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Abstract

Learning linear combinations of multiple kernels is an aging strategy when the right choice
of features is unknown. Previous approaches to multipleddearning (MKL) promote sparse
kernel combinations to support interpretability and so#ity. Unfortunately, this/1-norm MKL is
rarely observed to outperform trivial baselines in pradtapplications. To allow for robust kernel
mixtures that generalize well, we extend MKL to arbitraryms. We devise new insights on the
connection between several existing MKL formulations aedetbp two efficientnterleavedopti-
mization strategies for arbitrary norms, thatjisnorms withp > 1. This interleaved optimization is
much faster than the commonly used wrapper approachespamdeated on several data sets. A
theoretical analysis and an experiment on controlled @dlfidata shed light on the appropriateness
of sparse, non-sparse afigknorm MKL in various scenarios. Importantly, empirical &ipations

of £p-norm MKL to three real-world problems from computation&lbgy show that non-sparse
MKL achieves accuracies that surpass the state-of-the-art

Data sets, source code to reproduce the experiments, iraptations of the algorithms, and
further information are available bttp://doc.ml.tu-berlin.de/nonsparse_mkl/
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1. Introduction

Kernels allow to decouple machine learning from data representationsnér i appropriate data
representation via a kernel function immediately opens the door to a vddtet@owerful machine
learning models (e.g., Sotkopf and Smola, 2002) with many efficient and reliable off-the-shelf
implementations. This has propelled the dissemination of machine learning teefinéga wide
range of diverse application domains.

Finding an appropriate data abstraction—or even enginedrsbeskernel—for the problem
at hand is not always trivial, though. Starting with cross-validation (Stb@&4), which is probably
the most prominent approach to general model selection, a great mammaelpgs to selecting the
right kernel(s) have been deployed in the literature.

Kernel target alignment (Cristianini et al., 2002; Cortes et al., 2010b) a@itearning the entries
of a kernel matrix by using the outer product of the label vector as thengrtruth. Chapelle
et al. (2002) and Bousquet and Herrmann (2002) minimize estimates ofikeatjgation error of
support vector machines (SVMs) using a gradient descent algoritenfuer set of parameters. Ong
et al. (2005) study hyperkernels on the space of kernels and alteragproaches include selecting
kernels by DC programming (Argyriou et al., 2008) and semi-infinite progning Ozogur-Akyiiz
and Weber, 2008; Gehler and Nowozin, 2008). Although finding nagalikernel mixtures (&nen
and Alpaydin, 2008; Varma and Babu, 2009) generally results in nomesaptimization problems,
Cortes et al. (2009b) show that convex relaxations may be obtainegdoias cases.

However, learning arbitrary kernel combinations is a problem too gktwea#iow for a general
optimal solution—by focusing on a restricted scenario, it is possible to axhigaranteed optimal-
ity. In their seminal work, Lanckriet et al. (2004) consider training alVS8long with optimizing
the linear combination of several positive semi-definite matrises; Y™, 6Km, subject to the
trace constraint {K) < c and requiring a valid combined kerni€l = 0. This spawned the new
field of multiple kernel learning MKL), the automatic combination of several kernel functions.
Lanckriet et al. (2004) show that their specific version of the MKL taek loe reduced to a convex
optimization problem, namely a semi-definite programming (SDP) optimization problbough
convex, however, the SDP approach is computationally too expensiy@dotical applications.
Thus much of the subsequent research focuses on devising moienefbiotimization procedures.

One conceptual milestone for developing MKL into a tool of practical utility is $ynp con-
strain the mixing coefficient8 to be non-negative: by obviating the complex constrint 0, this
small restriction allows to transform the optimization problem into a quadraticatigtcained pro-
gram, hence drastically reducing the computational burden. While the drigik objective is
stated and optimized in dual space, alternative formulations have beerdstldrenstance, Bach
et al. (2004) found a corresponding primal problem, and Rubinste®bj2@ecomposed the MKL
problem into a min-max problem that can be optimized by mirror-prox algorithnesn{fbvski,
2004). The min-max formulation has been independently proposed byeSommg et al. (2005).
They use it to recast MKL training as a semi-infinite linear program. Solvingatter with column
generation (e.g., Nash and Sofer, 1996) amounts to repeatedly trainB\\don a mixture kernel
while iteratively refining the mixture coefficien@ This immediately lends itself to a convenient
implementation by a wrapper approach. These wrapper algorithms direciyitoeom efficient
SVM optimization routines (cf., Fan et al., 2005; Joachims, 1999) and areommonly deployed
in recent MKL solvers (e.g., Rakotomamonjy et al., 2008; Xu et al., 2008)etly allowing for
large-scale training (Sonnenburg et al., 2005, 2006a). Howeveratmglete training of several
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SVMs can still be prohibitive for large data sets. For this reason, Sdwungret al. (2005) also
propose to interleave the SILP with the SVM training which reduces the traiimmegdrastically.

Alternative optimization schemes include level-set methods (Xu et al., 200%eond order ap-
proaches (Chapelle and Rakotomamonjy, 2008). Szafranski et aD)28ath et al. (2009), and
Bach (2009) study composite and hierarchical kernel learning apipesa Finally, Zien and Ong
(2007) and Ji et al. (2009) provide extensions for multi-class and muki-kitings, respectively.

Today, there exist two major families of multiple kernel learning models. Theidirsharac-
terized by Ivanov regularization (lvanov et al., 2002) over the mixindfimdents (Rakotomamonjy
et al., 2007; Zien and Ong, 2007). For the Tikhonov-regularized opttraiz@roblem (Tikhonov
and Arsenin, 1977), there is an additional parameter controlling the rezailan of the mixing
coefficients (Varma and Ray, 2007).

All the above mentioned multiple kernel learning formulations pronsgarsesolutions in
terms of the mixing coefficients. The desire for sparse mixtures originategatigal as well
as theoretical reasons. First, sparse combinations are easier to int&pocend, irrelevant (and
possibly expensive) kernels functions do not need to be evaluatestiagtéme. Finally, sparse-
ness appears to be handy also from a technical point of view, as th@addsimplex constraint
18]|1 < 1 simplifies derivations and turns the problem into a linearly constrainedgrogNever-
theless, sparseness is not always beneficial in practice and spidtsis flequently observed to be
outperformed by a regular SVM using an unweighted-sum keé¢nely , Ky, (Cortes et al., 2008).

Consequently, despite all the substantial progress in the field of MKLe thidl remains an
unsatisfied need for an approach that is really useful for practigdicagions: a model that has a
good chance of improving the accuracy (over a plain sum kernel) tagettiean implementation
that matches today’s standards (i.e., that can be trained on 10,000s gd#tin a reasonable
time). In addition, since the field has grown several competing MKL formulatidiseems timely
to consolidate the set of models. In this article we argue that all of this is nioevatble.

1.1 Outline of the Presented Achievements

On the theoretical side, we cast multiple kernel learning as a gener#riegd risk minimization
problem for arbitrary convex loss functions, Hilbertian regularizens| arbitrary norm-penalties
on 6. We first show that the above mentioned Tikhonov and Ivanov reguthN#€L variants are
equivalent in the sense that they yield the same set of hypotheses. Eheeriwe a dual repre-
sentation and show that a variety of methods are special cases of octiv@bj€@ur optimization
problem subsumes state-of-the-art approaches to multiple kernel lgacoirering sparse and non-
sparse MKL by arbitraryp-norm regularization (X p < «) on the mixing coefficients as well as the
incorporation of prior knowledge by allowing for non-isotropic regulersz As we demonstrate, the
p-norm regularization includes both important special cases (spargeriamd plain sunwe-norm)
and offers the potential to elevate predictive accuracy over both of them.

With regard to the implementation, we introduce an appealing and efficient optiioniz&rategy
which grounds on an exact update in closed-form in@fgep; hence rendering expensive semi-
infinite and first- or second-order gradient methods unnecessaryusiBg proven working set
optimization for SVMs,p-norm MKL can now be trained highly efficiently for gtf; in particular,
we outpace other current 1-norm MKL implementations. Moreover our impiéation employs
kernel caching techniques, which enables training on ten thousandstaopdints or thousands
of kernels respectively. In contrast, most competing MKL software irecail kernel matrices
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to be stored completely in memory, which restricts these methods to small data selisnitéth
numbers of kernels. Our implementation is freely available within the SHOGUN imatdarning
toolbox available afittp://www.shogun-toolbox.org/ . See also our supplementary homepage:
http://[doc.ml.tu-berlin.de/nonsparse_mkl/

Our claims are backed up by experiments on artificial and real world detaeggresenting
diverse, relevant and challenging problems from the application domdmiofformatics. Using
artificial data, we investigate the impact of the p-norm on the test error asctidn of the size
of the true sparsity pattern. The real world problems include subcellulatization of proteins,
transcription start site detection, and enzyme function prediction. Théselmmonstrate (i) that
combining kernels is now tractable on large data sets, (ii) that it can prowttiegedge classifica-
tion accuracy, and (iii) that depending on the task at hand, differentekenixture regularizations
are required for achieving optimal performance.

We also present a theoretical analysis of non-sparse MKL. We inteodummvell;-to-¢, con-
version technique and use it to derive generalization bounds. Bas#tesm we perform a case
study to compare an exemplary sparse with a non-sparse learningisceivarshow that in the
sparse scenarify,.1-norm MKL yields a strictly better generalization bound tilamorm MKL,
while in the non-sparse scenario it is the other way around.

The remainder is structured as follows. We derive non-sparse MKL @tid®e2 and discuss
relations to existing approaches in Section 3. Section 4.3 introduces theoptingization strategy
and its implementation. We report on theoretical results in Section 5 and omgpinical results in
Section 6. Section 7 concludes.

1.1.1 RELATED WORK

A basic version of this work appeared in NIPS 2009 (Kloft et al., 2009E)e present article
additionally offers a more general and complete derivation of the main optimizatablem, ex-
emplary applications thereof, a simple algorithm based on a closed-fortiosoli@chnical details
of the implementation, a theoretical analysis, and additional experimenthbrd2arts of Section 5
are based on Kloft et al. (2010) the present analysis however exteagbrevious publication by a
novel conversion technique, an illustrative case study, tighter boandsan improved presentation.

In related papers, non-sparse MKL has been applied, extendetyrémel analyzed by several
researchers since its initial publication in Kloft et al. (2008), Cortes €809a), and Kloft et al.
(2009a): Varma and Babu (2009) derive a projected gradient-lmgsizdization method fof,-norm
MKL. Yu et al. (2010) present a more general dual viewshorm MKL and show advantages of
£>-norm over an unweighted-sum kernel SVM on six bioinformatics data €etdes et al. (2010a)
provide generalization bounds fé{- and /p<>-norm MKL. The analytical optimization method
presented in this paper was independently and in parallel discovered ey . (2010) and has
also been studied in Roth and Fischer (2007) and Ying et al. (2009;foorm MKL, and in
Szafranski et al. (2010) and Nath et al. (2009) for composite kéeaehing on small and medium
scales.

2. Multiple Kernel Learning—A Unifying View

In this section we cast multiple kernel learning into a unified framework: wegnt a regularized
loss minimization formulation with additional norm constraints on the kernel miximgficents.
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We show that it comprises many popular MKL variants currently discusseéeiliterature, includ-
ing seemingly different ones.

We derive generalized dual optimization problems without making specificrgggons on the
norm regularizers or the loss function, beside that the latter is convea.spygcial case we derive
¢p-norm MKL in Section 4. In addition, our formulation covers binary clasatfan and regression
tasks and can easily be extended to multi-class classification and strucaunahdesettings using
appropriate convex loss functions and joint kernel extensions (dtid®e3). Prior knowledge on
kernel mixtures and kernel asymmetries can be incorporated by nongsntiorm regularizers.

