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Abstract

Sparse coding consists in representing signals as spaese iombinations of atoms selected from
a dictionary. We consider an extension of this frameworknetibe atoms are further assumed to
be embedded in a tree. This is achieved using a recentlyduntex tree-structured sparse regu-
larization norm, which has proven useful in several apgibbices. This norm leads to regularized
problems that are difficult to optimize, and in this paperprepose efficient algorithms for solving
them. More precisely, we show that the proximal operatoo@aged with this norm is computable
exactly via a dual approach that can be viewed as the congosit elementary proximal opera-
tors. Our procedure has a complexity linear, or close talin@ the number of atoms, and allows
the use of accelerated gradient techniques to solve thestineetured sparse approximation prob-
lem at the same computational cost as traditional ones tise& -norm. Our method is efficient
and scales gracefully to millions of variables, which westrate in two types of applications:
first, we considefixed hierarchical dictionaries of wavelets to denoise naturelges. Then, we
apply our optimization tools in the context dictionary learning where learned dictionary ele-
ments naturally self-organize in a prespecified arboréstancture, leading to better performance
in reconstruction of natural image patches. When appliegxbdocuments, our method learns
hierarchies of topics, thus providing a competitive alégire to probabilistic topic models.

Keywords: Proximal methods, dictionary learning, structured sparsiatrix factorization

1. Introduction

Modeling signals as sparse linear combinations of atoms selected from a aligtives become
a popular paradigm in many fields, including signal processing, statistidsinachine learning.
This line of research, also known ggarse codinghas witnessed the development of several well-
founded theoretical frameworks (Tibshirani, 1996; Chen et al., 1PB8lat, 1999; Tropp, 2004,
2006; Wainwright, 2009; Bickel et al., 2009) and the emergence of miinieat algorithmic tools
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(Efron et al., 2004; Nesterov, 2007; Beck and Teboulle, 2009; Weglal., 2009; Needell and
Tropp, 2009; Yuan et al., 2010).

In many applied settings, the structure of the problem at hand, suchr axgimple, the spatial
arrangement of the pixels in an image, or the presence of variablesponaing to several levels
of a given factor, induces relationships between dictionary elements.afipiealing to use this a
priori knowledge about the probledirectlyto constrain the possible sparsity patterns. For instance,
when the dictionary elements are partitioned into predefined groups pondiag to different types
of features, one can enforce a similar block structure in the sparsity ipatteat is, allow only
that either all elements of a group are part of the signal decomposition toalttere dismissed
simultaneously (see Yuan and Lin, 2006; Stojnic et al., 2009).

This example can be viewed as a particular instancstroictured sparsitywhich has been
lately the focus of a large amount of research (Baraniuk et al., 205y €hal., 2009; Huang et al.,
2009; Jacob et al., 2009; Jenatton et al., 2009; Micchelli et al., 20d.@hid paper, we concentrate
on a specific form of structured sparsity, which we ¢tedirarchical sparse codingthe dictionary
elements are assumed to be embedded in a directed {raed the sparsity patterns are constrained
to form aconnected and rooted subtre&7 (Donoho, 1997; Baraniuk, 1999; Baraniuk et al., 2002,
2010; Zhao et al., 2009; Huang et al., 2009). This setting extends moezally to a forest of
directed trees.

In fact, such a hierarchical structure arises in many applications. Waledempositions lend
themselves well to this tree organization because of their multiscale structdrieeaefit from it for
image compression and denoising (Shapiro, 1993; Crouse et al., 188&igk, 1999; Baraniuk
et al., 2002, 2010; He and Carin, 2009; Zhao et al., 2009; Huang &0819). In the same vein,
edge filters of natural image patches can be represented in an adrdresthion (Zoran and Weiss,
2009). Imposing these sparsity patterns has further proven usefut inothitext of hierarchical
variable selection, for example, when applied to kernel methods (BafB),20 log-linear models
for the selection of potential orders (Schmidt and Murphy, 2010), amibiaformatics, to exploit
the tree structure of gene networks for multi-task regression (Kim and, 20t0). Hierarchies of
latent variables, typically used in neural networks and deep learnihgeatures (see Bengio, 2009,
and references therein) have also emerged as a natural structuverial sgplications, notably to
model text documents. In particular, in the contextagfic modelgBlei et al., 2003), a hierarchical
model of latent variables based on Bayesian non-parametric methodedmapimposed by Blei
et al. (2010) to model hierarchies of topics.

To perform hierarchical sparse coding, our work builds upon thecggh of Zhao et al. (2009)
who first introduced a sparsity-inducing nort leading to this type of tree-structured sparsity
pattern. We tackle the resulting nonsmooth convex optimization problem withnpabrethods
(e.g., Nesterov, 2007; Beck and Teboulle, 2009; Wright et al., 200k@ttes and Pesquet, 2010)
and we show in this paper that its key step, the computation optbeimal operator can be
solved exactly with a complexity linear, or close to linear, in the number of diatjoel@aments—
that is, with the same complexity as for classiéalsparse decomposition problems (Tibshirani,
1996; Chen et al., 1998). Concretely, givenrafdimensional signak along with a dictionary
D = [d%,...,dP] € R™P composed op atoms, the optimization problem at the core of our paper
can be written as

1 .
min = ||x — Da||3 +AQ(a), with A > 0.
ackp 2

1. Atree is defined as a connected graph that contains no cycle (sgedilall, 1993).
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In this formulation, the sparsity-inducing nofhencodes a hierarchical structure among the atoms
of D, where this structure is assumed to be known beforehand. The pre@semefhierarchical
structureand the definition of2 will be made more formal in the next sections. A particular instance
of this problem—known as thproximal problem—is central to our analysis and concentrates on
the case where the dictionabyis orthogonal.

In addition to a speed benchmark that evaluates the performance ofopasped approach in
comparison with other convex optimization techniques, two types of applicaimhgxperiments
are considered. First, we consider settings where the dictionary is fixdedigen a priori, corre-
sponding for instance to a basis of wavelets for the denoising of naturgesn&econd, we show
how one can take advantage of this hierarchical sparse coding in tkextohdictionary learn-
ing (Olshausen and Field, 1997; Aharon et al., 2006; Mairal et al.,@&0%here the dictionary is
learned to adapt to the predefined tree structure. This extension of digtitgarning is notably
shown to share interesting connections with hierarchical probabilistic topielsio

To summarize, the contributions of this paper are threefold:

» We show that the proximal operator for a tree-structured sparséareggion can be com-
puted exactly in a finite number of operations using a dual approach.gpuwach is equiva-
lent to computing a particular sequence of elementary proximal operatorbaa a complex-
ity linear, or close to linear, in the number of variables. Accelerated gradiethods (e.g.,
Nesterov, 2007; Beck and Teboulle, 2009; Combettes and Pesque},c2ithen be applied
to solve large-scale tree-structured sparse decomposition problemsatteeomputational
cost as traditional ones using thenorm.

» We propose to use this regularization scheme to learn dictionaries emhbrddede, which,
to the best of our knowledge, has not been done before in the cofitxtictured sparsity.

* Our method establishes a bridge between hierarchical dictionary leaanthdpierarchical
topic models (Blei et al., 2010), which builds upon the interpretation of topicetsods
multinomial PCA (Buntine, 2002), and can learn similar hierarchies of topid¢ss point
is discussed in Sections 5.5 and 6.

Note that this paper extends a shorter version published in the proceedfinige international
conference of machine learning (Jenatton et al., 2010).

1.1 Notation

Vectors are denoted by bold lower case letters and matrices by uppamnessaNe define fagq > 1
the /g-norm of a vectox in R™ as||x||q £ (3™, x99, wherex; denotes thé-th coordinate ok,

.....

nonzero elements in a vectdri{x|jo = #{i s.t. xj # 0} = limg_o+ (324 |%i|9). We consider the

Frobenius norm of a matriX in R™": ||X||g £ (y/™, 57_1X3)%2, whereXi; denotes the entry

of X at rowi and columnj. Finally, for a scalay, we denotdy) . £ max(y,0).
The rest of this paper is organized as follows: Section 2 presents reVarédand the prob-
lem we consider. Section 3 is devoted to the algorithm we propose, andrsédtitroduces the

2. Note that it would be more proper to Wrina\\g instead of||x||o to be consistent with the traditional notatifxy|q.
However, for the sake of simplicity, we will keep this notation unchangedanébt of the paper.
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dictionary learning framework and shows how it can be used with treetstad norms. Section 5
presents several experiments demonstrating the effectiveness gbmoaeh and Section 6 con-
cludes the paper.

2. Problem Statement and Related Work

Let us consider an input signal of dimensiontypically an image described by s pixels, which

we represent by a vectarin R™. In traditional sparse coding, we seek to approximate this signal
by a sparse linear combination of atoms, or dictionary elements, represenécoly the columns of

a matrixD £ [di,...,dP] in R™P, This can equivalently be expressedxas Da for some sparse
vectora in RP, that is, such that the number of nonzero coefficigltto is small compared t@.

The vectom is referred to as the code, or decomposition, of the signal

Figure 1: Example of a treg whenp = 6. With the rule we consider for the nonzero patterns, if
we haveas # 0, we must also havey # 0 for k in ancestor&) = {1, 3,5}.

In the rest of the paper, we focus on specific sets of nonzero deetie—or simply, nonzero
patterns—for the decomposition vectr In particular, we assume that we are given a%rée
whosep nodes are indexed hiyin {1,..., p}. We want the nonzero patternsoofo form aconnected
and rooted subtreef 7; in other words, if ancestof§) C {1,...,p} denotes the set of indices
corresponding to the ancestbref the nodej in 7 (see Figure 1), the vector obeys the following
rule

a; # 0= [ak # 0 for allk in ancestorgj) |. 1)

Informally, we want to exploit the structure @f in the following sense: the decomposition of any
signalx can involve a dictionary elemedt only if the ancestors af’ in the tree7 are themselves
part of the decomposition

We now review previous work that has considered the sparse apptiinpaoblem with tree-
structured constraints (1). Similarly to traditional sparse coding, therbamsieally two lines of
research, that either (A) deal with nonconvex and combinatorial fotinokthat are in general
computationally intractable and addressed with greedy algorithms, or (Beobtate on convex
relaxations solved with convex programming methods.

