Journal of Machine Learning Research 12 (2011) 2415-2435 bm8ted 8/10; Revised 2/11; Published 7/11

Union Support Recovery in Multi-task Learning

Mladen Kolar MLADENK @CS.CMU.EDU
John Lafferty LAFFERTY(@CS.CMU.EDU
Larry Wasser man LARRY @STAT.CMU.EDU

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213, USA

Editor: Hui Zou

Abstract

We sharply characterize the performance of different peai@dn schemes for the problem of se-
lecting the relevant variables in the multi-task settingevidus work focuses on the regression
problem where conditions on the design matrix complicageatinalysis. A clearer and simpler pic-
ture emerges by studying the Normal means model. This mofieh) used in the field of statistics,
is a simplified model that provides a laboratory for studyéognplex procedures.
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1. Introduction

We consider the problem of estimating a sparse signal in the presencésef fiiohas been em-
pirically observed, on various data sets ranging from cognitive neigose (Liu et al., 2009) to
genome-wide association mapping studies (Kim et al., 2009), that congjdetaied estimation
tasks jointly can improve estimation performance. Because of this, joint estimationrélated
tasks omulti-task learninghas received much attention in the machine learning and statistics com-
munity (see for example Turlach et al., 2005; Zou and Yuan, 2008; Zi#20@fH; Negahban and
Wainwright, 2009; Obozinski et al., 2011; Lounici et al., 2009; Liu et 2009; Lounici et al.,
2010; Argyriou et al., 2008; Kim et al., 2009, and references therélnjvever, the theory behind
multi-task learning is not yet settled.

An example of multi-task learning is the problem of estimating the coefficientsvefalemul-
tiple regressions

Yi =XBj+e€j, jelk (1)

whereX; € R™P is the design matrixy; € R" is the vector of observations; € R" is the noise
vector andg; € RP is the unknown vector of regression coefficients for fhi task, with[k] =
{1,...,k}.

When the number of variablgsis much larger than the sample sizdt is commonly assumed
that the regression coefficients are jointly sparse, that is, there existalbssibsesS C [p| of the
regression coefficients, wigt= |§ < n, that are non-zero for all or most of the tasks.

The model in (1) under the joint sparsity assumption was analyzed in, &onghe, Obozinski
et al. (2011), Lounici et al. (2009), Negahban and Wainwright @20Qounici et al. (2010) and
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Kolar and Xing (2010). Obozinski et al. (2011) propose to minimize thealied least squares
objective with a mixed2,1)-norm on the coefficients as the penalty term. The authors focus on
consistent estimation of the support Setalbeit under the assumption that the number of t&sks
is fixed. Negahban and Wainwright (2009) use the mifeedL)-norm to penalize the coefficients
and focus on the exact recovery of the non-zero pattern of thessigrecoefficients, rather than
the support seb. For a rather limited case &f= 2, the authors show that when the regression do
not share a common support, it may be harmful to consider the regregsiglems jointly using
the mixed(e, 1)-norm penalty. Kolar and Xing (2010) address the feature selectiqrepies of
simultaneous greedy forward selection. However, it is not clear whdighefits are compared to
the ordinary forward selection done on each task separately. In Lictra¢. (2009) and Lounici

et al. (2010), the focus is shifted from the consistent selection to beatfiie joint estimation for
the prediction accuracy and consistent estimation. The number ofKésowed to increase with
the sample size. However, it is assumed that all tasks share the samesfethiatés, a relevant
coefficient is non-zero for all tasks.

Despite these previous investigations, the theory is far from settled. A singalegicture of
when sharing between tasks actually improves performance has noteemémgparticular, to the
best of our knowledge, there has been no previous work that sharahacterizes the performance
of different penalization schemes on the problem of selecting the relegaables in the multi-task
setting.

In this paper we study multi-task learning in the context of ii@ny Normal means model
This is a simplified model that is often useful for studying the theoreticalegitis of statistical
procedures. The use of the many Normal means model is fairly common in staltistiappears
to be less common in machine learning. Our results provide a sharp chaataterof the sparsity
patterns under which the Lasso procedure performs better than the gasso. Similarly, our
results characterize how the group Lasso (with the mi¢&d) norm) can perform better when
each non-zero row is dense.