2.1 Preliminaries

We begin with reviewing the classical supervised learning setup. Givehedeth sampleD =
{(xi,¥i) }i=1...n, where the; lie in some input spac& andy; € 9 C R, the goal is to find a hypoth-
esish € H, that generalizes well on new and unseen data. Regularized risk minimiretions a
minimizerh*,

h* € argmin, Remp(h) +AQ(h),

where Rmp(h) = % SiL1V (h(%),y) is the empirical risk of hypothesksw.r.t. a convex loss function
V:Rx9Y =R, Q:H — Risaregularizer, andl > 0 is a trade-off parameter. We consider linear
models of the form

hap(X) = (W, (X)) + b, 1)

together with a (possibly non-linear) mappitgg X — # to a Hilbert spaceH (e.g., Scblkopf
et al., 1998; Miller et al., 2001) and constrain the regularization to be of the fafim = %H\TVH%
which allows to kernelize the resulting models and algorithms. We will later makefusernel
functionsk(x,x') = (Y(x), Y(x')) 4, to compute inner products i#.

2.2 Regularized Risk Minimization with Multiple Kernels

When learning with multiple kernels, we are givdrdifferent feature mappingBm: X — Hm, m=
1,...M, each giving rise to a reproducing kerrg| of #n,. Convex approaches to multiple kernel
learning consider linear kernel mixturgs= Y 8mkm, 6m > 0. Compared to Equation (1), the primal
model for learning with multiple kernels is extended to

M
higp.6(X) = Zl /B (Wi, Wmn(X)) 5, +b = (W, Pg (X)) 5+ b

where the parameter vectorahd the composite feature mgip have a block structune = (W/ , ...,
Wy) " andWe = v/01P1 x ... x v/BmWwm, respectively.

In learning with multiple kernels we aim at minimizing the loss on the training data w.r.t. the
optimal kernel mixturez,"r’{:1 Bmkm in addition to regularizin@ to avoid overfitting. Hence, in terms
of regularized risk minimization, the optimization problem becomes

. 1 n M . )\ M . L~
Wbl’ggzo ﬁi;\/ (n;\/ﬁ<wm,wm(Xi)>%+b, yi> +§mzl||wm||§4n+pg[e], 2)
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for f1 > 0. Note that the objective value of Equation (2) is an upper bound on timngeerror.
Previous approaches to multiple kernel learning employ regularizers dbtmeC(6) = ||| to
promote sparse kernel mixtures. In contrast, we propose to use coeya@arizers of the form
Q(8) = ||8]|2, where||-||2 is an arbitrary norm irRM, possibly allowing for non-sparse solutions
and the incorporation of prior knowledge. The non-convexity arisiognfthe/8mWm product in

the loss term of Equation (2) is not inherent and can be resolved byitsiting W, < +/0Wim.
Furthermore, the regularization parameter and the sample size can beleedmyintroducing =

% (and adjustingL+ %‘) which has favorable scaling properties in practice. We obtain the following
convex optimization problem (Boyd and Vandenberghe, 2004) that Isasbaen considered by
Varma and Ray (2007) for hinge loss andéamorm regularizer

nf_ CSV 5 (Wi, Wn(Xi)) 5, + D, Vi : 5 ”Wm”iw [CIR 3)
w8050 i; nzl my Wm(Xi)) a4, , Yi > ngl O M )
where we use the convention tt'gat: 0 if t = 0 ande otherwise.

An alternative approach has been studied by Rakotomamonjy et al. (2687Jien and Ong
(2007), again using hinge loss afy\dnorm. They upper bound the value of the regularifp <1
and incorporate the regularizer as an additional constraint into the optinnizatblem. FoC > 0
and hinge loss, they arrive at the following problem which is the primaryoblojeinvestigation in
this paper.

2.2.1 GENERAL PRIMAL MKL OPTIMIZATION PROBLEM

. n M 1 M me”gﬂn
W,b[Q:‘;ZO Ci;V <ng1<wm7 Wm(Xi)) s, +b, yi) +

st |9P<1.

(4)

2 L& 6y

It is important to note here that, while the Tikhonov regularization in (3)tivasegularization pa-

rametersC andp), the above Ivanov regularization (4) has oahe(C only). Our first contribution

shows that, despite the additional regularization parameter, both MKL t&eamequivalent, in the
sense that traversing the regularization paths yields the same binary cédigsiffunctions.

Theorem 1 Let|| - || be a norm orRM and V a convex loss function. Suppose for the optiniahw
Optimization Problen{4) it holds w* £ 0. Then, for each paitC, W) there exists C> 0 such that

for each optimal solution (vb, 8) of Equation(3) using(é, K, we have thatw, b,k 0) is also an

optimal solution of Optimization Proble() using C, and vice versa, wheke> 0 is a multiplicative

constant.

For the proof we need Prop. 12, which justifies switching from Ilvanovikbdnov regulariza-
tion, and back, if the regularizer is tight. We refer to Appendix A for theppsition and its proof.

Proof of Theorem 1Let be (C,u) > 0. In order to apply Prop. 12 to (3), we show that condition
(31) in Prop. 12 is satisfied, that is, that the regularizer is tight.
Suppose on the contrary, that Optimization Problem (4) yields the same infiegardiess of
whether we require
6] <1,

958



£p-NORM MULTIPLE KERNEL LEARNING

or not. Then this implies that in the optimal point we hagug_, 5 ” — 0, hence,
W 2
Wallz _ o vm=1,...m. (5)
O

Since all norms oM are equivalent (e.g., Rudin, 1991), there exists<ac such that|8* ||, <
L||6*|. In particular, we hav§b*||. < c, from which we conclude by (5), thaty,, = 0 holds for all
m, which contradicts our assumption.

Hence, Prop. 12 can be applitdhich yields that (3) is equivalent to

M

|nf Czlv( le,l]Jm( X)) +b, y|> z ||WmH2

s.t. ||6]2<T,

for somet > 0. Consider the optimal solutidmv*, b*, 6*) corresponding to a given parametrization
(C,1). For anyA > 0, the bijective transformatiofC, 1) — (A~%2C, A1) will yield (w*,b*,\1/26")

as optimal solution. Applying the transformation withi= 1/1 and settingC = Ctz as well as

k = 1-Y/2 yields Optimization Problem (4), which was to be shown. [ |

Zien and Ong (2007) also show that the MKL optimization problems by Bach €2@04),
Sonnenburg et al. (2006a), and their own formulation are equivaleata Main implication of
Theorem 1 and by using the result of Zien and Ong it follows that the optimizatmblem of Varma
and Ray (2007) lies in the same equivalence class as Bach et al. (300henburg et al. (2006a),
Rakotomamonjy et al. (2007) and Zien and Ong (2007). In addition, cuftrehows the coupling
between trade-off paramet€iand the regularization paramegein Equation (3): tweaking one also
changes the other and vice versa. Theorem 1 implies that optimizingOptimization Problem
(4) implicitly searches the regularization path for the parametéEquation (3). In the remainder,
we will therefore focus on the formulation in Optimization Problem (4), as aleipgrameter is
preferable in terms of model selection.

2.3 MKL in Dual Space

In this section we study the generalized MKL approach of the previousrdn the dual space.
Let us begin with rewriting Optimization Problem (4) by expanding the decisidmes into slack
variables as follows

. IIWmII%
ko CZN RGPy = ©
st.  Vi: Z(wm,lum(x.))%+b:ti; 8]?<1; 6>0,
m=1

where|| - || is an arbitrary norm iR™ and || - || 5z, denotes the Hilbertian norm o, Applying
Lagrange’s theorem re-incorporates the constraints into the objegtiigtrioducing Lagrangian

1. Note that after a coordinate transformation, we can assuméilmfinite dimensional (see Salkopf et al., 1999).
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multipliersa € R", B € R,, andy € RM. The Lagrangian saddle point problem is then given by

M |lw,
sup in CZLV ti, Vi) + 1 | mH}‘“
a,By: w,bt, em
p=0y=0
S §<w X))+ )+ (101 5) ~v'e
i;l 2, my, WmlXi)) 7, i > > .

Denoting the Lagrangian by and setting its first partial derivatives with respecinti@ndb to O
reveals the optimality conditions

1"a =0;

n
i=

Resubstituting the above equations yields

. 1
sup inf CZL (ti, yi) +aiti) Z emaTKma+B<]]9H2—> —-v'e,
a,B,y: 1T a=0, .0

p>0y>0

which can also be written as

L |
su —CY sup(——t ti, yi)) — Bsup| = A Koo+ —762 1
iy s, 3,sup(- Vi) BJ’(B%(z oY) B 5| ||> =
B=0,y>0

As a consequence, we now may express the Lagrangfan as

sup —cév* (—%, yi) —é <;GTKma +ym>

a,By: 1Ta=0,>0,y>0
whereh*(x) = sup,x" u— h(u) denotes the Fenchel-Legendre conjugate of a fundtiamd || -
||l denotes thedual norm that is, the norm defined via the identi%% 2= (%H . HZ)*. In the
following, we callV* the dual loss Equation (7) now has to be maximized with respect to the
dual variablesx, B, subject tol"a = 0 andp > 0. Let us ignore for a moment the non-negativity
constraint or3 and solved L/0p = 0 for the unbounde@®. Setting the partial derivative to zero
allows to express the optimflas

M 1

- 5B, ™

m=1||,

M

1
= || <2aTKma +ym> (8)

m=1||,

Obviously, at optimality, we always haye> 0. We thus discard the corresponding constraint from
the optimization problem and plugging Equation (8) into Equation (7) results ifollogving dual
optimization problem:

2. We employ the notatios= (s1,...,sv) " = (sm)M_; for se RM.
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2.3.1 GENERAL DuAL MKL OPTIMIZATION PROBLEM

1 M
sup —C ZLV* (——, Vi) — H (20(TKm0(+ym> 9)
ay: 1Ta=0y>0

m=1||,

The above dual generalizes multiple kernel learning to arbitrary conwss flanctions and
norms3 Note that for the most common choices of norms (for examfyerorm, weighted/ -
norms, and sum ofp-norms; but not the norms discussed in Section 3.5) it hglds O in the
optimal point so that thg-term can be discarded and the above reduces to an optimization problem
that solely depends om. Also note that if the loss function is continuous (e.g., hinge loss), the
supremum is also a maximum. The thresholthn be recovered from the solution by applying the
KKT conditions.

The above dual can be characterized as follows. We start by notinghihaxpression in
Optimization Problem (9) is a composition of two terms, first, the left hand side telnioh depends
on the conjugate loss functiovi*, and, second, the right hand side term which depends on the
conjugate norm. The right hand side can be interpreted as a regularies quadratic terms that,
according to the chosen norm, smoothens the solutions. Hence we hagerapdsition of the
dual into a loss term (in terms of the dual loss) and a regularizer (in terme ofui@ norm). For a
specific choice of a pailV, || - ||) we can immediately recover the corresponding dual by computing
the pair of conjugate§vV*, | - ||.) (for a comprehensive list of dual losses see Rifkin and Lippert,
2007, Table 3). In the next section, this is illustrated by means of well-knossfunctions and
regularizers.

At this point we would like to highlight some properties of Optimization Problenth{8) arise
due to our dualization technique. While approaches that firstly apply tmeseqter theorem and
secondly optimize in the primal such as Chapelle (2006) also can employagjerssrfunctions, the
resulting loss terms depend on all optimization variables. By contrast, in ouufation the dual
loss terms are of a much simpler structure and they only depend on a single afiomiariable
a;. A similar dualization technique yielding singly-valued dual loss terms is pteden Rifkin
and Lippert (2007); it is based on Fenchel duality and limited to strictly pesdifinite kernel
matrices. Our technique, which uses Lagrangian duality, extends the hatiolwing for positive
semi-definite kernel matrices.

3. Recovering Previous MKL Formulations as Special Instance

In this section we show that existing MKL-based learners are subsumin l;eneralized formu-
lation in Optimization Problem (9). It is helpful for what is coming up to note thatriost (but not
all; see Section 3.5) choices of norms it hojds= 0 in the generalized dual MKL problem (9), so
that it simplifies to:

(aTKma) . (10)

m=1

. i 1
s o3V (<)) *

3. We can even employ non-convex losses and still the dual will be a&exgroblem; however, it might suffer from a
duality gap.
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3.1 Support Vector Machines with Unweighted-Sum Kernels

First, we note that the support vector machine with an unweighted-suralkermbe recovered as a
special case of our model. To see this, we consider the regularized riskigation problem using
the hinge loss functiol (t,y) = max(0,1—ty) and the regularize}8|.. We then can obtain the
corresponding dual in terms of Fenchel-Legendre conjugate funa®fwlows.

