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Abstract

We consider the empirical risk minimization problem fordar supervised learning, with regular-
ization by structured sparsity-inducing norms. These afendd as sums of Euclidean norms on
certain subsets of variables, extending the ugyalorm and the group;-norm by allowing the
subsets to overlap. This leads to a specific set of allowedearorpatterns for the solutions of such
problems. We first explore the relationship between the ggalefining the norm and the resul-
ting nonzero patterns, providing both forward and backvedgdrithms to go back and forth from
groups to patterns. This allows the design of norms adaptsgecific prior knowledge expressed
in terms of nonzero patterns. We also present an efficienteaset algorithm, and analyze the
consistency of variable selection for least-squares tinegression in low and high-dimensional
settings.

Keywords: sparsity, consistency, variable selection, convex ogtitnon, active set algorithm

1. Introduction

Sparse linear models have emerged as a powerful framework to dealanithus supervised es-
timation tasks, in machine learning as well as in statistics and signal procesdiege models
basically seek to predict an output by linearly combining only a small suligbedeatures de-
scribing the data. To simultaneously address this variable selection and #rentiodel estimation,
£1-norm regularization has become a popular tool, that benefits both ffaieef algorithms (see,
e.g., Efron et al., 2004; Lee et al., 2007; Beck and Teboulle, 20097 ¥tial., 2010; Bach et al.,
2011, and multiple references therein) and well-developed theory fargkzation properties and
variable selection consistency (Zhao and Yu, 2006; Wainwright, 20@%eBet al., 2009; Zhang,
2009; Negahban et al., 2009).
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When regularizing by thé;-norm, sparsity is yielded by treating each variable individually,
regardless of its position in the input feature vector, so that existing redfiijosm and structures
between the variables (e.g., spatial, hierarchical or related to the physius problem at hand)
are merely disregarded. However, many practical situations could bé&woefi this type of prior
knowledge, potentially both for interpretability purposes and for improvediptive performance.

For instance, in neuroimaging, one is interested in localizing areas in fuattimagnetic res-
onance imaging (fMRI) or magnetoencephalography (MEG) signals thatiscriminative to dis-
tinguish between different brain states (Gramfort and Kowalski, 20@nget al., 2009; Jenatton
etal., 2011a, and references therein). More precisely, fMRI resgsoconsist in voxels whose three-
dimensional spatial arrangement respects the anatomy of the brain. Thendfiative voxels are
thus expected to have a specific localized spatial organization (Xiang 20@®), which is impor-
tant for the subsequent identification task performed by neuroscientistkis case, regularizing
by a plain/1-norm to deal with the ill-conditionedness of the problem (typically only a fARF
responses described by tens of thousands of voxels) would ignosptiial configuration, with a
potential loss in interpretability and performance.

Similarly, in face recognition, robustness to occlusions can be incregseshidering as fea-
tures, sets of pixels that form small convex regions on the face imageatt@e et al., 2010b).
Again, a plain/1-norm regularization fails to encode this specific spatial locality constrémiatton
et al., 2010b). The same rationale supports the ustrwétured sparsityor background subtraction
tasks (Cevher et al., 2008; Huang et al., 2009; Mairal et al., 201@H)nomputer vision, object
and scene recognition generally seek to extract bounding boxes in ieithges (Harzallah et al.,
2009) or videos (Dalal et al., 2006). These boxes concentrate tHiefre power associated with
the considered object/scene class, and have to be found by respeetisatial arrangement of
the pixels over the images. In videos, where series of frames are studietiroe, the temporal
coherence also has to be taken into account. An unstructured spadsityAg penalty that would
disregard this spatial and temporal information is therefore not adaptetet such boxes.

Another example of the need for higher-order prior knowledge conoes frioinformatics. In-
deed, for the diagnosis of tumors, the profiles of array-based cotiveagenomic hybridization
(arrayCGH) can be used as inputs to feed a classifier (Rapaport 20@8). These profiles are
characterized by plenty of variables, but only a few samples of sudhgsrare available, prompt-
ing the need for variable selection. Because of the specific spatialipatjan of bacterial artificial
chromosomes along the genome, the set of discriminative features is ekjuebta/e specific con-
tiguous patterns. Using this prior knowledge on top of a standard spardiiging method leads to
improvement in classification accuracy (Rapaport et al., 2008). In theexioof multi-task regres-
sion, a genetic problem of interest is to find a mapping between a small siilséegle nucleotide
polymorphisms (SNP’s) that have a phenotypic impact on a given familyredggéKim and Xing,
2010). This target family of genes has its own structure, where somes gaaee common genetic
characteristics, so that these genes can be embedded into a underlyamghyi€Kim and Xing,
2010). Exploiting directly this hierarchical information in the regularizatiomteutperforms the
unstructured approach with a standdiehorm. Such hierarchical structures have been likewise
useful in the context of wavelet regression (Baraniuk et al., 2018p#&t al., 2009; Huang et al.,
2009; Jenatton et al., 2011b), kernel-based non linear variable sal¢Baah, 2008a), for topic
modelling (Jenatton et al., 2011b) and for template selection in natural laaguagessing (Mar-
tins et al., 2011).
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These real world examples motivate the need for the design of sparsityiigdregulariza-
tion schemes, capable of encoding more sophisticated prior knowledgethb@xpected sparsity
patterns.

As mentioned above, th&-norm focuses only owcardinality and cannot easily specify side
information about the patterns of nonzero coefficients (“nonzero patieinduced in the solution,
since they are all theoretically possible. Graagpnorms (Yuan and Lin, 2006; Roth and Fischer,
2008; Huang and Zhang, 2010) consider a partition of all variables ioéstain number of subsets
and penalize the sum of the Euclidean norms of each one, leading to seleicjooups rather
than individual variables. Moreover, recent works have consitleverlapping but nested groups
in constrained situations such as trees and directed acyclic graphsd€Zalka,o2009; Bach, 2008a;
Kim and Xing, 2010; Jenatton et al., 2010a, 2011b; Schmidt and MugiiiQ).

In this paper, we consider all possible sets of groups and characex@ntly what type of
prior knowledge can be encoded by considering sums of norms of pparagroups of variables.
Before describing how to go from groups to nonzero patterns (ovalguitly zero patterns), we
show that it is possible to “reverse-engineer” a given set of nongatterns, that is, to build the
unique minimal set of groups that will generate these patterns. This allovesitbeatic design of
sparsity-inducing norms, adapted to target sparsity patterns. We giweeiio® 3 some interesting
examples of such designs in specific geometric and structured configsratioich covers the type
of prior knowledge available in the real world applications describedqusty.

As will be shown in Section 3, for each set of groups, a notion of hull obazero pattern
may be naturally defined. For example, in the particular case of the two-donahglanar grid
considered in this paper, this hull is exactly the axis-aligned bounding btheaegular convex
hull. We show that, in our framework, the allowed nonzero patterns algxhaose equal to their
hull, and that the hull of the relevant variables is consistently estimated gedain conditions,
both in low and high-dimensional settings. Moreover, we present in Secaorefficient active set
algorithm that scales well to high dimensions. Finally, we illustrate in Section Gehauoor of our
norms with synthetic examples on specific geometric settings, such as lines @udihtensional
grids.

1.1 Notation

Forx € RP andq € [1,), we denote by|x||q its {g-norm defined a$z§’:1 X9 and |||, =
maxici1..py [Xj|. Givenw € RP and a subsel of {1,..., p} with cardinality|J|, w; denotes the
vector inRM! of elements ofw indexed byJ. Similarly, for a matrixM € RP*™ M,; € RI'*MI
denotes the sub-matrix & reduced to the rows indexed byand the columns indexed kly For
any finite setA with cardinality|A|, we also define théA|-tuple (y¥)aca € RP*IA as the collection
of p-dimensional vectorg® indexed by the elements &f Furthermore, for two vectorsandy in
RP, we denote byxoy = (X1y1,...,XpYp) " € RP the elementwise product afandy.

2. Regularized Risk Minimization

We consider the problem of predicting a random variablke 9" from a (potentially non random)
vectorX € RP, where? is the set of responses, typically a subseRofWe assume that we are
givenn observationgx;,y;) € RP x 9, i =1,....n. We define thempirical riskof a loading vector

we RPasL(w) =151, ¢(yi,w'x), wherel: 9 x R — R* is aloss function We assume that
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is convex and continuously differentiabléth respect to the second parameter. Typical examples of
loss functions are the square loss for least squares regressias, f(gt/) = %(y— 9)? withy € R,
and the logistic losg(y,y) = log(1+ e ¥) for logistic regression, witly € {—1,1}.
We focus on a general family of sparsity-inducing norms that allow thelizatian of subsets
of variables grouped together. Let us denotedhy subset of the power set §1,..., p} such
that UgegG = {1,...,p}, that is, a spanning set of subsets{df..., p}. Note thatG does not
necessarily define a partition ¢1,..., p}, and thereforet is possible for elements @f to overlap
We consider the norr defined by

_ G\2\p/. |2 %: G
Q<W>‘GZQ<,-ZG("” wP) = 3 o, )

GeG

where(d®)geg is a|G|-tuple of p-dimensional vectors such thdit > 0 if j € G anddf = 0 other-
wise. A same variable; belonging to two different groupS;, G, € G is allowed to be weighted
differently in G, and G (by respectivelyd;* andd;?). We do not study the more general setting
where eachi® would be a (non-diagonal) positive-definite matrix, which we defer to &utvork.
Note that a larger family of penalties with similar properties may be obtained tgcieg thel,-
norm in Equation (1) by otheg-norm,q > 1 (Zhao et al., 2009). Moreover, non-convex alternatives
to Equation (1) with quasi-norms in place of norms may also be interesting,eéntorglield sparsity
more aggressively (see, e.g., Jenatton et al., 2010b).

This general formulation has several important sub-cases that wenpreslow, the goal of
this paper being to go beyond these, and to consider norms capable tpoiraterricher prior
knowledge.

e />-norm: G is composed of one element, the full $&t. .., p}.

e /1-norm: G is the set of all singletons, leading to the Lasso (Tibshirani, 1996) forgghare
loss.

e (>-norm and /1-norm: G is the set of all singletons and the full 4ét ..., p}, leading (up to
the squaring of thé;-norm) to the Elastic net (Zou and Hastie, 2005) for the square loss.

e Group ¢1-norm: @G is any partition of{1,..., p}, leading to the group-Lasso for the square
loss (Yuan and Lin, 2006).

e Hierarchical norms: when the se{1,..., p} is embedded into a tree (Zhao et al., 2009) or
more generally into a directed acyclic graph (Bach, 2008a), then a segafups, each of
them composed of descendants of a given variable, is considered.

We study the following regularized problem:

12 T
min ﬁi;E(y.,w X) +HQ(w), (2)
wherep> 0 is a regularization parameter. Note that a non-regularized constantsefohbe in-
cluded in this formulation, but it is left out for simplicity. We denote \mary solution of Prob-
lem (2). Regularizing by linear combinations of (non-squafed)orms is known to induce sparsity
in W (Zhao et al., 2009); our grouping leads to specific patterns that weilde gt the next section.
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STRUCTURED VARIABLE SELECTION WITH SPARSITY-INDUCING NORMS

Figure 1: Groups and induced nonzero pattern: three sparsity-irgdgoiups (middle and right,
denoted by{G1, G2, Gz}) with the associated nonzero pattern which is the complement of the union
of groups, that is(G; U G, U G3)°¢ (left, in black).

3. Groups and Sparsity Patterns

We now study the relationship between the n@rdefined in Equation (1) and the nonzero patterns
the estimated vectar i5 allowed to have. We first characterize the set of nonzero pattermsyne
provide forward and backward procedures to go back and forth n@ups to patterns.

