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Abstract

This paper investigates a learning formulation caledctured sparsitywhich is a natural exten-
sion of the standard sparsity concept in statistical le@raind compressive sensing. By allowing
arbitrary structures on the feature set, this concept géines the group sparsity idea that has
become popular in recent years. A general theory is develégedearning with structured spar-
sity, based on the notion of coding complexity associateth trie structure. It is shown that if
the coding complexity of the target signal is small, then oam achieve improved performance
by using coding complexity regularization methods, whi@neralize the standard sparse regu-
larization. Moreover, a structured greedy algorithm ispmsed to efficiently solve the structured
sparsity problem. Itis shown that the greedy algorithm epionately solves the coding complexity
optimization problem under appropriate conditions. Eipents are included to demonstrate the
advantage of structured sparsity over standard sparsipior real applications.

Keywords: structured sparsity, standard sparsity, group sparsig, $parsity, graph sparsity,
sparse learning, feature selection, compressive sensing

1. Introduction

We are interested in the sparse learning problem under the fixed desiditi@a. Consider a

fixed set ofp basis vectorgxy,...,Xp} wherex; € R" for eachj. Here,n is the sample size.

Denote byX the n x p data matrix, with columny of X beingxj. Given a random observation
Y = [Y1,...,¥Yn] € R" that depends on an underlying coefficient ve@ar RP, we are interested in
the problem of estimatinf under the assumption that the target coefficgeistsparse. Throughout
the paper, we consider fixed design only. That is, we assKiisdixed, and randomization is with
respect to the noise in the observatjon
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We consider the situation that the true mean of the observalyocan be approximated by a
sparse linear combination of the basis vectors. That is, there exists avacte 3 € RP such that
eitherEy = X3 or Ey — X3 is small. Moreover, we assume tlfhis sparse. Define the support of a
vectorP € RP as

suppB) = {j : B; # 0},

and||B|jo = |supgB)|. A natural method for sparse learnindigregularization:
BLo = argBrgﬂégQ(B) subject to]|Bljo < s, 1)

wheres is the desired sparsity. For simplicity, unless otherwise stated, the objaatigidn con-
sidered throughout this paper is the least squares loss

Q(B) = IXB VI3,
where|| - || denotes the Euclidean norm.

Since this optimization problem is generally NP-hard, in practice, one oftesiders approxi-
mate solutions. A standard approach is convex relaxatidp odégularization td_; regularization,
often referred to as Lasso (Tibshirani, 1996). Another commonly upptbach is greedy algo-
rithms, such as the orthogonal matching pursuit (OMP) (Tropp and GiR@07).

In practical applications, one often knows a structure on the coeffigetor3 in addition to
sparsity. For example, in group sparsity, one assumes that variablessarttgegroup tend to be
zero or nonzero simultaneously. The purpose of this paper is to study tteegmoeral estimation
problem under structured sparsity. If meaningful structures existhow that one can take advan-
tage of such structures to improve the standard sparse learning. Spcifie study the following
natural extension dfy regularization to structured sparsity problems. It replaces ghenstraint
in (1) by a more general tero{f3), which we callcoding complexityThe precise definition will be
given later in Section 2, and some concrete examples will be given later oS dc

Beonstr = argBmﬂégQ(B) subject tac(B) < s. )

In this formulation,s is a tuning parameter. Alternatively, we may also consider the penalized
formulation

Bpen=arg min[Q(B) + Ac(P)] (3)

whereA > 0 is a regularization parameter that can be tuned. Since (2) and (3) ethaizoding
complexityc(B), we shall call this approaatpding complexity regularization

The optimization of either (2) or (3) is generally hard. For related problémese are two com-
mon approaches to alleviate this difficulty. One is convex relaxatignggularization to replackey
regularization for standard sparsity); the other is forward greedytsate(also called orthogonal
matching pursuit or OMP). We do not know any extensionkiofegularization like convex relax-
ation methods that can handle general structured sparsity formulationsrawthbie performance
guarantees. In particular, the theoretical analysis in our companion (réyeeng and Zhang, 2010)
for group Lasso fails to yield meaningful bounds for more complex corstaxation methods that
are proposed for general structured sparsity formulations condidtetkis paper. For this reason,
we present an extension of the standard greedy OMP algorithm thaeagpbed to general struc-
tured sparsity problems, and more importantly, meaningful sparse rgdomends can be obtained
for this algorithm. We call the resulting procedsteuctured greedy algorithrr StructOMP, which
approximately solves (2). The details will be described later in Section 3.
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1.1 Related Work

The idea of using structure in addition to sparsity has been exploredebeforexample is group
structure, which has received much attention recently. For exampley gpausity has been con-
sidered for simultaneous sparse approximation (Wipf and Rao, 2007#nhahidtask compressive
sensing and learning (Argyriou et al., 2008; Ji et al., 2008) from thee&ian hierarchical modeling
point of view. Under the Bayesian hierarchical model framework, data fll sources contribute
to the estimation of hyper-parameters in the sparse prior model. The shiaredam then be in-
ferred from multiple sources. He et al. recently extend the idea to the taegityn the Bayesian
framework (He and Carin, 2009a,b). Although the idea can be justified) wsamdard Bayesian
intuition, there are no theoretical results showing how much better (ana wid kind of condi-
tions) the resulting algorithms perform. In the statistical literature, Lassodes éxtended to the
group Lasso when there exist group/block structured dependemimsgathe sparse coefficients
(Yuan and Lin, 2006).

However, none of the above mentioned work was able to show advarftageg group struc-
ture. Although some theoretical results were developed in Bach (20@BNardi and Rinaldo
(2008), neither showed that group Lasso is superior to the standast.L&oltchinskii and Yuan
(2008) showed that group Lasso can be superior to standard Léassoeach group is an infinite
dimensional kernel, by relying on the fact that meaningful analysis cataéned for kernel meth-
ods in infinite dimension. Obozinski et al. (2008) considered a speaal aagroup Lasso in the
multi-task learning scenario, and showed that the number of samples cefpiineecovering the
exact support set is smaller for group Lasso under appropriatétioorsd Huang and Zhang (2010)
developed a theory for group Lasso using a concept called strong gparsity, which is a special
case of the general structured sparsity idea considered here. Bheas in Huang and Zhang
(2010) that group Lasso is superior to standard Lasso for stronglpesparse signals, which pro-
vides a convincing theoretical justification for using group structuredsgga Related results can
also be found in Chesneau and Hebiri (2008) and Lounici et al. (2009

While group Lasso works under the strong group sparsity assumptiagsni handle the more
general structures considered in this paper. Several limitations of drasgn were mentioned
by Huang and Zhang (2010). For example, group Lasso does n&ctgrhandle overlapping
groups (in that overlapping components are over-counted); that isea goefficient should not
belong to different groups. This requirement is too rigid for many prddigglications. To address
this issue, a method called composite absolute penalty (CAP) is proposedadneZiha (2009)
which can handle overlapping groups. A satisfactory theory remains devmdoped to rigorously
demonstrate the effectiveness of the approach. In a related develppoemlski and Torresani
(2009) generalized the mixed norm penalty to structured shrinkage, whitkdentify structured
significance maps and thus can handle the case of the overlapping .grmypsver, there were no
additional theory to justify their methods.

It is also worth pointing out that independent of this paper, two recerk WJacob et al., 2009;
Jenatton et al., 2009) considered structured sparsity in the conveatietasetting, and extended
group Lasso to more complicated sparse regularization conditions. Theseamplement the idea
considered in this paper, which focuses on a natural non-convefation of general structured
sparsity, as well as its greedy approximation. Again, since convex tedaxaethods are more dif-
ficult to analyze in the structured sparsity setting with overlapping grougsjsfactory theoretical
justification remains an open challenge. For example the analysis in our compeork (Huang
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and Zhang, 2010) on group Lasso does not correctly generalize @bthe mentioned convex
relaxation formulations because a straight-forward application leads torallmoportional to the
number of overlapping groups covering a true variable. Unfortunatelgast for some of the struc-
tures considered in this paper (such as hierarchical tree structuoedlanto show the effectiveness
of using the extra structural information, we n&e@og,(p)) groups to cover each variable, which
leads to a bound showing no benefits over standard Lasso if we direptiythp analysis of Huang
and Zhang (2010). It is worth noting that the lack of analysis doesn'nrttest formulations in Ja-
cob etal. (2009) and Jenatton et al. (2009) are ineffective. Fongbea some algorithmic techniques
are employed by Jenatton et al. (2009) to address the over-countiegnssmentioned above, but
the resulting procedures are non-trivial to analyze. In comparisonrteglg algorithm is easier
to analyze and (being non-convex) doesn’t suffer from the abovdiamed problem. Therefore
this paper focuses on developing a direct generalization of the popM& &gorithm to handle
structured sparsity.

In addition to the above mentioned work, other structures have also bpkmeskin the liter-
ature. For example, so-called tonal and transient structures werelemtsfor sparse decomposi-
tion of audio signals in Daudet (2004). Grimm et al. (2007) investigatetiy@polynomials with
structured sparsity from an optimization perspective. The theoretiaalk téere did not address
the effectiveness of such methods in comparison to standard sparstgloBest work to ours is a
recent paper by Baraniuk et al. (2010). In that paper, model basmdity was considered and the
structures comes from the predefined models. It is important to note thattkeoretical results
were obtained there to show the effectiveness of their method in comressising. Moreover a
generic algorithmic template was presented for structured sparsity. A dcavdb the template is
that it relies on finding the pruning of residue or signal estimates to a sobgatiables with small
structured complexity. These steps have to be specifically designedfemedifdata models under
specialized assumptions. In this regard, while the algorithmic template is geheragtual imple-
mentation for the pruning steps will be quite different for different typestrmictures (for example,
see Cevher et al., 2009a,b). In other words, it does not provide a corscheme to represent their
"models"” for different structured sparsity data. Different structepresentation schemes have to
be built for different "'models”. It thus remains as an open issue howwelade a general theory
for structured sparsity, together with a general algorithm based onexigestructure representa-
tion scheme that can be applied to a wide class of such problems. The StduOMP algorithm,
which is proposed in this paper, is an attempt to address this issue. Althaciglyge of structures
requires an appropriately chosen block set (see Section 3 and Séctioa dlgorithmic implemen-
tation based on a generic structure representation scheme is the saméfent#tructures. We
note that in general it is much easier to pick an appropriate block set thasignda new pruning
algorithm.

We see from the above discussion that there exists extensive literatwardnning sparsity
with structured priors, with empirical evidence showing that one can achietter performance by
imposing additional structures. However, it is still useful to establish argetieeoretical frame-
work for structured sparsity that can quantify its effectiveness, disasean efficient algorithmic
implementation. The goal of this paper is to develop such a general theddiit@sses the fol-
lowing issues, where we pay special attention to the benefit of structpaesity over the standard
non-structured sparsity:

e quantifying structured sparsity;
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¢ the minimal number of measurements required in compressive sensing;
e estimation accuracy under stochastic noise;

e an efficient algorithm that can solve a wide class of structured sparsibfgms with mean-
ingful sparse recovery performance bounds.

2. Coding Complexity Regularization

In structured sparsity, not all sparse patterns are equally likely. Fongbe, in group sparsity, coef-
ficients within the same group are more likely to be zeros or nonzeros simulelpe®his means
that if a sparse coefficient vector’s support set is consistent withritierlying group structure, then
it is more likely to occur, and hence incurs a smaller penalty in learning. Omigilmation of this
work is to formulate how to define structure on top of sparsity, and how talizeneach sparsity
pattern. We then develop a theory for the corresponding penalized essr2tand (3).