We first note that the dual loss of the hinge los¥ist,y) = 5 if —1< % < 0 andow elsewise
(Rifkin and Lippert, 2007, Table 3). Hence, for eacthe termV* (—%, yi) of the generalized
dual, that is, Optimization Problem (9), translate&t%, provided that (< % < C. Employing a
variable substitution of the form{"" = % Optimization Problem (9) translates to

M
, st yla=0and0<a<C1l, (11)

*

ay: y>0 m-1

max 1'a-— H (;GTY KnY o +ym>

where we denot¥ = diagly). The primall,-norm penalty||6||. is dual to||6]|1, hence, via the
identity || - || = || - ||1 the right hand side of the last equation translategio, a 'Y KnYa, and we
note thaty* = 0 in the optimal point. Combined with (11) this leads to the dual

M
max 1" o — > a'YKnYa, st y'a=0 and0<a<Cl,
a m=1
which is precisely an SVM with an unweighted-sum kernel.

3.2 QCQP MKL of Lanckriet et al. (2004)
A common approach in multiple kernel learning is to employ regularizers of tine fo
Q(8) = 6]l (12)

This so-called/;1-norm regularizers are specific instancesspérsity-inducingregularizers. The
obtained kernel mixtures usually have a considerably large fractiorrofezgries, and hence equip
the MKL problem by the favor of interpretable solutions. Sparse MKL is eci&p case of our
framework; to see this, note that the conjugate of (12)-i$... Recalling the definition of an,-
norm, the right hand side of Optimization Problem (9) translates tqn@”{@x,’M}aTY KnYa. The
maximum can subsequently be expanded into a slack vagabdsulting in

sup 1'a—¢&
a,&

1
st vVm: EO(TYKfnYO(SE; yla=0; 0<a<Cl,

which is the original QCQP formulation of MKL, firstly given by Lanckrietadt (2004).

3.3 A Smooth Variant of Group Lasso

Yuan and Lin (2006) studied the following optimization problem for the speais&?, = R% and
Wm = idgam, @lSo known as group lasso,

con M S
min Ei; ()’i—él(wmﬂbm(xi»%) +§mzl||Wm||%n- (13)
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The above problem has been solved by active set methods in the printalgRbFischer, 2008).
We sketch an alternative approach based on dual optimization. Firsttevéhad Equation (13) can
be equivalently expressed as (Micchelli and Pontil, 2005, Lemma 26)

2
cn M 1M fwmll3,
inf = P — i = t. 2<1.
7”" 22 <Y| ngl<Wm, qu(X|)>5£n> + 22 6n , st [6)T<
The dual ofV (t,y) = %(y—t)2 isV*(t,y) = 3t? +ty and thus the corresponding group lasso dual
can be written as

M
(aTY KmY(x>

1 1
2

max oa— —||d||5— =

o y 2C|| HZ ‘ m=1

2
which can be expanded into the following QCQP

[o0)

1
sup y'a-— EIIGH%—E

a,g
1
s.t. vm: E(:(TYKﬂYugE.

For smalln, the latter formulation can be handled efficiently by QCQP solvers. Howéver
quadratic constraints caused by the non-smdgthorm in the objective still are computationally
too demanding. As a remedy, we propose the following unconstrainedtaased orfp-norms

(1 < p < »), given by
1 1 M
Ty = qll2_ =

max y o ZCHO(HZ 2‘

(aTY KmYO(>

m=1 p*

It is straightforward to verify that the above objective function is diffeiable in anya € R" (in
particular, notice that thé,-norm function is differentiable for & p < «) and hence the above
optimization problem can be solved very efficiently by, for example, limited memoagi-Newton
descent methods (Liu and Nocedal, 1989).

3.4 Density Level-Set Estimation

Density level-set estimators are frequently used for anomaly/novelty deteatks (Markou and
Singh, 2003a,b). Kernel approaches, such as one-class SVMsIKSgf et al., 2001) and Sup-
port Vector Domain Descriptions (Tax and Duin, 1999) can be cast intdviidL. framework by
employing loss functions of the form(t) = max0,1—t). This gives rise to the primal

nf CS 0 : L g vl t. 8|2 <1
W,ISI;]GZO i;max anZl<Wm7qu(Xl)>7-ﬂn +§nZl 6 st [9]°<1.
Noting that the dual loss *(t) =t if —1 <t <0 andw elsewise, we obtain the following gener-
alized dual

, St 0<a<C(C],
p*
which has been studied by Sonnenburg et al. (2006a) and Rakotomaghahj{2008) for;1-norm,
and by Kiloft et al. (2009b) fof,-norms.

M
(aTKma)

1
sup 1Ta—= ‘
o m=1

2
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3.5 Non-Isotropic Norms

In practice, it is often desirable for an expert to incorporate prior kedge about the problem
domain. For instance, an expert could provide estimates of the interacfikemels{Kj,...,Ku }

in the form of anM x M matrix E. Alternatively,E could be obtained by computing pairwise kernel
alignmentsk;; = Wm given a dot product on the space of kernels such as the Frobertius do
product (Ong et al., 2005). In a third scenaiocould be a diagonal matrix encoding the a priori
importance of kernels—it might be known from pilot studies that a substhieoémployed kernels

is inferior to the remaining ones.

All those scenarios can be handled within our framework by considedngsotropic regular-

izers of the formi
16]lg-2 = VB'E-18 with E >0,

whereE~1 is the matrix inverse o.

However, this choice of a norm is quite different from what we have efore: let us consider
Optimization Problem (9); for non-isotropic norms we in general do no¢ lfaw 0 in the optimal
point so that this OP does not simplify to the dual (10) as in the subsectitore binstead we have
to work with (9) directly. To this end, note that for the dual norm it ho{d$ - |2 ,)" = 3|| - |2, so
that we obtain from (9) the following dual

)

E

sup —cév* (—%, yi) —H(;aTKmaerm>M

ay: 1Ta=0y>0 m-1

which is the desired non-isotropic MKL problem.

4. {p-Norm Multiple Kernel Learning

In this work, we propose to use non-sparse and thus more robust keistiures by employing an
¢p-norm constraint withp > 1, rather than the traditionally uség-norm constraint, on the mixing
coefficients (Kloft et al., 2009a). To this end, we employ non-sparsssiof the form||6|/, =
(M . 8R)YP, 1< p < 5 From the unifying framework of Section 2 we obtain the following
¢p-norm MKL primal:

4.1 Primal Zp-norm MKL Optimization Problem

inf csv(s . b v 1M [wal%,
W,bI,Q:GZO i; rTZl<Wmanm(X,)>%]+ , Vi _|_§ Z em

m=1

s.t. 18]35 < 1. (14)

Using that the dual norm of th&,-norm is thel,:-norm, wherep* := %1 and noting thay* =0
in the optimal point, we obtain from Optimization Problem (9) the followiggnorm MKL dual:

4. This idea is inspired by the Mahalanobis distance (Mahalanobis, 1936).
5. While the upcoming reasoning also holds for weightgshorms, the extension to more general norms, such as the
ones described in Section 3.5, is left for future work.
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4.2 Dual/p-norm MKL Optimization Problem

M
(aTKma>

m=1

n .
w3V |

In the special case of hinge loss minimization, we obtain the optimization problem

p*

M

(aTY Kmva> . st yla=0and0<a<CL (15)

1
sup 1Ta— =
(l)(Jp 2‘ m=1

p*

In the subsequent sections, we will propose an efficient optimizationitdgofor Optimization
Problem (15) (Section 4.3) and proof its convergence (Section 4.3a8)r We derive generalization
bounds (Section 5), and analyggnorm MKL empirically using artificial and real-world data sets
(Section 6).

4.3 Optimization Strategies

The dual as given in Optimization Problem (15) does not lend itself to effitiege-scale opti-
mization in a straight-forward fashion, for instance by direct applicatiortarfdard approaches
like gradient descent. Instead, it is beneficial to exploit the structureeofMKL cost function by
alternating between optimizing w.r.t. the mixingsnd w.r.t. the remaining variables. Most recent
MKL solvers (e.g., Rakotomamonijy et al., 2008; Xu et al., 2009; Nath et ad9@R68o so by set-
ting up a two-layer optimization procedure: a master problem, which is pardmeetemly by8,

is solved to determine the kernel mixture; to solve this master problem, repeatstilye prob-
lem is solved which amounts to training a standard SVM on a mixture kernel. tamly; for the
slave problem, the mixture coefficients are fixed, such that conventidfieieet SVM optimizers
can be recycled. Consequently these two-layer procedures are ctynmplemented asvrapper
approaches. Albeit appearing advantageous, wrapper methods fsaffi two shortcomings: (i)
Due to kernel cache limitations, the kernel matrices have to be pre-commudestaed or many
kernel computations have to be carried out repeatedly, inducing heastage of either memory or
time. (ii) The slave problem is always optimized to the end (and many convegenofs seem to
require this), although most of the computational time is spend on the non-optixtakes. Cer-
tainly suboptimal slave solutions would already suffice to improve far-frptirral © in the master
problem.

Due to these problems, MKL is prohibitive when learning with a multitude of kerauetson
large-scale data sets as commonly encountered in many data-intense nidaampdications such
as bioinformatics, web mining, databases, and computer security. The opitimiapproach pre-
sented in this paper decomposes the MKL problem into smaller subproblertis{®%®; Joachims,
1999; Fan et al., 2005) by establishing a wrapper-like schaitién the decomposition algorithm.

Our algorithm is embedded into the large-scale framework of Sonnenbailg (2006a) and
extends it to the optimization of non-sparse kernel mixtures induced dy-aorm penalty. Our
strategy alternates between minimizing the primal problem (6) @viti a simple analytical update
formula and with incomplete optimization w.r.t. all other variables which, howesererformed
in terms of the dual variables. Optimization w.r.t.a is performed by chunking optimizations
with minor iterations. Convergence of our algorithm is proven under typézdinical regularity
assumptions.
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4.3.1 A SMPLE WRAPPERAPPROACHBASED ON AN ANALYTICAL UPDATE

We first present an easy-to-implement wrapper version of our optimizapprmoach to multiple
kernel learning. The interleaved decomposition algorithm is deferred toetktesection.

To derive the new algorithm, we divide the optimization variables of the prinadlpm (14)
into two groups,(w,b) on one hand an@ on the other. Our algorithm will alternatingly operate
on those two groups via a block coordinate descent algorithm, also krneteaon-linear block
Gauss-Seidel methodThereby the optimization w.r.© will be carried out analytically and the
(w, b)-step will be computed in the dual, if needed.

The basic idea of our first approach is that for a given, fixed setinfgb variables(w, b), the
optimal 0 in the primal problem (14) can be calculated analytically as the following itpo
shows.

Proposition 2 LetV be a convex loss function, be>fll. Given fixed (possibly suboptimal)=%/0
and b, the minima in Optimization Problen{14)is attained for

2
[[Wnll 5,
Bm = 7 vm=1,...,M. (16)

y AN
(el

Proof ® We start the derivation, by equivalently translating Optimization Problem \iB4Theo-
rem 1into

w,b,8:6>0 i; n;l s Wm(Xi), 4, 0. 2%1 Om 27

with p > 0. Suppose we are given fixéd, b), then setting the partial derivatives of the above
objective w.r.t0 to zero yields the following condition on the optimality @&f

IwmllZ,, 9 (51813)

_ . = =1,...,M. 1
The first derivative of thé,-norm with respect to the mixing coefficients can be expressed as
a (302
DUIOT) _ g2z,
06m P

and hence Equation (18) translates into the following optimality condition,

2

Tovm=1,...,M: By =|wl}" . (19)

Becausew # 0, using the same argument as in the proof of Theorem 1, the consﬂw%ﬂg 1
in (17) is at the upper bound, that i#||, = 1 holds for an optima. Inserting (19) in the latter

equation leads t¢ = (anlHWmH% ) . Resubstitution into (19) yields the claimed formula

6. We remark that a more general result can be obtained by an akerpatiof using Hlder’s inequality (see Lemma
26 in Micchelli and Pontil, 2005).
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(16). m

Second, we consider how to optimize Optimization Problem (14) w.r.t. the remaiaiiables
(w, b) for a given set of mixing coefficien®& Since optimization often is considerably easier in the
dual space, we fi® and build the partial Lagrangian of Optimization Problem (14) w.r.t. all other
primal variablesv, b. The resulting dual problem is of the form (detailed derivations omitted)

sup —C n V* (—ﬁ y-) 1 % Bmat | Kot (20)
a:1Ta=0 i; C’ | 2 m=1 " m
and the KKT conditions yieltvy, = 6m i, oiPm(x) in the optimal point, hence

[Wml|? = 630Kma, Vm=1,..,M. (21)

We now have all ingredients (i.e., Equations (16), (20)—(21)) to formalaienple macro-wrapper
algorithm for¢p-norm MKL training:

Algorithm 1 Simple/p.1-norm MKL wrapper-based training algorithm. The analytical updates of
0 and the SVM computations are optimized alternatingly.

