Estimation

1: Divide data into two halve®; andDs.

2: Compute kernel density estimatdss and pn. for all pairs and single variable marginals.
3: For all pairs(i, j) computeIAnl()Q,Xj) according to (8) anﬁwl(xi,xj) according to (10).
4: Fort =0, ..., tina Wheretsng is chosen based on the application

1. Compute or approximate (for> 2) the optimalt-restricted foresf using ﬂh as edge
weights.

2. PruneR, to eliminate all edges with negative Weiglﬁt§nl.

5: Among all pruned forestpg:, select = arg Mirpi<,. ﬁnz(ﬁA).

To estimate the risk, we simply u&s, (P ) as defined in (9), and select the forEsaccording
to
= arg minRy, (Bg)-
0<t<d-1
The resulting procedure is summarized in Algorithm 3.

Using the approximation guarantee and our previous analysis, we havthéhpopulation
weights of the approximaterestricted forest and the optimal forest satisfy the following inequality.
We state the result for a gene@approximation algorithm; for the algorithm given aboees 4,
but tighter approximations are possible.

Theorem 17 Assume the conditions of Theorem 9. For2, Ietl?t be the forest constructed using a
c-approximation algorithm, and letFoe the optimal forest; both constructed with respect to finite
sample edge weigh®®,, = In,. Then

=

~ . . = [logn+logd
w(R) > EW(Ft )+0Op <(k +k) rﬂ3/(1+f3)>

wherek and K are the number of edges R and F*, respectively, and w denotes the population
weights, given by the mutual information.

As seen below, although the approximation algorithm has weaker theogimaintees, it out-
performs other approaches in experiments.

6. Experimental Results

In this section, we report numerical results on both synthetic data sets anshmay data. We
mainly compare the forest density estimator with sparse Gaussian graphaasirfdating a multi-
variate Gaussian with a sparse inverse covariance matrix. The sparsgi&@amodels are estimated
using the graphical lasso algorithm (glasso) of Friedman et al. (20@i7¢hvis a refined version of
an algorithm first derived by Banerjee et al. (2008). Since the glagécatly results in a large pa-
rameter bias as a consequence ofttheegularization, we also compare with a method that we call
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therefit glassg which is a two-step procedure—in the first step, a sparse inverseams@ matrix
is obtained by the glasso; in the second step, a Gaussian model is refit Withegtilarization, but
enforcing the sparsity pattern obtained in the first step.

To quantitatively compare the performance of these estimators, we calcuddtgyttikelihood
of all methods on a held-out data s@i. With T, andﬁnl denoting the estimates from the Gaussian
model, the held-out log-likelihood can be explicitly evaluated as

1 1 . EA Q|
- = Z(x( _ F (s) _ = ny
lgauss= My E {Z(X Hn, )" Qn, (X Hny) + IOg <( T[) ) } .

scDs;

For a given tree structuife, the held-out log-likelihood for the forest density estimator is

—~ ( (S
1 pnl d 7X]
lge=— 3 log N B (%) |
25T, <i,j>|e_|E(ﬁ> (%) Py (X U

wherepp, (-) are the corresponding kernel density estimates, using a Gaussiahwhnglug-in
bandwidths.

Since the held-out log-likelihood of the forest density estimator is indexetthdywumber of
edges included in the tree, while the held-out log-likelihoods of the glassdhanrefit glasso are
indexed by a continuously varying regularization parameter, we needdafimay to calibrate
them. To address this issue, we plot the held-out log-likelihood of thetfdesssity estimator as
a step function indexed by the tree size. We then run the full path of theogdakdiscretize it
according to the corresponding sparsity level, that is, how many edgeskacted for each value
of the regularization parameter. The size of the forest density estimatdhasgarsity level of the
glasso (and the refit glasso) can then be aligned for a fair comparison.

6.1 Synthetic Data

We use a procedure to generate high dimensional Gaussian and nssidBaiata which are con-
sistent with an undirected graph. We generate high dimensional grapttiitain cycles, and so
are not forests. In dimensiah= 100, we sample; = n, = 400 data points from a multivariate
Gaussian distribution with mean vecior= (0.5,...,0.5) and inverse covariance mat@x The di-
agonal elements d@ are all 62. We then randomly generate many connected subgraphs oantain
no more than eight nodes each, and set the corresponding non-aiggments irQQ at random,
drawing values uniformly from-30 to —10. To obtain non-Gaussian data, we simply transform
each dimension of the data by its empirical distribution function; such a tnanafmn preserves
the graph structure but the joint distribution is no longer Gaussian (sed aly 2009).

To calculate the pairwise mutual informatid?(‘b(.-;xj), we need to numerically evaluate two-
dimensional integrals. We first rescale the data jat@]? and calculate the kernel density estimates

on a grid of points; we choosa= 128 evaluation point&(l) < xi(z) << xi(m) for each dimension
i, and then evaluate the bivariate and the univariate kernel density estionatgs grid.
There are three different kernel density estimates that we use—thé@abivade, the univariate

kde, and the marginalized bivariate kde. Specifically, the bivariate kdemsity estimate oR;, X;
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based on the observati0|{1)§1-(s),Xj(s)}sg@l is defined as

(s) C
i, Xi) = — K K ,
P(X. X)) m z hoihy; ( hoi > < hyj

se Dy

using a product kernel. The bandwidtts, hyj are chosen as

— 1.06-mind G, o075 — ko251 | 1/2p12)
h2k—l.06 mln{ok, 134 } n )

wheredy is the sample standard deviation @(és)}sggl and0io.75, Ok0.25 are the 75% and 25%
sample quantiles ofX.* }sco,.

