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Abstract

We present a class of graphical models for directly representing the joint cumulative distribution
function (CDF) of many random variables, calledcumulative distribution networks(CDNs). Un-
like graphs for probability density and mass functions, forCDFs the marginal probabilities for any
subset of variables are obtained by computing limits of functions in the model, and conditional
probabilities correspond to computing mixed derivatives.We will show that the conditional inde-
pendence properties in a CDN are distinct from the conditional independence properties of directed,
undirected and factor graphs, but include the conditional independence properties of bi-directed
graphs. In order to perform inference in such models, we describe the ‘derivative-sum-product’
(DSP) message-passing algorithm in which messages correspond to derivatives of the joint CDF.
We will then apply CDNs to the problem of learning to rank players in multiplayer team-based
games and suggest several future directions for research.

Keywords: graphical models, cumulative distribution function, message-passing algorithm, infer-
ence

1. Introduction

Probabilistic graphical models provide a pictorial means of specifying a jointprobability density
function (PDF) defined over many continuous random variables, the jointprobability mass function
(PMF) of many discrete random variables, or a joint probability distribution defined over a mixture
of continuous and discrete variables. Each variable in the model corresponds to a node in a graph and
edges between nodes in the graph convey statistical dependence relationships between the variables
in the model. The graphical formalism allows one to obtain the independence relationships between
random variables in a model by inspecting the corresponding graph, where the separation of nodes
in the graph implies a particular conditional independence relationship between the corresponding
variables.

A consequence of representing independence constraints between subsets of variables using a
graph is that the joint probability often factors into a product of functions defined over subsets of

c©2011 Jim C. Huang and Brendan J. Frey.



HUANG AND FREY

neighboring nodes in the graph. Typically, this allows us to decompose a large multivariate dis-
tribution into a product of simpler functions, so that the task of inference and estimation of such
models can also be simplified and efficient algorithms for performing these tasks can be imple-
mented. Often, a complex distribution over observed variables can be constructed using a graphical
model with latent variables introduced, where the joint probability over the observed variables is
obtained by marginalization over the latent variables. The model with additionallatent variables
has the advantage of having a more compact factorized form as comparedto that for the joint prob-
ability over the observed variables. However, this often comes at the costof a significantly higher
computational cost for estimation and inference, as additional latent variables often require one
to either approximate intractable marginalization operations (Minka, 2001) or tosample from the
model using Markov Chain Monte Carlo (MCMC) methods (Neal, 1993). Furthermore, there is also
the problem that there are possibly an infinite number of latent variable modelsassociated with any
given model defined over observable variables, so that adding latent variables for any given appli-
cation can often present difficulties in terms of model identifiability, which may bedesirable when
model parameters are to be interpreted. These issues may hamper the applicability of graphical
models for many real-world problems in the presence of latent variables.

Another possible limitation of many graphical models is that the joint PDF/PMF itself might
not be appropriate as a probability model for certain applications. For example, in learning to rank,
thecumulative distribution function(CDF) is a probabilistic representation that arises naturally as
a probability of inequality events of the type{X ≤ x}. The joint CDF lends itself to such problems
that are easily described in terms of inequality events in which statistical dependence relationships
also exist among events. An example of this type of problem is that of predicting multiplayer game
outcomes with a team structure (Herbrich, Minka and Graepel, 2007). In contrast to the canonical
problems of classification or regression, in learning to rank we are required to learn some map-
ping from inputs to inter-dependent output variables so that we may wish to model both stochastic
orderings between variable states and statistical dependence relationships between variables.

Given the above, here we present a class of graphical models calledcumulative distribution net-
works(CDN) in which we represent the joint CDF of a set of observed variables. As we will show,
CDNs can be viewed as providing a means to construct multivariate distributions over observed
variables without the need to explicitly introduce latent variables and then marginalize. The result-
ing model consists of a factorized form for the joint CDF, where the principal operations required
for answering probabilistic queries and for marginalization consist of differentiation and computing
limits respectively, in contrast to summation/integration in graphical models for PDFs with latent
variables. Furthermore, the parametrization of the model as a joint CDF has the advantage that the
global normalization constraint can be enforced locally for each functionin the CDN, unlike the
case of undirected graphical models for PDF/PMFs. We will present the basic properties of CDNs
and show that the rules for ascertaining conditional independence relationships among variables in
a CDN are distinct from the rules in directed, undirected and factor graphs (Pearl, 1988; Lauritzen,
1996; Kschischang, Frey and Loeliger, 2001). We will show that the conditional independence
properties in a CDN include, but are not limited to, the conditional independence properties for
bi-directed graphs (Drton and Richardson, 2008; Richardson and Spirtes, 2002; Richardson, 2003).

We will then discuss the problem of performing inference under CDNs in which the principal
challenge is to compute the derivatives of the joint CDF. To this end we will describe a message-
passing algorithm for inference in CDNs called thederivative-sum-product algorithmbased on
previous work (Huang and Frey, 2008; Huang, 2009). To demonstrate the applicability of CDNs,
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we will use the message-passing algorithm for inference in order to apply CDNs to the problem of
learning to rank, where we will show that CDFs arise naturally as a probability models in which it
is easy to specify stochastic ordering constraints among variables in the model.

1.1 Notation

Before we proceed, we will establish some notation to be used throughout the paper. We will denote
bipartite graphs asG = (V,S,E) whereV,Sare two disjoint sets of nodes andE⊆ {V×S,S×V} is
a set of edges that correspond to ordered pairs(α,s) or (s,α) for α ∈V ands∈ S. We will denote
neighboring setsN (α) andN (s) as

N (α) = {s∈ S: (α,s) ∈ E},
N (s) = {α ∈V : (α,s) ∈ E}.

Furthermore, letN (A) = ∪α∈AN (α).
Throughout the paper we will use boldface notation to denote vectors and/or matrices. Scalar

and vector random variables will be denoted asXα andXA respectively whereα is a node in a graph
G andA denotes a set of nodes inG . The notation|A|, |x|, |X| will denote the cardinality, or number
of elements, in setA and vectorsx,X respectively. We will also denote the mixed partial deriva-

tive/finite difference as∂xA

[

·
]

, where the mixed derivative here is taken with respect to arguments

xα ∀ α ∈ A. Throughout the paper we assume hat sets consist of unique elements such that for any

setA and for any elementα ∈ A, A∩α = α, so that∂xA

[

·
]

consists of the mixed derivative with

respect to unique variable argumentsXα ∈ XA. For example,∂x1,2,3

[

F(x1,x2,x3)
]

≡ ∂3F
∂x1∂x2∂x3

.

1.2 Cumulative Distribution Functions

Here we provide a brief definition for the joint CDFF(x) defined over random variablesX, denoted
individually asXα. The jointcumulative distribution function F(x) is then defined as the function
F : R|X| 7→ [0,1] such that

F(x) = P

[ ⋂
Xα∈X

{

Xα ≤ xα
}

]

≡ P
[

X ≤ x
]

.

Thus the CDF is a probability of events{Xα ≤ xα}. Alternately, the CDF can be defined in terms of
the joint probability density function (PDF) or probability mass function (PMF)P(x) via

F(x) =
∫ x

−∞
P(u) du,

whereP(x), if it exists, satisfiesP(x)≥ 0,
∫

x P(x) dx = 1 andP(x) = ∂x

[

F(x)
]

where∂x

[

·
]

denotes

the higher-order mixed derivative operator∂x1,··· ,xK

[

·
]

≡ ∂K

∂x1 · · ·∂xK
for x = [x1 · · · xK ] ∈ R

K .

A functionF is a CDF for some probabilityP if and only if F satisfies the following conditions:

1. The CDFF(x) converges to unity as all of its arguments tend to∞, or

F(∞)≡ lim
x→∞

F(x) = 1.
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2. The CDFF(x) converges to 0 as any of its arguments tends to−∞, or

F(−∞,x\xα)≡ lim
xα→−∞

F(xα,x\xα) = 0 ∀ Xα ∈ X.

3. The CDFF(x) is monotonically non-decreasing, so that

F(x)≤ F(y) ∀ x≤ y, x,y ∈ R
|X|.

wherex≤ y denotes element-wise inequality of all the elements in vectorsx,y.

4. The CDFF(x) is right-continuous, so that

lim
ǫ→0+

F(x+ǫ)≡ F(x) ∀ x ∈ R
|X|.

A proof of forward implication in the above can be found in Wasserman (2004) and Papoulis and
Pillai (2001).

Proposition 1 Let F(xA,xB) be the joint CDF for variablesX whereXA,XB for a partition of the
set of variablesX. The joint probability of the event{XA ≤ xA} is then given in terms of F(xA,xB)
as

F(xA)≡ P

[

XA≤ xA

]

= lim
xB→∞

F(xA,xB).

�

The above proposition follows directly from the definition of a CDF in which

lim
xB→∞

F(xA,xB) = P

[[⋂
α∈A

{Xα ≤ xα}
]

∩
[⋂

β∈B

{Xβ ≤ ∞}
]]

= P

[⋂
α∈A

{Xα ≤ xα}
]

= F(xA).

Thus, marginal CDFs of the formF(xA) can be computed from the joint CDF by computing limits.

1.3 Conditional Cumulative Distribution Functions

In the sequel we will be making use of the concept of a conditional CDF forsome subset of variables
XA conditioned on eventM. We formally define the conditional CDF below.

Definition 2 Let M be an event withP[M] > 0. The conditional CDF F(xA | M) conditioned on
event M is defined as

F(xA |M)≡ P

[

XA≤ xA |M
]

=
P

[

{XA≤ xA}∩M
]

P
[

M
] .

�

We will now find the above conditional CDF for different types of eventsM.

Lemma 3 Let F(xC) be a marginal CDF obtained from the joint CDF F(x) as given by Proposition
1 for someXC ⊆ X. Consider some variable setXA ⊆ X whereXA

⋂
XC = /0. Let M= ω(xC) ≡

{XC ≤ xC} for XC ⊂ X. If F(xC)> 0, then F(xA|ω(xC))≡ F(xA|XC ≤ xC) =
F(xA,xC)

F(xC)
. �
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Thus a conditional CDF of the formF(xA|ω(xC)) can be obtained by taking ratios of joint CDFs,
which consists of computing limits to obtain the required marginal CDFs. It followsfrom Lemma 3
that marginalization over variablesXC can be viewed as a special case of conditioning onXC < ∞.

To compute conditional CDFs of the formF(xA|xβ) where we instead condition onxβ, we need
to differentiatethe joint CDF, as we now show.

Lemma 4 Consider some variable setXA ⊆ X. Let M= {xβ < Xβ ≤ xβ + ε} with ε > 0 for some
scalar random variable Xβ /∈ XA. If F(xβ) and F(xA,xβ) are differentiable with respect to xβ so that

∂xβ

[

F(xβ)
]

and ∂xβ

[

F(xA,xβ)
]

exist with∂xβ

[

F(xβ)
]

> 0, then the conditional CDF F(xA|xβ) ≡

lim
ε→0+

F(xA|xβ < Xβ < xβ + ε) = lim
ε→0+

P

[

{XA≤ xA}∩{xβ < Xβ ≤ xβ + ε}
]

P

[

xβ < Xβ ≤ xβ + ε
] is given by

F(xA|xβ) =
∂xβ

[

F(xA,xβ)
]

∂xβ

[

F(xβ)
] ∝ ∂xβ

[

F(xA,xβ)
]

.

Proof We can write

F(xA|xβ < Xβ ≤ xβ + ε) =
P

[

{XA≤ xA}∩{xβ < Xβ ≤ xβ + ε}
]

P

[

xβ < Xβ ≤ xβ + ε
]

=

1
εP
[

{XA≤ xA}∩{xβ < Xβ ≤ xβ + ε}
]

1
εP
[

xβ < Xβ ≤ xβ + ε
] =

F(xA,xβ+ε)−F(xA,xβ)

ε
F(xβ+ε)−F(xβ)

ε

.

Taking limits, and given differentiability of bothF(xβ) andF(xA,xβ) with respect toxβ, the condi-
tional CDFF(xA|xβ) is given by

F(xA|xβ)≡
lim

ε→0+

F(xA,xβ + ε)−F(xA,xβ)

ε

lim
ε→0+

F(xβ + ε)−F(xβ)

ε

=
∂xβ

[

F(xA,xβ)
]

∂xβ

[

F(xβ)
] ∝ ∂xβ

[

F(xA,xβ)
]

,

where the proportionality constant does not depend onxA.

The generalization of the above lemma to conditioning on sets of variablesXC ⊆ X can be found in
the Appendix.

