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Abstract

We present a class of graphical models for directly repitaggthe joint cumulative distribution
function (CDF) of many random variables, calledmulative distribution network&€CDNs). Un-
like graphs for probability density and mass functions,G@Fs the marginal probabilities for any
subset of variables are obtained by computing limits of fiems in the model, and conditional
probabilities correspond to computing mixed derivativé&e will show that the conditional inde-
pendence properties in a CDN are distinct from the condifiovdependence properties of directed,
undirected and factor graphs, but include the conditiondépendence properties of bi-directed
graphs. In order to perform inference in such models, weriesthe ‘derivative-sum-product’
(DSP) message-passing algorithm in which messages congdp derivatives of the joint CDF.
We will then apply CDNs to the problem of learning to rank @es/in multiplayer team-based
games and suggest several future directions for research.

Keywords: graphical models, cumulative distribution function, naegs-passing algorithm, infer-
ence

1. Introduction

Probabilistic graphical models provide a pictorial means of specifying a joottability density
function (PDF) defined over many continuous random variables, thegmbiability mass function
(PMF) of many discrete random variables, or a joint probability distributeimeéd over a mixture
of continuous and discrete variables. Each variable in the model comgsjo a node in a graph and
edges between nodes in the graph convey statistical dependence sbigdretween the variables
in the model. The graphical formalism allows one to obtain the independdatiemships between
random variables in a model by inspecting the corresponding graphewheseparation of nodes
in the graph implies a particular conditional independence relationship betiveeorresponding
variables.

A consequence of representing independence constraints betwessissaf variables using a
graph is that the joint probability often factors into a product of functioefneéd over subsets of

(©2011 Jim C. Huang and Brendan J. Frey.



HUANG AND FREY

neighboring nodes in the graph. Typically, this allows us to decompose & hawdfivariate dis-
tribution into a product of simpler functions, so that the task of inferenceestimation of such
models can also be simplified and efficient algorithms for performing these taskbe imple-
mented. Often, a complex distribution over observed variables can biwtied using a graphical
model with latent variables introduced, where the joint probability over tlsemied variables is
obtained by marginalization over the latent variables. The model with additiatesit variables
has the advantage of having a more compact factorized form as contpahned for the joint prob-
ability over the observed variables. However, this often comes at thetasignificantly higher
computational cost for estimation and inference, as additional latent lewiaften require one
to either approximate intractable marginalization operations (Minka, 2001) sartple from the
model using Markov Chain Monte Carlo (MCMC) methods (Neal, 1993)tHeumore, there is also
the problem that there are possibly an infinite number of latent variable magkasiated with any
given model defined over observable variables, so that adding latgables for any given appli-
cation can often present difficulties in terms of model identifiability, which magidsrable when
model parameters are to be interpreted. These issues may hamper thebdipyplafagraphical
models for many real-world problems in the presence of latent variables.

Another possible limitation of many graphical models is that the joint PDF/PMF itselfitmig
not be appropriate as a probability model for certain applications. Fon@eain learning to rank,
the cumulative distribution functio(CDF) is a probabilistic representation that arises naturally as
a probability of inequality events of the tygX < x}. The joint CDF lends itself to such problems
that are easily described in terms of inequality events in which statistical depea relationships
also exist among events. An example of this type of problem is that of preglictititiplayer game
outcomes with a team structure (Herbrich, Minka and Graepel, 2007 primast to the canonical
problems of classification or regression, in learning to rank we are egjtir learn some map-
ping from inputs to inter-dependent output variables so that we may wishdelrboth stochastic
orderings between variable states and statistical dependence relatidnstween variables.

Given the above, here we present a class of graphical models catiadative distribution net-
works(CDN) in which we represent the joint CDF of a set of observed varsal#ie we will show,
CDNs can be viewed as providing a means to construct multivariate distributivaer observed
variables without the need to explicitly introduce latent variables and therimadieg. The result-
ing model consists of a factorized form for the joint CDF, where the pral@perations required
for answering probabilistic queries and for marginalization consist ofwdfftiation and computing
limits respectively, in contrast to summation/integration in graphical models fois R latent
variables. Furthermore, the parametrization of the model as a joint CDF édnasltAntage that the
global normalization constraint can be enforced locally for each funatidhe CDN, unlike the
case of undirected graphical models for PDF/PMFs. We will presentabie properties of CDNs
and show that the rules for ascertaining conditional independence nslaif)s among variables in
a CDN are distinct from the rules in directed, undirected and factor grépdarl, 1988; Lauritzen,
1996; Kschischang, Frey and Loeliger, 2001). We will show that thedlitional independence
properties in a CDN include, but are not limited to, the conditional indepex@properties for
bi-directed graphs (Drton and Richardson, 2008; Richardson ain#§@2002; Richardson, 2003).

We will then discuss the problem of performing inference under CDNs iiclwtie principal
challenge is to compute the derivatives of the joint CDF. To this end we willrdesa message-
passing algorithm for inference in CDNs called ttherivative-sum-product algorithrbased on
previous work (Huang and Frey, 2008; Huang, 2009). To demdgastna applicability of CDNs,
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we will use the message-passing algorithm for inference in order to ajfpiNs@o the problem of
learning to rank, where we will show that CDFs arise naturally as a pilitpabhodels in which it
is easy to specify stochastic ordering constraints among variables in thé mode

1.1 Notation

Before we proceed, we will establish some notation to be used througleopaper. We will denote
bipartite graphs ag = (V, S E) whereV, Sare two disjoint sets of nodes akd_ {V x SSxV}is
a set of edges that correspond to ordered gairs) or (s,a) for a € V ands< S We will denote
neighboring setd\((a) andA((s) as

N(a) = {s€ S: (a,s) € E},
AN(s)={aeV:(a,s) € E}.
Furthermore, lef\[(A) = UgeaN(Q0).
Throughout the paper we will use boldface notation to denote vectorsramatrices. Scalar
and vector random variables will be denotedkgsandX 5 respectively where is a node in a graph

G andA denotes a set of nodes éh The notatior|A|, x|, |X| will denote the cardinality, or number
of elements, in sef and vectors, X respectively. We will also denote the mixed partial deriva-

tive/finite difference ady, H , Where the mixed derivative here is taken with respect to arguments
Xq V a € A. Throughout the paper we assume hat sets consist of unique elemgmtbatfor any
setA and for any element € A, ANa = a, so thatdy, H consists of the mixed derivative with

o°F

respect to unique variable argumeRtsc Xa. For examplegy, , , {F(xl,xz,x3)} = 3%0%0%

1.2 Cumulative Distribution Functions

Here we provide a brief definition for the joint COF x) defined over random variabls denoted
individually asXy. The jointcumulative distribution function §) is then defined as the function
F : RXl— [0,1] such that

F(x)=P

N {Xa <xa}

XqeX

Thus the CDF is a probability of eventX, < x4 }. Alternately, the CDF can be defined in terms of
the joint probability density function (PDF) or probability mass function (PFE) via

F(x) = /_Xm P(u) du,

E]P’[XSX].

whereP(x), if it exists, satisfie®(x) > 0, [, P(x) dx = 1 andP(x) = dx {F(x)} wheredy H denotes

the higher-order mixed derivative operadyy ... x, H forx =[x -+ ] € RX.

= aX;L' .- aXK
A functionF is a CDF for some probabilit¥ if and only if F satisfies the following conditions:

1. The CDHFF(x) converges to unity as all of its arguments teneotar

F(e0) = lim F(x) = 1.

X—00
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2. The CDFF(x) converges to 0 as any of its arguments tendsd4g or

F(—00,x\ Xq) E)(GIerle(xa,x\xa) =0 VXyeX.

3. The CDFF(x) is monotonically non-decreasing, so that
F(X) <F(y)Vx<y, x,y e RX.
wherex <y denotes element-wise inequality of all the elements in veators
4. The CDFF(x) is right-continuous, so that

lim F(x+¢)=F(x)VxeRX

e—0t

A proof of forward implication in the above can be found in Wasserman4pafd Papoulis and
Pillai (2001).

Proposition 1 Let F(xa,xg) be the joint CDF for variableX whereXa, Xg for a partition of the
set of variables. The joint probability of the evediXa < Xa} is then given in terms of (Xa, Xg)
as

F(XA) = P[XA < XA} = lim F(XA,XB).
XB—>©00
O

The above proposition follows directly from the definition of a CDF in which

[ﬂ{xasxa}] n [ﬂ{XpSw}]

acA BeB

lim F(xa,xg) =P
Xp—>0

=P

X< Xa}] = F(Xa).

acA

Thus, marginal CDFs of the fori(xa) can be computed from the joint CDF by computing limits.

1.3 Conditional Cumulative Distribution Functions

In the sequel we will be making use of the concept of a conditional CD§diore subset of variables
Xa conditioned on everil. We formally define the conditional CDF below.

Definition 2 Let M be an event witfi’[M] > 0. The conditional CDF Fxa | M) conditioned on
event M is defined as

IP’[{XA < Xa}N M}
P[M]

F(ta | M) =B [Xa < xa| M| =

U
We will now find the above conditional CDF for different types of evevits

Lemma 3 Let F(xc) be a marginal CDF obtained from the joint CDK¥) as given by Proposition
1 for someX¢ C X. Consider some variable s&in C X whereXa(NXc = 0. Let M= w(xc) =

{Xc < xc} for Xe € X. I F(xc) > 0, then Fxa|e(xc)) = F (xaXc < xc) = F(FX(AXX)d O
C

304



CUMULATIVE DISTRIBUTION NETWORKS AND THE DERIVATIVE -SUM-PRODUCTALGORITHM

Thus a conditional CDF of the foriia (xa|w(Xc)) can be obtained by taking ratios of joint CDFs,
which consists of computing limits to obtain the required marginal CDFs. It folfowva Lemma 3
that marginalization over variablé& can be viewed as a special case of conditioningen< .

To compute conditional CDFs of the forf{(xa|xg) where we instead condition og, we need
to differentiatethe joint CDF, as we now show.

Lemma 4 Consider some variable sy C X. Let M= {XB <Xz < Xg + €} with € > 0 for some
scalar random variable X¢ Xa. If F (xg) and F(xa, %) are differentiable with respect tg o that

Ox, [F (xﬁ)} and d,, [F(xA,xB)} exist withd, [F(xﬁ)} > 0, then the conditional CDF Fa|xg) =

P[{xAngm{xB <X ngJre}]
lim F(xalxg < Xg <Xg+€) = lim
e—0*t e—0*t ]P)[XB < XB < XB —1—8}

is given by

8, |Fxa)]

F(Xalxg) = aXB [F (XB)}

00y, [F(XA,XB)} .

Proof We can write
P[{XAg XA}O{XB < XB SXBJrE}}
IP[XB <X < xﬁ+e}

B %IP) [{XA <XafN{Xg < Xg < Xg +s}] F (Xa,X3+€)—F (Xa,Xg)

F(XA|XB < XB SXB—FS) =

£
%]P) [XB < XB < XB +8:| 7F(XB+S)7F(XB)

€

Taking limits, and given differentiability of both (x3) andF (xa,xg) with respect tog, the condi-
tional CDFF (xa|Xg) is given by

F (XA,XB +¢)—F (xA,xB)

lim Oy [F(XA X )]
B B
F (xalxg) = &% & = 0o [F(XA,X(;)},
F —F ®
jim T O TR g [Fg)]
£—0* €
where the proportionality constant does not depengon |

The generalization of the above lemma to conditioning on sets of varidblésX can be found in
the Appendix.

2. Cumulative Distribution Networks

Graphical models allow us to simplify the computations required for obtainingtamal probabil-
ities of the formP(xa|Xg) or P(xa) by allowing us to model conditional independence constraints
in terms of graph separation constraints. However, for many applicationsyibbmaesirable to
compute other conditional and marginal probabilities such as probabilitiegeotsof the type

{X < x}. Here we will present the cumulative distribution network (CDN), which is&apbical
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framework for directly modeling the joint cumulative distribution function, orfFCB/ith the CDN,
we can thus expand the set of possible probability queries so that in addifiamulating queries
as conditional/marginal probabilities of the fof(xa) andP(xa|xg), we can also compute proba-
bilities of the formF (xa|w(xs)), F (xa|xg), P(xa|0d(xs)) andF (x), whereF (u) = P[u < u} is a
CDF and we denote the inequality evéht < u} usingw(xy ). Examples of this new type of query
could be “Given that the drug dose was less than 1 mg, what is the probalbilitg patient living
at least another year?”, or “Given that a person prefers onallwiasoda over another, what is the
probability of that person preferring one type of chocolate over an®th@ significant advantage
with CDNs is that the graphical representation of the joint CDF may naturallydto queries
which would otherwise be difficult, if not intractable, to compute under dickatedirected and
factor graphical models for PDFs/PMFs.

Here we provide a formal definition of the CDN and we will show that the d@dhl indepen-
dence properties in such graphical models are distinct from the prapéatidirected, undirected
and factor graphs. We will then show that the conditional independenpgeries in CDNs include
the properties of bi-directed graphs (Drton and Richardson, 2008aRlIson, 2003). Finally, we
will show that CDNSs provide a tractable means of parameterizing models foridgato rank in
which we can construct multivariate CDFs from a product of CDFs defower subsets of vari-
ables.

Definition 5 The cumulative distribution network (CDN) is an undirected bipartite gragmcadel
consisting of a bipartite graply; = (V,S E), where V denotes variable nodes and S denotes factor
nodes, with edges in E connecting factor nodes to variable nodes. Thea8Dcludes a speci-
fication of functionsps(Xs) for each function nodes S, wherexs = Xq(s), Uses?AL(S) =V and each

functiongs : RIN(S) — [0, 1] satisfies the properties of a CDF. The joint CDF over the variables in
the CDN is then given by the product over COfss RIS — [0, 1], or

F(x) = SEL%(Xs%

where each CDHy is defined over neighboring variable nod&g(s). O

An example of a CDN defined over three variable nodes with four CDNtimmaiodes is shown in
Figure 1, where the joint CDF over three variab¥e¥, Z is given by

F(X,Y,2) = @a(X,Y)@(X, Y, 2 @c(Y, 2) @u(2).