In all the experiments, we s@t= 2, such a choice db and the “plug-in” bandwidthny (and
hik in the following) is a very common practice in nonparametric Statistics. For meadgjesee
Fan and Gijbels (1996) and Tsybakov (2008).

Given an evaluation poing, the univariate kernel density estimgie) based on the observa-
tions {X.* }sc, is defined as

o _
NS 1K<Xk Xk>

M 4, i hak

wherehy > 0 is defined as

_ 1.06-mind &, Fo7s— ko251 | 1/2pr1)
hy = 1.06 mln{ok, 134 } n :

Finally, the marginal univariate kernel density estimajgxy) based on the observatio{miés)}%@l
is defined by integrating the irrelevant dimension out of the bivariate keleesity estimates
P(xj, %) on the unit squaréd, 1]2. Thus,

POV S L)
W(’@-m; PIXj s Xic)-
=1

With the above definitions of the bivariate and univariate kernel densiipna®s, we consider
estimating the mutual informatidr{X;; X;) in three different ways, depending on which estimates
for the univariate densities are employed.

T ar (K) () =~ (K) ()
ltast( X, Xj) = X ) log pix 7, X
ast( J) (m_l)zkzlf :1p(xi j ) gp( i j )
R O ) N 'O N S PN () ()
— > P )logp(x"") ———= > P(Xj *)logp(x; *)
m—:l.kZ1 m*1521 ] ]
= (K (0)
~ 1 22 ) () P0G, X]
|medium(Xi7Xj) = (m_l)zk » lp(xi 7Xj )Iogp\(xk/))p\(x([,))
~ I 2 S o) O amare®) o)
lslow(Xi, Xj) = pix 7, x: ")logp(x ', % ") —
slow(Xi, Xj) (m_l)zk:”; (" 7,x; ) logp(~ 7, % )
L (G TP ) N SR SO () NSRS )
m( ) logpm(x ) — m(Xj ) logpm (X °)
m-—1,4& m—1 /4 ] i
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The terms “fast,” “medium” and “slow” refer to the theoretical statistical ratesonvergence
of the estimators. The “fast” estimate uses one-dimensional univariatel lggnsity estimators
wherever possible. The “medium” estimate uses the one-dimensional kiemgity estimates in
the denominator op(x;, X;)/(p(x)p(X;), but averages with respect to the bivariate density. Finally,
the “slow” estimate marginalizes the bivariate densities to estimate the univariaitie® While
the rate of convergence is the two-dimensional rate, the “slow” estimateesnse consistency of
the bivariate and univariate densities.
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Figure 2: (Gaussian example) Boxplotsigf, Imedium andlgiow 0N three different pairs of vari-
ables. The red-dashed horizontal lines represent the populatiorsvalue

Figure 2 compareEast, Imedium andisiow 0N different pairs of variables. The boxplots are based
on 100 trials. Compared to the ground truth, which can be computed exactly (dahssian case,
we see that the performance Igfogium and lgiow is better than that o This is due to the fact
that simply replacing the population density with a “plug-in” version can leadasdnl estimates;
in fact, last is NOt even guaranteed to be non-negative. In what follows, we enﬂal@y,m for
all the calculations, due to its ease of computation and good finite samplerpanfoe. Figure 3
compares the bivariate fits of the kernel density estimates and the Gaussials meer four edges.
For the Gaussian fits of each edge, we directly calculate the bivariate seowplgance and sample
mean and plug them into the bivariate Gaussian density function. From tgepéve and contour
plots, we see that the bivariate kernel density estimates provide reasditafide these bivariate
components.

A typical run showing the held-out log-likelihood and estimated graphs igged in Figure 4.
We see that for the Gaussian data, the refit glasso has a higher hé@dydikelihood than the
forest density estimator and the glasso. This is expected, since the Gausslal is correct. For
very sparse models, however, the performance of the glasso is warsthti of the forest density
estimator, due to the large parameter bias resulting fron?thregularization. We also observe
an efficiency loss in the nonparametric forest density estimator, compathd tefit glasso. The
graphs are automatically selected using the held-out log-likelihood, an@evéhat the nonpara-
metric forest-based kernel density estimator tends to select a sparser mioidkelthe parametric
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Figure 3: Perspective and contour plots of the bivariate Gaussian.fiteveernel density estimates
for two edges of a Gaussian graphical model.

Gaussian models tend to overselect. This observation is new and is quite iymioasimulations.

Another observation is that the held-out log-likelihood curve of the glagsmmes flat for less
sparse models but never goes down. This suggests that the held-dilkelibgpod is not a good
model selection criterion for the glasso. For the non-Gaussian datattfevagh the refit glasso
results in a reasonable graph, the forest density estimator performs itiehib terms of held-out
log-likelihood risk and graph estimation accuracy.

To compare with-restricted forests, we generated additional Gaussian and noni&aggs-
thetic data as before except on a different graph structure. In Figure use 400 training examples
while varying the size of heldout data to compare the log-likelihoods of fotardnt methods; the
log-likelihood is evaluated on a third large data set. In Figure 6, we cormitienon-Gaussian data,
use 400 training data and 400 heldout data, and generate graphs witreluksit log-likelihood
across the four methods. We compute bandwidth, heldout log-likelihoadmarual information
same as before.