1.1 The Normal Means M odel

The simplest Normal means model has the form
Yi=p+og, i=1..,p 2)

wherey,. ..,y are unknown parameters amsg ... g, are independent, identically distributed
Normal random variables with mean 0 and variance 1. There are a vafisgguits (Brown and
Low, 1996; Nussbaum, 1996) showing that many learning problems caanverted into a Nor-
mal means problem. This implies that results obtained in the Normal means settibhg tams-
ferred to many other settings. As a simple example, consider the nonpararegtegssion model
Z; = m(i/n) + & wherem is a smooth function off0,1] andd; ~ N(0,1). Let @, ¢p,..., be an
orthonormal basis on [0,1] and writa(x) = ¥ ", Lj®;(X) wherep; = fol m(x)@;(x)dx. To estimate
the regression functiom we need only estimatgy, L, ...,. LetYj =n"1s",Z@(i/n). Then
Y; ~ N(yj,02) wherea? = 1/n. This has the form of (2) witlw = 1/,/n. Hence this regression
problem can be converted into a Normal means model.
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However, the most important aspect of the Normal means model is that it alolgan setting
for studying complex problems. In this paper, we consider the followingridbmeans model. Let

. (1-&)N(0,0%) +eN(1j.0%) je[k, i€S
Y”N{ N(0,02) J jck, ieS (3)

where(lj )i j are unknown real numbers,= gp/+/nis the variance witlwp > 0 known,(Y;;); ; are
random observations, € [0,1] is the parameter that controls the sparsity of features across tasks
andSc [p| is the set of relevant features. Lt |S denote the number of relevant features. Denote
the matrixM € RP*K of means

Tasks
1 2 ... k
1| par M2 ... Mak
2| W1 M2 ... M
P| Moz Hp2 ... Hpk

and letd; = (Wj)je( denote thé-th row of the matrixM. The setS® = [p]\Sindexes the zero rows
of the matrixM and the associated observations are distributed according to the Noririaleis
tion with zero mean and variancg. The rows indexed b are non-zero and the corresponding
observation are coming from a mixture of two Normal distributions. The paeraeetermines
the proportion of observations coming from a Normal distribution with naw-peean. The reader
should regard each column as one vector of parameters that we watitiates The question is
whether sharing across columns improves the estimation performance.

It is known from the work on the Lasso that in regression problems, thigmlenatrix needs to
satisfy certain conditions in order for the Lasso to correctly identify thpsu® (see van de Geer
and Bihlmann, 2009, for an extensive discussion on the different condjtidhgse regularity con-
ditions are essentially unavoidable. However, the Normal means moddio{8% ais to analyze the
estimation procedure in (4) and focus on the scaling of the important parartete p, s, €, Umin)
for the success of the support recovery. Using the model (3) andstmeagion procedure in (4),
we are able to identify regimes in which estimating the support is more efficiamg thee ordinary
Lasso than with the multi-task Lasso and vice versa. Our results suggestdhmaulti-task Lasso
does not outperform the ordinary Lasso when the features are msitdlevably shared across tasks;
thus, practitioners should be careful when applying the multi-task Lassowvikmowledge of the
task structure.

An alternative representation of the model is

Y._{N(Eiijaoz) jelk, ies
Y71 N(O,6?) jclk, ies

whereé;j is a Bernoulli random variable with success probabitity Throughout the paper, we
will set € = k=P for some paramete € [0,1); B < 1/2 corresponds to dense rows ghd- 1/2
corresponds to sparse rows. lpgfi, denote the following quantityimin = min |1j .

Under the model (3), we analyze penalized least squares proceduihesform

~ 1
i = argmin Z||Y — pu|[? + per(p) (4)
/LERPXK

2417



KOLAR, LAFFERTY AND WASSERMAN

where||Allr = ¥ AJ?k is the Frobenious norm, pénis a penalty function ang is ap x k matrix
of means. We consider the following penalties:

1. the/; penalty
penu) =AS Y Iujl,
i€[p] jelk]
which corresponds to the Lasso procedure applied on each task mu#eyply, and denote the
resulting estimate g8’

2. the mixed(2, 1)-norm penalty
pen(p) =A 5 |62,
ic(p|
which corresponds to the multi-task Lasso formulation in Obozinski et &l1(2énhd Lounici
et al. (2009), and denote the resulting estimatgas?

3. the mixed(c, 1)-norm penalty

per(p) =A 5 [|6ile,
ic[pl

which correspond to the multi-task Lasso formulation in Negahban and Wgimw2009),
and denote the resulting estimatefgs/ .

For any solutiorp of (4), letS(11) denote the set of estimated non-zero rows

(@) ={i €[ : |16ill2#0}.

We establish sufficient conditions under whigls(1z) # § < a for different methods. These results
are complemented with necessary conditions for the recovery of the 5igep8

In this paper, we focus our attention on the three penalties outlined abdwe S a large
literature on the penalized least squares estimation using concave perglid®duced in Fan
and Li (2001). These penalization methods have better theoreticalrpespe the presence of the
design matrix, especially when the design matrix is far from satisfying the@septable condition
(Zhao and Yu, 2006). In the Normal means model, due to the lack of therdesigix, there is no
advantage to concave penalties in terms of variable selection.

1.2 Overview of the Main Results

The main contributions of the paper can be summarized as follows.

1. We establish a lower bound on the parampggt as a function of the parametdrsk, p, s, 3).
Our result can be interpreted as follows: for any estimation procedure #éxésts a model
given by (3) with non-zero elements equalpgin such that the estimation procedure will
make an error when identifying the s&tvith probability bounded away from zero.