2. Cumulative Distribution Networks

Graphical models allow us to simplify the computations required for obtaining conditional probabil-
ities of the formP(xA|xB) or P(xA) by allowing us to model conditional independence constraints
in terms of graph separation constraints. However, for many applications it may be desirable to
compute other conditional and marginal probabilities such as probabilities of events of the type
{X ≤ x}. Here we will present the cumulative distribution network (CDN), which is a graphical
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framework for directly modeling the joint cumulative distribution function, or CDF. With the CDN,
we can thus expand the set of possible probability queries so that in additionto formulating queries
as conditional/marginal probabilities of the formP(xA) andP(xA|xB), we can also compute proba-

bilities of the formF(xA|ω(xB)),F(xA|xB),P(xA|ω(xB)) andF(xA), whereF(u) ≡ P

[

U ≤ u
]

is a

CDF and we denote the inequality event{U≤ u} usingω(xU). Examples of this new type of query
could be “Given that the drug dose was less than 1 mg, what is the probabilityof the patient living
at least another year?”, or “Given that a person prefers one brand of soda over another, what is the
probability of that person preferring one type of chocolate over another?”. A significant advantage
with CDNs is that the graphical representation of the joint CDF may naturally allow for queries
which would otherwise be difficult, if not intractable, to compute under directed, undirected and
factor graphical models for PDFs/PMFs.

Here we provide a formal definition of the CDN and we will show that the conditional indepen-
dence properties in such graphical models are distinct from the properties for directed, undirected
and factor graphs. We will then show that the conditional independence properties in CDNs include
the properties of bi-directed graphs (Drton and Richardson, 2008; Richardson, 2003). Finally, we
will show that CDNs provide a tractable means of parameterizing models for learning to rank in
which we can construct multivariate CDFs from a product of CDFs defined over subsets of vari-
ables.

Definition 5 The cumulative distribution network (CDN) is an undirected bipartite graphical model
consisting of a bipartite graphG = (V,S,E), where V denotes variable nodes and S denotes factor
nodes, with edges in E connecting factor nodes to variable nodes. The CDNalso includes a speci-
fication of functionsφs(xs) for each function node s∈ S, wherexs≡ xN (s), ∪s∈SN (s) =V and each

functionφs : R|N (s)| 7→ [0, 1] satisfies the properties of a CDF. The joint CDF over the variables in
the CDN is then given by the product over CDFsφs : R|N (s)| 7→ [0, 1], or

F(x) = ∏
s∈S

φs(xs),

where each CDFφs is defined over neighboring variable nodesN (s). �

An example of a CDN defined over three variable nodes with four CDN function nodes is shown in
Figure 1, where the joint CDF over three variablesX,Y,Z is given by

F(x,y,z) = φa(x,y)φb(x,y,z)φc(y,z)φd(z).

In the CDN, each function node (depicted as a diamond) corresponds to one of the functionsφs(xs)
in the model for the joint CDFF(x). Thus, one can think of the CDN as a factor graph for modeling
the joint CDF instead of the joint PDF. However, as we will see shortly, this leads to a different set
of conditional independence properties as compared to the conditional independence properties of
directed, undirected and factor graphs.

Since the CDN is a graphical model for the joint CDF, the functions in the CDN must be such
thatF(x) is a CDF for some probabilityP. The following lemma establishes a sufficient condition
that the CDN functionsφs be themselves CDFs in order forF to be a CDF.
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Figure 1: A cumulative distribution network (CDN) defined over three variables and four functions.

Lemma 6 If all functionsφs(xs) satisfy the properties of a CDF, then the product∏
s∈S

φs(xs) also

satisfies the properties of a CDF. �

Proof If for all s∈ S, we have lim
xs→∞

φs(xs) = 1, then lim
x→∞∏

s∈S

φs(xs) = 1. Furthermore, if for any

givenα ∈V and fors∈N (α), we have lim
xα→−∞

φs(xs) = 0, then lim
xα→−∞∏

s∈S

φs(xs) = 0.

To show that the product of monotonically non-decreasing functions is monotonically non-
decreasing, we note thatxs < ys for all s∈ S if and only if x < y, since∪s∈SN (s) = V. Thus if
we haveφs(xs)≤ φs(ys) ∀ xs < ys for all s∈ S, we can then write

F(x) = ∏
s∈S

φs(xs)≤∏
s∈S

φs(ys) = F(y).

Finally, a product of right-continuous functions is also right-continuous.Thus if all of the functions
φs(xs) satisfy the properties of a CDF, then the product of such functions also satisfies the properties
of a CDF.

Although the condition that each of theφs functions be a CDF is sufficient for the overall product
to satisfy the properties of a CDF, we emphasize that it is not a necessary condition, as one could
construct a function that satisfies the properties of a CDF from a product of functions that are not
CDFs. The sufficient condition above ensures, however, that we canconstruct CDNs by multiplying
together CDFs to obtain another CDF. Furthermore, the above definition andtheorem do not assume
differentiability of the joint CDF or of the CDN functions: the following proposition shows that
differentiability and non-negativity of the derivatives of functionsφs with respect to all neighboring
variables inN (s) imply both differentiability and monotonicity of the joint CDFF(x). In the sequel
we will assume that whenever CDN functions are differentiable, derivatives are invariant to the order
in which they are computed (Schwarz’ Theorem).

Proposition 7 If the mixed derivatives∂xA

[

φs(xs)
]

satisfy∂xA

[

φs(xs)
]

≥ 0 for all s ∈ S and A⊆
N (s), then

• ∂xC

[

F(x)
]

≥ 0 for all C ⊆V,

• F(x)≤ F(y) for all x < y,

• F(x) is differentiable.
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�

Proof A product of differentiable functions is differentiable and soF(x) is differentiable. To show

that∂xC

[

F(x)
]

≥ 0 ∀C⊆V, we can group the functionsφs(xs) arbitrarily into two functionsg(x)

andh(x) so thatF(x) = g(x)h(x). The goal here will be to show that if all derivatives∂xA

[

g(x)
]

and∂xA

[

h(x)
]

are non-negative, then∂xA

[

F(x)
]

must also be non-negative. For allC⊆V, applying

the product rule toF(x) = g(x)h(x) yields

∂xC

[

F(x)
]

= ∑
A⊆C

∂xA

[

g(x)
]

∂xC\A

[

h(x)
]

,

so if ∂xA

[

g(x)
]

,∂xC\A

[

h(x)
]

≥ 0 for all A⊆ C then∂xC

[

F(x)
]

≥ 0. By recursively applying this

rule to each of the functionsg(x),h(x) until we obtain sums over terms involving∂xA

[

φs(xs)
]

∀ A⊆

N (s), we see that if∂xA

[

φs(xs)
]

≥ 0, then∂xC

[

F(x)
]

≥ 0 ∀C⊆V.

Now, ∂xC

[

F(x)
]

≥ 0 for allC⊆V implies that∂xα

[

F(x)
]

≥ 0 for all α ∈V. By the Mean Value

Theorem for functions of several variables, it then follows that ifx < y, then

F(y)−F(x) = ∑
α∈V

∂zα

[

F(z)
]

(yα−xα)≥ 0,

and soF(x) is monotonic.

The above ensures differentiability and monotonicity of the joint CDF throughconstraining the
derivatives of each of the CDN functions. We note that although it is merelysufficient for the
first-order derivatives to be non-negative in order forF(x) to be monotonic, the condition that the

higher-order mixed derivatives∂xC

[

F(x)
]

of the functionsφs(xs) be non-negative also implies non-

negativity of the first-order derivatives. Thus in the sequel, whenever we assume differentiability of
CDN functions, we will assume that for alls∈ S, all mixed derivatives ofφs(xs) with respect to any
and all subsets of argument variables are non-negative.

Having described the above conditions on CDN functions, we will now provide some examples
of CDNs constructed from a product of CDFs.

Figure 2: A CDN defined over two variablesX andY with functionsG1(x,y),G2(x,y).

Example 1 (Product of bivariate Gaussian CDFs)As a simple example of a CDN, consider two
random variables X and Y with joint CDF modeled by the CDN in Figure 2, so that F(x,y) =
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Figure 3: a) Joint probability density functionP(x,y) corresponding to the distribution function
F(x,y) using bivariate Gaussian CDFs as CDN functions; b),c) The PDFs corresponding

to ∂x,y

[

G1(x,y)
]

and∂x,y

[

G2(x,y)
]

.

G1(x,y)G2(x,y) with

G1(x,y) = Φ

(

[

x
y

]

;µ1,Σ1

)

, µ1 =

[

µx,1

µy,1

]

, Σ1 =

[

σ2
x,1 ρ1σx,1σy,1

ρ1σx,1σy,1 σ2
y,1

]

,

G2(x,y) = Φ

(

[

x
y

]

;µ2,Σ2

)

, µ2 =

[

µx,2

µy,2

]

, Σ2 =

[

σ2
x,2 ρ2σx,2σy,2

ρ2σx,2σy,2 σ2
y,2

]

,

whereΦ(·;m,S) is the multivariate Gaussian CDF with mean vectorm and covarianceS. Taking
derivatives, the density P(x,y) is given by

P(x,y) = ∂x,y

[

F(x,y)
]

= ∂x,y

[

G1(x,y)G2(x,y)
]

= G1(x,y)∂x,y

[

G2(x,y)
]

+∂x

[

G1(x,y)
]

∂y

[

G2(x,y)
]

+∂y

[

G1(x,y)
]

∂x

[

G2(x,y)
]

+∂x,y

[

G1(x,y)
]

G2(x,y).

As functions G1,G2 are Gaussian CDFs, the above derivatives can be expressed in terms ofGaus-
sian CDF and PDFs. For example,

∂x

[

G1(x,y)
]

=
∫ y

−∞
Gaussian

(

[

x
t

]

;µ1,Σ1

)

dt

= Gaussian(x;µx,1,σ2
x,1)

∫ y

−∞
Gaussian(t;µy|x,1,σ2

y|x,1)dt

= Gaussian(x;µx,1,σ2
x,1)Φ(y;µy|x,1,σ2

y|x,1),

where

µy|x,1 = µy,1+ρ1
σy,1

σx,1
(x−µx,1),

σ2
y|x,1 = (1−ρ2

1)σ
2
y,1.
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Other derivatives can be obtained similarly. The resulting joint PDF P(x,y) obtained by differ-
entiating the CDF is shown in Figure 3(a), where the CDN function parametersare given by
µx,1 = 0,µx,2 = 4,µy,1 = 3,µy,2 = 4,σx,1 =

√
3,σx,2 =

√
5,σy,1 = 1,σy,2 =

√
10,ρ1 = 0.9,ρ2 =−0.6.

The PDFs corresponding to∂x,y

[

G1(x,y)
]

and ∂x,y

[

G2(x,y)
]

are shown in Figures 3(b) and 3(c).

�

The next example provides an illustration of the use of copula functions forconstructing multivariate
CDFs under the framework of CDNs.
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Figure 4: a) Joint probability density functionP(x,y) corresponding to the distribution function
F(x,y) using bivariate Gumbel copulas as CDN functions, with Student’s-t and Gaussian

marginal input CDFs; b),c) The PDFs corresponding to∂x,y

[

G1(x,y)
]

and∂x,y

[

G2(x,y)
]

.

Example 2 (Product of copulas)We can repeat the above for the case where each CDN function
consists of a copula function (Nelsen, 1999). Copula functions provide a flexible means to construct
CDN functionsφs whose product yields a joint CDF under Lemma 6. Copula functions allow one
to construct a multivariate CDFφs from marginal CDFs{F(xα)}α∈N (s) so that

φs(xs) = ζs

(

{F(xα)}α∈N (s)

)

,

whereζs is a copula defined over variables Xα,α ∈N (s). For the CDN shown in Figure 2, we can
set the CDN functions G1,G2 to Gumbel copulas so that

G1(x,y) = ζ1(H1,x(x),H1,y(y)) = exp

(

−
(

(− logH1,x(x))
1

θ1 +(− logH1,y(y))
1

θ1

)θ1

)

,

G2(x,y) = ζ2(H2,x(x),H2,y(y)) = exp

(

−
(

(− logH2,x(x))
1

θ2 +(− logH2,y(y))
1

θ2

)θ2

)

,

with H1,x,H2,x set to univariate Gaussian CDFs with parameters µ1,x,µ2,x,σ1,x,σ2,x and H1,y,H2,y

set to univariate Student’s-t CDFs with parametersν1,y,ν2,y. One can then verify that the functions
G1,G2 satisfy the properties of a copula function (Nelsen, 1999) and so the product of G1,G2 yields
the CDF F(x,y). An example of the resulting joint probability density P(x,y) obtained by differentia-
tion of F(x,y) for parameters µ1,x = µ2,x =−2,σ1,x = σ2,x = 1, ν1,y = ν2,y = 0.5,θ1 = 0.25,θ2 = 0.5
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is shown in Figure 4(a), with the PDFs corresponding to∂x,y

[

G1(x,y)
]

and∂x,y

[

G2(x,y)
]

shown in

Figures 4(b) and 4(c). �
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Figure 5: a) Joint probability density functionP(x,y) corresponding to the distribution function
F(x,y) using bivariate sigmoidal functions as CDN functions; b),c) The PDFs corre-

sponding to∂x,y

[

G1(x,y)
]

and∂x,y

[

G2(x,y)
]

.