1: input: feasiblea and®

2: while optimality conditions are not satisfielb

3: Computea according to Equation (20) (e.g., SVM)

4: Compute||wp||? for all m= 1,...,M according to Equation (21)
5: UpdateB according to Equation (16)

6: end while

The above algorithm alternatingly solves a convex risk minimization machine $&/i1) w.r.t. the
actual mixture® (Equation (20)) and subsequently computes the analytical update sxrdod
Equation (16) and (21). It can, for example, be stopped based agebaf the objective function
or the duality gap within subsequent iterations.

4.3.2 TOWARDS LARGE-SCALE MKL—I NTERLEAVING SVM AND MKL OPTIMIZATION

However, a disadvantage of the above wrapper approach still is thegpliiyd a full blown kernel
matrix. We thus propose to interleave the SVM optimization of SVMlight with@handa-steps

at training time. We have implemented this so-caile@rleavedalgorithm in Shogun for hinge
loss, thereby promoting sparse solutionsiiriThis allows us to solely operate on a small number of
active variableg. The resulting interleaved optimization method is shown in Algorithm 2. Lines 3-5
are standard in chunking based SVM solvers and carried out by"&V[ote thatQ is chosen as
described in Joachims, 1999). Lines 6-7 compute SVM-objective vakipally, the analyticab-

step is carried out in Line 9. The algorithm terminates if the maximal KKT violatibnl@achims,
1999) falls below a predetermined precisiband if the normalized maximal constraint violation
|1— ﬁ] < gmk for the MKL-step, whereo denotes the MKL objective function value (Line 8).

7. In practice, it turns out that the kernel matrix of active variables ajlyiés about of the size 48 40, even when we
deal with ten-thousands of examples.
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Algorithm 2 /,-Norm MKL chunking-based training algorithm via analytical update. l€ern
weighting0 and (signed) SVMx are optimized interleavingly. The accuracy parametand the
subproblem siz€) are assumed to be given to the algorithm.

1: Initialize: gmj =G =0a;=0,Vi=1,....n; L=S=—o; Bnp={1/M,Vm=1,... M

2: iterate

3:  Select Q variablesi,, ..., di, based on the gradiegtof (20) w.r.t.a

4:  Storea®d = a and then update according to (20) with respect to the selected variables
5:  Update gradiengm; < Gmi + Zgzl(aiq — ai‘;'d)kmmq,xi), Vvm=1,....M,i=1,....n
6: Compute the quadratic tern§,, = %Zi Om,i0i, Om= 26,?nSm, vym=1....M
70 Lag=L, L=3%iViti, Sd=S S=3InOmSn
8: If|l_|—|d Sﬂd\ze
9: Om= (Qm)l/(pﬂ)/ (Zmzl (Qnd)p/(p“))l/p, Yym=1,....M
10: else
11 break
12:  endif

13: G = YmOmgm; foralli=1,....n

4.3.3 GONVERGENCEPROOF FORp > 1

In the following, we exploit the primal view of the above algorithm as a nontitdeck Gauss-
Seidel method, to prove convergence of our algorithms. We first negidltbeing useful result
about convergence of the nonlinear block Gauss-Seidel method inagiene

Proposition 3 (Bertsekas, 1999, Prop. 2.7.1)etX = @M _, X;, be the Cartesian product of closed
convex setsm C R be f: X >R a continuously differentiable function. Define the nonlinear
block Gauss-Seidel method recursively by lettifig ¥ be any feasible point, and be

X1 — argminf ( XL XKL e K K,l), vm=1,...,M. (22)
&€Xm

Suppose that for each m andxx, the minimum

min f (le' o )melvzvxm+la et 7X|V|)
§€Xm

is uniquely attained. Then every limit point of the sequegycn is a stationary point.

The proof can be found in Bertsekas (1999), p. 268-269. Theprepbsition basically establishes
convergence of the proposégtnorm MKL training algorithm.

Theorem 4 Let V be the hinge loss and be>pl. Let the kernel matricesK...,Ky be positive
definite. Then every limit point of Algorithm 1 is a globally optimal point of Oidttion Problem
(14). Moreover, suppose that the SVM computation is solved exactly in eaatidterthen the same
holds true for Algorithm 2.

Proof If we ignore the numerical speed-ups, then the Algorithms 1 and 2 coinaidéé hinge
loss. Hence, it suffices to show the wrapper algorithm converges.
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To this aim, we have to transform Optimization Problem (14) into a form suchhbatequire-
ments for application of Prop. 3 are fulfilled. We start by expanding OptimizaRimblem (14)
into

i CZf' || mll%7

w.b.&.6

st Vi: Z<Wm,lij( X))s+b>1-8&; &£>0; [8]5<1; 6>0,

m=1

thereby extending the second block of variabl@sp), into (w,b,&). Moreover, we note that after
an application of the representer theofefidimeldorf and Wahba, 1971) we may without loss of
generality assumgf, = R".

In the problem’s current form, the possibility of an optinfg = 0 while wiy, # O renders the
objective function nondifferentiable. This hinders the application of PBoportunately, it follows
from Prop. 2 (note th&, > 0 impliesw # 0) that this case is impossible fpr> 1. We therefore can
substitute the constraift> 0 by 8 > 0 for all mwithout changing the optimum. In order to maintain
the closeness of the feasible set we subsequently apply a bijectiveragertransformationp :
RM — RM with 608 = @y (6m) = log(6m), resulting in the following equivalent problem,

n 1M
inf- CS&+= S exp(—6m) || W2,

w,bg.0

st Vi: Z(Wm7qu( X)r+b>1-8; &>0; [exp0)]3<1,

m=1

where we employ the notation ef§) = (exp(81),---,exp(6w)) .

Applying the Gauss-Seidel method in Equation (22) to the base problem OptoniBaoblem
(14) and to the reparametrized problem yields the same sequence of solitioh,8)%}cn,.
The above problem now allows to apply Prop. 3 for the two blocks of dnatels6 € X; and
(w,b,&) € Xz: the objective is continuously differentiable and the sktsaand X, are closed and
convex. To see the latter, note th}atH%o exp is a convex function (cf., Section 3.2.4 in Boyd and
Vandenberghe, 2004). Moreover, the minima in Equation (22) are ugigttained: thegw, b)-step
amounts to solving an SVM on a positive definite kernel mixture, and the aralgtitep clearly
yields unique solutions as well.

Hence, we conclude that every limit point of the sequef®g b, 8)¥}cn is a stationary point
of Optimization Problem (14). For a convex problem, this is equivalent th adenit point being
globally optimal. [ |

In practice, we are facing two problems. First, the standard Hilbert spetcg necessarily
implies that|\wm|| > 0 for all m. However in practice this assumption may often be violated, either
due to numerical imprecision or because of using an indefinite “kerneltimm However, for
any || wm|| < 0 it also follows tha®}, = 0 as long as at least one strictly positiis,y|| > O exists.
This is because for any < 0 we have Iinn_>o’h>o% = —oo. Thus, for anym with ||wm| <0, we

8. Note that the coordinate transformation it8 can be explicitly given in terms of the empirical kernel map
(Scholkopf et al., 1999).
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can immediately set the corresponding mixing coeffici@j{so zero. The remainin@ are then
computed according to Equation (2), and convergence will be achievéong as at least one
strictly positive||wyy|| > O exists in each iteration.

Second, in practice, the SVM problem will only be solved with finite precisioniclv may
lead to convergence problems. Moreover, we actually want to improve thdy a little bit be-
fore recomputind since computing a high precision solution can be wasteful, as indicated by the
superior performance of the interleaved algorithms (cf. Sect. 6.5). Biis o avoid spending a
lot of a-optimization (SVM training) on a suboptimal mixtuée Fortunately, we can overcome the
potential convergence problem by ensuring that the primal objectiveases within each-step.
This is enforced in practice, by computing the SVM by a higher precisiondgtied. However, in
our computational experiments we find that this precaution is not evensaggegven without it,
the algorithm converges in all cases that we tried (cf. Section 6).

Finally, we would like to point out that the proposed block coordinate desggproach lends
itself more naturally to combination with primal SVM optimizers like Chapelle (200@)Lin-
ear (Fan et al., 2008) or Ocas (Franc and Sonnenburg, 2008&ciBlp for linear kernels this is
extremely appealing.

4.4 Technical Considerations

In this section we report on implementation details and discuss kernel nortiadiza

4.4.1 MPLEMENTATION DETAILS

We have implemented the analytic optimization algorithm described in the previatisr§eas
well as the cutting plane and Newton algorithms by Kloft et al. (2009a), withtnSRHOGUN
toolbox (Sonnenburg et al., 2010) for regression, one-class ctad&ifi, and two-class classifica-
tion tasks. In addition one can choose the optimization scheme, that is, devideewthe inter-
leaved optimization algorithm or the wrapper algorithm should be applied. Bpgaloaches any
of the SVMs contained in SHOGUN can be used. Our implementation can beafmed from
http://lwww.shogun-toolbox.org

In the more conventional family of approaches,wrapper algorithmsan optimization scheme
on© wraps around a single kernel SVM. Effectively this results in alternatisglying fora and®.

For the outer optimization (i.e., that ® SHOGUN offers the three choices listed above. The semi-
infinite program (SIP) uses a traditional SVM to generate new violatedreams and thus requires

a single kernel SVM. A linear program (fgr= 1) or a sequence of quadratically constrained linear
programs (fop > 1) is solved via GLPR or IBM ILOG CPLEX!C. Alternatively, either an analytic

or a Newton update (fof, norms withp > 1) step can be performed, obviating the need for an
additional mathematical programming software.

The second, much faster approach performs interleaved optimizationwancetiuires modifi-
cation of the core SVM optimization algorithm. It is currently integrated into thenkimg-based
SVRIight and SVMIlight. To reduce the implementation effort, we implement a singietibn
perform _mkl _step( Y4, obj m), that has the argumenyg, := 3., a; and ob,in=§aTKm0(, that is,
the current linean-term and the SVM objectives for each kernel. This function is either, in the

9. GLPK can be found dtitp://iwww.gnu.org/software/glpk/ .
10. ILOG CPLEX can be found &ttp://www.ibm.com/software/integration/optimizatio n/cplex/
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interleaved optimization case, called as a callback function (after eackiolystep or a couple of
SMO steps), or it is called by the wrapper algorithm (after each SVM optimiz&di€ull precision).

Recovering Regression and One-Class Classificatiaghould be noted that one-class classifi-
cation is trivially implemented usin§, = 0 while support vector regression (SVR) is typically per-
formed by internally translating the SVR problem into a standard SVM cladsficproblem with
twice the number of examples once positively and once negatively labeledamittsponding and
a*. Thus one needs direct accessitaand compute§ , = — 3L (0 + a7 )e— 34 (o — o )y; (cf.
Sonnenburg et al., 2006a). Since this requires modification of the cdvesWer we implemented
SVR only for interleaved optimization and SVMlight.

Efficiency Considerations and Kernel Cachingote that the choice of the size of the kernel
cache becomes crucial when applying MKL to large scale learning apphisatiownhile for the
wrapper algorithms only aingle kernel SVM needs to be solved and thus a single large kernel
cache should be used, the story is different for interleaved optimizatinoe $ne must keep track
of the several partial MKL objectives qhj requiring access to individual kernel rows, the same
cache size should be used for all sub-kernels.