3.1 Stable Patterns Generated by;

The regularization term®(w) = 3 ge [|d® ow||, is a mixed(¢1, £2)-norm (Zhao et al., 2009). At the
group level, it behaves like ai-norm and therefore) induces group sparsity. In other words, each
d®ow, and equivalently eachg (since the support af® is exactlyG), is encouraged to go to zero.
On the other hand, within the grouf@sc G, the/,-norm does not promote sparsity. Intuitively, for
a certain subset of grouggd C G, the vectorsvg associated with the groufide G’ will be exactly
equal to zero, leading to a set of zeros which is the union of these gitgdpg G. Thus, the set of
allowed zero patterns should be tingion-closureof G, that is, (see Figure 1 for an example):

z_{ U G g’gg}.

Geg'

The situation is however slightly more subtle as some zeros can be creatbdrnedjust as reg-
ularizing by thef>-norm may lead, though it is unlikely, to some zeros). Nevertheless, &hedr

shows that, under mild conditions, the previous intuition about the set ofpadterns is correct.

Note that instead of considering the set of zero patteZnd is also convenient to manipulate
nonzero patterns, and we define

?:{ () G5 g’gg}:{zC;ZEZ}.

Geg’

We can equivalently us@ or Z by taking the complement of each element of these sets.

The following two results characterize the solutions of Problem (2). Wagfires sufficient con-
ditions under which this problem has a unique solution. We then formally phevaforementioned
intuition about the zero patterns of the solutions of (2), namely they sholddd& Z. In the fol-
lowing two results (see proofs in Appendix A and Appendix B), we assuai tHy,y') — £(y,Y)
is nonnegative, twice continuously differentiable with positive secondatere with respect to the
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second variable and non-vanishing mixed derivative, that is, foryafdyn R, %(y,y’) >0 and
2
S (%) #0.

Proposition 1 Let Q denote the Gram matrixsT ; xx". We consider the optimization problem
in Equation (2) with (> 0. If Q is invertible or if {1,..., p} belongs tog, then the problem in
Equation (2) admits a unique solution.

Note that the invertibility of the matrix) requiresp < n. For high-dimensional settings, the
uniqueness of the solution will hold whéd, .. ., p} belongs tog, or as further discussed at the end
of the proof, as soon as for anyk € {1,..., p}, there exists a grou € G which contains bot
andk. Adding the group(1,...,p} to G will in general not modify? (and Z), but it will causeG
to lose its minimality (in a sense introduced in the next subsection). Furtheraduimg the full
group{1,...,p} has to be put in parallel with the equivalent (up to the squarigg)orm term in
the elastic-net penalty (Zou and Hastie, 2005), whose effect is to naablyre strong convexity.
For more sophisticated uniqueness conditions that we have not explEmredae refer the readers
to Osborne et al. (2000, Theorem 1, 4 and 5), Rosset et al. (20@&brém 5) or Dossal (2007,
Theorem 3) in the Lasso case, and Roth and Fischer (2008) for thp gesso setting. We now
turn to the result about the zero patterns of the solution of the problem iatiggu2):

Theorem 2 Assume that ¥= (y1,...,yn) ' is a realization of an absolutely continuous probability
distribution. Let k be the maximal number such that any k rows of the mairjx. .,x,) € RP*"
are linearly independent. For it O, any solution of the problem in Equation (2) with at most k

nonzero coefficients has a zero patterrzn- {UGGQ, G; G'C g} almost surely.

In other words, whelY = (y1,...,yn) " is a realization of an absolutely continuous probability
distribution, the sparse solutions have a zero pattemhi#n| Uge g G; G' C G ; almost surely. As

a corollary of our two results, if the Gram matiXis invertible, the problem in Equation (2) has
a unique solution, whose zero pattern belonggtalmost surely. Note that with the assumption
made orY, Theorem 2 is not directly applicable to the classification setting. Based angh@sous
results, we can look at the following usual special cases from Sectiwe gife more examples in
Section 3.5):

e /o-norm: the set of allowed nonzero patterns is composed of the empty set andltbet fu
{1,...,p}.

£1-norm: P is the set of all possible subsets.

l>-norm and ¢1-norm: P is also the set of all possible subsets.

Group /¢1-norm: P = Z is the set of all possible unions of the elements of the partition
definingG.

Hierarchical norms: the set of pattern® is then all setd for which all ancestors of elements
in J are included inJ (Bach, 2008a).

Two natural questions now arise: (1) starting from the grogpss there an efficient way to gen-
erate the set of nonzero patterfis (2) conversely, and more importantly, givéh how can the
groupsG—and hence the norif(w)—be designed?
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Figure 2: G-adapted hull: the pattern of variable@eft and middle, red dotted surface) and its hull
(left and right, hatched square) that is defined by the complement of ibie ofhgroups that do not
intersect, that is,(G; UG, U Gg3)°.

3.2 General Properties ofG, Z and P

We now study the different properties of the set of grogpand its corresponding sets of patterns
Zand?P.

3.2.1 Q. OSEDNESS

The set of zero patterns (respectively, the set of nonzero patterPsis closed under union (re-
spectively, intersection), that is, for &l € N and allz, ...,z € 2, UK,z € Z (respectively,
P1,...,PK € P, Nk_1 Pk € P). This implies that when “reverse-engineering” the set of nonzero
patterns, we have to assume it is closed under intersection. Otherwisestheebcan do is to deal
with its intersection-closure. For instance, if we consider a sequeneéigere 4), we cannot take

P to be the set of contiguous patterns with length two, since the intersectiorlotwo patterns
may result in a singleton (that does not belong?o

3.2.2 MINIMALITY

If a group ingG is the union of other groups, it may be removed frgmnwithout changing the sets
or ©P. This is the main argument behind the pruning backward algorithm in SectioiM&:&over,
this leads to the notion ofminimalset§ of groups, which is such that for afl’ C Z whose union-
closure spang, we haveGg C G’. The existence and uniqueness of a minimal set is a consequence
of classical results in set theory (Doignon and Falmagne, 1998). Theeets of this minimal set
are usually referred to as tlaomsof Z.

Minimal sets of groups are attractive in our setting because they lead to arsmatieer of
groups and lower computational complexity—for example, for 2 dimensiamdsg-gith rectangu-
lar patterns, we have a quadratic possible number of rectangles, that is,0(p?), that can be
generated by a minimal st whose size i$G| = O(,/p).

3.2.3 HuLL

Given a set of groupg, we can define for any subdet {1,...,p} the G-adapted hull or simply
hull, as:

HuII(I):{ U G}C,

GeG, Gnl=2
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Figure 3: The DAG for the set associated with the:22-grid. The members af are the comple-
ment of the areas hatched in black. The elements (fe., the atoms of) are highlighted by bold
edges.

which is the smallest set i containingl (see Figure 2); we always hal& Hull(I) with equality

if and only if I € . The hull has a clear geometrical interpretation for specific §eté groups.

For instance, if the sef; is formed by all vertical and horizontal half-spaces when the variables
are organized in a 2 dimensional-grid (see Figure 5), the hull of a sulsséd, ..., p} is simply

the axis-aligned bounding box bf Similarly, wheng is the set of all half-spaces with all possible
orientations (e.g., orientationsr/4 are shown in Figure 6), the hull becomes the regular convex
hull.l Note that those interpretations of the hull are possible and valid only whérawegeomet-
rical information at hand about the set of variables.

3.2.4 (RAPHS OFPATTERNS

We consider the directed acyclic graph (DAG) stemming fromHhese diagranfCameron, 1994)

of the partially ordered set (pos€ty, ). By definition, the nodes of this graph are the eleméhts

of G and there is a directed edge frd&a to G, if and only if G; O G, and there exists nG € G

such thaiG; D G D G, (Cameron, 1994). We can also build the corresponding DAG for the set of
zero patternst O G, which is a super-DAG of the DAG of groups (see Figure 3 for examphésie

that we obtain also the isomorphic DAG for the nonzero patt@rasithough it corresponds to the
poset(?, C): this DAG will be used in the active set algorithm presented in Section 4.

Prior works with nested groups (Zhao et al., 2009; Bach, 2008a; KinXamg, 2010; Jenat-
ton et al., 2010a; Schmidt and Murphy, 2010) have also used a similar DAGge, with the
slight difference that in these works, the corresponding hierarchgridibles is built from the prior
knowledge about the problem at hand (e.g., the tree of wavelets in Zeg 2009, the decom-
position of kernels in Bach, 2008a or the hierarchy of genes in Kim and,Xd010). The DAG
we introduce here on the set of groups naturally and always comesthmavassumption on the
variables themselves (for which no DAG is defined in general).

1. We use the terrmonvexinformally here. It can however be made precise with the notion of coswiegraphs (Chung,
1997).
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3.3 From Patterns to Groups

We now assume that we want to impose a priori knowledge on the sparsitjusgrof a solution
W of our regularized problem in Equation (2). This information can be explditerestricting the
patterns allowed by the norfd. Namely, from an intersection-closed set of zero pattéinse can
build back a minimal set of groups by iteratively pruning away in the DAG correspondingZo
all sets which are unions of their parents. See Algorithm 1. This algorittmbedound under a
different form in Doignon and Falmagne (1998)—we present it thraugtuning algorithm on the
DAG, which is natural in our context (the proof of the minimality of the progedtan be found in
Appendix C). The complexity of Algorithm 1 ®(p| Z|?). The pruning may reduce significantly the
number of groups necessary to generate the whole set of zero pastametimes from exponential
in pto polynomial inp (e.g., the/1-norm). In Section 3.5, we give other examples of interest where
|G| (and|P|) is also polynomial irp.

Algorithm 1 Backward procedure

Input: Intersection-closed family of nonzero patterhs
Output: Set of groups;.
Initialization: ComputeZ = {P¢; P € P} and setg = Z.
Build the Hasse diagram for the poget, D).
for t = mingez |G| to maxge 7 |G| do

for each nodé&s € Z such thaiG| =t do

i (UCeChiIdrer(G)C: G) then

if (ParentsG) # @) then
Connect children o6 to parents ofG.

end if
RemoveG from G.

end if

end for
end for

3.4 From Groups to Patterns

Theforward procedure presented in Algorithm 2, taken from Doignon and Falma@®8]lallows

the construction ofZ from G. It iteratively builds the collection of patterns by taking unions,
and has complexitP(p|z||G|?). The general scheme is straightforward. Namely, by considering
increasingly larger sub-families @ and the collection of patterns already obtained, all possible
unions are formed. However, some attention needs to be paid while cheaokiage not generating

a pattern already encountered. Such a verification is performed lify ¢badition within the inner
loop of the algorithm. Indeed, we do not have to scan the whole collectiomttérps already
obtained (whose size can be exponentialji), but we rather use the fact thgtgeneratesc. Note

that in general, it is not possible to upper bound the sizgZpby a polynomial term imp, even
wheng is very small (indeed,z| = 2P and|G| = p for the/1-norm).
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Algorithm 2 Forward procedure

Input: Set of groupsg = {Gq,...,Gm}.
Output: Collection of zero patterng and nonzero patterri.
Initialization: Z = {&}.
for m=1toM do
C={o}
foreachZ € Z do
if (Gm¢ Z) and (VG €{Gy,...,Gm-1}, GCZUGn= GC Z) then
C+CU{ZUGn} .
end if
end for
Z <+ ZUC.
end for
P={Z% Zec Z}.

3.5 Examples

We now present several examples of sets of gragpsspecially suited to encode geometric and
temporal prior information.

3.5.1 SQUENCES

Given p variables organized in a sequence, if we want only contiguous nopaderns, the back-
ward algorithm will lead to the set of groups which are interV&J&|yc (1 . -1y and (K, Plez.... p}s
with both |Z| = O(p?) and |G| = O(p) (see Figure 4). Imposing the contiguity of the nonzero
patterns is for instance relevant for the diagnosis of tumors, based qudfies of arrayCGH
(Rapaport et al., 2008).