We observe that although creating a maximum spanning tree (MST) on th®utetthta is
asymptotically optimal; it can perform quite poorly. Unless there are copiousuat of heldout
data, held-out MST overfits on the heldout data and tend to give largbgjrizn contrast-restricted
forest has the weakest theoretical guarantee but it gives the bdidbigood and produces sparser
graphs. It is not surprising to note that MST on heldout data improve®ldeuit data size in-
creases. Somewhat surprisingly though, Training-MST-with-prunivity aiestricted forest appear
to be insensitive to the heldout data size.
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6.2 Microarray Data

In this example, we study the empirical performance of the algorithms on a mrgastaset.

6.2.1 ARABIDOPSISTHALIANA DATA

We consider a data set based on Affymetrix GeneChip microarrays fplahgArabidopsis thaliana
(Wille et al., 2004). The sample size is= 118. The expression levels for each chip are pre-
processed by a log-transformation and standardization. A subsetgdrs from the isoprenoid
pathway are chosen, and we study the associations among them usingste tjie refit glasso,
and the forest-based kernel density estimator.

From the held-out log-likelihood curves in Figure 7, we see that the @eeebkernel density
estimator has a better generalization performance than the glasso andttgkssf. This is not
surprising, given that the true distribution of the data is not Gaussianth&nobservation is that
for the tree-based kernel density estimator, the held-out log-likelihong @chieves a maximum
when there are only 35 edges in the model. In contrast, the held-out Iddpdid curves of the
glasso and refit glasso achieve maxima when there are around 28Geadde30 edges respectively,
while their predictive estimates are still inferior to those of the tree-basedkeensity estimator.

Figure 7 also shows the estimated graphs for the tree-based kerniy destisnator and the
glasso. The graphs are automatically selected based on held-out logeliiclifhe two graphs
are clearly different; it appears that the nonparametric tree-basedlldgnsity estimator has the
potential to provide different biological insights than the parametric Gaugsaphical model.

6.2.2 HAPMAP DATA

This data set comes from Nayak et al. (2009). The data set contaipmétfics chip measured
expression levels of 4238 genes for 295 normal subjects i€émdre d’Etude du Polymorphisme
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Humain(CEPH) and the International HapMap collections. The 295 subjects commeféur dif-
ferent groups: 148 unrelated grandparents in the CEPH-Utah pedjgt& Han Chinese in Beijing,
44 Japanese in Tokyo, and 60 Yoruba in Ibadan, Nigeria. Since wetafind common network
patterns across different groups of subjects, we pooled the data¢ogethan = 295 byd = 4238
numerical matrix.

We estimate the full 4238 node graph using both the forest density estimasgrifed in
Section 3.1 and 3.2) and the MeinshausérBiann neighborhood search method as proposed in
Meinshausen and iBilmann (2006) with regularization parameter chosen to give it about same
number as edges as the forest graph.

To construct the kernel density estimafs;, x;) we use an array of Nvidia graphical processing
units (GPU) to parallelize the computation over the pairs of variaklesmdX;. We discretize the
domain of(X;, X;) into a 128x 128 grid, and correspondingly employ 12828 parallel cells in the
GPU array, taking advantage of shared memory in CUDA. Parallelizing in thysimcreases the
total performance by approximately a factor of 40, allowing the experimesdriplete in a day.

The forest density estimated graph reveals one strongly connected mwempaf more than
3000 genes and various isolated genes; this is consistent with the analjaisak et al. (2009) and
is realistic for the regulatory system of humans. The Gaussian graphrstailar component
structure, but the set of edges differs significantly. We also ran-testricted forest algorithm
fort = 2000 and it successfully separates the giant component into three smoatipoents. For
visualization purposes, in Figure 8, we show only a 934 gene subgfapk etrongly connected
component among the full 4238 node graphs we estimated. More detailgdia@the biological
implications of this work will left as a future study.

7. Conclusion

We have studied forest density estimation for high dimensional data. Femsty estimation skirts
the curse of dimensionality by restricting to undirected graphs without cywlate allowing fully
nonparametric marginal densities. The method is computationally simple, andtimalogize of
the forest can be robustly selected by a data-splitting scheme. We haviésbsthoracle properties
and rates of convergence for function estimation in this setting. Our expaafresults compared
the forest density estimator to the sparse Gaussian graphical model in tebuth@redictive
risk and the qualitative properties of the estimated graphs for human gpression array data.
Together, these results indicate that forest density estimation can beuatoséfor relaxing the
normality assumption in graphical modeling.
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Appendix A. Proofs

In the following, we present the detailed proofs of all the technical results
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Figure 8: A 934 gene subgraph of the full estimated 4238 gene netwak: é&stimated forest
graph. Right: estimated Gaussian graph. The bold gray edges in the doaph are
missing from the Gaussian graph and vice versa; the thin black edgdsaaeel y both
graphs. Note that the layout of the genes is the same for both graphs.

A.1 Proof of Lemma 8

We only need to consider the more complicated bivariate case (14); tHeinedlb) follows from

the same line of proof. First, given the assumptions, the following lemma cabtbmed by an
application of Corollary 2.2 of Gim and Guillou (2002). For a detailed proof, see Rinaldo and
Wasserman (2010).

Lemma 18 (Giné and Guillou, 2002) Lep be a bivariate kernel density estimate using a kernel
K(-) for which Assumption 2 holds and suppose that

supsup [ K3(u)p*(t —uhp)du< D < oo (19)
tex2hp>0/X?