4.4.2 KERNEL NORMALIZATION

The normalization of kernels is as important for MKL as the normalization a@éifea is for training
regularized linear or single-kernel models. This is owed to the bias intrdducthe regularization:
optimal feature / kernel weights are requested to be small. This is easidrievafor features (or
entire feature spaces, as implied by kernels) that are scaled to be ofrlaggetude, while down-
scaling them would require a correspondingly upscaled weight foesepting the same predictive
model. Upscaling (downscaling) features is thus equivalent to modifygngaezers such that they
penalize those features less (more). As is common practice, we here useicsoegularizers,
which penalize all dimensions uniformly. This implies that the kernels have toiyeatized in a
sensible way in order to represent an “uninformative prior” as to wharhdds are useful.

There exist several approaches to kernel normalization, of whichsedwp in the computa-
tional experiments below. They are fundamentally different. The firspemeralizes the common
practice of standardizing features to entire kernels, thereby directly imptergehe spirit of the
discussion above. In contrast, the second normalization approadiessioe data points to unit
norm in feature space. Nevertheless it can have a beneficial efféheascaling of kernels, as we
argue below.

Multiplicative Normalization.As done in Ong and Zien (2008), we multiplicatively normalize
the kernels to have uniform variance of data points in feature spacenalfgrwe find a positive
rescalingpm of the kernel, such that the rescaled kergl, -) = pmkm(-,-) and the corresponding

feature mapPm(-) = /Pm®m(-) satisfy

LS 1omox) - oo =1

11. Large scalein the sense, that the data cannot be stored in memory or the computatitiesea maintainable limit.
In the case of MKL this can be due both a large sample size or a high nohkemels.
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for eachm=1,...,M, where®n(X) := 1 31, ®m(x) is the empirical mean of the data in feature
space. The above equation can be equivalently be expressed in tetamaalffunctions as

nN

R, g )

j
so that the final normalization rule is

k(x,X)

K(X,X) — .
ISn KX, %) — 5 31 —1. KOG, X )

Note that in case the kernel is centered (i.e., the empirical mean of the datalson the origin),
the above rule simplifies tk(x,X) — k(x,X)/4tr(K), where t(K) := 1, k(x,) is the trace of
the kernel matrix.

Spherical NormalizationFrequently, kernels are normalized according to

K(x, X)

RV sk

(23)

After this operation||x|| = k(x,x) = 1 holds for each data point this means that each data point
is rescaled to lie on the unit sphere. Still, this also may have an effect onaleecdd¢he features: a
spherically normalized and centered kernel is also always multiplicativeipal@zed, because the
multiplicative normalization rule becom&sx, x) — k(x,@/%tr(K) = Kk(x,x)/1.

Thus the spherical normalization may be seen as an approximate to the abltipticaiive
normalization and may be used as a substitute for it. Note, however, thahgehthe data points
themselves by eliminating length information; whether this is desired or not deperthe learning
task at hand. Finally note that both normalizations achieve that the optimalof&lLie not far from
1.

4.5 Limitations and Extensions of our Framework

In this section, we show the connectionfginorm MKL to a formulation based on block norms,
point out limitations and sketch extensions of our framework. To this aim leteal the primal
MKL problem (14) and consider the special caséghorm MKL given by

n M M 2
0 CYV( Y Gt b )<Y M s jez<1 (a)
W,,6:0>0 i; ng m: Wm(X)) o, +0, ¥ | +5 Y 6. St 2 < 1.

m=1

The subsequent proposition shows that (24) equivalently can béatieshnto the following mixed-
norm formulation,

M

. ~ N 1 M
m Ci;V (ng<wm,¢m(xi)>%+b, Yi> +§n;1|lwm||q , (25)

whereq = % andC is a constant. This has been studied by Bach et al. (2004) fo. and by
Szafranski et al. (2008) for hierarchical penalization.
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Proposition 5 Let be p> 1, be V a convex loss function, and define:q% (i.e., p= qu)-

Optimization Problen{24) and (25) are equivalent, that is, for each C there exist€ a 0, such
that for each optimal solution (Wwb*, 8) of OP (24) using C, we have that (wb*) is also optimal
in OP (25) usingC, and vice versa.

Proof From Prop. 2 it follows that for any fixed in (24) it holds for thew-optimal ©:
2
I = ZHWmH;Z:, vm=1,...,M.

Plugging the above equation into (24) yields

' n M 1 M %
!Nng Ci;\/ <m21<wm’ Wm(Xi)) a4, + b, Y|> + ?anl"wm”% :
Definingq:= -22 andC := {C results in (25). [

p+1

Now, let us take a closer look on the parameter rangg df is easy to see that when we vary
p in the real interva[l, «], thenq is limited to range in1,2]. So in other words the methodology
presented in this paper only covers the 31 < 2 block norm case. However, from an algorithmic
perspective our framework can be easily extended t@the? case: although originally aiming at
the more sophisticated case of hierarchical kernel learning, Aflalo @Cdl1) showed in particular
that forq > 2, Equation (25) is equivalent to

M

_n 1 M
sup inf CSV Wi, W) s +0, i |+ =S Oml|will2,
0:0>0,8|)2<1 Wb i; (rrgl e | 2le L

wherer := qfqz. Note the difference td,-norm MKL: the mixing coefficientd appear in the
nominator and by varyingin the interval1, ], the range of in the interval[2, «] can be obtained,
which explains why this method is complementary to ours, wheenges in1,2].

It is straightforward to show that for every fixed (possibly suboptimaill) p& b) the optimal®
is given by

2
[[Wnll 5
B = T Ym=1,....M

o 1/r?
(et

The proof is analogous to that of Prop. 2 and the above analytical ufmtatella can be used
to derive a block coordinate descent algorithm that is analogous to ¢rursur framework, the
mixings 6, however, appear in the denominator of the objective function of Optimiz&iohlem
(14). Therefore, the corresponding update formula in our framegork

el
B = Wl Ym=1,....M. (26)

o 1/r”
(el

This shows that we can simply optimize<2q < c-block-norm MKL within our computational
framework, using the update formula (26).
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5. Theoretical Analysis

In this section we present a theoretical analysiéefiorm MKL, based on Rademacher complex-
ities1? We prove a theorem that converts any Rademacher-based genenalixatizd orv;-norm
MKL into a generalization bound fof,-norm MKL (and even more generally: arbitrary-norm
MKL). Remarkably this/1-to-¢,, conversion is obtained almost without any effort: by a simple 5-
line proof. The proof idea is based on Kloft et al. (2010). We remarkahd,-norm MKL bound
was already given in Cortes et al. (2010a), but their bound is only vailithe special cases where
p/(p—1) is an integer and is not tight for small as it diverges to infinity whemp > 1 andp
approaches one. By contrast, beside a negligibléMogfactor, our result matches the best known
lower bounds, wheip approaches one.

Let us start by defining the hypothesis set that we want to investigate wiadidCortes et al.
(2010a), we consider the following hypothesis clasgfer[1, |:

M
HY = {h ‘X >R ‘ h(¥) = > v/Bm(Wm, Wm(X)) 5, [IWllsr < 1, [1B][p < l}-
m=1

Solving our primal MKL problem (14) corresponds to empirical risk minimizatiorthe above
hypothesis class. We are thus interested in bounding the generalizatiorokthe above class
w.r.t. an i.i.d. sampléxq,y1),..., (Xn, Yn) € X x {—1,1} from an arbitrary distributio#®. In order to

do so, we compute tHRademacher complexjty

n
Z(Hy) :=E [ sup L Zleih(Xi)] ,

heH? NS
whereoy, ..., 0, are independent Rademacher variables (i.e., they obtain the values 1 ngih+
the same probability 0.5) and tfikis the expectation operator that removes the dependency on all
random variables, that isj, x;, andy; (i = 1,...,n). If the Rademacher complexity is known, there
is a large body of results that can be used to bound the generalizatiorfeego Koltchinskii and
Panchenko, 2002; Bartlett and Mendelson, 2002).

We now show a simplé;-to-¢,, conversion technique for the Rademacher complexity, which is

the main result of this section:

Theorem 6 (4-to-¢,, Conversion) For any sample of size n ard< q < p < » the Rademacher
complexity of the hypothesis sefjldan be bounded in terms ofH

p e q
Z(Hy) <V Ma pZ(Hy).

In particular, we haveZ(Hy);) < VMYP 2 (HY) (¢1-to-¢, Conversion), where'p= p/(p—1) is
the conjugated exponent of p.

Proof By Holder’s inequality (e.g., Steele, 2004), denotbity.= (65’,--- ,85) T, we have for all
non-negatived € RM,

1 1 11
18llq = (17699 < (|[1]pcy+ 16 pyq) /" = MT [[8]] , = M5 ]} . 27)

12. Anintroduction to statistical learning theory, which may equip the reailethe needed notions used in this section,
is given in Bousquet et al. (2004). See also, for example, Section Haw& Taylor and Cristianini (2004).
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Hence,

%(Hl\a) Bt E <1nzlol vV Bm(Wim, Um(Xi ]
m=1

W”WH}[<1 e 165
@n T

< E Zlo. z v/ Bm (W, qu(xi»%]
W [[wil 5 <1, eueuq<M% sN& =

10
= E sup Zlo. M
Lw: w5 <1, 8:]8]lq<1 1 =]

et VMR Z(HY).

Qi

o))

Remark 7 More generally we have that for any norm ||, on RM, because all norms oRM are
equivalent (e.g., Rudin, 1991), there exists & ®R such that

Z(HYy) < c.Z2(Hy).

This means the conversion technique extends to arbitrary norms: fagigeg norm|| - ||, we can
convert any bound o (Hy) into a bound on the Rademacher complexityH;;) of hypothesis
set induced by - ||.

A nice characteristic of the above result is that we can make use of artjngxdi®mund on the
Rademacher complexity ¢fl; in order to obtain a generalization bound . This fact is illus-
trated in the following. For example, it has recently been shown:

Theorem 8 (Cortes et al., 2010a).et M > 1 and assume thatKx,x) < R? for all x € X and m=
1,...,M. Then, for any sample of size n, the Rademacher complexities of ththagis sets i
and an can be bounded as follows (where-€23/22 and [-| rounds to the next largest integer):

2 1/pR2
Hi) < /ceﬂog:lMlR’ /cp*M R

for any p> 1 such that p is an even integer.

For p=1 [p > 1] the above result directly leads toQ(/logM) [O(\/Ml/p*)} bound on the

generalization error and thus substantially improves on a series of logsiésrgiven within the
past years (see Cortes et al., 2010a, and references thereiytudiately, since* is required to

be an integer, the range pfis restricted t € [1,2]. As a remedy, in this paper we use theto-¢,,
Conversion technique to the above reSlio obtain a bound foH,; that holds for allp € [1, ..., »]:

the following corollary is obtained from the previous theorem by ugytp-£,-norm conversion
forg=1andgq= [ p*]*, respectively, and then taking the minimum value of the so-obtained bounds.

13. The point here is that we could use a@aybound, for example, the bounds of Kakade et al. (2009) and Kiait. e
(2010) have the same favoralii¢logM) rate; in particular, whenever a nébound is proven, we can plug it into
our conversion technique to obtain a new bound.
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Corollary 9 (of the previous two theorems) Let M > 1 and assume thatKx, x) < R? for all x € X
and m=1,...,M. Then, for any sample of size n, the Rademacher complexity of ththhgoset
H,; can be bounded as follows:

WpE[L o] Z(Hf) < \/CM”"*RZmiMeHOQML L4l

n
where g := p/(p—1) is the conjugated exponent of p andc23/22.

It is instructive to compare the above bound, which we obtained by @to-/, conversion

technique, with the one given in Cortes et al. (2010a): thag (i) < 1/ mnl/mz foranyp e
[1,...,] such thatp* is an integer. First, we observe that for= 2 the bounds’ rates coincide.
Second, we observe that for small(close to one), the*-factor in the Cortes-bound leads to
considerably high constants. Wherapproaches one, it even diverges to infinity. In contrast, our

bound converges t&Z(H}) < ce[loginl\/ﬂRz when p approaches one, which is precisely the tight

1-norm bound of Thm. 8. Finally, it is also interesting to consider the gase2 (which is not
covered by the Cortes et al., 2010a bound): if wepet o, we obtainZ(H}) < \/%. This

matches the well-know® (\/M) lower bounds based on the VC-dimension (e.g., Devroye et al.,
1996, Section 14).