Example 3 (Product of bivariate sigmoids) As another example of a probability density function
constructed using a CDN, consider the case in which functions G1(x,y) and G1(x,y) in the CDN of
Figure 2 are set to be multivariate sigmoids of the form

G1(x,y) =
1

1+exp(−w1
xx)+exp(−w1

yy)
,

G2(x,y) =
1

1+exp(−w2
xx)+exp(−w2

yy)
,

with w1
x,w

1
y,w

2
x,w

2
y non-negative. An example of the resulting joint probability density P(x,y) ob-

tained by differentiation of F(x,y) = G1(x,y)G2(x,y) for parameters w1x = 12.5,w1
y = 0.125,w2

x =

0.4,w2
y = 0.5 is shown in Figure 5(a), with the PDFs corresponding to∂x,y

[

G1(x,y)
]

and

∂x,y

[

G2(x,y)
]

shown in Figures 5(b) and 5(c). �

The above examples demonstrate that one can construct multivariate CDFs by taking a product of
CDFs defined over subsets of variables in the graph.

2.1 Conditional and Marginal Independence Properties of CDNs

In this section, we will derive the marginal and conditional independence properties for a CDN,
which we show to be distinct from those of Bayesian networks, Markov random fields or factor
graphs. As with these graphical models, marginal and conditional independence relationships can
be gleaned by inspecting whether variables are separated with respect tothe graph. In a bipartite
graphG = (V,S,E), a (undirected) path of lengthK between two variable nodesα,β∈V consists of
a sequence of distinct variable and function nodesα0,s0,α1,s1, · · · ,sK ,αK such thatα0 = α,αK = β
and(αk,sk) = (sk,αk) ∈ E for all k = 0, · · · ,K. A setC⊆V is said to separate two variable nodes
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α,β ∈ V \C with respect toG if all paths fromα to β intersectC. Two variable nodesα,β ∈ V
are said to be separated if there exists any non-empty setC that separates them with respect toG .
Similarly, a setC⊆V is said to separate two variable node setsA,B⊆V \C with respect toG if all
paths from any variable nodeα ∈ A to any variable nodeβ ∈ B intersectC. Disjoint variable sets
A,B∈V are said to be separated if all pairs of nodes(α,β) for α ∈ A,β ∈ B are separated.

Having defined graph separation for bipartite graphs, we begin with the conditional inequality
independence property of CDNs, from which other marginal and conditional independence proper-
ties for a CDN will follow.

Theorem 8 (Conditional inequality independence in CDNs)LetG = (V,S,E) be a CDN and let
A,B⊆V be disjoint sets of variable nodes. If A and B are separated with respect toG , then for any
W ⊆V \ (A∪B) A⊥⊥ B|ω

(

xW
)

whereω
(

xW
)

≡ {XW ≤ xW}.

Proof If A andB are separated with respect toG , then we can write

F(xA,xB,xV\(A∪B)) = g(xA,xV\(A∪B))h(xB,xV\(A∪B))

for some functions g,h that satisfy the conditions of Lemma 6. This means that
F(xA,xB|ω(xW)) is given by

F(xA,xB|ω(xW)) =

lim
xV\(A∪B∪W)→∞

F(xA,xB,xV\(A∪B))

lim
xV\W→∞

F(xA,xB,xV\(A∪B))

∝ F(xA,xB,xW) = g(xA,xW)h(xB,xW),

which impliesA⊥⊥ B|ω(xW).

We show that if a CDFF(x) satisfies the conditional independence property of Theorem 8 for a
given CDN, thenF can be written as a product over functionsφs(xs).

Theorem 9 (Factorization property of a CDN) LetG = (V,S,E) be a bipartite graph and let the
CDF F(x) satisfy the conditional independence property implied by the CDN describedbyG , so
that graph separation of A and B by V\ (A∪B) with respect toG implies A⊥⊥ B|ω

(

xW
)

for any
W ⊆ V \ (A∪B) and for anyxW ∈ R

|W|. Then there exist functionsφs(xs),s∈ S that satisfy the
properties of a CDF such that the joint CDF F(x) factors as∏

s∈S

φs(xs).

Proof The proof here parallels that for the Hammersley-Clifford theorem for undirected graphical
models (Lauritzen, 1996). We begin our proof by definingψU(x),ζU(x) as functions that depend
only on variable nodes in some setU ⊆V and that form a M̈obius transform pair

ψU(x) = ∑
W⊆U

ζW(x),

ζU(x) = ∑
W⊆U

(−1)|U\W|ψW(x),

where we takeψU(x) ≡ logF(xU). Now, we note thatF(x) can always be written as a product
of functions ∏

U⊆V
φU(x) where each functionφU satisfies the properties of a CDF: a trivial example
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of this is to setφV(x) = F(x) andφU(x) = 1 for all U ⊂V. Since by hypothesisF satisfies all of
the conditional independence properties implied by the CDN described byG , if we takeφU(x) =
exp
(

ζU(x)
)

, then it suffices to show thatζU(x) ≡ 0 for subsets of variable nodesU for which
any two non-neighboring variable nodesα,β ∈ U are separated such thatα ⊥⊥ β|ω(xW) for any
W ⊆U \ (α,β). Observe that we can writeζU(x) as

ζU(x) = ∑
W⊆U

(−1)|U\W|ψW(x)

= ∑
W⊆U\(α∪β)

(−1)|U\W|
(

ψW(x)−ψW∪α(x)−ψW∪β(x)+ψW∪α∪β(x)
)

.

If α,β ∈U are separated andW ⊆U \ (α∪β), thenα⊥⊥ β|ω(xW) and

ψW∪α∪β(x)−ψW∪α(x) = log
F(xα,xβ,xW)

F(xα,xW)
= log

F(xα|ω(xW))F(xβ|ω(xW))F(xW)

F(xα|ω(xW))F(xW)

= log
F(xβ|ω(xW))F(xW)

F(xW)

= logF(xβ,xW)− logF(xW)

= ψW∪β(x)−ψW(x).

Thus ifU is any set where nodesα,β ∈U are separated, then for allW⊆U \ (α∪β) we must have
ψW(x)−ψW∪α(x)−ψW∪β(x)+ψW∪α∪β(x) ≡ 0 and soζU(x) = 0. SinceF(x) = exp(ψV(x)) =

exp
(

∑
U

ζU(x)
)

= ∏
U

φU(x) where the product is taken over subsets of variable nodesU that are

not separated. Now, we note that for anyU that is not separated, we must haveU ⊆ N (s) (as
U = N (s)∪A for someA with N (s)∩A= /0 implies thatU is not separated) for somes∈ S and
so we can writeF(x) = ∏

U
φU(x) = ∏

s∈S
∏

U⊆N (s)

φU(x) = ∏
s∈S

φs(xs), whereφs(xs) = ∏U⊆N (s) φU(x)

satisfies the properties of a CDF given that functionsφU(x) each satisfy the properties of a CDF.
Thus we can writeF(x) =∏

s∈S

φs(xs), where each functionφs is defined over the set of variable nodes

N (s).

Thus, if F(x) satisfies the conditional independence property where graph separation of A andB
with respect toG impliesA⊥⊥ B|ω(xW) for anyW ⊆V \ (A,B), thenF can be written as a product
of functions of the form∏

s∈S

φs(xs). The above theorem then demonstrates equivalence between the

conditional independence propertyA⊥⊥ B|ω(xW) and the factored form forF(x).
The conditional inequality independence property for CDNs then implies thatvariables that

are separated in the CDN are marginally independent. An example of the marginal independence
property for a three-variable CDN in Figure 6, where variablesX andY are separated by variable
Z with respect to graphG , and so are marginally independent. In a CDN, variables that share
no neighbors in the CDN graph are marginally independent: we formalize this with the following
theorem.

Theorem 10 (Marginal Independence)LetG = (V,S,E) be a CDN and let A,B⊆V be disjoint
sets of variables. Then A⊥⊥ B if N (A)

⋂
N (B) = /0. �
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Figure 6: Marginal independence property of CDNs: if two variablesX andY share no common
function nodes, they are marginally independent.

Proof Follows from Theorem 8 withxW→ ∞.

Note that the converse to the above does not generally hold: if disjoint setsA and B do share
functions inS, they can still be marginally independent, as one can easily construct a bipartite graph
in which variable nodes are not separated in the graph but the function nodes connectingA to B
correspond to factorized functions so thatA⊥⊥ B. Given the above marginal independence property
in a CDN, we now consider the conditional independence property of a CDN. To motivate this, we
first present a toy example in Figure 7 in which we are given CDNs for variablesX,Y,Z,W and
we condition on variableZ. Here the separation ofX andY by unobserved variableW implies
X ⊥⊥ Y|Z, but separation ofX andY by Z only implies the marginal independence relationship
X ⊥⊥ Y. In general, variable sets that are separated in a CDN by unobserved variables will be
conditionally independent given all other variables: thus, as long as two variables are separated by
some unobserved variables they are independent, irrespective of the fact that other variables may be
observed as well. We formalize this conditional independence property withthe following theorem.

Figure 7: Conditional independence in CDNs. Two variablesX andY that are separated with re-
spect to the graph are marginally independent (top). When an unobserved variableW
(shaded to denote its unobserved status) separatesX from Y, X,Y are conditionally in-
dependent givenZ (bottom). The bottom graph thus impliesX ⊥⊥ Y,X ⊥⊥ Z, W ⊥⊥ Y,
X ⊥⊥Y|W andX ⊥⊥Y|Z.
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Theorem 11 (Conditional independence in CDNs)LetG = (V,S,E) be a CDN. For all disjoint
sets of A,B,C⊆V, if C separates A from B relative to graphG then

A⊥⊥ B|V \ (A∪B∪C).

�.

Proof If C separatesA from B, then marginalizing out variables inC yields two disjoint subgraphs
with variable setsA′,B′, with A⊆A′,B⊆B′, A′∪B′=V \C andN (A′)

⋂
N (B′) = /0. From Theorem

10, we therefore haveA′ ⊥⊥ B′. Now consider the setV \ (A∪B∪C) and letÃ, B̃ denote a partition
of the set so that

Ã∪ B̃=V \ (A∪B∪C), Ã∩ B̃= /0,
Ã∩B′ = /0, B̃∩A′ = /0.

From the semi-graphoid axioms (Lauritzen, 1996; Pearl, 1988),A′ ⊥⊥ B′ impliesA⊥⊥ B|V \ (A∪B∪
C) sinceÃ⊂ A′ andB̃⊂ B′.

An illustration of the proof is provided in Figures 8(a) and 8(b). The above conditional independence
property is distinct from that described in Theorem 8, as in the latter we condition on inequality
events of the typeω

(

xW
)

, whereas in the former we condition on observationsxW themselves.
In addition to the above, both the conditional independence properties of Theorem 11 and 8 are

closed under marginalization, which consists of computing limits of CDN functions. Thus ifG is
a CDN model forF(x), then the graph for CDN for CDFF(xA) = lim

xV\A→∞
F(xA,xV\A) is given by

a subgraph ofG which then implies only a subset of the independence properties ofG . The next
proposition formalizes this.

Proposition 12 Let G = (V,S,E) be a CDN and let A,B,C ⊂ V be disjoint sets of nodes with
C⊆ V \ (A∪B) separating A from B with respect toG . LetG ′ = (V ′,S′,E′) be a subgraph ofG
with V′ ⊆ V,S′ ⊆ S,E′ ⊆ E. Similarly, let A′ = A∩V ′,B′ = B∩V ′,C′ = C∩V ′ be disjoint sets of
nodes. Then C′ separates A′ from B′ with respect toG ′. �

The above proposition is illustrated in Figures 9(a) and 9(b). As a result, the conditional indepen-
dence relationA′ ⊥⊥ B′|V ′ \ (A′∪B′∪C′) must also hold in the subgraphG ′, such thatG ′ implies a
subset of the independence constraints implied byG . The above closure property under marginal-
ization is a property that also holds for Markov random fields, but not for Bayesian networks (see
Richardson and Spirtes, 2002 for an example). The above closure andconditional independence
properties for CDNs have also been previously shown to hold for bi-directed graphs as well, which
we will now describe.