1. Let the bandwidthhbe fixed. Then there exit constants-10 and C> 0, which depend only
on the VC characteristics df> in (11), such that for any £> C and0 < € < ¢1D/||Kz||w,
there exists §> 0 which depends og, D, ||Kz||» and the VC characteristics ofzKsuch that
for all n > ng,

P <supyﬁ(u) —Ep(u)| > 28) < Lexp{—ilog(l+ccl/(4L)) nl"ész } (20)
uex? 1
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2. Leth — 0in such a way that n§ylogh, — o, and lete — 0 so that

B logrn
s_Q< nh% ), (21)

where |, = Q(hgl). Then(20) holds for sufficiently large n.

From (D2) in Assumption 1 andK1) in Assumption 2, it is easy to see that (19) is satisfied.
Also, since .
B
hy = (Iogn) + ’
n

it is clear thainh%/log h, — . Part 2 of Lemma 18 shows that there exisandcz such that

N ™

P( sup  |p(%i,%;) —Ep(xi,%j)| > ) < czexp<—c3n158(logn)liﬁsz> (22)
(Xi7Xj

JEX X Xj

for all € satisfying (21).
This shows that for aniy j € {1,...,d} with i # j, the bivariate kernel density estimgig;, x;)
is uniformly close taEp(x;, Xj). Note thatEp(x;, Xj) can be written as

= 1 Ui — X Vi—Xj\ .
Ep(m):/h%K< 'hz >K< th ‘) P (U, vj) dudy;.

The next lemma, from Rigollet and Vert (2009), provides a uniform dindound on the bias
termEp\(Xiaxj) - p* (Xiaxj)'

Lemma 19 (Rigollet and Vert, 2009) Und€iD1) in Assumption 1 an@dK3) in Assumption 2, we
have

sup \Eﬁ(xi,xj)—p*(xi,xj)\nghg/ (W2 +v2)P/2K (WK (v) dudv
(X, Xj ) EXi x Xj X2

where L is defined iiD1) of Assumption 1.

Let ¢y = Ll/2(u2+v2)B/2K(u)K(v)dudv From the discussion of Example 6.1 in Rigollet
X

and Vert (2009) andK1) in Assumption 2, we know thais < « and only depends ol and .
Therefore
. . €
P( sup !p(Xian)—Ep(ﬁ,Xj)|>2> =0 (23)
(X, Xj ) EXi x Xj

fore > 4c4h[23.

The desired result in Lemma 8 is an exponential probability inequality showa@thk,x;) is
close top*(x;, X;). To obtain this, we use a union bound:

P max sup  |p(xi,Xj)—p* (X, %) >¢€
((ivj)€{17-~-vd}><{17~~-7d}(xi,x,-)eXiij| 06 5) = 706, %)) )

+ d2P< sup |p*(xi,%j) —EP(x;,xj)| >
(Xi,Xj ) EXi x Xj

N ™

< d2P< sup  |P(Xi, %)) —EP(Xi,Xj)| >
(X X)) EXi X X

NI ™

) . (24)
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The first result follows from (22) and (24).
Choosing

logn—+logd
e=Q <4C4 BB ) )

the result directly follows by combining (22) and (23)

A.2 Proof of Theorem 9

First, from(D2) in Assumption 1 and Lemma 8, we have for any j,

PO, X;) _1> :op< Iogn+|ogd) '

su
(i,i)e{L,..., d} {Ld} (%) e)[q)xx, <p*(xi,xj) nB/(B+1)

The next lemma bounds the deviationR(fpr) from R(p;:) over different choices of € %q
with |E(F)| < k. In the following, we let

={F € %4: |E(F)| <k}
denote the family ofl-node forests with no more tharedges.
Lemma 20 Under the assumptions of Theorem 9, we have

o logn+logd \/Iogn+|ogd
sup |R —R(pg)| =0 k\/ +d .
Fef;’k) IR(PR) = R(pr)| = Or ( nB/B+D) 28/ (1+-26)

Proof For anyF < 7(,("), we have

IR(Pr) —R(PE)|

< |3 (L pxxtoapuxana — [ pix.x)logpxxdxa )|
(i) EE(F) N A <X
Ag(F)
=0 ( [, xtoap (g~ [ i ogpian |
V X X

v

Ao(F)
where deg (k) is the degree of nodein F. Lete > 4c4h[23 and letQ,, be the event that
ma su X, Xj)— p (X%, x;)| <Ee.
e B XI)E)E)XXJ [P, X)) — P (%, X))

By Lemma 8,Qn, holds except on a set of probability at most
2 5 ye2
cod“exp| —can®® (logn) TFe” | .
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From(D2) in Assumption 1, and from the fact thdog(1+ u)| < 2|u| for all smallu, we have that,
on the evenf),

sup Ai(F) <cke.
Fegy

logn—+logd
nB/(1+B)

B /logn+logd

Fef

By choosinge = Q (404 > we conclude that

By a similar argument and using the fact tiyatjdeg- (k) — 1| = O(d), we have

B /logn+logd

Fes
n

The next auxiliary lemma is also needed to obtain the main result. It showR(fha} does not
deviate much fronRR(pg ) uniformly over different choices df fd(k).

