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Abstract

A multitask learning framework is developed for discrintiua classification and regression where
multiple large-margin linear classifiers are estimatediftierent prediction problems. These clas-
sifiers operate in a common input space but are coupled agdheyer an unknown shared rep-
resentation. A maximum entropy discrimination (MED) framaek is used to derive the multitask
algorithm which involves only convex optimization problethat are straightforward to implement.
Three multitask scenarios are described. The first multiteesthod produces multiple support vec-
tor machines that learn a shared sparse feature selecéothavinput space. The second multitask
method produces multiple support vector machines than laahared conic kernel combination.
The third multitask method produces a pooled classifier disasadaptively specialized individual
classifiers. Furthermore, extensions to regression, grapfmodel structure estimation and other
sparse methods are discussed. The maximum entropy optimnizaoblems are implemented via
a sequential quadratic programming method which leveregmsnt progress in fast SVM solvers.
Fast monotonic convergence bounds are provided by boutttbnlED sparsifying cost function
with a quadratic function and ensuring only a constant factotime increase above standard inde-
pendent SVM solvers. Results are shown on multitask dassaset favor multitask learning over
single-task or tabula rasa methods.

Keywords: meta-learning, support vector machines, feature seledtarnel selection, maximum
entropy, large margin, Bayesian methods, variational beuwlassification, regression, Lasso,
graphical model structure estimation, quadratic programgirconvex programming

1. Introduction

In applied domains ranging from biology to vision, inter-related data is cotleloyeresearchers

for varying scientific purposes. While there are some concerted eftoeissure that data sets are
collected and labeled in consistent ways, it is often the case that manydesteons data sets over a
given input domain are collected and labeled for different tasks. Moshima learning approaches
take asingle-taskperspective where one large homogeneous repository of uniformlyctasdligd
(independent and identically distributed) samples is given and labeledtanily. A more realistic,
multitask learningapproach is to combine data from multiple smaller sources and synergistically
leverage heterogeneous labeling or annotation efforts.

Consider a group of biologists that are investigating the gene regulattrwags of a simple
species such as yeast. Each biologist may measure the expression fevelferent subset of
genes under particular perturbation conditions of interest. In additiomidhegists may annotate
or label the gene expression data they collect in different ways. Cleadh data set has dependen-
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cies and redundancies when compared to another data set. Single-tasiglé@m each data set
in isolation (in a tabula rasa inductive manner) provides only a narrow vigheghenomenon at
hand. Meanwhile, multitask learning (or inductive transfer) uses the tiolteof data sets simul-
taneously to exploit the related nature of the problems. For example, a multitasikngeapproach
may involve algorithms that discover shared representations that aré asefss several data sets
and tasks. For instance, consider a group of doctors each interegiestioting the presence or
absence of a particular disease from a set of medical tests that carfdrengel on a patient. Since
medical tests may be invasive and expensive, the doctors may wish to fimallasbset of medical
tests (the shared representation) that can be performed on a patieragr@htor all such that each
disease of interest can be accurately predicted.

This article explores maximum entropy discrimination approaches to multitaslepreland is
organized as follows. Section 2 reviews previous work in multitask learsupport vector machine
feature selection and support vector machine kernel selection. Sect&is 8p the general multi-
task problem as learning from data that has been sampled from a seteshtyjee models that are
dependent given data observations yet become independent gikiarea representation. Section 4
migrates the standard Bayesian treatment of the problem into a large-magimdiative setting
using maximum entropy. The log-linear model, the main classifier of interest iartitte, is expli-
cated in Section 5. Section 6 explicates the case where the shared megaiesds a binary feature
selection that removes certain input space features in a consistent rf@radkiinear classification
tasks. Section 7 extends the shared representation such that it egoipeEsic kernel combination
with multiple linear classifiers. Section 8 extends the framework to adaptivepdatiag problems.
Section 9 illustrates the corresponding derivations in a multitask (scalagssign setting. Sec-
tion 10 briefly describes the sequential quadratic programming method whaheésapplied to the
convex programs derived in the various preceding sections. Expedghresults are provided in
Section 11. An extension that permits the approach to perform sparsde gracture estimation is
described in Section 12 and Section 13 then concludes with a brief sumnteryAppendix pro-
vides the derivation of a bound which converts all the necessary optimnzsteps into quadratic
programming with a proof of fast convergence for the resulting sequient@lratic programming
procedure. The Appendix also discusses connections to other sparsssion methods.

2. Previous Work

Since this article involves the combination of the three research areasyiew mrevious work in
multitask learning, support vector machine (SVM) feature selection and EAfhel selection.

Multitask learning has many names and incarnations including learning-to-feata-learning,
lifelong learning, and inductive transfer (Baxter, 1995; Thrun anattPA997; Caruana, 1997,
Thrun, 1995). It goes beyond the usual assumptions in most learningasetinich focus on learn-
ing a model from a single training data set. Instead, multitask learning coupléplenmodels and
their individual training sets and tasks. The hope is that the models cafitfemm®a each other
synergistically if their tasks are inter-related (predicting if a face is maleroafe may help when
predicting if a face belongs to an adult or a child), the distributions of theitigaisets are related
(transformed versions of each other) or the general domains of tredeskimilar (for instance all
tasks involve images of outdoor scenery). Early implementations of multitagkriggsrimarily in-
vestigated neural network or nearest neighbor learners (Thr@s, Baxter, 1995; Caruana, 1997).
In addition to neural approaches, Bayesian methods have been ekfflatemplement multitask
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learning by assuming dependencies between the various models andHaskeg, 1998, 2004).
For instance, tasks can be clustered via a hierarchical mixture of Gasisgiach couples their
parameters. In addition, some theoretical arguments for the benefits of muk#asing have been
made (Baxter, 2000) showing that the average errdvl ddsks can potentially decrease inversely
with M. More recently, improved generalization guaranteegémhindividual task were provided

if the classifiers are related and share a common structure (Ben-Davigchnter, 2003).

Concurrently, kernel methods (Silkopf and Smola, 2001) and large-margin support vector
machines are highly successful in single-task settings and are goadatasdor multitask exten-
sions. While multiclass variants of binary classifiers have been extensixgelgred (Crammer and
Singer, 2001), multitask classification differs in that it often involves disset$ of input data for
each task. Furthermore, the concept of shared representationdratebge practical to implement
for kernel methods and support vector machines. For example, doigjréhe representation by
performing SVM feature selection in a single-task setting may require extens&gyond standard
guadratic programming (Jebara and Jaakkola, 2000; Weston et al., ZBigdi)arly, constraining
a representation to perform SVM kernel selection is also more involved ingéegask setting
and requires second-order cone programming or semidefinite prograr(@mistanini et al., 2001,
Lanckriet et al., 2002).

This article focuses on multitask extensions of both feature selection anel lsedection with
support vector machines. The derivations here will closely follow pres/iwork which migrated
maximum entropy to single-task SVMs (Jaakkola et al., 1999), to sparses®Ié¥lara and Jaakkola,
2000) and to multitask SVMs (Jebara, 2003, 200Zhis maximum entropy framework led to one
of the first convex large margin multitask classification approaches @e2@04). Convexity was
subsequently explored in other multitask frameworks (Argyriou et al., RO0®e present arti-
cle extends the derivations in the maximum entropy discrimination multitask apprpeavides
a straightforward iterative quadratic programming implementation and uses tighteds for im-
proved runtime efficiency. Other related multitask SVM approaches hawéabn promising in-
cluding novel kernel construction techniques to couple tasks (Evgetiak, 2005). These permit
standard SVM learning algorithms to perform multitask learning while the multitagksssre han-
dled primarily by the kernel itself. Even more recently, online algorithms haee proposed (Dekel
et al., 2006) for multitask learning with margin-based predictors and pravideesting worst-case
guarantees. Extensions to handle unlabeled data in multitask settings habeeatspromising
(Ando and Zhang, 2005) and enjoyed theoretical generalization ijeaa An alternative per-
spective to multitask feature and kernel selection can be explored loyripénfy joint covariate or
subspace selection for multiple classification problems (Obozinski et aD)2B0rthermore, fea-
ture selection and kernel selection can be seen as sparsity inducing meiNbile a survey of
sparsity is out of the scope of this article, one of the most popular implemergatiaparsity or
selection in regression settings is theegularized Lasso method and its variants (Tibshirani, 1996;
Tropp, 2006). Therein, sparsity is usually explored in a single-task gedtid is used to remove
unnecessary features in a regression problem (although sparsityabyeglevant in classification
problems Jebara and Jaakkola, 2000). The multitask extension to sust spamation techniques
is known as the Group Lasso and allows sparsity to be explored ovesfigred subsets of variables
(Turlach et al., 2005; Yuan and Lin, 2006). Consistency argumentsamaections between the
Group Lasso and multiple kernel learning were also provided (Bach 2084, Bach, 2008). Spar-

1. This article is the long version of a conference paper (Jebara).2004
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sity and its connection to maximum entropy discrimination and so-called LapladeMaetworks
was also recently explored (Zhu et al., 2008). This article provides anotntact point between
sparsity, large margins, multitask learning and kernel selection. The aetibiss formulate the
general probabilistic setup for such multitask problems and convert traalifBayesian solutions
into a discriminative large-margin setting using the maximum entropy framewadkkdla et al.,
1999).

3. Multitask Learning

The general multitask learning setup is as follows. We are given a collectidata setsD =
{D,...,Du} coveringm=1...M tasks. Each task has its training €&t of t = 1... Ty, input-
output pairs(Xmt,ymt) that are independent and identically distributéd)(samples from an un-
known probability density functior?y, defined jointly over both inputs and outputs. The data for
taskm s thereforeDy = {(Xm1,Ym1),---, (XmTn YmT,) }- The inputs may be in a Euclidean vector
spacexmt € RP or, more generallysm; € X are objects that could be mapped to a Hilbert space via
a kernel. In a regression setting we assume the outputs are sgal&@®R while in a classification
setting we would assume bin&rgutputsym: € {+1}.