2. We establish the sufficient conditions on the signal strepgihfor the Lasso and both vari-
ants of the group Lasso under which these procedures can corresilyfycthe set of non-
Zero rowsS.
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By comparing the lower bounds with the sufficient conditions, we are ablestdifg regimes
in which each procedure is optimal for the problem of identifying the sebafzero rowss. Fur-
thermore, we point out that the usage of the popular group Lasso with tteel (rix1) norm can be
disastrous when features are not perfectly shared among tasks. flintkés demonstrated through
an empirical study.

1.3 Organization of the Paper

The paper is organized as follows. We start by analyzing the lower bfourehy procedure for

the problem of identifying the set of non-zero rows in Section 2. In Sectiwe Brovide sufficient
conditions on the signal strength;i,, for the Lasso and the group Lasso to be able to detect the set
of non-zero rowsS. In the following section, we propose an improved approach to the probiem
estimating the se&®. Results of a small empirical study are reported in Section 4. We close tke pap
by a discussion of our findings.

2. Lower Bound on the Support Recovery

In this section, we derive a lower bound for the problem of identifying theect variables. In
particular, we derive conditions dm,k, p, s, €, lmin) under which any method is going to make an
error when estimating the correct variables. Intuitivelytin is very small, a non-zero row may
be hard to distinguish from a zero row. Similarlygifs very small, many elements in a row will be
zero and, again, as a result it may be difficult to identify a non-zero Bafore, we give the main
result of the section, we introduce the class of models that are going tobeleced.

Let

FIW = {0 € R : min|6j| >}

denote the set of feasible non-zero rows. For eaeh(0,1,...,k}, let M (], k) be the class of all
the subsets of1,...,k} of cardinality j. Let

Mlws = |J {(01,...,9p)’€RpXk PO e FIWificw, ei:mfigm} (5)
WeM (s,p)

be the class of all feasible matrix means. For a maitix M|y, g, let Py denote the joint law of
{Yi; }ie[pLje[k]- SincelPy is a product measure, we can wiitg = ®ic[p/Pg,- FOr a non-zero row;,
we set

P, (A) = / N(AB,02)dv(B),  Aec B(RY),

wherev is the distribution of the random variab;c 1ij&jej with & ~ Bernoullik—®) and
{€j}jeiy denoting the canonical basis&f. For a zero rowd; = 0, we set

Po(A) = A[(A;0,0%1x),  Ac B(RY).
With this notation, we have the following result.

Theorem 1 Let
uﬁﬂn = Hﬁﬂn(nvk, p, 57878) =1In (l+ u+ \/m> 0'2
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where

o?(p—st1)
In (1 2,20
2k1-2B
If o € (0,3) and k"Pu < 1, then for all U< pmin,

U=

NI =

inf sup Pu[S() # SM)] >
H MeM([us

(1-a)

whereM[y, 5] is given by(5).

The result can be interpreted in words in the following way: whatever thmaon procedure
I, there exists some matrM € M|[umin, S such that the probability of incorrectly identifying the
supportS(M) is bounded away from zero. In the next section, we will see that some é&stima
procedures achieve the lower bound given in Theorem 1.

3. Upper Boundson the Support Recovery

In this section, we present sufficient conditions (onp, k, €, umin) for different estimation proce-
dures, so that
P[S(k) #9 <a.

Leta’,d > 0 be two parameters such thetf- & = a. The parameten’ controls the probability of
making a type one error

PEie(p :ieSp)andigg <d,
that is, the parameter upper bounds the probability that there is a zero row of the mhtrtkat
is estimated as a non-zero row. Likewise, the paran®tntrols the probability of making a type
two error

PEHie(p] : i¢Spm)andie g <7,
that is, the paramet&’ upper bounds the probability that there is a non-zero row of the mistrix
that is estimated as a zero row.

The control of the type one and type two errors is established throughrtimg jparametek. It
can be seen that if the paramekeis chosen such that, for ale S it holds thatPi ¢ S(iz)] < &'/s
and, for alli € &, it hold thatP[i € S()] < o’/(p— ), then using the union bound we have that
P[S(n) # § < a. In the following subsections, we will use the outlined strategy to chadse
different estimation procedures.

3.1 Upper Boundsfor the Lasso

Recall that the Lasso estimator is given as

~ 1
't = argmin 2| |Y — g2 + Al 2
“ERpxk

It is easy to see that the solution of the above estimation problem is given &dltheng soft-

thresholding operation
i)
~l1
L= (1-—) Yi, (6)
K ( Nal)
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where(x), :=max0,x). From (6), it is obvious thate S(z1‘*) if and only if the maximum statistic,
defined as
Mi(i) = max];.

satisfiedM(i) > A. Therefore it is crucial to find the critical value of the paramatsuch that

{P[Mk(i)<)\] < &/s ieS
PMk(i) >A] < d'/(p—s) ies.