Lemma 21 Under the assumptions of Theorem 9, we have

5\ _BH logn+logd logn+logd
sup IR(Br) ~ R(pr)| = O [k vay/ |
,:ef(;k)’ (Pe) = R(pr)| P( nB/(B+1) 2B/ (1+2P)

Proof The argument is similar to the proof of Lemma 20. |

The proof of the main theorem follows by repeatedly applying the previoaddmmas. As in
Propaosition 2, with

p;;d(k) = arg minR(gr ),

aF GTék)
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we have

= R(ﬁ,fd(k))_R\AA 0) +R(Pe R(p;;dm)
) (

logn+logd logn+logd
— R(Pe) - 9n o9 d\/gg> (25)

Pe) +Op B/ 28/(12B)

Ew) —
S
g +0n )25 08 0 [P e
o (kyf

logn+logd d \/Iogn+logd>

IN

ﬁ(@ék)) —-R

(
R(
(
(

= R(p%k))—R p;id(m +Op (27)

B logn-+logd logn—+logd
= O (k\/ B/ +d\/ n2B/(1+28) )
where (25) follows from Lemma 21, (26) follows from the fact tlﬁ%tk) is the minimizer oﬁ(-),
d
and (27) follows from Lemma 20.

nB/(B+1) n2B/(1+2B)

A.3 Proof of Theorem 10

To simplify notation, we denote

B logn—+logd
k) = k=@

logn+logd
Wn(d) = dy\/—agaezp -

Following the same proof as Lemma 21, we obtain the following.
Lemma 22 Under the assumptions of Theorem 9, we have
sup [R(Pe) Ry = Op (10K + (@) ).
Fer®
whereR,, is the held out risk.

To prove Theorem 10, we now have

R(@g@)—R(ﬁﬁd(k*)) = (ﬁ ) — (@&)Jrﬁm(@k)—R(ﬁﬁd(k*))
= Op(¢n (E) Wn(d)) + Ry (P 5) R(Pege)
< Op(gn(K) + Wn(d)) + Roy (P Peter) — R(Pese) (28)

— 0 (@n(R)+ (k) + Un(@)

where (28) follows from the fact thétis the minimizer Oﬁnz(‘).
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A.4 Proof of Theorem 11
Using the shorthand

B logn+logd
(k) =k\/ — 5rarp

B logn+logd
Wn(d) =d\/ — o571r2m)

We have that

R(Pe, ) —R(Pe-) = R(Pg, ) —Ru(Pr, )+ Rno(Pr, ) —R(PE)

= Op(@n(K) +Wn(d)) +Rn,(Pg, ) —R(Pr+)
< Op(¢n(k) + Wn(d)) + Rey(Pr+) — R(Pr:) (29)
= Op(¢h(K) +on(K") + Wn(d))

where (29) follows becaud®, is the minimizer oRR,,(-)

A.5 Proof of Theorem 12

We begin by showing an exponential probability inequality on the differéeteeen the empirical
and population mutual informations.

Lemma 23 Under Assumptions 1, 2, there exist generic constayngnd g satisfying
~ B 1,
P<|I(X5;X,-)—I(X5;Xj)\ > s) < csexp| —cen*P (logn) TFe” | .

for arbitrary i, j € {1,...,d} with i # j, ande — 0 so that

:-a( /o)

where , = Q(h, ).
Proof For anye =Q (1/ grn> we have
P (1% X)) = T4 )| > ¢)

_ o P X)) oo P(%i, ;)
- P<‘/Mjp(X"X')'Ogp*(m)p*(x;)d”dx’ v P08 5 0 > 2)
< 2(1] (970 10gP(x.) ~ Blx. ) log Bl xy) il > 5
2 (1 (700 0gp ()P ) O logPlx Bl kx| > 5 ) (20)
Xi X Xj
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Since the second term of (30) only involves univariate kernel denditp&®s, this term is domi-
nated by the first term, and we only need to analyze

>k * ~ ~ s
P(!/)q p (p" (i, %j) log p*(xi,xj) — P(xi, Xj) log P(xi, x;)) dxdxj| > 2>'
X

The desired result then follows from the same analysis as in Lemma 20. [ |

Let

B logn+logd
"”_Q< BT )

be defined as in Assumption 3. To prove the main theorem, we see thd?é@eﬂFd(k) implies that
there must be at least exist two pairs of edgefp) and(k, /), such that

sign(1(%, X)) 1 (%X ) # sign(T06, %) = T(X, %) ). (31)
Therefore, we have
p(E < F¥)
< P((I(Xi,Xj)—l(Xk,Xg)> : (Toq,x,-) —T(xk,xg)) <0, for some(i, j), (k,é)) .
With d nodes, there can be no more théfi2 pairs of edges; thus, applying a union bound yields

P ((I (X, Xj) —1 (Xk,Xz)> : <T(Xi,Xj) —IA(Xk,Xg)> <0, for some(i, j), (k,f))
< d24((i’j)r?%)ejp((l(m,xj)—|(xk,xg)) - (T()g,xj)—r(xk,xg)) < o).

Assumption 3 specifies that

min 1%, X)) — 1 (X%, X)| > 2La.
min 106,X5) = 1% X0} > 2L

Therefore, in order for (31) hold, there must exist an edgp € J such that

~

1%, Xj) = 1%, Xj)| > Ln.