There are many ways to tie together multiple inter-related tasks synergistigatlyisisection
and in Section 4, it will be helpful to take a Bayesian perspective to the mulfprasitem although
this perspective is not strictly necessary in subsequent sections. &Bagesian point of view,
several model parameters will be estimated and assumed to be randontegag@mkerned by a dis-
tribution and priors. Assume that there are task-specific model paran@texssociated to each
task or data seDy, for m=1...M. The single-task or tabula rasa learning approach assumes that
the models are independent given their respective data sets andotbeosin be recovered inde-
pendently. Such an assumption may be too simple in practice. The more genéitsk learning
assumption is that there exist dependencies between the tasks. In ottier tive likelihood of the
models given the data does not factorize,

M
p(ela"'7®M|@) # I_l p(emu)m)
m=1

One specific way of coupling the various parameteys...,Qy is to instead assume that there is
another parametarthat is shared across tasks. For exampt®uld be a set of binary switches that
eliminate all but a few features in the input space. The models then beconpeirtint only if the
shared parametéor representatioris observed as follows:

M
p(@1,...,0m|8,D) = np(6m|s,@m).
m=1

Note that, given data, the models are conditionally independent given phesemtation yet are
dependent otherwise. This lack of factorization is onpbsteriorwhen data is observed, not on

2. In this article, only the binary classification case will be consideredekenythe techniques herein extend easily to
multiclass settings whengn: € {1,...,Y} with Y € Z andY > 3. Alternatively, it is straightforward to use binary
classification methods on multiclass problems by usfngne-versus-all binary classifiers, by usi@gy — 1)/2
one-versus-one binary classifiers, or by using error-correctdgs (Dietterich and Bakiri, 1995).

3. A more general approach is to assume a hierarchy of sharetleari@hich couples the various learning tasks in
more subtle ways (Heskes, 1998; Dudik et al., 2007). This hieraichitting is out of the scope of this article but is

of interest for future work.
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the prior. We may still make the assumption that®) factorizes a priori. However, observing
data with a latent shared parameténduces dependencies across the multiple tasks. In terms of a
directed acyclic graph where the joint probability density function facteraea product of nodes
given their parents, the following dependency structure emerges inithglést) case of multitask
learning with two models®; — D, «+ s— D, «+ ©,. Therefore, observing the dafay, and D,
couples the two models unless the shared representasaiso observed.

Thus, a natural way of exploring dependencies between tasks is tmassahared represen-
tation variables is implicated in the learning problem. We then have a total set of parameters
O ={0,...,0p,s} tojointly estimate from all the data sets. We explore the following scenarios:

e Feature Selection:ConsideM individual model$y, = {6m, bm} which are linear classifiers
whereb,, € RP andby, € R. The shared representatisr BP is a binary feature selection
vector that either keeps(@d) = 1) or eliminatesg(d) = 0) each input vector dimension.

e Kernel Selection: ConsiderM individual models®ny = {Bm1,...,8mp,bm} where each
model®y, consists oD linear classifiers iD different Hilbert spaces and one scdbgre R.
The shared configuratiasie BP is a binary feature selection vector that either keeps (when
s(d) = 1) or eliminates (whes(d) = 0) the candidate Hilbert space from the classifiers.

e Adaptive Pooling: ConsideM + 1 different linear classification models whdvetasks have
to choose between using their own specialized clas$ifier ., 0y or a communal classifier
8 by estimatings € BM, a binary selection vector.

e Graphical Model Structure: Consider estimating from sample data a graphical model struc-
ture overD random variables by findinD classifiers that predict each variable from all others.

The following sections detail these multitask learning scenarios and showveogan learn
discriminative classifiers (that predict outputs accurately and with larggimd@rom multiple tasks.
To tackle this problem, we will apply the maximum entropy discrimination framewdakKkola
et al., 1999) since it produces convex optimization problems where glokiedapan be reliably
recovered. Furthermore, the framework produces large margin disatiorirand thus inherits the
performance benefits of support vector machines.

4. Bayes and Maximum Entropy

The standard Bayesian approach to inference begins with agg@rover a model clas® (which
can be possibly uncountable or continuous). The prior is then refirnveth ghe data to obtain a
posteriorp(©| D) via Bayes’ rulep(©|D) U p(D|O)p(©). Subsequently, the posterior is used to
make predictions for new observations. The Bayesian prediction of bftalenew query inpuk
for taskmis as follows:

y=argmax/ p(y|x,Om)p(6|D)do. 1

In the above, a prediction s obtained from the predictive distributige(y|x,®n,) by integrating
over all model$® while weighing each predictive distribution by the postepo®|?). This poste-
rior, according the Bayes rule, is simply the product of the prior and théHded as follows:

1 M Tn
p(O|D) = Zp(e) |_| p(ym,t‘xm,t,em)-

m=1t=
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Previous approaches (Heskes, 2004) followed such a Bayesiamémdor multitask learning and
obtained promising results. In this article, however, we will modify the stahBayesian posterior
to learn a more discriminative solution. Instead of using Bayes’ rule to inéepdisterior, we con-
sider a posterior which produces predictigngith large marginas in the support vector machine
(SVM) framework (Cortes and Vapnik, 1995). In other words, we walhstruct a discriminative
posterior density which yields both accurate classification and large mavhes used in Equa-
tion 1. Accurate classification on the observed data is obtained by foranmanginal likelihood
of the correct labeym; to be larger than that of incorrect labels for each observatiod, ..., Ty in
allm=1,...,M data sets:

/ P ins, ©Om)P(©]0)d — max [ p(yin. Om)p(@D)dO = O,
mt

This ensures that the posterior gives good predictions on averagetBicorrect labgjy; has a
higher probability than the wrong label (Crammer and Singer, 2001; Taskh, 2004). The above
constraints require that the likelihood of the correct label remain largerttielikelihood of the
incorrect label on average under the posterior &@erWe consider one additional simplification
for computational considerations. Instead of compalikgj/ihoods we will require that thdog-
likelihood of the correct label is larger than theg-likelihood of the incorrect label on average
under the posterior ove®. Furthermore, to achieve large margin, we will force the posterior to
not only make correct predictions but to also produce a score for theatdabel that is at least a
constanty above the value obtained by incorrect labels:

/ 10g P(ym¢ Xmt, Om) P(O|D)dO — max / log p(y[Xmt,Om)p(@|D)dO = .
In many parts of this article, without loss of generality, we will assumeyhatl. These correct-
classification constraints are applied to all training datal, ..., Ty, for all tasksm=1...M. Such
classification or discrimination constraints were first introduced in the Bedaaaximum entropy
discrimination (MED) framework (Jaakkola et al., 1999) and give rise stgrtor distributions that
mimic support vector machines and large-margin learning. The MED frankesl®w conveniently
leads to analytic expressions and closed-form solutions for all the segeategrals. Instead of
using Bayes rule to obtain the posterior, MED finds a posterior that is as@$qsossible to the prior
in terms of Kullback-Leibler Divergence. In other words, it minimizes thetradeentropy to the
prior KL(p(®|D)||p(®)) but still alsosatisfies the above classification constrainthis produces
the following primal optimization problem:

{ mMinp(e|p) KL (p(@[D)||p(©))
Oprimal

st. [log (%) p(0]D)dO >y Vy # Ymt, M.

The solution is straightforward and gives the following posterior:

_ 1 Mo In P(Ymt [Xmt, Om
PeID) = z<x>p<@>ﬂlﬂyﬂm\t<

Here, X is a collection (or a vector) of non-negative Lagrange multipligrg:} form=1,...,M
andt =1,..., T that are used to enforce the inequality constraints. The normalizer fobtve a

N\
P(Y[Xm¢t, Om) > X YA @)
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posterior isZ(A). Maximum entropy solves for the Lagrange multipliers by maximizi(y) =
—logZ(A). This is simply the dual optimization

Amt
Odual { Maxs=0—10g | P(O) M-y M1 Myayme ( Pomiime®) )™ exp(—yAme)dO

If all Ay are set to 1, the posterior resembles the standard Bayesian estimate. eHJdMED
estimates different weightsy; for each datum (or classification constraint) in the posterior. This
ensures that the classification constraints are achieved. Insteadtofgralh points equally, the
MED solution explores weights on each datum to adjust the Bayesian solutbrtisat it obtains
better classification on the training data. The expetigdikelihood of the data under the MED
posterior satisfies the classification constraints while staying close to the fuithermore, MED
uses the expectddg-likelihood of a new query point to make predictions as follows:

y = arg maEp(e|) logp(y|x,Om)] = arg max log p(y|x,Om) p(©|D)dO

This simple reformulation of the standard Bayesian posterior will give risege laargin learning
as explicated in the next section.

5. From Log-Linear Models to Support Vector Machines
We next make more specific assumptions on the form of the predictive digiribp(y|x,®p,).
Assume that the predictive distribution is log-linear as follows:

p(ylX,Om) O exp(y(x em>+bm))

This permits us to rewrite the above postefg®|2) more specifically as:

1 M Tm
p(O|D) = ﬂp r!eXP(Ymt <th,9m>+bm))AmteXp( ~YAmt)-

m=1t

We integrate the above over= {O4, ..., 0O\, s} to obtain the partition functiod(\). The objective
function we need to maximize is the negative logarithm of the partition function:
M Tm
JA) = - Iog/ p(© exp( > > AmtYme((Xmt, Bm) + bm) — y)\m,t> do.

m=1t=

We will nextassumehat the prior over models factorizes as follows:

p(©) |'| P(Om) = P(s |'| N(8rm|0, 1)\ (brr|0, 5%).

and assume that the priors over parameters are all white Gaussians witlngan and identity
covariance (tak® to be the vector of all zeros ando be the identity matrix). This factorization
assumption on the prior will be kept throughout this article. Although the faiiorizes, this does
not necessarily mean that the posterior will factorize too. The likelihood teriEguation 2 may
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couple the models in the posterior. However, in this first example we will n@ilny coupling
per se. This is clear once we evaluate the integrals to obtain the objectotefun

M T,
— —ngllog/eXFK(em, Zl)\m7tym7txmyt>)_‘7\[(9m|o7|)d9m

M M Tm
_ Z Iog/exp(bm zl)\mtymt (bm|O, cr )dbm + Z YAmt.
m=1 m=1t=
Simple algebra and completion of squdrgields the objective functiod(X) which is maximized
as follows

M T,
m 1 n
Tzag(nbl tZl\/)\m,t -5 z )\mt)\mTYthmr<th7XmT (Zl)\thmt>

trl

The above dual optimization problem is simply a quadratic program and istefaigard to solve.