We now make use of the above analysis of the Rademacher complexity to theuypeheraliza-
tion error. There are many results in the literature that can be employed tanthi®ars is based
on Thm. 7 in Bartlett and Mendelson (2002):

Corollary 10 LetM> 1and p€]d,...,%]. Assume thatk(x,x) <R?forallx c X andm=1,..., M.
Assume the loss VR — [0,1] is Lipschitz with constant L and(¥) > 1 for allt < 0. Set p :=
p/(p—1) and c:=23/22. Then, the following holds with probability larger thdn- d over samples
of size n for all classifiers k& HY:

cMY/P'RZmin(e[logM1, [p*]) In(2/3)
n * 2n

mmg@m+4¢

where Rh) = P[yh(x) < 0] is the expected risk w.r.t. 0-1 loss aRéh) = 157, V(yih(x)) is the
empirical risk w.r.t. loss V.

The above theorem is formulated for general Lipschitz loss functionse$iire margin los¥ (t) =
min (1,[1—t/y]+) is Lipschitz with constant Ay and upper bounding the 0-1 loss, it fulfills the
preliminaries of the above corollary. Hence, we immediately obtain the follovadgs-margin
bound (see also Koltchinskii and Panchenko, 2002):

Corollary 11 (¢p-norm MKL Radius-Margin Bound) Fix the marginy > 0. Let M> 1 and pe
]1,...,»]. Assume that(x,x) < R? for all x € X and m=1,...,M. Set p:= p/(p—1) and
c:= 23/22. Then, the following holds with probability larger thdn- d over samples of size n for
all classifiers he Hj:

R(h) < R(h) +4R\/CI\/I1/F’* min(erElogML [p*]) N In(22r<6)

Y
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where Rh) = P[yh(x) < 0] is the expected risk w.rt. 0-1 loss aikth) = 5" min(1,[1—
yih(xi)/y]+) the empirical risk w.r.t. margin loss.

Finally, we would like to point out that, for reasons stated in Remark 7/4tte-¢,, conversion
technique can be extended to norms different #janThis lets us extend the above bounds to, for
example, block norms and sums of block norms as used in elastic-net iegtidar (see Kloft et al.,
2010, for such bounds), but also non-isotropic norms such as wdigjteorms.

5.1 Case-based Analysis of a Sparse and a Non-Sparse Scenario

From the results given in the last section it seems that it is beneficial to ysarsitg-inducing
£1-norm penalty when learning with multiple kernels. This however somewhmdtamdicts our em-
pirical evaluation, which indicated that the optimal norm parametispends on the true underlying
sparsity of the problem. Indeed, as we show below, a refined theoratiablsis supports this intu-
itive claim. We show for an exemplary scenario that if the underlying truthifeumly non-sparse,
then a non-sparsg,-norm is more promising than a sparse one. On the other hand, we illustrate
that in a sparse scenario, the sparsity-induéingorm indeed can be beneficial.

We start by reparametrizing our hypothesis set based on block nornRsppy5 it holds that

M
Hy = {h X =R ‘ h(x) = (W, Wm(X)) 54, [IWll2q <1, a:=2p/(p+ 1)},

m=1

Ya . .
where [|W||2q = (Zr'\r/lmleWmHg[;n) is the {3 4-block norm. This means we can equivalently

parametrize our hypothesis set in terms of block norms. Second, let esatjea the set by in-
troducing an additional parametéras follows

M
CHp, = {h X R ] hX) = (Wi, Wm(9) . [W2q < C. q:—2p/<p+1>}.

m=1

Clearly,®H); = H}} for C = 1, which explains why the parametrization @ds more general. It is
straightforward to verify thatZ (°HY)) = C# (Hy}) for anyC. Hence, under the preliminaries of
Corollary 10, we have

p> 1: R(h) < ﬁ(h) +4L\/CM1/D*R2C2 minn(eﬂog ML |’p*‘|) N |n(22r<6)

b—1:  Rh)< ﬁ(h)+4L\/CeHOg';MR2C2 +\/In(22r<6) ' 28)

We will exploit the above bound in the following two illustrate examples.

Example 1.Let the input space b& = RM, and the feature map b, (X) = xm for all m=
1,...,M andx = (xq,...,Xm) € X (in other words\, is a projection on thenth feature). Assume
that the Bayes-optimal classifier is given by

)

WBayes: (1, ey 1)T S RM

This means the best classifier possible is uniformly non-sparse (see, Fégt)1 Clearly, it can
be advantageous to work with a hypothesis set that is rich enough to ctmtaBayes classifier,
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Bayes-w

Bayes-w

Figure 1: lllustration of the two analyzed cases kbr= 2. a uniformly non-sparse (Example 1,
left) and a sparse (Example 2, right) Scenario.

thatis,(1,...,1)" € °Hj. In our example, this is the case if and only{{fL,..., 1) "[|2p/(p+1) < C.
which itself is equivalent t&(Pt1/2P < C. The bound (28) attains its minimal value under the latter
constraint foM(Pt1)/2P — C. Resubstitution into the bound yields

p>1: RHh)< ﬁ(h)+4L\/CM2R2min(erEI09ML [p*]) +\/In(22r<6).

p=1: R(h) <R +4L\/C9N'2[|0?]M1R2C2 N \/In(zzrfé) |

Let us now compare the so obtained rate: for- 1 we getO(M?) and for p = 1 we have
O(M?log(M)). So the rates differ by a Igiyl) factor. This means that in this particular (non-
sparse) example, neglecting the constants, the non-spardenorm MKL variants yield a strictly
better generalization bound thé&norm MKL.

Example 21n this second example we consider the same input space and kernefisras Bat
this time we assumesparseBayes-optimal classifier (see Fig. 1, right)

WBayes: (1, O, cee ,O)T € RM

As in the previous example, in ordevgayes to be in the hypothesis set, we have to require
II(1, 0,...,0)T||2p/(p+1) < C. But this time this simply solves t6 > 1, which is independent of
the norm parametgr. Thus, insertingC = 1 in the bound (28), we obtain

p>1: R(h)gﬁ(h)+4L\/CM2R2min(er[llogMLHﬂ)+\/In(22r<5)_

p=1: R(h) < ﬁ(h)+4|_\/celvl2ﬂ?1g|v|m2+\/|n(22r<6) |

Clearly, in this particular sparse example, the;-bound is considerably smaller than the one of
{p>1-norm MKL—especially, if the number of kernels is high compared to the sasmpde This is
also intuitive: if the underlying truth is sparse, we expect a sparsity-ingutorm to match well
the ground truth.
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We conclude from the previous two examples that the optimal norm parameigpends on
the underlying ground truth: if it is sparse, then choosing a sparsdareggion is beneficial,
otherwise, a non-sparse nomrcan perform well. This is somewhat contrary to anecdotal reports,
which claim that sparsity-inducing norms are beneficial in high (kernel) mioas. This is because
those analyses implicitly assume the ground truth to be sparse. The prapentipwever, clearly
shows that we might encounter a non-sparse ground truth in practplalatmns (see experimental
section).

6. Computational Experiments

In this section we study non-sparse MKL in terms of computational efficiandypredictive accu-
racy. We apply the method of Sonnenburg et al. (2006a) in the cage=df. We write/{,-norm
MKL for a regular SVM with the unweighted-sum kerr€l= 3 o, K.

We first study a toy problem in Section 6.1 where we have full control gverdistribution
of the relevant information in order to shed light on the appropriatenesgas§e, non-sparse, and
l»--MKL. We report on real-world problems from bioinformatics, namely pirotgubcellular lo-
calization (Section 6.2), finding transcription start sites of RNA Polymerab@dliing genes in
genomic DNA sequences (Section 6.3), and reconstructing metabolic gemerks (Section 6.4).
All data sets used in this section were made available online (see supplenfemtapage of this
paper:http://doc.ml.tu-berlin.de/nonsparse_mkl/ ).

6.1 Measuring the Impact of Data Sparsity—Toy Experiment

The goal of this section is to study the relationship of the level of sparsityeofrtte underlying
function to be learned to the chosen nomin the model. Intuitively, we might expect that the
optimal choice ofp directly corresponds to the true level of sparsity. Apart from verifyhig con-
jecture, we are also interested in the effects of suboptimal choipe B this aim we constructed
several artificial data sets in which we vary the degree of sparsity in thekéunel mixture coef-
ficients. We go from having all weight focused on a single kernel (thedsglevel of sparsity) to
uniform weights (the least sparse scenario possible) in several $épthen study the statistical
performance of ,-norm MKL for different values o that cover the entire rang, c].

We generated a data set as follows (we made this so-calldédoy data set available at the
mlidata repository). An n-element balanced sampe = {(x;,yi)}" , is generated from twd =
50-dimensional isotropic Gaussian distributions with equal covariance esrie 14«4 and equal,
but opposite, meang; = ﬁe and [, = —p1. Thereby® is a binary vector, that isyi : 6; €
{0,1}, encoding the true underlying data sparsity as follows. Zero compo6eat8 clearly imply
identical means of the two classes’ distributions inithdeature set; hence the latter does not carry
any discriminating information. In summary, the fraction of zero compone(#$,= 1— é zidzl 0,
is a measure for the feature sparsity of the learning problem.

Forv € {0,0.44,0.64,0.82,0.92,1} we generate six data sef, ..., Ds fixing p = 1.75. Then,
each feature is input to a linear kernel and the resulting kernel matrieesidtiplicatively normal-
ized as described in Section 4.4.2. Hengd) gives the fraction of noise kernels in the working
kernel set. Then, classification models are computed by tratigingrm MKL for p=1,4/3,2,4, 00
on each?,. Soft margin parametef@ are tuned on independent, DD0-elemental validation sets

14. The repository can be foundttp://mldata.org/repository/data/viewslug/mkl-toy/
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irrelevant
feature

relevant
feature

Figure 2: lllustration of the toy experiment fér= (1,0)".

by grid search ove€ e 10-435--9 (optimalCs are attained in the interior of the grid). The rel-
ative duality gaps were optimized up to a precision of .0We report on test errors evaluated
on 10 000-elemental independent test sets and pure riearodel errors of the computed kernel
mixtures, that is MEB) = [|Z(8) — () ||2, whereZ(x) = m

The results are shown in Fig. 3 far= 50 andn = 800, where the figures on the left show the
test errors and the ones on the right the model error¢@yIERegarding the latter, model errors
reflect the corresponding test errors foe= 50. This observation can be explained by statistical
learning theory. The minimizer of the empirical risk performs unstable for ssaatiple sizes and
the model selection results in a strongly regularized hypothesis, leading dbskeved agreement
between test error and model error.

Unsurprisingly/; performs best and reaches the Bayes error in the sparse scertetio,amly a
single kernel carries the whole discriminative information of the learninglpm. However, in the
other scenarios it mostly performs worse than the other MKL variants. Thisriarkable because
the underlying ground truth, that is, the vecpiis sparse in all but the uniform scenario. In other
words, selecting this data set may imply a bias towdielsorm. In contrast, the vanilla SVM using
an unweighted sum kernel performs best when all kernels are equfdlyniative, however, its
performance does not approach the Bayes error rate. This is leeit@osresponds to & »-block
norm regularization (see Sect. 4.5) but for a truly uniform regularizaiésblock norm penalty
(as employed in Nath et al., 2009) would be needed. This indicates a limitatiam frfhanework; it
shall, however, be kept in mind that such a uniform scenario might quitecettifirfhe non-sparse
£4- and/o-norm MKL variants perform best in the balanced scenarios, that ispulie noise level
is ranging in the interval 64%-92%. Intuitively, the non-spafig@orm MKL is the most robust
MKL variant, achieving a test error of less than 10% in all scenariosinfuthe sparsity parameter
p for each experiment,;-norm MKL achieves the lowest test error across all scenarios.