2.1 Structured Sparsity and Coding Complexity

In order to formalize the idea of structured sparsity, we denoté by{1,..., p} the index set of
the coefficients. Consider any sparse sulbset{1,..., p}, we assign a cost @ ). In structured
sparsity, the cost oF is an upper bound of the coding length Bf(humber of bits needed to
represent by a computer program) in a pre-chosen prefix coding scheme. It is &neNn fact
in information theory (e.g., Cover and Thomas, 1991) that mathematically, ibtereoe of such a
coding scheme is equivalent to
FZ 2-°(F) < 1,
clI

From the Bayesian statistics point of view;°¥F) can be regarded as a lower bound of the proba-
bility of F. The probability model of structured sparse learning is thus: first geméne sparsity
patternF according to probability 2°(F): then generate the coefficientsfn

Definition 1 A cost functiorcl(F) defined on subsets éfis called a coding length (in base-2) if

270|(F) < 1.
FcI,F#0

We gived a coding length 0. The corresponding structured sparse coding caitypté F is defined
as

c(F)=|F|+cl(F).

A coding lengtfcl(F) is sub-additive if
cl(FUF’) <cl(F)+cl(F"),
and a coding complexity(E ) is sub-additive if

c(FUF') <c(F)+c(F).
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Clearly if cl(F) is sub-additive, then the corresponding coding comples(gy) is also sub-
additive. Note that for simplicity, we do not introduce a trade-off betwiggrand clF) in the
definition ofc(F). However, in real applications, such a trade-off may be beneficialkeXample
we may define(F) = y|F|+cl(F), wherey is considered a tuning parameter in the algorithm.

Based on the structured coding complexity of subsets, afe can now define the structured
coding complexity of a sparse coefficient vedior RP.

Definition 2_Giving a coding complexity(€ ), the structured sparse coding complexity of a coeffi-
cient vecto3 € RP is

c(B) = min{c(F) : supgP) C F}.

We will later show that if a coefficient vectd@ has a small coding complexity ), then3
can be effectively learned, with good in-sample prediction performancgdtistical learning) and
reconstruction performance (in compressive sensing). In orderetavbg the definition requires
adding|F| to cl(F), we consider the generative model for structured sparsity mentionker.ebr
this model, the number of bits to encode a sparse coefficient vector is thef suiemumber of bits to
encodeF (which is c(F)) and the number of bits to encode nonzero coefficienks (this requires
O(|F]) bits up to a fixed precision). Therefore the total number of bits requireldfs e O(|F|).
This information theoretical result translates into a statistical estimation resulowigalditional
regularization, the learning complexity for least squares regression vaitlyifixed support set
is O(|F|). By adding the model selection complexity[€) for each support sét, we obtain an
overall statistical estimation complexity ©{cl(F) + |F|). We would like to mention that the coding
complexity approach in this paper is related to but extends the Union-cfp&abs model of Lu and
Do (2008), which corresponds to a hard assignment(&f)dio be either a constactor +co.

While the idea of using coding based penalization is clearly motivated by the minigledam
scription length (MDL) principle, the actual penalty we obtain for structugeaksity problems is
different from the standard MDL penalty for model selection. Morepwar analysis differs from
some other MDL based analysis (such as Haupt and Nowak, 2006 tatemls with minimization
over a countably many candidate coefficigh{she candidates are chosen a priori). This difference
is important in sparse learning, and analysis as in Haupt and Nowak)(28060ot be applied to
the estimators of (2) or (3). Therefore in order to prevent confusi@navoid using MDL in our
terminology. Nevertheless, one may consider our framework as a natumdlination of the MDL
idea and the modern sparsity analysis. We will consider detailed examplE§ dirt Section 4.

2.2 Theory of Coding Complexity Regularization
We assume sub-Gaussian noise as follows.

Assumption 1 Assume thafy; }i—1 . n are independent (but not necessarily identically distributed)
sub-Gaussians: there exists a constant 0 such thatvi and vt € R,

Ry, 0i-BY) < g71/2
Both Gaussian and bounded random variables are sub-Gaussiathesaigve definition. For
example, if a random variable € [a,b], thenE;e¢-E8) < eb-@**/8 |f 3 random variable is
Gaussiang ~ N(0,0?), thenEge' < eot/2,

The following property of sub-Gaussian noise is important in our analy3is. simple proof
yields a sub-optimal choice of the constants.
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Proposition 3 Let P< R"™" be a projection matrix of rank k, ang satisfies Assumption 1. Then
for all n € (0,1), with probability larger thanl —n:

IP(y —Ey)|I3 < 0°[7.4k+2.7In(2/n)).

We also need to generalize sparse eigenvalue condition, used in the mpdesity analysis. It
is related to (and weaker than) the RIP (restricted isometry propertynasism (Candes and Tao,
2005) in the compressive sensing literature. This definition takes adeaotagding complexity,
and can be also considered as (a weaker version of) structure@/RiRtroduce a definition.

Definition 4 Forall F C {1,..., p}, define
p- () =inf { X3/ IBI3: supr(B) < F |.
p. (F) sup{ LIXBI3/ I3 suprp) < F }.

Moreover, for all s> 0, define

p_(s)=inf{p_(F):F C I,c(F) <s},
p+(s) =sup{p+(F):F C I,c(F) <s}.

In the theoretical analysis, we need to assume phds) is not too small for some that is
larger than the signal complexity. Since we only consider eigenvaluesifonagrices with small
costc(B), the sparse eigenvalye (s) can be significantly larger than the corresponding ratio for
standard sparsity (which will consider all subsetd df..., p} up to sizes). For example, for ran-
dom projections used in compressive sensing applications, the codinly t&¢sgpr)) is O(kIn p)
in standard sparsity, but can be as loncésupg3)) = O(K) in structured sparsity (if we can guess
supdB) approximately correctly. Therefore instead of requinmg O(kIn p) samples, we require
only O(k+cl(supfpB))). The difference can be significant wheris large and the coding length
cl(supfB)) < kin p. An example for this is group sparsity, where we hayk, even sized groups,
and variables in each group are simultaneously zero or nonzero. @mgdength of the groups are
(k/ko) In(p/ko), which is significantly smaller thakin p whenp is large (see Section 4 for details).

More precisely, we have the following random projection sample complexitymdbdor the
structured sparse eigenvalue condition. The theorem implies that the stduBP condition is sat-
isfied with sample sizen = O(k + (k/ko)In(p/ko)) in group sparsity (wheres =
O(k+ (k/ko)In(p/ko))) rather tham = O(kIn(p)) in standard sparsity (whese= O(kIn p)). For
hierarchical tree sparsity (see Section 4 for details), it require(k) examples (witrs = O(k)),
which matches the result of Baraniuk et al. (2010). Therefore The@eshows that in the com-
pressive sensing applications, it is possible to reconstruct signals wigr feumber of random
projections by using structured sparsity.

Proposition 5 (Structured-RIP) Suppose that elements in X are iid standard Gaussian random
variables NO,1). For any t>0andd € (0,1), let

8
n> g[ln3+t+sln(1+8/6)}.
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Then with probability at least — e, the random matrix Xc R"*P satisfies the following structured-
RIP inequality for all vecto3 € RP with coding complexity no more than s:

(1-8)[Bl2 < %nxﬁnz < (1+3)[B @)

Although in the theorem, we assume Gaussian random matrix in order to stété egpstants,
it is clear that similar results hold for other sub-Gaussian random matriags.thiat the proposed
generalization of RIP extends related results in compressive sensirgjaaistics (Baraniuk et al.,
2010; Huang and Zhang, 2010).

The following result gives a performance bound for constrained goctimplexity regulariza-
tion in (2). The 2-norm parameter estimation bOLHm'ij— Bl|2 requires thap_(-) > O (otherwise,
the bound becomes trivial). For random design maXrixhe lower-bound in (4) is thus needed.

Theorem 6 Suppose that Assumption 1 is valid. Consider any fixed teﬁ@RP Then with
probability exceedind —n, foralle >0 andB € RP such that: Q(B) Q(B) + ¢, we have

IXB—Ey|2 < [IXB —Ey||2+0+/2In(6/n) + 2(7.40%c(B) + 4.762In(6/n) +€) /2.
Moreover, if the coding schemé tis sub-additive, then
np_(c(B) +c(B))[IB— BII3 < 10|XB — Ey|3 + 370%c(p) + 290In(6/n) -+ 2.5¢.

This theorem immediately implies the following result for (Qﬁsuch tha‘c(ﬁ) <s,
L XBeonstr— Eyll2 < = [XB — Ey|la+ -2 /2In(6/1) + 22 (7.45+ 4.7In(6/n))"/2,
n constr — ILY||2 < NG Yil2 n n i n

Beonstr— BJI3 < [10]XB — Ey||3+ 370%s+ 290%In(6/n)] -

1
p-(s+c(B)n
Although for simplicity this paper does not consider the problem of estimatirig+ c(B)), it is
possible to estimate it approximately (for example, using ideas of d’Aspreetait, 2008). We
can generally expegi_(s+ c(p)) = O(1) by assuming that the sample size is sufficiently large
according to Proposition 5. The result immediately implies that as sampl@ size ands/n —

0, the root mean squared error prediction performamqé Ey||2/+/n converges to the optimal
prediction performance igfs[|XB — Ey||2/\/n. This result is agnostic in that even|[jKp —

Ey||2/+/nis large, the result is still meaningful because it says the performance etstl'matonﬁ
is competitive to the best possible estimator in the otéBs < s.

In compressive sensing applications, we take- 0, and we are interested in recoverlﬁg
from random projections. For simplicity, we ¥ = Ey =y, and our result shows that the con-
strained coding complexity penalization method achieves exact recons’nrﬂ&;,hg[r— Baslong as
p_(2c(B)) > 0 (by settings= c(B)). According to Proposition 5, this is possible when the number
of random projections (sample size) reachesO(c(B)). This is a generalization of corresponding
results in compressive sensing (Candes and Tao, 2005). As we bianedoout earlier, this num-
ber can be significantly smaller than the standard sparsity requirement &(||B|[oIn p), if the
structure imposed in the formulation is meaningful.

As an example, for group sparsity (see Section 4), we considee-defined groups, each of
size ky. If the support off is covered byg of the m groups, we know from Section 4 that the
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complexity can be defined as= glog,(2m) + gko. In comparison, the standard sparsity complexity
is given bys = ||B|lolog,(2p), which may be significantly larger i < ||B]|o (that is, the group
structure is meaningful). It can be shown that the group-Lasso estimayalsmachieve the group
sparsity complexity of = glog,(2m) + gky (Huang and Zhang, 2010; Lounici et al., 2009), but
the result for group-Lasso requires a stronger condition involvingired-RIP. Note that the first
bound in Theorem 6 does not require any RIP assumption, while thegbooimd only requires a
very weak dependency of the foqm (-) > 0. In contrast, the required dependency for group Lasso
is significantly stronger, and details can be seen in Huang and Zhan@)(2@Linici et al. (2009)
and Nardi and Rinaldo (2008). Although the result for the coding conitglegtimator (2) is better
due to weaker RIP dependency, we shall point out that it doesn’t thearfior group sparsity, we
should use (2) instead of group-Lasso in practice. This is becausag(}) requires non-convex
optimization, while group-Lasso is a convex formulation. This is why we willsider an efficient
algorithm to approximately solve (2) in Section 3.