If we further assume that? — oo, which corresponds to using a non-informative prior on the bias
scalar term$n,, the objective function above gives the constrajfytsmymt = 0 forallm=1...M.

We then get an objective function that is exactly the sum of the dual olgefttivctions ofM
independent support vector machinesy@ 1). Thus, our dual optimization is:

Tm
max (Z\V)\mt -5 z AmtAm, TYthmrk(th,XmT ) st. ZYm,tAm7t =0Vm.
A0 nLl tr 1 t=

Here, we have also replaced all inner products of two inpasdx of the form(x, x) with Mercer
kernel evaluation&(x,x). This allows us to readily accommodate nonlinear classification. Finally,
the prediction rule for a query inputgiven the current setting of thk values for than'th model
involves integrating over the posterior which produces the following ptiedic

T A
y = arg n}a)Ep(GW) [log p(y|X,Om)] = sign < zl}\m,tYm,t K(X, Xm¢) + bm) )
=

where theby, scalars are given by the Karush Kuhn Tucker (KKT) conditions. Vékiena constraint
or Lagrangian is active, the corresponding Lagrange multiplier mustib#yspositive Ay > 0 and
we expect the inequalities in the primal problem to hold exactly. Therefarean obtain eachy,
by solving

Tm R
Ymt = z AmtYmtK(Xmt, Xm) + Bm
=1

for any datunt which has a corresponding Lagrange multiplier (once the dual progadts) that
satisfieshm > 0.

Clearly, because of additivity, updatidg1,...,AmT, can be done independently ®f 1,..
An, for anyn # m. In other words, we have tabula rasa independent learnihg rm‘dependent
SVMs on all the tasks. Even the scalar bidsgare obtained independently via the KKT conditions.
Therefore, to obtain multitask learning, we will need some shared repatioers to couple the
learning problems and give rise to a non-factorized posterior over models

4. Recall thatf exp((8, w)) (8]0, 1)d = exp((w,w) /2).
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5.1 Non-Separable Case

For thoroughness, this section details the case where the classificatibanpsare not separable;
in other words, not all inequalities in the maximum entropy formulation can bieeth In this
case, we introduce non-negative slack variaBles{&m} on each constraint with a cost Gfper
unit of slack leading to the following primal optimization:

[ mine(eyp) £ KL (P(O]D)[|P(©)) +C TNt 311 Ty iy Emiy
primal | ¢ [log ( pf)}@\j::l@?n?» P(O|D)dO > y—&mt and&mty > 0 Vy # yme, mit.
The above produces the same type of solution as Equation 2 but has a diffetignt dual opti-
mization:

Ol maxy m-1 (ZtTQlVAm-,t —3 ZtT,Tzl)\m-,t)‘m-,Tym,tYm,Tk(Xm,tvXm,r))
ua
st.0<Amt <C Vmtand 3™ ymiAme =0 ¥m

which merely bounds the Lagrange multipliers from abov€b®nce again, MED mimics support
vector machines (Cortes and Vapnik, 1995) in the non-separable case.

6. Feature Selection

We next explore feature selection and requireRP whereD € Z. To couple the tasks, modify the
predictive distribution for the label given the model such that it also dégpen asharedvariables
as follows:

p(y%,Om,s) O exp@ (ﬁ s<d>x<d>em<d>+bm>>,
=1

wheres s a binaryD-dimensional vector and the argument of a vestad refers to itsd’th entry.
Thus, the shared representation consists of binary switches that detetesor various entries of
the x vector. Ifs(d) = 0, then thex(d) entry is effectively set to zero. Meanwhile,sfd) = 1,
the x(d) entry remains intact. In other words, the binary vectperforms a feature selection. In
addition, assume the prior fq(s) is a product of Bernoulli distributions for each elemensof

D
ps) = J‘| ps 9 (1—p)t )]
=1

wherep is the a priori probability of keeping the features on. For example, sqitiad suggests
that all features should be on and no feature selection is to be perforAleainatively, we can
reparametrize the prior as= 1%," where increasing corresponds to sparser feature selection. A
value ofa = 0 indicates no feature selection is being performed (no sparsity). Mélerawalue of

o — o0 encourages the models to discard almost all features. If we perfotundeselection and use

a predictive distribution with sharegithem=1, ..., M tasks will become coupled and the posterior
over models no longer factorizes. The MED solution is then

M T D
p(@|D) = Z(l)‘)p(@) rT|;|1t|1exp <)\m7tym7t <dzls(d)xm,t(d)em(d) +bm> —y)\m,t> )
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We compute the corresponding partition function by integrating over all m@&iels. , ©, as well
as summing over all binary settingsoivhich yields

M T D
Z(A) = / p(e) eXp( Z )\mﬁym’t (; S(d)Xm’t(d)em(d) + bm) - y)\m7t> d@
m=1t= =1
02 2 1 2
= — — — 2 Xm(Zt AmtYmeXme (d))
exp(% 5 (Z)\m,tym,t> ZVAm,t> |:| (1 P+ pez &mztimt )
Takingo? — o gives a new objective functiaf(\) = —log(Z(\)) which is no longer a quadratic

program yet is still a convex program as follows:

n 2
St.0<Amt <C Vmtand 3™ ymiAme =0 ¥m.

Note the property thal(0) = 0. Clearly, the objective function is no longer additive acnoss
1...M which means that learning is coupled across tasks. This is due to the naritjirie the
function f (x) = log(a + exp(—x)) which involves a summation oven=1...M. We will refer to
this function as the log-sigmoid function. If we set 0, the log-sigmoid becomes linear and we get
back the independent optimization problems in Section 5. Therein, the tasispde completely
(i.e., the objective function becomes additive over tanks 1...M). However, larger settings of
encourage some coupling between the SVMs (or large margin log-linealshadehey search for
a joint feature selection.

Note the presence of logarithmic terms which prevent the direct applicatignamfratic pro-
gramming taJ(A). Fortunately, the log-sigmoid functiofi{x) = log(a + exp(—Xx)) is known to be
a convex function (more precisely, our objective involves a negatedo$sonch functions which is
concave overall). Recently, new computational tools have been prbpassolving convex pro-
grams that involve such terms (Koh et al., 2007). In our implementation, wedhafgly a bound
on the log-sigmoid to reformulate the optimization as a sequential quadrati@pro@mptimization
details are deferred to Section 10 but it will be assumed that a (nearly) optis@lution can be
recovered.

Given the recovered setting, the prediction rule is straightforward to derive as follows:

D Tm R
y = argmaEye|n) l0gp(ylX, Om, 5)] = Si9n<; AmtYmeS(d)x(d)Xme (d) + bm) :
—1t=

The§(d) above are expected valuessofl) under the posterior and are given by:
1

-
1+ aexp<—% Zmzl (Z;rzl)\m,t)’m,txm,t(d)) >

In fact, §(d) are scalars inl/(1+ a),1] which give a soft feature selection as values close to the
bottom of the range are candidates for removal after thresholding. dlhessofS(d) multiplica-
tively scale the input domain features and are close/td 4 o) for features that are not useful for
prediction in the multiple tasks. Once again, thescalars are given by the KKT conditions which
require that the value inside the s{griunction evaluation above exactly equsis; for the query

X = Xmt Whenever the corresponding Lagrange multiplier strictly satisfies\@; < C.
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7. Kernel Selection

Feature selection and sparsity are not the only types of shared nefatéses one may consider.
One crucial design issue of nonlinear SVMs is the choice of a kernetitm Also, kernels permit
SVMs to handle non-vectorial inputs so we relax the assumption that thiguts are Euclidean
vectors and only require that they are objects from some sample spaeeX forallm=1,....M
andt = 1,..., T Typically, in kernel learning (Lanckriet et al., 2002), we are givesetofd =
1,...,D base Mercer kernelsy, ..., kp where each kernel functioky : X x X — R accepts two
inputs and produces a scalar. We wish to learn a conic combination of thelker a sparse
selection using the non-negative scalar weight,s ..,Wp as follows

K(x,X) dZdedxi)

Some base kernels may get a small weight and are thus not selected asdnslihee averaged
with varying weightswy to produce a potentially better final kerr€l Each base kernéd(x, x)
can be seen to correspond to a mapmgpavhich is applied to both inputs andx. The functiongy
maps an inpuk € X to some Hilbert space we denatg. The kernel is then the inner-product of
@i (x) and@y(X) as follows:

ka(x,X) = (@u(x), @ (X)).
Kernel selection is equivalent to selecting some mappings and attenuatimg. otle thus need
a shared representation vectwhich is again binary and agaib-dimensional to select which
kernels will be used. However, now, we have a seMok D linear model9n4 € @} for each
Hilbert space. A4 vector is available for each task=1,...,M and each mappind=1,...,D.
In other words, taskn has the following modeling resources on its 0@ = {6m1,...,6mp, bm}.
The prior for the modeling resources for timth task is then chosen to be a product of independent
white Gaussians on theg® vector parameters. This leads to the following general prior for all
model parameters:

ﬂps(d (1—p)t—= |‘| N (Bmd|0,1) A (bm|0,0?)

Once again, all tasks share and have to agree on the binary seledimr s/edich inherits the
Bernoulli prior used in the previous section. Therefore, we have tleving total set of parameters
0= {@1,...,@M,S}.

The predictive distribution for multitask kernel selection is then given by teviing log-
linear model (for then'th task):

(Y|X,©m,s) O exp<)2/ <(§13(d)<6m,d,(pd(x)) +bm>> )

We once again recover the MED posterior using Equation 2. The normfdizée posterioZ(\) is
then found by integrating over the paramet®rsT his multitask kernel selection objective function
J(A) is the following convex program:

maxy YM ;5™ YAme +Dlog(a + 1)
— ZCEi):l |0g ((x + e:’zL St 2;@1 ZIEl )\mﬁt}\m.er,tym,tkd(Xm,uxm.r))

st.0<Amt <C Vmt and 5™ ymtAme =0 vm.
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Similarly, given theX setting, we obtain the following prediction rule:

y = sign(dz )\m,tym,té(d)kd()(?)(m-,t)+bm>

wheres(d) are scalars that weight each kernel and are usually closg 16t1a) for kernels that are
not beneficial for our multiple classification tasks. The weights for eantekare recovered as:

1

Tn < Tm

§d) = Y .
1+GE‘XD<—§ Sl Tzl)\m,t)\m.,TYm,tYm,de(Xm,t7xm,r)>

The scalar biasds, are once again recovered from the KKT conditions. From the prediatien r
it is clear that kernel learning is effectively creating a new kernel fioebase kernels as follows:

D

K(Xv)?) = (glg(d)kd(xv )?)