2.2 The Relationship Between Cumulative Distribution Networks and Bi-directed Graphs

Graphical models with some of the independence properties of CDNs have infact been studied pre-
viously in the statistics literature. The marginal independence property for CDNs is in fact identical
to the global Markov property of Richardson and Spirtes (2002), whichwas derived in the context of
bi-directed graphical models (Drton and Richardson, 2008; Richardson and Spirtes, 2002; Richard-
son, 2003). A bi-directed graphG = (V,E) consists of nodesα ∈ V andbi-directededgese∈ E
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(a)

(b)

Figure 8: Example of conditional independence due to graph separation ina CDN. a) Given bi-
partite graphG = (V,S,E), node setC separates setA from B (nodes in light blue) with
respect toG . Furthermore, we have forA′,B′ (nodes in red dotted line)A⊆ A′,B⊆ B′,
A′∪B′ =V \C andN (A′)

⋂
N (B′) = /0 as shown. b) Marginalizing out variables corre-

sponding to nodes inC yields two disjoint subgraphs ofG and soA⊥⊥ B|V \ (A∪B∪C).

corresponding to unordered pairs of nodesα,β, denoted by(α,β). Alternately, we denote edges in
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(a)

(b)

Figure 9: Example of closure under marginalization in a CDN. a) Given CDNG = (V,S,E), node
setC separates setA from B (nodes in light blue) with respect toG . b) For subgraph
G ′ = (V ′,S′,E′) with A′ ⊆ A,B′ ⊆ B,C′ ⊆C, C′ separatesA′ from B′ with respect toG ′.

a bi-directed graph as(α,β)≡ α↔ β.1 In a bi-directed graphG, theglobal Markov propertycorre-
sponds to two disjoint variable setsA,B⊆V satisfying the marginal independence constraintA⊥⊥ B
if there are no paths between anyα ∈ A and anyβ ∈ B. It can be shown (Richardson and Spirtes,
2002) that any bi-directed graphical model corresponds to a directed graphical model with latent
variables marginalized out. In particular, we define thecanonicaldirected acyclic graph (DAG) for
the bi-directed graphG as a directed graph̃G with additional latent variables such that ifα↔ β in
G, thenα← uα,β→ β in G̃ for some latent variableuα,β. Thus bi-directed graphical models can be
viewed as models obtained from a corresponding canonical DAG with latentvariables marginalized
out, such that independence constraints between neighboring variable nodes inG can be viewed as
arising from the absence of any shared latent variables in the canonicalDAG G̃. This suggests the
usefulness of bi-directed graphical models for problems where we cannot discount the presence of
unobserved variables but we either A) do not have sufficient domain knowledge to specify distri-
butions for latent variables, and/or B) we wish to avoid marginalizing over these latent variables.

1. Note thatα↔ β is notequivalent to having both directed edgesα→ β andα← β.
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In such cases, one can instead attempt to parameterize a probability defined on observed variables
using a bi-directed graphical model in which independence constraints among variables are implied
by both the corresponding canonical DAG and bi-directed graphs. Examples of a canonical DAG
and corresponding bi-directed graph that imply the same set of independence constraints among
observed variables are shown in Figures 10(a) and 10(b). Severalparameterizations had been pre-
viously proposed for bi-directed graphical models. Covariance graphs (Kauermann, 1996) were
proposed in which variables are jointly Gaussian with zero pairwise covariance if there is no edge
connecting the two variables in the bi-directed graph. In addition, Silva and Ghahramani (2009a)
proposed a mixture model with latent variables in which dependent variablesin the bi-directed
graph can be explained by the causal influence of common components in themixture model. For
bi-directed graphical models defined over binary variables, a parametrization was proposed based
on joint probabilities over connected components of the bi-directed graph so that the joint prob-
ability of any subset of variables could be obtained by Möbius inversion (Drton and Richardson,
2008).

Suppose now that we are given a bi-directed graphG and a CDNG defined over the same
variables nodesV. Let G andG have the same connectivity, such that for any pair of variable nodes
α,β ∈ V, a path betweenα,β exists both inG andG . Then bothG andG imply the same set of
marginal independence constraints, as we have shown above that in a CDN, two nodes that do not
share any function nodes in common are marginally independent (Theorem10). An example of a
bi-directed graph and CDN that imply the same set of marginal independenceconstraints is shown
in Figures 10(b) and 10(c). In addition to implying the same marginal independence constraints as a
bi-directed graphical model, the conditional independence property given in Theorem 11 for CDNs
corresponds to the dual global Markov property of Kauermann (1996) for bi-directed graphical
models, which we now present.

Theorem 13 Let G= (V,E) be a bi-directed graphical model and let A,B,C⊆V be three disjoint
node sets so that V\ (A∪B∪C) separates A from B with respect to G. Then A⊥⊥ B|C. �

Note that this is identical to the conditional independence property of Theorem 11 where the sepa-
rating set is set toV \ (A∪B∪C) instead ofC.

(a) (b) (c)

Figure 10: Graphical models over four variablesX1,X2,X3,X4 in which graph separation of variable
nodes imply the marginal independence relationsX1 ⊥⊥ X3,X2 ⊥⊥ X4. a) A canonical di-
rected acyclic graphical model with additional latent variables, shown as shaded nodes;
b)A bi-directed graph; b) A corresponding CDN.
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While the conditional and marginal independence constraints implied by both a bi-directed
graph and a CDN of the same connectivity are identical, Theorem 8 shows that conditional in-
dependence constraints of the formA⊥⊥ B|ω(xW) are implied in a CDN which are not included
in the definition for a bi-directed graph of the same connectivity. As a resultof theseadditional
constraints, CDNs model a subset of the distributions that satisfy the independence constraints of
a corresponding bi-directed graph with the same connectivity. In general, CDNs do not model the
full set of the probability distributions that can be modeled by bi-directed graphical models with the
same connectivity. The following example illustrates how the conditional inequality independence
property of CDNs is in general not implied by a bi-directed graphical modelwith the same graph
topology.

Example 4 Consider a 3-variable covariance graph model consisting of the bi-directed graph
X1↔ X2↔ X3, where X1,X2,X3 are jointly Gaussian with zero mean and covariance matrixΣ.
The proposed covariance graph model imposes the marginal independence constraint X1 ⊥⊥ X3, as
there is no edge between variables X1,X3. Denotingσi j as element(i, j) of Σ, this is equivalent
to the constraintσ13 = σ31 = 0. Now suppose further that the conditional inequality independence
property X1⊥⊥ X3|ω(x2) is also implied by the covariance graph model. By Theorem 9, this implies
that the joint CDF F(x1,x2,x3) factors as

F(x1,x2,x3) = Φ

(





x1

x2

x3



 ;0,Σ

)

= g(x1,x2)h(x2,x3),

whereΦ(x;µ,Σ) is the multivariate Gaussian CDF with mean zero and covariance matrixΣ, and
g(x1,x2),h(x2,x3) are functions that satisfy the properties of a CDF. The constraints on functions
g(x1,x2),h(x2,x3) are given by marginalization with respect to subsets of variables:

F(x1,x2,∞) = g(x1,x2)h(x2,∞),

F(∞,x2,x3) = g(∞,x2)h(x2,x3),

F(∞,x2,∞) = g(∞,x2)h(x2,∞),

so that and so multiplying F(x1,x2,∞) and F(∞,x2,x3), we obtain

F(x1,x2,x3)F(∞,x2,∞) = F(x1,x2,∞)F(∞,x2,x3). (1)

Thus, if the conditional inequality independence constraint X1 ⊥⊥ X3|ω(x2) is also implied by the
covariance graph model for the joint Gaussian CDF F(x1,x2,x3), then the above equality should
hold for all (x1,x2,x3) ∈ R

3 and for any positive-definite covariance matrixΣ for which σ13 =
σ31 = 0. Let x1 = x2 = x3 = 0 and letΣ be given by

Σ=







1
√

2
2 0√

2
2 1 −1

2
0 −1

2 1






,

so thatρ12 =
√

2
2 ,ρ23 = −1

2 are the pairwise correlations between X1,X2 and X2,X3. From Stuart
and Ord (1994), we can analytically evaluate joint Gaussian CDFs at the origin as a function of
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correlation parameters, so that

F(∞,0,∞) =
1
2
,

F(0,0,∞) = Φ

(

[

0
0

]

;0,Σ12

)

=
1
4
+

1
2π

sin−1 ρ12 =
3
8
,

F(∞,0,0) = Φ

(

[

0
0

]

;0,Σ23

)

=
1
4
+

1
2π

sin−1 ρ23 =
1
6
,

F(0,0,0) = Φ

(





0
0
0



 ;0,Σ

)

=
1
8
+

1
4π

(sin−1 ρ12+sin−1 ρ23+sin−1 ρ13)

=
1
8
+

1
4π

(sin−1 ρ12+sin−1 ρ23) =
7
48

,

whereΣi j is the sub-matrix consisting of rows and columns(i, j) in Σ, ρi j is the correlation coef-
ficient between variables i, j, and ρ13 = 0 is implied by the covariance graph. From Equation(1),
we must have

F(0,0,0)F(∞,0,∞) = F(0,0,∞)F(∞,0,0)⇔ 7·1
48·2 =

3·1
8·6,

so that the equality does not hold. Thus, the conditional inequality independence constraint X1 ⊥⊥
X3|ω(x2) is not implied by the covariance graph model. It can also be verified that the expres-
sion for F(x1,x2,x3) given in Equation(1) does not in general correspond to a proper PDF when

F(x1,x2),F(x2,x3),F(x2) are Gaussians, as∂x1,x2,x3

[

F(x1,x2,x3)
]

is not non-negative for all

(x1,x2,x3) ∈ R
3.

The previous example shows that while graph separation of variable nodesetsA,B with respect
to both bi-directed graphical models and CDNs of the same connectivity implies the same set of
marginal independence constraints, in CDNs we have theadditionalconstraint ofA⊥⊥ B|ω(xC), a
constraint that is not implied by the corresponding bi-directed graphical model. The above example
shows how such additional constraints can then impose constraints on the joint probabilities that can
be modeled by CDNs. However, for probabilities that can be modeled by anyof CDN, bi-directed
graph or corresponding canonical DAG models, CDNs can provide closed-form parameterizations
where other types of probability models might not.

In the case of CDNs defined over discrete variables taking values in an ordered setX =
{r1, · · · , rK}, the conditional independence propertyA⊥⊥ B|ω(xW) for W ⊆ V \ (A∪B) (Theorem
8) implies that conditioning on the eventXC = r11 yields conditional independence between dis-
joint setsA,B,C ⊆ V in which C separatesA,B with respect toG . We define the corresponding
min-independenceproperty below.

Definition 14 (Min-independence) Let XA,XB,XC be sets of ordinal discrete variables that take
on values in the totally ordered alphabetX with minimum element r1 ∈ X defined as r1 ≺ α ∀α 6=
r1,α ∈ X . XA andXB are said to be min-independent givenXC if

XA⊥⊥ XB|XC = r11,

where r11= [r1 r1 · · · r1]
T . �
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Theorem 15 (Min-independence property of CDNs)Let G = (V,S,E) be a CDN defined over
ordinal discrete variables that take on values in the totally ordered alphabet X with minimum ele-
ment r1 ∈ X defined as r1 ≺ α ∀α 6= r1,α ∈ X . Let A,B,C⊆V be arbitrary disjoint subsets of V,
with C separating A,B with respect toG . ThenXA andXB are min-independent givenXC. �

Proof This follows directly from Theorem 8 withxc = r11.

Thus, in the case of a CDN defined over discrete variables where each variable can have values in
the totally ordered alphabetX , a finite difference with respect to variablesXC, when evaluated at
the vector of minimum elementsXC = r11 is equivalent to directly evaluating the CDF atXC = r11.
This means that in the case of models defined over ordinal discrete variables, the particular set of
conditional independence relationships amongst variables in the model is determined as a function
of the ordering over possible labels for each variable in the model, so that one must exercise care in
how such variables are labeled and what ordering is satisfied by such labels.