W] [ITT7T’
__HEN [
N (] ([ 7Y

Figure 4: (Left and middle) The set of groups (blue areas) to penaliaeder to select contiguous
patterns in a sequence. (Right) An example of such a nonzero pattdrddited area) with its
corresponding zero pattern (hatched area).

3.5.2 TWO-DIMENSIONAL GRIDS

In Section 6, we notably consider fét the set of all rectangles in two dimensions, leading by the
previous algorithm to the set of axis-aligned half-spacesgdsee Figure 5), withz| = O(p?)
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and|G| = O(,/p). This type of structure is encountered in object or scene recognitioarewh
the selected rectangle would correspond to a certain box inside an imageptitantrates the
predictive power for a given class of object/scene (Harzallah et &9)20

Larger set of convex patterns can be obtained by adding ialf-planes with other orienta-
tions than vertical and horizontal. For instance, if we use planes with atigleare multiples of
/4, the nonzero patterns @f can have polygonal shapes with up to 8 faces. In this sense, if we
keep on adding half-planes with finer orientations, the nonzero pattérAsan be described by
polygonal shapes with an increasingly larger number of faces. Thdasthmotion of convexity
defined inR? would correspond to the situation where an infinite number of orientations&do
ered (Soille, 2003). See Figure 6. The number of groups is linegrawith constant growing
linearly with the number of angles, whil&| grows more rapidly (typically non-polynomially in
the number of angles). Imposing such convex-like regions turns outusdfal in computer vision.
For instance, in face recognition, it enables the design of localized ésativat improve upon the
robustness to occlusions (Jenatton et al., 2010b). In the same veilarizgtions with similar two-
dimensional sets of groups have led to good performances in backbsobiraction tasks (Mairal
et al., 2010b), where the pixel spatial information is crucial to avoid seattersults. Another ap-
plication worth being mentioned is the design of topographic dictionaries in thiextoof image
processing (Kavukcuoglu et al., 2009; Mairal et al., 2011). In thig cdistionaries self-organize
and adapt to the underlying geometrical structure encoded by the twolonahset of groups.

%, 288 7))

XV 7

Figure 5: Vertical and horizontal groups: (Left) the set of groupsglareas) with their (not dis-
played) complements to penalize in order to select rectangles. (Right) Ampéxaf nonzero pat-
tern (red dotted area) recovered in this setting, with its correspondingaéiern (hatched area).

3.5.3 EXTENSIONS

The sets of groups presented above can be straightforwardly egtendere complicated topolo-
gies, such as three-dimensional spaces discretized in cubes or apkehicnes discretized in
slices. Similar properties hold for such settings. For instance, if all theadigised half-spaces
are considered fog in a three-dimensional space, theris the set of all possible rectangular boxes
with || = O(p?) and|G| = O(p*3). Such three-dimensional structures are interesting to retrieve
discriminative and local sets of voxels from fMRI/MEEG responses. driiqular, they have re-
cently proven useful for modelling brain resting-state activity (Varoguetal., 2010). Moreover,
while the two-dimensional rectangular patterns described previouslydapgesd to find bounding
boxes in static images (Harzallah et al., 2009), scene recognition in vidgoses to deal with a
third temporal dimension (Dalal et al., 2006). This may be achieved by degigppropriate sets of
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Figure 6: Groups witht-11/4 orientations: (Left) the set of groups (blue areas) with their (not
displayed) complements to penalize in order to select diamond-shaped patiigit) An example

of nonzero pattern (red dotted area) recovered in this setting, with itespamnding zero pattern
(hatched area).

AN

groups, embedded in the three-dimensional space obtained by trackireyties over time. Finally,
in the context of matrix-based optimization problems, for example, multi-taskitepamd dictio-
nary learning, sets of grougs can also be designed to encastructural constraintghe solutions
must respect. This notably encompasses banded structures (Levin®2608) andsimultaneous
row/column sparsity for CUR matrix factorization (Mairal et al., 2011).

3.5.4 REPRESENTATION ANDCOMPUTATION OF G
The sets of groups described so far can actually be representednreda@an, that lends itself well

to the analysis of the next section. When dealing with a discrete sequelecgythfl (see Figure 4),
we have

G = (ke (Lo I-1U{ds ke {2, 1}
= Glett U Gright,

with g¢ = {i; 1 <i <k} andgX = {i; | >i > k}. In other words, the set of groups can be
rewritten as a partitiohin two sets of nested group&ies: and Gright.

The same goes for a two-dimensional grid, with dimenslons(see Figure 5 and Figure 6). In
this case, the nested groups we consider are defined based on théfplwaups of variables

g®={(i,j)e{1,....,1} x{1,...,h}; cogB)i+sin(B)j <k},

wherek € Z is taken in an appropriate range. The nested groups we obtain in this evtheaefore
parameterized by an angle, 8 ¢ (—m;1]. We refer to this angle as amientation since it defines
the normal vecto(i?rf((g))) to the line{(i, j) € R?;cog0)i + sin(8)j = k}. In the example of the
rectangular groups (see Figure 5), we have four orientations, 80, 11/2, —11/2, 11}. More
generally, if we denote b§ the set of the orientations, we have

G =J G,

FISO)

2. Note the subtlety: the setl are disjoint, that iS55 N Go = @ for 6 £ @, but groups inGg and Gy can overlap.
3. Due to the discrete nature of the underlying geometric structutg ahglesd that are not multiple oft/4 (i.e., such
that tar{®) ¢ Z) are dealt with by rounding operations.
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wheref € O indexes the partition off in setsGp of nested groups of variables. Although we have
not detailed the case &, we likewise end up with a similar partition f.

4. Optimization and Active Set Algorithm

For moderate values gd, one may obtain a solution for Problem (2) using generic toolboxes for
second-order cone programming (SOCP) whose time complexity is eqaptS + | G|>®) (Boyd
and Vandenberghe, 2004), which is not appropriate when|G| are large. This time complexity
corresponds to the computation of a solution of Problem (2) for a single dlihe regularization
parametefL.

We present in this section attive set algorithn{Algorithm 3) that finds a solution for Prob-
lem (2) by considering increasingly larger active sets and checkin@btgttimality at each step.
When the rectangular groups are used, the total complexity of this metho@(srimax{ p*- > s>°1),
wheresis the size of the active set at the end of the optimization. Here, the spaisitisgxploited
for computational advantages. Our active set algorithm needs arlyingdrlack-boxSOCP solver;
in this paper, we consider both a first order approach (see Appendixdia SOCP meth8e-in
our experiments, we ussbPT3 (Toh et al., 1999; Ttundl et al., 2003). Our active set algorithm
extends to general overlapping groups the work of Bach (2008ajurtiyer assuming that it is
computationally possible to have a time complexity polynomial in the number of vasipble

We primarily focus here on finding an efficient active set algorithm; werdeffuture work the
design of specific SOCP solvers, for example, based on proximal tedmigee, e.g., Nesterov,
2007; Beck and Teboulle, 2009; Combettes and Pesquet, 2010, andomgmeferences therein),
adapted to such non-smooth sparsity-inducing penalties.

4.1 Optimality Conditions: From Reduced Problems to Full Problems

It is simpler to derive the algorithm for the following regularized optimizatiorbfen® which has
the same solution set as the regularized problem of Equation (2) whedA are allowed to vary
(Borwein and Lewis, 2006, see Section 3.2):

n
min T3 (0w x)+ 3 00 ©

In active set methods, the set of nonzero variables, denotell isybuilt incrementally, and
the problem is solved only for this reduced set of variables, adding th&treantw;. = 0 to Equa-
tion (3). In the subsequent analysis, we will use arguments based bty tuanonitor the optimal-
ity of our active set algorithm. We denote byw) = %Zi”:lﬁ(yi,wai) the empirical risk (which is
by assumption convex and continuously differentiable) and*bys Fenchel-conjugatedefined as
(Boyd and Vandenberghe, 2004; Borwein and Lewis, 2006):

L*(u) = sup{w'u—L(w)}.

weRP

4. The G++/Matlab code used in the experiments may be downloaded from the autabsitev

5.1t is also possible to derive the active set algorithm for the constrainedmulation
minweRp%zi”:lE(yi,wai) such that Q(w) < A. However, we empirically found it more difficult to select
A in this latter formulation.
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The restriction ofL to RFl is denotedL(w;) = L(W) for Wy = w; andwse = 0, with Fenchel-
conjugatel’. Note that, as opposed kg we do not have in generhj(k;) = L*(K) for K3 = k3 and
RJC =0.

For a potential active sétc {1,..., p} which belongs to the set of allowed nonzero pattefns
we denote byg; the set of active groups, that is, the set of groGps G such thalGNJ # @. We
consider the reduced nor@y defined okl as

QJ(WJ)ZGZ [d5owsll = % [ld5owsl;,
€G Gegy

and itsdual normQ;(K;) = Maxq,(w,)<1Wj K3, also defined oft?l. The next proposition (see proof
in Appendix D) gives the optimization problem dual to the reduced probleqadfon (4) below):

Proposition 3 (Dual Problems) Let JC {1,..., p}. The following two problems

min LJ(WJ)JF%[QJ(WJ)]Z, (4)

w;eRHI

1 2
[max —La(=ka) = o [ (k)]
are dual to each other and strong duality holds. The pair of primal-dwalables {w;,K;} is
optimal if and only if we have

{KJ :*DL‘](WJ),

WKy = F[Q5(Ky)]? = A[Q(wy)]?.

As a brief reminder, the duality gap of a minimization problem is defined as trexeliite between
the primal and dual objective functions, evaluated for a feasible parnirofp/dual variables (Boyd
and Vandenberghe, 2004, see Section 5.5). This gap serves dicatenf (sub)optimality: if it
is equal to zero, then the optimum is reached, and provided that strotity dhadds, the converse
is true as well (Boyd and Vandenberghe, 2004, see Section 5.5).

The previous proposition enables us to derive the duality gap for the optioniZaroblem (4),
that is reduced to the active set of variabledn practice, this duality gap will always vanish (up
to the precision of the underlying SOCP solver), since we will sequentialye $&roblem (4) for
increasingly larger active seis We now study how, starting from the optimality of the problem in
Equation (4), we can control the optimality, or equivalently the duality gaphie full problem in
Equation (3). More precisely, the duality gap of the optimization problem irakopi (4) is

b [03(K0)

= L)+ +wga )+ {10

L) + LK)+ [2a(y)]?
o5 930 5 |

which is a sum of two nonnegative terms, the nonnegativity coming from theheé Young in-
equality (Borwein and Lewis, 2006; Boyd and Vandenberghe, 20@pd3ition 3.3.4 and Section
3.3.2 respectively). We can think of this duality gap as the sum of two dualfiyg,gaspectively
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relative toLy; andQ;. Thus, if we have a primal candidatg and we choose; = —[L;(w;), the
duality gap relative td.; vanishes and the total duality gap then reduces to

>

1 *
Q3(K3)]% — w; Kj.

[QJ(WJ)]ZJFﬁ[

2
In order to check that the reduced solutignis optimal for the full problem in Equation (3), we
padw; with zeros onJ® to definew and computa = —[L(w), which is such thaty; = —OLj(w;y).

For our given candidate pair of primal/dual variab{egk }, we then get a duality gap for the full
problem in Equation (3) equal to

A 1
S i

= 2w+ o (@ (K - wiKs

= DR o (002 5 [aws) P~ o [03(k)
1

= o (12 00P - [@5(k2))
1 *
= = (19" ()1 ~xwiky)
Computing this gap requires computing the dual norm which itself is as hard agdimal problem,
prompting the need for upper and lower bound<Xr(see Propositions 4 and 5 for more details).

G,

Figure 7: The active set (black) and the candidate patterns of varisitdess, the variables iK\J
(hatched in black) that can become active. The fringe groups aréyeitae groups that have the
hatched areas (i.e., here we hake= Uken, ) Gk \ Gy = {G1,G2,G3s}).
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Figure 8: The active set (black) and the candidate patterns of varjsitdess, the variables iK\J
(hatched in black) that can become active. The groups in red are thohe i), ) Gk \ G, while
the blue dotted group is itf;\(Uken,(3) Gk \G3). The blue dotted group does not intersect with
any patterns ifl»(J).