We start by controlling the type one error. Far § it holds that

< 2 (-2
= Vam P\ g2

using a standard tail bound for the Normal distribution. Setting the right biledtoa’ /(p—s) in
the above display, we obtain thatan be set as

B[My(i) > A] < KE[|2((0,0%)] > A @)

2k(p—>s)
A=0y/2In——— 8
oo (8)
and (7) holds as soon as 23@\;%) > 1. Next, we deal with the type two error. Let
i = P[| (1~ )\(0,0%) +EN(min, 02)| > Al. 9)

Then fori € S, P[Mk(i) < A] < P[Bin(k, i) = 0], where Bir{k, 1) denotes the binomial random
variable with parameter&, 1i). Control of the type two error is going to be established through
careful analysis oft for various regimes of problem parameters.

Theorem 2 LetA be defined by8). Suppose i, satisfies one of the following two cases:

(i) Hmin = 0V 2rInk where

r> <\/1+Ck7p,s\/lﬁ>2

with
In 2(p-9)
Ckps= Vo
Ps Ink
andlimn*)oock,p,s S [0700)’
(i) Mmin > A when
im Ko
n—w [n(p—-s)
and K—P/2 > In(s/d).
Then
PS(E") #9<a



KOLAR, LAFFERTY AND WASSERMAN

The proof is given in Section 6.2. The two different cases describe iffeveht regimes character-
ized by the ratio of ik and Infp—s).

Now we can compare the lower bound pfy, from Theorem 1 and the upper bound from
Theorem 2. Without loss of generality we assume that1l. We have that whefd < 1/2 the lower
bound is of the ordeo (In (k*-Y/2In(p—s))) and the upper bound is of the ordefkp — s)).
Ignoring the logarithmic terms ip ands, we have that the lower bound is of the ordg(k?—2/2)
and the upper bound is of the orc@(ln k), which implies that the Lasso does not achieve the lower
bound when the non-zero rows are dense. When the non-zero rewsparsefy > 1/2, we have
that both the lower and upper bound are of the or~Ql(é|n k) (ignoring the terms depending @and

9).
3.2 Upper Boundsfor the Group Lasso

Recall that the group Lasso estimator is given as

~ 1
' = argmin S||Y — plf +A Y [16i]]2,
peRPK i<Tp)

wheref; = (l4j)je- The group Lasso estimator can be obtained in a closed form as a rethet of
following thresholding operation (see, for example, Friedman et al., 2010)

" A ) :
i Y, 10
| ( DA (10)

whereY.. is thei® row of the data. From (10), it is obvious thiat S(zi‘/®2) if and only if the
statistic defined as

SXOEDN
J

satisfiesS(i) > A. The choice ofA is crucial for the control of type one and type two errors. We
use the following result, which directly follows from Theorem 2 in BarauaD@).
Lemma3 Let{Y; = fi + 0%}y be a sequence of independent observations, whesg fi }ic |y

is a sequence of numbefs,"g AL(0,1) and o is a known positive constant. Suppose that¢ R
satisfiesP[x2 > thq] < a. Let

G = 1{ Z Y2 > th a0}

ie[n]
be a test for f= 0 versus f£ 0. Then the tesp, satisfies
when f=0and

for all f such that

1£13> 2(v5+ 4)02In (j‘;) /R

2422



UNION SUPPORTRECOVERY

Proof This follows immediately from Theorem 2 in Baraud (2002). |

It follows directly from lemma 3 that setting
A =tha/(p-50° (11)
will control the probability of type one error at the desired level, that is,
PIS() >N <o/(p-9), VieS.
The following theorem gives us the control of the type two error.

Theorem 4 LetA =t q/(p-50% Then

P[S(p"/?) # 9 <a

k—1/2+B 2e(2s—9)(
Hmin > 01/ 2(V5+4) o \/ ,6, =9

where c= /2In(2s/&) /k1-B,

The proof is given in Section 6.3.

Using Theorem 1 and Theorem 4 we can compare the lower bouru#iprand the upper
bound. Without loss of generality we assume that 1. When each non-zero row is dense, that is,
whenp < 1/2, we have that both lower and upper bounds are of the @dé/?) (ignoring the
logarithmic terms inp ands). This suggest that the group Lasso performs better than the Lasso for
the case where there is a lot of feature sharing between different Rskall from previous section
that the Lasso in this setting does not have the optimal dependenceHmwever, wher > 1/2,
that is, in the sparse non-zero row regime, we see that the lower boufidhis orderO(In(k))
whereas the upper bound is of the ordgk?~%/2). This implies that the group Lasso does not have
optimal dependence dain the sparse non-zero row setting.

3.3 Upper Boundsfor the Group Lasso with the Mixed (0, 1) Norm

In this section, we analyze the group Lasso estimator with the niixet) norm, defined as

/e *argmlanY plE+A Y 161,
perp 2 iTp)

wheref; = (lj)jci- The closed form solution fofi/%= can be obtained (see Liu et al., 2009),
however, we are only going to use the following lemma.