2.3 Stochastic Orderings in a Cumulative Distribution Network

The CDN, as a graphical model for the joint CDF over many random variables, also allows one to
easily specifystochastic orderingconstraints between subsets of variables in the model. Informally,
a stochastic ordering relationshipX �Y holds between two random variablesX,Y if samples ofY
tend to be larger than samples ofX. We will focus here on first-order stochastic ordering constraints
(Lehmann, 1955; Shaked and Shanthikumar, 1994) of the formX � Y and how one can specify
such constraints in terms of the CDN functions in the model. We note that such constraints are not
a necessary part of the definition for a CDN or for a multivariate CDF, so that the graph for the
CDN alone does not allow one to inspect stochastic ordering constraints based on graph separation
of variables. However, the introduction of stochastic ordering constraints, in combination with
separation of variables with respect to the graph, do impose constraints onthe products of CDN
functions, as we will now show. We will define below the concept of first-order stochastic orderings
among random variables, as this is the primary definition for a stochastic ordering that we will
use. We refer the reader to Lehmann (1955) and Shaked and Shanthikumar (1994) for additional
definitions.

Definition 16 Consider two scalar random variables X and Y with marginal CDFs FX(x) and
FY(y). Then X and Y are said to satisfy the first-order stochastic ordering constraint X � Y if
FX(t)≥ FY(t) for all t ∈ R. �

The above definition of stochastic ordering is stronger than the constraintE[X] ≤ E[Y] which is
often used and one can show thatX �Y implies the former constraint. Note that the converse is not
true:E[X]≤ E[Y] does not necessarily implyX �Y. For example, consider two Gaussian random
variablesX andY for which E[X] ≤ E[Y] but Var[X]≫ Var[Y]. The definition of a stochastic
ordering can also be extended to disjoint sets of variablesXA andXB.

Definition 17 Let XA andXB be disjoint sets of variables so thatXA = {Xα1, · · · ,XαK} andXB =
{Xβ1, · · · ,XβK

} for some strictly positive integer K. Let FXA(t) and FXB(t) be the CDFs ofXA and
XB. ThenXA,XB are said to satisfy the stochastic ordering relationshipXA� XB if

FXA(t)≥ FXB(t)

for all t ∈ R
K . �
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Having defined stochastic orderings, we will now present the corresponding constraints on CDN
functions which are implied by the above definitions.

Proposition 18 Let G = (V,S,E) be a CDN, with A,B ⊂ V so that A= {α1, · · · ,αK} and B=
{β1, · · · ,βK} for some strictly positive integer K. Lett ∈ R

K . Then A,B satisfy the stochastic
ordering relationshipXA� XB if and only if

∏
s∈N (A)

lim
uN (s)\A→∞

φs(uN (s)\A, tN (s)
⋂

A)≥ ∏
s∈N (B)

lim
uN (s)\B→∞

φs(uN (s)\B, tN (s)
⋂

B)

for all t ∈ R
K . �

The above can be readily obtained by marginalizing over variables inV \A,V \B respectively to
obtain expressions forF(xA),F(xB) as products of CDN functions. The corresponding ordering
then holds from Definition 17 if and only ifFXA(t)≥ FXB(t) for all t ∈ R

K .

2.4 Discussion

We have presented the CDN and sufficient conditions on the functions in theCDN in order for the
CDN to model to a CDF. We have shown that the conditional independence relationships that follow
from graph separation in CDNs are different from the relationships impliedby graph separation in
Bayesian networks, Markov random fields and factor graph models. Wehave shown that the condi-
tional independence properties of CDNs include, but are not limited to, the marginal independence
properties of bi-directed graphs, such that CDNs model a subset of allprobability distributions that
could be modeled by bi-directed graphs.

As we have shown, performing marginalization in a CDN consists of computing limits, unlike
marginalization in models for probability densities. Furthermore, conditioning onobservations in a
CDN consists of computing derivatives. In the next section, we show howthese two operations can
be performed efficiently for tree-structured CDNs using message-passing, where messages being
passed in the graph for the CDN correspond to mixed derivatives of the joint CDF with respect to
variables in subtrees of the graph.

3. The Derivative-sum-product Algorithm

In the previous section, we showed that for a joint CDF, we could compute conditional probabil-
ities of the formsF(xA|ω(xB)),F(xA|xB),P(xA|ω(xB)) andP(xA|xB), in addition to probabilities
of the typeP(xA),F(xA). In directed, undirected or factor graphs, computing and evaluating such
conditional CDFs/PDFs would generally require us to integrate over several variables. In a CDN,
computing and evaluating such conditionals corresponds todifferentiatingthe joint CDF and then
evaluating the total mixed derivative for any given vector of observations x. In this section we will
show that if we model the joint CDF using a CDN with a tree-structured graph,then we can derive a
class of message-passing algorithms calledderivative-sum-product(DSP) for efficiently computing
and evaluating derivatives in CDNs. Since that the CDF factorizes for a CDN, the global mixed
derivative can then be decomposed into a series of local mixed derivative computations, where each
functions∈ Sand its derivatives is evaluated for observationsxs. Throughout this section, we will
assume that the sufficient conditions for the CDN functionsφs(xs) hold in order for the CDN to
model a valid joint CDF (Lemma 6). We will further assume that the derivatives/ finite differences
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of CDN functionsφs(xs) with respect to all subsets of argument variables exist and that the order
of differentiation does not affect the computation of any mixed derivatives. In the case where we
are differentiating with respect to a set of variablesXC that are observed with valuesxC, we as-
sume that the resulting derivative/finite difference is evaluated at the observed valuesxC. In the
case where we are given a functionG(x) defined over a single ordinal discrete variablex∈ X where
X = {r0, r1, · · · , rN−1} andr0 < r1 · · · < rN−1, r i ∈ R areN real-valued scalars, we define the finite
difference ofG with respect tox, evaluated atx as

∂x

[

G(x)
]

=

{

G(r0) if x= r0,
G(r i)−G(r i−1) if x= r i , i = 1, · · · ,N−1.

3.1 Differentiation in Cumulative Distribution Networks

We first consider the problem of computing the marginal CDFF(xα) for particular variableXα. We
note that in the CDN, marginalization corresponds to taking limits with respect to thevariables in
the model, so if we let

F(x) = F(xα,xV\α) = ∏
s∈N (α)

φs(xα,xN (s)\α) ∏
s/∈N (α)

φs(xs),

then the marginal CDF forXα is given by

F(xα) = lim
xV\α→∞

F(xα,xV\α) = ∏
s∈N (α)

φs(xα,∞) ∏
s/∈N (α)

φs(∞) = ∏
s∈N (α)

φs(xα,∞).

Thus for anyxα, we can obtain any distribution of the typeF(xA) in time O(|S||V|) by taking the
product of limits of functions lim

xN (s)\α→∞
φs(xα,xN (s)\α) = φs(xα,∞). Furthermore, we can compute

any conditional cumulative distribution of the typeF(xA|ω(xB)) in the same fashion by marginaliz-
ing the joint CDF over variables inV \ (A∪B) and computing

F(xA|ω(xB)) =
F(xA,xB)

F(xB)
=

lim
xV\(A∪B)→∞

F(x)

lim
xV\B→∞

F(x)
.

Note that the above marginalization contrasts with the problem of exact inference in density models,
where local marginalization corresponds to computing integrals or sums of thejoint PDF/PMF over
variable states.

Although obtaining marginals in the CDN is relatively simple, computing and evaluatingprob-
ability distributions of the formF(xA|xB),P(xA|ω(xB)),P(xA|xB) andP(xA) is more involved. We
have seen previously that in order to compute conditional CDFs, we must compute corresponding
higher-order derivatives with respect to these observed variables.In particular, given observed data
we may wish to numerically evaluate probabilities under the model, such that computing derivatives
for each functionφs requires that we store only the numerical value for the derivatives. Provided that
the CDN functions are chosen to be themselves tractable to evaluate and differentiate, computing
derivatives of these functions will consist of tractable function evaluations.

Since the factorization of the joint CDF modeled by a CDN consists of a product of functions
φs(xs), the intuition here is that we can distribute the differentiation operation such that at each
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function node in the CDN, we compute the derivatives with respect to local variables and pass
the result to its neighbors. The resulting algorithm consists of passing messagesµα→s(x),µs→α(x)
from variable nodes to function nodes and from function nodes to variable nodes, analogous to the
operation of the sum-product algorithm in factor graphs. In the Appendix, we present the derivation
of the algorithm in the setting where we wish to compute the mixed derivative of theCDF F(x)
modeled by a tree-structured CDN: the derivation is analogous to the derivation for the sum-product
algorithm, but with the summation operator replaced by the differentiation operator. To illustrate
the corresponding message-passing algorithm, consider the following toy example.

Figure 11: Flow of messages in the toy example of CDN defined over variables X,Y,Z,U .

Example 5 Consider the CDN over four random variables U,X,Y,Z from Figure 11. The joint
CDF is given by F(u,x,y,z) = g(u,x,y)h(y,z). Let Z be the root node so that X and U are leaf
nodes. Then the messages from leaf variable nodes to the root are givenby

µX→g(x) = 1,

µU→g(u) = 1,

µg→Y(y;u,x) = ∂u,x

[

g(u,x,y)µX→g(x)µU→g(u)
]

,

µY→h(y;u,x) = µg→Y(y;u,x),

µh→Z(z;u,x,y) = ∂y

[

h(y,z)µY→h(y;u,x)
]

.

Figure 11 shows the flow of the above messages.
Once we have propagated messages from the leaf nodes to the root node, we can evaluate the

joint probability P(u,x,y,z) = ∂z

[

µh→Z(z;u,x,y)
]

at the root node as

P(u,x,y,z) = ∂z

[

µh→Z(z;u,x,y)
]

= ∂z

[

∂y

[

h(y,z)µY→h(y;u,x)
]]

= ∂z

[

∂y

[

h(y,z)µg→Y(y;u,x)
]]

= ∂z

[

∂y

[

h(y,z)∂u,x

[

g(u,x,y)µX→g(x)µU→g(u)
]]]

= ∂x,y,z,u

[

g(u,x,y)h(y,z)
]

= ∂x,y,z,u

[

F(u,x,y,z)
]

.

The above example illustrates the fact that if the graph topology is a tree, thenthe message-passing
algorithm yields the correct mixed derivatives with respect to each variable in the CDN so that we
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obtain the joint probabilityP(x) = ∂x

[

F(x)
]

at the root node of the tree by multiplying all incoming

messages to the root.
The above example also illustrates a potential source for complexity: each message consists of

a symbolic expression that is a sum of products of derivatives of CDN functions. For larger graphs,
it is easy to see that such a message-passing scheme would grow in complexityas the symbolic
expression for each message would grow in size as we pass from leaf nodes to the root. However,
for practical purposes in which we wish to obtain numerical values for probabilities at the observed
data, we are interested inevaluatingderivatives corresponding to marginal/conditional probabilities
for observed datax, with unobserved variables marginalized out by taking limits. As the message-
passing algorithm allows us to decompose the total mixed derivative computationinto a series of
local computations, each term in this decomposition consists of a derivative that can be ”clamped”
to the observed values for its arguments. Moreover, this ”clamping” need only be performed lo-
cally for each CDN function as we evaluate each outgoing message. In the above example, given
observed valuesu∗,x∗ the messageµg→Y(y;u,x) consists of computing a derivative with respect to
u,x, followed by evaluationof the derivative atu∗,x∗. Thus by ”clamping” to observed values, mes-
sages in the above scheme will not increase in size, regardless of the functional forms chosen for
the CDN functions. By evaluating each derivative in the example foru∗,x∗,y∗,z∗, we can obtain a
numerical value for the probabilityP(u∗,x∗,y∗,z∗) by multiplying messages at the root node.

3.2 Inference in Cumulative Distribution Networks

Thus far we have presented a message-passing scheme for computing derivatives of the joint CDF
in order to obtain the joint PDF/PMFP(x). Here we will demonstrate the correspondence between
computing higher-order derivatives and the problem of inference in a CDN. The relation between
differentiation and inference in CDNs is analogous to the relation between marginalization and in-
ference in factor graphs. Thus, in analogy to how the sum-product algorithm allows one to compute
distributions of the typeP(xA|xB), message-passing in a CDN allows us to compute conditional
distributions of the formF(xA|xB) andP(xA|xB) for disjoint setsA,B⊂ V. In order to compute
conditional distributions of the above types, we will assume that when computing a conditional

distribution such asF(xA|xB) or P(xA|xB), we haveP(xB) = ∂xB

[

F(xB)
]

> 0. Now consider the

problem of computing the quantityF(xA|xB). We can write this as

F(xA|xB) =
∂xB

[

F(xA,xB)
]

∂xB

[

F(xB)
] =

lim
xV\(A∪B)→∞

∂xB

[

F(x)
]

lim
xV\B→∞

∂xB

[

F(x)
] =

∂xB

[

lim
xV\(A∪B)→∞

F(x)

]

∂xB

[

lim
xV\B→∞

F(x)

]

∝ ∂xB

[

lim
xV\(A∪B)→∞

F(x)

]

,

so that by combining the operations of taking limits and computing derivatives/finite differences,
we can compute any conditional probability of the formF(xA|xB). To compute the conditional CDF
for any variable node in the network, we can pass messages from leaf nodes to root and then from
the root node back to the leaves. For any given variable node, we can then multiply all incoming
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messages to obtain the conditional CDF for that variable, up to a scaling factor. We will now
demonstrate this principle using the previous toy example CDN.