4.2 Active Set Algorithm

We can interpret the active set algorithm as a walk through the DAG ofemorpatterns allowed by
the normQ. The parent$1,(J) of J in this DAG are exactly the patterns containing the variables
that may enter the active set at the next iteration of Algorithm 3. The grthgisare exactly at
the boundaries of the active set (referred to asftimge group3 are 7; = {G € (G3)° ; AG €
(Gy)¢, G C G'}, that is, the groups that are not contained by any other inactive groups

In simple settings, for example, whehis the set of rectangular groups, the correspondence
between groups and variables is straightforward since we figste Jk cn,, () Gk \ Go (see Figure 7).
However, in general, we just have the inclusi@kcn, ) Gk \Ga) € %3 and some elements ¢f
might not correspond to any patterns of variableBlis(J) (see Figure 8).

We now present the optimality conditions (see proofs in Appendix E) that nrahi#grogress
of Algorithm 3:

Proposition 4 (Necessary condition)If w is optimal for the full problem in Equation (3), then
OL(w
max S )K\JHHZ <{-aw'OL(w)}2. (N)
KeMr() Shega\ 6y ||l

Proposition 5 (Sufficient condition) If

Nl

0L (W) 2) 2 T
m{%{zmd} } < {hee WL )

then w is an approximate solution for Equation (3) whose duality gap is lessthah

NI
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Note that for the Lasso, the conditiofi$) and(S) (i.e., the sufficient condition taken with=
0) are both equivalent (up to the squaringdfto the conditior}| L (W) ¢ || < —w' OL(W), which is
the usual optimality condition (Fuchs, 2005; Tibshirani, 1996; Wainwrigh®92. Moreover, when
they are not satisfied, our two conditions provide good heuristics fossthg whichK € M (J)
should enter the active set.

More precisely, since the necessary conditidh directly deals with thevariables(as opposed
to groups) that can become active at the next step of Algorithm 3, it esfficchoose the pattelkne
My(J) that violates most the condition.

The heuristics for the sufficient conditio&:§ implies that, to go from groups to variables, we
simply consider the grou@ € ¥; violating the sufficient condition the most and then take all the
patterns of variableK € My (J) such thatk NG # @ to enter the active set. N (Uken, ) K) =
@, we look at all the groupBl € %3 such thatH NG # @ and apply the scheme described before
(see Algorithm 4).

A direct consequence of this heuristics is that it is possible for the algotitjomp overthe
right active set and to consider instead a (slightly) larger active settasal. However if the active
set is larger than the optimal set, then (it can be proved that) the sufficiedition () is satisfied,
and the reduced problem, which we solve exactly, will still output the con@azero pattern.

Moreover, it is worthwhile to notice that in Algorithm 3, the active set may sometinaein-
creased only to make sure that the current solution is optimal (we only ehgaficient condition
of optimality).

Algorithm 3 Active set algorithm

Input: Data{(x,yi),i =1,...,n}, regularization parametar,
Duality gap precisior, maximum number of variables

Output: Active setJ, loading vectow.
Initialization: J={@}, w=0.
while ( (N) is not satisfied and ( [J| <s) do

Replacel by violatingK € My(J) in (N).

Solve the reduced problem mjp . Ls(ws) + % [Q3(w;)]? to getw.
end while
while ( (S)is not satisfied and ([J| <'s) do

UpdateJ according to Algorithm 4.

Solve the reduced problem mjp . Ls(Ws) + % [Q3(w;)]? to getw,
end while

4.2.1 GONVERGENCE OF THEACTIVE SET ALGORITHM

The procedure described in Algorithm 3 can terminate in two different stté® procedure stops
because of the limit on the number of active varialdethe solution might be suboptimal. Note
that, in any case, we have at our disposal a upper-bound on the dwadity g

Otherwise, the procedure always converges to an optimal solution, €ijHey validating both
the necessary and sufficient conditions (see Propositions 4 anddhgeup with fewer tharp
active variables and a precision of (at leags®r (2) by running until thep variables become active,
the precision of the solution being given by the underlying solver.
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Algorithm 4 Heuristics for the sufficient conditiors()

Let G € #; be the group that violate&{) most.
it (GN(Uken, ) K) # @) then
for K € Mp(J) suchthaKNG # @ do
J <+ JUK.
end for
else
for H € #; such thaH NG # @ do
for K € Mp(J) suchthaK NH # & do
J <+ JUK.
end for
end for
end if

4.2.2 ALGORITHMIC COMPLEXITY

We analyze in detail the time complexity of the active set algorithm when we carssts of groups
G such as those presented in the examples of Section 3.5. We recall thatote OgO the set of
orientations inG (for more details, see Section 3.5). For such choiceg,ahe fringe groupsf;
reduces to the largest groups of each orientation and thergfgrec |©|. We further assume that
the groups inGg are sorted by cardinality, so that computifigcostsO(|©)]).

Given an active sel, both the necessary and sufficient conditions require to have accbgs to
direct parent$§l,(J) of J in the DAG of nonzero patterns. In simple settings, for example, when
is the set of rectangular groups, this operation can be perform@Lin(it just corresponds to scan
the (up to) four patterns at the edges of the current rectangular hull).

However, for more general orientations, computihg(J) requires to find the smallest nonzero
patterns that we can generate from the group$;inreduced to the stripe of variables around the
current hull. This stripe of variables can be computedldsc g, 7, G| °\J, so that gettindl,(J)
costsO(s2®! + p|G|) in total.

Thus, if the number of active variables is upper bounded<yp (which is true if our target is
actually sparse), the time complexity of Algorithm 3 is the sum of:

e the computation of the gradier®(snp for the square loss.

e if the underlying solver called upon by the active set algorithm is a star8l@@P solver,
O(smaxyep g <s| Ga|>>+s*°) (note that the terrg> could be improved upon by using warm-
restart strategies for the sequence of reduced problems).

e t; times the computation ¢N), that isO(t (21l + p| G| +smB) + p|G|) = O(t1p| G ).

During the initialization (i.e.J = @), we havell»(2)| = O(p) (since we can start with any
singletons), andGk \ Gi| = | Gk| = |G|, which leads to a complexity @(p|G|) for the sum
YGeg\Gy = 2Gege- Note however that this sum does not depend @md can therefore be
cached if we need to make several runs with the same set of gtpups

e t, times the computation ¢&,), that isO(t2(s2/® + p| G| +|0|?+|©|p+ p|G|)) = O(t2p| G|),
witht; +ty <s.
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We finally get complexity with a leading term @(sp G|+ smaxc3<s| Ga|>° +s*°), which
is much better tha®(p3° + |G|3>®), without an active set method. In the example of the two-
dimensional grid (see Section 3.5), we hag = O(,/p) andO(smax{p''°s>°}) as total com-
plexity. The simulations of Section 6 confirm that the active set strategy isdhdseful whers is
much smaller thap. Moreover, the two extreme cases where p or p < 1 are also shown not to
be advantageous for the active set strategy, since either it is cheajserttte SOCP solver directly
on thep variables, or we uselessly pay the additional fixed-cost of the activeaehinery (such as
computing the optimality conditions). Note that we have derived herthdareticalcomplexity of
the active set algorithm when we use an interior point method as underlyivey.sWith the first
order method presented in Appendix H, we would instead get a total compiexdtys p'°).

4.3 Intersecting Nonzero Patterns

We have seen so far how overlapping groups can encore prior infiommebout a desired set of
(non)zero patterns. In practice, controlling these overlaps may be @edind hinges on the choice

of the weights(d®)cc 4 (see the experiments in Section 6). In particular, the weights have to take
into account that some variables belonging to several overlapping gemeppenalized multiple
times.

However, itis possible to keep the benefit of overlapping groups whilst ligiikiair side effects,
by taking up the idea of support intersection (Bach, 2008c; Meinshaaisé Bihimann, 2010).
First introduced to stabilize the set of variables recovered by the Lass@use this technique in a
different context, based on the fact tHats closed under union.

If we deal with the same sets of groups as those considered in SectionSrigtiiral to rewrite
G asUgco Go, WhereO is the set of the orientations of the groupsgn(for more details, see
Section 3.5). Let us denote kyahdw?® the solutions of Problem (3), where the regularization term
Q is respectively defined by the groupsghand by the grougsin Ge.

The main point is that, sincg is closed under intersection, the two procedures described below
actually lead to the same set of allowed nonzero patterns:

a) Simply considering the nonzero patternof *
b) Taking theintersectionof the nonzero patterns obtained for eac¢h &'in ©.

With the latter procedure, although the learning of several moda®ls fequired (a number of
times equals to the number of orientations considered, for example, 2 foeqoersce, 4 for the
rectangular groups and more genera@®) times), each of those learning tasks involves a smaller
number of groups (that is, just the ones belonging;g® In addition, this procedure is\ariable
selectiontechnique that therefore needs a second step for estimating the loadisigEtgd to the
selected nonzero pattern). In the experiments, we follow Bach (2008cva use an ordinary
least squares (OLS). The simulations of Section 6 will show the benefitssofdhiable selection
approach.

6. To be more precise, in order to regularize every variable, we adflifhgroup {1,..., p} to Gy, which does not
modify P.
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5. Pattern Consistency

In this section, we analyze the model consistency of the solution of the problEquation (2) for
the square loss. Considering the set of nonzero patedesived in Section 3, we can only hope to
estimate the correct hull of the generating sparsity pattern, since Th@msttes that other patterns
occur with zero probability. We derive necessary and sufficientitiond for model consistency in
a low-dimensional setting, and then consider a high-dimensional result.

We consider the square loss and a fixed-design analysis{i.e.,, X, are fixed). The extension
of the following consistency results to other loss functions is beyond theesabthe paper (see
for instance Bach, 2009). We assume that fori al{1,...,n}, yi = w'x; + & where the vector
€ is an i.i.d. vector with Gaussian distributions with mean zero and variafce0, andw € RP
is the population sparse vector; we denoteJbye G-adapted hull of its nonzero pattern. Note
that estimating the;-adapted hull ofv is equivalent to estimating the nonzero patternvaf and
only if this nonzero pattern belongs #®. This happens when our prior information has led us to
consider an appropriate set of grougs Conversely, ifG is misspecified, recovering the hull of
the nonzero pattern aff may be irrelevant, which is for instance the casw i (Vgl) € R? and
G = {{1},{1,2}}. Finding the appropriate structure gfdirectly from the datavould therefore be
interesting future work.

5.1 Consistency Condition

We begin with the low-dimensional setting wherés tending to infinity withp fixed In addition,
we also assume that the desigfiixedand that the Gram matriQ = %z{‘zlxixr is invertible with
positive-definite (i.e., invertible) limit: lim,»Q = Q > 0. In this setting, the noise is the only
source of randomness. We denoterpyhe vector defined as

Vied, :w,-( S (df)z\dsow\gl).

GeG;,Gaj

In the Lasso and group Lasso setting, the vercjas respectively the sign vector sigm;) and the
- W,

vector defined by the blocksywJ)ce ;-

We defineQ§(wje) = Y Ge(Gy)e HdJGcochH2 (which is the norm composed of inactive groups)
with its dual norm(Q$)*; note the difference with the norm reducedito defined a€)c(wic) =
S oeg |d5e oWl

The following Theorem gives the sufficient and necessary conditinderuwhich the hull of
the generating pattern is consistently estimated. Those conditions naturalyg éleeresults of
Zhao and Yu (2006) and Bach (2008b) for the Lasso and the grosgolLr@spectively (see proofin
Appendix F).