Similar to Theorem 6, we can obtain the following result for (3). A relatedltder standard
sparsity under Gaussian noise can be found in Bunea et al. (2007).

Theorem 7 Suppose that Assumption 1 is valid. Consider any fixed teﬁ@iﬂ%". Then with
probability exceeding —n, for all A > 7.402 and a> 7.402/(A — 7.402), we have

IXBpen—Ey|13 < (1+a)2|XB—Ey||3+ (1+a)Ac(B) + 02(10+5a+7a 1) In(6/n).

Unlike the result for (2), the prediction performadbéﬁpen—EyHZ of the estimator in (3) is compet-
itive to (14 a)||XB—Ey||2, which is a constant factor larger than the optimal prediction performance
IIXB—Ey||2. By optimizingA anda, it is possible to obtain a similar result as that of Theorem 6.
However, this requires tuning, which is not as convenient as tunia@ (2). Note that both results
presented here, and those in Bunea et al. (2007) are superior to tedramditional least squares
regression results with explicitly fixed (for example, theoretical results for AIC). This is because
one can only obtain the form presented in Theorem 6 by tulirfguch tuning is important in real
applications.

3. Structured Greedy Algorithm

In this section, we describe a generalization of the OMP algorithm for starsparsity. Our gen-
eralization, which we refer to as structured greedy algorithm or simply t&iMP, takes advantage
of block structures to approximately solve the structured sparsity formulépn it would be
worthwhile to mention that the notion of block structures here is differemh fidock sparsity in
model-based compressive sensing (Baraniuk et al., 2010).

Note that in this algorithm, we assume téf ) is relatively easy to compute (up to a constant)
for any givenF. For this purpose, we may use a relatively easy to compute upper bow(# )of
For example, for graph structured sparsity described later in Sectioa dhay simply use the right
hand side of Proposition 11 as the definitionctf ). If the maximum degree of a graph is small,
we can simply use(F) = gin(p) + |F|, whereg is the number of connected component§ irFor
practical purposes, a multiplicative constant in the definitioa(Bf) is not important because it can
be absorbed into the tuning parameder
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3.1 Algorithm Description

The main idea of StructOMP is to limit the search space of the greedy algorithmatbldocks. We
will show that if a coding scheme can be approximated with blocks, then SMRHO effective.
Additional discussion of block approximation can be found in Section 4.

Formally, we consider a subsét C 2/. That is, each element (which we call a block or a
base block) ofB is a subset offl. We call B a block set ifI = UgcgB and all single element
sets{j} belong toB (j € I). Note thatB may contain additional non single-element blocks. The
requirement ofB containing all single element sets is for notational convenience, as it implies tha
every subseff C I can be expressed as the union of block8inVlathematically this requirement
is non-important because we may simply assigeoding length to single-element blocks, which is
equivalent to excluding these single element sets.

Input: (X,y), BC 2/,s>0
Output: F ¥ andp®k
letF©O =pandp® =0
fork=1,2,...
selectB € B to maximize progress ()
letF® = BW yF k-1
let B = argmirprr Q(B) subject to sup@) ¢ F®
if (c(BX) > s) break
end

Figure 1: Structured Greedy Algorithm

In Figure 1, we are given a set of bloc#sthat contains subsets éf Instead of searching all
subset$ C I up to a certain complexityF |+ c(F ), which is computationally infeasible, we search
only the blocks restricted 8. It is assumed that searching o&iis computationally manageable.
In practice, the computational cost is linear in the number of base b|@tks

At each stef(x), we try to find a block fromB to maximize progress. It is thus necessary to
define a quantity that measures progress. Our idea is to approximately mattimigain ratio:

QB ) —Q(B™)
c(B®) —c(B<t)
which measures the reduction of objective function per unit increasedifig complexity. This

greedy criterion is a natural generalization of the standard greedyithlgorand essential in our
analysis. For least squares regression, we can define the gain riiloas:

_ P _F (XBk=Y —y)||3
(BUFKD) —c(F(- D)’

®(B)

(5)

where
PE = Xe (X Xe) X

is the projection matrix to the subspaces generated by colums. dflere (X Xg)* denotes the
Moore-Penrose pseudo-inverse.
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More precisely, for least squares regression, at eachsjey Figure 1, we select a blod&®
that satisfies the condition

0
®(B™) >v rgeagxcp(B) (6)

for somev € (0,1]. We may regard) as a fixed approximation ratio (to ensure the quality of
approximate optimization) that will appear in our analysis, although the algodtien not have to
pick v a priori.

The reason to allow approximate maximization in (6) is that our practical implemaniaitio
StructOMP maximizes a simpler quantity

(])(B) o ngfp(k—l)(xﬁ(kil) _y)”%
~ c¢(BUF(k-1)) —¢(Fl-1))”

which is more efficient to compute (especially when blocks are overlapggigge the ratio

X5 ool 15/ 1IPs_pecar |3

is bounded betweep, (B) andp_(B) (these quantities are defined in Definition 4), we know that
maximization ofg(B) leads to an approximate maximization@B) with v > p_(B)/p..(B). That
is, maximization of (7) in our practical StructOMP implementation corresponds &pgaroximate
maximization in (6). Moreover only appears in our analysis, and it does not appear explicitly in
our implementation.

Note that we shall ignorB € B such thaB c F(k-1 and just let the corresponding gain to be
0. Moreover, if there exists a base bldgk? F*~ butc(BUF k-1 < ¢(Fk-1), we can always
selectB and letF® = BUF -1 (this is because it is always beneficial to add more features into
F®& without additional coding complexity). We assume this step is always perébifreich a
B € B exists. The non-trivial case §BUF 1)) > ¢(F&1)) for all B € B; in this case botip(B)
and@(B) are well defined.

(7)

3.2 Convergence Analysis

It is important to understand that the block structure is only used to limit thelsspace in the
structured greedy algorithm. However, our theoretical analysis shatsftim addition, the un-
derlying coding scheme can be approximated by block coding using badesldmployed in the
greedy algorithm, then the algorithm is effective in minimizing (2). Although aresdot need to
know the specific approximation in order to use the greedy algorithm, knatgiegistence (which
can be shown for the examples discussed in Section 4) guaranteestiweffess of the algorithm.
It is also useful to understand that our result does not imply that theiilgowon’t be effective if
the actual coding scheme cannot be approximated by block coding.
We shall introduce a definition before stating our main results.

Definition 8 GivenB c 2!, define
B) = ma B B) = maxc(B
Po(B) Be75><p+( ), Co(B) BGQ;X( )
and

b
(B, B) = min{% c(B;) :supiB) C | JB; (Bj€ B);b> 1}.
=1 j=1
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The following theorem shows thatdf, B) is small, then one can use the structured greedy algo-
rithm to find a coefficient vectoB® that is competitive t@, and the coding complexitg(B®) is

not much worse than that of3, B). This implies that if the original coding complexityf3) can be
approximated by block complexity3, B), then we can approximately solve (2).

Theorem 9 Suppose the coding scheme is sub-additive. Conﬁaeds such that

e< (0,]lyl3—IXB—y|3]

and

Po(B)C(B.B) | IIyI3—IXB—yI3
~ vp(s+c(B)) €
Then at the stopping time k, we have

QABE®) < Q(B) +e.

By Theorem 6, the result in Theorem 9 implies that

IXBY —By|lz < [IXB — Ey|l2 + 0v/2In(6/n) +201/7.4(5+ co(1B)) + 4.7In(6/n) +£/02,
189 B2 < 10]|XB — Ey||2 + 370%(s+ Co(‘B)) + 2902In(6/n) + 2.5¢
2= p-(s+Co(B) +c(B))n '

The result shows that in order to approximate a sighap to accuracy, one needs to use
coding complexityO(In(1/¢€))c(B,B). Now, consider the case th#& contains small blocks and
their sub-blocks with equal coding length, and the actual coding schemigecapproximated (up
to a constant) by block coding generated Bythat is,c(p,B) = O(c(p)). In this case we need
O(sIn(1/¢)) to approximate a signal with coding complexétyfor this reason, we will extensively
discuss block approximation in Section 4.

In order to improve forward greedy procedures, backward gre@dyegies can be employed,
as shown in various recent works such as Zhang (2011). For simpliatyyill not analyze such
strategies in this paper. It is worth mentioning that in practice, greedy algorstloften adequate.
In particular theD(In(1/¢)) factor vanishes for a weakly sparse target siiathere the magnitude
of its coefficients gradually decrease to zero. This concept has lbesidered in previous work
such as Donoho (2006) and Baraniuk et al. (2010). In such casepay choose an appropriate
optimal stopping point to avoid th@(In(1/¢)) factor. In fact, practitioners often observe that OMP
can be more effective than Lasso for weakly sparse target signalpifinad stronger theoretical
results for Lasso with strongly sparse target signals). This will be eoeflrin our experiments
as well. Without cluttering the main text, we leave the detailed analysis of StructoMiEakly
sparse signals to Appendix F. Our analysis is the first theoretical justificafithis empirical
phenomenon.

4. Structured Sparsity Examples

Before giving detailed examples, we describe a general coding scladleehiock coding which
is an expansion of Definition 8. The basic idea of block coding is to defirmlang scheme on
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a small number of base blocks (a block is a subset)pfind then define a coding scheme on all
subsets off using these base blocks.

Consider block seB C 2/. We assume that every sub&et- I can be expressed as the union
of blocks in‘B. Let cly be a code length of:

z 2—C|0(B) < 17
BeB

we define (B) = clp(B) + 1 for B € B. It not difficult to show that the following cost function on
F C I'is a coding length

clg(F):min{icl Bj) F_UBJ (Bj € B) }

=

This is because

2 ¢l(F) < z Z 2-371¢l(B) bZ ﬂBg’B —cl(By) z
> 0

FcI,F#0 b>1B,eB:1<(<b b>1

We call the coding schemeghblock coding. It is clear from the definition that block coding is
sub-additive.

From Theorem 9 and the discussions thereafter, we know that undepajate conditions, a
target coefficient vector with a small block coding complexity can be apmately learned using
the structured greedy algorithm. This means that the block coding scherneduatant algorithmic
implications. That s, if a coding scheme can be approximated by block codfihgwmall number
of base blocks, then the corresponding estimation problem can be apptely solved using the
structured greedy algorithm.

For this reason, we shall pay special attention to block coding approxinmstimmes for ex-
amples discussed below. In particular, a coding scheffgedn be polynomially approximated
by block coding if there exists a block coding schemg with polynomial (in p) number of base
blocks in‘B, such that there exists a positive constaptindependent op:

clg(F) <Cgcl(F).

That is, up to a constant, the block coding schem¢)ds dominated by the coding schemég)cl

While it is possible to work with blocks with non-uniform coding schemes, iimpticity ex-
amples provided in this paper only consider blocks with uniform coding, wisicimilar to the
representation used in the Union-of-Subspaces model of Lu and D8)20

4.1 Standard Sparsity

A simple coding scheme is to code each sulbset I of cardinalityk usingklog,(2p) bits, which
corresponds to block coding witB consisted only of single element sets, and each base block has
a coding length ¢l= log, p. This corresponds to the complexity for the standard sparse learning.
A more general version is to consider single element blaks {{j} : j € I}, with a non-
uniform coding scheme @l{j}) = cj, such thaty;27% < 1. It leads to a non-uniform coding

length onI as
B) = |B|+ EBCJ'.
IE
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In particular, if a featurg is likely to be nonzero, we should give it a smaller coding lengtland
if a featurej is likely to be zero, we should give it a larger coding length. In this casepaet
F C I has coding length ¢F) = ¥ ;e (14¢j).