3. Our analysis straightforwardly extends to the case of a forest &, ti@esimplicity, we consider a single trée
4. We consider that the set of ancestors of a node also contains thésetle
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2.1 Nonconvex Approaches

For a given sparsity level> 0 (number of nonzero coefficients), the following nonconvex problem

Or(QJ[Rr}) %HX—DGH% such that condition (1) is respected (2)
laflo<s
has been tackled by Baraniuk (1999); Baraniuk et al. (2002) in theexbaf wavelet approxima-
tions with a greedy procedure. A penalized version of problem (2) é&tidsA ||a||o to the objec-
tive function in place of the constraitjitr||o < s) has been considered by Donoho (1997), while
studying the more general problem of best approximation from dyadiitipas (see Section 6 in
Donoho, 1997). Interestingly, the algorithm we introduce in Section Zshanceptual links with
the dynamic-programming approach of Donoho (1997), which was alsw lng Baraniuk et al.
(2010), in the sense that the same order of traversal of the tree is ubsathiprocedures. We
investigate more thoroughly the relations between our algorithm and thisaatpiro Appendix A.
Problem (2) has been further studied for structured compressissgdiBaraniuk et al., 2010),
with a greedy algorithm that builds upon Needell and Tropp (2009). Finldliang et al. (2009)
have proposed a formulation related to (2), with a nonconvex penalty lmsean information-
theoretic criterion.

2.2 Convex Approach

We now turn to a convex reformulation of the constraint (1), which is theisgapoint for the
convex optimization tools we develop in Section 3.

2.2.1 HERARCHICAL SPARSITY-INDUCING NORMS

Condition (1) can be equivalently expressed by its contrapositive, thdiig to an intuitive way

of penalizing the vectono to obtain tree-structured nonzero patterns. More precisely, defining
descendantg) C {1,..., p} analogously to ancestdys for j in {1,..., p}, condition (1) amounts

to saying thaif a dictionary element is not used in the decomposition, its descendants fire¢he
should not be used eithefFormally, this can be formulated as:

a; =0= [ax =0 for allkin descendantg) |. (3)

From now on, we denote by the set defined by 2 {descendants); j € {1,...,p}}, and refer to
each membeg of G as agroup(Figure 2). To obtain a decomposition with the desired property (3),
one can naturally penalize the number of grogps G that are “involved” in the decomposition
of X, that is, that record at least one nonzero coefficietot: of

1 ifthere existg € g such thatrj # 0,
0 otherwise

S &, with 39 = { (4)

9eG

While this intuitive penalization is nonconvex (and not even continuous)naex proxy has been
introduced by Zhao et al. (2009). It was further considered by Baa88); Kim and Xing (2010);
Schmidt and Murphy (2010) in several different contexts. For acjorer € RP, let us define

Q@) 2 5 wylagl.

9eG
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wherea g is the vector of sizgp whose coordinates are equal to those dor indices in the seg,

and to 0 otherwisé.The notation|.|| stands in practice either for tie- or (-norm, and(wg)ge g
denotes some positive weiglftsAs analyzed by Zhao et al. (2009) and Jenatton et al. (2009),
when penalizing by2, some of the vectoray are set to zero for somg e G.” Therefore, the
components ofx corresponding to some complete subtreeoére set to zero, which exactly
matches condition (3), as illustrated in Figure 2.

G
I
0
]
'
'
'
'

o -
T ——

Figure 2: Left: example of a tree-structured set of grogfglashed contours in red), corresponding

to a tree7 with p = 6 nodes represented by black circles. Right: example of a sparsity pattern
induced by the tree-structured norm correspondingtdhe groups{2,4},{4} and{6} are set to
zero, so that the corresponding nodes (in gray) that form subtfeéEsite removed. The remaining
nonzero variable$1,3,5} form a rooted and connected subtreeZof This sparsity pattern obeys

the following equivalent rules: (i) if a node is selected, the same goedlfits ancestors. (ii) if a
node is not selected, then its descendant are not selected.

Note that although we presented for simplicity this hierarchical norm in theegbaf a single
tree with a single element at each node, it can easily be extended to thef dasests of trees,
and/or trees containing arbitrary numbers of dictionary elements at eden(wih nodes possibly
containing no dictionary element). More broadly, this formulation can be dgtewith the notion
of tree-structuredgroups, which we now present:

Definition 1 (Tree-structured set of groups.)

A set of groupgé {9}geg is said to be tree-structured ifil, ..., p}, if Ugegg={1,...,p} and if
forallg,he G, (gnh+#0) = (g horhC g). For such a set of groups, there exists a (non-unique)
total order relation=< such that:

g=<h= {gCh or gnh=0}.

Given such a tree-structured set of grodpand its associated nor€, we are interested throughout
the paper in the following hierarchical sparse coding problem,

min f(a)+AQ(a), (5)

acRP

5. Note the difference with the notatiary, which is often used in the literature on structured sparsity, whgris a
vector of sizg|.

6. For a complete definition d® for any ¢q-norm, a discussion of the choice qf and a strategy for choosing the
weightswy (see Zhao et al., 2009; Kim and Xing, 2010).

7. It has been further shown by Bach (2010) that the convex ereelbthe nonconvex function of Equation (4) is in
factQ with ||.|| being thele,-norm.
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whereQ is the tree-structured norm we have previously introduced, the naatinegcalan is a
regularization parameter controlling the sparsity of the solutions of (5)f ansimooth convex loss
function (see Section 3 for more details about the smoothness assumptibndmmithe rest of the
paper, we will mostly use the square Idgs() = 1||x — Da |3, with a dictionaryD in R™P, but the
formulation of Equation (5) extends beyond this context. In particular anecboosef to be the
logistic loss, which is commonly used for classification problems (e.g., see lgaslie 2009).

Before turning to optimization methods for the hierarchical sparse codaiggm, we consider
a particular instance. Theparse group Lasswas recently considered by Sprechmann et al. (2010)
and Friedman et al. (2010) as an extension of the group Lasso of Yigahita (2006). To induce
sparsity both groupwise and within groups, Sprechmann et al. (20t0F@@edman et al. (2010)
add an¢; term to the regularization of the group Lasso, which given a partiiaf {1,...,p} in
disjoint groups yields a regularized problem of the form

1
min =[x — Da||2 + A a Nall;.
0(E]R,)ZH 12+ gg?H gll2+ Aol

Since is a patrtition, the set of groups iA and the singletons form together a tree-structured set
of groups according to definition 1 and the algorithm we will develop is tbeeedpplicable to this
problem.

2.2.2 OPTIMIZATION FOR HIERARCHICAL SPARSITY-INDUCING NORMS

While generic approaches like interior-point methods (Boyd and Varetghb, 2004) and subgra-
dient descent schemes (Bertsekas, 1999) might be used to deal wittmgraeoth nornf, several
dedicated procedures have been proposed.

In Zhao et al. (2009), a boosting-like technique is used, with a path-foipstrategy in the
specific case wherg || is the/.,-norm. Based on the variational equality

P (12

Juls=min 2[5 S+ ®)
zeRP 2 =12 a

Kim and Xing (2010) follow a reweighted least-square scheme that is wafitad to the square
loss function. To the best of our knowledge, a formulation of this type iselrewnot available
when ||.|| is the /»-norm. In addition it requires an appropriate smoothing to become provably
convergent. The same approach is considered by Bach (2008)yitiutdmon an active-set strategy.
Other proposed methods consist of a projected gradient descent withxapate projections onto
the ball{u € RP; Q(u) < A} (Schmidt and Murphy, 2010), and an augmented-Lagrangian based
technique (Sprechmann et al., 2010) for solving a particular case witletwebhierarchies.

While the previously listed first-order approaches are (1) loss-funciegpendent, and/or (2)
not guaranteed to achieve optimal convergence rates, and/or (3pledbayield sparse solutions
without a somewhat arbitrary post-processing step, we propose i t@gvoximal methodsthat
do not suffer from any of these drawbacks.

8. Note that the authors of Chen et al. (2010) have considered priowigthods for general group structugewhen
|||l is thel>-norm; due to a smoothing of the regularization term, the convergetethey obtained is suboptimal.
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3. Optimization

We begin with a brief introduction to proximal methods, necessary to presgntontributions.
From now on, we assume thhts convex and continuously differentiable with Lipschitz-continuous
gradient. It is worth mentioning that there exist various proximal schemes iit¢hature that differ

in their settings (e.g., batch versus stochastic) and/or the assumptions madearinstance, the
material we develop in this paper could also be applied to online/stochastiodoakse(Duchi and
Singer, 2009; Hu et al., 2009; Xiao, 2010) and to possibly nonsmootttiéuns f (e.g., Duchi and
Singer, 2009; Xiao, 2010; Combettes and Pesquet, 2010, and medsrérerein). Finally, most of
the technical proofs of this section are presented in Appendix B foatwsig.

3.1 Proximal Operator for the Norm Q

Proximal methods have drawn increasing attention in the signal processingecker et al., 2009;
Wright et al., 2009; Combettes and Pesquet, 2010, and numeroushcefererein) and the ma-
chine learning communities (e.g., Bach et al., 2011, and references dhespecially because of
their convergence rates (optimal for the class of first-order technjignelstheir ability to deal with
large nonsmooth convex problems (e.g., Nesterov, 2007; Beck andeski2009). In a nutshell,
these methods can be seen as a natural extension of gradient-baségutesivhen the objective
function to minimize has a nonsmooth part. Proximal methods are iterative piresedrhe sim-
plest version of this class of methods linearizes at each iteration the furfcioound the current
estimated, and this estimate is updated as the (unique by strong convexity) solutionmbttimal
problem defined as follows:

. N N N L N
min f(&)+ (a—a) 0f (@) +AQ(a) + = ||a —al|3.
aeRP 2

The quadratic term keeps the update in a neighborhood whisrelose to its linear approximation,
andL > 0 is a parameter which is an upper bound on the Lipschitz constdnf ofThis problem
can be equivalently rewritten as:

min }Ha — (G- 1Df(é()) H2+ AQ(O()

acRP 2 L 2 L )
Solvingefficientlyandexactlythis problem is crucial to enjoy the fast convergence rates of proximal
methods. In addition, when the nonsmooth téenis not present, the previous proximal problem

exactly leads to the standard gradient update rule. More generally fine treeproximal operator
Definition 2 (Proximal Operator)

The proximal operator associated with our regularization tevé, which we denote by Prgy, is
the function that maps a vectare RP to the unique solution of

1 5
min 2 lu—v|3+A0(v) )

This operator was initially introduced by Moreau (1962) to generalize tbegion operator onto
a convex set. What makes proximal methods appealing for solving sparemgosition problems
is that this operator can be often computed in closed-form. For instance,
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* When Q is the ¢1-norm—that is,Q(u) = ||ul|1, the proximal operator is the well-known
elementwise soft-thresholding operator,

Vie (Lo} ujessignu)(u —A), = 1" 1] <A
JEhePr A T 7 ) sign(uj)(Juj| =) otherwise

* WhenQ is a group-Lasso penalty with-norms—that isQ(u) = F 45 [lugll2, with G being
a partition of{1,..., p}, the proximal problem iseparablein every group, and the solution
is a generalization of the soft-thresholding operator to groups of vasiable

0 if [ugllz2 <A
Vge G ug—Ug—TT,aalUg] = § [uglo—2

([ujgll2

ug otherwise

whererll | ,<x denotes the orthogonal projection onto the ball of&x@orm of radiush.