Whena = 0, there is no coupling of tasks or sparse selection of kernels. The sokitigply
corresponds to setting(d) = 1 and forces the final kern&l to equal a simple sum of all base
kernels ford = 1,...,D. In general, however, a more appropriate final kernel could potentially
be recovered itx > 0. Given such an aggregate keriglx,x), we can now write an SVM-like
prediction rule for then'th task:

Tn R
y = sign(Z}\m,tym’tK(x,xmvt)+bm>.
t=

Another interesting fact is that feature selection is just an instance oflkegtection. If we choose
thed =1,...,D kernels as follows

k(%X = x(d)X(d).

we are effectively replacing kernel evaluations in this section with the rspataluct of thed'th
dimension of the input that was needed for feature selection. Thus, tthel lselection problem in
this section clearly subsumes the feature selection problem derived inrSéctio

7.1 Independent Kernel Selection

It is possible to break the above multitask framework by allowing each taskect secombination
of kernels independently. This means that we introduce a sepgratector for each taskn =
1,...,Minstead of having a shared representatiohhe derivation is straightforward and produces
the following convex program:

maxy, YM ;3™ YAme +MDlog(a 4 1)
_ ZI”\I{I)Zl Zc?:l |0g (a + e% Z;@l Ziglhm.t)\m,rym.t)’mrkd(thxm,I))

St. 0<Amt <C Vmtand 5™ ymiAme =0 Vm

which is once again additive im= 1,... M indicating that the Lagrange multipliers for each
task are estimated independently in a tabula rasa learning method. As usymgdintion rule is
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given byy'= argmay Epe|n) 109 p(Y|X,Om)] and the following formula emerges for the expected
switches:

1
14+a eXp(— % Z;@l ZTTZl AmtAmtYmtYmtKd (Xm,t ) Xm,T))

The prediction function for each task then simply uses its &w(id) weights to combine the base
kernels. This approach resembles the multiple kernel learning methodkfietret al., 2002) since
each task performs its own kernel selection in isolation.

7.2 Metric Learning

It is known that a Mercer kernélx, x) or affinity can be used to construct a distance mefic x)
that satisfies standard requirements such as the triangle inequality. Carmidéructing a base
distance metrid\4(x,x) from each base kerng}(x, x) as follows:

Ad(x7)?) = \/kd(xﬂx)_de(Xv)a"i_kd(Zi)'

Given this multitask kernel selection framework, it is possible to use the dbaveila to perform
multitask metric learning. By applying the algorithm in Section 7, we obtain the kerights
5(1),...,8(D). This permits us to learn an overall kernel as a conic combination of thé base
kernels. This solution can then be mapped into a learned distance metric asfollo

D
AXX) = \/ PRI

Thus, metric learning can be performed using the multitask kernel selectign. s@&nce a new

kernel is learned, it is then possible to reconstruct the corresponiitasnde metric and apply any
kernel or distance-based learning algorithm. For instance, kernaipsincomponents analysis
(Scholkopf et al., 1999) or any distance-based learning algorithm suchraslkearest neighbors
and kernel clustering can be used with such learned kernels and @iftenations.

8. Shared Classifiers and Adaptive Pooling

Another interesting multitask learning approach involves shared classifistsared models. For
example, if we have very few training examples for each task, we may @dling all tasks
together and learning a single classifier for all. This may help initially yet sonks tagh more
training examples than others may want to specialize and form their own indepeclassifiers
once we are confident these tasks have enough supporting dataagaiceasssume we have=
1,...,M tasks. These tasks have to choose between using their own specialszifiecy, . . ., Oy

or a communal classifié. To avoid a trivial solution, only some of the tasks are allowed to become
specialized and use their own linear model. Consider a binary featuréiseleectors € BM. For
each taskn, the element of the vecta{m) € B determines if the task will use its own specialized
Bm model (whers(m) = 1) or use the commun&lmodel (whers(m) = 0) for discrimination. This
setup is clarified by the following log-linear predictive distribution for thi¢h task:

y

pYIM X, ©,5) T exp( 3 (S(M)(Bm, Gn(X)) + (8, 9)) +bm) ).
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The communal classifier is over a single Hilbert space mappixpgwhile the specialized classifiers
may operate over their own distinct Hilbert space mapming). Inner products in these Hilbert

spaces are computed using kernels as usak) = (@(x), ®(x)) andkn(X,X) = (@n(X), Pm(X)).
Another subtlety is that each task still has its own dedichfgdonstant scalar bias. The complete

set of models is therefol® = {6,04,...,0u,bs1,...,by}. We can assume the priors on all models
are white Gaussian distributions. We also continue to use Bernoulli priosérfy and zero-mean
Gaussian priors for the biases. The normalizer for the posterior iseszas:

Z(}\) — / p(@)ezwbl ZtTEl AmtYmt (S(M) (Bm,@m(Xmt)) +(8,@(Xm¢ ) ) +-bm) —YAmyt do

2
_ eim 07 >t Athm.t)ze_ >m Zt YAm¢t e% SmYn Yt Yt AmtAntYmtYntK(Xmt - Xn1)

X Z Z p |_| M) ¥t 3t AmtAmtYmtYmtKm(Xm¢, er)
s(1) s(M) m

The final summations over the binary switch settings above distribute anthbestaightforward.
We assume that — o and obtain the following objective functial{\)

max\ i 1 ZtTily)\m,t 2 3 31 20 3071 311 AmiAncYmeYnaK(Xme, Xn )
_ Zr'\r/lhl log (0( +-e2 33 erl)‘m«l)‘m-TmeYmJkm(x’“t'X"“)) +Mlog(a +1)

St.0<Amt <C Vmtand 3™ ymiAme =0 ¥m

which clearly shows that the tasks cannot be solved independently (eimcgiadratic term above
sums over bottmn andn which couples all pairs of tasks). The solution of the above is once again a
convex program. Given the optimal Lagrange multiplier solution, the prediatiefor an inputx

for them'th task is given by:

T M T A
y = Sign<§(m) Zl)\m,tym.tkm(xaxm.t) + Z AntYntK(X, Xnt) + bm> .
t= n=1t=

We recover the expectesim) value which measures our confidence in using a specialized classifier
for them'th task as follows

1
1—|—(X€Xp< ZZt 121= 17\mt)\mTYmtymTkm(th,er))

It is interesting to note that ifi is infinity, then all theS(m) values go to zero and the method per-
forms complete pooling. Converselypif= 0, thenS(m) = 1 and each classifier mixes its specialized
linear model equally with the communal model. It is natural to use a smaller seagxfa) than
km(x,x) such that the choice = 0 leads to a more specialized setting withindependent classi-
fiers while larger leads to a more communal setting with a single classifier. For instance, in the
absence of any domain-specific knowledge, a good heuristic is to ckgose) = wk(x,X) with

w = 10M. Ultimately, the benefits of adaptive pooling will emerge if there is a naturaktcdi
between specialization and sharing at different rates for each d¥ittesks as embodied by the
non-uniform estimator o above.
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9. Regression

Itis easy to convert multitask feature selection, kernel selection and pgqwiaiblems to a regression
setup where outputs are scalgrs € R. While this article will only show experiments with classifi-
cation problems, the multitask regression setting is briefly summarized herenipleteness. The
main decision in regression problems is what loss function to impose on ougalit§ions. While
many loss functions may be considered in regression problems, a popelss the epsilon-tube
loss.

In this type of regression, the goal is to predict the targets wittén Recall the close simi-
larity between the dual learning problems for SVM classification and SVivessjpn (Scbilkopf
and Smola, 2001). The maximum entropy posterior can also be used tawepreupport vec-
tor machine regression (Jebara and Jaakkola, 2000; Jebara, 20&8pd of following the MED
derivations in detail, this subsection simply shows the resulting objectiveidmnehich largely
agrees with the standard quadratic program for (single-task) SVMssmn with arg-tube:

T 1 T T
max yt()\t—)\) )\t—|—)\ —)\/)k(Xt,X)
AN t; tZl 2 er 1 ' '

.
st. 0< A, A <C, and Zl)\t = Zl)\{

which is solved over Lagrange multiplieds= {A\;} and\’ = {\{} forallt =1...T. SVM regres-
sion then applies the following prediction rule:

T
y = Zi()\t — AKX, %) +b.

t=
It is straightforward to adapt this regression problem to multitask kerhettsen (which once

again subsumes feature selection if we setgct,x) = x(d)x(d)). MED yields the following mul-
titask objective function which is a convex program:

maxyx Y1 3" YmtAmt = Ame) — €3 meq 311 (Amt + Amy) + Dlog(a + 1)
— Zc?:l Iog ((x + e% z’\ﬁﬂbl ZtTLnl ZrTQl(Am,t—Mn,t)O\m.r—)\;n.,r)kd(Xm_t-,xm,t)>

St 0 < Amg, Al <C Vmit and ™ Amg — Ay =0 Vm,

The above is solved by adjusting the Lagrange multipl®rs: {A¢m} and X" = {A{ ,,} for all
t=1...Tpand allm=1,...,M. The resulting prediction rule for a query datwor the m'th
regression task is then:

Tm .
y = Z(Am,t—M,t)K(X,Xm,tHbm
t=

with the kerneK (x,X) = S§_, 8(d)kq(x,X) as a conic combination of base kernels with weights

1
8d) = .
1+aexp(—3 L Zt 1210 1()\mt Amt) Amz — At o)Kd (Xmt, Xmt))
Finally, the biase$, for each task are obtained by solving for the KKT conditions at active La-
grange constraints. Appendix C discusses other choices for the MEDOuostion in regression
settings and connections to previous sparse approaches (Ridge doasElastic-Net regression).
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10. Sequential Quadratic Programming

In all the optimization problems introduced so far, the optimization appears taigerely similar
to a quadratic program (QP) except for the presence of a handhd-agigmoid functions. In fact, if
the parametem is set to zero, all the above optimization problems simplify into quadratic programs
It will be shown that thex > 0 case can also be easily handled by quadratic programming as well.
More precisely, it can be optimized using a sequential quadratic progran{8@i) method. This
is a procedure which iteratively solves a QP for a number of iterationsadt ff the QP is of
a simple SVM-type form, much faster SVM solvers can be used instead ofi@xeHims, 2006;
Shalev-Shwartz et al., 2007; Bottou and Bousquet, 2008; Shalevr&haval Srebro, 2008). The
next section explicates how all MED optimization problems encountered smafabe solved via
SQP (or sequential SVM solutions) by bounding the log-sigmoid terms withrgtiadunctions.