Thus, we have

o max P ((106,%)) =106 %) ) - (T X)) = T4 X)) < 0)

B i,je{]T,??j(}’i;&j <‘ (X" J) (Xh ])| > n)
= CSEXP<—Cen153(Iogn)1+1B|_§) , (32)

where (32) follows from Lemma 23.
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Chaining together the above arguments, we obtain
p(EN #FY)

< P((l()g,xj)—l(xhxg)) (()g X;) — ><o for some(i, j), (k,€)>
= f((i,j{?ﬁ% ey (((X Xi) = ka’> ( X %) XkXé)) )
<t max P (106,X) T4, %) > L)

iLie{l,...d}i#]

IN

d4c5exp<— N (logn) T8 L2

= 0 <c5 exp (4Iogd —cg(log n)ﬁlﬁ Iogd))
= 0(1).

The conclusion of the theorem now directly follows.

A.6 Proof of NP-hardness ott-Restricted Forest

We will reduce an instance of exact 3-cover (X3C) to an instance of findimaximum weight
t-restricted forestt(RF).

Recall that in X3C, we are given a finite sétwith |X| = 3q and a family of 3-element subsets
of X, § = {Sc X: |9 = 3}. The objective is to find a subfamily C § such that every element of
X occurs in exactly one member §f, or to determine that no such subfamily exists.

Suppose then we are giveh= {xi,...,xn} andS = {Sc X : |§ = 3}, with m= |§|. We
construct the grap@ in an instance of-RF as follows, and as illustrated in Figure 9.

For eachx € X, add anelement nod¢o G. For eachS € §, construct agadgef which is a
subgraph comprised ofreexus nodgethreejunction nodesand thredure nodes see Figure 9. We
assign weights to the edges in a gadget in the following manner:

w(elementjunction) = 2
w(nexuslure;) = 5
w(lureg,lure;) = 10
w(lureg,lures) = 10
w(nexusjunction) = N > 31m.

Note that the weighil is chosen to be strictly greater than the weight all of the non-nexus-junction
edges in the graph combined. To complete the instantdéf lett = 7.

Lemma 24 Suppose G is a graph constructed in the transformation from X3C descaib@dk.
Then E* must contain all the nexus-junction edges.

Proof The set of all nexus-junction edges together form a well-deftrebtricted forest, since
each subtree has a nexus node and 3 junction nodes. Call thisFornésbme foresf’ is missing
a nexus-junction edge, thért must have weight strictly less th&h sinceN is larger than the sum
of all of the non-nexus-junction edges. |
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Figure 9: Gadget constructed in the reduction from X3C

Lemma 25 Each subtree in F can contain at most one nexus node.

Proof Suppose a subtrélein F* contains two nexus nodes. Then it must contain 6 junction nodes
by Lemma 24. Thusl contains at least 8 nodes, and therefore violatesthstriction constrainfll

Lemma 26 For each nexus node contained ifi,he corresponding three junction nodes are either
connected to all or none of the three neighboring element nodes.

Proof By the previous two Lemmas 24 and 25, each subtree is associated with atmaagtdget,

and hence at most org&c= §, and moreover each gadget has as least one associated subtree.
Without loss of generality, we consider a region of the graph local to sobikeaay subtree. By

the size constraint, a subtree cannot contain all the adjacent elemestaratiall the lure nodes.
We now perform a case analysis:

1. If a subtree contains no element nodes and all the lure nodes, themiefght N + 25. Call
this anoFF configuration.
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2. If a subtree contains two element nodes, and a second subtreesoftities contains all the
lure nodes, then the total weight of both subtreedNs+®4. This is suboptimal because we
can convert to aFF configuration and gain additional weight without affecting any other
subtrees. Hence, such a configuration cannot exigtin

3. If a subtree contains two element nodes and;|uaad a second subtree contains justdure
and lure, then the total weight of the two subtrees I$-8 19. This is again suboptimal.

4. If a subtree contains an element node and both lmd lure, then there cannot be a second
subtree in region local to the gadget. The weight of this one subtr@iis- 2+ 5+ 10) =
3N + 17, which is suboptimal.

5. If a subtree contains all three element nodes and no lure nodes,sawdrd subtree con-
tains all the lure nodes, then the total weight3M + 6) + 20 = 3N + 26. Call this anoN
configuration.

Thus, we see that each gadgeEihmust be either anN or anoFF configuration. |

Recall that each gadget corresponds to a 3-element s8liseghe family 5. Since a gadget
in an oN configuration has greater weight than a gadget imamnconfiguration, an optimatRF
will have as many gadgets in tlzev configuration as possible. Thus, to solve X3C we can find the
optimalt-RF and, to obtain a subcovsf, we place allSinto §’ that correspond toN gadgets in
the forest. By Lemma 25 each subtree can contain at most one nexusviicieimplies that each
ON gadget is connected to element nodes that are not connected to angoteigets. Thus, this
results in a subcover for which each elemenKadppears in at most orfee §'.

A.7 Proof of Theorem 16

Recall that we want to show that Algorithm 2 returns a forest with weigtitithat least a quarter
of the weight of the optiméatrestricted forest. Let us distinguish two types of constraints:

(a) the degree of any node is at mgst
(b) the graph is acyclic.

Note that the optimél-restricted foresk* satisfies both the constraints above, and hence the max-
imum weight set of edges that satisfy both the constraints above has \aelghstw(F*). Recall

that the first stage of Algorithm 2 greedily adds edges subject to theseomatraints—the next
two lemmas show that the resulting forest has weight at bagE ).

Lemma 27 The family of subgraphs satisfying the constraints (a) and (b) form a Zentience
family. That is, for any subgraph T satisfying (a) and (b), and for anyeeslg G, there exist at
most two edge$e;,e,} in T such that TU {e} — {e1, &>} also satisfies constraints (a) and (b).