« WhenQ is a group-Lasso penalty with,-norms—that isQ(u) = ¥ 4c 5 [|Ug||«, the solution
is also a group-thresholding operator:

Yge G, Ug— Ug—T <alugl,

whererll |, <) denotes the orthogonal projection onto theball of radiusA, which can be
solved inO(p) operations (Brucker, 1984; Maculan and Galdino de Paula, 1983k tRat
when||ug|l1 <A, we have a group-thresholding effect, with — 1y |, <x[u,g] = O.

More generally, a classical result (see, e.g., Combettes and Pesdi@&ty2@ght et al., 2009) says
that the proximal operator for a norfh|| can be computed as the residual of the projection of a
vector onto a ball of the dual-norm denoted by, and defined for any vecterin RP by ||K||. £
ma>q‘zH§12TK.9 This is a classical duality result for proximal operators leading to the difter
closed forms we have just presented. We have indeed thaf/frex Id — M ,<) and Prox ,, =

Id — Ty ,<a, Where Id stands for the identity operator. Obtaining closed forms is, \esweot
possible anymore as soon as some group averlap, which is always the case in our hierarchical
setting with tree-structured groups.

3.2 A Dual Formulation of the Proximal Problem

We now show that Equation (7) can be solved using a dual approadesasbed in the following
lemma. The result relies on conic duality (Boyd and Vandenberghe, 280djoes not make any
assumption on the choice of the nofim:

Lemma 3 (Dual of the proximal problem)
Letu € RP and let us consider the problem

1 2
max —5[[Ju= 3 €[, uig]
FcrP<lGl 2 gezg 2 lullz

stvge g, [&%. <Awgand&)=0if j ¢ g,

(8)

9. ltis easy to show that the dual norm of tfyenorm is thef>-norm itself. The dual norm of th&, is the/1-norm.
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whereg = (&%)gc4 and E? denotes the j-th coordinate of the vec&drin RP. Then, problems (7)
and (8) are dual to each other and strong duality holds. In addition, theqfgprimal-dual vari-
ables{v,&} is optimal if and only i is a feasible point of the optimization problem (8), and

V=u-— degag and vge g, §9= n\|.|\*§>\wg(V\g+Eg)a 9)
where we denote by |, <aw, the orthogonal projection onto the balk € RP; [|K|[.. < Awy}.

Note that we focus here on specific tree-structured groups, but év@ps lemma is valid regard-
less of the nature o. The rationale of introducing such a dual formulation is to consider an
equivalent problem to (7) that removes the issue of overlapping grape cost of a larger num-
ber of variables. In Equation (7), one is indeed looking for a veetof size p, whereas one is
considering a matrig in RP*/9/ in Equation (8) withy ¢ ; |g| nonzero entries, but with separable
(convex) constraints for each of its columns.

This specific structure makes it possible to use block coordinate ascants€¢Bas, 1999). Such
a procedure is presented in Algorithm 1. It optimizes sequentially Equatjomii8 respect to the
variableg?, while keeping fixed the other variablé% for h=£ g. Itis easy to see from Equation (8)
that such an update of a colungfl, for a groupg in G, amounts to computing the orthogonal
projection of the vectong — zh#gﬁg onto the ball of radiudwy of the dual norni|.||,.

Algorithm 1 Block coordinate ascent in the dual

Inputs:u € RP and set of groups;.
Outputs:(v, &) (primal-dual solutions).
Initialization: & = 0.
while ( maximum number of iterations not reachedo
for ge G do
Eg A I-IH-H*S}“*)Q( [U B Zh;ég Eh] \g)'
end for
end while

V u—zgegig.

3.3 Convergence in One Pass

In general, Algorithm 1 is not guaranteed to solve exactly Equation (7) imita fiumber of itera-
tions. However, whelfj.|| is the/,- or {.,-norm, and provided that the groupsghare appropriately
ordered, we now prove that onbne pas®f Algorithm 1, that is, only one iteration over all groups,
is sufficient to obtain the exact solution of Equation (7). This result cotssitiihe main technical
contribution of the paper and is the key for the efficiency of our promedu

Before stating this result, we need to introduce a lemma showing that, giverestedgroups
g,h such thaty C h C {1,...,p}, if &% is updated beforé&" in Algorithm 1, then the optimality
condition for&? is not perturbed by the update&ff.

Lemma 4 (Projections with nested groups)
Let ||.|| denote either the»- or ¢,-norm, and g and h be two nested groups—that is; ly C
{1,...,p}. Letu be a vector ifRP, and let us consider the successive projections

E9 £ ) <ty (ug) and "= My <, (un—&°),
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with tg,t, > 0. Let us introducer = u — &% — Eh. The following relationships hold

€= «,(vg+E) and & =Ny (vn+E".

The previous lemma establishes the convergence in one pass of Algorithmeldasé where;
only contains two nested groupsC h, provided tha€? is computed beforéh. Let us illustrate
this fact more concretely. After initializing® and " to zero, Algorithm 1 first update®’ with
the formulag® < I}, <xw, (Ug), and then performs the following updat: < My, . <xy, (Un— &%)
(where we have used th&f = E% sinceg C h). We are now in position to apply Lemma 4 which

states that the primal/dual variablpg &9, Eh} satisfy the optimality conditions (9), as described in
Lemma 3. In only one pass over the grodpsh}, we have in fact reached a solution of the dual
formulation presented in Equation (8), and in particular, the solution of tweémpal problem (7).

In the following proposition, this lemma is extended to general tree-strucsetsf groups;:

Proposition 5 (Convergence in one pass)

Suppose that the groups @ are ordered according to the total order relation of Definition 1,
and that the nornj|.|| is either thel,- or /,-norm. Then, after initializing, to 0, a single pass of
Algorithm 1 overg with the order= yields the solution of the proximal problem (7).

Proof The proof largely relies on Lemma 4 and proceeds by induction. By definitigkigo-
rithm 1, the feasibility of, is always guaranteed. We consider the following induction hypothesis

H(h) £ {vg = h, itholds thatt® = M| | cpe, (U~ ST g=nE% g +E9)}.

Since the dual variabldsare initially equal to zero, the summation ogeK h, g # gis equivalent
to a summation ovey' # g. We initialize the induction with the first group i@, that, by definition
of <, does not contain any other group. The first step of Algorithm 1 easiysithat the induction
hypothesisH is satisfied for this first group.

We now assume that (h) is true and consider the next grobfph < K, in order to prove that
H(h') is also satisfied. We have for each grayg@ h,

£9 = M) ney ([U— Ty <nE¥ g +E9) = M) cnay ([U— Tg<nE% +E9)g).

Since&lg, = &% for g C i, we have

U= g€y = U= S gty +E— & = [U— T g=nt¥ +&%y —&°,

and following the update rule for the grobfy

g =1 Il <heay ([U— Sg<ntd ) =1 Il <heay ([U— Sg=n&? + €%y —&9).

At this point, we can apply Lemma 4 for each grogiec h, which proves that the induction hy-
pothesis# () is true. Let us introduce = u — zgegég. We have shown that for adj in G,

g9 = Mg <hey (Vig + &€9). As a result, the paifv, &} satisfies the optimality conditions (9) of prob-
lem (8). Therefore, after one complete pass ayerg, the primal/dual paifv,§} is optimal, and
in particular,v is the solution of problem (7). |
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Using conic duality, we have derived a dual formulation of the proximataipe leading to Algo-
rithm 1 which is generic and works for any notjrj|, as long as one is able to perform projections
onto balls of the dual norri.||.. We have further shown that whdry| is the /- or the/..-norm, a
single pass provides the exact solution when the graipee correctly ordered. We show however
in Appendix C, that, perhaps surprisingly, the conclusions of Propodtim not hold for general
lq-norms, ifq ¢ {1,2,}. Next, we give another interpretation of this resuilt.

3.4 Interpretation in Terms of Composition of Proximal Operators

In Algorithm 1, since all the vector&® are initialized to0, when the group is considered, we
have by inductioru — zhigﬁh =u-— zhjgﬁh. Thus, to maintain at each iteration of the inner loop
V=u-— Zh¢gEh one can instead updateafter updatingg? according tov < v — &9. Moreover,
since&Y is no longer needed in the algorithm, and since only the entriesinflexed byg are
updated, we can combine the two updates ia— vig — M) |, <xw, (Vig), l€ading to a simplified
Algorithm 2 equivalent to Algorithm 1.

Algorithm 2 Practical Computation of the Proximal Operator fgr or /..-norms.

Inputs:u € RP and an ordered tree-structured set of grogps
Outputs:v (primal solution).
Initialization: v = u.
for ge G, following the order<, do
Vig = Vig = M1, <aey (Vig)-
end for

Actually, in light of the classical relationship between proximal operator @mogection (as
discussed in Section 3.1), it is easy to show that each upgatevg— | ||, <aw, (Vig) IS €quivalent
to Vg <= ProX,1.|[Vig. To simplify the notations, we define the proximal operator for a gipirp

G as Prof(u) 2 ProX,.| (Ug) for every vectou in RP.
Thus, Algorithm 2 in fact performs a sequence 6f proximal operators, and we have shown
the following corollary of Proposition 5:

Corollary 6 (Composition of Proximal Operators)
Let g < ... < Om such thatG = {g1,...,0m}. The proximal operator Prgx associated with the
normQ can be written as the composition of elementary operators:

Prox,g = Prox@o. ..o Proxa.

3.5 Efficient Implementation and Complexity

Since Algorithm 2 involvesG| projections on the dual balls (respectively the and the/;-balls
for the £,- and/.,-norms) of vectors ifRP, in a first approximation, its complexity is at matp?),
because each of these projections can be comput&dph operations (Brucker, 1984; Maculan
and Galdino de Paula, 1989). But in fact, the algorithm performs onegpiajefor each groug

involving |g| variables, and the total complexity is theref@(é Ygeg ]g|>. By noticing that ifg

andh are two groups with the same depth in the tree, therh = 0, it is easy to show that the
number of variables involved in all the projections is less than or equibtavhered is the depth
of the tree:
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Algorithm 3 Fast computation of the Proximal operator femorm case.

Require: u € RP (input vector), set of groupg§, (wg)geg (POSitive weights), andp (root of the
tree).

Variables:p = (pg)geg in RI9! (scaling factors)y in RP (output, primal variable).
computeSgNorm (o).

recursiveScaling (90,1).