In the CDN, each function node (depicted as a diamond) corresponds tof the functiongps(Xs)
in the model for the joint CDIF (x). Thus, one can think of the CDN as a factor graph for modeling
the joint CDF instead of the joint PDF. However, as we will see shortly, thdsléaa different set
of conditional independence properties as compared to the conditiomgledndence properties of
directed, undirected and factor graphs.

Since the CDN is a graphical model for the joint CDF, the functions in the CDBtk ilmei such
thatF (x) is a CDF for some probabilit{. The following lemma establishes a sufficient condition
that the CDN functiongs be themselves CDFs in order férto be a CDF.
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Figure 1: A cumulative distribution network (CDN) defined over three \deimand four functions.

Lemma 6 If all functions gs(xs) satisfy the properties of a CDF, then the prodﬂ(ps(xs) also
sc
satisfies the properties of a CDF. O

Proof If for all s€ S we havex im(ps(xs) =1, thenxim ¢s(Xs) = 1. Furthermore, if for any
s ®se

givena €V and forse A((a), we haveXuj[n @Ps(xs) =0, thenx(xﬂrp @s(Xs) = 0.
ES
To show that the product of monotonically non-decreasing functions isotapitally non-

decreasing, we note that < ys for all s€ Sif and only if x <y, sinceUssA((s) =V. Thus if
we havegs(xs) < @s(Ys) V Xs < ys for all s€ S we can then write

F(x) = SEL(PS(XS) < SEL(PS(YS) =F(y).

Finally, a product of right-continuous functions is also right-continudimis if all of the functions
@s(Xs) satisfy the properties of a CDF, then the product of such functions alisfiss the properties
of a CDF. |

Although the condition that each of tlgg functions be a CDF is sulfficient for the overall product
to satisfy the properties of a CDF, we emphasize that it is not a necessatition, as one could
construct a function that satisfies the properties of a CDF from a praddignctions that are not
CDFs. The sufficient condition above ensures, however, that wearestruct CDNs by multiplying
together CDFs to obtain another CDF. Furthermore, the above definitichemem do not assume
differentiability of the joint CDF or of the CDN functions: the following proftgmn shows that
differentiability and non-negativity of the derivatives of functigmavith respect to all neighboring
variables in\(s) imply both differentiability and monotonicity of the joint CCHHx). In the sequel
we will assume that whenever CDN functions are differentiable, derestire invariant to the order
in which they are computed (Schwarz’ Theorem).

Proposition 7 If the mixed derivativesy, [(ps(xs)} satisfyoy, [(ps(xs)} >0forallse S and AC
A(s), then

o Oy {F(x)} >0forallC CV,
e F(x) <F(y)forall x <y,

e F(x) is differentiable.
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(Il
Proof A product of differentiable functions is differentiable andrs(x) is differentiable. To show
that dy. [F (x)} >0V C CV, we can group the functiorg(xs) arbitrarily into two functiongy(x)
andh(x) so thatF(x) = g(x)h(x). The goal here will be to show that if all derivativag, [g(x)}

andoy, [h(x)} are non-negative, theiy, [F (x)} must also be non-negative. For@lC V, applying
the product rule té (x) = g(x)h(x) yields

Orc [F )] = 5 3900 dkc. 100

SO if Oy, [g(x)} :Oxc\a [h(x)} > 0 for all A C C thenoy, [F(x)] > 0. By recursively applying this
rule to each of the functiortyx), h(x) until we obtain sums over terms involvirgg, [cps(xs)} VAC
A (s), we see that iby, [(ps(xs)] > 0, thendy, [F(x)} >0VCCV.

Now, 0. [F (x)} > 0 for allC CV implies thaiy, [F (x)} >0foralla €V. By the Mean Value
Theorem for functions of several variables, it then follows that«f y, then

FW)=F0) = 3 04 [F@)] (0 —a) 20

and soF(x) is monotonic. [

The above ensures differentiability and monotonicity of the joint CDF thrazaistraining the
derivatives of each of the CDN functions. We note that although it is menafycient for the
first-order derivatives to be non-negative in orderfgKk) to be monotonic, the condition that the
higher-order mixed derivatives,. {F(x)} of the functiongps(xs) be non-negative also implies non-

negativity of the first-order derivatives. Thus in the sequel, whangeeassume differentiability of
CDN functions, we will assume that for ak S all mixed derivatives ofx(xs) with respect to any
and all subsets of argument variables are non-negative.

Having described the above conditions on CDN functions, we will nowideosome examples
of CDNs constructed from a product of CDFs.

Gl(xv y)

GQ('Tv y)

Figure 2: A CDN defined over two variabl&sandY with functionsGs(X,y), Gz(X,y).

Example 1 (Product of bivariate Gaussian CDFs)As a simple example of a CDN, consider two
random variables X and Y with joint CDF modeled by the CDN in Figure 2, sbRligy) =
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Figure 3: a) Joint probability density functid®(x,y) corresponding to the distribution function
F(x,y) using bivariate Gaussian CDFs as CDN functions; b),c) The PDFsspameling

to Oyy [Gl(x, y)} andodyy [Gz(x, y)} )

Gl(X, y) GZ(X’ y) with

X] . b 1 02,  P10x10y1
G X7 - (D 1 ) 2 ) == ’ ) 2 - ’ b
10Y) <M & l) i Lm] 17 pioxaoys 02y
X] . Hx 2 02,  P20x20y2
G X7 == (D 1 ) 2 ) == ’ ) 2 - ’ b
2 y) <[Y} Hz 2) H L‘MZ] 2 P20x,20y,2 0)2’72

where®(-;m, S) is the multivariate Gaussian CDF with mean veatorand covarianceS. Taking
derivatives, the density(R y) is given by

P(Y) = Bxy [F(0Y)| = 0y [Ga(xY)Galxy)|
= G1(xY)xy | Gax.Y)| +0x[Gr(x ) |8y [Galx y)]
+0dy [Gl(x, y)} Oy [Gz(x, y)} +0xy [Gl(x, y)} Ga(x,Y).

As functions G, G, are Gaussian CDFs, the above derivatives can be expressed in tef@ausf
sian CDF and PDFs. For example,

Ox [Gl(x, y)} = /_io Gaussiar(

y
= Gaussiarix; 1,051 / GaUSSia’@tiuy|x-,1’°>2/|x,1)dt

X
t

T, 21) dt

= GaUSSiaIQX; uX,la O-)2(,:|.)(‘D(y’ u)"xvl’ 0-)2/‘)(71)’
where
Oy1
Byix1 = Bya P12~ (X~ bca),
Ox.1

2 2\ ~2
Oyjx1 = (1- pl)cy,l-
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Other derivatives can be obtained similarly. The resulting joint PO, ) obtained by differ-
entiating the CDF is shown in Figure 3(a), where the CDN function parametsrsgiven by
W1 =0,lx2=4,ly1=3,l2=4,0x1 =130 =15,0y1 =10y, =110,p; =0.9,p, = —0.6.
The PDFs corresponding [Gl(x,y)} and dyy [Gz(x,y)} are shown in Figures 3(b) and 3(c).
O

The next example provides an illustration of the use of copula functiom®fwtructing multivariate
CDFs under the framework of CDNs.

Figure 4: a) Joint probability density functid?(x,y) corresponding to the distribution function
F(x,y) using bivariate Gumbel copulas as CDN functions, with Student’s-t amd<an

marginal input CDFs; b),c) The PDFs correspondin@x,tp{Gl(x, y)} andoyy {Gz(x, y)} .

Example 2 (Product of copulas) We can repeat the above for the case where each CDN function
consists of a copula function (Nelsen, 1999). Copula functions proviéeial# means to construct
CDN functionsp; whose product yields a joint CDF under Lemma 6. Copula functions allav on
to construct a multivariate CDRgs from marginal CDFS{F (Xa) }qeay(s) SO that

@(x) = Ls({F () e )

where(s is a copula defined over variableg X1 € A(s). For the CDN shown in Figure 2, we can
set the CDN functions 3G, to Gumbel copulas so that

Gl(x, Y) = Zl(Hl,X<X>7 Hl,y(y)) = exp<— ((_ |Og Hl,x(X))% + (_ |OgH17y(y))911>el> ,

Ga(xy) = La(Hax(x); Hzy(y)) = exp(‘ ((~10gHax(x))% + (~log Hz,y(Y))elz>92> ,

with Hy x,Ho x set to univariate Gaussian CDFs with parametegs, i x,01x,02x and Hy,Hoy
set to univariate Student’s-t CDFs with parametetg, v>y. One can then verify that the functions
Gy, Gy satisfy the properties of a copula function (Nelsen, 1999) and so the grotiG;, G, yields
the CDF F(x,y). An example of the resulting joint probability densit{xR/) obtained by differentia-
tion of F(x,y) for parameters py = fox = —2,01x = O2x =1,V1y =V2y=0.5,0, =0.25,6, = 0.5
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is shown in Figure 4(a), with the PDFs correspondingg {Gl(x, y)} andoxy [Gz(x, y)] shown in
Figures 4(b) and 4(c). O

Figure 5: a) Joint probability density functid?(x,y) corresponding to the distribution function
F(x,y) using bivariate sigmoidal functions as CDN functions; b),c) The PDFeecor

sponding tadyy [Gl(x, y)} andodyy [Gz(x, y)} :

Example 3 (Product of bivariate sigmoids) As another example of a probability density function
constructed using a CDN, consider the case in which functiong,6 and G (x,y) in the CDN of
Figure 2 are set to be multivariate sigmoids of the form

G(xy) = =
106¥) = 14 exp(—wix) +exp(—wWiy)’
1
GZ(Xv y) =

1+ exp(—wex) + exp(—wgy)’

with W)%,W)l,,w)z(,wf, non-negative. An example of the resulting joint probability densfty\p ob-

tained by differentiation of Fx,y) = G1(x,y)Gz(x,y) for parameters §= 12.5,wj, = 0.125wg =
0.4,w§ = 0.5 is shown in Figure 5(a), with the PDFs corresponding de{Gl(x,y)} and

Oxy [Gz(x,y)} shown in Figures 5(b) and 5(c). O

The above examples demonstrate that one can construct multivariate @ Rdsrig a product of
CDFs defined over subsets of variables in the graph.

2.1 Conditional and Marginal Independence Properties of CDNs

In this section, we will derive the marginal and conditional independenapepties for a CDN,
which we show to be distinct from those of Bayesian networks, Markodam fields or factor
graphs. As with these graphical models, marginal and conditional indepea relationships can
be gleaned by inspecting whether variables are separated with respleetgaph. In a bipartite
graphg = (V, S E), a (undirected) path of lengta between two variable nodesf3 € V consists of

a sequence of distinct variable and function naagSso, 01,51, - - , S, 0k such thatip = a,ax =3
and (o, s) = (s, 0k) € Eforallk=0,--- K. AsetC CV is said to separate two variable nodes
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a,B € V\ C with respect tog if all paths froma to B intersectC. Two variable nodes(,3 € V
are said to be separated if there exists any non-emp® it separates them with respectgo
Similarly, a seC CV is said to separate two variable node &8 C V \ C with respect tog if all
paths from any variable node < A to any variable nod@ < B intersectC. Disjoint variable sets
A B eV are said to be separated if all pairs of nodes3) for a € A, 3 € B are separated.

Having defined graph separation for bipartite graphs, we begin with theitcanal inequality
independence property of CDNs, from which other marginal and conditindependence proper-
ties for a CDN will follow.

Theorem 8 (Conditional inequality independence in CDNs)Let G = (V,S E) be a CDN and let
A,B CV be disjoint sets of variable nodes. If A and B are separated with respég; then for any
W CV\ (AUB) A L Blo)(xw) wherew(xw) = {Xw < xw}-

Proof If AandB are separated with respectdo then we can write

F (Xa, X8, %\ (aug)) = 9(Xa, Xw\ (aug) )N(XB, Xv\ (aUB))

for some functionsg,h that satisfy the conditions of Lemma 6. This means that
F (Xa, s|w(xw)) is given by
X\ (AUBLW) —+ %0 (Xa, X8, Xv\ (aB))

lim F(Xa,Xg,X%
oim (Xa, XB, X\ (AUB))

O F (Xa, X8, Xw) = g(Xa, Xw)h(XB, Xw ),

F (Xa, Xg|w(Xw)) =

which impliesA L B|w(Xw). [ |

We show that if a CDHF-(x) satisfies the conditional independence property of Theorem 8 for a
given CDN, therF can be written as a product over functiaméxs).

Theorem 9 (Factorization property of a CDN) Let G = (V,S E) be a bipartite graph and let the
CDF F(x) satisfy the conditional independence property implied by the CDN desdoyp&d so
that graph separation of A and B by'MAU B) with respect tog implies AL Blw(xw) for any
W C V \ (AUB) and for anyxw € R™WI. Then there exist functiong(xs),s € S that satisfy the
properties of a CDF such that the joint CDH k) factors asrchs(xs).