4.2 Group Sparsity

The concept of group sparsity has appeared in various recenj seanf as the group Lasso in Yuan
and Lin (2006) or multi-task learning in Argyriou et al. (2008). Considpasition of I = U, G;
into mdisjoint groups. LetBg contain them groups{G; }, andB; containp single element blocks.
The strong group sparsity coding scheme is to give each elemesit &ancode-length gl of oo,
and each element ifg a code-length glof log,m. Then the block coding scheme with blocks
B = Bs U By leads to group sparsity, which only looks for signals consisted of thepgrolihe
resulting coding length is: @) = glog,(2m) if B can be represented as the uniongadisjoint
groupsG;; and c[B) = « otherwise.

Note that if the support of the target sigrialcan be expressed as the uniongajroups, and
each group size ik, then the group coding lengtfiog,(2m) can be significantly smaller than the
standard sparsity coding length [6%|l0og,(2p) = gkolog,(2p). As we shall see later, the smaller
coding complexity implies better learning behavior, which is essentially the tatyarof using
group sparse structure. It was shown by Huang and Zhang (204tG3tthng group sparsity defined
above also characterizes the performance of group Lasso. Theifedsignal has a pre-determined
group structure, then group Lasso is superior to the standard Lasso.

An extension of this idea is to allow more general block coding length f§Ggh and ch({j})
so that

m p
270|0(Gj) + 2*C|0({J}) S 1
&0A

This leads to non-uniform coding of the groups, so that a group that ie fikely to be nonzero
is given a smaller coding length. If feature $etcan be represented as the uniongofiroups
Gj,,.-.,Gj,, then its coding length is (F ) = g+ 37_; clo(G;).

o0 0 OO 606060 OO OO0 OO0 OO0

Figure 2: Group sparsity: nodes are variables, and black nodeslaotes! variables

Group sparsity is a special case of graph sparsity discussed belawe Righows an example
of group sparsity, where the variables are represented by nodktherselected variables are rep-
resented by black nodes. Each pre-defined group is represerdaezbasected components in the
graph, and the example contains six groups. Two groups, the first aldlitt from the left, are se-
lected in the example. The number of selected variables (black nodesgis Jédherefore we have
g=2and|F| = 7. If we encode each group uniformly, then the coding length(i5)ck 210g,(12).
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4.3 Hierarchical Sparsity

One may also create a hierarchical group structure. A simple example itetvewefficients of a
signal (Mallat, 1999). Another simple example is a binary tree with the variaslésaves, which
we describe below. Each internal node in the tree is associated with tHieersonly left child,
only right child, or both children; each option can be encoded iR3dgts.

Given a subseF C I, we can go down from the root of the tree, and at each node, decide
whether only left child contains elementsof or only right child contains elements Bf or both
children contain elements &f. Therefore the coding length &f is log, 3 times the total number
of internal nodes leading to elementsfof Since each leaf corresponds to no more thag fiog
internal nodes, the total coding length is no worse thap3dog, p|F|. However, the coding length
can be significantly smaller if nodes are close to each other or are clustartte extreme case,
when the nodes are consecutive, we h@#-| + log, p) coding length. More generally, if we
can order elements iR asF = {j1,..., jq}, then the coding length can be bounded &5 k=
O(|F|+log, p+ zqtzlogzminks“s— jel)-

If all internal nodes of the tree are also variablesrifffor example, in the case of wavelet
decomposition), then one may consider featureFsetith the following property: if a node is
selected, then its parent is also selected. This requirement is very\affectiavelet compression,
and often referred to as the zero-tree structure (Shapiro, 1993). Siaglsirements have also been
applied in statistics (Zhao et al., 2009) for variable selection and in coningesnsing (Baraniuk
et al., 2010). The argument presented in this section shows that if wiee€gto satisfy the zero-
tree structure, then its coding length is at m@gtF|), without any explicit dependency on the
dimensionalityp. This is because one does not have to reach a leave node. Figurev8 amo
example of hierarchical sparsity, where the nodes of the tree are lesiand black nodes indicate
those variables that are selected. The total number of selected varialebef of black nodes)
is |F| = 8. This example obeys the requirement that if a node is selected, then itd [saa¢so
selected. Therefore the complexity is measure®by|).

Figure 3: Hierarchical sparsity: nodes are variables, and blacksravéeselected variables
The tree-based coding scheme discussed in this section can be polynoppatyimated by

block coding using no more thant*® base blocksd > 0). The idea is similar to that of the image
coding example in the more general graph sparsity scheme which we disodss

3385



HUANG, ZHANG AND METAXAS

4.4 Graph Sparsity

We consider a generalization of the hierarchical and group sparsity leamploying a (directed
or undirected) graph structu@on I. To the best of our knowledge, this general structure has not
been considered in any previous work.

In graph sparsity, each variable (an elementpfs a node ofG but G may also contain ad-
ditional nodes that are not variables. In order to take advantage ofrdpé gtructure, we favor
connected regions (that is, nodes that are grouped together witltrésiee graph structure). The
following result defines a coding length on graphs based on the undgdyaph structure. We
leave its analysis to Appendix A.

Proposition 10 Let G be a graph with maximum degreg d here exists a constangG< 2log,(1+
dg) such that for any probability distribution q on G {.cq(v) =1 and qv) > 0 for v e G), the
following quantity (which we call graph coding) is a coding lengthsm

g
cl(F) =CelF|+9- glrvggflogz(qw)),

where Fc 2€ can be decomposed into the union of g connected componeﬂts?lgle.

Note that graph coding is sub-additive. As a concrete example, we eonisidge processing,
where each image is a rectangle of pixels (nodes); each pixel is codriedt®ur adjacent pixels,
which forms the underlying graph structure. We may tgqlg = 1/p for all v e G, wherep = |G|
is the number of variables. Proposition 10 implies thdt ifs composed ofj connected regions,
then the coding length iglog,(2p) + 210g,(5)|F |, which can be significantly better than standard
sparse coding length ¢ |log,(2p). For example, Figure 4 shows an image grid, where nodes are
variables and selected variables are denoted by black nodes. In thiplex¢he selected variables
have two connected components (thagis; 2): one in the top-left part, and the other in the bottom-
right part of the grid. The total number of selected variables (the nunilbéaak nodes) isF| =11.

O—O0—0O—0—0O—0
O—O0—0O0—C0O0—0—0
O—0—0O—C0O—0O—0

i
!

Figure 4: Graph sparsity: nodes are variables, and black nodeslacéesl variables

Note that group sparsity is a special case of graph sparsity, wheteyeaap is one connected
region, as shown in Figure 2. We may also link adjacent groups to form the gemeral line-
structured sparsity as in Figure 2. The advantage of line structure mugp gtructure is that we do
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not need to know the specific group divisions a priori as in Figure 2mHAPooposition 10, similar
coding complexity can be obtained as longFasan be covered by a small number of connected
regions. Tree-structured hierarchical sparsity is also a speciabfagsaph sparsity with a single
connected region containing the root (we may tgk®ot) = 1). In fact, one may generalize this
concept as follows. We consider a special case of sparse sparsitg wh limitF to be a connected
region that contains a fixed starting noge We can simply leg(vp) = 1, and the coding length of

F is O(|F|), which is independent of the dimensionality This generalizes the similar claim for
the zero-tree structure described earlier.

Figure 5: Line-structured sparsity: nodes are variables, and blatdsrare selected variables

The following result shows that under uniform encoding of the nafes= 1/p for v € G,
general graph coding schemes can be polynomially approximated with dakgc The idea is to
consider relatively small sized base blocks consisted of nodes thdbaestagether with respect to
the graph structure, and then use the induced block coding scheme éaiapgde the graph coding.

Proposition 11 Let G be a graph with maximum degreg @nd p= |G|. Consider any numbe&y >
Osuch that L= dlog, p is an even integer. L& be the set of connected nodes of size up to L; that is,
B € Bis a connected region in G such tH8{ < L. Then there exists a constant € 21og,(1+dg),
such that|B| < p'*©e0, If we consider the uniform code-lengthy(B) = (1+ Cgd)log, p for all

B € B, then the induced block-coding scheohg satisfies

clz(F) < g(1+Csd)log, p+2(Cs + 8 1)|F|.
where g is the number of connected regions in F.

The result means that graph sparsity can be polynomially approximated wititka dnding
scheme if we leg(v) = 1/p for all v e G. As we have pointed out, block approximation is useful
because the latter is required in the structured greedy algorithm whichopeg® in this paper.

Note that a refined result holds for hierarchical sparsity (where we g@oot) = 1) using
block approximation that does not explicitly depend on,lpg In this case, for each tree depth
¢=1273,..., we can restrict the underlying tree upto deptrand apply Proposition 11 on the
restricted tree. Using this idea, the coding lengthFadepends explicitly on the maximum depth
of F in the tree instead of lag.

4.5 Random Field Sparsity

Letz; € {0,1} be a random variable fare I that indicates whethgyris selected or not. The most
general coding scheme is to consider a joint probability distributian=efz, ..., z,]. The coding
length forF can be defined as log, p(z,...,zp) with z; = I (j € F) indicating whetherj € F or
not.

Such a probability distribution can often be conveniently represented iasuy bandom field
on an underlying graph. In order to encourage sparsity, on aveitagenarginal probability(z;)
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should take 1 with probability close ©(1/p), so that the expected number p§ with z; = 1

is O(1). For disconnected graphsg; (are independent), the variablesare iid Bernoulli random
variables with probability 1p being one. In this case, the coding length of aFsé&t |F|log,(p) —
(p—|F|)log,(1—1/p) =~ |F|log,(p) + 1. This is essentially the probability model for the standard
sparsity scheme. In a more sophisticated situation, one may aB(Zgtto grow with sample size

n. This is useful in non-parametric statistics.

We note that random field model has been considered in Cevher et@.aR20or many such
models, it is possible to approximate a general random field coding schembladthcoding by
using approximation methods in the graphical model literature. Howevdr,apuaroximations are
problem specific, and the details are beyond the scope of this paper.

5. Experiments

The purpose of these experiments is to demonstrate the advantage ofrsttisgtarsity over stan-
dard sparsity. We compare the proposed StructOMP to OMP and Las&, ark standard algo-
rithms to achieve sparsity but without considering structure (Tibshira®i6;18ropp and Gilbert,
2007). For graph sparsity, the choicectF ) is simplyc(F) = glog, p+ |F|, whereg is the number
of connected regions d&f. This is adequate based on the discussion in Section 3. However, as
pointed out after Definition 1, a better method is to a&§e) = glog, p+ y|F|, where we tuney
appropriately. We observe that in practice, such tuning often improvésrpence. Nevertheless,
in our experiments, we only report results with fixed 1 for simplicity. This also means our ex-
periments only demonstrate the advantage of StructOMP very conselyatitieout fine-tuning.
The base blocks used in StructOMP are described in each experimeamd®ars (such asin
StructOMP om\ in Lasso) are tuned by cross-validation on the training data. We test sasmects
of our theory to check whether the experimental results are consistentheittheory. Although
in order to fully test the theory, one should also verify the RIP (or stredt@®IP) assumptions, in
practice this is difficult to check precisely (however, it is possible to veripproximately using
ideas of d’Aspremont et al., 2008). Therefore in the following, we shvalf study whether the ex-
perimental results are consistent with what can be expected from ouy thethout verifying the
detailed assumptions. The experimental protocols follow the setup of casiyeragnsing, where
the original signals are projected using random projections, with noissda@ur goal is to recover
the original signals from the noise corrupted projections.