Return v (primal solution).

Procedure computeSgNorm (g)
1: Compute the squared norm of the groag:« ||Urootg) H% + ¥ hechildrer(g) COmputeSgNorm (h).
2: Compute the scaling factor of the groyg; < (1 —Aoy/\/Mg) . -
3: Return ngpg.
ProcedurerecursiveScaling (gt
1. pg < tpg.

Vroot(g) <~ PgUroot(g)-
: for h € childreng) do

recursiveScaling (h,pg).
end for

ak wn

Lemma 7 (Complexity of Algorithm 2)
Algorithm 2 gives the solution of the primal problem Equation (7) {ip@ operations, where d is
the depth of the tree.

Lemma 7 should not suggest that the complexity is lineay,isinced could depend of as well,
and in the worst case the hierarchy is a chain, yielding p— 1. However, in a balanced tree,
d = O(log(p)). In practice, the structures we have considered experimentally are/ebidtat,
with a depth not exceedirgj= 5, and the complexity is therefore almost linear.

Moreover, in the case of thi-norm, it is actually possible to propose an algorithm with com-
plexity O(p). Indeed, in that case each of the proximal operators Pior scaling operation:
Vg (1—)\u)g/|]v‘gHz)+v‘g. The composition of these operators in Algorithm 1 thus corresponds
to performing sequences of scaling operations. The idea behind Algdithtat the correspond-
ing scaling factors depend only on the norms of the successive resadulésprojections and that
these norms can be computed recursively in one pass through all nddgg)inperations; finally,
computing and applying all scalings to each entry takes then &jfainpoperations.

To formulate the algorithm, two new notations are used: for a ggang;, we denote by rogy)
the indices of the variables that are at the root of the subtree cormisgdng,'® and by childrefg)
the set of groups that are the children of (@gtin the tree. For example, in the tree presented
in Figure 2, root{3,5,6}) = {3}, root({1,2,3,4,5,6}) = {1}, children({3,5,6}) ={{5},{6}}, and
children{1,2,3,4,5,6})={{2,4},{3,5,6} }. Note that all the groups of childrég) are necessarily
included ing. The next lemma is proved in Appendix B.

Lemma 8 (Correctness and complexity of Algorithm 3)
When||.|| is chosen to be th&-norm, Algorithm 3 gives the solution of the primal problem Equa-
tion (7) in O(p) operations.

10. As a reminder, ro@) is not a singleton when several dictionary elements are consideredger n
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So far the dictionarp was fixed to be for example a wavelet basis. In the next section, we apply
the tools we developed for solving efficiently problem (5) to learn a dictipiaadapted to our
hierarchical sparse coding formulation.

4. Application to Dictionary Learning

We start by briefly describing dictionary learning.

4.1 The Dictionary Learning Framework

Let us consider a s& = [x%,...,x"] in R™" of n signals of dimensiom. Dictionary learning is a
matrix factorization problem which aims at representing these signals asdomdinations of the
dictionary elements, that are the columns of a marix [d?,...,dP] in R™P. More precisely, the
dictionaryD is learnedalong with a matrix of decomposition coefficiess= [al,...,a"] in RP*",
so thatx' ~ Da' for every signak'.

While learning simultaneouslp and A, one may want to encode specific prior knowledge
about the problem at hand, such as, for example, the positivity of thengeasition (Lee and
Seung, 1999), or the sparsity &f(Olshausen and Field, 1997; Aharon et al., 2006; Lee et al., 2007;
Mairal et al., 2010a). This leads to penalizing or constraifidgA) and results in the following
formulation:

min = [}Hxi - DaiH2+)\W(ai)] (10)
De@,Aeﬂlnizl 2 2 ’

where4 andD denote two convex sets alédlis a regularization term, usually a norm or a squared
norm, whose effect is controlled by the regularization parandete®. Note thatD is assumed to be
bounded to avoid any degenerate solutions of Problem (10). For iesthiecstandard sparse coding
formulation taked¥ to be the/;-norm, D to be the set of matrices iR™P whose columns have
unit £2-norm, with.2 = RP*" (Olshausen and Field, 1997; Lee et al., 2007; Mairal et al., 2010a).

However, this classical setting treats each dictionary element indepenftentlthe others, and
does not exploit possible relationships between them. To embed the dictioreatyee structure,
we therefore replace thig-norm by our hierarchical norm and d€t= Q in Equation (10).

A question of interest is whether hierarchical priors are more apptepriaupervised settings
or in the matrix-factorization context in which we use it. It is not so common in tpeiwvised
setting to have strong prior information that allows us to organize the fedtueekierarchy. On
the contrary, in the case of dictionary learning, since the atoms are leamedan argue that the
dictionary elements learned witlave tomatch well the hierarchical prior that is imposed by the
regularization. In other words, combining structured regularization wittiotiary learning has
precisely the advantage that the dictionary elementsseiftorganizeo match the prior.

4.2 Learning the Dictionary

Optimization for dictionary learning has already been intensively studiecthéese in this paper a
typical alternating scheme, which optimizes in tandA = [a?, ... a"] while keeping the other
variable fixed (Aharon et al., 2006; Lee et al., 2007; Mairal et al., ap100f course, the convex
optimization tools we develop in this paper do not change the intrinsic norexorature of the

11. Note that although we use this classical scheme for simplicity, it wouddalpossible to use the stochastic approach
proposed by Mairal et al. (2010a).
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dictionary learning problem. However, they solve the underlying conubpr®blems efficiently,
which is crucial to yield good results in practice. In the next section, wertgmod performance
on some applied problems, and we show empirically that our algorithm is stabbtoas not seem
to get trapped in bad local minima. The main difficulty of our problem lies in the opsitioiz of
the vectorsa', i in {1,...,n}, for the dictionaryD kept fixed. Because d®, the corresponding
convex subproblem is nonsmooth and has to be solved for each ofdigmals considered. The
optimization of the dictionar® (for A fixed), which we discuss first, is in general easier.

4.2.1 UPDATING THE DICTIONARY D

We follow the matrix-inversion free procedure of Mairal et al. (2010aypoate the dictionary.
This method consists in iterating block-coordinate descent over the coluninsSpecifically, we
assume that the domain gBthas the form

Q)ué {D e R™P, u||dj\|1+(1—u)deH§ <1, forall je{1,...,p}}, (12)

or Dy = PyNRT*P, with pe [0,1]. The choice for these particular domain sets is motivated
by the experiments of Section 5. For natural image patches, the dictionangrdke are usually
constrained to be in the unit-norm ball (i.e.,D = D), while for topic modeling, the dictionary
elements are distributions of words and therefore belong to the simplext{i-e. ;). The update

of each dictionary element amounts to performing a Euclidean projectionhwhit be computed
efficiently (Mairal et al., 2010a). Concerning the stopping criterion, elledv the strategy from the
same authors and go over the column®ainly a few times, typically 5 times in our experiments.
Although we have not explored locality constraints on the dictionary elemtérdse have been
shown to be particularly relevant to some applications such as patch-bzagel classification (Yu

et al., 2009). Combining tree structure and locality constraints is an interdsturg research.

4.2.2 UPDATING THE VECTORSO!

The procedure for updating the columnsfois based on the results derived in Section 3.3. Further-
more, positivity constraints can be added on the domaif, dfy noticing that for our nornf2 and

any vectoru in RP, adding these constraints when computing the proximal operator is equivale
to solving minere 3/ [u]+ — V||3 +AQ(v). This equivalence is proved in Appendix B.6. We will
indeed use positive decompositions to model text corpora in Section 5. Ndtbytltonstraining
the decompositiona' to be nonnegative, some entrie$ may be set to zero in addition to those
already zeroed out by the norfh As a result, the sparsity patterns obtained in this way might not
satisfy the tree-structured condition (1) anymore.

5. Experiments

We next turn to the experimental validation of our hierarchical sparsegod

5.1 Implementation Details

In Section 3.3, we have shown that the proximal operator associafedan be computed exactly
and efficiently. The problem is therefore amenable to fast proximal algesithat are well suited to
nonsmooth convex optimization. Specifically, we tried the accelerated schemé®th Nesterov
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(2007) and Beck and Teboulle (2009), and finally opted for the lattee sfoca comparable level of
precision, fewer calls of the proximal operator are required. The Ipasidmal scheme presented
in Section 3.1 is formalized by Beck and Teboulle (2009) as an algorithm d&iB4 the same
authors propose moreover an accelerated variant, FISTA, which is argomolzedure, except that
the operator is not directly applied on the current estimate, but on an ayskguence of points
that are linear combinations of past estimates. This latter algorithm has an optinvairgence
rate in the class of first-order techniques, and also allows for warnrt®stdich is crucial in the
alternating scheme of dictionary learnit.

Finally, we monitor the convergence of the algorithm by checking the reldéeecase in the
cost functiont® Unless otherwise specified, all the algorithms used in the following experiments
are implemented irf€/C++, with a Matlab interface. Our implementation is freely available at
http:/lwww.di.ens.friwillow/SPAMS/

5.2 Speed Benchmark

To begin with, we conduct speed comparisons between our approacihen convex programming
methods, in the setting whefg is chosen to be a linear combinationfnorms. The algorithms
that take part in the following benchmark are:

 Proximal methods, with ISTA and the accelerated FISTA methods (BecKetmalille, 2009).

« A reweighted-least-square scheme (Bg-as described by Jenatton et al. (2009); Kim and Xing
(2010). This approach is adapted to the square loss, since closeddiates can be uséd.

» Subgradient descent, whose step size is taken to be equal eithkte b) or a/(vk+b) (re-
spectively referred to as SG and $f, wherek is the iteration number, an@, b) are the best
parameters selected on the logarithmic gegh) € {1074,...,10°} x {1072,...,10°}.

« A commercial softwareMosek, available atttp://www.mosek.com/ ) for second-order cone
programming (SOCP).

Moreover, the experiments we carry out cover various settings, withblyothfferent sparsity

regimes, that is, low, medium and high, respectively corresponding tot &84 10% and 1%

of the total number of dictionary elements. Eventually, all reported resdtstz#ained on a single
core of a 3.07Ghz CPU with 8GB of memory.

5.2.1 HERARCHICAL DICTIONARY OF NATURAL IMAGE PATCHES

In this first benchmark, we consider a least-squares regressioleproggularized by that arises
in the context of denoising of natural image patches, as further exjroSedttion 5.4. In particular,
based on a hierarchical dictionary, we seek to reconstruct noisyL@patches. The dictionary we
use is represented on Figure 7. Although the problem involves a small nwhisariables, that
is, p= 151 dictionary elements, it has to be solved repeatedly for tens of thasépdtches, at
moderate precision. It is therefore crucial to be able to solve this problécklyg and efficiently.