Example 6 Consider the toy example of a CDN over four random variables U,X,Y,Z from Figure
11. Suppose we wish to compute F(y|x,z) = lim

u→∞
F(u,y|x,z). This is equivalent to message-passing

in a CDN defined over variables X,Y,Z with U marginalized out (Figure 12) so that̃g(x,y) =
lim
u→∞

g(u,x,y). Thus the message updates are given by

Figure 12: Flow of messages in the toy example CDN of Figure 11 with variableU marginalized
out in order to compute the conditional CDFF(y|x,z). Messages are here passed from
all observed variable nodes to the root node.

µX→g̃(x) = 1, µg̃→Y(y;x) = ∂x

[

g̃(x,y)µX→g̃(x)
]

= ∂x

[

g̃(x,y)
]

,

µZ→h(z) = 1, µh→Y(y;z) = ∂z

[

h(y,z)µZ→h(z)
]

= ∂z

[

h(y,z)
]

.

Once we have computed the above messages, we can evaluate the conditional CDF F(y|x,z) at node
Y as

F(y|x,z) = µg̃→Y(y;x)µh→Y(y;z)
Z

=
∂z

[

h(y,z)
]

∂x

[

g̃(x,y)
]

Z
.

Note that the normalizing constantZ can be readily obtained by computing

Z = lim
y→∞

∂z

[

h(y,z)
]

∂x

[

g̃(x,y)
]

= ∂x,z

[

lim
y→∞

h(y,z)g̃(x,y)
]

,

so that

F(y|x,z) = µg̃→Y(y;x)µh→Y(y;z)
Z

=
∂z

[

h(y,z)
]

∂x

[

g̃(x,y)
]

∂x,z

[

lim
y→∞

h(y,z)g̃(x,y)
] =

lim
u→∞

∂z

[

h(y,z)
]

∂x

[

g̃(u,x,y)
]

∂x,z

[

lim
u,y→∞

h(y,z)g̃(u,x,y)
]

=
∂x,z

[

lim
u→∞

F(u,x,y,z)
]

∂x,z

[

lim
u,y→∞

F(u,x,y,z)
] .

Note that in the above, if we were to observe X= x∗,Z = z∗, we could then evaluate F(y|x∗,z∗)
given any candidate value y for variable Y .

The above example shows that the message-passing algorithm can be usedto compute conditional
CDFs of the formF(xA|xB), up to a normalizing constantZ. Messages are passed once from all
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variable nodes on which we are conditioning to the root node: in the example,messages are passed
from variable nodesX,Z to variable nodeY in order to computeF(y|x,z). If we wished to compute,
say,F(x|y,z), then messages would be passed from variable nodesY,Z to variable nodeX.

To obtain distributions of the typeP(xA|xB) from F(xA|xB), we first compute∂xA

[

F(xA|xB)
]

using the above message-passing scheme and then multiply messages togetherto obtain conditional
PDFs. We note that computing the normalizing constantZ can be viewed as the result of message-
passing in a CDN in which the variablesXA have been marginalized out in addition to variables
XV\(A∪B) and then evaluating the resulting messages at the observed valuesxB. Equivalently, one

can computeZ = lim
xA→∞

∂xB

[

F(xA,xB)
]

after message-passing with only variables inV \ (A∪B)

marginalized out.

3.3 Derivative-sum-product: A Message-passing Algorithm for Inference in Cumulative
Distribution Networks

• Input: A tree-structured CDN G = (V,S,E), root nodeα ∈V and a vector x of obser-
vations

• Output: The probability mass function (PMF) P(x)

• For each leaf variable nodeα′ and for all function nodess∈N (α′), propagateµα′→s(x) = 1.
For each leaf function node with functionφs(xα′), send the messagesµs→α′(x) = φs(xα′).

• For each non-leaf variable nodeα and neighboring function nodess∈N (α),

µα→s(x) = ∏
s′∈N (α)\s

µs′→α(x).

• For each non-leaf function nodesand neighboring variable nodesα ∈N (s),

µs→α(x) = ∂xN (s)\α

[

φs(xs) ∏
β∈N (s)\α

µβ→s(x)

]

.

• Repeat the 2nd and 3rd steps towards the root nodeα.

Table 1: The derivative-sum-product (DSP) algorithm for computing theprobability mass function
P(x) in a CDN defined over discrete variables.

Given that the fundamental operations required for message-passing consist of differentiation/
finite differences, sums and products, we will refer to the above class ofmessage-passing algorithms
as the derivative-sum-product (DSP) algorithm. For CDNs defined over discrete ordinal variables,
the DSP algorithm is shown in Table 1. As can be seen, for graphs definedover discrete variables,
the DSP algorithm is analogous to the sum-product algorithm with the summation operation re-
placed by a finite difference operation. For graphs defined over discrete ordinal variables that take
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on one ofK values, for an observedx, each messageµα→s,µs→α consists of aK-vector, analogous
to messages in the sum-product algorithm. To see this, we note that each time we compute a finite
difference with respect to variables inN (s)\α, we also evaluate the result atxN (s)\α, ensuring that
each message is aK-vector.

In contrast to the DSP algorithm for discrete variables, the required complexity increases for
CDNs defined over continuous variables. For such models, we are required to invoke the product
rule of differential calculus in order to express these messages in terms ofthe derivatives of CDN
functions and combinations thereof. To this end, we need to define two additional sets of messages

λα→s(x) andλs→α(x) which correspond to∂xα

[

µα→s(x)
]

and∂xα

[

µs→α(x)
]

respectively. We first

derive the expression forλα→s(x) by applying the product rule of differential calculus to the message
µα→s(x), bearing in mind that each of the messagesµs→α(x) depends on variableXα. This yields

λα→s(x) = ∂xα

[

µα→s(x)
]

= ∂xα

[

∏
s′∈N (α)\s

µs′→α(x)

]

= µα→s(x) ∑
s′∈N (α)\s

λs′→α(x)
µs′→α(x)

.

In order to derive the general expressions forµs→α(x) , λs→α(x), we first note that for any two
differentiable multivariate functionsf (x),g(x), the product rule for computing the higher-order
derivative of a product of functions is given by

∂y

[

f (y)g(y)
]

= ∑
yA⊆y

∂yA

[

f (y)
]

∂y\yA

[

g(y)
]

.

The key observation we make here is that to evaluate the above derivativefor observedy, we can
evaluate each term in the summation for the observedy such that the above is merely a sum of
products of scalars. Thus, given a vector of observed variable valuesx, the messages in the DSP
algorithm for continuous variables will all consist of scalars, allowing us toobtain numerical values
for probabilities under the model.

To compute messagesµs→α(x),λs→α(x) from µs→α(x), applying the above product rule yields

µs→α(x) = ∂xN (s)\α

[

φs(xα,xN (s)\α) ∏
β∈N (s)\α

µβ→s(x)

]

= ∑
B⊆N (s)\α

∂xB

[

φs(xs)
]

∏
β∈B

µβ→s(x) ∏
β∈N (s)\(α∪B)

λβ→s(x),

λs→α(x) = ∂xα

[

µs→α(x)
]

= ∑
B⊆N (s)\α

∂xB,xα

[

φs(xs)
]

∏
β∈B

µβ→s(x) ∏
β∈N (s)\(α∪B)

λβ→s(x),

where we have made use of the tree-structure of the CDN to write the derivative of a product of mes-
sages as a product of derivatives of the messages. The above updates then define the DSP algorithm
for CDNs defined over continuous variables, with a total of four sets of messages defined solely in
terms of the CDN functions, their derivatives and linear combinations thereof. The message-passing
algorithm for continuous CDNs is summarized in Table 2 and is illustrated in Figure13.

We see from Table 2 that the DSP algorithm grows exponentially in complexity asthe number
of neighboring variable nodes for any given function increases, as the updates at function nodes
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(a) (b)

Figure 13: The DSP algorithm. a) Computation of the message from a function nodes to a variable
nodeα; b) Computation of the message from a variable nodeα to a function nodes.

• Input: A tree-structured CDN G = (V,S,E), root nodeα ∈V and a vector x of obser-
vations

• Output: The probability density function (PDF) P(x)

• For each leaf variable nodeα′ and for all function nodess∈N (α′), propagateµα′→s(x) =
1,λα′→s(x) = 0. For each leaf function node with functionφs(xα′), send the messages

µs→α′(x) = φs(xα′),λs→α′(x) = ∂xα′

[

φs(xα′)
]

.

• For each non-leaf variable nodeα and neighboring function nodess∈N (α),

µα→s(x) = ∏
s′∈N (α)\s

µs′→α(x),

λα→s(x) = ∂xα

[

µα→s(x)
]

= µα→s(x) ∑
s′∈N (α)\s

λs′→α(x)
µs′→α(x)

.

• For each non-leaf function nodesand neighboring variable nodesα ∈N (s),

µs→α(x) = ∑
B⊆N (s)\α

∂xB

[

φs(xs)
]

∏
β∈B

µβ→s(x) ∏
β∈N (s)\{α∪B}

λβ→s(x),

λs→α(x) = ∂xα

[

µs→α(x)
]

= ∑
B⊆N (s)\α

∂xB,xα

[

φs(xs)
]

∏
β∈B

µβ→s(x) ∏
β∈N (s)\{α∪B}

λβ→s(x).

• Repeat the 2nd and 3rd steps towards root nodeα.

Table 2: The derivative-sum-product (DSP) algorithm for computing thejoint probability density
functionP(x) in a CDN defined over continuous variables.
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require one to perform a sum over all subsets of neighboring variables. However, in many cases
the computational complexity will be tractable for sparser graphs, as demonstrated by the following
example.

Figure 14: The DSP algorithm for a chain-structured CDN.

Example 7 (Derivative-sum-product on a linear first-order chainCDN) Consider the CDN de-
fined over K variables such that the joint CDF over these variables is givenby

F(x) =
K−1

∏
k=1

φk(xk,xk+1),

so that the variable nodes are connected in the chain-structured graph shown in Figure 14. In this
case, the DSP messages can be written as

µk+1(x)≡ µφk→Xk+1(x)

= ∂xk

[

φk(xk,xk+1)
]

µk(x)+φk(xk,xk+1)λk(x),

λk+1(x)≡ λφk→Xk+1(x)

= ∂xk,xk+1

[

φk(xk,xk+1)
]

µk(x)+∂xk+1

[

φk(xk,xk+1)
]

λk(x), k= 1, · · · ,K−1.

Example 8 (Sampling from a cumulative distribution network) We can further take advantage
of the DSP algorithm for generating samples from the CDF modeled by a CDN. We can proceed
as follows: arbitrarily select a variable in the model, say X1. Then, generate a sample x∗1 from its
marginal CDF F(x1) (which we obtain by marginalizing over all other variables). Given x∗

1, we
can then proceed to generate samples for its children by marginalizing out all other unobserved
variables and then sampling from the conditional distribution F(x2|x∗1). We can continue this way
until we have sampled a complete configurationx∗ = [x∗1, · · · ,x∗K ]. The algorithm for sampling from
the joint CDF modeled by a CDN is then given by

• Pick a sampling ordering X1,X2, · · · ,XK ,

• For variable Xk,k= 1, · · · ,K, compute

F(x1, · · · ,xk) = lim
xk+1,··· ,xK→∞

F(x1, · · · ,xk,xk+1 · · · ,xK).

• Sample x∗i from

F(xk|x1, · · · ,xk−1) =
∂x1,··· ,xk−1

[

F(x1, · · · ,xk)
]

lim
xk→∞

∂x1,··· ,xk−1

[

F(x1, · · · ,xk)
] .
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From the above we see that if the CDN has a tree structure, then we can compute the conditional
CDFs F(xk|x1, · · · ,xk−1) exactly via DSP. In the case of a CDN with cycles, we can always convert
it to one with a tree structure by clustering variables and corresponding function nodes (Lauritzen
and Spiegelhalter, 1988). This generally incurs an increase in function node complexity, but with
the benefit of being able to sample from the joint CDF modeled by the CDN.