In the experiments, we use Lasso-modified least angle regression (LA$39) as the solver of
Lasso (B. Efron and Tibshirani, 2004). In order to quantitatively camparformance of different
algorithms, we use recovery error, defined as the relative diffeiarizzaorm between the estimated
sparse coefficient vect@est and the ground-truth sparse coefficight HBest— Bll2/]IBl|2. Our
experiments focus on graph sparsity, with several different undegriyiaph structures. Note that
graph sparsity is more general than group sparsity; in fact connemgigmhs may be regarded as
dynamic groups that are not pre-defined. However, for illustrationinalede a comparison with
group Lasso using some 1D simulated examples, where the underlying strcatube more easily
approximated by pre-defined groups. Since additional experiments iingatrore complicated
structures are more difficult to approximate by pre-defined groupsxehade group-Lasso in those
experiments.

All experiments were conducted on a 2.4GHz PC in Matlab. The code fangqlementation
of StructOMP can be obtained frohtt p: // ranger. ut a. edu/ ~huang/ Downl oads. ht m In the
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simulation experiments, we ukeo denote the sparsity (humber of nonzeros) of the true signal, and
this should not be confused with the number of iteratiomgich we used earlier in the description
of the StructOMP algorithm.

5.1 Simulated 1D Signals with Line-Structured Sparsity

In the first experiment, we randomly generatelastructured sparse signal with valugg, where

data dimensiorp = 512, sparsity numbek = 64 and group numbey = 4. The support set of
these signals is composed@tonnected regions. Here, each component of the sparse coefficient
is connected to two of its adjacent components, which forms the underlyagdn gtructure. The
graph sparsity concept introduced earlier is used to compute the codith &irsparsity patterns

in StructOMP. The projection matriX is generated by creating anx p matrix with i.i.d. draws

from a standard Gaussian distributiNii0, 1). For simplicity, the rows oK are normalized to unit
magnitude. Zero-mean Gaussian noise with standard deviatio.01 is added to the measure-
ments. Our task is to compare the recovery performance of StructOMP sdh@MP, Lasso and
group Lasso for these structured sparsity signals under the framefvooknpressive sensing.

Figure 6 shows one instance of generated signal and the correspardovered results by
different algorithms when = 160. Since the sample sipgs not big enough, OMP and Lasso do
not achieve good recovery results, whereas the StructOMP algorithievas near perfect recovery
of the original signal. We also include group Lasso in this experiment fortriltisn. We use
predefined consecutive groups that do not completely overlap with gposiof the signal. Since
we do not know the correct group size, we just try group Lasso witeraédifferent group sizes
(gs=2, 4, 8, 16). Although the results obtained with group Lasso arer lilette those of OMP
and Lasso, they are still inferior to the results with StructOMP. As mentionedistivecause the
pre-defined groups do not completely overlap with the support of thalsigrich reduces the
efficiency. In StructOMP, the base blocks are simply small connected limeesgg of size gs=3:
that is, one node plus its two neighbors. This choice is only for simplicity, anldaady produces
good results in our experiments. If we include larger line segments into treedasks (e.g.,
segments of size gs=4,5, etc), one can expect even better perforfranc&tructOMP.

To study how the sample sizeeffects the recovery performance, we vary the sample size and
record the recovery results by different algorithms. To reduce théoraness, we perform the
experiment 100 times for each sample size. Figure 7(a) shows the reqmréormance in terms
of Recovery Error and Sample Size, averaged over 100 randomfeoumsch sample size. As
expected, StructOMP is better than the group Lasso and far better thatMRead Lasso. The
results show that the proposed StructOMP can achieve better recaréoynpance for structured
sparsity signals with less samples. Figure 7(b) shows the recovery marfoe in terms of CPU
Time and Sample Size, averaged over 100 random runs for each sanglerbie computation
complexities of StructOMP and OMP are far lower than those of Lasso amgpGrasso.

It is worth noting that the performance of StructOMP is less stable than the atf@ithms
when the sample sizeis small. This is because for randomly generated design matrix, the struc-
tured RIP condition is only satisfied probabilistically. For smalthe necessary structured RIP
condition can be violated with relatively large probability, and in such caset®MP does not
have much advantage (at least theoretically). This implies the relativelyVargace. The effect
is much less noticeable with weakly sparse signal in Figure 11(a) becausedbssary structured
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RIP condition is easier to satisfied for weakly sparse signals (basedrahemry). Therefore the
experimental results are consistent with our theory.

(a) Original Signal (b) OMP
° ’ \ b Il I NI l |
o1 —— o ey
-2 . L L L t -2 . . . ! .
100 200 300 400 500 100 200 300 400 500
(c) Lasso (d) GroupLasso, gs=2
2 2
0 WWLLL«MW—‘, 0 WM“FM%—W%—{\—%
-2 . . L L L -2 . L L . .
100 200 300 400 500 100 200 300 400 500
(e) GroupLasso, gs=4 (f) GroupLasso, gs=8
2
-2 . . L . . -2 . . . . .
100 200 300 400 500 100 200 300 400 500
(g) GroupLasso, gs=16 (h) StructOMP
2 2
-2 . . . . . -2 . L . . .
100 200 300 400 500 100 200 300 400 500

Figure 6: Recovery results of 1D signal with strongly line-structuredsfya (a) original data;
(b) recovered results with OMP (error is 0.9921); (c) recoveredltesvith Lasso (er-
ror is 0.8660);; (d) recovered results with Group Lasso (error is @488 group size
gs=2); (e) recovered results with Group Lasso (error is 0.4832 withpgsize gs=4);(f)
recovered results with Group Lasso (error is 0.2646 with group siz@)gg¥recovered
results with Group Lasso (error is 0.3980 with group size gs=16); @overed results
with StructOMP (error is 0.0246).

To study how the additive noise affects the recovery performancedjustahe noise powes
and then record the recovery results by different algorithms. In this, eas fix the sample size at
n= 3k =192, and perform the experiment 100 times for each noise level testedeftn) shows
the recovery performance in terms of Recovery Error and Noise Lavetaged over 100 random
runs for each noise level. As expected, StructOMP is also better thandine gasso and far better
than the OMP and Lasso. Figure 8(b) shows the recovery perforniatesns of CPU Time and
Noise Level, averaged over 100 random runs for each sample sieeohfiputational complexities
of StructOMP and OMP are lower than those of Lasso and Group Lasso.

To further study the performance of the StructOMP, we also compare it totey methods
for structured sparsity including OverlapLasso (Jacob et al., 20@@MadelCS (Baraniuk et al.,
2010) using the implementations available from the web. For fair comparig@nsame structures
are used in OverlapLasso, ModelCS and StructOMP. As mentioned bafdiese experiments,
we use small connected line segments of size gs=3 (including one node plus iteighbors) as
base blocks in StructOMP. Therefore in OverlapLasso, the groussreonnected line segments
of size gs=3; in ModelCS, this structure leads to the model assumption tha rfaate is nonzero,
then its two neighbors has a high probability of being nonzeros. FigudesB(avs the recovery
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performance in terms of Recovery Error and Sample Size, averaged@Yeandom runs for each
sample size. At least for this problem, StructOMP achieves better perfoenthan OverlapLasso
and ModelCS, which shows that the proposed StructOMP algorithm caevadbetter recovery
performance than other structured sparsity algorithms for some probleiguge B(b) shows the
recovery performance in terms of CPU Time and Sample Size, averagetiGf¥eandom runs for
each sample size. Although it is difficult to see from the figure, the compughttmmplexity of
StructOMP is lower than that of ModelCS (about half CPU time) and are fagridlhan that of
OverlapLasso, at least based on the implementation of Jacob et al..(2009)

16 10°
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Figure 9: Performance Comparisons between methods related with stductapar-
sity(OverlapLasso (Jacob et al., 2009), ModelCS (Baraniuk et alQ)2&tructOMP):
(a) Recovery Error vs. Sample Size Ratiok); (b) CPU Time vs. Sample Size Ratio

(n/k)

Note that Lasso performs better than OMP in the first example. This is edaeisignal is
strongly sparse (that is, all nonzero coefficients are significantlyrdifterom zero). In the second
experiment, we randomly generate B $tructured sparse signal with weak sparsity, where the
nonzero coefficients decay gradually to zero, but there is no cledf.cOtwe instance of generated
signal is shown in Figure 10 (a). Herp,= 512 and all coefficient of the signal are not zeros.
We define the sparsitly as the number of coefficients that contain 95% of the image energy. The
support set of these signals is composed ef 2 connected regions. Again, each element of the
sparse coefficient is connected to two of its adjacent elements, which foenusderlying 1D line
graph structure. The graph sparsity concept introduced earlierddosempute the coding length
of sparsity patterns in StructOMP. The projection ma¥iis generated by creating anx p matrix
with i.i.d. draws from a standard Gaussian distributhd(®, 1). For simplicity, the rows oKX are
normalized to unit magnitude. Zero-mean Gaussian noise with standard dewiati0.01 is added
to the measurements.

Figure 10 shows one generated signal and its recovered results ésedifalgorithms when
k = 32 andn = 48. Again, we observe that OMP and Lasso do not achieve goodescmsults,
whereas the StructOMP algorithm achieves near perfect recoverg ofitjinal signal. As we do
not know the predefined groups for group Lasso, we just try graagsd with several different
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group sizes (gs=2, 4, 8, 16). Although the results obtained with groepd_are better than those
of OMP and Lasso, they are still inferior to the results with StructOMP. Ireiotd study how the
sample sizen effects the recovery performance, we vary the sample size and réeordcovery
results by different algorithms. To reduce the randomness, we petf@raxperiment 100 times
for each of the sample sizes.

Figure 11(a) shows the recovery performance in terms of Recoveoy Bnd Sample Size,
averaged over 100 random runs for each sample size. As expetted(B/1P algorithm is superior
in all cases. What'’s different from the first experiment is that the rexgogrror of OMP becomes
smaller than that of Lasso. This result is consistent with our theory, whietligis that if the
underlying signal is weakly sparse, then the relatively performance® Gecomes comparable
to Lasso. Figure 11(b) shows the recovery performance in terms of Tilae and Sample Size,
averaged over 100 random runs for each sample size. The computatior@exities of StructOMP
and OMP are far lower than those of Lasso and Group Lasso.