For brevity, we focus on the multitask kernel selection problem which striathgismes multi-
task feature selection. Other learning problems in the previous sectiormedarplemented with
sequential quadratic programming in a similar manner. Recall the kerneligeleptimization:

max, J(A) = Sm 13" YAm: + Dlog(a +1)
_ 25)21 |og <a + e% zmzl 22—211 ZIr_fl)\m‘t)\mJYm,IYm,rkd(Xm.,tsxm‘r))

st. 0< Amt <C Vmtand 5™ ymtAme =0 Vm.

This is a convex problem and generic methods exist for solving it includingltipsoid method.
The latter is a polynomial time algorithm requiring (FM_, Tm)®) time yet may still be impracti-
cally slow in practice due to large scaling constants (Boyd and Vandéme2§04). Some related
optimization methods involving logistic terms have been explored with the LasbteprdTibshi-
rani, 1996). Logistic terms often emerge in algorithms that learn sparder@eselected) linear
classifiers by maximizing the logistic likelihood while enforcing @rmregularization on the linear
model parameters. This is the approach followed by/theegularized sparse logistic regression
technique (Koh et al., 2007). Interestingly, this recent work has dpedldast interior-point op-
timization methods which may be eventually applicable to MED problems. Insteasiowe the
MED problem by exploiting a convenient upper bound on logistic-quadiuatictions that converts
them into plain quadratic functions. In previous work, a looser versiothefbound was pro-
posed (Jebara and Jaakkola, 2000). This article refines the bodrgt@rndes a tight variational
guadratic upper bound on a logistic functioha quadratic function. This conversion to quadratic
functions permits us to use standard quadratic programming. In fact, tred aptimizations ulti-
mately decouple into the solution bf separate support vector machines and prevent cubic growth
in the number of tasks. Bounding is interleaved with the solution of suppotbvenachines to
iteratively maximizeJ(\). Due to the availability of fast SVM solvers, this optimization approach
is potentially more promising than more generic convex programming tools (Kah,e2007).
The necessary bound is derived in detail in Theorem 1 in the Appendig.tfleorem states that
log (0( + exp(“%“)) is less than or equal to a convex quadratic function for all vectorsu and
achieves strict equality whan= v for some vector. We will apply the above bound to each log-
sigmoid term in the sum ovet=1...D in J(A). We slightly abuse notation and interchangeably
useAnm to denote the vector of Lagrange multipligisy 1, . .. ,)\m,Tm)T foreachm=1...M. Sim-
ilarly, we will take A € R" wherel = z,“{',lem to be a concatenation of all Lagrange multipliers.
Consider thel'th log-sigmoid function in the suriS_; log(...) in J(\). Denote the Hessian of the
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quadratic term inside thath log-sigmoid asHg € R" " which is given element-wise as follows:

Ha([mt],[n,1]) = YmtYmtKd (Xmt, Xm1)Om=n.

Here we us®m—n as an indicator function that is 11fi= n and is zero otherwise. We also use the
operatorim,t] to compute the index valuen,t] = (t + 3 T,) to select the appropriate row and
column entries of the matridy. This allows us to write the dual objective function as

maxx J(A) = Dlog(a+1) — 55 _;log (a+exp(3ATHgA)) +yAT1
st.0<Amt <C Vmtand 3™ ymtAme =0 vm.

Assume we have a current setting of the Lagrange muItipﬁerMe apply Theorem 1 in the
Appendix after a simple change of variablass Hdl/2>\ andv = Hdl/zi which gives:

T T X ATHady .
Iog<a+exp<>‘ Hd)‘)) < Iog<a+exp()‘ Hd)‘>>+ X 2 )~ ATHg(A =)
2 2 o 4 exp( 2t

+%(>\ -7 (gdeS\S\THd + Hd) (A=A).

Such a bound is applied to each log-sigmoid ternd(iA) individually ford = 1...D. The ratio
terms in the bound are none other than the expected switch variables atring setting ofA:
exrx S\THdS\) 1

§d) = - S
a -+ exp( A Had Hd") aexp(— 252 +1

Similarly, we obtain the following foiGy applying® the bound formula:

tanh( 1 log(arexp(— 2 Hed )

Ga = 2log(aexp(— 2 Hd")

Other convenient variables to define are the vedigise RP form=1,....Mandt =1,...,Tn.
These are the predicted label of tith SVM on thet'th datum using thei'th kernel at the current
setting of\. They are given element-wise as follows:

Tm

Yme(d) = z AmtYmtKd (Xmt, Xm)-

=1
Applying these substitutions and the bound on each log-sigmoid functiompesdhe following
variational lower bound on the objective function:

M Tm M Tm D

J(A) > constant- % B VAmi— H )\m,tym,tdz §(d)¥me(d)
m=1t= m=1t= =1
M Tm Tm -
Zl Z )\mt)\mTYthdez (GaYmt (d)Ymr(d) +Kg(Xmt, Xmr)) -
m:lt
1 |\/| Tm Tm

Zl Zl)\mt)\mrythmT ; (GdYmt(d)Ymr(d) +Ka(Xmt, Xm1)) -

1t

5. By continuity, take tarm} log(1))/(2log(1)) = 1/4 and also take lig, o+ tanr(% log(2))/(2log(z)) = 0.
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Interestingly, given the currerX and the curren$(1),...,3(D), the bound effectivelylecouples
the learning problem across tiv tasks. The objective function becomes quadratic and additive
acrossm= 1...M. Therefore, we can solve each problem individually as a single stigpctor
machine. This provides a simple iterative algorithm for multitask learning whidtisoan current
SVM solvers. The stefisare summarized in Algorithm 1.

Algorithm 1 simply performs sequential quadratic programming by interleavimgalind com-
putation with SVM programs. The SVMs are solved separatelyferl,..., M tasks in Step 3b. If
each SVM is solved using standard quadratic programming solvers, eqghes @T.3). However,
by exploiting more recenapproximateSVM solvers, the inner loop SVM problems can poten-
tially complete in linear time or Oy,) (Joachims, 2006; Shalev-Shwartz et al., 2007; Bottou and
Bousquet, 2008; Shalev-Shwartz and Srebro, 2008). Admittedly, thisdtrly subject to certain
reasonable assumptions (for instance, small approximation errors aredlind explicit linear
feature mappings are used rather then implicit nonlinear kernels). binerefhder certain assump-
tions, step 3b in Algorithm 1 can potentially complete iis®,_; Tn) time.” Finally, it is also
possible to use warm-starting and seed the SVM solver with a preNaesult to obtain further
speedup. For instance, warm starting can be used from a previou®itéraAlgorithm 1. Fur-
thermore, we may warm start from a previous final solution of Algorithm 1 ¢baterged for a
smaller setting o€ or a. This lets us explore the regularization path efficiently after initializing it
at, for instance, the default settingmf= 0 andC = 1 and increasing both parameters until error is
minimized on a cross-validation set. Furthermore, we typically set to mimic the support vector
machine case but that parameter may be adjusted as well (either manuallgrosfyvalidation).

Algorithm 1 Multitask SVM Learning
0 | InputdataseD,C>0,a>0,0<w< 1andkernel&; ford=1,...,D.
1 | Initialize Lagrange multipliers to zerh = 0.
2 | Storeh=A.
3 | Form=1...,Mdo:
T <Tm

tanh(3 log(ga))
SetGa = ey, foralld.

Set§(d) = g, foralld.

3b | Update each of tha, vectors with the SVM QP:
MaXy, ¥y At~ 5 AmeYme 61 3(d)¥ime (d)

+ 307 Y1 AmtAmYmtYme 3 g1 (GaFme (d)9me (d) + ka (Xt Xme))
_% Zthl ETTZ;L AmtAmtYmtYmt 23:1 (GdYmi(d)Ymr(d) + kg (Xmt, Xmz))
St.O<Amt <C WVt=1,....Tnand 3™ YmtAmt = O.
4 | If [ A=Al >w| Al goto 2.

5 | Output:SandA.

Next, we discuss the convergence of the above iterative algorithm. Clsiande the algorithm
maximizes a variational lower bound on the objective function, it must monatiyiocrease the
objective. However, it is still possible that the algorithm can get stuck anduyge negligible

6. Code available atww.cs.columbia.edu/  ~jebara/code/multisparse/
7. Also, under mildid assumptions, step 3a can be well approximated(iﬁ@le) time using deviation bounds.
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Figure 1: Feature selection on the UCI Dermatology data set. Multitask pataee selection and
independent SVM classification are compared. Various data set seeh@wn ranging
from 20 to 200 samples for each of the 6 tasks. The average areathad®DC curve on
test data is shown for all tasks for 5 folds (along with the standard devjalitye values
of C anda were obtained by cross-validation on held out data.

progress requiring an unbounded number of iterations. We will showighadt the case and,
indeed, the sequential quadratic programming procedure in Algorithm 1 mWlirequire a finite

number of iterations (of step 3). The number of iterations is bounded byréhe2 which is proved
in the Appendix. It guarantees that, for amy> 0, € (0, 1), Algorithm 1 finds aX that satisfies
J(A) > (1—€)I(A*) (whereX* is the constrained maximizer af\)) in no more than

e

iterations. Here, each iteration involves (possibly warm-started) SVMranogand the expression
[...] denotes the integer ceiling function.

Therefore, a constant number of iterations is needed that dependsmualy In summary,
solving multitask feature or kernel selection is only a constant factor margatational effort
than solvingM independent support vector machines. A similar SQP or iterative SVMitigor
can be derived for the adaptive pooling setup described in Section 8.