3.4 Discussion

We have presented the derivative-sum-product (DSP) algorithm for computing derivatives in tree-
structured CDNs. For graphs defined over continuous variables, the DSP algorithm can be imple-
mented through two sets of messages in order to compute the higher-order derivatives of the joint
CDF. While we have presented the DSP algorithm for computing derivativesgiven a set of CDN
functions, we have not addressed here the issue of how to learn these CDN functions from data. A
possible method would be to run DSP to obtain the joint PDF and then maximize this with respect
to model parameters for a particularx. Another issue we have not addressed is how to perform
inference in graphs with cycles: an interesting future direction would be to investigate exact or ap-
proximate methods for doing so and connections to methods in the literature (Minka, 2001; Neal,
1993) for doing this in traditional graphical models. We will further discussthese issues in the
concluding section.

Having defined the CDN and having described the DSP algorithm, we will now proceed to apply
both of these to the general problem of learning to rank from examples. Aswe will see, the ability
to model a joint CDF using a graphical framework will yield advantages in bothrepresentation and
computation for this class of problems.

4. Learning to Rank in Multiplayer Team-based Games with Cumulative
Distribution Networks

In this section, we will apply CDNs and the DSP algorithm to the problem of structured ranking
learning in which the goal is to learn a model for ranking players in a multiplayergame. For this
problem, we observe the scores achieved by several players over many gamest = 1· · · ,T in which
players interactively compete in groups, or teams, which change with each game. For any given
game, players compete in teams so that at the end of each game, each player will have achieved a
score as a result of actions taken by all players during the game. For example, these player scores
could correspond to the number of targets destroyed or the number of flags stolen, so that a higher
player score reflects a better performance for that player. Here we willdefine a gameΓt as a triplet
(Pt ,Tt ,Ot), wherePt ⊂ P is a subset of the setP of all players andTt is a partition ofPt into sets
corresponding to teams for gameΓt , so that ifTt = {T 1

t , · · · ,T N
t } then there areN teams for game

Γt and playerk∈ Pt is assigned to teamn for gameΓt if and only if k∈ T n
t . For example, a game

involving six players labeled 1,2,3,4,5,6 organized into three teams of two players each could
correspond toPt = {1,2,3,4,5,6} andTt = {{1,2},{3,4},{5,6}}. Without loss of generality we
will label the teams in a game byn= 1, · · · ,N where each team corresponds to a set in the partition
Tt .

In addition to the above, we will denote byOt theoutcomeof a game that consists of the pair
(xPt , rTt

), wherexPt ∈ R
|Pt | is a vector of player scores for gameΓt and the setrTt

is defined as a
partially ordered set of team performances, or set of ranks for eachteam. Such ranks are obtained
by first computing the sum of the player scores for each teamn = 1, · · · ,N, and then ranking the
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teams by sorting the resulting sums. We will refer to these sums in the sequel as the team scorestn.
An example of this for the previous example isxPt = [30 12 15 25 100 23]T , so thatrTt

= {2, 1, 3}
is the corresponding partially ordered set of team rankings. We will also denote byxn ∈ R

|T n
t | the

vector of player scores for teamn in gameΓt . Games can also be classified into various types, such
that the sizes and/or number of teams are constrained in different ways for different game types.
For example, a ”SmallTeam” game type would consist of two teams with at most two players per
team, whereas a ”FreeForAll” game type would constrain the number of teams tobe at most eight,
with one player per team. Furthermore, the team rankings are a function of unweighed sums of
player scores: although there is no reasona priori to weigh the scores of players differently for
determining the rank of a team, one could extend the above scheme for determining team rankings
to weigh player scores according to player type or player-specific features.

Given the above, the goal is to construct a model that will allow us to predictthe outcomeOt

of the new game before it begins, givenPt and previous game outcomesO1, · · · ,Ot−1. In particular,
we wish to construct a model that will minimize the number of mis-ordered teams based on the
set of team performancesrTt

for gameΓt . Here, the probability model for the given game should
account for the team-based structure of games, such that team performances are determined by
individual player scores and a game outcome is determined by the ordering of team scores. We
will demonstrate here that the graphical framework of CDNs makes it straightforward to model
both stochastic orderings of variables in the model as well as statistical independence relationships
among these variables. In particular, the model we will construct here will be amenable to exact
inference via the DSP algorithm.

Our model will be similar in design to the TrueSkillTM model of Herbrich et al. (2007) for skill
rating in Halo 2TM , whereby each playerk ∈ Pt is assigned a probability distribution over latent
skill variablesSk, which is then inferred from individual player scores over multiple games using
the expectation propagation algorithm for approximate inference (Minka, 2001). Inference in the
TrueSkillTM model thus consists of applying expectation propagation to a factor graph for a given
game in order to update probabilities over player skills. An example of such a factor graph is shown
in Figure 15. In TrueSkillTM , the factors connecting team-specific nodes to one another dictate a
constraint on relative differences in the total player scores between teams, while factors connecting
player nodes to their team-specific nodes enforce the constraint that the team score is determined
by the sum of player scores. Finally, for teamsn,n+1, there is a difference variableHn,n+1 and a
corresponding factor which declares a tied rank between two teams if the difference between the
two team scores is below some threshold parameter.

4.1 A Cumulative Distribution Network for Modeling Multiplayer Game Outc omes

Here we will examine a model for multiplayer game outcomes that will be modeled using a CDN.
The model will be designed on a game-by-game basis where the team assignments of players for a
given game determines the connectivity of the graphG for the CDN. In our model the team variables
will correspond to the ranks of teams: we will call such variablesteam performancesand denote
these asRn for teamn in order to contrast these with the team score variablesTn in the TrueSkill
model. Our model will account for player scoresXk for each playerk ∈ Pt in the game, the team
performancesRn for each teamn = 1, · · · ,N in the game and each player’s skill functionsk(xk),
which is a CDF specific to each player. For any given game,Rn will be determined as the sum of the
player scores for teamn, and then sorting the resulting sums so thatRn corresponds to the rank of
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Figure 15: The TrueSkillTM factor graph for a particular Halo 2TM game involving three teams
with two players each with the team scoresT1 = t1,T2 = t2,T3 = t3 with t1 < t2 < t3 so
that team 3 here achieved the highest total of player scores. The variablesH12,H23 corre-
spond to differences in team scores which determine the ranking of teams, so that teams
n andn+ 1 are tied in their rankings if the difference in their team scores is below a
threshold parameter. Here,Pt = {1,2,3,4,5,6} andTt = {{1,2},{3,4},{5,6}}. Unob-
served variables correspond to nodes shaded in red and observed variables correspond to
unshaded variable nodes. Each playerk = 1,2,3,4,5,6 is assigned a skill function that
reflects the distribution of that player’s skill levelSk given past game outcomes. Each
player then achieves scoreXk in any given game and team scoresTn,n= 1,2,3 are then
determined as the sum of player scores for each team.

teamn. The set of observed team performancesrTt
will be given by the joint configuration of theRn

variables for that game. The goal will then be to adapt player skill functions sk(xk) for each game
as a function of game outcome. We will design our model according to two principles. First, the
relationship between player scores and team performances is modeled as being stochastic, as both
player scores and team assignments vary from one game to the next, so thatgiven knowledge of the
players in that game and their team assignments, there is some uncertainty in howa team will rank
once the game is over. Second, team performance variables depend on those of other teams in the
game, so that each team’s performance should be linked to that of other teamsin a game.

The CDN framework allows us to satisfy both desiderata in the form of modelingconstraints on
the marginal CDFs for variables in the model. To address the first point, we will require a set of CDN
functions that connect player scores to team performances. Here we will make use of the cumulative
model for ordinal regression (see Appendix) that relates a linear function f (x) = wTx on inputsx to
a single output ordinal variabley∈ {r1, · · · , rL} so thatP[y= r l ] = P[θ(r l−1)< f (x)+ ε≤ θ(r l )] =
Fε(θ(r l )− f (x))−Fε(θ(r l−1)− f (x)), whereε is an additive noise variable andθ(r0), · · · ,θ(rL)
are the cutpoint parameters of the model withθ(r0) = −∞,θ(rL) = ∞. Equivalently, we can write
P[y≤ r l ] = P[ε ≤ θ(r l )− f (x)]. In the context of multiplayer games, we perform separate ordinal
regressions for different game types, as the cutpoints that are learnedfor a given game type may vary
between different game types due to differing team sizes between game types. For a given game
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type, we treat the set of all games as a bag of pairs of player score vectorsxn and team performances
rn from which cutpoints in an ordinal regression model can be learned. Thus, we learn a set of
cutpointsθ(r0) < · · · < θ(rL) once using all of the games in the training data set for a given game
type. Team performances are treated as being independent: thus, we can use the CDN framework
to augment the above parametric model in order to account for statistical dependencies between
multiple team performances in any given game.

We will model multiplayer games using a CDN in which players are grouped into teams and
teams compete with one another. To model dependence between player scores and team perfor-
mance, we will combine the above cumulative model for ordinal regression with prior player score
distributions under the assumptions that players contribute equally to team performance and that
players perform equally well on average. To do this, we will use functions gn where if there areN
teams for any given game, then we can assign a CDN functiongn for each team such that

gn(xn, rn) =
∫ xn

−∞
F
(

θ(rn);1Tu,σ2)P
(

u
)

du, (2)

whereF
(

θ(rn);1Tu,σ2
)

is a cumulative model relating input player scores to output team perfor-
mance andxn, rn are the player scores and team performance for teamn. The regression function in
the cumulative model is given byf (x) = wTx with w set to the vector of ones1, as we weigh the
contributions of players on a team equally. Furthermore,θ(rn) are the cutpoints that define contigu-
ous intervals in whichrn is the ranking for teamn based on that team’s performance andP(u) is a
probability density over a vector of latent player scoresu. Once the cutpoints have been estimated
by ordinal regression, we will model the distributionsF

(

θ(rn);1Tu,σ2
)

,P
(

u
)

in Equation (2) as

F
(

θ(rn);1Tu,σ2)= Φ
(

θ(rn);1Tu,σ2),

P(u) = Gaussian(u;µ1,σ2I).

By combining functionsgn (which assume equal player skills on average) with individual player
skills whilst accounting for the dependence between players’ skills and team performances, we can
update each player’s skill functionsk conditioned on the outcome of a game.

To address the fact that teams compete in any given game, we model ordinalrelationships be-
tween team performance using the notion of stochastic orderings (Section 2.3), so that for two
teams with team performancesRX,RY, RX � RY if FRX(t) ≥ FRY(t)∀ t ∈ R, whereFRX(·),FRY(·)
are the marginal CDFs ofRX,RY. This then allows us to design models in which we can express
differences in team performances in the form of pairwise constraints on their marginal CDFs. We
note at this juncture that while it is possible to model such stochastic ordering constraints between
variables using directed, undirected or factor graphs, doing so introduces additional constraints that
are likely to increase the difficulty of performing inference under such models. In contrast, the CDN
framework here allows us to explicitly specify such stochastic ordering constraints, in addition to
allowing for tractable computations in the resulting model. Thus, although each of the Rn variables
is a deterministic function of the sum of player scores, we can neverthelessmodel them as being
stochastic using the framework of CDNs to specify orderings among theRn variables. By contrast,
it will generally be more difficult in terms of computation and representation to enforce constraints
of the type

[

Rn� Rn+1
]

in a directed/undirected/factor graph model.
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For the proposed CDN model, givenN ranked teams, we can thus defineN−1 functionshn,n+1

so that

hn,n+1(rn, rn+1) = Φ

(

[

rn

rn+1

]

;

[

r̃n

r̃n+1

]

,Σ

)

,

where

Σ=

[

σ2 ρσ2

ρσ2 σ2

]

,

and ˜rn ≤ r̃n+1 are chosen without loss of generality such that ˜rn = n so as to enforceRn � Rn+1 in
the overall model. Finally, we will use askill function sk(xk) for each playerk to model that player’s
distribution over game scores given previous game outcomes. The player performance nodes in the
CDN will then be connected to the team performance nodes via the above CDNfunctionsgn and
team performance variable nodesRn are linked to one another via the above CDN functionshn,n+1.
The joint CDF for a given gameΓt with N teams is then given by

F(xPt , rTt
) =

N

∏
n=1

g(xn, rn)
N−1

∏
n=1

hn,n+1(rn, rn+1) ∏
k∈Pt

sk(xk).

The above functions and model variables jointly define the CDN for modeling multiplayer
games. An example is given in Figure 16 for a game with three teams and six players. One can read-
ily verify from the CDN of Figure 16 using Proposition 18 that for the abovemodel and for any given
game, the stochastic ordering relationshipR1� R2� ·· · � RN as defined above can be enforced by
marginalizing over all player scores in the CDN and having selected appropriate cutpoints that sat-
isfy θ(r1)< θ(r2)< θ(r3) and parameters ˜r1 < r̃2 < r̃3, so that we haveF(r1)≥ F(r2)≥ F(r3).