Se

Proof The proof here parallels that for the Hammersley-Clifford theorem fdirented graphical
models (Lauritzen, 1996). We begin our proof by definimg(x), {u (x) as functions that depend
only on variable nodes in some $£tC V and that form a Mbius transform pair

Wu (x) =\AZU Cw(x),
Cu(x) :mzu(—l)w\w'lIJW(X),

where we takapy (x) = logF(xy). Now, we note thaF (x) can always be written as a product
of functionsJ‘l/cpu (x) where each functiom satisfies the properties of a CDF: a trivial example
c
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of this is to setp, (x) = F(x) andqy(x) = 1 for allU C V. Since by hypothesiB satisfies all of
the conditional independence properties implied by the CDN describeg, Ifywe takeqy (X) =

exp(lu(x)), then it suffices to show thdy (x) = O for subsets of variable nodés for which

any two non-neighboring variable nodesP € U are separated such thatL B|w(xw) for any
W CU\ (a,B). Observe that we can writg (x) as

Lu(x) = qu<—1>'u\w‘ww<x>

= (_1)|U wi (lIJW(X) — Wwua (X) — Wwup(X) + LPWUGUB(X)> :
WcU\(auB)

If a, €U are separated aMd CU \ (a Up), thena L B|w(xw) and

F (X Xw) _ o F (Xa|00(Xw ) ) F (Xg|wd(Xw ) ) F (Xw)
F (Xa, Xw) F (Xa | w(xw))F (xw)
F (Xglo(xw))F (xw)
F(Xw)
= logF (Xg, Xw) — logF (xw)
= Pwug(X) — Yw(X).

Thus ifU is any set where nodes 3 € U are separated, then for &l C U \ (a U ) we must have

Pw (X) — Wwua (X) — Wwup(X) + Wwuaup(X) = 0 and sofy (x) = 0. SinceF (x) = exp(Yy (X)) =

exp(ZZU (x)) = |‘| @u (X) where the product is taken over subsets of variable nod#sat are
U

Wwuaug(X) — Wwua (X) = log

=log

not separated. Now, we note that for ddythat is not separated, we must haveC A/(s) (as
U = A[(s) UA for someA Wlth 9\[ NA=0 |mpI|es thatU is not separated) for sonse= Sand

S0 we can writd= (x l_L rL(ps Xs), where@s(Xs) = Mucac(s) u (X)
UCA(s) se a

satisfies the properties of a CDF given that functigpéx) each satisfy the properties of a CDF.

Thus we can writé (x rchs Xs), where each functiogs is defined over the set of variable nodes

N(s)- u

Thus, if F(x) satisfies the conditional independence property where graph sepasb#oand B
with respect tog impliesA L B|w(xw) for anyW C V \ (A,B), thenF can be written as a product
of functions of the fom‘lcps(xs). The above theorem then demonstrates equivalence between the

sc

conditional independence propeAyl B|w(xw) and the factored form fdF (x).

The conditional inequality independence property for CDNs then impliesverébles that
are separated in the CDN are marginally independent. An example of the aldrgiapendence
property for a three-variable CDN in Figure 6, where varialdesndY are separated by variable
Z with respect to graplg, and so are marginally independent. In a CDN, variables that share
no neighbors in the CDN graph are marginally independent. we formalize ithighe following
theorem.

Theorem 10 (Marginal Independence)Let G = (V,S E) be a CDN and let 8B C V be disjoint
sets of variables. Then A B if AL(A)A((B) = 0. O
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Figure 6: Marginal independence property of CDNs: if two variab{esndY share no common
function nodes, they are marginally independent.

Proof Follows from Theorem 8 withxy — o. [ |

Note that the converse to the above does not generally hold: if disjointAsaetsl B do share
functions inS, they can still be marginally independent, as one can easily constructréitbigeaph

in which variable nodes are not separated in the graph but the functaesrmmnnectingh to B
correspond to factorized functions so tat_ B. Given the above marginal independence property
in a CDN, we now consider the conditional independence property ofld. D motivate this, we
first present a toy example in Figure 7 in which we are given CDNs fdablsX,Y,Z W and

we condition on variabl&. Here the separation of andY by unobserved variabl/ implies

X 1L Y|Z, but separation oK andY by Z only implies the marginal independence relationship
X LY. In general, variable sets that are separated in a CDN by unobsersiables will be
conditionally independent given all other variables: thus, as long asawables are separated by
some unobserved variables they are independent, irrespective atthbdt other variables may be
observed as well. We formalize this conditional independence propertyheitiollowing theorem.

g(z, 2) h(z,y)

On a8 20

f (w, z) h(z

: (z,'LU).97 : (z,9) :

Figure 7: Conditional independence in CDNs. Two varialdesndY that are separated with re-
spect to the graph are marginally independeéop)( When an unobserved variablé
(shaded to denote its unobserved status) sepaxatesm Y, X,Y are conditionally in-
dependent giveix (botton). The bottom graph thus implies 1LY, X 1. Z, W LY,
X LYW andX 1 Y|Z.
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Theorem 11 (Conditional independence in CDNs)et G = (V,S E) be a CDN. For all disjoint
sets of AB,C CV, if C separates A from B relative to graghthen

AL B|V\ (AUBUC).
0.

Proof If C separate# from B, then marginalizing out variables @yields two disjoint subgraphs
with variable set&\',B’, with AC A ,BC B, AUB' =V \CandA (A)N N(B’) = 0. From Theorem

10, we therefore hav&’ I B'. Now consider the sat \ (AUBUC) and letA, B denote a partition
of the set so that

UB=V\(AUBUC), AnB=0,
NB' =0, BNA =0.

I I

From the semi-graphoid axioms (Lauritzen, 1996; Pearl, 1988), B’ impliesA . B[V \ (AUBU
C) sinceAC A'andB C B'. [ |

Anillustration of the proof is provided in Figures 8(a) and 8(b). The almmnditional independence
property is distinct from that described in Theorem 8, as in the latter wditimm on inequality
events of the type)(xw), whereas in the former we condition on observatiogghemselves.

In addition to the above, both the conditional independence propertidseoidm 11 and 8 are
closed under marginalization, which consists of computing limits of CDN functidhsis if G is
a CDN model for(x), then the graph for CDN for CDF (xa) = (Xa,Xv\a) is given by

a subgraph of; which then implies only a subset of the independence properti€s dthe next
proposition formalizes this.

lim F
Xy\A—®

Proposition 12 Let G = (V,SE) be a CDN and let A,C C V be disjoint sets of nodes with
C CV\ (AUB) separating A from B with respect 6. Let G’ = (V',S,E’) be a subgraph of;
with V/ CV,S C SE’' C E. Similarly, let A=ANV’',B' =BnNV’,C' =CnV’ be disjoint sets of
nodes. Then Gseparates Afrom B with respect tog’. O

The above proposition is illustrated in Figures 9(a) and 9(b). As a resaltahditional indepen-
dence relatio®\ L B'|V’\ (A UB'UC’) must also hold in the subgragj{, such thatg’ implies a
subset of the independence constraints implied;bylhe above closure property under marginal-
ization is a property that also holds for Markov random fields, but noB&yesian networks (see
Richardson and Spirtes, 2002 for an example). The above closureocaditional independence
properties for CDNs have also been previously shown to hold for bétidegraphs as well, which
we will now describe.

2.2 The Relationship Between Cumulative Distribution Networks and Bdirected Graphs

Graphical models with some of the independence properties of CDNs hfaat been studied pre-
viously in the statistics literature. The marginal independence propertydidisds in fact identical
to the global Markov property of Richardson and Spirtes (2002), whiechderived in the context of
bi-directed graphical models (Drton and Richardson, 2008; Richarasd Spirtes, 2002; Richard-
son, 2003). A bi-directed grap® = (V,E) consists of nodea €V andbi-directededgese € E
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Figure 8: Example of conditional independence due to graph separatICDN. a) Given bi-
partite graphg = (V,S E), node seC separates sé from B (nodes in light blue) with
respect toG. Furthermore, we have fa¥,B’ (nodes in red dotted line) C A',BC B/,
A'UB =V \CandA(A)NA(B") = 0 as shown. b) Marginalizing out variables corre-
sponding to nodes i@ yields two disjoint subgraphs @ and soA L B|V \ (AUBUC).

corresponding to unordered pairs of nodeB, denoted by a,3). Alternately, we denote edges in
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(b)

Figure 9: Example of closure under marginalization in a CDN. a) Given €PN (V,S E), node
setC separates sék from B (nodes in light blue) with respect t§G. b) For subgraph
G' = (V',S,E") with A C A/B'CB,C' CC, C separates\ from B’ with respect tag’.

a bi-directed graph a®i, B) = o « .1 In a bi-directed grapks, theglobal Markov propertycorre-
sponds to two disjoint variable seAsB C V satisfying the marginal independence constrAirit B

if there are no paths between amye A and anyf3 € B. It can be shown (Richardson and Spirtes,
2002) that any bi-directed graphical model corresponds to a direcségahigal model with latent
variables marginalized out. In particular, we define¢haonicaldirected acyclic graph (DAG) for
the bi-directed grapi® as a directed grap® with additional latent variables such thatifs 3 in

G, thena <- Uy g — Bin G for some latent variable, g. Thus bi-directed graphical models can be
viewed as models obtained from a corresponding canonical DAG with keeiables marginalized
out, such that independence constraints between neighboring variatde imG can be viewed as
arising from the absence of any shared latent variables in the can®#@lG. This suggests the
usefulness of bi-directed graphical models for problems where weotdistount the presence of
unobserved variables but we either A) do not have sufficient domaiwlidlge to specify distri-
butions for latent variables, and/or B) we wish to avoid marginalizing ovesethegtent variables.

1. Note thatr «» 3 is notequivalent to having both directed edges> 3 anda «+ 3.
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In such cases, one can instead attempt to parameterize a probability defiobgenved variables
using a bi-directed graphical model in which independence constraintsgavadables are implied
by both the corresponding canonical DAG and bi-directed graphsmfbes of a canonical DAG
and corresponding bi-directed graph that imply the same set of indapendenstraints among
observed variables are shown in Figures 10(a) and 10(b). Searaheterizations had been pre-
viously proposed for bi-directed graphical models. Covariance gréighuermann, 1996) were
proposed in which variables are jointly Gaussian with zero pairwise covaid there is no edge
connecting the two variables in the bi-directed graph. In addition, Silva drah@mani (2009a)
proposed a mixture model with latent variables in which dependent variabkee bi-directed
graph can be explained by the causal influence of common componentsnivixtiee model. For
bi-directed graphical models defined over binary variables, a paraatairiavas proposed based
on joint probabilities over connected components of the bi-directed graphas the joint prob-
ability of any subset of variables could be obtained byhidis inversion (Drton and Richardson,
2008).

Suppose now that we are given a bi-directed gr&pand a CDNG defined over the same
variables node¥. Let G and G have the same connectivity, such that for any pair of variable nodes
a,B €V, a path between, 3 exists both inG and G. Then bothG and G imply the same set of
marginal independence constraints, as we have shown above that iN a@wdnodes that do not
share any function nodes in common are marginally independent (ThddrerAn example of a
bi-directed graph and CDN that imply the same set of marginal independenstraints is shown
in Figures 10(b) and 10(c). In addition to implying the same marginal indegreedconstraints as a
bi-directed graphical model, the conditional independence propemy givTheorem 11 for CDNs
corresponds to the dual global Markov property of Kauermann (L&$6bi-directed graphical
models, which we now present.

Theorem 13 Let G= (V,E) be a bi-directed graphical model and letB,C CV be three disjoint
node sets so that V(AUBUC) separates A from B with respect to G. Thed AB|C. O

Note that this is identical to the conditional independence property of €head where the sepa-
rating set is set t¥/ \ (AUBUC) instead ofC.

(b) (©

Figure 10: Graphical models over four variablgsXs, X3, X4 in which graph separation of variable
nodes imply the marginal independence relatigpd. X3, Xz I X4. a) A canonical di-
rected acyclic graphical model with additional latent variables, showhaesl nodes;
b)A bi-directed graph; b) A corresponding CDN.
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While the conditional and marginal independence constraints implied by boifdieebted
graph and a CDN of the same connectivity are identical, Theorem 8 shawsdhditional in-
dependence constraints of the foAnlL B|w(xw) are implied in a CDN which are not included
in the definition for a bi-directed graph of the same connectivity. As a re$ulieseadditional
constraints, CDNs model a subset of the distributions that satisfy the indepee constraints of
a corresponding bi-directed graph with the same connectivity. In ge@péls do not model the
full set of the probability distributions that can be modeled by bi-directegiical models with the
same connectivity. The following example illustrates how the conditional iniggirmdependence
property of CDNSs is in general not implied by a bi-directed graphical madktil the same graph
topology.

Example 4 Consider a 3-variable covariance graph model consisting of the bictigk graph

X1 > Xo <> X3, where X, Xz, X3 are jointly Gaussian with zero mean and covariance ma¥ix
The proposed covariance graph model imposes the marginal indepea constraint XL X3, as
there is no edge between variableg X3. Denotingo;; as elementi, j) of X, this is equivalent

to the constrainti;3 = 031 = 0. Now suppose further that the conditional inequality independence
property X L Xs|w(x2) is also implied by the covariance graph model. By Theorem 9, this implies
that the joint CDF KXy, X2, x3) factors as

X1

F(X1,%2,X3) = d)( X2 ;0,2> = g(X1, X2)h(X2,%3),
X3

whered(x; u, X) is the multivariate Gaussian CDF with mean zero and covariance matyiand
0(x1,X2), h(x2,x3) are functions that satisfy the properties of a CDF. The constraints on fursction
g(x1,X2), h(X2, x3) are given by marginalization with respect to subsets of variables:

F(X1,X2,0) = g(X1,X2)h(X2, ),
F (00, %2,X3) = g(%,X2)N(X2,X3),
F(00,%p,00) = g(o0,X2) (X2, ),

so that and so multiplying £z, X2, %) and F(e,X2,X3), we obtain
F (le X27 X3)F (007 X27 00) =F (Xla X27 OO) F (007 X27 X3)' (1)

Thus, if the conditional inequality independence constraintlXXsz|w(xy) is also implied by the
covariance graph model for the joint Gaussian CDFXE, X2, X3), then the above equality should
hold for all (x1,X2,%3) € R3 and for any positive-definite covariance matdx for which 013 =
031 =0. Let x = X = x3 = 0 and letX be given by

2
1 ¥ o0
X=|2 1 -1,
0o -1 1

so thatpio = @,ng = —% are the pairwise correlations between, X, and X%, X3. From Stuart
and Ord (1994), we can analytically evaluate joint Gaussian CDFs at tiggroas a function of
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correlation parameters, so that

F(0,0,0) =&
(7?) 8

1
F ==
(0070700) 27
- 0] 1. 1., 3
F(O,O,oo)—¢<[0},0,212> =4 T oSN P2= g,
B 0] 11 ., 1
F(m,o,o)_d)([o} ,0,223> —Z+§Tsm P23 = &

0
1 1 . . .