11. Experiments

To evaluate the multitask learning framework, we considered UCPadetavell as the Land Mine
data set which was developed and investigated in previous work (Xue et al., 2007 classi-
fication accuracy of standard support vector machines learned indeptty is compared to the
accuracy of the multitask kernel selection procedure described in Secdad Gection 7. In all
experiments, we explore multiple values of the regularzdor the SVM and multiple values of

8. Data available dtttp://archive.ics.uci.edu/ml/
9. Data available atttp://www.cs.columbia.edu/ ~ jebara/code/multisparse/LandmineData.mat
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(a) Feature and RBF kernel selection (b) Feature, polynomial and RBiekselection

Figure 2: Feature selection and kernel selection on the Landmine data é&Y, feature selection
is combined with RBF kernel selection. In (b), feature selection is combirntdbeth
polynomial and RBF kernel selection. Multitask sparse kernel selectidimaependent
SVM classification are compared. Various data set sizes are showimgangm 20 to
200 samples for each of the 29 tasks. The average area under theuR@®ug test data
is shown for all tasks for 5 folds (along with the standard deviation). Ehaas ofC and
o were obtained by cross-validation on held out data.

C anda (or, equivalently,p) for the multitask learner. The values Gfanda are determined by
cross-validation on held out data and then tested on an unseen test set.

The UCI dermatology data set consists of 6 classes which can be cahwveddinary classifi-
cation tasks to be predicted from an input space of 34-dimensionaldsatutotal of 366 instances
are available. Both the independent SVMs and the multitask feature seleggticvaah were evalu-
ated by training on various numbers of examples (from 20 to 200) fortea&hand the remaining
examples (with labels kept unobserved) are split in half for cross-velidand testing. The feature
selection method chooses a sparse subset of the 34 features thatsaséeodly good at predicting
the label for the 6 different tasks (or classes). All evaluations wene dsing the average area
under the Receiver Operating Characteristic (ROC) curve for the 6.td$ks score is the MAUC
since it involves the mean &fl tasks’ Area Under the Curve (AUC) scores. Cross-validation was
used to select a value @ffor the independent SVMs and valuescofindC for the multitask fea-
ture selection SVMs. Figure 1 shows the MAUC performance of the indlrdrSVMs versus the
multitask SVMs with averages and standard deviations across 5 foldse Eherclear and statis-
tically significant advantage (under a paired t-test) for multitask learningiodependent SVM
classification.

The Landmine data set consists of 29 binary classification tasks involvitigpah space of
D = 9 dimensional features. The number of samples for each task variesHtbrto 690. Both
independent SVM learning and the multitask kernel selection approachevaetuated by training
on various numbers of examples (20,...,200) from each task. The remaining examples were
split in half for cross-validation and for testing. We perform featurecsigle by building a kernel
for each feature that is simply the product of a single scalar dimensiorpfair af data points. This
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produces 9 kernels. In addition, 9 radial basis function (RBF) kemete computed with different
settings of the bandwidth parameter. The kernel selection method was #wtouhoose a sparse
subset of thesb = 18 total kernels. All evaluations were done using the average areathedeOC
curve for the 29 tasks. Cross-validation was used to select a valDdarfthe independent SVM
approach and to select values @anda for the multitask kernel selection SVM. Figure 2(a) shows
the performance of the independent SVMs versus the multitask SVMs aeeaga and standard
deviation of MAUC across 5 folds. Tabula rasa learning obtains lowarracg in general while
multitask learning improved accuracy at all sizes of the training data set witstist significance

(a paired t-test produced a p-value below 0.05) on most training set sizes

Another experiment exploring kernel selection was considered usirtgeaprevious kernels
as well as linear, quadratic, cubic and quartic kernels for a tot8l ef 22 kernels. Figure 2(b)
summarizes the results which again demonstrate an advantage for the multit@sk bese results
compare favorably with previous experiments on this data set (Xue et @r).20

In all experiments, solving the more elaborate objective function in the MEDexoprogram
required only a constant factor more time than solving each task separételgadependent SVMs.
We verified that the number of iterations of the SVMs only increased asctidarofa and required
2 to 40 iterations of Step 3 in Algorithm 1 aswas swept across the range of interest. Since
the SVMs were warm-started at their previous solutions, sweeping agn@sgye ofa values in
the multitask sparsity approach (after starting from an initial SVM solutiongnesquired more
than 50 times the run time of the initial SVM solution. Thus, empirically, the multitasksgpar
framework, while sweeping over the full regularization path aveincurs a constant factor (under
50) increase in the computational effort over independent SVM learniigese runtime results
agree with Theorem 2.

In another experiment with adaptive pooling, the Heart data set from @lerépository was
used. All features were normalized to within t}@el] box and a polynomial kernel of degree three
was used throughout. The Heart data set was changed into a multitasktdayads/iding the data
into ten different tasks based on the age of the patient. This division wesltgosplitting the data
along the age variable by forming 10 intervals with equal number of exampéscinterval. For
each task, the examples were divided into train/test/validation sets with equakenof examples
in each. A scaling factor 01}0 was applied to the communal kernel and a scaling factol%M
was applied to the specialized (task-specific) kernels. Independeninigand full pooling results
were obtained by finding the SVM solutions on each data set in isolation andthénding an
SVM on the pooled data from all tasks. The param&evas chosen based on performance on a
validation set. For adaptive pooling,values were also explored from 0¢8. TheC value which
resulted in the highest AUC on the validation data was used to pick the AUGdéhioevalue. The
experiment was repeated 100 times to get the test AUC over differerdmasplits of the data. An
advantage for adaptive pooling was evident whena 1e5 and was statistically significant at better
than the 5% p-value threshold (using a paired t-test). Figure 3 showsehagavtest AUC results
across 100 folds using independent SVMs, pooling and adaptive pdolinvarious values oft
(after cross-validation only over the value©ffor all methods). The Figure reveals an advantage
for adaptive pooling compared to full pooling and independent learning.
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Figure 3: Adaptive pooling experiments on the Heart data set. The adea tine curve (AUC) for
adaptive pooling, pooling and independent SVMs is shown in (a). Inalzpomed in
version of the plot is shown to focus on the setting with highest average Ab€value
of the regularization paramet€rwas found using cross-validation for all three methods.

12. Graphical Model Structure Estimation

The multitask sparse discrimination framework is a general tool for largeimaegsification since
most elements o become vanishingly small (at appropriate settingg @ o). This motivates
extending the framework to other sparse inference problems includingtineagon of graphical
model structure which has been explored agasparse regression with asymptotic guarantees
(Wainwright et al., 2007). Thé, approach infers a graphical model by learning functions that
reconstruct some dimensions given others under sparsity constraggsma that we are given
binary vectors, ..., xt wherex; € BP are sampledd from an unknown distribution

D D D
p(x) O exp( Zln(m)x(m)—l— Zl ZlE(m, n)e(m, n)x(m)x(n)) .

This Ising model is specified by an undirected gr&phk- (V,E) with D verticesV and edge£,
where, without loss of generality, we may assume that B°*P is also a binary symmetric ad-
jacency matrix with zero on its diagond,c RP*P is a symmetric real matrix with zero on its
diagonal and) € RP is a real vector. The goal of graphical model structure estimation is te@eco
an estimat&r of the binary matrixe solely from the observations, ..., Xt.

In previous work (Wainwright et al., 2007), a method was provided itisieses PiET = E] — 1
asT — oo by solving independent sparse regression problems as follows,

T
6m = arg minv dz 6(d)| + leog(lJr @2 a0 (A)+8(m)y _x, (m)( d; 8(d)x¢(d) +8(m))
BeRP T = m
form=1....D. These tasks reconstruct each dimension from all other dimensionsthén o
words, then'task is given{x(1),...,x(D)}\ x(m) and predictx(m). The/; sparsity constraint, for
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appropriate settings of the parameatemakes the problem non trivial since only some inputs can be
used in the reconstruction. To recover a single consistent set of Egfgése nonzero components
of B, estimated for various tasks are combined using either an AND or an OR rutee IAND
caseF (m,n) is set to 1 if boty,(n) is nonzero and,(m) is nonzero. In the OR casé(m,n) = 1
if either of the terms is nonzero.

The multitask MED approach can potentially circumvent this ad hoc AND/OR stdprbing
all sparse predictors to agree on a single undirected edge connectivriy Bdrom the outset.
The MED approach considems=1,...,D tasks where then'th task is givenx; and must predict
ymt = 2%(m) — 1 € +£1 as a classification output. We assume the following predictive distribution:

p(yimx,08,b,s) O exp(é’ d;ms(m,d)x(d)e(m,d)er(m)).

The MED model® contains a matri¥@ € RP*P with its diagonal forced to zero. In addition, it
contains a binary matrigsc BP*P (again with its diagonal forced to zero) and finally a scalar vector
b € RP. The standard Gaussian priors are applied to the model paramete(®jrexcept for
the s variable which obtains a Bernoulli prior over its binary entries and (féficiently large a)
to encourage its sparsity. In addition, we a priori enforce the symnsétnyd) = s(d,m). This
ensures that, if input(d) is used for the prediction of(m), x(m) can also be used for predicting
x(d). However, symmetry is not enforced on tg@arameters which permits us to learn different
linear relationships once a consistent dependency structure is determimey consistency of the
edges used by the sparse prediction is enforced up-front in a multitagigsastead of resorting
to a post-processing (i.e., the AND or OR steps) as in the previous appndgach independently
learnsD regression functions.

The MED framework computes the partition function by integrating the following:

D T
zx) = [p©) exp( S AmtYims ( 5 sm (@8 a) +b(m)> —)\m,t) do

m=1t=

= nF o) T p(g)eh Tt B S ((Zhmomo @ (3 hasonxm)).
S

Takingo — o andJ(A) = —log(Z(A)) produces (up to an additive constant) the dual program:

1 2 2
maxy Zﬁbl z;r:lxm,t - Zr?):l thl):mﬂ log (O( +e? ((Zt Amaymex (6))* (2 Ay (m) ))

St. 0< Amt <C Vmtand {1 ; YmtAme =0 ¥m.

The objective function can be written as

D D
15T
max\’1— > > log <a+eé>‘ Hmﬁd*)
AN M=1d=mm+1

where theHpy g € RPT*PT matrices ford > me {1,...,D} are defined element-wise as
Hmd([nt],[0,T]) = YmtYmXe (d) X (d)Om=n—0 + Yd t¥d, 1%t (M) X (M) dg—n—o-
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Itis easy to maximize the objective using sequential quadratic programminb gikies an estimate
for A. The prediction rule is they = argmax Epe|p)[log p(y|m,x,©,b,s)] which involves the
sparse variabls. These switch configurations essentially identify the network structureaeand
obtained from expectes(m,d) values under the posteripf®| D) as follows:

1
1+a eXp(—% ((Zt AmtYmitXt (d)?+ (St AdYdtXe (m))2> > ‘

§md) =

For largea, many entries o$ are driven towards small values as MED resemble& aagularizer.
MED produces sparsity although only in a probabilistic sense since deafBao not strictly go to
zero but typically shrink to small values. The matsixepresents MED'’s estimate of the unknown
adjacency matriE in the original graphical model.