When the sample size is increasednte 800 training instances, test errors decrease signifi-
cantly. Nevertheless, we still observe differences of up to 1% test leetaveen the best4-norm
MKL) and worst ¢1-norm MKL) prediction model in the two most non-sparse scenarios. Nate th
all /p-norm MKL variants perform well in the sparse scenarios. In contnétst the test errors,
the mean model errors depicted in Figure 3 (bottom, right) are relatively Eghilarly to above
reasoning, this discrepancy can be explained by the minimizer of the empslchecoming stable
when increasing the sample size, which decreases the generalizatiofseertheoretical Analysis
in Section 5, where it was shown that the speed of the minimizer becoming stableast of a rate
of O(1//n)). Again, £,-norm MKL achieves the smallest test error for all scenarios for gppro
ately choserp and for a fixedp across all experiments, the non-spats@orm MKL performs the
most robustly.
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Figure 3: Results of the artificial experiment for sample sizes-6f50 (top) anch = 800 (below)
training instances in terms of test errors (left) and mé&amodel errors MEB) (right).

In summary, the choice of the norm paramegtds important for small sample sizes, whereas
its impact decreases with an increase of the training data. As expectesk dfial. performs best
in sparse scenarios, while non-sparse MKL performs best in moderatmesparse scenarios, and
for uniform scenarios the unweighted-sum kernel SVM performs B@stappropriately tuning the
norm paramete¥,,-norm MKL proves robust in all scenarios.

6.2 Protein Subcellular Localization—A Sparse Scenario

The prediction of the subcellular localization of proteins is one of the raréresuccess stories
of £1-norm-regularized MKL (Ong and Zien, 2008; Zien and Ong, 200grafefining 69 kernels
that capture diverse aspects of protein sequerigemrm-MKL could raise the predictive accuracy
significantly above that of the unweighted sum of kernels, and therebyrafgove on established
prediction systems for this problem. This has been demonstrated on 4 datacsetsponding
to 4 different sets of organisms (plants, non-plant eukaryotes, Goaitiye and Gram-negative
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{p-norm | 1]32/31]16/15| 8/7| 4/3] 2| 4| 8| 16| 00
plant 8.18 8.22 8.20 8.21 8.43 9.47| 11.00| 11.61| 1191 11.85

std. err.| +0.47 | £0.45| +0.43 | +£0.42 | +0.42 | £0.43 | +0.47 | £0.49 | +0.55 | +0.60
nonpl 8.97 9.01 9.08 9.19 9.24 9.43 9.77| 10.05| 10.23| 10.33

std. err.| £0.26 | £0.25| +£0.26 | £0.27 | £0.29 | £0.32 | £0.32 | £0.32 | +£0.32 | +£0.31
psortNeg 999| 991| 9.87| 10.01| 10.13| 11.01| 12.20| 12.73| 13.04| 13.33
std. err.| £0.35| +£0.34| +£0.34 | £0.34 | £0.33 | £0.32 | £0.32 | +£0.34 | +£0.33 | £0.35
psortPos | 13.07| 13.01| 13.41| 13.17| 13.25| 14.68| 15.55| 16.43| 17.36| 17.63
std. err.| +0.66 | £0.63 | £0.67 | £0.62 | £0.61 | £0.67 | £0.72 | £0.81 | £0.83 | +0.80

Table 1: Results for Protein Subcellular Localization. For each of the 4sg#é$a(rows) and each
considered norm (columns), we present a measure of predictiontegether with its
standard error. As measure of prediction error we use 1 minus thegaMeiaC, displayed
as percentage.

bacteria) with differing sets of relevant localizations. In this section, wesitigate the performance
of non-sparse MKL on the same 4 data sets.

The experimental setup used here is related to that of Ong and Zien {20@®ugh it devi-
ates from it in several details. The kernel matrices are multiplicatively noreths described
in Section 4.4.2. For each data set, we perform the following steps for efaitte 30 prede-
fined splits in training set and test set (downloaded from the same URLEoWsder norms €
{1,32/31,16/15,8/7,4/3,2,4,8,} and regularization constarsc {1/32,1/8,1/2,1,2,4,8,32,
128}. For each parameter settigg,C), we train/p-norm MKL using a 1-vs-rest strategy on the
training set. The predictions on the test set are then evaluated w.r.t. a{evag the classes) MCC
(Matthews correlation coefficient). As we are only interested in the inflrlefthe norm on the per-
formance, we forbear proper cross-validation (the so-obtainedmsgtital error affects all norms
equally). Instead, for each of the 30 data splits and for gadihe value ofC that yields the highest
MCC is selected. Thus we obtain an optimizedndMCC value for each combination of data set,
split, and normp. For each norm, the findfICC value is obtained by averaging over the data sets
and splits (i.e.C is selected to be optimal for each data set and split).

The results, shown in Table 1, indicate that indeed, with proper choicaofi-agparse regular-
izer, the accuracy of;-norm can be recovered. On the other hand, non-sparse MKL qaoxap
imate thef;-norm arbitrarily close, and thereby approach the same results. Hoveem when
1-norm is clearly superior t®-norm, as for these 4 data sets, it is possible that intermediate norms
perform even better. As the table shows, this is indeed the case for tHeTR&(Ia sets, albeit only
slightly and not significantly so.

We briefly mention that the superior performancéaf;-norm MKL in this setup is not surpris-
ing. There are four sets of 16 kernels each, in which each kerned pizkery similar information:
they only differ in number and placing of gaps in all substrings of length & gifzen part of the
protein sequence. The situation is roughly analogous to consideringr(iogeneous) polynomial
kernels of different degrees on the same data vectors. This meansthaathy large parts of over-
lapping information. By construction, also some kernels (those with lesg gapsinciple have
access to more information (similar to higher degree polynomials including love€gmlynomi-
als). Further, Ong and Zien (2008) studied single kernel SVMs fon &aenel individually and
found that in most cases the 16 kernels from the same subset perforrsivéarly. This means
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that each set of 16 kernels is highly redundant and the excluded panferonation are not very
discriminative. This renders a non-sparse kernel mixture ineffectiVe.conclude that;-norm
must be the best prediction model.

6.3 Gene Start Recognition—A Weighted Non-Sparse Scenario

This experiment aims at detecting transcription start sites (TSS) of RNA Podgaédl binding
genes in genomic DNA sequences. Accurate detection of the transcripdirsise is crucial to
identify genes and their promoter regions and can be regarded assadjrsh deciphering the key
regulatory elements in the promoter region that determine transcription.

Transcription start site finders exploit the fact that the features of premmegions and the
transcription start sites are different from the features of other genDiM& (Bajic et al., 2004).
Many such detectors thereby rely on a combination of feature sets whichsntiad learning task
appealing for MKL. For our experiments we use the data set from Stanget al. (2006b) which
contains a curated set of 8,508 TSS annotated genes using dbTS$ vie(Siozuki et al., 2002)
and refseq genes. These are translated into positive training instaneasrécting windows of
size[—100Q +1000 around the TSS. Similar to Bajic et al. (2004), 85,042 negative instanees ar
generated from the interior of the gene using the same window size. Foll&angenburg et al.
(2006b), we employ five different kernels representing the TSS s{gradihted degree with shift),
the promoter (spectrum), the 1st exon (spectrum), angles (linear),remdies (linear). Optimal
kernel parameters are determined by model selection in Sonnenburg(20@éb). The kernel
matrices are spherically normalized as described in section 4.4.2. Weads:000 and 20,000
randomly drawn instances for validation and test sets, respectivelyysnthe remaining 60,000
as the training pool. Soft margin paramet€rare tuned on the validation set by grid search over
C e 2l-2-1--8 (optimalCs are attained in the interior of the grid). Figure 4 shows test errors for
varying training set sizes drawn from the pool; training sets of the samarga#ésjoint. Error bars
indicate standard errors of repetitions for small training set sizes.

Regardless of the sample siZg;norm MKL is significantly outperformed by the sum-kernel.
On the contrary, non-sparse MKL significantly achieves higher AUCegthan thé..-norm MKL
for sample sizes up to 20k. The scenario is well suited/senorm MKL which performs best.
Finally, for 60k training instances, all methods lfythorm MKL yield the same performance.
Again, the superior performance of non-sparse MKL is remarkablé,cérsignificance for the
application domain: the method using the unweighted sum of kernels (Samgeetbal., 2006b)
has recently been confirmed to be leading in a comparison of 19 state-aftim@moter prediction
programs (Abeel et al., 2009), and our experiments suggest that itsaagacan be further elevated
by non-sparse MKL.

We give a brief explanation of the reason for optimality of a non-spéyserm in the above
experiments. It has been shown by Sonnenburg et al. (2006b) thatateethree highly and two
moderately informative kernels. We briefly recall those results by regpaimthe AUC perfor-
mances obtained from training a single-kernel SVM on each kernelichdilty: TSS signal (89,
promoter 086, 1st exon B4, angles b5, and energies. ®4, for fixed sample size= 2000. While
non-sparse MKL distributes the weights over all kernels (see Fig. d)seMKL focuses on the best
kernel. However, the superior performance of non-sparse MKL st dropping the remaining
kernels is detrimental, indicating that they may carry additional discriminativenreton.
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Figure 4: (left) Area under ROC curve (AUC) on test data for TSS geitmn as a function of
the training set size. Notice the tiny bars indicating standard errors w.mtitieps on
disjoint training sets. (right) Corresponding kernel mixtures. rer 1 consistent sparse
solutions are obtained while the optingak= 2 distributes weights on the weighted degree
and the 2 spectrum kernels in good agreement to Sonnenburg et &bj§200

n

kernel id

1 2 3 4 5
kernel id

Figure 5: Pairwise alignments of the kernel matrices are shown for thesggmeecognition exper-
iment. From left to right, the ordering of the kernel matrices is TSS signatgter, 1st
exon, angles, and energies. The first three kernels are highlyjatedeas expected by
their high AUC performances (AUC=84—-089) and the angle kernel correlates decently

(AUC=0.55). Surprisingly, the energy kernel correlates only few, despiteseeae AUC
of 0.74.
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To investigate this hypothesis we computed the pairwise alignments of the keatredes, that
is, 4(i, ) = m with respect to the Frobenius dot product (e.g., Golub and van L&96)1
The computed alignments are shown in Fig. 5. One can observe that thedlenet kernels are

highly aligned as expected since they are correlated via the labels.

However, the energy kernel shows only a slight correlation with the réntpkernels, which
is surprisingly little compared to its single kernel performance (AUC4D We conclude that this
kernel carries complementary and orthogonal information about theihggpnoblem and should
thus be included in the resulting kernel mixture. This is precisely what is bpnen-sparse MKL,
as can be seen in Fig. 4(right), and the reason for the empirical suafaeas-sparse MKL on this
data set.

6.4 Reconstruction of Metabolic Gene Network—A Uniformly Non-Spase Scenario

In this section, we apply non-sparse MKL to a problem originally studied amahishi et al.
(2005). Given 668 enzymes of the ye&stccharomyces cerevisiaad 2782 functional relation-
ships extracted from the KEGG database (Kanehisa et al., 2004), this tasgredict functional
relationships for unknown enzymes. We employ the experimental setup akiBjeet al. (2007)
who phrase the task as graph-based edge prediction with local modetshiyntea model for each
of the 668 enzymes. They provided kernel matrices capturing expnessia (EXP), cellular local-
ization (LOC), and the phylogenetic profile (PHY); additionally we use thematén of the former
3 kernels (INT) which matches our definition of an unweighted-sum kerne

Following Bleakley et al. (2007), we employ a 5-fold cross validation; irhdatd we train on
average 534 enzyme-based models; however, in contrast to Bleakley2007) we omit enzymes
reacting with only one or two others to guarantee well-defined problem setitggTable 2 shows,
this results in slightly better AUC values for single kernel SVMs where thatseky Bleakley et al.
(2007) are shown in brackets.

As already observed (Bleakley et al., 2007), the unweighted-sunek&wiM performs best.
Although its solution is well approximated by non-sparse MKL using largeegbf p, £,-norm
MKL is not able to improve on thigp =  result. Increasing the number of kernels by including
recombined and product kernels does improve the results obtained byfbtkdmall values of
p, but the maximal AUC values are not statistically significantly different froos¢hof/.,-norm
MKL. We conjecture that the performance of the unweighted-sum k&W&l can be explained
by all three kernels performing well individually. Their correlation is onlyderate, as shown in
Fig. 6, suggesting that they contain complementary information. Hence,vaEgiiting one of
those three orthogonal kernels leads to a decrease in performarndsesged in our experiments.
This explains why/.,-norm MKL is the best prediction model in this experiment.