Theorem 6 (Consistency condition)Assume i 0, py/n — o in Equation (2). If the hull is con-
sistently estimated, thé®$)*[Qsc3Q;3rJ] < 1. Conversely, if Q$)*[Q3¢Q33'r3] < 1, then the hull
is consistently estimated, that is,

P({je{l,....,p},W #0} =J) — 1.

n— o0

The two previous propositions bring into play the dual ng@j)* that we cannot compute in
closed form, but requires to solve an optimization problem as complex as thé jpndf@dem in
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Equation (3). However, we can prove bounds similar to those obtaineapo§itions 4 and 5 for
the necessary and sufficient conditions.

5.1.1 GOMPARISON WITH THELASSO AND GROUPLASSO

For the/1-norm, our two bounds lead to the usual consistency conditions for theo | &@mt is, the
quantity [|Qze3Q3;3'sign(w;)|| must be less or strictly less than one. Similarly, wigdefines a
partition of{1,..., p} and if all the weights equal one, our two bounds lead in turn to the consjstenc
conditions for the group Lasso, that s, the quantity g, « || Qc HUII(‘])QEEI_”(J)HU”(J)(H\)IVV%HQ)GGQJ 2
must be less or strictly less than one.

5.2 High-Dimensional Analysis

We prove a high-dimensional variable consistency result (see progiperdix G) that extends the
corresponding result for the Lasso (Zhao and Yu, 2006; Wainwr2fi19), by assuming that the
consistency condition in Theorem 6 is satisfied.

Theorem 7 Assume that Q has unit diagonal= Amin(Qys) > 0 and (Q$)*[Ques Q53] < 1T,
with T > 0. If Ty/n > 0C3(G,Jd), and YJ|¥? < C4(G,J), then the probability of incorrect hull
selection is upper bounded by:

2
exp <_WZT§012(G’J)> +2J] exp(_r‘ZT\(]‘gc;zJ)> |

where G(G,J), C2(G,J), C3(G,Jd) and G(G,J) are constants defined in Appendix G, which es-
sentially depend on the groups, the smallest nonzero coefficiemtanid how close the support
{j €J:wj#0} ofwis toits hullJ, that is the relevance of the prior information encodedgy

In the Lasso case, we ha@e(G,J) = O(1),Cx(G,J) = O(|J]72), C3(G,J) = O((log p)*/?) and
C4(G,J) = 0O(]J| 1), leading to the usual scalimg~ log p andu ~ o(logp/n)/2.

We can also give the scaling of these constants in simple settings wheres gnaentap. For
instance, let us consider that the variables are organized in a seqeeadégure 4). Let us further
assume that the weightd®)cc s satisfy the following two properties:

a) The weights take into account the overlaps, that is,
di =B({He€ G;H > j, HC GandH # G}|),
with t — B(t) € (0,1] a non-increasing function such tH30) = 1,
b) The term

- max df
i€{L.Pl G5 fBeg

is upper bounded by a constakitindependent op.

Note that we consider such weights in the experiments (see Section 6)l @adeese assumptions,
some algebra directly leads to

ull, <Q(u) <2K|ul|,, forallue RP.
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We thus obtain a scaling similar to the Lasso (withaddition, a control of the allowed nonzero
patterns). With stronger assumptions on the possible positiodsveé may have better scalings,
but these are problem-dependent (a careful analysis of the gepgrdent constants would still be
needed in all cases).

6. Experiments

In this section, we carry out several experiments to illustrate the beh&vibe sparsity-inducing
normQ. We denote bystructured-lassoor simplySlasspthe models regularized by the not In
addition, the procedure (introduced in Section 4.3) that consists in intieg&te nonzero patterns
obtained for different models of Slasso will be referred trdsrsected Structured-lassor simply
ISlasso

Throughout the experiments, we consider noisy linear modeisXw + €, wherew € RP is the
generating loading vector argds a standard Gaussian noise vector with its variance set to satisfy
| Xw/||, = 3]|g||,. This consequently leads to a fixed signal-to-noise ratio. We assume tivattoe
w is sparse, that is, it has only a few nonzero components, thdt ig; p. We further assume that
these nonzero components are either organized on a sequence or ediangmsional grid (see
Figure 9). Moreover, we consider sets of groupsuch as those presented in Section 3.5. We also
consider different choices for the weight$®)cc that we denote byw1), (W2) and(W3) (we
will keep this notation throughout the following experiments):

(W1): Uniform weights,df =1,
(W2): Weights depending on the size of the grouifs= |G| 2,

(W3): Weights for overlapping groupdf = pl{H<GiH31. HCG andH=G}| for somep € (0, 1).

For each orientation i, the third type of weight§W3) aims at reducing the unbalance caused
by the overlapping groups. Specifically, given a gr@sp G and a variablg € G, the corresponding
weight de is all the more small as the variabjealready belongs to other groups with the same
orientation. Unless otherwise specified, we use the third type of wefg¥d3 with p = 0.5. In
the following experiments, the loadingg, as well as the design matrices, are generated from a
standard Gaussian distribution with identity covariance matrix. The positiohsu@ also random
and are uniformly drawn.

6.1 Consistent Hull Estimation

We first illustrate Theorem 6 that establishes necessary and suffioigitions for consistent hull
estimation. To this end, we compute the probability of correct hull estimation wieeconsider
diamond-shaped generating patternsJof= 24 variables on a 2020-dimensional grid (see Fig-
ure 9h). Specifically, we generate 500 covariance matiZekistributed according to a Wishart
distribution withd degrees of freedom, whedsis uniformly drawn in{1,2,...,10p}.” The diago-
nal terms ofQ are then re-normalized to one. For each of these covariance matricesimpete an

7. We have empirically observed that this choice of degrees of freetainles to cover well the consistency transition
regime around zero in Figure 10.
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Hull with 33% of nonzero variables

Hull with 25% of nonzero variables
| | |
@) (b)

Hull with 50% of nonzero variables

Hull with 50% of nonzero variables
8§ |
() (d)

Hull with 83% of nonzero variables

Hull with 75% of nonzero variables
BN |
(e) ®

Hull with 100% of nonzero variables

Hull with 100% of nonzero variables
N |
(9) (h)

Figure 9: Examples of generating patterns (the zero variables areseaped in black, while the
nonzero ones are in white): (Left column, in white) generating patternsitbaised for the exper-
iments on 400-dimensional sequences; those patterns all form the sanoé Pdil/ariables, that
is, the contiguous sequence in (g). (Right column, in white) generatingmpatteat we use for the
20x 20-dimensional grid experiments; again, those patterns all form the sdhwd Bd variables,

that is, the diamond-shaped convex in (h). The positions of these gieggratterns are randomly
selected during the experiments. For the grid setting, the hull is defined bagbe set of groups

that are half-planes, with orientations that are multiplet6f (see Section 3.5).
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Figure 10: Consistent hull estimation: probability of correct hull estimatioausethe consistency
condition(Qg)*[QJCJQlerJ]. The transition appears at zero, in good agreement with Theorem 6.

entire regularization path based on one realizatiofdofv, X, €}, with n = 3000 samples. The quan-
tities {J,w, €} are generated as described previously, whilenthews of X are Gaussian with co-
varianceQ. After repeating 20 times this computation for e&ghwe eventually report in Figure 10
the probabilities of correct hull estimation versus the consistency cond@§)f[Qae3Q;3r]. In
good agreement with Theorem 6, compar@ﬁg)*[QJCJQJ}lrJ] to 1 determines whether the hull is
consistently estimated.

6.2 Structured Variable Selection

We show in this experiment that the prior information we put through the ifbmmproves upon the
ability of the model to recover spatially structured nonzero patterns. Weakimg at two situations
where we can express such a prior thro@mamely (1) the selection of a contiguous pattern on a
sequence (see Figure 9g) and (2) the selection of a convex pattegrioh(see Figure 9h).

In what follows, we considep = 400 variables with generating patterwswhose hulls are
composed of)| = 24 variables. For different sample sizes {100,200, 300,400 500 700, 1000},
we consider the probabilities of correct recovery and the (normalized)riing distance to the
true nonzero patterns. For the realization of a random sefting, X,€}, we compute an entire
regularization path over which we collect the closest Hamming distance to thednzero pattern
and whether it has been exactly recovered for spnter repeating 50 times this computation for
each sample size we report the results in Figure 11.

First and foremost, the simulations highlight how important the weiglitgsc ; are. In partic-
ular, the uniform(W1) and size-dependent weigfi&/2) perform poorly since they do not take into
account the overlapping groups. The models learned with such weigmistdnanage to recover
the correct nonzero patterns (in that case, the best model found pattheorresponds to the empty
solution, with a normalized Hamming distance|&ff/ p = 0.06—see Figure 11c).

Although groups that moderately overlap do help (e.g., see Slasso with thetsv@V3) on
Figure 11c), it remains delicate to handle groups with many overlaps, elbraw appropriate
choice of(d®)ceg (€.9., see Slasso on Figure 11d). The ISlasso procedure doedfapfram this
issue since it reduces the number of overlaps whilst keeping the desaffdidts of overlapping
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Figure 11: For different sample sizes, the probabilities of correctvesgoand the (normalized)
Hamming distance to the true nonzero patterns are displayed. In the gridwassets of groups
G are considered, the rectangular groups with or withoutdme4-groups (denoted bgrt/4) in
the legend). The points and the error bars on the curves respectyebsent the mean and the
standard deviation, based on 50 random sett{dge/, X, €}.
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groups. Another way to yield a better level of sparsity, even with manylap®r would be to
consider non-convex alternatives @ (see, e.g., Jenatton et al., 2010b). Moreover, adding the
+71/4-groups to the rectangular groups enables to recover a nonzenm gédtger to the generating
pattern. This is illustrated on Figure 11d where the error of ISlasso withrentgngular groups (in
black) corresponds to the selection of the smallest rectangular boxdteeigenerating pattern.

6.3 Prediction Error and Relevance of the Structured Prior

In the next simulation, we start from the same setting as Section 6.2 wheralitierzally evaluate
the relevance of the contiguous (or convex) prior by varying the numibeero variables that are
contained in the hull (see Figure 9). We then compute the prediction errdiffierent sample sizes
n € {250,500,1000}. The prediction error is understood herd|x&S{(w — Ww)||3/||X"®Sw/||2, where
W denotes the OLS estimate, performed on the nonzero pattern found by tkeécopsidered (i.e.,
either Lasso, Slasso or ISlasso). The regularization parameter isndp&efold cross-validation
and the test set consists of 500 samples. For each valuens display on Figure 12 the median
errors over 50 random setting3, w, X, €}, for respectively the sequence and the grid. Note that we
have dropped for clarity the models that performed already poorly in Segtib

The experiments show that if the prior about the generating pattern ismglévan our struc-
tured approach performs better that the standard Lasso. Indeedreassthe hull of the generating
pattern does not contain too many zero variables, Slasso/ISlasso outpérdisso. In fact, the
sample complexity of the Lasso depends on the number of nonzero variablefNainwright,
2009) as opposed to the size of the hull for Slasso/ISlasso. This al&resxphy the error for
Slasso/ISlasso is almost constant with respect to the number of nonzetes (since the hull has
a constant size).

6.4 Active Set Algorithm

We finally focus on the active set algorithm (see Section 4) and compare itsdimglexity to the
SOCP solver when we are looking for a sparse structured target. Mecesely, for a fixed level
of sparsity|J| = 24 and a fixed number of observatiams- 3500, we analyze the complexity with
respect to the number of variablpshat varies in{ 100,225 400 900,160Q 2500;. We consider the
same experimental protocol as above except that we display the mediatin®hhsed onfyon 5
random setting$J,w, X, €}. We assume that we have a rough idea of the level of sparsity of the true
vector and we set the stopping criterieg- 4|J| (see Algorithm 3), which is a rather conservative
choice. We show on Figure 13 that we considerably lower the computatiosigior the same level
of performancé. As predicted by the complexity analysis of the active set algorithm (see the en
of Section 4), considering the set of rectangular groups with or witha@ut-tiy/4-groups results
in the same complexity (up to constant terms). We empirically obtain an averagaecdty of
~ O(p?*3) for the SOCP solver and & O(p®4°) for the active set algorithm.