Lemma5 (Liu etal., 20099, = 0if and only if 5 |¥;j| < \.

Proof See the proof of Proposition 5 in Liu et al. (2009). |

Suppose that the penalty parametés set as

A —kay/2In k(pa,s). (12)
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It follows immediately using a tail bound for the Normal distribution that

Py [¥jl = A] <kmaxP[[Yj| = A/ <a’/(p-s), VieS,
] J

which implies that the probability of the type one error is controlled at the dbEvel.
Theorem 6 Let the penalty parametérbe defined byl2). Then

P[S@E/) £ <o

141,
Mmin > mk l+B)\

where c= 1/2In(2s/&) /KB andt = 0/ 2kIn Z5 /.
The proof is given in Section 6.4.

Comparing upper bounds for the Lasso and the group Lasso with the ifixednorm with
the result of Theorem 6, we can see that both the Lasso and the gresip have better dependence
on k than the group Lasso with the mix¢eb, 1) norm. The difference becomes more pronounced
asf increases. This suggest that we should be very cautious when usigmptielLasso with the
mixed (e, 1) norm, since as soon as the tasks do not share exactly the same feamiatisetitwo
procedures have much better performance on identifying the set afetorrows.

4. Simulation Results

We conduct a small-scale empirical study of the performance of the Ladsb@group Lasso (both
with the mixed(2,1) norm and with the mixede, 1) norm). Our empirical study shows that the
theoretical findings of Section 3 describe sharply the behavior of guses even for small sample
studies. In particular, we demonstrate that as the minimum signallgyglaries in the model (3),
our theory sharply determines points at which probability of identifying nerm rows of matrixvi
successfully transitions from 0 to 1 for different procedures.

The simulation procedure can be described as follows. Without loss efaég we letS= [s]
and draw the samplelfij }ic(g) jei according to the model in (3). The total number of rows
varied in{128 256,512 1024} and the number of columns is setke= | plog,(p)]. The sparsity
of each non-zero row is controlled by changing the paranfeter{0,0.25,0.5,0.75} and setting
£ = k. The number of non-zero rows is setde- |log,(p)|, the sample size is set to= 0.1p
andop = 1. The parameters’ andd are both set to 01. For each setting of the parameters, we
report our results averaged over 1000 simulation runs. Simulations withatbiees of parameters
n,s andk have been tried out, but the results were qualitatively similar and, henaig wet report
them here.

The regularization parametaris chosen according to Equations (8), (11) and (12), which as-
sume that the noise levey is known. In practice, estimating the standard deviation of the noise in
high-dimensions is a hard problem and practitioners often use crossti@tiés a data-driven way
to choose the penalty parameter. For recent work on data-driven tahthg penalty parameters,
we refer the reader to Arlot and Bach (2009).
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4.1 Lasso

We investigate the performance on the Lasso for the purpose of estimatisgf tbfenon-zero rows,
S. Figure 1 plots the probability of success as a function of the signal stre®g the same figure
we plot the probability of success for the group Lasso with K@) and (e, 1)-mixed norms.

Using theorem 2, we set
I“IlaSSOZ vV 2(r + 0001) |n k (13)

wherer is defined in theorem 2. Next, we generate data according to (3) with all etefe; }

set top = pHiasso Wherep € [0.05,2]. The penalty parametéris chosen as in (8). Figure 1 plots
probability of success as a function of the parametewhich controls the signal strength. This
probability transitions very sharply from 0 to 1. A rectangle on a horizdimtalrepresents points

at which the probability?[S= S is between M5 and 095. From each subfigure in Figure 1, we
can observe that the probability of success for the Lasso transitiamsOfto 1 for the same value

of the parametep for different values ofp, which indicates that, except for constants, our theory
correctly characterizes the scaling|efi,. In addition, we can see that the Lasso outperforms the
group Lasso (with(2,1)-mixed norm) when each non-zero row is very sparse (the paraféter
close to one).

4.2 Group Lasso

Next, we focus on the empirical performance of the group Lasso with thedni2é&) norm. Fig-
ure 2 plots the probability of success as a function of the signal strengthng theorem 4, we

set
k-1/2+B (2s—&)(
Hgroup= 01/ 2(V5+4)/ - \/ ,6, =9 (14)

wherec is defined in theorem 4. Next, we generate data according to (3) with all etefpg } set

to P = pHgroup Wherep € [0.05,2]. The penalty parametéris given by (11). Figure 2 plots prob-
ability of success as a function of the parametewhich controls the signal strength. A rectangle
on a horizontal line represents points at which the probablﬂi@: S is between M5 and 095.
From each subfigure in Figure 2, we can observe that the probabilitcoéss for the group Lasso
transitions from 0 to 1 for the same value of the parametier different values ofp, which indi-
cated that, except for constants, our theory correctly characterees#ing ofnin. We observe
also that the group Lasso outperforms the Lasso when each nonerer® mot too sparse, that is,
when there is a considerable overlap of features between differ&st tas