Proof LetT be a subgraph satisfying (a) and (b) and suppose weeaddu,v) in T. Then the
degrees of botlu andv are at most + 1. If no cycles were created, then we can simply remove
an edge il containingu (if any) and an edge it containingv (if any) to satisfy the degree con-
straint (a) as well. If adding created a cycle of the forf. ., (U, u), (u,v), (v,V)}, then the edges
(U,u) and(v,V') can be removed to satisfy both constraints (a) and (b). |
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Lemma 28 Let F be the forest output after Step 1 of algorithm 2. The¢Ryw> %W(Ft*).

Proof Let F** be a maximum weight forest that obeys both constraints (a) and (b). Sieap-
timal t-restructed forest* obeys both these constraints, we hax&") < w(F**). By a theorem

of Hausmann et al. (1980), in@independence family the greedy algorithm i%-approximation

to the maximum weighp-independent set. By Lemma 27, we know that the set of all subgraphs
satisfying constraints (a) and (b) is a 2-independent family. Hem@@) > Jw(F**) > iw(F*). ®

We can now turn to the proof of Theorem 16.
Proof Given a graplG, let F; be the forest output by first step of Algorithm 2, andfgtbe the
forest outputted by the second step. We claim @) > %W(Fl); combined with Lemma 28, this
will complete the proof of the theorem.

To prove the claim, we first show that given any tiewith edge weights and maximum degree
t > 2, we can obtain a sub-fordstwith total weightw(F ) > %W(T), and where the number of edges
in each tree in the forest is at most — 1. Indeed, root the tre€ at an arbitrary node of degree-1,
and call an edge oddor evendepending on the parity of the number of edges in the unique path
betweere and the root. Note that the set of odd edges and the set of even ediEspa into sub-
forests composed entirely of stars of maximum degred, and one of these sub-forests contains
half the weight ofT, which is what we wanted to show.

Applying this procedure to each tr@ein the forest;, we get the existence ofta- 1-restricted
subforestF] C F; that has weight at Iea%tw(Fl). Observe that & — 1-restricted subforest ia
fortiori ak-restricted subforest, and sine€F,) is the best-restricted subforest df;, we have

=

W(FA) > W(F]) > Zw(Fy) > ;w(Fy),

completing the proof. |

A.7.1 AN IMPROVED APPROXIMATION ALGORITHM

We can get an improved approximation algorithm based on a linear programappngach. Recall
thatF** is a maximum weight forest satisfying both (a) and (b). A result of Singhlau (2007)
implies that given any grapB with non-negative edge weights, one can find in polynomial time a
forestFs, such that

w(Fs1) > w(F™) > w(R), (33)

but where the maximum degree kg, ist + 1. Now applying the procedure from the proof of
Theorem 16, we get &restricted foresES, whose weight is at least half @f(Fs; ). Combining
this with (33) implies thatv(Fg ) > w(FR*), and completes the proof of the claimed improved ap-
proximation algorithm. We remark that the procedure of Singh and Lau J20(hd the forest
FsL is somewhat computationally intensive, since it requires solving vertex sodutidarge linear
programs.
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A.8 Proof of Theorem 17
Proceeding as in the proof of Theorem 10, we have that
R(Bs) ~R(Pr)| < R(Pg)—Rex(Pr) +|Ros(Be) —~R(Pr)
— Op (kgn(d) + din()) + | Roy (B) — R(Pr)

Now, let Hy; denote the estimated entropy(X) = YkH(Xk), constructed using the kernel den-
sity estimatesn, (x). Since the risk is the negative expected log-likelihood, we have using the
approximation guarantee that

ﬁnl(ﬁA)—R(ﬁFﬁ) = —Wnl('ft)+ﬁn1—R(ﬁFﬁ)
1. . ~ .
< _EWnl(Ft )+ Hn, — R(Prr)
S c—-1_ ., ~
= Ry (Pg)+ c W, (F") — R(Pr)

c—1
— 0r (K@) () + = w(R))
and the result follows.

A.9 The TreePartition Subroutine

To produce the bestrestricted subforest of the fordst, we use a divide-and-conquer forest parti-
tion algorithm described by Lukes (1974), which we now describe in metald

To begin, note that finding an optimal subforest is equivalent to findirgytitipn of the nodes
in the forest, where each disjoint tree in the subforest is a cluster in thieigrar Since a forest
contains a disjoint set of trees, it suffices to find the optitaastricted partition of each of the
trees.

For every subtre@&, with rootv, we will find alist of partitions vP = {v.Py,v.Py, ..., v.R} such
that

1. fori# 0, Vv.R is a partition whose cluster containing radtas size;
2. v.R has the maximum weight among all partitions satisfying the above condition.

We definev.Py to be arg magw(v.Py),...,w(v.R)}. TheMer ge subroutine used ifir eePartition
takes two lists of partitiongv.P,u;.P}, wherev is the parent oLy, v.P is a partition of nodes
unioned with subtrees of childrefu,...,u_1}, andu;.P is a partition of the subtree of child;
refer to Figure 10.

Since a partition is a list of clusters of nodes, we denot€dncat (v.P»,u.P_») the concate-
nation of clusters of partitionsP,, u.P_». Note that the concatenation forms a partitioa % and
u.P_» are respectively partitions of two disjoint sets of vertices. The weighpafation is denoted
w(v.P;), that is, the weight of all edges between nodes of the same cluster in th®parP,.
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Figure 10: ThelreePartition procedure to merge two subproblems.