(a) Original Signal (b) OMP
0.5 0.5
0 1 V 0 N A‘ A A Y N n’ 'l Y | 'l
-0.5 : : : -0.5 : : : : :
100 200 300 400 500 100 200 300 400 500
(c) Lasso (d) Group Lasso, gs=2
0.5 T T T T = 0.5 T T T T
Al A l 1 A VYW 'N 1 A Al J A A A
0 v Y T 0 V_"‘“" +
_05 1 1 1 1 1 _05 1 1 1 1 1
100 200 300 400 500 100 200 300 400 500
(e) Group Lasso, gs=4 (f) Group Lasso, gs=8
0.5 0.5
0 per A v a ¥ 0 m—‘—'h U
-0.5 : : : : ~ -0.5 : : : : :
100 200 300 400 500 100 200 300 400 500
(g) Group Lasso, gs=16 (h) StructOMP
0.5 y y y y m 0.5 T y y
0 u—'—M—‘w—\( » 0 )L _y
-0.5 : : : : ~ -0.5 : : : :
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Figure 10: Recovery results of 1D weakly sparse signal with line-stredtsparsity. (a) original
data; (b) recovered results with OMP (error is 0.5599); (c) recaversults with Lasso
(error is 0.6686); (d) recovered results with Group Lasso (erradis32 with group size
gs=2); (e) recovered results with Group Lasso (error is 0.2893 withygsize gs=4);(f)
recovered results with Group Lasso (error is 0.2646 with group siz®) gg¥recovered
results with Group Lasso (error is 0.5459 with group size gs=16); @overed results
with StructOMP (error is 0.0846).
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Figure 11: Recovery performance for 1D Weak Line-Sparsity: (@pRery Error vs. Sample Size
Ratio (n/k); (b) CPU Time vs. Sample Size Ratin/k)

5.2 2D Image Compressive Sensing with Tree-structured Sparsity

It is well known that 2D natural images are sparse in a wavelet basisr Wheelet coefficients
have a hierarchical tree structure, which is widely used for wavelatebesmpression algorithms
(Shapiro, 1993). Figure 12(a) shows a widely used example image witb4iz€4: cameraman
Note that we use a reduced image instead of the original for computatiditi¢refy since the
experiments is run many times with different random matrices. This reductardshot affect the
relative performance among various algorithms.

In this experiment, each 2D wavelet coefficient of this image is connected paiient co-
efficient and child coefficients, which forms the underlying hierarchieg structure (which is
a special case of graph sparsity). In our experiment, we choosewéaaiet to obtain its tree-
structured sparsity wavelet coefficients. The projection matrand noises are generated with the
same method as that for 1D structured sparsity signals. OMP, Lasso amtiCB4P are used to
recover the wavelet coefficients from the random projection samplpsctagely. Then, the inverse
wavelet transform is used to reconstruct the images with these recavavetkt coefficients. Our
task is to compare the recovery performance of the StructOMP to those Bf &id Lasso under
the framework of compressive sensing.

For Lasso, we use identical regularization parameter for all coeffic{antisout varying reg-
ularization parameters based on bands or tree depth). For StructOlipla block-structure is
used, where each block corresponds to a node in the tree, plus itscaadeading to the root. This
corresponds to settinj= 0 in Proposition 11. We use this block set for efficiency only because the
number of blocks is only linear ip.

Figure 12 shows one example of the recovered results by differentitalgs with sparsity
numberk = 1133 and sample size= 2048. It shows that StructOMP obtains the best recovered
result. Figure 13(a) shows the recovery performance in terms of Sanzeleisd Recovery Error,
averaged over 100 random runs for each sample size. The Struct{@btiRtan is better than both
Lasso and OMP in this case. Since real image data are weakly sparserfirenpnce of standard
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OMP (without structured sparsity) is similar to that of Lasso. Figure 13tbys the recovery
performance in terms of Sample Size and CPU Time, averaged over 108@mranahs for each
sample size. The computational complexity of StructOMP is comparable to thaiBfadd lower
than that of Lasso.

(b) (© (d)

Figure 12: Recovery results with sample size 2048: (a) cameraman image, (b) recovered image
with OMP (erroris 0.1886; CPU time is 46.16s), (c) recovered image withd(@ssor is
0.1670; CPU time is 60.26s) and (d) recovered image with StructOMP (ef@®@335;
CPU time is 48.99s)
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Figure 13: Recovery performance for 2D wavelet tree sparsity: éapRery Error vs. Sample Size;
(b) CPU Time vs. Sample size

5.3 Background Subtracted Images for Robust Surveillance

Background subtracted images are typical structure sparsity data in steticsurveillance appli-
cations. They generally correspond to the foreground objects of sttddmlike the whole scene,
these images are not only spatially sparse but also inclined to cluster intpsgnehich corre-
spond to different foreground objects. Thus, the StructOMP algorimrobtain superior recovery
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from compressive sensing measurements that are received by dizedtserver from multiple
and randomly placed optical sensors. In this experiment, the testing videmvidahded from
http://homepages.inf.ed. ac. uk/ rbf/ CAVI ARDATAL/ . The background subtracted images are
obtained with the software (Zivkovic and Heijden, 2006). One sample intageefis shown in Fig-
ure 14(a). The support set of 2D images is thus composed of seversced regions. Here, each
pixel of the 2D background subtracted image is connected to four of itsexdjpixels, forming
the underlying graph structure in graph sparsity. We randomly chods&ddkground subtracted
images as test images.

Note that color images have three channels. We can consider threeetshseparately and per-
form sparse recovery independently for each channel. On the ather kince in this application,
three channels of the color background subtracted image share thelggyoe set, we can enforce
group sparsity across the color channels for each pixel. That is, hipittee color image can be
considered as a triplet with three color intensities. We will thus consider las#isdn our compar-
isons. In the latter case, we simply replace OMP and Lasso by Group ORMPEhas also been
studied by Lozano et al., 2009) and Group Lasso respectively.

(b) (©) (d)

Figure 14: Recovery results with sample size- 900: (a) the background subtracted image, (b)
recovered image with OMP (error is 1.1833), (c) recovered image withd_gsror is
0.7075) and (d) recovered image with StructOMP (error is 0.1203)

(@)

In this experiment, we firstly consider the 3 color channel independentliyuae OMP, Lasso
and StructOMP to separately recover each channel. The results shéwguie 14 demonstrates
that the StructOMP outperforms both OMP and Lasso in recovery. Fidifeg §hows the recovery
performance as a function of increasing sample size ratios. It demosstigda that StructOMP
significantly outperforms OMP and Lasso in recovery performance cgovithta. Comparing to
the image compression example in the previous section, the backgrounacsedimages have a
more clearly defined sparsity pattern where nonzero coefficients asgally distinct from zero
(that is, stronger sparsity); this explains why Lasso performs bettetlilea@MP on this particular
data. The results is again consistent with our theory. Figure 17(b) shewscovery performance
in terms of Sample Size and CPU Time, averaged over 100 random rurecfosample size. The
computational complexity of StructOMP is again comparable to that of OMP aret khvan that of
Lasso.

If we consider a pixel as a triplet in the background subtracted imageeplace OMP and
Lasso by Group OMP and Group Lasso (across the color channat)canpare their perfor-
mance to StructOMP. The results in Figure 16 indicate that StructOMP is stiltiegpathough
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Figure 15: Recovery performance: (a) Recovery Error vs. Sampée ®) CPU Time vs. Sample
size

as expected, the recovery performance of Group OMP (or Grougo)asiproves that of OMP
(or Lasso). Figure 17(a) shows the recovery performance ascéidarof increasing sample size
ratios. It demonstrates again that StructOMP outperforms Group OMP engb®&asso in this
application. Figure 17(b) shows the recovery performance in termsmoplgesSize and CPU Time,
averaged over 100 random runs for each sample size. The computatior@exity of StructOMP
is again comparable to that of Group OMP and lower than that of GroumLass

@) (b) (©) (d)

Figure 16: Recovery results with sample size- 600: (a) the background subtracted image, (b)
recovered image with Group OMP (error is 1.1340), (c) recovered iméigpeGroup
Lasso (error is 0.6972) and (d) recovered image with StructOMP (isrb0808)

6. Discussion

This paper develops a theory for structured sparsity where prior ledlge allows us to prefer
certain sparsity patterns to others. Some examples are presented to illustratsmtept. The
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Figure 17: Recovery performance: (a) Recovery Error vs. Sampée ®) CPU Time vs. Sample
size

general framework established in this paper includes the recently pmedaroup sparsity idea as
a special case. _

_ In structured sparsity, the complexity of learning is measured by the codimglexityc(f3) <
IIBl|o + cl(suppB)) instead ofi|B]|oIn p which determines the complexity in standard sparsity. Us-
ing this notation, a theory parallel to that of the standard sparsity is deweldpes theory shows
that if the coding length ¢supgB)) is small for a target coefficient vect@ then the complexity
of learning can be significantly smaller than the corresponding complexity in standarsitgpa
Experimental results demonstrate that significant improvements can be dltaiseme real prob-
lems that have natural structures.

The structured greedy algorithm presented in this paper is the first effadgorithm proposed
to handle the general structured sparsity learning. It is shown that thethig is effective under
appropriate conditions. Future work include additional computationallyi&ftienethods such as
convex relaxation methods (e.lg; regularization for standard sparsity, and group Lasso for strong
group sparsity) and backward greedy strategies to improve the fogveedly method considered
in this paper.

Appendix A. Proof of Proposition 10 and Proposition 11

Proof of Proposition 10,
First we show that we can encode all connected redgiofthat is, withg = 1) using no more
than

Co|F| —maxlog,q(v) (8)

bits. We consider the following procedure to encéddirst, we pick a node, from F achieving
—maX.r log, q(v), which requires— max.r log,q(v) bits. We then puskh., into a stackS. We

encode the remaining nodesknusing the following algorithm: until the stackis empty, we take
the top element out of the staclS, and do the following
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(a) Encode the number of neighborswih F that has not been visited so far, with no more than
log,(1+dg) bits.

(b) For each neighbor of vin F that has not been visited, we encode it (i.e., the associated edge
betweenv andV') with no more than logdg bits. We then pusk into the staclS.

SinceF is connected, after this procedure finishes (the stack becomes emptyvewisited
all nodes inF. Since step (a) can be invoked oy} times, the total number of bits in step (a) is no
more tharnF|log,(1+ dg). The number of bits in step (b) is no more than the number of nodes in
(except for node,) times the bits to encode each node, which is no more(ffgr- 1) log,(1+dg).
Therefore the total number of bits in step (a) and (b) is less@dR|. This proves (8).

Forg > 1, we may encode each connected compofemtf F sequentially, using number of
bits according to (8). Then after encoding each connected régjove use 1 bit to encode whether
j = gor not (that is, whether we should stop or encode an additional comheateponent). This
gives the formula in Proposition 10.

Proof of Proposition 11
We first prove the following two lemmas.

Lemma 12 Given a positive even integer L. Let F be a connected region of G suclthatl + 1.
Then it is possible to partition F as the union of two connected regierenB F, such that: F=
FLUR, [FiNK| =1, and

e eithermin(|Fy,|F|) > 0.5L+1;
e or05L+1< |F| <L.
Proof We consider the following algorithm. Start with a nodef F and setr = {v} and let
u; = v. Repeat the following procedure
(@) If|F| > 0.5L+1, then exit the procedure with the curréatandF, = (F — F) U {up }.

(b) If F —Fy is connected: let be a node irF — F; that is connected tB;. We addv to F;, and
setu; = v. We then repeat the procedure (a)(b)(c).

(c) If F —Fy is not connected(F — F1) U {u1} is connected by construction. Merge the smallest
connected component &f— F; into F;. Repeat the procedure (a)(b)(c).