0 ;0,2> = =+ —(sin ' pyo+sin ! paz+sin * pyg)

0 4n

= 1+ L (Simp1o+sin tpyg) = /
=8 am P12 P23) = 28’

whereX;; is the sub-matrix consisting of rows and coluntng) in X, pj; is the correlation coef-
ficient between variables ji, and p13 = 0 is implied by the covariance graph. From Equati(i),

we must have

7.1 31

48.2 8.6’

so that the equality does not hold. Thus, the conditional inequality indepeedconstraint X 1L
X3|w(x2) is not implied by the covariance graph model. It can also be verified threaegfpres-
sion for F(xq, x2,X3) given in Equation(1) does not in general correspond to a proper PDF when

F(x1,%2),F(X2,%3),F (x2) are Gaussians, a®y, x,x; [F(xl,xz,x@} is not non-negative for all

F(0,0,0)F (c0,0,00) = F(0,0,0)F (,0,0) <

(X1, %2,%3) € R3.

The previous example shows that while graph separation of variable setgl&, B with respect
to both bi-directed graphical models and CDNs of the same connectivity impbesatne set of
marginal independence constraints, in CDNs we havedhitional constraint ofA L Bjw(Xc), a
constraint that is not implied by the corresponding bi-directed graphicdem@®he above example
shows how such additional constraints can then impose constraints on thggdiabilities that can
be modeled by CDNs. However, for probabilities that can be modeled bgfa@N, bi-directed
graph or corresponding canonical DAG models, CDNs can provideditom parameterizations
where other types of probability models might not.

In the case of CDNs defined over discrete variables taking values in darear setX =
{r1,---,rk}, the conditional independence propeftyl B|w(xw) for W CV \ (AUB) (Theorem
8) implies that conditioning on the eveXt = r11 yields conditional independence between dis-
joint setsA,B,C C V in which C separate#\, B with respect toG. We define the corresponding
min-independencgroperty below.

Definition 14 (Min-independence) Let Xa, Xg, Xc be sets of ordinal discrete variables that take
on values in the totally ordered alphah#&twith minimum elementre X defined ast < a Va #
ri,d € X. Xa andXg are said to be min-independent giv¥g if

Xa L XB|XC =r.l,

where R1=[ryry --- rq]T. O
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Theorem 15 (Min-independence property of CDNs)Let G = (V,SE) be a CDN defined over
ordinal discrete variables that take on values in the totally ordered alphab&ith minimum ele-
ment g € X defined asy<aVvVa #ry,a € X. Let AB,C CV be arbitrary disjoint subsets of V,
with C separating AB with respect ta;. ThenX andXg are min-independent giveXc. O

Proof This follows directly from Theorem 8 witk, = r11. |

Thus, in the case of a CDN defined over discrete variables where adgable can have values in
the totally ordered alphabét, a finite difference with respect to variabl¥g, when evaluated at
the vector of minimum elemenk: = r11 is equivalent to directly evaluating the CDPX&¢ =r11.
This means that in the case of models defined over ordinal discrete varitii#eparticular set of
conditional independence relationships amongst variables in the modétisileed as a function
of the ordering over possible labels for each variable in the model, sorikahast exercise care in
how such variables are labeled and what ordering is satisfied by suaih.lab

2.3 Stochastic Orderings in a Cumulative Distribution Network

The CDN, as a graphical model for the joint CDF over many random asahlso allows one to
easily specifystochastic orderingonstraints between subsets of variables in the model. Informally,
a stochastic ordering relationsh{p=<'Y holds between two random variabl¥sY if samples ofY
tend to be larger than samplesXaf We will focus here on first-order stochastic ordering constraints
(Lehmann, 1955; Shaked and Shanthikumar, 1994) of the ¥rmY and how one can specify
such constraints in terms of the CDN functions in the model. We note that sustr@iots are not

a necessary part of the definition for a CDN or for a multivariate CDF, abttie graph for the
CDN alone does not allow one to inspect stochastic ordering constrasdd ba graph separation
of variables. However, the introduction of stochastic ordering conssrain combination with
separation of variables with respect to the graph, do impose constraitiie gmoducts of CDN
functions, as we will now show. We will define below the concept of firskeo stochastic orderings
among random variables, as this is the primary definition for a stochastidrggdbat we will
use. We refer the reader to Lehmann (1955) and Shaked and Shamiinikl994) for additional
definitions.

Definition 16 Consider two scalar random variables X and Y with marginal CDk$x}F and
Fe(y). Then X and Y are said to satisfy the first-order stochastic ordering @nstX <Y if
Fx(t) > R (t) forallt € R. O

The above definition of stochastic ordering is stronger than the consiBpint< E[Y] which is
often used and one can show tak Y implies the former constraint. Note that the converse is not
true: E[X] < E[Y] does not necessarily imply <Y. For example, consider two Gaussian random
variablesX andY for which E[X] < E[Y] but Var[X] > Var[Y]. The definition of a stochastic
ordering can also be extended to disjoint sets of variakjeandXg.

Definition 17 Let X and Xg be disjoint sets of variables so thah = {Xq,, -, X } @and X =
{Xg,,- ,Xp, } for some strictly positive integer K. Lext) and Fx,(t) be the CDFs oKX and
Xg. ThenXa, Xg are said to satisfy the stochastic ordering relationsKip= Xg if

Fxa(t) > Fxg(t)
for all t € RK. O
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Having defined stochastic orderings, we will now present the cornelipg constraints on CDN
functions which are implied by the above definitions.

Proposition 18 Let G = (V,S E) be a CDN, with AB C V so that A= {a1,---,ax} and B=
{B1,---,Bk} for some strictly positive integer K. Letc RX. Then AB satisfy the stochastic
ordering relationshipXa < Xg if and only if

lim @s(u t lim  @s(u t
o by s ae (Un\artaisna) SGN(B i, BUag(s) et ne)

for all t € RK. O

The above can be readily obtained by marginalizing over variabl®s\iA,V \ B respectively to
obtain expressions fdf (xa),F (xg) as products of CDN functions. The corresponding ordering
then holds from Definition 17 if and only Fy,, (t) > Fx,(t) for all t € RX.

2.4 Discussion

We have presented the CDN and sufficient conditions on the functions @Dhein order for the
CDN to model to a CDF. We have shown that the conditional independelatienships that follow
from graph separation in CDNSs are different from the relationships implegraph separation in
Bayesian networks, Markov random fields and factor graph modelfhiaée shown that the condi-
tional independence properties of CDNs include, but are not limited to, thgimahindependence
properties of bi-directed graphs, such that CDNs model a subsetprbalability distributions that
could be modeled by bi-directed graphs.

As we have shown, performing marginalization in a CDN consists of computing Jiomittke
marginalization in models for probability densities. Furthermore, conditioningbservations in a
CDN consists of computing derivatives. In the next section, we showthege two operations can
be performed efficiently for tree-structured CDNs using messageéngasshere messages being
passed in the graph for the CDN correspond to mixed derivatives of itteG®F with respect to
variables in subtrees of the graph.

3. The Derivative-sum-product Algorithm

In the previous section, we showed that for a joint CDF, we could comprtdittonal probabil-
ities of the formsF (xa|w(Xg)), F (Xa|Xs), P(Xa|w(Xg)) and P(xa|xg), in addition to probabilities
of the typeP(xa),F(xa). In directed, undirected or factor graphs, computing and evaluating such
conditional CDFs/PDFs would generally require us to integrate overalevemiables. In a CDN,
computing and evaluating such conditionals correspondtffierentiatingthe joint CDF and then
evaluating the total mixed derivative for any given vector of observationn this section we will
show that if we model the joint CDF using a CDN with a tree-structured gtagh,we can derive a
class of message-passing algorithms cadledvative-sum-produgDSP) for efficiently computing
and evaluating derivatives in CDNs. Since that the CDF factorizes fdbid,@he global mixed
derivative can then be decomposed into a series of local mixed deeivatputations, where each
functions € Sand its derivatives is evaluated for observatiggsThroughout this section, we will
assume that the sufficient conditions for the CDN functiggss) hold in order for the CDN to
model a valid joint CDF (Lemma 6). We will further assume that the derivdtiugite differences
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of CDN functionsgs(xs) with respect to all subsets of argument variables exist and that the order
of differentiation does not affect the computation of any mixed derivative the case where we
are differentiating with respect to a set of variablgs that are observed with valueg, we as-
sume that the resulting derivative/finite difference is evaluated at thevaosgaluesxc. In the

case where we are given a functiGfix) defined over a single ordinal discrete variabke X where

X ={ro,r1,---,rn—1} andro <rp--- < rny-_1,r € R areN real-valued scalars, we define the finite
difference ofG with respect t, evaluated ax as

B G(ro) if x=ro,
ax[G(X)] —{ G(ri)—é(rifl) if x=r;, i:]_’.o.. ,N—1.

3.1 Differentiation in Cumulative Distribution Networks

We first consider the problem of computing the marginal Gk, ) for particular variabley. We
note that in the CDN, marginalization corresponds to taking limits with respect teatiables in
the model, so if we let

F(X) = F(Xa,Xv\a) = Ps(Xas Xy (s)\a) Ps(X
seN (o) s¢N(a)

then the marginal CDF faX, is given by

Fa) = Iim F(a,xa)= [] &) [T @&(@)= [] o).
Vi seA(@) sEA((@) seN((@)

Thus for anyxq, we can obtain any distribution of the typegxa) in time O(|S|V|) by taking the

product of limits of functionsX |II’L1 Ps(Xas Xag(s)\a) = @s(Xa, ). Furthermore, we can compute
A(9)\a

any conditional cumulative distribution of the typéxa|w(xg)) in the same fashion by marginaliz-
ing the joint CDF over variables i \ (AUB) and computing

F (Xa, %) lim F(x)
A, XB X\ (AUB)
F(Xalw(Xg)) = = - .
(Xa|c(xs)) F(xs) lim F(x)
Xy\B—®

Note that the above marginalization contrasts with the problem of exactigfene density models,
where local marginalization corresponds to computing integrals or sums joitth®DF/PMF over
variable states.

Although obtaining marginals in the CDN is relatively simple, computing and evaluptivigy
ability distributions of the fornf (xa|Xg), P(xa|w(xg)),P(Xa|xg) andP(xa) is more involved. We
have seen previously that in order to compute conditional CDFs, we mogiute corresponding
higher-order derivatives with respect to these observed varidblesarticular, given observed data
we may wish to numerically evaluate probabilities under the model, such that tagdarivatives
for each functiongs requires that we store only the numerical value for the derivativesid&d that
the CDN functions are chosen to be themselves tractable to evaluate amentii#fe, computing
derivatives of these functions will consist of tractable function evalaatio

Since the factorization of the joint CDF modeled by a CDN consists of a ptaddanctions
¢s(Xs), the intuition here is that we can distribute the differentiation operation sut¢hatheach
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function node in the CDN, we compute the derivatives with respect to I@rddbles and pass
the result to its neighbors. The resulting algorithm consists of passing gessga,s(X), Us—a (X)
from variable nodes to function nodes and from function nodes to \anadales, analogous to the
operation of the sum-product algorithm in factor graphs. In the Appemahpresent the derivation
of the algorithm in the setting where we wish to compute the mixed derivative dEBfeF (x)
modeled by a tree-structured CDN: the derivation is analogous to thetierifor the sum-product
algorithm, but with the summation operator replaced by the differentiation tmperko illustrate
the corresponding message-passing algorithm, consider the followingaoypte.

U, T, Y

gj)—u—y‘z—O

Figure 11: Flow of messages in the toy example of CDN defined over vesigb¥eZ,U.

Example 5 Consider the CDN over four random variablesX]Y,Z from Figure 11. The joint

CDF is given by Fu,x,y,2) = g(u,x,y)h(y,2).

Let Z be the root node so that X and U are leaf

nodes. Then the messages from leaf variable nodes to the root arebgiven

1

UXag(X)
Hu—g(

Ug%Y (y,
U'Y%h (y’ U, X
bz (ZUXY) =

)

=1
u,X) = Oy x
)=

: [g(u,x,y)uXﬁg(X)uuﬂg(U)},
Hg—v (Y; U, ),
[h(y, Z)yh(Y; U, x)} i

Figure 11 shows the flow of the above messages.
Once we have propagated messages from the leaf nodes to the roptneodan evaluate the

joint probability P(u, x,y,z) = 0, [phﬁz(z; u, X, y)} at the root node as

P(u,x,y,z) =0, |:|.4lh_>z(2' u, X y)] =0, [Oy {h(y, )y —n(Y; u,x)”

:aZ[ay[ (¥, 2 gy (¥

|

= 0 [ay [n(y ww[mmewmedﬂH

= ax,yz,u[ u,x,y)h

)

= ax,y,z,u[ (U,X, Y: Z)} ’

The above example illustrates the fact that if the graph topology is a treethth@message-passing
algorithm yields the correct mixed derivatives with respect to each \ariatthe CDN so that we
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obtain the joint probabilityP(x) = 0y [F (x)} at the root node of the tree by multiplying all incoming
messages to the root.