12. Unless otherwise specified, the initial stepsize in ISTA/FISTA is chasé¢he maximum eigenvalue of the sampling
covariance matrix divided by 100, while the growth factor in the line se@rsht to 15.

13. We are currently investigating algorithms for computing duality gapsdas network flow optimization tools
(Mairal et al., 2010b).

14. The computation of the updates related to the variational formulatiaig@penefits from the hierarchical structure
of G, and can be performed {B(p) operations.

15. “The best step size” is understood as being the step size leading tndHest cost function after 500 iterations.
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Figure 3: Benchmark for solving a least-squares regression proklgutarized by the hierarchical
normQ. The experiment is small scalm,= 256, p= 151, and shows the performances of six opti-
mization methods (see main text for details) for three levels of regularizatlmcirves represent
the relative value of the objective to the optimal value as a function of the catiqgnal time in
second on a log /log, scale. All reported results are obtained by averaging 5 runs.

We can draw several conclusions from the results of the simulationgeegarFigure 3. First,
we observe that in most cases, the accelerated proximal scheme pebettersthan the other
approaches. In addition, unlike FISTA, ISTA seems to suffer in n@rsgpscenarios. In the least
sparse setting, the reweightéglscheme is the only method that competes with FISTA. It is however
not able to yield truly sparse solutions, and would therefore need acpudrsssomewhat arbitrary)
thresholding operation. As expected, the generic techniques sucha@sdS&8CP do not compete
with dedicated algorithms.
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Figure 4: Benchmark for solving a large-scale multi-class classificatidsigmofor four optimiza-
tion methods (see details about the data sets and the methods in the main texé) .leVéls of
regularization are considered. The curves represent the relativeafthe objective to the optimal
value as a function of the computational time in second on gldgg, o scale. In the highly regu-
larized setting, tuning the step-size for the subgradient turned out toflmailtjfwhich explains the
behavior of SG in the first iterations.
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5.2.2 MULTI-CLASS CLASSIFICATION OF CANCER DIAGNOSIS

The second benchmark explores a different supervised learninggsettirere f is no longer the
square loss function. The goal is to demonstrate that our optimization tod{siapgrious scenar-
ios, beyond traditional sparse approximation problems. To this end, v&édenra gene expression
data se¥ in the context of cancer diagnosis. More precisely, we focus on a muts-classifica-
tion problem where the numbar of samples to be classified is small compared to the numioér
gene expressions that characterize these samples. Each atom tkepauds to a gene expression
across then samples, whose class labels are recorded in the veatdR™.

The data set contaima = 308 samplesp = 30017 variables and 26 classes. In addition, the
data exhibit highly-correlated dictionary elements. Inspired by Kim and X204.0), we build the
tree-structured set of grougp using Ward’s hierarchical clustering (Johnson, 1967) on the gene
expressions. The norf built in this way aims at capturing the hierarchical structure of gene
expression networks (Kim and Xing, 2010).

Instead of the square loss function, we consider the multinomial logistic lossida that is
better suited to deal with multi-class classification problems (see, e.g., Hastie 2009). As
a direct consequence, algorithms whose applicability crucially depentiseochoice of the loss
function f are removed from the benchmark. This is the case with reweightedhemes that do
not have closed-form updates anymore. Importantly, the choice of the omithlogistic loss
function leads to an optimization problem over a matrix with dimensjotisnes the number of
classes (i.e., a total of 300k726 ~ 780000 variables). Also, due to scalability issues, generic
interior point solvers could not be considered here.

The results in Figure 4 highlight that the accelerated proximal schemerpsrfoverall better
that the two other methods. Again, it is important to note that both proximal algwijteld sparse
solutions, which is not the case for SG.

5.3 Denoising with Tree-Structured Wavelets

We demonstrate in this section how a tree-structured sparse regularizatiomgrove classical
wavelet representation, and how our method can be used to efficientiytheleorresponding large-
scale optimization problems. We consider two wavelet orthonormal basasadd Daubechies3
(see Mallat, 1999), and choose a classical quad-tree structure ovetffieients, which has notably
proven to be useful for image compression problems (Baraniuk, 1994%. experiment follows
the approach of Zhao et al. (2009) who used the same tree-strucageldnization in the case
of small one-dimensional signals, and the approach of Baraniuk etGl0Y2and Huang et al.
(2009) images where images were reconstructed from compressédgsereasurements with a
hierarchical nonconvex penalty.

We compare the performance for image denoising of both nonconvexcemwdxcapproaches.
Specifically, we consider the following formulation

1 1
min > ||x — Dal[3+Ay(a) = min > D" x - al[3+ Ay(a),
acRkm 2 aeRm 2

whereD is one of the orthonormal wavelet basis mentioned aboigthe input noisy imageDa

is the estimate of the denoised image, gnid a sparsity-inducing regularization. Note that in this
casem= p. We first consider classical settings whdrés either the/;-norm— this leads to the

16. The data set we useld Tumors which is freely available dtttp://www.gems-system.org/
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wavelet soft-thresholding method of Donoho and Johnstone (1995Je65-pseudo-norm, whose
solution can be obtained by hard-thresholding (see Mallat, 1999). Thewrpnsider the convex
tree-structured regularizatidd defined as a sum dg-norms (--norms), which we denote ky,,
(respectivelyQ,_). Since the basis is here orthonormal, solving the corresponding desdimpo
problems amounts to computing a single instance of the proximal operator. ésils wheny

is Q,, we use Algorithm 3 and fa®,,,, Algorithm 2 is applied. Finally, we consider the nonconvex
tree-structured regularization used by Baraniuk et al. (2010) dehatedby/5¢, which we have
presented in Equation (4); the implementation detail€§8% can be found in Appendix A.

Haar
o || ¢ [0.0017 | ¢3e¢[0.009§ | ¢, [0.001§ | Q, [0.0125 | Q,, [0.022]]
5 34.48 34.78 35.52 35.89 35.79
10 29.63 30.24 30.74 31.40 31.23
PSNR | 25 24.44 25.27 25.30 26.41 26.14
50 21.53 22.37 20.42 23.41 23.05
100 19.27 20.09 19.43 20.97 20.58
5 - .30+.23 1.04+ .31 1.414+ .45 1.31+ .41
10 - .60+ .24 1.10+.22 | 1.76+.26 159+ .22
IPSNR| 25 - .834+.13 .864+.35 1.96+.22 1.69+.21
50 - .84+ .18 464+ .28 1.87+.20 151+.20
100 - .824-.14 .154.23 1.69+.19 1.30+.19
Daub3
o || 4, [0.0013 | ¢4®€[0.0099 | ¢4 [0.0017 | Q, [0.0129 | Q,, [0.0204
5 34.64 34.95 35.74 36.14 36.00
10 30.03 30.63 31.10 31.79 31.56
PSNR | 25 25.04 25.84 25.76 26.90 26.54
50 22.09 22.90 22.42 23.90 23.41
100 19.56 20.45 19.67 21.40 20.87
5 - 31+.21 1.10+.23 | 1.49+.34 1.36+.31
10 - .60+.16 1.06+.25 | 1.76+.19 153+.17
IPSNR| 25 - .80+.10 .71+.28 1.85+.17 1.50+.18
50 - .81+.15 .33+.24 1.80+.11 1.33+.12
100 - .894+.13 0.114+.24 | 1.824.24 1.30+.17

Table 1: Top part of the tables: Average PSNR measured for the demabib2 standard im-
ages, when the wavelets are Haar or Daubechies3 wavelets (see MR, fbr two nonconvex
approachestf and /3¢9 and three different convex regularizations—that is, 4eorm, the tree-
structured sum of,-norms €;,), and the tree-structured sum &f-norms ;). Best results for
each level of noise and each wavelet type are in bold. Bottom part oflilestaAverage improve-
ment in PSNR with respect to tifg nonconvex method (the standard deviations are computed over
the 12 images). CPU times (in second) averaged over all images and radizatiens are reported

in brackets next to the names of the methods they correspond to.
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Compared to Zhao et al. (2009), the novelty of our approach is essemtidly able to solve
efficiently and exactly large-scale instances of this problem. We use 1dagdhstandard test im-
ages}’ and generate noisy versions of them corrupted by a white Gaussiaroheeganceo. For
each image, we test several values\cf Ziom, with i taken in a specific rangé. We then
keep the paramet@rgiving the best reconstruction error. The faairlogmis a classical heuristic
for choosing a reasonable regularization parameter (see Mallat, 19@9provide reconstruction
results in terms of PSNR in Table!d. We report in this table the results whéhis chosen to
be a sum of>-norms orl,-norms with weightsyg all equal to one. Each experiment was run 5
times with different noise realizations. In every setting, we observe thatdbestructured norm
significantly outperforms th&-norm and the nonconvex approaches. We also present a visual com-
parison on two images on Figure 5, showing that the tree-structured malues visual artefacts
(these artefacts are better seen by zooming on a computer screen) alidéetwransforms in our
experiments are computed with the matlabPyrTools soft#fare.

(@)Lena, 0 =25,/1 (b) Lena, 0 = 25,Qy, (c)Barb., 0 =50, (1 (d) Barb., 0 = 50,Qy,

Figure 5: Visual comparison between the wavelet shrinkage model withy therm and the tree-
structured model, on cropped versions of the imag®a andBarb.. Haar wavelets are used.

This experiment does of course not provide state-of-the-art resultsnfige denoising (see
Mairal et al., 2009b, and references therein), but shows that theatmestured regularization sig-
nificantly improves the reconstruction quality for wavelets. In this experintigntconvex set-
ting Q,, andQ,,, also outperforms the nonconvex 0(“3?921 We also note that the speed of our
approach makes it scalable to real-time applications. Solving the proximdkprdbr an image
with m= 512x 512 = 262144 pixels takes approximately0Q3 seconds on a single core of a
3.07GHz CPU ifQ is a sum off,-norms, and @2 seconds when it is a sum &f-norms. By con-
trast, unstructured approaches have a speed-up factor of aBawitfirespect to the tree-structured
methods.