Clearly the procedure eventually will end at step (a) because each itgfatics increased by at
least 1. When it end$; N F, = {u;}. Moreover, there were two possible scenarios in the previous
iteration:

(1) Step (b) was invoked. That if5;| was increased by 1 in the previous iteration, and hence
|F1] = 0.5L+ 1 < L. Moreover,F, is connected.

(2) Step (c) was invoked. Stilk; is connected by the construction wf. If |F;| was increased
by no more tharh./2 in the previous step (c), theR;| < L and the lemma holds. Otherwise,
F —F; has more thah /2 nodes because this scenario implies that even the smallest connected
component has more than/2 nodes in the previous step (c). Therefore in this case we have
|F2| > 0.5L+ 1.
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Lemma 13 Given a positive even integer L. Any connected region F suchfat 0.5L + 1 can
be covered by at mo&(|F| — 1) /L connected regions, each of size no more than L.

Proof We fix L and prove the claim by induction dR|. If 0.5L+ 1 < |F| <L, thenF is covered
by itself, and the claim is trivial. IE < |F| < 1.5L, then by Lemma 12, we can partitiéhinto two
connected regions, eaghL. Therefore the claim also holds trivially.

Now assume that the claim holds figf| < k with k > 1.5L. ForF such thaiF| = k+1, we
apply Lemma 12 and partition it into two regioRs= F1 UF, such that mif|Fy|,|F|) > 0.5L+ 1
and|Fi| + |F| = |F| + 1. Therefore by the induction hypothesis, we can cover &gl = 1,2)
by 2(|Fj| — 1)/L connected regions, each of size no more thatt follows that the total number
of connected regions to cover bdt andF, is no more than @F; |+ || —2)/L = 2(|F| - 1) /L,
which completes the induction. |

We are now ready to prove Proposition 11. First, from (8), we know@a#B| + log, p is a
coding-length for connected regioBsc ‘B. Therefore

2~ (Col+logp) | < z 2~ (CelBl+log p) < 1.
BeB

This implies that B| < pt+©ed,

Since Lemma 13 implies that each connected compdfesftF can be covered by-4 2(|F;| —
1)/L connected regions fror®, we have ck(Fj) < (1+2(|Fj| —1)/L)(1+Cgd)log, p under the
uniform coding onB. By summing over the connected components, we obtain the desired bound.

Appendix B. Proof of Proposition 3

Lemma 14 Consider a fixed vectax € R", and a random vectoy € R" with independent sub-
Gaussian component&e Vi —B%) < ¢7*/2 for all t and i, thenve > O:

Pr(‘xTy—ExTy‘ > s) < 2e€/(20%XI3)

Proof Lets,= S ;(xiyi —Ex;yi); then by assumptiof, (e +e~t%) < 2¢2i x¢a*?/2 which implies
that Px|s,| > £)€t < 2e%X79°"/2_ Now lett = £/(5;x202), we obtain the desired bound. [ |

The following lemma is taken from Pisier (1989).
Lemma 15 Consider the unit spheré‘St = {x: ||x||2 = 1} in R¥ (k > 1). Given anye > 0, there
exists are-cover QC S1 such thatmingeq ||X — q|2 < € for all ||x||2 = 1, with |Q] < (1+2/€)k.

B.1 Proof of Proposition 3

According to Lemma 15, givegy > 0, there exists a finite s€ = {q;} with |Q| < (1+2/¢1)" such
that||Pg||2 = 1 for all i, and min||Pz— Pg||2 < € for all ||Pz||2 = 1. To see the existence
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we consider a rotation of the coordinate system (which does not changen so thaPz is the
projection ofz € R" to its firstk coordinates in the new coordinate system. Lemma 15 can now be
directly applied to the firgk coordinates in the new system, implying that we can pjckuch that
PG =q.

For each, Lemma 14 implies thate, > O:

Pf(‘OIiTP(y— Ey)‘ > 82) < 2e€/(20%)
Taking union bound for alfj € Q, we obtain with probability exceeding12(1+ 2/¢;)ke€/20%;

\qiTP(y—Ey)\ <&

for all i.
Letz=P(y —Ey)/||P(y — Ey)||2, then there existssuch thal|Pz— Pg||2 < €1. We have

Py —Ey)|2=z"P(y — Ey)
<[|Pz—Pg||2||[P(y — Ey) 2+ |af P(y —Ey)|
<e1||P(y — Ey) |2+ €2

Therefore
[Py —Ey)[l2 < &/(1—&1).

Lete; = 2/15, andn = 2(1+ 2/g1)ke /29 we have
€5 = 20%[(4k+1)In2—Inn],

and thus

15
[Py —Ey)[]2 < f’;c\/2(4k+ 1)In2—2Inn.

This simplifies to the desired bound.

Appendix C. Proof of Proposition 5

We use the following lemma from Huang and Zhang (2010).

Lemma 16 Suppose X is generated according to Proposition 5. For any fixed sef ®ith |F| =k
and0 < 3 < 1, we have with probability exceeding- 3(1+ 8/3)ke"’/8;

HIXeBl < (1+8) Bl

(1-9)[IBll2 < T

for all B € RX.
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C.1 Proof of Proposition 5
Since c(F) is a coding length, we have (for any fixgec 1)

1+83)fl< 5 (1+8/5)F
F:|F|+cl(F)<s F:|F|+ycl(F)<s

< Z(1+8/5)S-VC'<F> = (l+8/6)SZZ‘°'(F) < (1+8/%)°,

where in the above derivation, we take- 1/log,(1+ 8/9).
For each, we know from Lemma 16 that for gl such that sup() C F:

(1-8)|Bll2 < = |XBllo < (1+8)[B]

with probability exceeding % 3(1+ 8/3)IFle"%*/8,
We can thus take the union bound o¥er |F |+ cl(F) < 's, which shows that with probability
exceeding

1- Y 31+8/3)Fle/?
F:|F|+cl(F)<s

the structured RIP in Equation (4) holds. Since

3(1_'_8/6)\F\e—n62/8 < 3(1+8/5)Se—n62/8 < e—t,
F:|F|+cl(F)<s

we obtain the desired bound.

Appendix D. Proof of Theorem 6 and Theorem 7

Lemma 17 Suppose that Assumption 1 is valid. For any fixed subset/F-with probabilityl —n,
v such thatsupgB) C F, and a> 0, we have

IXB—Eyl[|3 < (1-+a)[IIXB—YI3— lly —Ey||3] + (2+a+a )o?[7.4/F| +4.7In(4/n)].

Proof Let
PE =X O X6 ) X

be the projection matrix to the subspace generated by colun¥s ¢fereXr may not be full-rank,
and (Xd X=)* denotes the Moore-Penrose pseudo-inverse. Sificeelongs to this subspace, we
haveP:-X[3 = X[.
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Letz= (I —Pe)By/||(I - Pe)Ey|l2, 81 = ||Pe (y — Ey)||2 andd, = |z" (y — Ey)|, we have

IXB—Ey|3
=XB-yl5—ly —Eyll5+2(y — Ey) " (XB—Ey)
=[IXB—yl5—[ly —Eyl5+2(y —Ey) " (XB—PeEy) — 22" (y — Ey)||(I — P=)Ey||2
=[IXB—ylz—[ly - Ey[5+2(y — Ey) "Pe (XB— P=Ey) — 22" (y — Ey)|| (I — P=)Ey||2
<IXB—YI5— ly — Ey||5+ 281(|XB — PeEyl|2 + 28| (I — P ) Ey||2

<IXB—YIB ~ly ~ By[3+2,/ + 8/ IXB— PeEY[3+ (1 — Pr)Ey|3
= XB=Yl53—lly —Ey|l5+2y/ 8 + 8| XB —Ey||2.

Note that in the above derivation, the first two equalities are simple algeha. third equal-
ity uses the fact thab= X3 = X[B. The first inequality uses the Cauchy-Schwartz inequality and
the definitions ofd; andd,. The second inequality uses the Cauchy-Schwartz inequality of the
form &1a; + Srap < \/6§+6§ a2 +a3. The last equality uses the fact the¢p — P=Ey/||3+ || (I —
P=)Ey||3 = || XB — Ey||3, which is a consequence of the fact tiit is a projection matrix and
P=XB = XB.

Now, by solving the above displayed inequality with respediX@ — Ey||2, we obtain

2
BBy < [\/IXB-yIE~ Iy—By3+ 5+ 8+ /%
<L+ a)IXB Y3y By|E]+ (2+a+ 1/a)(E + &)

The desired bound now follows easily from Proposition 3 and Lemma 14.ewine know that with
probability 1—n /2,

8 = (y—Ey) ' P:(y—Ey) < 0%(7.4|F|+2.7In(4/n)),
and with probability +-n/2,
% =|z" (y—Ey)[* < 20%In(4/n).

We obtain the desired result by substituting the above two estimates and simplify. |

Lemma 18 Suppose that Assumption 1 is valid. Then we have with probabtity, V3 € RP and
a>0:

IXB—Ey|5 < (1+a) [IXB—YI5— lly — Eyl5] + (2+a+1/a)0*[7.4¢(B) +4.7In(4/n)].
Proof Note that for eacl, with probability 2-¢(F)r, we obtain from Lemma 17 thasupdp) € F,

IXB—EylZ < (1+a) [IXB—ylZ—lly —Eyl3] + (2+a+1/2)0*[7.4(|F| +cl(F)) +4.7In(4/n)].

Sincey e r.02 %Fn < n, the result follows from the union bound. [ |
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Lemma 19 Consider a fixed subs&tc I. Given anyn € (0, 1), we have with probability. — n:

IXB—=Yyl3— lly — Ey|I3] < [IXB —Ey||3+ 201/2In(2/n) | XB — Ey| 2.

Proof Leta= (XE— Ey)/HXE— Ey/||2, we have
IXB—yl—Ily —Ey|3] -
=~ 2(XB—Ey) (y—Ey)+HXB—Eyﬂ%I
<2||XB—Eyl|2[&" (y — Ey)| + |Ey — XB]|3.
The desired result now follows from Lemma 14. [ |

Lemma 20 Suppose that Assumption 1 is valid. Consider any fixed teﬁ@ﬁRP Then W|th
probability exceedind —n, forallA > 0,€ > 0, B € RP such that: Q(B) +)\C(B) Q(B) +Ac(B)+
and for all a> 0, we have

IXB—Eyl|3 <(1+a)[||XB — Ey|Z+20/2In(6/n)|XB — Ey||2]
(1+a))\c([3)+ac([3)+b’|n(6/r]) +(1+a)e,

where 4= 7.4(2+a+a1)o?— (1+a)A and B = 4.70%(2+a+at). Moreover, if the coding
scheme @) is sub-additive, then

np_(c(B) +c(B))||B—BII3 < 10| XB — Ey|2+2.5x¢(B) + (3702 — 2.50)c(B) +290%In(6/n) + 2.5¢.

Proof We obtain from the union bound of Lemma 18 (with probability f;/3) and Lemma 19
(with probability 1— 2n/3) that with probability 1-n:

IXB —Eyl|3
<(1+8) [|IXB-yI3- ly—Ey|3] + (2+a+a)[7.40%(B) +4.70%In(6/n)]
<@+a) [IXB—yI3~ Iy ~Ey|3+Ac(p) +&] +ac(B) +b'In(6/n)
<(1+a)[|[XB—Ey||3+201/2In(6/n)[|IXB— Ey|l2] + (1+a)Ac(B) + ac(B)
+b'In(6/n) + (1+a)e.