Algorithm 4 TreePartition(T,t)

1: Input atreeT, a positive integer

2: Returns an optimal partition into trees of sizet.

3: Initialize v.P; = [{v}] wherev is root of T, if v has no children, retumP,
4

: For all children{uy, ...us} of v, recursively calllr eeParti ti on(u;,t) to get a collection of lists
of partitions{us.P,uy.P, ...us.P}

5: For each childy € {ug,...us} of v
Updatev.P « Mer ge(u;.P,v.P)

6: Output v.Py

Algorithm 5 Merge(Vv.P, u.P)

1: Input a list of partitionsv.P andu.P, wherev is a parent ot

2: Returns a single list of partitions.P’.
3 Fori=1,... .t

1. Let(s",t*) = arg maXs,.s;— W(Concat (V.Ps,u.R))

2. Letv.P = Concat (V.Ps,u.R-)

N

: Selectv.Py = arg mayp w(v.F)
: Output {Vv.P§,V.P},...v.P}

9]

947



Liu, Xu, Gu, GUPTA, LAFFERTY AND WASSERMAN

Appendix B. Computation of the Mutual Information Matrix

In this appendix we explain different methods for computing the mutual infaomanatrix, and
making the tree estimation more efficient. One way to evaluate the empirical mutahaifon is
to use

(8) y(9)
N 1 Py (57, X7)
106GX)) == 3 log (34)
1, (%) P (X))
Compared with our proposed method
~ 1 m m Xk, X
|n1(Xi7XJ /z pn1 XkI;X/j Iog/pm (35)
1 1

(34) is somewhat easier to calculate. However, if the sample siZg is small, the approximation
error can be large. A different analysis is needed to provide justificafiehe method based on
(34), which would be more difficult sincg,, (-) is dependent otD;. For these reasons we use the
method in (35).

Also, note that instead of using the grid based method to evaluate the nunaiegahl, one
could use sampling. If we can obtaim i.i.d. samples from the bivariate densfiyX;,X;),

M jid
{ (xi(S) J Xj(S)) } = h (X5 )

s=1
then the empirical mutual information can be evaluated as

X (S)>
1% %) log X .
T m Zx POX)POX)

Compared with (34), the main advantage of this approach is that the estimdie adpitrarily
close to (8) for large enougim andm. Also, the computation can be easier compared to Algorithm
1. Letpn, (X, Xj) be the bivariate kernel density estimator®n To sample a point frorpn, (X, X;),

we first random draw a samp(e(i(k,),xjw)) from 2, and then sample a poiX,Y) from the

bivariate distribution
(K) ) _
1 (X"~ X =
(X,Y) ~ hzK( ™ >K(m>>.

Though this sampling strategy is superior to Algorithm 1, it requires evaluafidhe bivariate
kernel density estimates on many random points, which is time consuming; thieagéd method
is preferred.

In our two-stage procedure, the stage requires calculation of the enpititaal information
1(%:;X;) for (3) entries. Each required(nPn;) work to evaluate the bivariate and univariate kernel
density estimates on tlmx mgrid, in a naive implementation. Therefore, the total time to calculate
the empirical mutual information matr is O(nm?nyd?). In the second stage, the time complexity
of the Chow-Liu algorithm is dominated by the first step. Therefore the total ¢cioneplexity is
O (m?nyd?). The first stage require®(d?) space to store the matrid and O(n?n;) space to
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Algorithm 6 More efficient calculation of the mutual information mathk
1: Initialize M = Og,,g andH® = 0y mfori=1,...,d.
2: % calculate and pre-store the univariate KDE
3: fork=1,...,ddo
4. fork=1,...,mdo
(8) _ (K)
m 4, hy
for kK =1,...,mdo
% calculate the components used for the bivariate KDE
fori’=1,...,nydo
fori=1,....d do

10: HOG K) + = . K (X'I - >
2 2

11: 9% calculate the mutual information matrix
12: for¢ =1,...,mdo
13: fori=1,...,d—1do

(2l
)
2

14: for j=i+1,...,ddo

15: P X)) 0

16: fori’=1,...,ny do

17 B¢ ) = e )+ HIOE ) - HO) 1. )

18 ¢ ")« ) X '>/n1

190 M) < MG )+ SR X log (B0 X/ (B0X)) - B )

evaluate the kernel density estimates®n The space complexity for the Chow-Liu algorithm is
O(d?), and thus the total space complexitydgd? + m?ny ).

The quadratic time and space complexity in the number of variablesacceptable for many
practical applications but can be prohibitive when the dimendi@large. The main bottleneck
is to calculate the empirical mutual information mathk Due to the use of the kernel density
estimate, the time complexity @(d?n?ny). The straightforward implementation in Algorithm 1 is
conceptually easy but computationally inefficient, due to many redundanatipns. For example,
in the nested for loop, many components of the bivariate and univariatelk#ensity estimates
are repeatedly evaluated. In Algorithm 6, we suggest an alternative matiickl can significantly
reduce such redundancy at the price of increased but still affirdalhce complexity.

The main technique used in Algorithm 6 is to change the order of the multiple rfestedps,
combined with some pre-calculation. This algorithm can significantly boostrifmerieal perfor-
mance, although the worst case time complexity remains the same. An alternagjestwed by
Bach and Jordan (2003) is to approximate the mutual information, althoughdhid wequire fur-
ther analysis and justification.
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