The above example also illustrates a potential source for complexity: eacageesonsists of
a symbolic expression that is a sum of products of derivatives of CDbtions. For larger graphs,
it is easy to see that such a message-passing scheme would grow in congmsettity symbolic
expression for each message would grow in size as we pass from b teothe root. However,
for practical purposes in which we wish to obtain numerical values fdrairitities at the observed
data, we are interested @valuatingderivatives corresponding to marginal/conditional probabilities
for observed dat&, with unobserved variables marginalized out by taking limits. As the message-
passing algorithm allows us to decompose the total mixed derivative compuitstion series of
local computations, each term in this decomposition consists of a derivaéitveah be "clamped”
to the observed values for its arguments. Moreover, this "clamping” nedbe performed lo-
cally for each CDN function as we evaluate each outgoing message. lbhdkie axample, given
observed valueg*,x* the messagggy (Y; U,X) consists of computing a derivative with respect to
u, x, followed by evaluationf the derivative at*, x*. Thus by "clamping” to observed values, mes-
sages in the above scheme will not increase in size, regardless of timfah forms chosen for
the CDN functions. By evaluating each derivative in the examplerfoc*, y*, z*, we can obtain a
numerical value for the probabilify(u*, x*,y*,z*) by multiplying messages at the root node.

3.2 Inference in Cumulative Distribution Networks

Thus far we have presented a message-passing scheme for comptitiativés of the joint CDF

in order to obtain the joint PDF/PMP(x). Here we will demonstrate the correspondence between
computing higher-order derivatives and the problem of inference iDE.’he relation between
differentiation and inference in CDNs is analogous to the relation betweeagimabzation and in-
ference in factor graphs. Thus, in analogy to how the sum-produatithigoallows one to compute
distributions of the typd®(xa|xg), message-passing in a CDN allows us to compute conditional
distributions of the fornF (xa|xg) and P(xa|xg) for disjoint setsA,B C V. In order to compute
conditional distributions of the above types, we will assume that when congpattonditional

distribution such a& (xa|xg) or P(xa|xg), we haveP(xg) = 0Oy, [F(XB)} > 0. Now consider the
problem of computing the quantify(xa|xg). We can write this as

o dus [FOxaxe)| M0 Fo)] O [XV\(mm)%Hx)]
XAl XB) = = =
Alxs Oxg [F(XB)} xV'\iBrL'm@xa [F(x)} Oxe [X I\irrle(x)]

0o lim  F(X)|,
so that by combining the operations of taking limits and computing derivativiés/@ifferences,
we can compute any conditional probability of the fdfitxa|xg). To compute the conditional CDF
for any variable node in the network, we can pass messages from ldes tmroot and then from
the root node back to the leaves. For any given variable node, we eamttltiply all incoming
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messages to obtain the conditional CDF for that variable, up to a scaling. fag@® will now
demonstrate this principle using the previous toy example CDN.

Example 6 Consider the toy example of a CDN over four random variables,¥, Z from Figure
11. Suppose we wish to computey/fx, z) = lﬁn F(u,y|x,2). This is equivalent to message-passing

in a CDN defined over variables,X,Z with U marginalized out (Figure 12) so th&@{x,y) =
ng(u,x, y). Thus the message updates are given by

g(z,y) er\ h(y, 2)
D——=O—+—=0

Figure 12: Flow of messages in the toy example CDN of Figure 11 with varidbstearginalized
out in order to compute the conditional CBRyY|x,z). Messages are here passed from
all observed variable nodes to the root node.

bxg(X) = L, Mg (¥X) = B G0 )k -g(3)| = 3| G0xY)]
Hzh(2) = L, oy (¥:2) = 0z (Y, DHzn(D)| = 8z[N(y.2)].

Once we have computed the above messages, we can evaluate the maldibb F(y|x, z) at node
Y as

o0 (vi2) _ %2[n0:2]0[80cy)].

XZ —
F(yl Z Z

Note that the normalizing constadtcan be readily obtained by computing

Z=lima, [h(y, z)} Ox [g(x, y)] = 0xz [ylig;o h(y,2)§(x, y)} ;

o,
so that

) - B (i e [02]aoo]  Jmapta o gy

z 3y lim h(y, 2G(xY)| axz[ im_h(y, 2)§(u,x,y)|

o,
B Bz lim F(ux,2)]
O im F(uxy.2)|

Note that in the above, if we were to observe=X*,Z = z*, we could then evaluate (|x*,z")
given any candidate value y for variable Y .

The above example shows that the message-passing algorithm can le csegbute conditional
CDFs of the formF (xa|xg), up to a normalizing constarff. Messages are passed once from all
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variable nodes on which we are conditioning to the root node: in the exampsages are passed
from variable nodeX, Z to variable nod# in order to computé& (y|x,z). If we wished to compute,
say,F (x]y,z), then messages would be passed from variable nodew variable node.

To obtain distributions of the typB(xa|xg) from F(xa|xg), we first computey, [F(XA\XB)
using the above message-passing scheme and then multiply messages togétaén conditional
PDFs. We note that computing the normalizing constantin be viewed as the result of message-
passing in a CDN in which the variablé& have been marginalized out in addition to variables
Xv\(aug) @nd then evaluating the resulting messages at the observed ¥gluBguivalently, one

can computeZ = x"T Oxg [F(XA, xB)] after message-passing with only variables/ify (AU B)
A [ee]
marginalized out.

3.3 Derivative-sum-product: A Message-passing Algorithm for hference in Cumulative
Distribution Networks

e Input: A tree-structured CDN G = (V,S E), root nodea €V and a vector x of obser-
vations

e Output: The probability mass function (PMF) P(x)

e For each leaf variable nodg and for all function nodese A/(a’), propagatelys(X) = 1.
For each leaf function node with functi@g(xy ), send the messaggs.,q (X) = @s(Xq/)-

e For each non-leaf variable nodeand neighboring function nodes A((a),

Ha—s(X) = |_| Hs o (X).
seN(a)\s

e For each non-leaf function nodeand neighboring variable nodass A((s),

US%G(X) :axﬂ\[(s)\a (pS(XS) I_l IJB*)S(X) .
BeA((s)\

e Repeat the™ and 39 steps towards the root node

Table 1. The derivative-sum-product (DSP) algorithm for computingptbeability mass function
P(x) in a CDN defined over discrete variables.

Given that the fundamental operations required for message-passiagtcof differentiation/
finite differences, sums and products, we will refer to the above clases$age-passing algorithms
as the derivative-sum-product (DSP) algorithm. For CDNs defineddigerete ordinal variables,
the DSP algorithm is shown in Table 1. As can be seen, for graphs defieedliscrete variables,
the DSP algorithm is analogous to the sum-product algorithm with the summatioatiopere-
placed by a finite difference operation. For graphs defined overadésordinal variables that take
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on one ofK values, for an observed each messag®, s, s consists of &-vector, analogous
to messages in the sum-product algorithm. To see this, we note that each timenpate a finite
difference with respect to variablesit(s) \ a, we also evaluate the resulbay ), o, €nsuring that
each message iskavector.

In contrast to the DSP algorithm for discrete variables, the required caityplecreases for
CDNs defined over continuous variables. For such models, we arggeéda invoke the product
rule of differential calculus in order to express these messages in terting dérivatives of CDN
functions and combinations thereof. To this end, we need to define two awddisiets of messages

Aa—s(X) andAs_,q(Xx) which correspond tdy, [paﬁs(x)} andoy, [us%(x)} respectively. We first

derive the expression fag_,s(X) by applying the product rule of differential calculus to the message
Ha—s(X), bearing in mind that each of the messages, (x) depends on variablé,. This yields

Ay a(X)
X)’

Aass(X) = Ox, {Uaes(x)} = Oy, Hy —a (X)] = Ha—s(X)

sen(a)\s s He—al

In order to derive the general expressions figty(X) , As-a(X), We first note that for any two
differentiable multivariate functiong(x),g(x), the product rule for computing the higher-order
derivative of a product of functions is given by

0 | T = 3 3| f)]ayya[ov)].
yaly

The key observation we make here is that to evaluate the above deriicateservedy, we can
evaluate each term in the summation for the obsegvsdch that the above is merely a sum of
products of scalars. Thus, given a vector of observed variablesg)ithe messages in the DSP
algorithm for continuous variables will all consist of scalars, allowing ushtain numerical values
for probabilities under the model.

To compute messages .o (X),As—a(X) from ps_q(X), applying the above product rule yields

HMs—a (X> = aXN(s)\a [(PS(XGaXN(s)\a) |_| Hﬂas(x)]
BeA((s)\a

= z Oxg [(Ps(xs)} |_| U-Bes(x) )\Bes(x)a
BCA((s)\at BeB BeA((s)\(auUB)

Assa(X) = Oy, [US—W(X)}

= Y G @00 T[] Asos®),
BCA((s)\at BeB BeA((s)\(auUB)

where we have made use of the tree-structure of the CDN to write the tilerioha product of mes-
sages as a product of derivatives of the messages. The abovesifiaan define the DSP algorithm
for CDNs defined over continuous variables, with a total of four sets aages defined solely in
terms of the CDN functions, their derivatives and linear combinations theFae message-passing
algorithm for continuous CDNs is summarized in Table 2 and is illustrated in Figire

We see from Table 2 that the DSP algorithm grows exponentially in complexttyeasumber
of neighboring variable nodes for any given function increases, esipkates at function nodes
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(a) (b)

Figure 13: The DSP algorithm. a) Computation of the message from a funcii@sto a variable
nodea; b) Computation of the message from a variable node a function nodes.

e Input: A tree-structured CDN G = (V,S E), root nodea €V and a vector x of obser-
vations

e Output: The probability density function (PDF) P(x)

e For each leaf variable noae and for all function nodes € A’(a’), propagately.s(X) =
1,Aa—s(X) = 0. For each leaf function node with functiam(x,), send the messages

Ho st () = @a(%) As s (X) = By |0
e For each non-leaf variable nodeand neighboring function nodes A((a),

Hoss(X) = H My o (X),
geN(a)\s

Asa(X)

S’G?\[(G)\S MS’%G (X)

Naoss(X) = B, [Haess()] = Has(¥)

e For each non-leaf function nodeand neighboring variable nodese A((s),

booal)= 3 O [as(x9)| [ Haos(x) Ags(x),
BCA(9)\a BeB BeA((s)\{auB}
As—sa(X) = O, [l-ls—m (X)}
= Y B [ &0 [ HeosX) Ng-s(%)-
BCA((s)\a BeB BeA(s)\{auB}

e Repeat the™™ and 39 steps towards root node

Table 2: The derivative-sum-product (DSP) algorithm for computingahe probability density
functionP(x) in a CDN defined over continuous variables.
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require one to perform a sum over all subsets of neighboring variablegever, in many cases
the computational complexity will be tractable for sparser graphs, as démtmusby the following
example.

pk(X) H+1(X)
/\k(X) /\k+1(x)

Ok (T, Tht1)

Figure 14: The DSP algorithm for a chain-structured CDN.

Example 7 (Derivative-sum-product on a linear first-order chainCDN) Consider the CDN de-
fined over K variables such that the joint CDF over these variables is diyen
K—1
F(x) = k|'|1<ﬂ<(xk,xk+1),

so that the variable nodes are connected in the chain-structured gitaglirsin Figure 14. In this
case, the DSP messages can be written as

M 2(5) = Haoss ()
= O | X 2) [ )+ 0 X DA (X),

Mt 1(X) = Agsxei1 (X)
= Ot | O X 1) ) + B | @ Xer2) | WD), k=L K =1,

Example 8 (Sampling from a cumulative distribution network) We can further take advantage
of the DSP algorithm for generating samples from the CDF modeled by a CBNawproceed
as follows: arbitrarily select a variable in the model, say. Xhen, generate a samplg fxom its
marginal CDF F(x1) (which we obtain by marginalizing over all other variables). Givgnwe
can then proceed to generate samples for its children by marginalizinglbather unobserved
variables and then sampling from the conditional distributiofxfx;). We can continue this way
until we have sampled a complete configuratidn= [x;,--- ,Xx]. The algorithm for sampling from
the joint CDF modeled by a CDN is then given by

e Pick a sampling ordering XXo,--- , Xk,

e Forvariable %,k=1,---,K, compute

F(Xa, %) = Xk+lfl_l_rQHOF(xl,--~ X, Xk 175 XK )+

e Sample xfrom

RN IC)

lim Oy ... %, [F(xl, - 7Xk)] '

Xg—r00

F(Xi|X1, -+, Xk—1) =
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From the above we see that if the CDN has a tree structure, then we cgutethe conditional
CDFs F(x|xq,- -+ ,X-—1) exactly via DSP. In the case of a CDN with cycles, we can always convert
it to one with a tree structure by clustering variables and correspondingtimm nodes (Lauritzen
and Spiegelhalter, 1988). This generally incurs an increase in functiole womplexity, but with

the benefit of being able to sample from the joint CDF modeled by the CDN.

3.4 Discussion

We have presented the derivative-sum-product (DSP) algorithnofopating derivatives in tree-
structured CDNs. For graphs defined over continuous variables, $iedlyorithm can be imple-
mented through two sets of messages in order to compute the higher-origativis of the joint
CDF. While we have presented the DSP algorithm for computing derivagives a set of CDN
functions, we have not addressed here the issue of how to learn tbd$éu@ctions from data. A
possible method would be to run DSP to obtain the joint PDF and then maximize thisesjitbat
to model parameters for a particutar Another issue we have not addressed is how to perform
inference in graphs with cycles: an interesting future direction would bevésiigate exact or ap-
proximate methods for doing so and connections to methods in the literatureaMiGR1; Neal,
1993) for doing this in traditional graphical models. We will further disctesse issues in the
concluding section.