6.5 Execution Time

In this section we demonstrate the efficiency of our implementations of noeespKL. We ex-
periment on the MNIST data sttwhere the task is to separate odd vs. even digits. The digits in
thisn = 60,000-elemental data set are of size 28x28 leadird)+0784 dimensional examples. We
compare our analytical solver for non-sparse MKL (Section 4.3.1-4v@dtR)the state-of-the art

15. This data set is available framtip://yann.lecun.com/exdb/mnist/
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| AUC + stderr

EXP 7169+11 (693+1.9)
LOC 5835+0.7 (560+3.3)
PHY 7335+19 (67.8+2.1)
INT (c0-norm MKL) | 8294+1.1 (821+2.2)
1-norm MKL 75.08+1.4

4/3-norm MKL 7814+1.6

2-norm MKL 80.12+1.8

4-norm MKL 8158+1.9

8-norm MKL 81.99+2.0

10-norm MKL 82.02+2.0

Recombined and product kernels

1-norm MKL 79.05+£0.5

4/3-norm MKL 80.92+0.6

2-norm MKL 81.95+0.6

4-norm MKL 83.13+0.6

Table 2: Results for the reconstruction of a metabolic gene network. RésuBteakley et al.
(2007) for single kernel SVMs are shown in brackets.

kernel-id

2
kernel-id

Figure 6: Pairwise alignments of the kernel matrices are shown for the nfietgboe network
experiment. From left to right, the ordering of the kernel matrices is EXRE; Lldhd PHY.
One can see that all kernel matrices are equally correlated. Generaldlighments are
relatively low, suggesting that combining all kernels with equal weights isfizal.

for £1-norm MKL, namely SimpleMKL® (Rakotomamonijy et al., 2008), HessianMKI(Chapelle
and Rakotomamonjy, 2008), SILP-based wrapper, and SILP-base#iag optimization (Sonnen-
burg et al., 2006a). We also experiment with the analytical methog fod., although convergence

16. We obtained an implementation frdntp://asi.insa-rouen.fr/enseignants/ ~ arakotom/code/

17. We obtained an implementation frdntp://olivier.chapelle.cc/ams/hessmkl.tgz
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is only guaranteed by our Theorem 4 for> 1. We also compare to the semi-infinite program
(SIP) approach téy,-norm MKL presented in Kloft et al. (20094§.1n addition, we solve standard
SVMs!® using the unweighted-sum kernék¢norm MKL) as baseline.

We experiment with MKL using precomputed kernels (excluding the kemmlputation time
from the timings) and MKL based on on-the-fly computed kernel matricesuriaggraining time
including kernel computationdNaturally, runtimes of on-the-fly methods should be expected to be
higher than the ones of the precomputed counterparts. We optimize all meghdds precision
of 103 for the outer SVMe and 10°° for the “inner” SIP precision, and computed relative duality
gaps. To provide a fair stopping criterion to SimpleMKL and HessianMKL sefetheir stopping
criteria to the relative duality gap of theif-norm SILP counterpart. SVM trade-off parameters are
set toC = 1 for all methods.

6.5.1 SALABILITY OF THE ALGORITHMS W.R.T. SAMPLE SIZE

Figure 7 (top) displays the results for varying sample sizes and 50 pretedhpr on-the-fly com-
puted Gaussian kernels with bandwidthe® 2= 1.2%-+49, Error bars indicate standard error over
5 repetitions. As expected, the SVM with the unweighted-sum kernel useapmputed kernel
matrices is the fastest method. The classical MKL wrapper based methoddeikipand the
SILP wrapper, are the slowest; they are even slower than methods thptitsokernels on-the-fly.
Note that the on-the-fly methods naturally have higher runtimes becausedhayt profit from
precomputed kernel matrices.

Notably, when considering 50 kernel matrices of size 8,000 times 8,000 (meatprirements
about 24GB for double precision numbers), SimpleMKL is the slowest methias more than
120 times slower than th&-norm SILP solver from Sonnenburg et al. (2006a). This is because
SimpleMKL suffers from having to train an SVM to full precision for eacldjent evaluation. In
contrast, kernel caching and interleaved optimization still allow to train ourighgo on kernel
matrices of size 20008 20000, which would usually not completely fit into memory since they
require about 149GB.

Non-sparse MKL scales similarly @s-norm SILP for both optimization strategies, the analytic
optimization and the sequence of SIPs. Naturally, the generalized SIR$girdy slower than
the SILP variant, since they solve an additional series of Taylor expansithin eachB-step.
HessianMKL ranks in between on-the-fly and non-sparse interleavétbos

6.5.2 SALABILITY OF THE ALGORITHMS W.R.T. THE NUMBER OF KERNELS

Figure 7 (bottom) shows the results for varying the number of precompnoteorathe-fly computed
RBF kernels for a fixed sample size of 1000. The bandwidths of the lkeane scaled such that
for M kernels 22 € 1.2%-M~1 As expected, the SVM with the unweighted-sum kernel is hardly
affected by this setup, taking an essentially constant training time/;Fherm MKL by Sonnen-
burg et al. (2006a) handles the increasing number of kernels bet gmelfastest MKL method.
Non-sparse approaches to MKL show reasonable run-times, beingligistly slower. Thereby
the analytical methods are somewhat faster than the SIP approachespafse analytical method

18. The Newton method presented in the same paper performed simitasstypfithe time but sometimes had convergence
problems, especially whem~: 1 and thus was excluded from the presentation.
19. We use SVMIlight as SVM-solver.
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Figure 7: Results of the runtime experiment. Top: Training using fixed nuofli kernels vary-
ing training set size. Bottom: For 1000 examples and varying numbersroélkeiNotice
the tiny error bars and that these are log-log plots. The legend is sorreggondingly
to the curves from top to bottom.
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performs worse than its non-sparse counterpart; this might be relatedfsxtileat convergence of
the analytical method is only guaranteed for 1. The wrapper methods again perform worst.

However, in contrast to the previous experiment, SimpleMKL becomes micept with in-
creasing number of kernels. We conjecture that this is in part owed to #rsitypof the best
solution, which accommodates thenorm model of SimpleMKL. But the capacity of SimpleMKL
remains limited due to memory restrictions of the hardware. For example, forgstihf00 kernel
matrices for 1,000 data points, about 7.4GB of memory are required. Onhtbiehand, our inter-
leaved optimizers which allow for effective caching can easily cope with0Dk@rnels of the same
size (74GB). HessianMKL is considerably faster than SimpleMKL but sidhen the non-sparse
interleaved methods and the SILP. Similar to SimpleMKL, it becomes more effigifnincreasing
number of kernels but eventually runs out of memory.

Overall, our proposed interleaved analytic and cutting plane based optimizatdegies achieve
a speedup of up to one and two orders of magnitude over HessianMKEiamaleMKL, respec-
tively. Using efficient kernel caching, they allow for truely large-saaldtiple kernel learning well
beyond the limits imposed by having to precompute and store the complete ketriebmd-inally,
we note that performing MKL with 1,000 precomputed kernel matrices of siz@0ltimes 1,000
requires less than 3 minutes for the SILP. This suggests that it focussimg fesearch efforts on
improving the accuracy of MKL models may pay off more than further acagteg the optimization
algorithm.

7. Conclusion

In the past years, multiple kernel learning research has focusacbeteratingalgorithms for learn-
ing convex combinations of kernels. Unfortunately, empirical evidentenafhowed that sparse
MKL-optimized kernel combinations rarely help in practice. By propogiggorm multiple kernel
learning, conceiving an optimization scheme of unprecedented efficiency, avitlprg a really
efficient implementationh{tp://doc.ml.tu-berlin.de/nonsparse_mkl/ ), this paper finally
makes large-scale MKL practical and profitable.

These advances are founded on our novel general multiple kernaehigdramework that sub-
sumes many seemingly different approaches and provides a unifyingaridwew insights on
MKL. In a theoretical analysis, we derived sharp generalization b®ahdwing that in a non-sparse
scenario/p-norm MKL yields strictly better bounds thaii-norm MKL and vice versa. However,
the difference between thg and/;-norm bounds might not be sufficiently large to completely
explain our empirical results. Using the local Rademacher complexit§pfaorm MKL, one may
obtain even tighter bounds, for which the results in Section 5 may serveasiagpoint.

In an extensive empirical evaluation, we showed thatorm MKL can significantly improve
classification accuracies on diverse and relevant real-world datdreetdioinformatics. Using
artificial data, we provided insights by connecting tgenorm with the size of the true sparsity pat-
tern. A related—and obtruding!—question is whether the optimality of the pdesipean retro-
spectively be explained or, more profitably, even be estimated in adv@teaaly, cross-validation
based model selection over the choicepolill inevitably tell us which cases call for sparse or
non-sparse models. The analyses of our real-world applications stggbat both the correlation
amongst the kernels with each other and their correlation with the target @emtbunt of discrim-
inative information that they carry) play a role in the distinction of sparsa fion-sparse scenarios.
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We not only provide a thorough theoretical and empirical analysis, batcalstribute an efficient
and freely available implementation useful for large-scale real-world agijits.

Finally, we would like to note that it may be worthwhile to rethink the current giqmeference
for sparse models in the scientific community. For example, already wealeciity in a causal
graphical model may be sufficient for all variables to be required ftina predictions, and even
the prevalence of sparsity in causal flows is being questioned (e.g.gfepttial sciences Gelman,
2010 argues that “There are (almost) no true zeros”). A main reasdiavoring sparsity may
be the presumed interpretability of sparse models. However, in genarakslplKL solutions are
sensitive to kernel normalization, and in particular in the presence ofgtyroarrelated kernels the
selection of kernels may be somewhat arbitrary. This puts the interpretdtspaisity patterns in
doubt, and it may be more honest to focus on predictive accuracy. Inefpect we demonstrate
that non-sparse models may improve quite impressively over sparse ones.
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Appendix A. Switching Between Tikhonov and Ivanov Regulariation

In this appendix, we show a useful result that justifies switching fromdnkh to Ivanov regular-
ization and vice versa, if the bound on the regularizing constraint is tigistthie key ingredient of
the proof of Theorem 1. We state the result for arbitrary convex funstiso that it can be applied
beyond the multiple kernel learning framework of this paper.

Proposition 12 Let D ¢ RY be a convex set, let,§: D — R be convex functions. Consider the
convex optimization tasks

E(r;ig f(x) +og(x), (29)
i S @

Assume that the minima exist and that a constraint qualification hold80}) which gives rise
to strong duality, for example, that Slater’s condition is satisfied. Furtheznagsume that the
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constraint is active at the optimal point, that is,

inf f(x) < inf  f(x). (31)

xeD xeD:g(x)<t

Then we have that for each> O there exists > 0—and vice versa—such that @®9)is equivalent
to OP(30), that is, each optimal solution of one is an optimal solution of the other, a@versa.

Proof

(). Let beo > 0 andx* be the optimal of (29). We have to show that there exists>a0 such
that x* is optimal in (30). We set = g(x*). Supposex* is not optimal in (30), that is, it exists
X e D:g(X) <1 such thatf (X) < f(x*). Then we have

f(X)+o9(X) < f(x*)+or,
which byt = g(x*) translates to
f(X) +o9(X) < f(X*)+og(x").

This contradics the optimality of in (29), and hence shows thstis optimal in (30), which was
to be shown.
(b). Vice versa, let > 0 bex* optimal in (30). The Lagrangian of (30) is given by

L(o)=f(X)+0(g(x)—1), 0>0.
By strong dualityx* is optimal in the saddle point problem

o" :=argmaxmin f(X)+0o(g(x)—1),
>0 xeD

and by the strong max-min property (cf. Boyd and Vandenberghe,, 20@88) we may exchange
the order of maximization and minimization. Hences optimal in

min  f(x)+ 0" (g(x) —1). (32)

xeD

Removing the constant termc™1, and settingg = o*, we have thak* is optimal in (29), which
was to be shown. Moreover by (31) we have that

X* # argminf (x),
xeD

and hence we see from Equation (32) ttvat> 0, which completes the proof of the propositidll.
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