To test the accuracy of the method, the scalar valués# used as scalar classification predic-
tions for the presence or absence of an edge. Given the true grapé gfredictions are straightfor-
ward to evaluate using the AUC. Experimental results with synthetic data ti@et by generating
random graphs and obtaining samples from them according to the Isind afmme (Wainwright
et al., 2007). In Figure 4, the mean area under the curve (MAUC) istexpfor the MED tech-
nique as well as the independéntregularized regressions with an AND and an OR step. Multiple
settings of the regularization parameters are shown in the plot as the vaheerefjularizatiow is
explored in the original method (for both the AND and OR setting) and the salt/€ anda are
explored in the proposed method. Since theegularization method (Wainwright et al., 2007) is
asymptotically correct, the experiments here focus on the small sample regiom.téh random
graphical models over 5 nodes, 60 samples were drawn using Monter@etiiods and the average
area under the curve for the various methods was reported. To fairlpa@ results using an AUC
measure, we did not only use the support found by/theegularized method but also considered
all possible thresholds on thig solution. More specifically, the min or the max operators were
first used to symmetrize the absolute value of the regression weights redd&, regularization.
These non-negative scalars were then used in the graphical modehicadillmperating points on
the receiver operator characteristic to be explored. This can only immpghevperformance of the
¢1 regularization method in terms of AUC (a binary estimate of edges followed #®Nd» or an
OR step can only obtain lower AUC). Despite this, the proposed méthpdrforms significantly
better possibly due to the explicit symmetry in the edge estimation. These prelirek@asiments
motivate large scale future empirical work.

13. Discussion

A multitask learning framework was developed for support vector machimefarge-margin linear
classifiers. Each task-specific classifier is estimated to solve its own prgkleati tasks have to
share a common representati@nThis common representation included sparse feature selection
and conic kernel combination. This common representation couples tasksbygnd standard
tabula rasa learning. To compute the coupled linear models, we applied the marintwopy dis-
crimination framework which produces support vector machines tha¢ sheommon sparse rep-
resentation. The framework combines classification problems non-trivialycionvex dual-space
optimization. We presented a simple sequential quadratic programming apgooaolving the

10. Code available atww.cs.columbia.edu/  ~jebara/code/multisparse/
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Figure 4: Graphical model structure estimation from data sampled fromnsiigls. The average
area under the curve is shown for ten random models. The proposeddrigtavalu-
ated across various values©@fanda and compared té; regularized logistic regression
method across various valuesvolvith both AND and OR symmetrization.

dual optimization for both multitask feature selection and multitask kernel selgqmtidrlens. We

interleave bound computations with standard SVM updates (either usingagjegaogramming or,

preferably, nearly linear-time modern SVM solvers). In addition, the exbes to adaptive pooling,
sparse regression and graphical model reconstruction were illustigtedVIED multitask frame-

work potentially allows flexible exploration of sparsity structure over déffergroups of variables
and is reminiscent of Group Lasso methods (Yuan and Lin, 2006; Ba6B) 2Experiments on real
world data sets show that MED multitask learning is advantageous over sasfl@r tabula rasa
learning.

In future work, it would be interesting to investigate theoretical generalizaji@rantees for
multitask sparse MED. This may involve exploiting PAC-Bayesian model selegt&ihods or on-
line mistake bound methods (McAllester, 1999; Langford and Shawe+T&002; Long and Wu,
2004) which have already given generalization arguments for the simgfeMED approach. Since
generalization guarantees in multitask settings have already been prowvidethér algorithms
(Ando and Zhang, 2005; Maurer, 2006, 2009), this may be a fruitfel siwork. Finally, it may
be useful to explore methods for automatically estimating the hyper-pararireteesMED frame-
work such asx which, as in classical Bayesian approaches, might be handled via optiminatio
integration rather than cumbersome cross-validation.
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Appendix A. Bounding the Logistic-Quadratic Function

Theorem 1 For all u € RP, log (0( +exp<“%“)) is bounded above by
viv vi(u—v) 1
log ( o +ex ()>+ — U=V (1+6wW' ) (u—v
g( P\ 2 1+aexp(—%Y) UV ( g >( )

for the scalar termg = ltanl*(% log(aexp(—v'v/2)))/log(aexp(—v'v/2)). The bound holds for
anya > 0,v € RP and strict equality is achieved when= v.

Proof The proof proceeds by first making the bound achieve (tangentialliggaau = v. It
then applies a previously known bound on the logistic function using cdgmvasguments. The
logistic-quadratic functiog(u) and the general quadratic functiqfu) are defined as

o~ wo(aso0(*}))

qu) = c+b'(u—v)+ %(u —Vv)"A(u—V).

The quadratic functiom(u) is parametrized by a scalar> 0, a vectorb € RP and a positive
semi-definite matrixA € RP*P. These parameters must be selected to ergure> g(u) for all
u € RP. Furthermore, the theorem requires that) = q(v). This determines the additive constant

c=log (a + exp("%")). Since equality is achieved at= v, the gradients must be equal there as

well, in other wordsa%—ﬁ” ‘u_v = a?,—(u“) U:V. This determines thdt = exp("%") /(a +exp("%") V.

Otherwise, the functions crossat= v which violates the bound. Inserting these valuesbfand

c into the quadratic form fog(u) reveals thatA must be chosen such thatu —v) "A(u —v) is
greater than or equal to

o <a+exp(uTu/2)> _ explvv/2)
a+explviv/2) a+explviv/2)
Consider the choice fok suggested by the theorem to prove that it satisfies this requirement
tanh(2log(aexp(—v'v/2))) -
2log(aexp(—v'v/2)) ‘
Multiply A appropriately to obtain the desired expression

vi(u—v).

A = 1+

1 1 tanh(3log(9))
S(u ~V)"AU-V) = S(u= v)' (I + 2|(2)g(¢)WT> (u—v),
where, for brevity, we define the scalpe= a exp(—v'v/2). Rewrite the right hand side as
1 1
%(u ~V)TAU-v) = %(u —v)' (I + WVVT) (U—v)— WVT(U —V)
-1
TmvT(u —V)
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while noting that tanh% logd) = (¢ —1)/(¢ +1). The right hand side further simplifies into

1 T B T tan“%|09¢) 2 2, 91
E(U V) Alu—v) = E(U v) (u V)+w(x ('09¢))+TZ
where, for brevity, we have defined the following
z = q)JlrlvT(u—v),

X = Vvi(u-v)—log¢ = ($+1)z—logo.
Recall the following inequality (Jaakkola and Jordan, 2000) which haidariy choice of € R:

log <exp<—§> +exp<z>> +mr:gg)(x2—52) > log (exp(—é) +exp(§)) .

Chooset = log¢ (or, equivalentlyg = —log¢) and rewrite the bound as

W(Xz(logmz) > log (exp<7§> +exp(§)) log(6} +¢73).

Applying this bound in the formula involving the matrix and rearranging yields

WV tog (exp(~% )+ exp(X) ) ~togte + 43+ &2

%(u —Vv)"Au-v) >

_ M +log(exp(—z+logd) + eXF((I)Z)) —log(¢ +1)

2
exp(q)z >

Jlu—v|* H2 (

_ = V|2+|og< (_ qgi—lv)>+¢ilexp<¢v;(i1v)>>
-
ol

= +log
o lu— VH2 xp(vT (U—v)) vi(u—v)
- og o+1 >_ o1
a+exp(—v'v/2+v'u) exp(v'v/2)
o +expvv/2) >_a+wmﬁwa

Ju —2 |2+|Og<0(exp(—2\|u—v|| )+exp(—vTv/2+vTu)>

2
LI \"
lo—vi? | Ty

v

o+expviv/2)

exp(v'v/2)

a+expviv/2) viu-v).

In the last line, we use the fact thatlexp(—3||u — v||?). Absorbing the|lu— v||? term into the
logarithm multiplicatively gives the desired inequality

a+expu’u/2) exp(v'v/2)
a+expviv/2) > a+expviv/2)

%(u—v)TA(u—v) > Iog< vi(u—v).
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Appendix B. Convergence of Sequential Quadratic Programmig
Theorem 2 Algorithm 1 finds a\ € A achieving JA) > (1—¢&) maxyca J(A) where

D

J(A) =Dlog(a +1) — dz log (a + exp@ATHd)\)) ISNE]
=

0<Amt <C, t=1,...,Tm,m=1,...,M
{ ZthlyM)\m,t =0, m=1....M

i log(1/¢) i i
in at mOStLog(mm(Hg,z))—‘ iterations for anyo > 0 ande € (0,1).
Proof Sequential quadratic programing is used to approximdte- argmaxeaJ(A). Given a
current setting\; at iterationi, Theorem 1 obtains a variational quadratic bound ©X) as:

D 1 - D exp(AiTHdAi) -
Li(A) = Dlog(a+1)— ; log <G +exp<2>\i Hd/\i>> — ; » _i_quAZ-THd)\- ) Ai Hi(A—= X))
=1 -1 Al dAl

2

1 D tanh($log(a exp(— A Had)))

A=X)" _ HaAidi "Hg+Hg ] A=) +AT1
2 | cgl 2l0g(a exp(—2iHdi) - |

The bound satisfids (A) < J(A) for all A and equality is achieved when= ;. Next, we will find
an upper bound(\) < U;(X). We first form a component &f () calledU () that upper bounds
the following component of the objective function

) = Iog<a+exp<;}\THd>\>>.