Having defined the CDN and having described the DSP algorithm, we will nogepd to apply
both of these to the general problem of learning to rank from examplegieAsill see, the ability
to model a joint CDF using a graphical framework will yield advantages in tejihesentation and
computation for this class of problems.

4. Learning to Rank in Multiplayer Team-based Games with Cumuhtive
Distribution Networks

In this section, we will apply CDNs and the DSP algorithm to the problem of tsireid ranking
learning in which the goal is to learn a model for ranking players in a multiplggere. For this
problem, we observe the scores achieved by several players overgasawes = 1---, T in which
players interactively compete in groups, or teams, which change with eawh.gFor any given
game, players compete in teams so that at the end of each game, each pldarenachieved a
score as a result of actions taken by all players during the game. Fopexahese player scores
could correspond to the number of targets destroyed or the number ®&flaign, so that a higher
player score reflects a better performance for that player. Here wdefile a gamé€; as a triplet
(B,%, ), where®, C P is a subset of the se of all players andZ is a partition of% into sets
corresponding to teams for garfig so that if = {Z*,--- , N} then there ar&l teams for game

It and playek € & is assigned to teamfor gamer; if and only if k € Z". For example, a game
involving six players labeled,2,3,4,5,6 organized into three teams of two players each could
correspond tek = {1,2,3,4,5,6} and% = {{1,2},{3,4},{5,6}}. Without loss of generality we
will label the teams in a game by=1,--- N where each team corresponds to a set in the partition
T.

In addition to the above, we will denote li} the outcomeof a game that consists of the pair
(Xg,rg), wherexq € RI%l is a vector of player scores for gariieand the set 4 is defined as a
partially ordered set of team performances, or set of ranks for teach. Such ranks are obtained
by first computing the sum of the player scores for each teamil, --- ,N, and then ranking the
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teams by sorting the resulting sums. We will refer to these sums in the sequeltaahscoret.
An example of this for the previous examplexig = [30 12 15 25 100 23, so that ; = {2, 1, 3}

is the corresponding partially ordered set of team rankings. We will asote byx, € RI%"l the
vector of player scores for teamin gamel';. Games can also be classified into various types, such
that the sizes and/or number of teams are constrained in different waggfégent game types.
For example, a "SmallTeam” game type would consist of two teams with at most tyerplper
team, whereas a "FreeForAll” game type would constrain the number of tedmesatomost eight,
with one player per team. Furthermore, the team rankings are a functiomafighed sums of
player scores: although there is no reasopriori to weigh the scores of players differently for
determining the rank of a team, one could extend the above scheme for détgrteam rankings
to weigh player scores according to player type or player-specificrisatu

Given the above, the goal is to construct a model that will allow us to prétecbutcomed;
of the new game before it begins, giv@nand previous game outcomés, --- , G;_1. In particular,
we wish to construct a model that will minimize the number of mis-ordered teanesl lmasthe
set of team performances, for gamerl’;. Here, the probability model for the given game should
account for the team-based structure of games, such that team peréesrare determined by
individual player scores and a game outcome is determined by the ordériegno scores. We
will demonstrate here that the graphical framework of CDNs makes it stfaiglard to model
both stochastic orderings of variables in the model as well as statisticakindepce relationships
among these variables. In particular, the model we will construct here gvidilbenable to exact
inference via the DSP algorithm.

Our model will be similar in design to the TrueSKM model of Herbrich et al. (2007) for skill
rating in Halo 2M, whereby each playek € % is assigned a probability distribution over latent
skill variablesS, which is then inferred from individual player scores over multiple gansisgu
the expectation propagation algorithm for approximate inference (Mir@1)2 Inference in the
TrueSkill'™ model thus consists of applying expectation propagation to a factor goaphgiven
game in order to update probabilities over player skills. An example of suatt@rfgraph is shown
in Figure 15. In TrueSkiflM, the factors connecting team-specific nodes to one another dictate a
constraint on relative differences in the total player scores betwestsi@ehile factors connecting
player nodes to their team-specific nodes enforce the constraint thatthestore is determined
by the sum of player scores. Finally, for teams+ 1, there is a difference variablé, .1 and a
corresponding factor which declares a tied rank between two teams if feeedife between the
two team scores is below some threshold parameter.

4.1 A Cumulative Distribution Network for Modeling Multiplayer Game Outc omes

Here we will examine a model for multiplayer game outcomes that will be modeled asgbDN.
The model will be designed on a game-by-game basis where the team assigoifEayers for a
given game determines the connectivity of the grgpor the CDN. In our model the team variables
will correspond to the ranks of teams: we will call such varialkéssn performanceand denote
these aRR, for teamn in order to contrast these with the team score variablga the TrueSkill
model. Our model will account for player scorésfor each playek € & in the game, the team
performance®, for each tearm = 1,--- N in the game and each player’s skill functigg(xx),
which is a CDF specific to each player. For any given garjevill be determined as the sum of the
player scores for team, and then sorting the resulting sums so tRatorresponds to the rank of
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Player skill levels

P/ayer scores @ @ @ @ @ @
Team scores @ @ @

Team score
differences

Figure 15: The TrueSkilM factor graph for a particular Halo™ game involving three teams
with two players each with the team scoflgs=11, T, =t,, T3 =tz with t; <t, <t3s0
that team 3 here achieved the highest total of player scores. Theleatib, H,3 corre-
spond to differences in team scores which determine the ranking of teathgat$eams
nandn+ 1 are tied in their rankings if the difference in their team scores is below a
threshold parameter. Herg, = {1,2,3,4,5,6} and% = {{1,2},{3,4},{5,6}}. Unob-
served variables correspond to nodes shaded in red and obsariadilas correspond to
unshaded variable nodes. Each player 1,2, 3,4,5,6 is assigned a skill function that
reflects the distribution of that player’s skill lev8l given past game outcomes. Each
player then achieves scoxg in any given game and team scoiigsn = 1,2, 3 are then
determined as the sum of player scores for each team.

teamn. The set of observed team performancgswill be given by the joint configuration of tha,
variables for that game. The goal will then be to adapt player skill funssgx) for each game
as a function of game outcome. We will design our model according to twoiplesc First, the
relationship between player scores and team performances is modeleid@stochastic, as both
player scores and team assignments vary from one game to the next, goghdtnowledge of the
players in that game and their team assignments, there is some uncertaintyartdenw will rank
once the game is over. Second, team performance variables deperasemtiother teams in the
game, so that each team’s performance should be linked to that of otheriteaigame.

The CDN framework allows us to satisfy both desiderata in the form of modetingtraints on
the marginal CDFs for variables in the model. To address the first pointjlwequire a set of CDN
functions that connect player scores to team performances. Herdlweke use of the cumulative
model for ordinal regression (see Appendix) that relates a lineatiumt(x) = w'x on inputsx to
a single output ordinal variablec {r1,---,r .} sothatPly=r] =P[O(r_1) < f(X) +£<0(r)] =
Fe(B(r)) — f(x)) — Re(B(ri-1) — f(X)), wheree is an additive noise variable arfirg),---,0(r.)
are the cutpoint parameters of the model vlithg) = —o,0(r_) = . Equivalently, we can write
Ply <r ] =P[e <6(r;) — f(x)]. Inthe context of multiplayer games, we perform separate ordinal
regressions for different game types, as the cutpoints that are |darrsegiven game type may vary
between different game types due to differing team sizes between ganse fypea given game
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type, we treat the set of all games as a bag of pairs of player scoresmgctmd team performances

rn from which cutpoints in an ordinal regression model can be learneds, M learn a set of
cutpointsB(rg) < --- < 8(r.) once using all of the games in the training data set for a given game
type. Team performances are treated as being independent: thusy wsecthe CDN framework

to augment the above parametric model in order to account for statisticahdiepcies between
multiple team performances in any given game.

We will model multiplayer games using a CDN in which players are grouped intostead
teams compete with one another. To model dependence between plays acdrteam perfor-
mance, we will combine the above cumulative model for ordinal regressibrpwor player score
distributions under the assumptions that players contribute equally to tedonnp&nce and that
players perform equally well on average. To do this, we will use funstigrwhere if there aré\
teams for any given game, then we can assign a CDN fungtiéor each team such that

On(Xn,In) = /Xn F (G(rn);lTu,oz)P(u) du, (2)

—00

whereF(e(rn); 1Tu,02) is a cumulative model relating input player scores to output team perfor-
mance andp, r are the player scores and team performance for tearhe regression function in
the cumulative model is given bf(x) = w'x with w set to the vector of onek as we weigh the
contributions of players on a team equally. Furtherm®(g,) are the cutpoints that define contigu-
ous intervals in which, is the ranking for teamm based on that team’s performance &td) is a
probability density over a vector of latent player scane®©nce the cutpoints have been estimated
by ordinal regression, we will model the distributiodR$6(r,); 1"u,0?),P(u) in Equation (2) as

F(8(rn);17u,0?) = ®(6(rn); 17u,0?),
P(u) = Gaussiaru; u1,c2l ).

By combining functionsy, (which assume equal player skills on average) with individual player
skills whilst accounting for the dependence between players’ skills andpesformances, we can
update each player’s skill functiagn conditioned on the outcome of a game.

To address the fact that teams compete in any given game, we model oediti@mnships be-
tween team performance using the notion of stochastic orderings (SecBpns@ that for two
teams with team performanc&,Ry, Rx <X Ry if Fg,(t) > g/ (1)Vt € R, whereFg,(-),Fr, ()
are the marginal CDFs d®x,Ry. This then allows us to design models in which we can express
differences in team performances in the form of pairwise constraintsednrttarginal CDFs. We
note at this juncture that while it is possible to model such stochastic ordarirggraints between
variables using directed, undirected or factor graphs, doing so irtesdadditional constraints that
are likely to increase the difficulty of performing inference under such isottecontrast, the CDN
framework here allows us to explicitly specify such stochastic orderingtraints, in addition to
allowing for tractable computations in the resulting model. Thus, although dabkh B, variables
is a deterministic function of the sum of player scores, we can neverthalessl them as being
stochastic using the framework of CDNs to specify orderings amonBgthariables. By contrast,
it will generally be more difficult in terms of computation and representation fiore@ constraints
of the type[Rn = Rn+1] in a directed/undirected/factor graph model.
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For the proposed CDN model, givéhranked teams, we can thus defde- 1 functionshp 1

so that
Mn n
hn,n+1(rn;rn+1) =0 |: :| ; |: ~ :|,2 s
M1 M1
where
_[ o® po?
3= p0-2 0-2 )

andry < fry 1 are chosen without loss of generality such that so as to enforc&®, < Ry, in
the overall model. Finally, we will useskill function &(xx) for each playek to model that player’s
distribution over game scores given previous game outcomes. The p&jempance nodes in the
CDN will then be connected to the team performance nodes via the abovef@bhbnsg, and
team performance variable nodgsare linked to one another via the above CDN functibgg, 1.
The joint CDF for a given gami; with N teams is then given by

P4

N-1

F(Xg,rg) = [19(Xn,"n) |_| Pnnya(rn, i) |_| S(X)-
n=1 n=1 keh,

The above functions and model variables jointly define the CDN for modelinigjplayer
games. An example is given in Figure 16 for a game with three teams and sixpl&ye can read-
ily verify from the CDN of Figure 16 using Proposition 18 that for the abav@lel and for any given
game, the stochastic ordering relationsRip< R, < --- < Ry as defined above can be enforced by
marginalizing over all player scores in the CDN and having selected apai®putpoints that sat-
isfy B(r1) < 6(r2) < 6(r3) and parametens < f, < 3, so that we have (r1) > F(r2) > F(r3).

Player skill ~ $1(%1) sa(z2)  s3(%3) sa(za)  s5(xs) s6(T6)
functions

Player scores @ @ @ @ @ @

g2(3,T4,72) g3(xs, 26, 73)

h
Team 23 (7"27 'f3)

performances

Figure 16: The CDN for the player scores and team performances ima gaHalo ZM for a
game with three teams with two players each. Each pliayerl,2,3,4,5,6 achieves
scoreXy in a match and team performandgsn = 1, 2,3 are determined based on the
sum of player scores for each team.

Having presented the CDN for modeling multiplayer games, we will now proteddscribe
a method for predicting game outcomes in which we update player skill funcifterseach game
using message-passing.
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4.2 Ranking Players in Multiplayer Games Using the Derivative-sum-poduct Algorithm

Here we will apply the DSP algorithm in the context of ranking players in multgrl@ames with
a team structure, where the problem consists of jointly predicting multiple dmlitut variables.
It should be noted that while it may be possible to construct similar models usimgaed, undi-
rected or factor graph, the CDN allows us to simultaneously specify bothabrdnd statistical
independence relationships among model variables while allowing for alitactderence algo-
rithm.

In order to compute the DSP messages using the above CDN functions, weampmite the
derivatives of all CDN functions. Since all of our functions are thenel@aussian CDFs, the

derivativesdy, [(ps(xs)} can be easily evaluated with respect to variablgsas

Ox [CD (x; 1, 2)} - Gaussiar(xA; A, 2A> d)(xB; fig, fJB> ,

XA BA YA XaB
X = = 2: ?
bl ==

fis = pa+ SAgZa  (Xa — pa),
5]3 =3g— 2:&752;12/_\73.

where

The message computations in the CDN are given in the Appendix. We enstieatth message
is properly normalized by locally computing the constanas described in Section 3.2 for each
message and multiplying each message paiby 2.