4.3 Group Lasso with the Mixed (e, 1) Norm

Next, we focus on the empirical performance of the group Lasso with thednéxel) norm. Fig-
ure 3 plots the probability of success as a function of the signal strengiing theorem 6, we

set
141

1-c
wheret andc are defined in theorem 6 ands given by (12). Next, we generate data according to
(3) with all elementg ; } set tou= ppinty, Wherep € [0.05,2]. Figure 3 plots probability of success
as a function of the parametgrwhich controls the signal strength. A rectangle on a horizontal line
represents points at which the probabilﬂ&é: S is between M5 and 095. From each subfigure

Minfty = kilJrB)\ (15)
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Probability of successful support recovery: Lasso

Sparsity parameter: 3 =0 Sparsity parameter: 8 = 0.25

p = 1024 a i
Group Lasso p =512
(00,1) p =256 x 2

p =128

p=1024 —mm
Group Lasso p =512 —p
(2,1) p =256 —mm

p =128

p = 1024
p =512
p = 256
p =128

—
r—
Lasso ——

0.0 05 1.0 15 2.0 0.0 0.5 1.0 15 2.0
Signal strength ( x i) Signal strength ( x p;,.,)

Sparsity parameter: 8 = 0.5 Sparsity parameter: 8 = 0.75

p = 1024
Group Lasso p =512
(00,1) p =256 x

p =128

p = 1024

Group Lasso p =512
(2,1) p = 256

p =128

p = 1024 — I
p =512 — —
p =256 — —
p =128

Lasso

0‘.0 0‘.5 1‘.0 1‘.5 2‘.0 0‘.0 0‘.5 1‘.0 1‘.5 2‘.0
Signal strength ( x p,,.,) Signal strength ( x p,.)

Figure 1: The probability of success for the Lasso for the problemtohatng S plotted against
the signal strength, which is varied as a multiplgugfspdefined in (13). A rectangle on
each horizontal line represents points at which the probaffi[= S is between @5
and 095. To the left of the rectangle the probability is smaller thadbQwhile to the
right the probability is larger than.85. Different subplots represent the probability of
success as the sparsity param@tehanges.

in Figure 3, we can observe that the probability of success for the drasgo transitions from 0

to 1 for the same value of the paramepefor different values ofp, which indicated that, except
for constants, our theory correctly characterizes the scalipg,ef We also observe that the group
Lasso with the mixede, 1) norm never outperforms the Lasso or the group Lasso with the mixed
(2,1) norm.
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Probability of successful support recovery: group Lasso

Sparsity parameter: 3 =0 Sparsity parameter: 8 = 0.25

p = 1024 a i

Group Lasso p =512 i

(00,1) p =256 2 2
p=128

p=1024 —mm —i
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p =128
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p = 256 _—— L
p =128

Lasso
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Signal strength ( x piyq,,) Signal strength (x g0,

Sparsity parameter: 8 = 0.5 Sparsity parameter: 8 = 0.75

p = 1024
Group Lasso p =512
(00,1) p =256 2 2

p =128

p=1024 —mm
Group Lasso p =512 —pmm
(21) p =256 —mm

p =128

p =1024
p =512
p =256
p =128

Lasso

TTIRETY!

0‘.0 0‘.5 1‘.0 1‘.5 2‘.0 0‘.0 0‘.5 1‘.0 1‘.5 2‘.0
Signal strength (x p0p) Signal strength ( x p,,0,,)

Figure 2: The probability of success for the group Lasso for the pmoloieestimatingS plotted
against the signal strength, which is varied as a multiplgggfup defined in (14). A
rectangle on each horizontal line represents points at which the probaﬁﬁbf Sis
between M5 and 095. To the left of the rectangle the probability is smaller thadb0
while to the right the probability is larger than9®. Different subplots represent the
probability of success as the sparsity param@telnanges.

5. Discussion

We have studied the benefits of task sharing in sparse problems. Undgisosrarios, the group
lasso outperforms the lasso. The/?, penalty seems to be a much better choice for the group lasso
than thel; //. However, as pointed out to us by Han Liu, for screening, where titsmveries

are less important than accurate recovery, it is possible théi thig penalty could be useful. From
the results in Section 3, we can further conclude that the Lasso precpddorms better than the
group Lasso when each non-zero row is sparse, while the group (gl the mixed(2,1) norm)
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Probability of successful support recovery: group Lasso with theah{ieel) norm

Sparsity parameter: 3 =0 Sparsity parameter: g8 = 0.25

p = 1024 = =
Group Lasso p =512 O L
(00,1) p =256 B B

p =128

p=1024 @
Group Lasso p =512 -gm
(2,1) p =256 —m

p =128

Ty
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p = 256
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Signal strength ( x p;,,) Signal strength ( x p;,g,)