Not surprisingly, for small values gf, the SOCP solver is faster than the active set algorithm,
since the latter has to check its optimality by computing necessary and sufficieditions (see
Algorithm 3 and the discussion in the algorithmic complexity paragraph of Seg}ion

8. Note that it already corresponds to several hundreds of rum®thithe SOCP and the active set algorithms since we
compute a 5-fold cross-validation for each regularization parameteedbpproximate) regularization path.

9. We have not displayed this second figure that is just the superpoditioa @ror curves for the SOCP and the active
set algorithms.
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Figure 12: For the sample sime= {250,500 1000}, we plot the prediction error versus the propor-
tion of nonzero variables in the hull of the generating pattern. In the ged,davo sets of groups
G are considered, the rectangular groups with or withoutttiig4-groups (denoted byrt/4) in the
legend). The points, the lower and upper error bars on the curvaesatégely represent the median,
the first and third quartile, based on 50 random settfdgw/, X, €}.
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3[| == SOCP 1
=== SOCP (174)
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log(Number of variables)

Figure 13: Computational benefit of the active set algorithm: CPU time (innsisyo/ersus the
number of variablep, displayed in log-log scale. The points, the lower and upper error lmars o
the curves respectively represent the median, the first and third quartile sets of groups;y

are considered, the rectangular groups with or withoutithg4-groups (denoted bgri/4) in the
legend). Due to the computational burden, we could not obtain the SO&Riks forp = 2500.

7. Conclusion

We have shown how to incorporate prior knowledge on the form of nongatterns for linear
supervised learning. Our solution relies on a regularizing term which linearhbines/>-norms
of possibly overlapping groups of variables. Our framework brings &y intersection-closed
families of nonzero patterns, such as all rectangles on a two-dimensiodal\e have studied
the design of these groups, efficient algorithms and theoretical guasanitthe structured sparsity-
inducing method. Our experiments have shown to which extent our modsltieadtter prediction,
depending on the relevance of the prior information.

A natural extension to this work is to consider bootstrapping since this maywateoretical
guarantees and result in better variable selection (Bach, 2008c; Meisenand Bhimann, 2010).
In order to deal with broader families of (non)zero patterns, it would terésting to combine our
approach with recent work on structured sparsity: for instance,ndcaet al. (2010) and Jacob
et al. (2009) consider union-closed collections of nonzero patterasartd Carin (2009) exploit
structure through a Bayesian prior while Huang et al. (2009) handleaonvex penalties based on
information-theoretic criteria.

More generally, our regularization scheme could also be used for galéauning tasks, as
soon as prior knowledge on the structure of the sparse representatwailable, for example,
for multiple kernel learning (Micchelli and Pontil, 2006), multi-task learninggykiou et al., 2008;
Obozinski et al., 2009; Kim and Xing, 2010) and sparse matrix factorizatioblems (Mairal et al.,
2010a; Jenatton et al., 2010b, 2011b).

Finally, although we have mostly explored in this paper the algorithmic and tiesdrssues
related to these norms, this type of prior knowledge is of clear interest éosghtially and tem-
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porally structured data typical in bioinformatics (Kim and Xing, 2010), cotapuision (Jenatton
et al., 2010b; Mairal et al., 2010b) and neuroscience applicationsggggVaroquaux et al., 2010).
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Appendix A. Proof of Proposition 1

We recall that.(w) = £ 57, ¢(y;,w'x). Sincew — Q(w) is convex and goes to infinite whéiw/|,
goes to infinite, and sindeis lower bounded, by Weierstrass’ theorem, the problem in Equation (2)
admits at least one global solution.

eFirst case: Q invertibleThe Hessian ok is

10 020
ﬁzlxixiTW(YiaWTXi)-
i=

-----

convex. Consequently the objective function pQ is strictly convex, hence the uniqueness of its
minimizer.

eSecond casefl, ..., p} belongs tog. We prove the uniqueness by contradiction. Assume that the
problem in Equation (2) admits two different solutionsandw. Then one of the two solutions is
different from 0, sayw # O.

By convexity, it means that any point of the segmgwtt] = {aw+ (1—a)W; a< [0,1]} also
minimizes the objective functiob+ pQ. Since bothL andpQ are convex functions, it means that
they are both linear when restricted[taW].

Now, pQ is only linear on segments of the forfwmtv] with v € RP andt > 0. So we necessarily
havew = tw for some positivd. We now show that is strictly convex onjw,tw], which will
contradict that it is linear ofw,W|. Let E = Sparfxy, ...,%,) andE* be the orthogonal d in RP.
The vectorw can be decomposed i = w +w’ with w € E andw’ € E*-. Note that we have
w = 0 (since if it was equal to @y would be the minimizer ofiQ, which would implyw” = 0 and
contradictw  0). We thus havéw  xy,...,w'x,) = (W ' Xa,...,W  X,) # 0.

This implies that the functios — £(y;,sw'x) is a polynomial of degree 2. So it is not linear.
This contradicts the existence of two different solutions, and concluégzrtiof of uniqueness.

Remark 8 Still by using that a sum of convex functions is constant on a segment drdyd the
functions are linear on this segment, the proof can be extended in ordeplace the alternative
assumption {1,..., p} belongs toG” by the weaker but more involved assumption: for &fy) €
{1,..., p}?, there exists a group @ G which contains both j and k.
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Appendix B. Proof of Theorem 2

Forw € RP, we denote byZ(w) its zero pattern (i.e., the indices of zero-componenta/)of To
prove the result, it suffices to prove that for anylset {1,..., p} with 1° ¢ Z and|l| < k— 1, the
probability of

Zi = {Y € R": there existsv solution of the problem in Equation (2) wi(w) = 1°}

is equal to 0. We will prove this by contradiction: assume that there existslacs€1,..., p}
with 1¢€¢ Z, |I| <k—1andP(Z) > 0. Sincel® ¢ Z, there exist&t € Hull(I)\ . LetJ=1U{a}
andG = {G € G : Gnl # 0} be the set of active groups. Defifid = {w € RP : wyc = 0}. The
restrictionsL; : RY — R andQ; : R? — R of L andQ are continuously differentiable functions on
{we R’ :w #0} with respective gradients

T T
DLJ<w>=(aLJ<w>) and DQJ<w>=<wj(z<d?>2|d%w||gl)> :

aw; ).
J ) %;g’ jed
Let f(w,Y) = OLj(w) 4+ pdQs(w), where the dependence Yhof f(w,Y) is hidden in0OL;(w) =
51 06)a gy (v, W)
ForY € 7, there existsv € R? with Z(w) = I ¢, which minimizes the convex functidry + uQ;.
The vectonw satisfiesf (w,Y) = 0. So we have provet C %/, where

E = {Y e R": there existsv € R? with Z(w) = 1° and f (w,Y) = 0}.

Lety € . Consider the equatioh(w,¥) = 0 on {w € R’ : w; # 0 foranyj € 1}. By con-
struction, we have]| < k, and thus, by assumption, the matiX = ((x1), .., (Xa)3) € R™I has
rank |J|. As in the proof of Proposition 1, this implies that the functionis strictly convex, and
then, the uniqueness of the minimizengf+ pQ, and also the uniqueness of the point at which the
gradient of this function vanishes. So the equatiow,y) =0 on{we R’ :w; #0foranyj 1}
has a unique solution, which we will write.

On a small enough ball arourfd?),¥), f is continuously differentiable since none of the norms
vanishes atvj. Let (fj)jc; be the components of andH,; = (gT]:/L)jeJ,keJ' The matrixHy; is
actually the sum of:

a) the Hessian dfj, which is positive definite (still from the same argument as in the proof of
Theorem 1),

b) the Hessian of the norm; around(wg’,y) that is positive semidefinite on this small ball
according to the Hessian characterization of convexity (Borwein ands,.@®06, Theorem
3.1.11).

ConsequentlyH;; is invertible. We can now apply the implicit function theorem to obtain that for
Y in a neighborhood of,”
w' = (),

with ) = (;)jes @ continuously differentiable function satisfying the matricial relation

(....0¢5,.. ) Hyg+ (..., Oyfj,...) =0.
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LetC, denote the column vector be‘Jl corresponding to the index, and letD the diagonal matrix
whose(i,i)-th element is(%(yi,wai). Sincen(...,0yfj,...) = DXJ, we have

nOYq = —DX’Cy.

Now, sinceX’ has full rank,Cy # 0 and none of the diagonal elementsdis null (by assump-
tion on /), we havelyy # 0. Without loss of generality, we may assume i /dy; # 0 on a
neighborhood of.”

We can apply again the implicit function theorem to show that on an open ba&ll aentered
aty, say By, the solution toy(Y) = 0 can be writtery; = ¢(yo,...,yn) with ¢ a continuously
differentiable function.

By Fubini's theorem and by using the fact that the Lebesgue measusgraflaton inR" equals
zero, we get that the s&{(§) = {Y € B;: W (Y) = 0} has thus zero probability. Let C Z; be a
compact set. We thus hageC Z/.

By compacity, the sef can be covered by a finite number of b@)l. So there exisyq;...,¥m
such that we havg C A(Y1) U---UA(Ym). Consequently, we have(s) = 0.

Since this holds for any compact set#i and since the Lebesgue measure is regular, we have
P(‘Z) = 0, which contradicts the definition &f and concludes the proof.

Appendix C. Proof of the Minimality of the Backward Procedure (See Algorithm 1)

There are essentially two points to show: (L spansZ, and (2)G is minimal.

The first point can be shown by a proof by recurrence on the deptiedDAG. At stept, the
baseG" verifies{Ugcs G, VG' € GV} = {G € Z,|G| <t} because an eleme@tc Z is either
the union of itself or the union of elements strictly smaller. The initializatienmingez |G| is
easily verified, the leafs of the DAG being necessarilygin

As for the second point, we proceed by contradiction. If there existhanbase;* that spans
Zsuch thatg* C G, then

Jdee G, e¢ G .

By definition of the setz, there exists in turrg’ C G*, G’ # {e} (otherwise,e would belong to
G"), verifying e = Ugc ¢ G, Which is impossible by construction ¢f whose members cannot be
the union of elements af.

Appendix D. Proof of Proposition 3

The proposition comes from a classic result of Fenchel Duality (BorwedriLawis, 2006, Theorem
3.3.5 and Exercise 3.3.9) when we consider the convex function

A
hJ Wy E [QJ(WJ)]Z,

whose Fenchel conjugaltg is given bykj — % [Qj(KJ)}Z (Boyd and Vandenberghe, 2004, example
3.27). Since the set

{wy € RF:: hy(wy) < w}n{wy € RF; Ly(wy) < 0 andLy is continuous atvy}
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is not empty, we get the first part of the proposition. Moreover, the priaual-variablegw;, K;}
is optimal if and only if

—K3 € aLJ(WJ),
K€ 05 [Qu(wy)P] = AQy(wy)aQy(wy),

wheredQ;(w;) denotes the subdifferential & atw;. The differentiability ofL; atw; then gives
oLj(wy) = {0OLy(wy)}. It now remains to show that

Ky € )\QJ(WJ)@QJ(WJ) (5)
is equivalent to
Wik = ¥ [03(K:)]% = A [0 (wy)]2. ©

As a starting point, the Fenchel-Young inequality (Borwein and Lewis, 2806position 3.3.4)
gives the equivalence between Equation (5) and

A 1
5[QJ(WJ)]ZJrg[Q’S(KJ)]Z=WJTKJ' (7
In addition, we have (Rockafellar, 1970)
0Q3(wy) = {uy € RPl:ujwy = Q(wjy) and Qj(uy) < 1}. (8)

Thus, ifky € AQ;(W;)0Q;(w;) thenwj Ky = A [Q; (wj)]2. Combined with Equation (7), we obtain
wlky = £[Q5(k9)].
Reciprocally, starting from Equation (6), we notably have

WJ Ky = A[Qy(wy)]?.
In light of Equation (8), it suffices to check th@fj(k;) < AQj(w;) in order to have Equation (5).
Combining Equation (6) with the definition of the dual norm, it comes

1., .
5 [Q5(K3)]% = wJ Ky < Q5(K3)Qa(W3),

which concludes the proof of the equivalence between Equation (Sxquation (6).