Given the above CDN model for multiplayer games, we would like to then estimatdaier
skill functions s¢(x¢) for each playerk from previous games played by that player. OgtC
{1,---,T} be the set of games in which playkemparticipated. We then seek to estimatéxy)
for playerk given previous team performancesg,t € T¢ and player scores fall other players
Xq\k for all gamed € Ty in which playerk participated. Denote b@(" the outcome of a game with
the player score for playdrremoved fromx. We will define the skill functiors(x) for a player
to be given by

%) = F ({0 hem) = [ FOO7Y):

telk
The above expression for the skill functigg(xx) for playerk corresponds to the conditional dis-
tribution F (xk]{O("}teTk) given all past games played by playewith the assumption that team

performances and player scores are independently drawn from EDEsx4) fort =1,--- T,

The skill functions, can then be readily estimated by the DSP algorithm, since each game outcome
is modeled by a tree-structured CDN. More precisely, we first initiaiog) to the Gaussian CDF

D (x¢; U, B%) evaluated at many values fa. For each gamé&; we can perform message-passing

to obtain the conditional CDF (x| 07 %) = Mg, —x (5, Xg\k) for playerk (assuming the message
Hg.—sx, has been properly normalized as described above) and then perfouttiglicative update

Sk(Xk) ¢ (%) Mg, —x (r . Xz k). The updates consist of pointwise multiplicationssgfx) and

Hg.—sx, for different values okg. The skill functions,(xc) can then be used to make predictions for
playerk's scores in future games. We will proceed in the next section to apply thelraad the
above inference procedure to the problem of modeling H&Yb §ames.
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4.3 The Halo 2M Beta Data Set

The Halo 2M Beta data set (v1.2)consists of player scores for four game types (“HeadToHead”,
“FreeForAll", “SmallTeams” and “LargeTeams”) over a total of 6,465 play The descriptions for
each of the four game modes are given below.

e HeadToHead: 6227 games/1672 players, one player competing agaittstaplayer
e FreeForAll: 60022 games/5943 players, up to eight players playingsiganh other
e SmallTeams: 27539 games/4992 players, up to four players per team, twetdugrieams
e LargeTeams: 1199 games/2576 players, up to eight players per teangrweting teams

To construct the above CDN model, we set the cutpdi(its) in the above cumulative model using
ordinal regression of team ranks on team performances for all ganttes fraining set. We initial-
ized all player skill functions te(x¢) = ®(x; W, B?). The set of parametefs, p, 3,0} in the CDN
model was set td25,—0.95,20,0.25} for “HeadToHead”,{50,—0.2,10,0.2} for “FreeForAll”,
{20,-0.1,10,0.027} for “SmallTeams” and 1, —0.9, 1,0.01} for “LargeTeams” game modésFor
each of these game modes, we applied the DSP algorithm as describedrataler to obtain up-
dates for the player skill functiorsg(x). An example of such an update at the end of a game with
four competing players is shown in Figure 17.

Player 1 Player 2 Player 3 Player 4
performance=55 performance=58 performance=59 performance=61

i

0 40 80 O 40 80 O 40 80 O 40 80
X X X X

.15, (x)]
,[s,(x)]
9 [s,(x)]
.[s,(x)]

Figure 17: An example of derivative-sum-product updates for afitayer free-for-all game, with
the derivative of the skill functions before the updates (light blue) dedveards (red).

Before each game, we can predict the team performances using the shdlgelearned thus
far via the rulex; = argmady, [sk(xk)}. For each game, the set of team performances is then
X«

defined by the ordering of teams once the game is over, where we adetheted player scoreg
together for each team and sorting the resulting sums in ascending oodemyFpredicted set of
team performances, an error is incurred for that game if two teams fogdina¢ were mis-ranked
such that the number of errors for a given gamgls: TN 1[Ry < Ry A [RIY > RIY€]. One can

then compute an error rate over the entire set of games for which we medietjons about team
performances.

2. Credits for the use of the Hald"¥ Beta Data Set are given to Microsoft Research Ltd. and Bungie.
3. These parameter settings were selected using a validation set anérdiffehose of Huang and Frey (2008).
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A plot showing the average prediction error rate obtained for the abB\ i@odels over five
runs of DSP is shown in Figure 18. It is worth noting that our choice of multitee Gaussian CDFs
as CDN functions in the above model requires that we use a rejection samgihgd in order to
evaluate the CDN functions, so that the error bars over the five rurshaven. In addition, Figure
18 also shows the error rates reported by Herbrich et al. (2007)rt@Skil’™ and ELO (Elo,
1978), which is a statistical rating system used in chess. Here, we sélediadility to specify both
ordinal relationships and statistical dependence relationships betweehvaddeles using a CDN
allows us to achieve higher predictive accuracy than either Trué¥killthe ELO method.

50

IELO
45+ | Il TrueSkill 1
Bl CDN

40+ 39.49 3815

34.92 35.23
35 3214 3244 303 ]

30r

33.24 358>

25F

Test error

20p 15.61
15r- 11.77
101

5,

HeadToHead FreeForAll SmallTeam LargeTeam

Figure 18: Prediction error on the Hald"? Beta data set (computed as the fraction of team pre-
dicted incorrectly before each game) for DSP, ELO (Elo, 1978) andSkii™ (Her-
brich, Minka and Graepel, 2007) methods. Error bars over five riDS® are shown.

4.4 Discussion

In this section we presented a model and method for learning to rank in tkextohmultiplayer
team-based games such as Hdl¥ 20ur model represent both statistical dependence relationships
and stochastic orderings of variables in the model such as team perfasramtindividual player
scores. We then used the DSP algorithm to compute conditional CDFs forpéaeer’'s score.
Comparisons to the TrueSKM and ELO methods for factor graph models show that our model
and method allows both for fast estimation and improved test error on the IH4l@2ta data set.
While the above method has the advantage of providing a flexible probabilistielmod allow-
ing for tractable inference, the choice of multivariate Gaussian CDFs@Dit €inctions requires
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the use of sampling methods in order to evaluate DSP messages. Futur@uldrfocus on finding
closed-form parameterizations of CDN functions for which computingvdtivies is tractable.

5. Conclusion

We have proposed the CDN as a graphical model for joint CDFs over wemigbles. We have
shown that the conditional independence properties of a CDN are diftinctthe independence
properties of directed, undirected and factor graphs. Howevek fireperties include, but are not
limited to, those for bi-directed graphs. We have then demonstrated thadrioéein a CDN corre-
sponds to computing derivatives/finite differences. We described tiRedlifdrithm for computing
such derivatives/finite differences by passing messages in the CDié @heh message corresponds
to local derivatives of the joint CDF.

We used the graphical framework provided by CDNs to formulate modelsraitdods for
learning to rank in a structured setting in which we must account for statiskg@ndence rela-
tionships between model variables. We first applied the DSP algorithm to ¢dbéepr of ranking
in multiplayer gaming where players compete in teams. The DSP algorithm allowweaospute
distributions over player scores given previous game outcomes whilamtoog for the team-based
structure of the games, whereby we were able to show improved resuftpr@véous methods.
The CDN framework was then used to construct loss functionals fortsted ranking learning
where we wish to account for statistical dependence relationships whsghia ranking a set of
objects. We showed that many probability models for rank data can be viesvearticular CDNs
with different connectivities between pairwise object preferencese®an the work and results
presented, we can recommend future directions of research pertairtimg rieethods presented in
this manuscript.

5.1 Future Work

While we presented a framework for constructing a graphical model jiminaCDF, there may be
applications in which one may wish to instead optimize the log-probability densii(idg). We
presented the DSP algorithm for both discrete and continuous-variatwerke and we showed
how DSP could be used to compute the probability deri¥ixy@) from the joint CDFF (x|6) mod-
eled by the CDN. In order to perform maximum likelihood learning in which wéwidsmaximize
the log-likelihood£(x; 8) = logP(x|@) with respect to a parameter vectfor a given set of ob-
served variables, one can use modified versions of DSP messages in order to computedismgra
(g L(x; 0) of the log-likelihood. The guiding principle here is that the gradient opecato be dis-
tributed amongst local functions in the CDF, much like the differentiation dijperan DSP, so that
by modifying DSP messages appropriately we can obtain the gradightx; #). Once computed,
the gradient vector can then be used in a gradient-descent algorithriirntozeythe log-likelihood.
Future research in this direction could be directed at establishing whatailagaphs can yield
tractable gradient computations, as well as the complexity/accuracy tradmaflved in comput-
ing gradients in graphs with cycles.

We have shown that our message-passing algorithm leads to the cateftderivatives of
the joint CDF provided that the underlying graph is a tree. As with the sumdgtalgorithm for
factor graphs, if the graph contains cycles, then the derivative-sonhipt is no longer guaranteed
to yield the correct mixed derivatives of the joint CDF, so that messageshegiy to ‘oscillate’
as they propagate around cycles in the graph. One important directiomrdoepis to establish
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conditions under which the presence of cycles will not lead to oscillations gsages: one could
resort to a similar methodology as that employed by Weiss and Freeman (20@t¢ a graph with
cycles is “unwrapped” and the resulting messages are analyzed.

We showed that for graphs defined over continuous variables, thdexitgmf computing DSP
message updates at a given function node increased exponentially withrtheer of neighboring
variable nodes, as one has to sum over products of messages incavnirgjlfsubsets of variables
connected to the function node. However, it may be possible to approximasages using sim-
pler, tractable forms such as conditional univariate Gaussian CDFsteFutuk here would be to
establish tractable methods for performing such approximations and gaugertbrmance of such
an approximate scheme for inference in CDNs on both synthetic and relal-data.

As we have demonstrated, the graph separation criterion for assessitiianal independence
in CDNs includes those of bi-directed graphs (Richardson and Spifieg).2As such graphs are a
special case of mixed graphs containing undirected, directed and biatiredges, a future avenue
of research would be to investigate whether one can tractably approxioatersxed graphical
models using a hybrid graphical formulation combining the CDN model with thétaddr graphs
for joint probability density/mass functions. The Bayesian learning appraaopted by Silva
and Ghahramani (2009b) could provide a framework with which to quakdigtand quantitatively
compare the use of CDNs for constructing such mixed graphical models.
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Appendix A.

Lemma 19 Let M= {x¢c < Xc < Xc+ €} = ﬂ{xy < Xy < Xy + €} with € > 0 for Xc € X and
yeC
e =[e --- €T € RXcl. Consider the set of random variabl¥s C X with Xc "X = 0. If both

Oxc [F (xc)] and Ox. [F(XA,XC)} exist for all xc with dy. [F(xc)} > 0, then the conditional CDF

P[{XASXA}D{X0<XC§X0—I—6}

F(Xalxc) = elLrg+F(xA\xc < Xc<xc+e€)= lim is given

e—0* P[XC < Xc <Xc+ 6}
by

Ay [F (xA,xC)}

Flxalbe) = ) [F(x )}
Xc C

O axc [F (XA7 Xc)} ,

wheredy, H is a mixed derivative operator with respect{tg,y € C}.
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Proof We can proceed by induction on variable Xetwith the base case given by Lemma 3. Let
Xc=X¢ UXB with XB ¢ X UXa. LetM' = M/(E) = {XC/ < Xgr < Xer —I-E} = ﬂ {Xy < Xy < Xy+E}
yeC’
andM = M(€,€) = M' N {xg < Xz < g+ €} with e = [¢T €]T. Suppose thady, [F (xcl)} >0 and
we have computed
aXC/ |:F (XA, Xz, XC’)}

F(XA,XB|XC/)EglLrTg+F(XA,XB‘M/(£)): . [F(X )] ’
Xt C!

and
0 [FOp.%c)|
F(xglxc) = lim F(xg|M'(¢)) = —————<—.
e £—-0* ( B ) aXC, [F(XC/)}

Then we can write
F (xaxg|M’)

F(xg[M)

P [{XA <Xa}N{xg <Xz <xg+e}| M’] F (xa.Xg+€M')—
F(XA ’ M) = , = F(XB-"-E‘M';:—
IP’[X3<XBSXB+€H\/I] .

Thus, sincey. [F(XC)} > 0 by hypothesis, we obtain

Pl teM) Fog)  lim OB EXer) ZF (Xa Xg o)
Fixalxe) = Jim . F(xwaMEF(xBM') :Hm”m F(x3+e|xo§—F(xB|xC,)
e—~0t €
axﬁ,xc, [F(XA,XB,XC/)] Oxc [F(XA,XC)}
= Oy e {F(xﬁ,xc/)} N GXC[F(Xc)}

Thus a conditional CDF of the foriii(xa|Xc) can be obtained by differentiation of the joint CDF.
By Schwarz’s Theorem this differentiation is invariant to the order in whantables are processed
provided that the derivatives required to compltea|xc) exist and are continuous.