17. These images are used in classical image denoising benchmeelglaBal et al. (2009b).

18. For the convex formulationsranges ir{ —15,—14,...,15}, while in the nonconvex caseanges in{ —24,...,48}.

19. Denoting by MSE the mean-squared-error for images whose itesrese between 0 and 255, the PSNR is defined
as PSNR= 10log; (255 /MSE) and is measured in dB. A gain of 1dB reduces the MSE by approximatéty 20

20. Software available attp://www.cns.nyu.edu/ ~ eero/steerpyr/

21. It is worth mentioning that comparing convex and nonconvex aubes for sparse regularization is a bit difficult.
This conclusion holds for the classical formulation we have used, biittmaj hold in other settings such as Coifman
and Donoho (1995).
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5.4 Dictionaries of Natural Image Patches

This experiment studies whether a hierarchical structure can help dicésriar denoising natural
image patches, and in which noise regime the potential gain is significant. We edooastructing

corruptedpatches from a test set, after having learned dictionaries on a trainiofyset-corrupted

patches. Though not typical in machine learning, this setting is reasonahkedontext of images,
where lots of non-corrupted patches are easily avaif#ble.

noise 50 % 60 % 70 % 80 % 90 %
flat |19.3+0.1{26.8+0.1/36.7+0.1/50.6+0.0{721+0.0
tree |186+0.1{257+0.1/35.0+0.1/48.0+0.0/{659£0.3

Table 2: Quantitative results of the reconstruction task on natural imagegsateirst row: percent-
age of missing pixels. Second and third rows: mean square error multiplie@dyyespectively for
classical sparse coding, and tree-structured sparse coding.

80

70

60

50

16 21 31 41 61 81 121 161 181 241 301 321 401

Figure 6: Mean square error multiplied by 100 obtained with 13 structuresewitin bars, sorted
by number of dictionary elements from 16 to 401. Red plain bars repreentsee-structured
dictionaries. White bars correspond to the flat dictionary model containm@dme number of
dictionary as the tree-structured one. For readability purposeg;ahes of the graph starts at 50.

We extracted 100000 patches of sime- 8 x 8 pixels from the Berkeley segmentation database
of natural images (Martin et al., 2001), which contains a high variability @fies. We then split this
data set into a training set;,, a validation seKq, and a test seXye, respectively of size 50000,
25000, and 25000 patches. All the patches are centered and normallzage unit/,-norm.

For the first experiment, the dictionafy is learned onXy; using the formulation of Equa-
tion (10), withp = O for Dy, as defined in Equation (11). The validation and test sets are corrupted
by removing a certain percentage of pixels, the task being to reconsteutigking pixels from the
known pixels. We thus introduce for each elemenf the validation/test set, a vectdyequal tox
for the known pixel values and 0 otherwise. Similarly, we defines the matrix equal tB, except
for the rows corresponding to missing pixel values, which are set to @eBgmposing on D, we
obtain a sparse code and the estimate of the reconstructed patch is defin€badNote that this
procedure assumes that we know which pixel is missing and which is netéoy elemenxk.

The parameters of the experiment are the regularization parametesed during the training
step, the regularization paramelgg used during the validation/test step, and the structure of the

22. Note that we study the ability of the model to reconstruct independeclgs, and additional work is required to
apply our framework to a full image processing task, where patchedlyoverlap (Elad and Aharon, 2006; Mairal
et al., 2009b).
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Figure 7: Learned dictionary with a tree structure of depth 5. The roibteatree is in the middle of
the figure. The branching factors gue= 10, p; = 2, ps = 2, ps = 2. The dictionary is learned on
50,000 patches of size 1616 pixels.

tree. For every reported result, these parameters were selected by tlagiones offering the
best performance on thelidation set, before reporting any result from ttestset. The values
for the regularization parametekg, \ie Were selected on a logarithmic scqe10,27°,... 2?2},
and then further refined on a finer logarithmic scale with multiplicative increnwfr2s/4. For
simplicity, we chose arbitrarily to use thlg-norm in the structured nor®, with all the weights
equal to one. We tested 21 balanced tree structures of depth 3 and 4,ifiétbrd branching
factors p, p2,..., Pd—1, Whered is the depth of the tree angl, k € {1,...,d — 1} is the number
of children for the nodes at depkh The branching factors tested for the trees of depth 3 where
p1 € {5,10,20,40,60,80,100}, p2 € {2,3}, and for trees of depth 4 € {5,10,20,40}, p; € {2,3}
andps = 2, giving 21 possible structures associated with dictionaries with at mostidfents. For
each tree structure, we evaluated the performance obtained with thértretergd dictionary along
with a non-structured dictionary containing the same number of elementse €kpsriments were
carried out four times, each time with a different initialization, and with a diffen®@ise realization.

Quantitative results are reported in Table 2. For all fractions of missindspeomsidered, the
tree-structured dictionary outperforms the “unstructured one”, anahtise significant improvement
is obtained in the noisiest setting. Note that having more dictionary elementstiswide when
using the tree structure. To study the influence of the chosen structenepart in Figure 6 the
results obtained with the 13 tested structures of depth 3, along with thoseaabtéth unstructured
dictionaries containing the same number of elements, when 90% of the pixeisissiag. For
each dictionary size, the tree-structured dictionary significantly outpesfthe unstructured one.
An example of a learned tree-structured dictionary is presented on Fgubdectionary elements
naturally organize in groups of patches, often with low frequencies thearoot of the tree, and
high frequencies near the leaves.
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5.5 Text Documents

This last experimental section shows that our approach can also bedajoptiedel text corpora.
The goal of probabilistic topic models is to find a low-dimensional representafia collection
of documents, where the representation should provide a semantic tieacoipthe collection.
Approaching the problem in a parametric Bayesian framework, latent Ritiellocation (LDA)
Blei et al. (2003) model documents, represented as vectors of wards;@s a mixture of a prede-
fined number ofatent topicsthat are distributions over a fixed vocabulary. LDA is fundamentally
a matrix factorization problem: Buntine (2002) shows that LDA can be intégdras a Dirichlet-
multinomial counterpart of factor analysis. The number of topics is usuallyl sorapared to the
size of the vocabulary (e.g., 100 against 10000), so that the topic picmof each document
provide a compact representation of the corpus. For instance, thedeatares can be used to feed
a classifier in a subsequent classification task. We similarly use our digtim@aning approach to
find low-dimensional representations of text corpora.

Suppose that the signas= [x*,...,x"] in R™" are each théag-of-wordrepresentation of
each ofn documents over a vocabulary of words, thek-th component o' standing for the
frequency of thek-th word in the documenit If we further assume that the entries@fand A
are nonnegative, and that the dictionary elemehtsave unit/;-norm, the decompositiofD,A)
can be interpreted as the parameters of a topic-mixture model. The regiigari@ainduces the
organization of these topics on a tree, so that, if a document involves andepi, then all ancestral
topics in the tree are also present in the topic decomposition. Since the hieimhared by all
documents, the topics at the top of the tree participate in every decompositibshauld therefore
gather the lexicon which is common to all documents. Conversely, the deegeptbs in the tree,
the more specific they should be. An extension of LDA to model topic hiciesahas proposed
by Blei et al. (2010), who introduced a non-parametric Bayesian prer trees of topics and
modelled documents as convex combinations of topics selected along a pathiardrehy. We
plan to compare our approach with this model in future work.

5.5.1 MISUALIZATION OF NIPS FROCEEDINGS

We gqualitatively illustrate our approach on the NIPS proceedings fror@ #88ugh 1999 (Griffiths
and Steyvers, 2004). After removing words appearing fewer than 18 timedata set is composed
of 1714 articles, with a vocabulary of 8274 words. As explained abeeeonsiderD;” and takeZ

to beRﬁX”. Figure 8 displays an example of a learned dictionary with 13 topics, obthinading
the /»-norm inQ and selecting manually=2-1°. As expected and similarly to Blei et al. (2010),
we capture the stopwords at the root of the tree, and topics reflectingffiérent subdomains of
the conference such as neurosciences, optimization or learning theory.

5.5.2 RPOSTING CLASSIFICATION

We now consider a binary classification taskngiostings from the 20 Newsgroups data%etVe
learn to discriminate between the postings from the two newsgidtiptheismandtalk.religion.mis¢
following the setting of Lacoste-Julien et al. (2008) and Zhu et al. (208&gr removing words
appearing fewer than 10 times and standard stopwords, these postings fdata set of 1425
documents over a vocabulary of 13312 words. We compare differaeingionality reduction tech-

23. Available atittp://people.csail.mit.edu/jrennie/20Newsgroups/
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Figure 8: Example of a topic hierarchy estimated from 1714 NIPS procgegiapers (from 1988
through 1999). Each node corresponds to a topic whose 5 most impaatis are displayed.
Single characters such ad,r are part of the vocabulary and often appear in NIPS papers, and their
place in the hierarchy is semantically relevant to children topics.

100

ElPCA + SVM
B NMF + SVM
[ JLDA +SVM
90| I SpDL + SVM
Il SpHDL + SVM

80

70

Classification Accuracy (%)

60

3 7 15 31 63
Number of Topics

Figure 9: Binary classification of two newsgroups: classification acgufar different dimen-
sionality reduction techniques coupled with a linear SVM classifier. The draaisthe errors are

respectively the mean and the standard deviation, based on 10 rantiksnofsipe data set. Best
seen in color.

nigues that we use to feed a linear SVM classifier, that is, we consideD4) With the code from
Blei et al. (2003), (ii) principal component analysis (PCA), (iii) nonaildge matrix factorization
(NMF), (iv) standard sparse dictionary learning (denoted by Spd)(&) our sparse hierarchical
approach (denoted by SpHDL). Both SpDL and SpHDL are optimized @fetandﬂl:RﬂX”,
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with the weightswg equal to 1. We proceed as follows: given a random split into a training/éést
of 1000/425 postings, and given a number of topéalso the number of components for PCA,
NMF, SpDL and SpHDL), we train an SVM classifier based on the low-dinoeas representa-
tion of the postings. This is performed on a training set of 1000 postingsteathe parameters,
Ae{2726, ... 275} and/orCqyme {47 3,...,4} are selected by 5-fold cross-validation. We report in
Figure 9 the average classification scores on the test set of 425 pobtisgsl on 10 random splits,
for different number of topics. Unlike the experiment on image patchespwsider only complete
binary trees with depths ifil,...,5}. The results from Figure 9 show that SpDL and SpHDL per-
form better than the other dimensionality reduction techniques on this taskb#@setine, the SVM
classifier applied directly to the raw data (the 13312 words) obtains a e€@@9+1.1, which

is better than all the tested methods, but without dimensionality reduction (aslalreported by
Blei et al., 2003). Moreover, the error bars indicate that, though muesp SpDL and SpHDL
do not seem to suffer much from instability issues. Even if SpDL and Sppi&torm similarly,
SpHDL has the advantage to provide a more interpretable topic mixture in tehigsarfchy, which
standard unstructured sparse coding does not.