Lasso

EEN
Ldd

Sparsity parameter: 8 = 0.5 Sparsity parameter: 8 = 0.75

p = 1024

Group Lasso p =512
(00,1) p =256

p =128

p=1024 -@

Group Lasso p =512 g

(2.1) p =256 -m
p=128

'y

p=1024 -m
p =512
p =256 -
p=128

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
Signal strength ( x p;,,) Signal strength (x p;,,)

'y

Lasso

Figure 3: The probability of success for the group Lasso with mixed) norm for the problem
of estimatingS plotted against the signal strength, which is varied as a multipj&gf
defined in (15). A rectangle on each horizontal line represents poiatkielh the prob-
ability IP[§: S is between M5 and 095. To the left of the rectangle the probability is
smaller than M5, while to the right the probability is larger thar®8. Different subplots
represent the probability of success as the sparsity parafetemges.

performs better when each non-zero row is dense. Since in many pradtiedions one does not
know how much overlap there is between different tasks, it would baiuse€ombine the Lasso
and the group Lasso in order to improve the performance. For examgeaontake the union of
the Lasso and the group Lasso estim&e; S(ji‘1) US(fi/%2). The suggested approach has the
advantage that one does not need to know in advance which estimatie@dpredo use. While
such a combination can be justified in the Normal means problem as a way tasethe power to
detect the non-zero rows, it is not clear whether the same approadie gastified in the multi-task
regression model (1).
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The analysis of the Normal means model in (3) provides insights into the tleabresults we
could expect in the conventional multi-task learning given in (1). Howdbere is no direct way
to translate our results into valid results for the model in (1); a separatesesiageds to be done in
order to establish sharp theoretical results.

6. Proofs

This section collects technical proofs of the results presented in the. pepeughout the section
We usecy, Cy, ... to denote positive constants whose value may change from line to line.

6.1 Proof of Theorem 1

Without loss of generality, we may assume= 1. Let@(u) be the density of\((0,1) and define
Po andP; to be two probability measures @ with the densities with respect to the Lebesgue
measure given as

fo(ag,...,a) = |_| o)) (16)
j€lk
and
fi(as,...,a) = EzEmEe [] (@) — &jbmin) [ ] @(aj) (17)
Jem Jgm

whereZ ~ Bin(k,k B), mis a random variable uniformly distributed ovéf (Z,k) and {&itiek
is a sequence of Rademacher random variables, independgrarafm. A Rademacher random
variable takes values1 with probability 3.

To simplify the discussion, suppose tht s+ 1 is divisible by 2. LefT = (p—s+1)/2. Using
Py andP1, we construct the following three measures,

N — ms—1 p—s+1
Q=P " ®P; ,

1 - .
Q== > PSPy SoP oP)!
IS5
and
l i o
== > Py ieP) S ePioP) .
el
It holds that

inf supPy(SIM) # S()] > infmax (Qo(W = 1),Qy(¥ =0))
B MeM hd

1 1
> = — -||Qo—Q1]|1,

-2 2
where the infimum is taken over all teststaking values in{0,1} and|| - ||1 is the total variation
distance between probability measures. For a readable introduction arblowsds on the minimax
probability of error, see Section 2 in Tsybakov (2009). In particular,approach is related to the
one described in Section 2.7.4. We proceed by upper bounding the totdioradistance between
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Qo andQs. Letg = dP;/dPg and lety; € RX for eachi € [p], then

dQo
dQ

(Ug,...,up)

1 dP,
== proad C) T (U)o (U]
T IS el 51} dPy ie{s,r.,lj—l} dPo " " dPo ie{j+1,....p}

and, similarly, we can comput@l/d@. The following holds

|Qo— Q12

1
) </ ‘T( ie{g” o "i%gp} o) ‘ ie{srl.,p}
2
g(uy)) dPo(ui)

1
< ﬁ/< gp} g(u;) - ie%a”} ie{ﬂ,p}

2
d]P)o(Ui ))
(18)

where the last equality follows by observing that

dPo(u) =T Po(g?) +T2—T

[ 3 5 eweu)
jﬁQMMjggwm ie{s,....p}
even i’ even i even
and
[ 33w [ deow) =T
jej s.p} i’dsaap} ie{s,..,p}
even i’ o

Next, we proceed to upper bouiig(g?), using some ideas presented in the proof of Theorem 1 in
Baraud (2002). Recall definitions & and f1 in (16) and (17) respectively. Then= dP;/dPy =

f1/fo and we have

Zin + Hmin Y Ejaj”

g(ala"'aak) :EZEmEE I:exp(_ 2
jEM

( Zl'ﬁ]in> Em[ |_| cosf{uminaj)H.