Appendix E. Proofs of Propositions 4 and 5

In order to check that the reduced solutiwnis optimal for the full problem in Equation (3), we
complete with zeros od° to definew, computex = —OL(w), which is such thak; = —OLj(wj;),
and get a duality gap for the full problem equal to

% ([Q*(K)]Z—Aw}m) .

By designing upper and lower bounds fof(k), we get sufficient and necessary conditions.
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E.1 Proof of Proposition 4

Let us suppose that* = ((‘Qﬁ) is optimal for the full problem in Equation (3). Following the same
derivation as in Lemma 14 (up to the squaring of the regulariz&ipnve have thatv* is a solution
of Equation (3) if and only if for all € RP,

UTDL(VW) —|—7\Q(V\fk)(ujl"] +(Q9)[ug]) >0,
with Eodt o
[e) o
r= —_—
2, Tdow],

We project the optimality condition onto the variables that can possibly entective aet, that is,
the variables if1,(J). Thus, for eactk € My(J), we have for alli, 5 € RKV,

Uy DLW kg +AQwW) 5
GE G N(Ga)©

d}%\\] OquK\JHZ Z 0.

By combining Lemma 13 and the fact thgk\; N (G3)® = Gk \ G3, we have for aliG € Gk\ G3,
K\J C G and thereforeigk\; = Ux\ 3. Since we cannot compute the dual normugf; — Hdﬁ\J o
Uk\ 3|2 in closed-form, we instead use the following upperbound

a5 ouei], < 1&gl el
so that we get for alli, ; € R\,

uI\JDL(V\/*)K\J—i-?\Q(W*) Z Hdﬁ\JHwHUK\JHzZQ
GeGk\Gs

Finally, Proposition 3 giveaQ(w*) = {— )\W*TDL(W*)}%, which leads to the desired result.

E.2 Proof of Proposition 5

The goal of the proof is to upper bound the dual ndpit{k) by taking advantage of the structure
of G; we first show how we can upper bouf (k) by (Q5)*[ksc]. We indeed have:

Q*(k) = max vk
S Gegy 1d%oVl|o+F e (gy)clld®ov]|,<1

< max vk
> Gegy ||d33°VJ HZ‘FZGe(gJ)CHdGOV\bSl

= max v K
03(v3)+(95) (vpe) <1

= max{Qj(ky), (O[]}
where in the last line, we use Lemma 15. Thus the duality gap is less than

o (197 (0P~ [@5(k:)]%) < 5 max{0, [(05)" [~ 51,
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and a sulfficient condition for the duality gap to be smaller thamn

NI

(Q5)"[koe] < (2ne+ [Q5(ky))%)2.

Using Proposition 3, we haveAw' OL(w) = [Qj(KJ)]2 and we get the right-hand side of Proposi-
tion 5. It now remains to upper bourif$)*[Kc]. To this end, we call upon Lemma 11 to obtain:

Kj

2\
Q%)* K| < max -  AH !
(Q5) Ko Ge(QJ)C{,gG{ZHej,He<§a>°dT} }

Among all groupsG € (G;)¢, the ones with the maximum values are the largest ones, that is, those
in the fringe groupsf; = {G € (G3)°; 3G € (G;)¢,G C G'}. This argument leads to the result of
Proposition 5.

Appendix F. Proof of Theorem 6

Necessary conditiorie mostly follow the proof of Zou (2006) and Bach (2008b). et RP be
the unigque solution of
min L(w) + pQ(w) = min F(w).

weRP weRP

The quantityA = (W—w) /pis the minimizer off defined as
E(8) = 5A7QA 0B+ QW+ A) — (w)]
where q = % S ,&%. The random variablgi'q'A is a centered Gaussian with variance
V/ATQA/(nR). SinceQ — Q, we obtain that for alh € RP,
K 'g A =op(1).
Sincep — 0, we also have by taking the directional derivativoétw in the direction ofA
WL QW+ pA) — QW)] = 1] Ay + Q5(Ax) +0(1),
so that for allA € RP
F(8) = ATQA+1; A+ Q5(Ase) +0p(1) = Fim (A) +0p(1).

The limiting functionRiy, being stricly convex (becaus@ > 0) andF being convex, we have that
the minimizerA of F tends in probability to the unique minimizer B (Fu and Knight, 2000)
referred to ag\*.

By assumption, with probability tending to one, we have {j € {1,..., p},W; # 0}, hence
foranyj e J¢ ij = (W—w); = 0. This implies that the nonrandom vectur verifiesAj. = 0.

As a consequencé; minimizesAJTQJJAJ +rJTAJ, hencer; = —Qy;Aj. Besides, sinca* is
the minimizer offim, by taking the directional derivatives as in the proof of Lemma 14, we have

(Q3)"[Queal)] <1
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This gives the necessary condition.

Sufficient conditionWe turn to the sufficient condition. We first consider the problem reduced
to the hullJ,

min Ly(wjy) 4+ pQj(w;y).

weRH
that is strongly convex sinc®;; is positive definite and thus admits a unique solutign With
similar arguments as the ones used in the necessary condition, we can ahéwténds in proba-
bility to the true vectomw;. We now consider the vectar € RP which is the vectow; padded with
zeros onJ°. Since, from Theorem 2, we almost surely have Hylle {1,...,p},W; #0}) ={j €
{1,...,p},W; # O}, we have already that the vectorconsistently estimates the hull wfand we
have thatvtends in probability tav. From now on, we consider thatis sufficiently close tav, so
that for anyG € Gj, ||d® oW||, # 0. We may thus introduce
G G Iy
- }E d®od fﬂN,
o2, o],

It remains to show thaw i5 indeed optimal for the full problem (that admits a unique solution due
to the positiveness dD). By construction, the optimality condition (see Lemma 14) relative to the
active variabled is already verified. More precisely, we have

OL(W)g + ufy = Qay(Wy —wy) — gy + ufy = 0.
Moreover, for alluy. € RFl, by using the previous expression and the invertibilpfve have
UgeOL(W)ge = Uge { —H Quea Q5 F + Quea Q3 dy — Qe } -

The terms related to the noise vanish, having actuptyo,(1). SinceQ — Q andrj — rj, we get
for all uze € RVl

u}DL(V’\\/)‘]C = flJ.U:]rc {Q‘]CJQ‘I]lrJ} +Op(l.l)
Since we assum@@$)*[Qa3Q33'3] < 1, we obtain
—Use DL (W) e < M(QS)[uge] + 0p (),
which proves the optimality condition of Lemma 14 relative to the inactive variatiléstherefore
optimal for the full problem.
Appendix G. Proof of Theorem 7

Since our analysis takes place in a finite-dimensional space, all the nofimsdden this space are
equivalent. Therefore, we introduce the equivalence paranegt®rA(J) > 0 such that

vue RV, a(d) [lufly < Qulu] < AQ) |lull;.

We similarly definea(J¢), A(J°) > 0 for the norm(QS) onRM’l. In addition, we immediately get by
order-reversing:
vue RFLAQ)Hull, < (Q0) U] <a@)H|ulle,-
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For any matriX™, we also introduce the operator nofiffi||m s defined as

IMlms=sup [[Fu[m.
Julls<1

Moreover, our proof will rely on the control of thexpected dual norm for isonormal vectors
E [(Q5)*(W)] with W a centered Gaussian random variable with unit covariance matrix. Inske ca
of the Lasso, it is of ordeflog p)Y/2.

Following Bach (2008b) and Nardi and Rinaldo (2008), we consideratieced problem og,

minL, (Wy) + Q5 (W)

with solutionwj;, which can be extended &5 with zeros. From optimality conditions (see Lemma
14), we know that
Q3[Qua(Wy —wy) — qs] < I, 9)

where the vectog € RP is defined agj= ST, &x. We denote by = min{|wj|; wj # 0} the
smallest nonzero componentsmfWe first prove that we must have with high probabi|jtys||,, >
0 for all G € G, proving that the hull of the active set wof; is exactlyJ (i.e., no active group is
missing).

We have

I — Wil fey < [1Q53 esco [1Qaa (Wt — W)
< 92k (1 Qua(Wy = W) = Al + [l ller)

hence from (9) and the definition 8{J),

5 — Wil < 31726 (HAQ) + | ]oo) - (10)
Thus, if we assump < 3\3\1§¥A(J) and
KV
o< — 11
we get
Wy —Wylle, < 2v/3, (12)
so that for allG € g3, [|Wg|,, > 3, hence the hull is indeed selected.
This also ensures thay Satisfies the equation (see Lemma 14)
Qa3 (Wy —wj3) — gy +Hfy =0, (13)
where dodor
" od” oW
f= Z T
&, lldc oW

We now prove that thev padded with zeros od€ is indeed optimal for the full problem with
high probability. According to Lemma 14, since we have already provey {tl8uffices to show
that

(Q3)"[OL(W)ae] <
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Defining Qe = Qe — QJcJQj‘quJ, we can write the gradient &fon J¢ as

OL(W)ge = —0gej — MQuea Q333 = — ey — HQuea Q33 (F — r3) — HQueaQyj'r 5,
which leads us to control the difference—r;. Using Lemma 12, we get
2
R R d§ d®odSow|?
lfa—rall < gl | 3 Bl 5 Jdodouly)
g, ldowll; & [deow|;

wherew = toW+ (1 —to)w for somety € (0,1).
LetJ = {k € J: wy # 0} and letd be defined as

[d®0d®oul;
b= sup >1
UeRP:JC {keJ:u#£0}CJ Hd%; °© df“]; © LﬁHl
Geg;

The term¢ basically measures how clogdendJ are, that is, how relevant the prior encodeddy
about the hulD is. By using (12), we have

o3 > [ ow[, > 165 ocsowyla > o owlag
[d®ow][, > [|d5 owsl|2 > HoLszY > ||d5|| —
3 23/%
and
[[wii <§HWII
00 — 3 00

Therefore we have

( HdGH2 _|_5¢ ’W||°°HdG°dGH1>

(F3—rally < (W5 —wylf Z [dSow, [deow]|,

Geg;
< 3/ Wy —wylf,, <1+ 5¢||W”°°> z Hd33H2
v v &,

18¢3/2HWH«=

Introducinga = Sceg, |95, we thus have proved

15 =rally < o[y —wyll., - (14)

By writing the Schur complement d on the block matrice®Qjc;c and Q3, the positive-
ness ofQ implies that the diagonal terms d(&gJCJQJ*JlQJJc) are less than one, which results in

”QJCJQJ?Jl/zuw_’Z <1.We then have

1QuesQy5 (Fa—r3) ]|, HQJCJQJ 2 —ry)

< QuaQyy ”°°2||QJJ/H2””_UH2
< K*1/2HI‘J—|'J”1
< 2032 (AQ) + sl
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where the last line comes from Equation (10) and (14). We get

1/2
(9" 1QmQuR0 1) < S 1 D) [l

Thus, if the following inequalities are verified
alJf?AQd) T
—am e U
K3/2a(J°) 4
alJ|¥? T
—_— < - 1
K3/2a<JC) ”qJHm =3 ( 5)
Cy* HT
(Q5)"[dyep] < Px (16)
we obtain

(Q9)"[OLW)x] < (Q

(Q

)*[—eg — HQe3 Q3311 3]
) [=Qaep] + UL —T) +pr/2 <,

VANVAN

c
J
c
J

that is,J is exactly selected.

Combined with earlier constraints, this leads to the first part of the desiopdgition.