6. Discussion

We have applied hierarchical sparse coding in various settings, withléseded dictionaries, and
based on different types of data, nhamely, natural images and text dotaindeline of research to
pursue is to develop other optimization tools for structured norms with gemaehpping groups.
For instance, Mairal et al. (2010b) have used network flow optimizatidmtgues for that purpose,
and Bach (2010) submodular function optimization. This framework carbalssed in the context
of hierarchical kernel learning (Bach, 2008), where we believedhiamethod can be more efficient
than existing ones.

This work establishes a connection between dictionary learning andipliebia topic models,
which should prove fruitful as the two lines of work have focused oredifit aspects of the same
unsupervised learning problem: Our approach is based on convex aitonitools, and provides
experimentally more stable data representations. Moreover, it can beedsityled with the same
tools to other types of structures corresponding to other norms (Jenatbn2009; Jacob et al.,
2009). It should be noted, however, that, unlike some Bayesian mettiiatisnary learning by
itself does not provide mechanisms for the automatic selection of model pgp@meters (such as
the dictionary size or the topology of the tree). An interesting common line efrel to pursue
could be the supervised design of dictionaries, which has been preeéd in the two frameworks
(Mairal et al., 2009a; Bradley and Bagnell, 2009; Blei and McAuliff@&).
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Appendix A. Links with Tree-Structured Nonconvex Regularization

We present in this section an algorithm introduced by Donoho (1997) in tihhe gemeral context
of approximation from dyadic partitions (see Section 6 in Donoho, 199¥% dlgorithm solves the
following problem L
, 2 g
min > u v||2+Ag€zg6 (v), (12)

where theu in RP is given,A is a regularization parameteg, is a set of tree-structured groups in
the sense of definition 1, and the functid¥sare defined as in Equation (4)—that&8(v) = 1 if
there existsj in g such thatv; # 0, and 0 otherwise. This problem can be viewed as a proximal
operator for the nonconvex regularizatipg. ; 8%(v). As we will show, it can be solved efficiently,
and in fact it can be used to obtain approximate solutions of the noncongblem presented in
Equation (1), or to solve tree-structured wavelet decompositions ashydBaraniuk et al. (2010).

We now briefly show how to derive the dynamic programming approach intextiby Donoho
(1997). Given a groug in G, we use the same notations r@jtand children(g) introduced in
Section 3.5. Itis relatively easy to show that finding a solution of Equatidhgfounts to finding
the supporSC {1,..., p} of its solution and that the problem can be equivalently rewritten

. 1,
min  —Z[juglls+A S 3%(S), 13
i, gluslE 2 5 B 13)

with the abusive notatiod?(S) = 1 if gnS# 0 and 0 otherwise. We now introduce the quantity

. [0 if gNS=0
LIJQ(S) = 1 2 .
—3Urootg) 15 +A + T hechildreng) Wh(S)  otherwise

After a few computations, solving Equation (13) can be shown to be dguoivio minimizing
Yg, (S) whereqp is the root of the tree. Itis then easy to prove that for any gimpg, we have

: . 1 .
min_Yg(S) = min (0, _*Huroot(g)H%"“)"" min _ Yn(S)),
Sc{Lp} ( 2 hechnzdrer(g) S{L.p} )

which leads to the following dynamic programming approach presented inikigod. This al-
gorithm shares several conceptual links with Algorithm 2 and 3. It tesagethe tree in the same
order, has a complexity i®(p), and it can be shown that the whole procedure actually performs a
sequence of thresholding operations on the variable

Appendix B. Proofs

We gather here the proofs of the technical results of the paper.

B.1 Proof of Lemma 3

Proof The proof relies on tools from conic duality (Boyd and Vandenbergb@4® Let us intro-
duce the cone £ {(v,2) € RP*L; ||v|| < z} and its dual counterpagt* = {(&,1) e RP*L; [|€]|, <T}.
These cones induce generalized inequalities for which Lagrangian dalalitgpplies. We refer the
interested readers to Boyd and Vandenberghe (2004) for furtieitsde
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Algorithm 4 Computation of the Proximal Operator for the Nonconvex Approach

Inputs:u € RP, a tree-structured set of grougsandgp (root of the tree).
Outputs:v (primal solution).

Initialization: v < u.

Call recursiveThresholding (90)-

ProcedurerecursiveThresholding (¢)]

[EEY

: N < min (O, —%Huroot(g) 2+A+ ¥ hechildrer(g) fecursiveThresholding (h)) .
if n=0 then
Vg < 0.
end if
: Return n.

a R wb

We can rewrite problem (7) as

. 1 5
min  =|lu—V||5+A , suchthatvg,zy) € C, Vg € G,
VeprzeR‘g‘zH 12 gezg‘*)gzg (Vg %) ge g
by introducing the primal variables= (zg)gecg € RI!, with the additional G| conic constraints

(Vig:Zg) € C, forge gG.

This primal problem is convex and satisfies Slater’s conditions for gkrealaconic inequalities
(i.e., existence of a feasible point in the interior of the domain), which impliessthang duality
holds (Boyd and Vandenberghe, 2004). We now consider the Lgigmad defined as

1 T
v Juving o (3) (3)

g9eg 9€G

with the dual variables = (Tg)geg in R'9/, and& = (£%)g4c4 in RP¥I91, such that for allg € G,
g/ =0if j¢gand(E® 1) € C*.

The dual function is obtained by minimizing out the primal variables. To thiswedake the
derivatives ofL with respect to the primal variablesandz and set them to zero, which leads to

v—u— 5 &=0 and Vge G, Awy—T19=0.
geg

After simplifying the Lagrangian and flipping (without loss of generality) tiga ®f , we obtain the
dual problem in Equation (8). We derive the optimality conditions from theuklarKuhn—Tucker
conditions for generalized conic inequalities (Boyd and Vandenbe2glod). We have thdtv,z,1,&}
are optimal if and only if

Ve G,ZgTlg— ngg =0, (Complementary slackness)
Vge G,(vg:Zg) € C, Vg€ G Awg—T19 =0,
Vge G,(E%Tg) €CT, V-u+3g 8 =0

Combining the complementary slackness with the definition of the dual norm,wee ha

Vg€ G, Zglg = Vig&® < Vg [1E°]-.
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Furthermore, using the fact thag € G, (vg,Z) € C and(&%,14) = (€% Awy) € C*, we obtain the
following chain of inequalities

Vg€ G, Azgog = Vg&? < |Vigll[E9]. < 2[1El. < Azgtay,

for which equality must hold. In particular, we havg&® = |lvg||[|€7]. and zg[|E7]|. = Azyoy.
If vg # 0, thenzg cannot be equal to zero, which implies in turn tlﬁé?H* = Awy. Eventually,
applying Lemma 9 gives the advertised optimality conditions.

Conversely, starting from the optimality conditions of Lemma 3, and making uai axj
Lemma 9, we can derive the Karush—-Kuhn—Tucker conditions displayedea More precisely,
we define for allg € G,

Tg= Ay and 7= Vgl
The only condition that needs to be discussed is the complementary slacknégson. Ifvy =0,
then it is easily satisfied. Otherwise, combining the definitions, 0, and the fact that

V&8 = Vgl [[€%]1. and|[€9][. = Acwy,

we end up with the desired complementary slackness. |

B.2 Optimality Condition for the Projection on the Dual Ball

Lemma 9 (Projection on the dual ball)
Letw € RP and t> 0. We havex = N, «(w) if and only if

if lw|l. <t, K=w,
otherwise, |k|[. =t and k" (W —K) = ||| ||w — K]

Proof When the vectow is already in the ball of .|| with radiust, that is,||w/||. <t, the situation

is simple, since the projectidi |, <;(w) obviously givesw itself. On the other hand, a necessary
and sufficient optimality condition for having= I, <;(w) = arg MmNy, <t |lw —yl|2 is that the
residualw — K lies in the normal cone of the constraint set (Borwein and Lewis, 2008 jshfor
all'y such that|y||. <t, (w—k)(y — k) < 0. The displayed result then follows from the definition
of the dual norm, namelijk||, =max; <1 2" k. [ |

B.3 Proof of Lemma 4

Proof First, notice that the conclusidi! = M. <Aen (Vi +&") simply comes from the definition

of Eh andv, along with the fact tha§® = E% sinceg C h. We now examin&?.
The proof mostly relies on the optimality conditions characterizing the projectitmaoball of
the dual norn| - ||.. Precisely, by Lemma 9, we need to show that either

h . h
&9 =ug— &g, if ug—Egll- <tg,

or
€9 =ty and &9 (ug — & — &%) = ||E9. [Jug — & — &9
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Note that the feasibility o€, that is,||&%||.. < tg, holds by definition ok?.

Let us first assume thag?|. < tg. We necessarily have thaty also lies in the interior of
the ball of ||.||. with radiustg, and it holds tha&® = ug. Sinceg C h, we have that the vector
Uh— &9 = Uh — Ug has only zero entries o As a resultﬁg =0 (or equivalently,{t11 =0) and we
obtain

& =ug=ug— EEV
which is the desired conclusion. From now on, we assume||&f4t =tq. It then remains to show
that
£ (ug— &g — &%) = €% /lug — &g — &

We now distinguish two cases, according to the norm used.

l>-norm: As a consequence of Lemma 9, the optimality condition reduces to the conditions
for equality in the Cauchy-Schwartz inequality, that is, when the vectors $@ame signs and are
linearly dependent. Applying these conditions to individual projections etetltat there exists
Pg; Ph > 0 such that

pg€=ug—&9 and ppE"=up—E9-¢". (14)
Note that the casp = 0 leads toup — &9 — &" = 0, and thereforeig — &% — EB =0 sinceg C h,
which directly yields the result. The cagg= 0 impliesug— &%= 0 and thereforé‘?J =0, yielding
the result as well. Now, we can therefore assme 0 andpg > 0. From the first equality of (14),

we haveg? = €% since(pg+ 1)% = ug. Further using the fact thatC hin the second equality of
(14), we obtain

(Pn+1)EY = ug— &9 = pgt®.

This implies thatig — &% — EB = pg&? - pfjlzg, which eventually leads to

:ph+1
PgPn

The desired conclusion followsd " (ug— &9 — &7) = [|€%||2]|ug — &% — &l |2.

l»-norm: In this case, the optimality corresponds to the conditions for equality iftha
Holder inequality. Specificallyg? = M. <t,(Ug) holds if and only if for aII.E‘-J?J #0,] € g, we have

Uj — & = [|ug — & sign(&y).

Eg

(ug—E9—&Y).

Looking at the same condition f&F, we have tha€" = M1, <t (un — &) holds if and only if for
all E? #0, ] € h, we have

uj — & — &) = [lup— &° — &"| o SignE]).