2 jem

=Ez [exp
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Furthermore, leZ’ ~ Bin(k,k®) be independent & andnt uniformly distributed ovetM (2’ k).
The following holds

B2
§0)<Ez'.z [eXp( - M;”ﬁ”‘) B j|€'|mcosf(uminaj) J_QY cosh{Hmina; )D
Eomr [jemnm / cost? (Hminaj)@(a)day
1,/ eostbmayotada] |

where we usenAnm' to denotemuU )\ (mNnY). By direct calculation, we have that

| costR(umnay o(a))day = expliin) costibé)

and
| costibimna)o(a))da; = expliin/2)
Since3|mAm|+ |mnm| = (Z+2')/2, we have that

Po(g?) — Ezz :Em,m( [(cosk(u%in)) Imﬂm(IH

=Ezz Ji) Pj (COSHMZnin)) J}

=Ezz :Ex [COSV(U%in)X” )

where
0 if j<Z+2Z' —korj>min(Z,Z)
— z'\ (k-2
Pi=y (G5 )(kz*‘) otherwise
z
andP[X = j] = p;j. Therefore X follows a hypergeometric distribution with parametkr, 7' /k.

[The first parameter denotes the total number of stones in an urn, thedseammeter denotes the
number of stones we are going to sample without replacement from the dith@kast parameter
denotes the fraction of white stones in the urn.] Then following (Aldous5188 173; see also
Baraud 2002), we know that has the same distribution as the random varid@tj)é|7] where
X is a binomial random variable with paramet&randZ’ /k, and7 is a suitableo-algebra. By
convexity, it follows that

Po(0?) < Ezz [EX [COSf(Hﬁqin)m

=Ezz [exp (Zln (1+ Zk/(COSf(M%qin) - 1)))}

=EzEz [exF)(Zln (1+ iU))]
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wherep2,, = In(1+u+ v2u+u?) with

in(1+%57)
B

Continuing with our calculations, we have that

u=

Po(¢%) = Ez exp(kln (1+ k*(1+8)uzf)>

<Eyz exp(k‘BuZ’>
= exp<k|n (1+ k—B(exp(k‘Bu) - 1)))

< exp(kl‘B(exp(k‘Bu) — 1))
< exp (2k1*23u)

il
2 )

(19)

where the last inequality follows sin&ePu < 1 for all largep. Combining (19) with (18), we have
that

Qo — Q11 < a,

which implies that

[EEN

a.

NI =

int supPu[S(M) # S(H)] > 5 -
H MeM

6.2 Proof of Theorem 2

Without loss of generality, we can assume that 1 and rescale the final result. Fogiven in (8),
it holds thatP[|A((0,1) > A] = o(1). For the probability defined in (9), we have the following lower
bound

T = (1—€)P[AL(0,1)] = A] + €P[| AL(Kmin, 1)| > A] > EP[A(Hmin, 1) > A].

We prove the two cases separately.
Case 1: Large number of task®y direct calculation

. _ + - (y/TrGpe-vi) _.
T[k 2 dP)[N(M’“Inal) Z )\] - \/4T[|ng(\/1+ck,ps— \/F) k ( " ) T &

Since 1- B > (\/1+Cips— \ﬁ)z, we have thaP[Bin(k, 1) = 0] — 0. We can conclude that
as soon agry > In(s/d), it holds thatP[S(ji*) # § < a.
Case 2: Medium number of task¥Vhenpmin > A, it holds that

k—B
Ty > SP[N(Umim 1) > )\] > 7
We can conclude that as soonkdsP/2 > In(s/&), it holds thafP[S(i’*) # S < a.
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6.3 Proof of Theorem 4

Using a Chernoff bound®[Bin(k,k #) < (1—c)k*P] < & /2sforc= \/2In(2s/&) /K1 PB. Fori€ S
we have that

o ( o

PIS) <A< g+ (1- 5 )P S0 < | {181 = (1- 0k B}

Therefore, using lemma 3 with= &'/(2s— &), if follows thatP[S((i) <A] <&'/(2s) foralli € S

when
[ k—1/2+B /
Hmin > 01/ 2( \/5—|—4 k \/ 26(2s— 6 )

SinceA = thar/(p-50% P[S(i) > A] <o’ /(p—s) for alli € S. We can conclude th&{S(fi2/2)
S <a.

6.4 Proof of Theorem 6

Without loss of generality, we can assume tbat 1. Proceeding as in the proof of theorem 4,
P[Bin(k,k P) < (1—c)k! F] < & /2sfor c = 1/2In(2s/&)/k1-B. Then fori € Sit holds that

/ /

¢ 1)
BLY Y| <A < o+ (1= 5 )P — 0K Phimin+2c <A,
J

wherez ~ A(0,K). Since(1— c)k* Ppmin > (1+1)A, the right-hand side of the above display can
upper bounded as

2 (- g0 >R < g (1) T < S

The above display gives us the desired control of the type two errdrywancan conclude that
P[S(a/*) #9 <a.
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