Apply Jensen’s inequality for any choice of the scalar variational pae@gc [0, 1] to get

o exp(3ATHgA)
J) < —lqlog (Zd) —(1—2q)log ((:I-Z—Zd)> :

Setting the variational parameteras= o (a +exp(3A/ Hai))  produces the boundf(X) <

1 exp(3A HaAi) 1 exp(3A HaAi) 1
—log( a+exp( A'H A>> + 2 A Hai — < “XTHgA.
g< p<2 e a+exp(IATHaA) 27 T arexp(3ATHaN) 27

Repeating the above for=1,...,D terms produces the overall variational upper bound

D 1 D exp(3AHaNi) 1
Ui(A) = Dlog(a+1)— S log|( a+exp( =X HgAi 2] A Hg i
) a1~ 5 g< ; p(2 THq '>>+dzla+exp(;wdxi>z THa

D 1 TH .
_y @M ) Lyr oy
& o+ exp(3A HaAi) 2

Clearly, J(A) < U;(A) and equality is achieved whexi= A;. Thus, we have an upper quadratic
bound and a lower quadratic bound which sandwich the objectivg(as < J(A) < U;(A). Both
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Figure 5: Upper and lower quadratic bounds on the objective function.

bounds are tight ak;, in other wordsLi(Ai) = J(Ai) = Ui(Ai). Figure 5 depicts the bounds. The
algorithm initializesAo = 0 and updates via 1 = argmaxeca Li(A) for each iteratiori. Apply
Lemma 3 which provides a value of= maxa + 1, 2) such that the following holds

supLi(A) —Li(A) > = sup(Ui(A)—Ui()).
AeA K xen
SinceLi(Ai) = J(Ai) = Ui(Ai), I(Ait1) > supyea Li(A) and sugep Ui(A) > J(A*), we have
I I = T —IN).

Rearrange the inequality as follows

I —IN) > (1— i) () —IN)).

Iterate the above inequality startingiat O to obtain

K

I I > (1—1) (3(h0) —INY)).

Since the initialization used wag\o) = J(0) = O, the above simplifies as

IJNi) > <1— <1_i>i> J(AY).

Therefore, a solution that is within a relative multiplicative factoe ahplies that

s (1) - (- rera)
log(1/e) = ilog <min <1+ é,Z)) .

Therefore, the number of iterationsequired is at mos Ll/e)l . |
log(min(1+2,2))
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Lemma 3 The functions

D D Ai_HgA
LA\ = DIog(0(+1)—gllog<a+exp<;>\iTHd)\i>>—;mixs(p()‘l Hdz\l))\iTHd(A—Ai)

_é(}‘ A (; GaHa A Hd+Hd>()\ )+ AT,

D D exp(3AHaNi) 1
Ui(\ Dlog(a+1)— § log( a+exp( =X\ Hg\i L ST Hg
i(A) gla+1) dgl g< + Xp<2 i Fd I>>+dzla+exp(%}\iTHd)\i)2 i FdA;

D exp(3A Ha
= p(21| e ) L AT
& o+ exp(3A Hai) 2

for Gg = %tanf(%Iog(aexp(—%)))/log(a exp(—%) and Hy > Oford =1,...,D satisfy
1
. 1 (X > . NIV
SUP(LiI(A) —Li(N)) - = (5 SUP(UI(A) ~Ui(A)
where

A - {OSAm,tSC, t=1...,Tmm=1...M
thQlyMt)\m,t =0, m=1,....M.

Proof Rewrite the functions as follows

L)L) = A= A0 O A) ~ (A= X) g
Ui(A) —Ui(N) = —%(A—Ai)TW(A—Ai)—(A—Ai)Tu

where
D

o = dz (gde)\iAiT-H)Hd
=1
W - D exp(%AiTHdAi)
B dZ]_GJreXF(%)\iTHd)\i)
D eXp(AiTHdAi)

lj, fry
dzl 0 4 exp( AFaAi Al A Hadi

Since t{A)l > Afor matricesA = 0O, the following holds in the Loewner ordering sense

D
o = dz (gdAiTHdAiJrl) Ha.
=1
Rewrite this bound a® < ¥ 4 @sHg and rewrite¥ = 5 4 PgHq. Consider the ratio

[T o +exp(3Ai"Ha\i) [ tanh(3 log(aexp(— M)))
Wa  exp(3Ai"HaX) 2log(a exp(— A Hed)

AiTHd)\i + 1) .
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Definelq = %AiTHd)\i and rewrite the ratio as

@ atexply (tanﬁ%log(aexq—zd») zd+1>.

We  expldq) log(arexp(—Zq)

It is easy to verify that this ratio is maximized whén— « if a < 1 and wher{q = 0 whena > 1.
This reveals that the ratio is boundedjgis< k wherek = max(a +1,2). Therefore, we can rewrite

D D
o = ;%Hd = ; KPgHg = KW.
=1 =1

Recall the primal maximization problems of intere®; = sup,.sLi(A) —Li(Ai) andPy =
SUP A Ui(A) —Ui(Aj). The constraints € A can be summarized by linear inequalities < b for
someA andb. Apply the change of variables= X — A;. The constrainA(z+ A;) < b simplifies
into Az < b whereb =b — A);. Since); € Ais a feasible solution (which is true by construction),
it is easy to show thdi > 0. We obtain the following equivalent primal optimization problems

1 K 1
P.=sup—=z'®z—z'pu, Pz =sup—=z'Wz—z'p, Py = sup—=z'Wz—z'pu.
Az<b Az<b Az<b

The respective dual problems to the above are

DL = inf%yTAq:*lATy+yTA¢*1u+yTB+%;ﬁquu
Dy = )l/gf— yTAw ATy + yTAqJ Yu+yo+= ;-p, w1,
Dy = |nf zyTAw ATy +yTAw- u+yTb+2;ﬁw L.
Due to strong duality?, = D, Pz = Dz andPy = Dy. Apply the boundd < kW as follows
P = sug—}zTCDz—zTu
Az>b

K
> sup—=z'Wz—z'p =Pz =Dy
Az>6 2
11
= n;f— yTA‘JJ ATy + yTAllJ Y4y'b4 = 2“ Ty-1,
y>
-1

= infféyTAquATerfyTAw*lqufyTB .

11
TR 1
b+-—-u Ty~ L4
v K2

v

1 1 1
mf— yTAw ATy + yTALlJ A+ y To+=p'w iy = Du =Py,
y>0 k2! K

In the last line, we have dropped the telﬁgquTb since it is positive (recall that > 0 andb > 0).
Thus,P. > %PU which yields the desired inequality

ilEJ/Ii)Li()‘) —Li(Ai) > m ig/[\)ui (A) =Ui(Aj).
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Appendix C. Relation to Other Sparse Regression Methods

This section considers MED regression with a squared error loss. Thishow a connection
between the MED regression framework and standard regression raetihcitl as least squares or
Ridge regressiorf; regularized regression methods such as the Lasso (Tibshirani, I996jter-
mediates such as the Elastic Net (Zou and Hastie, 2005). In particulaggil@rizer introduced by
feature selection and kernel selection in the MED framework will be showesimble the Elastic
Net and the Lasso and Ridge regression for appropriate choigeslofthis article, we define the
¢1 norm of a vectow € RY as|jw||; = T5_; |w(d)|, and thef; norm as|w||3 = S5_; jw(d).

Consider théz-regularized least squares problem with input-output gaiks, y1), - - ., (X1, ¥71) }
wherex; € RP andy; € R. The squared error in predictirygfrom x; is minimized while also min-
imizing the/, norm of the classifier. Equivalently, this can be posed as the minimization @5 the
norm of the classifier subject to a hard constraint on the total squaatbétained on the training
data. We wish to estimate a regression function of the fpew x + b whose parameters € RP
andb € R are given by the following constrained minimization problem:

1 T
min =||w||?st. ZHWTxt +bh—w|?<Y
w,b 2 =

for someY € R". The dual problem for the above can be obtained by noting that the sotatien
be of the formw* = th:l)\txt by standard reproducing kernel Hilbert space arguments{isabif
and Smola, 2001). We can rewrite the optimization problem as follows:

T

T T
m|n2 Z)\t)\TXt Xy S.t. Zi P 1)\Txt ot f Z Z

after minimization oveb has been performed. Recall that the prediction function can also be written
in terms ofA1,...,At as a function of a query daturnas follows:

T T lT lTT -
AXe X+ = - = AXe Xr.

It is possible to now consider the same manipulation that MED with feature selgrtiduces by
integrating over switches with a Bernoulli prior. This yields the following featelection convex
program that is a simple variant of least squares regression:

2

AeXy Xg — <Y 3)

HM—|

miny T4 log(a +exp(3 3t St AcAexc (d)x(d))) — Dlog(a + 1)2
Sty || TadeX X+ 1 3ia¥ — 7 S S A — e[| <Y

Similarly, the prediction rule is as follows in the feature selection variant:

ixt dié(ol) i D) A :1§(d)xt(d)xT(d) 4)

wheres(d) is given by:

d) = 1+oexp(—3 31 Ti-1 Addexe(d)xe(d))
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If we leta =0, it is straightforward to see that we recover the standard least sqeete in
Equation 3. However, this dual problem in the MED formulation is clearly imtya different
regularization on the classifier. We next investigate what primal regutacti@esponds to this
change and write it in terms of the original classification parametemhis will show a connection
to the/; regularization popularized by the Lasso method.

First, note that the predictionii Equation 4 can be written in terms of a primal parameters
y=w'x+ b if we define the parameter element-wise as:

YA (d)
1+aexp—3 371 5T AMAexe(d)xe(d))”

Instead of arf, norm, the MED program corresponds to minimizing the following regularizer:

w(d) =

D
fueo = 3 Iog (a0t 153 S M),

The above can be written in termswfas follows:
D
EMED(W) = CZ h(Wd)
=1

where the functiom() is defined implicitly by the following equation

2log(a) + 2log(exp(h) — 1)
(1-1/(exph) —1))*

Near the origin, this function behaves like &nnorm and, further away, behaves like @morm.

In Figure 6(a) we plot the functioh(w(d)) for various values ofv(d) scaled appropriately so
thath(1) = 1. For smalla, the induced penalty on the regression parameters resemblés an
norm. Asa increases, a behavior resembling@amorm emerges. In intermediate settings, the
MED regularizer interpolates between these two behaviors in a manner reeminig the so-called
Elastic Net (Zou and Hastie, 2005) which uses a conic combinatidpn afid ¢, regularization. In
addition, two-dimensional contour plots are shown compafipg to /1 and/, regularization in
Figure 6(b). While/yep is not identical to the Elastic Net regularization, the similarity warrants
further exploration and may be useful in group Lasso and multitask settinga¢h et al., 2005).

w(d)? =
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