We now need to make sure that the conditions (11), (15) and (16) hold igithpnobability.
To this end, we upperbound, using Gaussian concentration inequaliteeiklyprobabilities. First,
dye) is a centered Gaussian random vector with covariance matrix

E [0ye)3 q}‘ 3 =E [CIJCQJTC — Quedy Q33 Qaze — Quea Q35 0e + QueaQy3arqy QJ]lQJJC]
g2
7QJ°J°\J7
whereQjege|y = Qege — QJCJQJ—JlQJJc. In particular,(Q3)*[dse|5] has the same distribution ggW),

with g : u— (Qﬁ)*(on*l/zQiéchpu) andW a centered Gaussian random variable with unit covari-
ance matrix.

Since for anyu we haveu' Qjee3u < U’ Quegeu < HQl/ZHz lull3, by using Sudakov-Fernique
inequality (Adler, 1990, Theorem 2.9), we get:

E[(QS)* [dyepy] = Ewpu%wwwmmwﬁswuw
Q5(u<1 Q§(w<1
_ 1/2 *

< on 2| QI3 *E[(QS)* (W)).

In addition, we have

1/2

0(0) — W) < W(u—v) < on+2a(a) | QY2 y(u-v)|

On the other hand, sind@ has unit diagonal anQ)JCJQJ‘JlQJJc has diagonal terms less than one,
Qjeye3 @lso has diagonal terms less than one, which implies\yt@éﬁjzcuumg < 1. Hencey is a
Lipschitz function with Lipschitz constant upper boundeddioy 1/2a(J°)~1. Thus by concentration
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of Lipschitz functions of multivariate standard random variables (M&s2a03, Theorem 3.4), we
have fort > 0:

202

2 c\2
P[(95)"dye]) = t+on 2| QI3 *E [(5)"(W)] | < exp<—mam) -

Applied fort =yt /2 > 20n~Y/2||Q||5/°E [(Q5)*(W)], we get (becaus@i— 1)% > u?/4 foru > 2):

npzrza(JC)Z)

P[(Q5)"[ayepp] =t] < exp(— 3202

It finally remains to control the terf(||q;||,, > &), with

1/2 c
£ Kvmin{LSTK a(J )}.

4av

We can apply classical inequalities for standard random variables éda3803, Theorem 3.4) that
directly lead to

2
P(lap]l., > &) < Z\Jlexp<—;i2> .

To conclude, Theorem 7 holds with

c\2
cigy = 0L

(kv w'/2a(3%)v 2
C(G.d) = (3mln{1724¢3/2||W!ooZGega‘\dﬂz})’

Ca(G,d) = 4IQIFE[(Q5) W),

and

v wwY2a(J%v
C4(§7‘]) = oA/ min 17 )
3A(J) 24932 | Wl Y ceg, [|05]],
where we recall the definition8V a centered Gaussian random variable with unit covariance matrix,
J={jeJd:wj#0},v=min{|w;|; j €I},

b= sup a0 d”ouls
UeRP:JC{keJ:u#£0}CJ Hd%; © dJE © LﬁHl’
Geg;

K = Amin(Qa3) > 0 andt > 0 such thatQ$)*[Qye;Q;;r] < 1—T.

Appendix H. A First Order Approach to Solve Problems (2) and @)

Both regularized minimization problems in Equation (2) and Equation (3) (thadjtier in the
squaring ofQ) can be solved by using generic toolboxes for second-order caygrgmming
(SOCP) (Boyd and Vandenberghe, 2004). We propose here affitst approach that takes up
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ideas from Micchelli and Pontil (2006) and Rakotomamonjy et al. (2008)that is based on the
following variational equalities: fox € RP, we have

P
x|z = Z

2] 1ZJ<1

‘—N

whose minimum is uniquely attained for= |x;|/ ||x||;. Similarly, we have

LA
2[xll, = min J;zﬁ* 12l

whose minimum is uniquely obtained fgyr = |X;|. Thus, we can equivalently rewrite Equation (2)
as

WeRP, n.
(N®)gegeR?!

) 1n up
mn =S £(yi,w'x) QZV\FZ + N%eegl;» (17)

with {j = (Ye5(d$)%(n®) ") ~*. In the same vein, Equation (3) is equivalent to

n

min e(yi WTX')—i—)\inZ (18)
n ) | j oo

P, .
WeRP, PRL= =1
(n®)ce gGRJ
Yeegn®<l

where(; is defined as above. The reformulations Equation (17) and Equatioarj8)ntly convex
in {w,(n®)ceg} and lend themselves well to a simple alternating optimization scheme between
(for instancew can be computed in closed-form when the square loss is used) &t ; (whose

optimal value is always a closed-form solution). If the varialffg9ccg € R‘f' are bounded away
from zero by a smoothing parameter, the convergence of this schemerantpsal by standard
results about block coordinate descent procedures (Bertselefh, 19

This first order approach is computationally appealing since it alleausn-restart which can
dramatically speed up the computation over regularization paths. Morébgegs not make any
assumptions on the nature of the family of groups

Appendix |. Technical Lemmas

In this last section of the appendix, we give several technical lemmas.ogderl C {1,...,p}
andG ={Ge G; GNl # @} C G, thatis, the set of active groups when the variablae selected.

We begin with a dual formulation d* obtained by conic duality (Boyd and Vandenberghe,
2004):

Lemma9 Lety € R/'. We have

Q) u] = min max||§
(Qi) ] o e I1E7 12

st. y+ H diEf=0and&f=0if j¢G.
GeGi,Gaj

2816



STRUCTURED VARIABLE SELECTION WITH SPARSITY-INDUCING NORMS

Proof By definition of (Q)*[u], we have

Q) [w]= max uv.

(@7l = e, v
By introducing the primal variablefig)ceg € RI9!, we can rewrite the previous maximization
problem as

(Q)*[w] = m2X<1U|TV|, st. VGe G, ||dfousnil, < ag,
Geg G>

which is a second-order cone program (SOCP) \\ith second-order cone constraints. This primal
problem is convex and satisfies Slater’s conditions for generalized icagjoalities, which implies
that strong duality holds (Boyd and Vandenberghe, 2004). We nowidenthe Lagrangiam
defined as

-
01} i¥e]

L(V,06,Y,T6,&0) = U v +y(1- § ag) + ( ) ( >7

| | Gezg. Gezgl df o ugn 3%

with the dual variableqy, (Tc)ceg,, (§F)ceg } € R, x RIS x RIIXIG1 such that for allG € G,
£ =01if j ¢ Gand||&P||, < Te. The dual function is obtained by taking the derivativesLofith
respect to the primal variablesand(ag)ceg and equating them to zero, which leads to

Viel, Uj+Ycegesjdi€f =0
VGe G, Y—Tc =0

After simplifying the Lagrangian, the dual problem then reduces to

min y st )by +%Gegl,esj dief =0 and&f=01if j ¢ G,
¥.(E)eeg VG e G, &Pl <Y,
which is equivalent to the displayed result. |

Since we cannot compute in closed-form the solution of the previous optimizatidlem, we fo-
cus on a differenbut closely relategbroblem, that is, when we replace the objective gax ||&F ||,
by maxee g, [|€7 |, to obtain ameaningfufeasible point:

Lemma 10 Let y € R'l. The following problem

min g, max||&}

Geg) Ge gl

s.t. U+ Z de‘f:OandEjG:OifjgéG,
GeG,Gaj

oo

o uj
is minimized for(€%)* = s
j

SHejHegd
Proof We proceed by contradiction. Let us assume there ef§glsc g such that

max||&F|l, < max]| (&)l

Geg Geg
|uj
= maxmaxiH
Geg jeG ZHELHEgldj

‘ub’
YHejoreqdjy’

2817



JENATTON, AUDIBERT AND BACH

where we denote by an argmax of the latter maximization. We notably have foGall jo:

|Uj0|

&5 < ——
SHejoHegd],

By multiplying both sides bydfo and by summing oveB > jo, we get

ujol = | dRES < Y df eS| < Juy,
GeGi,Gajo G3]o

which leads to a contradiction. [ |

We now give an upperbound @i based on Lemma 9 and Lemma 10:

Lemma 11 Let y € RI'l. We have

2) 2
u.
(Q)*[u] < max — .
Gegi ,-; SHejHegd
Proof We simply plug the minimizer obtained in Lemma 10 into the problem of Lemma 9.1

We now derive a lemma to control the difference of the gradie@ pévaluated in two points:

Lemma 12 Let uy,v; be two nonzero vectors iRYl. Let us consider the mappingw- r(wy) =

e ”dzd O‘ﬁJ € RNl There exists z= touj + (1 —to)v; for some § € (0,1) such that

513 |d5 o d§ o 2317
Ir(w) —r)lly < us—vallo | 3 1oorir ol B
GEG; 15 03], cEy  [ldFozlf;

Proof For j,k € J, we have

orj (d?)z (df)ZWj 2
soWo) = 5 el Y e () W,
oW GGZQJ [dSows, GGZGJ ldSowy |3
with Ij_x = 1if j =kand 0 otherwise. We then considet [0,1] — h;(t) =rj(tu;+ (1—t)vy). The
mappingh; being continuously differentiable, we can apply the mean-value theorems éhists
to € (0,1) such that
oh; (t
(1)~ hy0) = 20 )

We then have

Irj(ug) —rj( Z

ked

(@ ARl
< flus Vol e B A )
2. T, e 65023
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which leads to
IdS15 dS 0 d§ 0752
Ir(uz) —r(va)lly < llus—Vvslle — .
& 1050zl "2 |dson:

Given an active set C {1,...,p} and a direct parer € NM4(J) of J in the DAG of nonzero
patterns, we have the following result:

Lemma 13 For all G € Gk \ G3, we have KJ C G.

Proof We proceed by contradiction. We assume there e@gts Gk \ Gy such thatk\J ¢ Go.
Giventhal € 2, there existg;’ C G verifyingK = Ng. 4 G°. Note thatGo ¢ G since by definition
GoNK # @.

We can now build the patterk = Neegrufe,} G° = KN Gj that belongs taP. Moreover,
K = KNG§ C K since we assume@$NK # @. In addition, we have thal ¢ K andJ ¢ G§
becaus&K € My(J) andGp € Gk \ G3. This results in) C K c K, which is impossible by definition
of K. [

We give below an important Lemma to characterize the solutions of Problem (2)
Lemma 14 The vectow € RP is a solution of

min L(w) + uQ(w)

wWeRP
if and only if
{DL( )3+ HF;=0
(Q5)"[OLW) 2] < 1
with J the hull of{j € {1,...,p},W; # 0} and the vectof € RP defined as
. déod®ow
r= T~ A~
2. o,
In addition, the solutionV satisfies
Q*[OL(W)] < W

Proof The problem
min L(w) + pQ(w) = min F(w)

WERP weRP
being convex, the directional derivative optimality condition are necegssat sufficient (Borwein
and Lewis, 2006, Propositions 2.1.1-2.1.2). Therefore, the vecisra“solution of the previous
problem if and only if for all directionsi € RP, we have

F(W+ew —F(®)
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Some algebra leads to the following equivalent formulation

vue RP, u" OL(W) + pujf34+ p(Q$)[uz] > 0. (19)

The first part of the lemma then comes from the projectiond andJC.
An application of the Cauchy-Schwartz inequality@rfj gives for allu € RP

ujfs < (Qj)[ug.

Combined with Equation (19), we geti € RP, u' OL(W) + uQ(u) > 0, hence the second part of
the lemma. [

We end up with a lemma regarding the dual norm of the sum ofdisjpint norms (see Rock-
afellar, 1970):

Lemma 15 Let A and B be a partition of1,..., p}, thatis, AAB= o and AuB={1,..., p}. We
consider two normsaic R i ||uafla and us € RIBl i ||ug||p, with dual norms|va||3 and||va||5.
We have

max  u'v=max{|[valla, [IValls}
[uallatluglls<1
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