From those relationships we notably deduce that foy aly such thaE(]-JJ #0, sigr(E?) =sign(uj) =

sign(E?) = sign(u; — &) = sign(u; — &Y - E?). Let j € g such thag] + 0. At this point, using the
equalities we have just presented,

g9 gh _ Jug— &% if "=0
‘uj EJ EJ‘ { Hu\h*Eg*EhHoo |f E?#O
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Since|lug —&%w > [ug— &% — EBHOO (which can be shown using the sign equalities above), and
lup— &9 — &"w > [lug — E9 — &}l (sinceg C h), we have

h h h
lug—&9 = Eglle > uj — &7 — &]| > [Jug — &% — &g,

and therefore for aY # 0, j € g, we haveu; — &) — & = [Jug — €% — £ || Sign(€Y), which yields
the result. [

B.4 Proof of Lemma 8

Proof Notice first that the procedumemputeSqNorm is called exactly once for each grogpn G,
computing a set of scalaf®g)ge s in an order which is compatible with the convergence in one
pass of Algorithm 1—that is, the children of a node are processed ptioe tvode itself. Following
such an order, the update of the grayip the original Algorithm 1 computes the variat§&which
updates implicitly the primal variable as follows

Yo (1 g+
It is now possible to show by induction that for all groggn G, after a call to the procedure
computeSgNorm (g), the auxiliary variableng takes the vaIuﬂv‘gH% wherev has the same value as
during the iteratiorg of Algorithm 1. Therefore, after calling the proceduwmnputeSgNorm (go),
whereg is the root of the tree, the valugg correspond to the successive scaling factors of the
variablevg obtained during the execution of Algorithm 1. After having computed all tiadirsg
factorspg, g € G, the procedureecursiveScaling ensures that each variabjen {1,...,p} is
scaled by the product of all thm,, whereh is an ancestor of the variabje

The complexity of the algorithm is easy to characterize: Each procedmmiteSqgNorm and
recursiveScaling is calledp times, each call for a grougphas a constant number of operations
plus as many operations as the number of childrep. @ince each child can be called at most one
time, the total number of operation of the algorithnOi). [ |

B.5 Sign Conservation by Projection

The next lemma specifies a property for projections whéris further assumed to beég-norm
(with g > 1). We recall that in that casg,||. is simply the/y-norm, withg' = (1— 1/q)~L.

Lemma 10 (Projection on the dual ball and sign property)
Letw € RP and t> 0. Let us assume thdt|| is a /q-norm (with g> 1). Consider also a diagonal
matrix S € RP*P whose diagonal entries are in-1,1}. We havel) | < (W) = S|, < (Sw).

Proof Let us considek = I} | <t(w). Using essentially the same argument as in the proof of
Lemma 9, we have for ayf such thatly|y <t, (W —k)"(y —K) < 0. Noticing thatS'S= 1 and
IVllq = IISYllg, we further obtair{Sw— Sk) '(y’ — Sk) < 0 for all y’ with ||y’||¢ <t. This implies in
turn thatSr |, <¢(w) = Iy, <t (Sw), which is equivalent to the advertised conclusion. [ |
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Based on this lemma, note that we can assume without loss of generality thattbewe want to
project (in this casey) has only nonnegative entries. Indeed, it is sufficient to store bedokthe
signs of that vector, compute the projection of the vector with nonnegativieg, and assign the
stored signs to the result of the projection.

B.6 Non-negativity Constraint for the Proximal Operator

The next lemma shows how we can easily add a non-negativity constratimé gnoximal operator
when the nornQ is absolute(Stewart and Sun, 1990, Definition 1.2), that is, a norm for which the
relationQ(u) < Q(w) holds for any two vectors& andu € RP such thatu;| < |w;| for all j.

Lemma 11 (Non-negativity constraint for the proximal operator)
Letk € RP andA > 0. Consider an absolute nor@. We have

.1l .1l
argmin ?HKL.—ZH%—{—)\Q(Z)} :argmln[EHK—zH%Jﬂ\Q(z)} (15)
ZeRP

zeRP

Proof Let us denote by" andz the unique solutions of the left- and right-hand side of (15)
respectively. Consider the normal conge (zo) of RP at the pointzy (Borwein and Lewis, 2006)
and decompose into its positive and negative parts,= [K]+ + [K]-. We can now write down
the optimality conditions for the two convex problems above (Borwein and L.e@86): Z* is
optimal if and only if there exist& € 0Q(2") such tha&' — [k] . +Aw = 0. Similarly, Z is optimal

if and only if there existgs,u) € 0Q(2) x Age (2) such thatz — K +As+u = 0. We now prove
that[K] = K — [K].+ belongs toA\Re (2*). We proceed by contradiction. Let us assume that there
existsz € R such thatk]"(z—2*) > 0. This implies that there exissc {1,..., p} for which
[kj]- < 0andz; -2/ <0. In other words, we have 9 zj = zj — [Kj| < 2] =2 — [Kj];. With

the assumption made dn and replacing?j+ by z;, we have found a solution to the left-hand side
of (15) with a stricly smaller cost function than the one evaluatezi"athence the contradiction.
Putting the pieces together, we now have

2" — K]+ +Aw = 2" —K+Aw+ [K]- =0, with (w, [K]_) € 0Q(2") x Age (27),

which shows that* is the solution of the right-hand side of (15). |

Appendix C. Counterexample for {q-norms, with q ¢ {1,2, 0},

The result we have proved in Proposition 5 in the specific setting whérs the /2- or {,-norm
does not hold more generally fég-norms, wherg is not in {1,2,}. Letq > 1 satisfying this
condition. We denote by £ (1—g~%)~* the norm parameter dual tp We keep the same notation
as in Lemma 4 and assume from now on thag||y > tg and||un||¢ > tg+th. These two inequalities
guarantee that the vectarg andu, — &% do not lie in the interior of théy-norm balls, of respective
radiusty andt,.

We show in this section that there exists a setting for which the conclusiomaiiaed does not
hold anymore. We first focus on a necessary condition of Lemma 4:
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Lemma 12 (Necessary condition of Lemma 4)
Let ||.|| be alq-norm, with q¢ {1,2,}. If the conclusion of Lemma 4 holds, then the vecE@rs

and«EEll are linearly dependent.

Proof According to our assumptions any andu — &9, we have thati&%|y =tq andHEth/ = th.
In this case, we can apply the second optimality conditions of Lemma 9, whick gtateequality
holds in the/o-¢¢ Holder inequality. As a result, there exigig pn > 0 such that for allj in g:

/ hig h
€919 = pgluj —€9|* and [€]|9 = pp|u; — &) - ]|%

If the conclusion of Lemma 4 holds—that is, we haPe= I <, (ug — EB), notice that it is not
possible to have the following scenarios, as proved below by contradiction:

« If lug—&}llq < tg, then we would havé® = ug— &, which is impossible sinc#g?||q = tq.

o If [ug —E%Hq/ = tg, then we would have for alj in g, ]E?\q' = Pn|U; —E? - ET\q = 0, which
implies thatEB =0 and|jug||qy =tg. This is impossible since we assumpgy||y > tg.

We therefore havéug — EBHq/ > tg and using again the second optimality conditions of Lemma 9,
there existp > 0 such that for allj in g, ]E?\q/ = pluj — Ejg - E?\q. Combined with the previous
relation onEB, we obtain for allj in g, |E?]q' = %|E?|q'. Since we can assume without loss of
generality thau only has nonnegative entries (see Lemma 10), the vetfoamd&" can also be
assumed to have nonnegative entries, hence the desired conclusion. [ |

We need another intuitive property of the projectiop, <; to derive our counterexample:

Lemma 13 (Order-preservation by projection)
Let||.|| be alq-norm, with q¢ {1,} and d £1/(1—q1). Let us consider the vectoksw € RP
such thatk = M | <(w) = arg mirmq,St |y —w/||2, with the radius t satisfyingjw||qy > t. If we

havew; < w; for some(i, j) in {1,..., p}?, then it also holds that; < K;j.

Proof Let us first notice that given the assumptiontonwve have||k|y =t. The Lagrangian.
associated with the convex minimization problem underlying the definitibh gf-; can be written
as

1 / / . .
L(y,a) = é\lyfwy\%a [lyllg —t7], with the Lagrangian parametar> 0.
At optimality, the stationarity condition fat leads to
Vie{l,...,p}, Kj—wj+ad|kt=0.

We can assume without loss of generality tvainly has nonnegative entries (see Lemma 10). Since
the components af andw have the same signs (see Lemma 10), we therefore|kgve k; > 0,
forall jin {1,..., p}. Note thatr cannot be equal to zero becausg|fiy =t < ||w||y.

Let us consider the continuously differentiable functign: k — kK —w-+ ag'k? " defined on
(0,0). Sincepy(0) = —w < 0, limk_,e Pw(K) = 0 andg,y is strictly nondecreasing, there exists a
uniquek;, > 0 such thathy(k;,) = 0. If we now takew < v, we have

dv(Ky) = dw(Ky) +W—v=w—v<0=ody(K]).
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With ¢y being strictly nondecreasing, we thus obtejp< ;. The desired conclusion stems from
the application of the previous result to the stationarity conditiok. of |

Based on the two previous lemmas, we are now in position to present ouecexample:

Proposition 14 (Counterexample)
Let|.|| be alq-norm, with g¢ {1,2,»} and d £1/(1—q). Letus consideG = {g,h}, with
gChC{1,...,p}and|g| > 1. Letu be a vector irRP that has at least two different nonzero entries
in g, that is, there exist§i, j) in g x g such thatO < |uj| < |uj|. Let us consider the successive
projections

€2 )<, (Ug) and &" = My o, (un—&9)

with tg,t > 0 satisfying||ug|ly > tg and ||up||q¢ > tg+th. Then, the conclusion of Lemma 4 does
not hold.

Proof We apply the same rationale as in the proof of Lemma 13. Writing the stationarittioors
for &9 and&", we have for allj in g

& +adE)7 —uj=0, and &+Bd(ENT (U &) =0,

with Lagrangian parametexs,p > 0. We now proceed by contradiction and assume fat
g, <tg(Ug — EE]). According to Lemma 12, there exigts> 0 such that for allj in g, E? = pE?. If

we combine the previous relations b%andﬁh, we obtain for allj in g,

1 e o GO —BpT)
z? = C(E?)q 1 withC I E—
If C < 0, then we have a contradiction, since the entrig€ainduy have the same signs. Similarly,
the caseC = 0 leads a contradiction, since we would hayg= 0 and||ug|/¢ > ty. As a conse-
qguence, it follows tha€ > 0 and for allj in g, E? = exp{ "?ﬁ(g) }, which means that all the entries

of the vectorgg are identical. Using Lemma 13, since there exist§) € g x g such tha; < uj,

we also havé,i8 < &Y, which leads to a contradiction. [ ]
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