A.1 Derivation of the Derivative-sum-product Algorithm

To begin, letG = (V,SE) be a tree-structured CDN and suppose we wish to compute the joint
probability P(x) and evaluate it at observation We note that we can root the graph at some node
o and we can write the joint CDF as

F(X): I_l TS(XTg)y
seN(a)

wherex;a denotes the vector of configurations for all variables in the sulifreeoted at variable
nodea and containing function node(Figure 19), aan(ng) corresponds to the product of all
functions located in the subtreg.
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Figure 19: Example of the subtregl TE for a tree-structured CDN given by the gragh

Now suppose we are interested in computing the probability

P(x) = dy [F (x)} — 0,

Ts(Xg )] .

seN(a)

Here, we take advantage of the fact that the graph has a tree strscttinef

|_| axrg\u [Ts(xrg)}] = Ox,
se(a)

We have introduced the set of functioms,q (X) = Hs—a (ng) defined by

Ox

[, st

seN(a)

[ TS(XT‘S‘)] = Ox,
seN((a)

Ms—sa(X) = Hsoa (XTg) = axrg\a [TS(XT‘S’)] ) 3)

where we have assumed that each of the derivatives/finite differéaeesbeen evaluated at the
desired valuesg\q. By its definition, js .o (x) only depends on variables in the subtrgeand
corresponds to the higher-order derivative of the joint CDF with retsjpevariables in the subtree
12\ a. We can thus view the functiong_q(X) as messages being passed from each function node
se Al(a) in the CDN to a neighboring variable node

We can now writ€Ts(x¢ ) as a product of functions owing to the tree structure of the gaph
so that

Ts(Xte) = @s(Xa, Xa(s)\a) Tg <Xrg), (4)
BeA((s)\a
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wherexrf5 denotes the vector of configurations for all variables in the subgmhich is rooted at

function nodes and contains nodg (Figure 19), andy is the product of all functions in the subtree
TE. Substituting Equation (4) into Equation (3), we obtain

)]
o[l

BeA((s

Hssa(X) = Msoa (Xeg) = Oxq,, [(PS(Xdaxﬂ\[(s)\q)
BeA(s)\

= aX?\[(S)\a [%(XG’XN(S)\O‘)

= aXN(S)\C( !%(Xa ) XN(S)\(X) p‘B%S <XT§) ] . (5)
BeA(s)\a

Here we have defined messaggs s(x) = pB_,S<xT§> from variable nodes to function nodes. Sim-

ilar to the definition forps .« (), the messaggg_,s(x) only depends on variables in the subtree
rE and corresponds to the higher-order derivative of the joint CDF wiheaet to variables in the
subtreexf3 \B.

Finally, to compute the messagas.s(x) from variables to functions, we can write each of the
functionsTg (x:s ) as a product such that

W)= ] Telsg)

where Ty is defined identically tdls above but for function nod€. Substituting this into the
expression fopg_,s(x) in Equation (5) yields

U[Hs(x) = aXIE\B [TB (Xrg)} = Ox
seN(B)\s
= |_| Us’—>[3(x)-
seA(B)\s

Thus, to compute messages from variables to functions, we simply take thecpod all incoming
messages except for the message coming from the destination functiorAsaddéhe sum-product
algorithm, variables with only two neighboring functions simply pass messagrgtihhunchanged.
We see here that the process of differentiation in a CDN can be implemengdadgorithm in
which we pass messagpg .s from variables to neighboring function nodes and messgages
from functions to neighboring variable nodes. Messages can be commaadively from one
another as described above: we start from an arbitrary root vanialdien and propagate messages
up from leaf nodes to the root node. As in the sum-product algorithm, se&ihle nodes!’ send
the messagpy —,s(X) = 1 while leaf function nodegs(Xy) send the messagg o (X) = @s(Xqar)-
The message-passing algorithm proceeds until messages have ljesgyaped along every edge
in the network and the root variable node has received all incoming mess$agn the remainder
of the network. Once all messages have been sent, we can obtain tlabiptyliensity of the
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variables in the graph from differentiating the product of incoming messaigine root node, so
that

P(x) = dy,

Hs—a (X)] .
seN(a)

A.2 Ordinal Regression

In many domains, one is faced with the problem of predicting multinomial varidbésan each
take one of a finite number of values in some discrete(set{ry,--- ,rx } for some integeK. Such
multinomial variables can then be distinguished as being of the type

e Nominal or categorical so that the set does not admit an ordering of variable values.

¢ Ordinal, so that the sex admits a total ordering over variable values of the tyjpe --- < rg.

An example of a nominal variable is gender, suchXas {Male,Femalg and an example of an
ordinal variable is a grading schemte= {A,B,C,D} so that the possible variable values satisfy the
total orderingD <C <B< A.

In ordinal regression, the goal is to predict a discrete variglae{ry,---,rc} given a set of
feature, wherer; < --- < rg are an ordered set of labels. Unlike the general problem of multiclass
classification in which variables to be predicted are nominal, output labels settiag of ordinal
regression are not permutation-invariant and so any model for théepnathould account for the
orderings of the output variable values.

One model for performing ordinal regression is thnulative modgMcCullagh, 1980), which
relates an input vectorto an ordinal outpuy via a functionf and a set o€utpointsf(r;) < --- <
B(rk ) along the real lindR so thaty = ry if 8(rk_1) < f(x) +¢& < 6(rx), wheree is additive noise
and we defin®(rg) = —,0(rk ) = o (Figure 20). IfP(¢) is the probability density function from
which the noise variableis drawn, then we can write

Ply=r] =P[B(r1) < f(X)+& < 6(ry)]
=P[{6(r—1) — f(x) <e}({e<6(r) — F(X)}]
= Fe(8(rk_1) — f(x)) — Fe(8(rk) — (X)),

whereF; = F (¢) is the corresponding cumulative distribution function R{e). The above equa-
tion defines a likelihood function for a given observed gaity), so that the cutpoint8(ry) and

the regression functiofi(x) can subsequently be estimated from training data by maximizing the
likelihood function with respect to the cutpoiriérk) and the regression functidix).

A.3 Derivative-sum-product Message Updates for Learning to Bnk in Multiplayer Games

Here we present the DSP algorithm for updating player ranks. Messagensured to be properly
normalized locally by computing the constafit= Zlmo H(z) for each message and multiplying the

message paijt, A by 271,
e Initialize for each player score nodg:
Hx—gn (%K) = Sc(X)
Micran (%) = B | 5%
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X
ol X3 (1) 0(2)
X9 @, A {—
A f(x1) | f(x2) f(x3)

Figure 20: An illustration of the ordinal regression model. A given poirg labely = ry if
B(rk-1) < f(x)+€ < 06(rx), wheree is a noise variable.

e Pass messages from function nagieto team performance nod®, for neighboring player
nodesXp,,n=1,---  N:

Horom 1) = O |mn0mrn)| [ Boa) ] o).

St XsUXi=Xn iIXjeXs JIXjeXt
XsNXi=0
)\gn%Rn (r ) X) = z aXS7rn [gn(xn, rn)i| I_l uxj —0On (XJ) |_| )\Xj —0On (XJ ) :
St XsUXt=Xn jIXjeXs JIXjeXy
XsNX=0

o Setpn, 1, R, (M X) = An, 1, 5R,(r,X) = 1 forn= 1. Pass messages from team performance
nodeR, to neighboring team performance nod&s.; and function node$i n1 for n =
]_, e N:

uRn—>hn,n+1(r ) X) = uhn—l,n—>Rn (r ) X)“gnﬁRn(r ) X)7
)\Rn—>hn,n+l(r ) X) = )\hn—l,nﬁRn (r ) X)I""gnﬁRn (r ) X)
+ u'hn—lAn—>Rn (r ) X))\gn%Rn (r 9 X))

“hn.n+1*>Rn+1(r>X) = p‘Rnﬁhn.nJrl(r ) X)al‘n [hn,n+1 rn, rn+1):|
+7\Rn%hn.n+1(rvx)hn,n+1(rn7 1),

)\h”>”+1_>Rn+1(r7X) = uRn—>hn,n+l<r ) X)arn-,rn+1 [hn,n+1(rn7 rn+l):|

(

+)\Rn*>hn.n+1 rvx)al’n+1 [hn,nJrl(rna rn+l):| .

e Setpn, ;R (M X) = An,,.1 R, (M,X) = 1 for n= N. Pass messages from team performance
nodeR, to neighboring team performance nod&s ; and function node$i,_1, for n =
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i"an‘)hn—lAn (r ) X) = uhn.nJrl‘)Rn (r ) X)pgnHRn(r ) X)?
)\Rn*)hn—lﬂ(r?X) = )\hn,n+1*>Rn(r7X)pgn*>Rn(r’X)
+ Mhnni1—R, (I‘ s X))‘gnHRn (I‘ s X)v

Mhy_10—Ro1 (M X) = HR,—shy 1,0 (1, X)0r, [hn—l,n rn—larn)}
+ }\Rn—>hn—1,n(r ) X) hn_17n(rn_l, rn)7
)\hn—l,n—>Rn—1(r ) X) = U'Rn—mn—l‘n (r ) X)arn—l:rn |:hn7]_7n(rn,1, rn)i|

+)\Rn—>hn—l,n(r ) X)arnfl {hn—l,n(rn_l, rn):| .
e Pass messages from each team performanceRgpibeneighboring function nodeg:

U'Rnﬁgn (r ) X) = Uhn—l.n%Rn (r ) X) Uhn7n+l‘>Rn (r ) X)?
)\Rnﬁgn (r ) X) = )\hn—lﬁnﬁRn (r ’ X) “hn.n+1*>Rn (r ) X)
+ Uhn—l.nﬁRn (r ) X))\hn,n+l*>Rn (r ) X) .

e Pass messages from function node$o neighboring player score nod&g

ngn*)Xk(r?X) = Z |_| p‘xj‘)gn (XJ) |_| )\Xj%gn (XJ)
SHXsUXi=Xn\ Xk j|Xj€Xs JIXjeXt
XsNX¢=0

: (axs [gn(xn, rn)} )\Rn%gn(r,x) + Oxery [gn(xna rn)] U-Rnagn(rax)> )

)\gnﬁxk(r?x) = z |_| p‘xjﬂgn (XJ) I_l )\Xjﬁgn (XJ)
SHXsUXi=Xn\ Xk j|Xj€Xs JIXjeXt
XsNXi=0

: (axs,xk [gn(xn, rn)] AR, —gn (I X) + Ox 3.1 [Qn(xna rn)] URann(r»X)> :

e For each player score nodg,

UXk—>sk(r7X) = Ugn—>Xk(r ) X)’
M 1:5) = Mgy (1)

e Update player skill functions(x«) using the multiplicative rule

Sk(%) 4= (%) Mg+ (X, T)-

References

Mathias Drton and Thomas S. Richardson. Binary models for marginal émgigmceJournal of
the Royal Statistical Society, Series/:287-309, 2008.

346



CUMULATIVE DISTRIBUTION NETWORKS AND THE DERIVATIVE -SUM-PRODUCTALGORITHM

Arpad E. Elo.The Rating of Chess Players: Past and Pres@nto Publishing, 1978.

Emil Julius Gumbel and C.K. Mustafi. Some analytical properties of bivandterae distributions.
Journal of the American Statistical Associatj@2:569-588, 1967.

Ralf Herbrich, Thomas P. Minka and Thore Graepel. TrueS%illA Bayesian skill rating system.
Advances in Neural Information Processing Systems (NIE¥69-576, 2007.

Jim C. Huang and Brendan J. Frey. Cumulative distribution networks amdie¢hivative-sum-
product algorithm. IfProceedings of the Twenty-Fourth Conference on Uncertainty in Artificial
Intelligence (UAI) pages 290-297, Helsinki, Finland, 2008.

Jim C. Huang.Cumulative Distribution Networks: Inference, Estimation and Applications of
Graphical Models for Cumulative Distribution FunctionBhD thesis, University of Toronto,
Toronto, Ontario, Canada, 2009.

Goran Kauermann. On a dualization of graphical Gaussian mdsiedsidinavian Journal of Statis-
tics, 23:105-116, 1996.

Frank R. Kschischang, Brendan J. Frey and Hans-Andrea Loekgetor graphs and the sum-
product algorithmIEEE Transactions on Information Theo#7(2y498-519, 2001.

Steffen L. Lauritzen and David J. Spiegelhalter. Local computations witbgtnilities on graphical
structures and their application to expert systednsrnal of the Royal Statistical Society Series
B (Methodologicalp0(2)157-224,1988.

Steffen L. LauritzenGraphical ModelsOxford University Press Inc., New York, New York, 1996.

Erich L. Lehmann. Ordered families of distributiof$ie Annals of Mathematical Statistj@6:399-
419, 1955.

Peter McCullagh. Regression models for ordinal ditarnal of the Royal Statistical Society, Series
B (Methodological)42(2)109-142, 1980.

Thomas P. Minka. Expectation propagation for approximate Bayesiareirder InProceedings
of the Seventeenth Conference on Uncertainty in Artificial Intelligence)(iabes 362-369,
Seattle, Washington, 2001.

Radford M. Neal. Probabilistic inference using Markov chain Monte Qawthods. Technical Re-
port CRG-TR-93-1, Department of Computer Science, University obitm, Toronto, Ontario,
Canada, 1993.

Roger B. Nelsern Introduction to CopulasSpringer, New York, New York, 1999.

Athanasios Papoulis and S. Unnikrishna PilRiiobability, Random Variables and Stochastic Pro-
cessesMcGraw Hill, New York, New York, 2001.

Judea PearProbabilistic Reasoning in Intelligent Systerikrgan Kaufmann, San Francisco, Cal-
ifornia, 1988.

347



HUANG AND FREY

Thomas S. Richardson and Peter Spirtes. Ancestral graph Markov méaelgls of Statistics
30:962-1030, 2002.

Thomas S. Richardson. Markov properties for acyclic directed mixggzhgr&candinavian Journal
of Statistics30:145-157, 2003.

Moshe Shaked and J. George Shanthikur@tochastic Orders and Their Applicatiomscademic
Press, San Diego, California, 1994.

Ricardo Silva and Zoubin Ghahramani. Factorial mixture of Gaussians anddtginal indepen-
dence model. IrProceedings of the Twelfth Annual Conference on Atrtificial Intelligenak an
Statistics (AISTATSJMLR: W & CP, 5:520-527, 2009.

Ricardo Silva and Zoubin Ghahramani. The hidden life of latent variablage®an learning with
mixed graph modelslournal of Machine Learning Research (JML.RY:1187-1238, 2009.

Alan Stuart and Keith Ordkendall’'s Advanced Theory of Statistics, Volume 1: Distribution Theory.
Edward Arnold, London, UK, 1994.

Larry WassermanAll of Statistics: A Concise Course in Statistical Inferergpringer, New York,
New York, 2004.

Yair Weiss and William T. Freeman. Correctness of belief propagation isstaugraphical models
of arbitrary topologyNeural Computation13:2173-2200, 2001.

348