This proves the first claim of the lemma.
The first claim witha = 1 implies that

IXB—XB13 < [|IXB— Eyl|+ [ XB — Eyl|2]?
<1.25|XB - Ey|j3+5|XB— Ey|3
<7.5|XB—Ey||3+50+/2In(6/n)||XB — Ey||2+ 2.5\c(B) + 1.25(29.60% — 2\ )c(f3)
+1.25% 18.80°In(6/n) + 2.5¢
<10|XB — Ey||2 + 2.5\c(B) + (3702 — 2.5\)c(B) + 2902In(6/n) + 2.5¢.

Sincec(B — B) < c(B) +c(B), we have|XB — XB/3 > np_(c(B) +c(B))||B — B||3. This implies the
second claim. [ ]
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D.1 Proof of Theorem 6
We takeh = 0 in Lemma 20, and obtain:
IXB —Ey|[3 <(1+a)[|XB— Ey|3+20+/2In(6/n)| XB — Ey||2]
+7.4(2+a+a Ho%e(B)+4.70%(2+a+a bIn(6/n) + (1+a)e
=(|XB—Ey|l2+0+1/2In(6/n))2 + 14.80%c(B) + 7.402In(6/n) + €

+a[(||XB —Ey|l2+0+/2In(6/n))? + 7.40%c(B) +2.702In(6/n) + €]
+a Y[7.40%c(B) + 4.76%In(6/n)).

Now letz= HXE— Ey||2+0+/2In(6/n), and we choosa to minimize the right hand side as:

IXB—Ey|2 <2+ 14.80%c(B) + 7.40%In(6/n) + €
+ 2[Z + 7.40%c(B) + 2.75%In(6/n) + €] Y/?[7.40%C(B) + 4.70%In(6/n)] /2
<[(Z+7.40%c(B) +2.70%In(6/n) + €)Y + (7.40%c(B) + 4.76%In(6/n)) /22
<[z+ 2(7.40%C(B) + 4.706%In(6/n) + £) Y42
This proves the first inequality. The second inequality follows directly ftamma 20 withh = 0.

D.2 Proof of Theorem 7

The desired bound is a direct consequence of Lemma 20, by noticing that

20+/2In(6/n) | XB - Ey|.> < a| X — Ey|3+a *202In(6/n),

a <0, and
b'+a 1202 < (10+5a+7a 1)o?.

Appendix E. Proof of Theorem 9

The following lemma is an adaptation of a similar result in Zhang (2011) on gralgdrithms for
standard sparsity.

Lemma 21 Suppose the coding scheme is sub-additive. Conside[g,aan}d a cover ofg by B:

SUpEB) CF =U?_iB; (Bj € B).
Let B, B) = 3°_, c(B;). Letpo = max; p..(B;). Then consider F such thaf : c(BjUF) > c(F),

we define
B= argBmﬂi%rgHXB’—yHE subjectto supdp’) C F.
'€

If [|XB — y[|3 > | XB— |3, we have

p_(FUF)

XB— vl[2 — [IXB —vl2
poc(B, B) [IXB=yllz = IXB-ylz],

max@(B;) >
J

where as in (5), we define
¢(BUF) —c(F) °
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Proof For all/ € F, | XB+aXe —y||3 achieves the minimum at = 0 (wheree, is the vector of
zeros except for thé-th component, which is one). This implies that

X; (XB—y) =
for all # € F. Therefore we have

XB-y)" T (B—Box

teF—F

=(XB-y)" ¥ (Br—B)x = (XB-y)  (XB—XB)

leFUF

1= 1 .= 1
== SIX(B=B)IB+5IXB-yIE— 5IXB- 5.

Now, let B} C Bj —F be disjoint sets such thatjB} = F —F. The above inequality leads to the
following derivationvn > O:

= 3 008,)(e(B; UF) —c(F)
2
~IXB-yI3

2

< Y (Be—B)Pon+2n(XB=y)" Y (Br—Box

leF-F (eF—F

<n? S (Be—Br)?pon—nlX(B—B)[3+n|XB—yl3—nlIXB—yl3.

leF—F

=2

J

XB+n > ( B —Bo)xc—y
LeB;

Note that we have used the fact & £ (XB—y)[|3 > || XB—y||3 — ||XB—y + XAB||3 for all AB
such that sup@\p) C B— F. By optimizing ovem, we obtain

maxcp(BJ Zc BJ >z<p(BJ BJUF) c(F))

- [IX(B—B)I3+[IXB—yl3— IXB—y|3]?
T A%err(Be—Be)?pon
SAIX@=BIZIXB—ylZ— IXB—yl3]

B 45 ser_r (Be — Be)?pon

2= g - 13- X6 - yI3.
0

>

This leads to the desired bound. In the above derivation, the first itiggigasimple algebra; the
second inequality is by optimizing ovey mentioned earlier; the third inequality is of the form
[ag +ap]? > 4ay@,. The last inequality uses the definitionmf (-). [ |
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E.1 Proof of Theorem 9

Let _
y _ VP—(s+c(F))

Po(B)c(B, B)
By Lemma 21, we have at any stkp- O:
IXBRY —y[3— [XBY —y[3 > V[[XB Y —y|3— |XB—y[3l(c(BY) —c(B*Y),

which implies that

_ k) —1)
max0, | XBM —y[3— [XB—y||3] < max0, [XB Y —y|3 — | XB—y|[Zle~ CF) e ),
Therefore at stopping, we have
IXB ~yII5— [XB -yl
g —V'c(BM
<[IVII3 — IXB —y[5le P
<[llyl5~ IXB~yl3le <.

This proves the theorem.

Appendix F. Performance of StructOMP for Weakly Sparse Signé#s

Theorem 22 Suppose the coding scheme is sub-additive. Given a sequence of mrgem that

Q(Bo) < Q(B1) < -+ and dB;, B) < c(Bo, B)/2). If

i QB A@a+e
34+ 202 In Q (Bo)+€

for somee > 0. Then at the stopping time k, we have
QBM) < Q(Bo) +#

Proof For simplicity, letf; = Q(Ej). For eachk = 1,2,... before the stopping time, Igk be the
largestj such that

s> - pO(g) BOv
vmin; p_(s+c(B;))

QRM) > fj+ fj — fo+e.
Letv' = (vmin; p_(s+c(B;)))/(Po(B)c(Bo. B))-

We prove by contradiction. Suppose that the theorem does not holdicthathk before stop-
ping, we havegy > 0.
For eachk > 0 before stopping, ifk = jk_1 = j, then we have from Lemma 21 (Wlf.h [3 )

XBe Y —yl5 -1

c(B®) < c(B* V) +v1270In | .
BT =™ IXB9 31,

Therefore for eachj > 0, we have:

2(fj1—fo+e)

)\ _ ~rpk-1) I~1o—j
() ~e(p% )] <12 T Ao

K jk=Jk-1=]
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Moreover, for eachj > 0, Lemma 21 (wittﬁ: Ej) implies that

e(BY) —c(B V) <v 2l

K jk=1,Jk-1>]

Therefore we have

oK) — c(pk-D)] < v-12-] [1.7+ i fix1—fote
Now by summing ovelj > 0, we have
2 i fiya—fote
(k) -1 -1 —] j+1 0
c <34V +v 2/ in—<s
(B ) - J;) fj —fo+e —
This is a contradiction because we know at stopping, we shoulddige) > s. [ |

_In the above theorem, we can see that if the signal is only weakly sparlsttati(r@(@,-H) -
Q(Bo) +£)/(Q(Bj) — Q(Bo) -+ €) grows sub-exponentially ify then we can choose= O(c(Bo, B)).
This means that we can firf¥) of complexitys = O(c(Bo, B)) to approximate a signfly. The
worst case scenario is whé{p; ) ~ Q(0), which reduces to the= O(c(Bo, B) log(1/¢)) complex-
ity in Theorem 9.

As an application, we introduce the following concept of weakly sparsepcessible target
that generalizes the corresponding concept of compressible signtndasd sparsity from the
compressive sensing literature (Donoho, 2006). A related extenssoald@appeared in Baraniuk
et al. (2010).

Definition 23 The targetREy is (a,q)-compressible with respect to blogkif there exist constants
a,g > O such that for each s 0, 3B(s) such that €3(s), B) < s and

1 .= -
CIXB(s) -~ By|3 < as .

Corollary 24 Suppose that the target (8, q)-compressible with respect 8. Then with probabil-
ity 1—n, at the stopping time k, we have

~

Q(B™) < Q(B(S)) +2na/s9+20?[In(2/n) + 1],

where v . _
s < W@QPJSWL c(B(u)))-

Proof Givens, we consideffj = ming; Q(B(s/2Y). We also assume th&j is achieved ato > 0.
Note that by Lemma 19, we have with probability-2-1-1n:

IQ(B(S/2") — lly —Ey|3 <2I[XB(s/2)) - Byl[5+20°[j + 1+In(2/n)]
<2an29! /994 262+ 1+In(2/n)).
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This means the above inequality holds for jallith probability 1—n. Therefore

fia—fo <QB(Y/21) ~Q(B(S)) )
<|Q(B(S/2"1)) — |y —Ey| 3|+ |Q(B(S)) — lly — Eyl13|
<4ar290+1) /49 4 462[0.5] +1+In(2/n)).

Now, by takinge = 2an/s%+ 202[In(2/n) + 1] in Theorem 22, we obtain

202 in f”l

fo“ < Z 27 (L + (Fi1— fo)/€)

< Z 277In(4+42(0.5) 4 290+1)y)
< Z 271(2405j+In2+q(j+1)In2) < 4.4+ 4(0.5+qIn2),

where we have used the simple inequalityalr- 23) < 0.5a + In(2B) whena, 3 > 1. Therefore,
Po(B)s

S>— (10+3q)
vMiny<g P—(s+c(B(u)))
po(B)S 344 % 2In J+1 fo+¢
“vming<g p-(s+c(B Z) —fo+e
This means that Theorem 22 can be applied to obtain the desired bound. |

If we assume the underlying coding scheme is block coding generate®] byen we have
miny<s p—(s+¢(B(u))) < p_(s+¢s). The corollary shows that we can approximate a compressible
signal of complexitys' with complexitys= O(gs) using greedy algorithm. This means the greedy
algorithm obtains optimal rate for weakly-sparse compressible signals.sdmele complexity
suffers only a constant fact@i(q). Combine this result with Theorem 6, and take union bound, we
have with probability - 2, at stopping timek:

2In( 6/n 7.4(s+co(B))+6.7In(6/n) 2a
fHXB —Ey[2< \/> \/ \/ . + Saga

18% B2 [lSa 370°(s+co(B)) 4+ 340%In(6/n)
2—p7<s+§+<:o< B)) | s n

Given a fixedn, we can obtain a convergence result by choosirfgnd thuss’) to optimize the
right hand side. The resulting rate is optimal for the special case of sthsgarsity, which im-
plies that the bound has the optimal form for structugecbmpressible targets. In particular, in
compressive sensing applications where 0, we obtain when sample size reachesO(gs), the
reconstruction performance is

1B% —B||5 = O(a/s?),
which matches that of the constrained coding complexity regularization meth{&ylup to a con-
stantO(q). Since many real data involve weakly sparse signals, our result peosticdeng theoretical
justification for the use of OMP in such problems. Our experiments are ¢tentigith the theory.
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