Figure 16: The CDN for the player scores and team performances in a game of Halo 2TM for a
game with three teams with two players each. Each playerk = 1,2,3,4,5,6 achieves
scoreXk in a match and team performancesRn,n= 1,2,3 are determined based on the
sum of player scores for each team.

Having presented the CDN for modeling multiplayer games, we will now proceedto describe
a method for predicting game outcomes in which we update player skill functionsafter each game
using message-passing.
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4.2 Ranking Players in Multiplayer Games Using the Derivative-sum-product Algorithm

Here we will apply the DSP algorithm in the context of ranking players in multiplayer games with
a team structure, where the problem consists of jointly predicting multiple ordinal output variables.
It should be noted that while it may be possible to construct similar models using adirected, undi-
rected or factor graph, the CDN allows us to simultaneously specify both ordinal and statistical
independence relationships among model variables while allowing for a tractable inference algo-
rithm.

In order to compute the DSP messages using the above CDN functions, we must compute the
derivatives of all CDN functions. Since all of our functions are themselves Gaussian CDFs, the
derivatives∂xA

[

φs(xs)
]

can be easily evaluated with respect to variablesXA as

∂xA

[

Φ
(

x;µ,Σ
)

]

= Gaussian
(

xA;µA,ΣA

)

Φ
(

xB; µ̃B,Σ̃B

)

,

where

x =

[

xA

xB

]

, µ=

[

µA

µB

]

, Σ=

[

ΣA ΣA,B

Σ
T
A,B ΣB

]

,

µ̃B = µB+Σ
T
A,BΣ

−1
A (xA−µA),

Σ̃B =ΣB−Σ
T
A,BΣ

−1
A ΣA,B.

The message computations in the CDN are given in the Appendix. We ensure that each message
is properly normalized by locally computing the constantZ as described in Section 3.2 for each
message and multiplying each message pairµ,λ byZ−1.

Given the above CDN model for multiplayer games, we would like to then estimate theplayer
skill functions sk(xk) for each playerk from previous games played by that player. LetTk ⊆
{1, · · · ,T} be the set of games in which playerk participated. We then seek to estimatesk(xk)
for playerk given previous team performancesrTt

, t ∈ Tk and player scores forall other players
xPt\k for all gamest ∈ Tk in which playerk participated. Denote byO−k

t the outcome of a game with
the player score for playerk removed fromxPt . We will define the skill functionsk(xk) for a player
to be given by

sk(xk) = F
(

xk|{O−k
t }t∈Tk

)

= ∏
t∈Tk

F(xk|O−k
t ).

The above expression for the skill functionsk(xk) for playerk corresponds to the conditional dis-

tribution F
(

xk|{O−k
t }t∈Tk

)

given all past games played by playerk with the assumption that team

performances and player scores are independently drawn from CDFsF(rTt
,xPt ) for t = 1, · · · ,T.

The skill functionsk can then be readily estimated by the DSP algorithm, since each game outcome
is modeled by a tree-structured CDN. More precisely, we first initializesk(xk) to the Gaussian CDF
Φ(xk;µ,β2) evaluated at many values forxk. For each gameΓt we can perform message-passing
to obtain the conditional CDFF(xk|O−k

t ) = µgn→Xk(rTt
,xPt\k) for playerk (assuming the message

µgn→Xk has been properly normalized as described above) and then perform amultiplicative update
sk(xk)← sk(xk)µgn→Xk(rTt

,xPt\k). The updates consist of pointwise multiplications ofsk(xk) and
µgn→Xk for different values ofxk. The skill functionsk(xk) can then be used to make predictions for
playerk’s scores in future games. We will proceed in the next section to apply the model and the
above inference procedure to the problem of modeling Halo 2TM games.
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4.3 The Halo 2TM Beta Data Set

The Halo 2TM Beta data set (v1.1)2 consists of player scores for four game types (“HeadToHead”,
“FreeForAll”, “SmallTeams” and “LargeTeams”) over a total of 6,465 players. The descriptions for
each of the four game modes are given below.

• HeadToHead: 6227 games/1672 players, one player competing against another player

• FreeForAll: 60022 games/5943 players, up to eight players playing against each other

• SmallTeams: 27539 games/4992 players, up to four players per team, two competing teams

• LargeTeams: 1199 games/2576 players, up to eight players per team, two competing teams

To construct the above CDN model, we set the cutpointsθ(rn) in the above cumulative model using
ordinal regression of team ranks on team performances for all games inthe training set. We initial-
ized all player skill functions tosk(xk) = Φ(xk;µ,β2). The set of parameters{µ,ρ,β,σ} in the CDN
model was set to{25,−0.95,20,0.25} for “HeadToHead”,{50,−0.2,10,0.2} for “FreeForAll”,
{20,−0.1,10,0.027} for “SmallTeams” and{1,−0.9,1,0.01} for “LargeTeams” game modes.3 For
each of these game modes, we applied the DSP algorithm as described abovein order to obtain up-
dates for the player skill functionssk(xk). An example of such an update at the end of a game with
four competing players is shown in Figure 17.

Figure 17: An example of derivative-sum-product updates for a four-player free-for-all game, with
the derivative of the skill functions before the updates (light blue) and afterwards (red).

Before each game, we can predict the team performances using the player skills learned thus

far via the rulex∗k = argmax
xk

∂xk

[

sk(xk)
]

. For each game, the set of team performances is then

defined by the ordering of teams once the game is over, where we add the predicted player scoresx∗k
together for each team and sorting the resulting sums in ascending order. For any predicted set of
team performances, an error is incurred for that game if two teams for thatgame were mis-ranked
such that the number of errors for a given game is∑N−1

n=1 ∑N
m>n[Rn ≤ Rm]∧ [Rtrue

n > Rtrue
m ]. One can

then compute an error rate over the entire set of games for which we make predictions about team
performances.

2. Credits for the use of the Halo 2TM Beta Data Set are given to Microsoft Research Ltd. and Bungie.
3. These parameter settings were selected using a validation set and differ from those of Huang and Frey (2008).
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A plot showing the average prediction error rate obtained for the above CDN models over five
runs of DSP is shown in Figure 18. It is worth noting that our choice of multivariate Gaussian CDFs
as CDN functions in the above model requires that we use a rejection samplingmethod in order to
evaluate the CDN functions, so that the error bars over the five runs areshown. In addition, Figure
18 also shows the error rates reported by Herbrich et al. (2007) for TrueSkillTM and ELO (Elo,
1978), which is a statistical rating system used in chess. Here, we see thatthe ability to specify both
ordinal relationships and statistical dependence relationships between model variables using a CDN
allows us to achieve higher predictive accuracy than either TrueSkillTMor the ELO method.
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Figure 18: Prediction error on the Halo 2TM Beta data set (computed as the fraction of team pre-
dicted incorrectly before each game) for DSP, ELO (Elo, 1978) and TrueSkillTM (Her-
brich, Minka and Graepel, 2007) methods. Error bars over five runs of DSP are shown.

4.4 Discussion

In this section we presented a model and method for learning to rank in the context of multiplayer
team-based games such as Halo 2TM . Our model represent both statistical dependence relationships
and stochastic orderings of variables in the model such as team performances and individual player
scores. We then used the DSP algorithm to compute conditional CDFs for each player’s score.
Comparisons to the TrueSkillTM and ELO methods for factor graph models show that our model
and method allows both for fast estimation and improved test error on the Halo 2TM Beta data set.

While the above method has the advantage of providing a flexible probabilistic model and allow-
ing for tractable inference, the choice of multivariate Gaussian CDFs for CDN functions requires
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the use of sampling methods in order to evaluate DSP messages. Future work could focus on finding
closed-form parameterizations of CDN functions for which computing derivatives is tractable.

5. Conclusion

We have proposed the CDN as a graphical model for joint CDFs over manyvariables. We have
shown that the conditional independence properties of a CDN are distinctfrom the independence
properties of directed, undirected and factor graphs. However, these properties include, but are not
limited to, those for bi-directed graphs. We have then demonstrated that inference in a CDN corre-
sponds to computing derivatives/finite differences. We described the DSP algorithm for computing
such derivatives/finite differences by passing messages in the CDN where each message corresponds
to local derivatives of the joint CDF.

We used the graphical framework provided by CDNs to formulate models andmethods for
learning to rank in a structured setting in which we must account for statisticaldependence rela-
tionships between model variables. We first applied the DSP algorithm to the problem of ranking
in multiplayer gaming where players compete in teams. The DSP algorithm allowed usto compute
distributions over player scores given previous game outcomes while accounting for the team-based
structure of the games, whereby we were able to show improved results over previous methods.
The CDN framework was then used to construct loss functionals for structured ranking learning
where we wish to account for statistical dependence relationships which arise in ranking a set of
objects. We showed that many probability models for rank data can be viewedas particular CDNs
with different connectivities between pairwise object preferences. Based on the work and results
presented, we can recommend future directions of research pertaining tothe methods presented in
this manuscript.

5.1 Future Work

While we presented a framework for constructing a graphical model for ajoint CDF, there may be
applications in which one may wish to instead optimize the log-probability density logP(x|θ). We
presented the DSP algorithm for both discrete and continuous-variable networks and we showed
how DSP could be used to compute the probability densityP(x|θ) from the joint CDFF(x|θ) mod-
eled by the CDN. In order to perform maximum likelihood learning in which we wish to maximize
the log-likelihoodL(x;θ) = logP(x|θ) with respect to a parameter vectorθ for a given set of ob-
served variablesx, one can use modified versions of DSP messages in order to compute the gradient
∇θL(x;θ) of the log-likelihood. The guiding principle here is that the gradient operator can be dis-
tributed amongst local functions in the CDF, much like the differentiation operation in DSP, so that
by modifying DSP messages appropriately we can obtain the gradient∇θL(x;θ). Once computed,
the gradient vector can then be used in a gradient-descent algorithm to optimize the log-likelihood.
Future research in this direction could be directed at establishing what class of graphs can yield
tractable gradient computations, as well as the complexity/accuracy tradeoffs involved in comput-
ing gradients in graphs with cycles.

We have shown that our message-passing algorithm leads to the correct set of derivatives of
the joint CDF provided that the underlying graph is a tree. As with the sum-product algorithm for
factor graphs, if the graph contains cycles, then the derivative-sum-product is no longer guaranteed
to yield the correct mixed derivatives of the joint CDF, so that messages maybegin to ‘oscillate’
as they propagate around cycles in the graph. One important direction to pursue is to establish
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conditions under which the presence of cycles will not lead to oscillations in messages: one could
resort to a similar methodology as that employed by Weiss and Freeman (2001), where a graph with
cycles is “unwrapped” and the resulting messages are analyzed.

We showed that for graphs defined over continuous variables, the complexity of computing DSP
message updates at a given function node increased exponentially with thenumber of neighboring
variable nodes, as one has to sum over products of messages incoming from all subsets of variables
connected to the function node. However, it may be possible to approximate messages using sim-
pler, tractable forms such as conditional univariate Gaussian CDFs. Future work here would be to
establish tractable methods for performing such approximations and gauge the performance of such
an approximate scheme for inference in CDNs on both synthetic and real-world data.

As we have demonstrated, the graph separation criterion for assessing conditional independence
in CDNs includes those of bi-directed graphs (Richardson and Spirtes, 2002). As such graphs are a
special case of mixed graphs containing undirected, directed and bi-directed edges, a future avenue
of research would be to investigate whether one can tractably approximate such mixed graphical
models using a hybrid graphical formulation combining the CDN model with that offactor graphs
for joint probability density/mass functions. The Bayesian learning approach adopted by Silva
and Ghahramani (2009b) could provide a framework with which to qualitatively and quantitatively
compare the use of CDNs for constructing such mixed graphical models.
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Appendix A.

Lemma 19 Let M = {xC < XC ≤ xC + ǫ} ≡
⋂
γ∈C

{xγ < Xγ ≤ xγ + ε} with ε > 0 for XC ⊂ X and

ǫ = [ε · · · ε]T ∈ R
|XC|. Consider the set of random variablesXA ⊂ X with XC∩XA = /0. If both

∂xC

[

F(xC)
]

and ∂xC

[

F(xA,xC)
]

exist for all xC with ∂xC

[

F(xC)
]

> 0, then the conditional CDF

F(xA|xC) ≡ lim
ǫ→0+

F(xA|xC < XC ≤ xC + ǫ) = lim
ǫ→0+

P

[

{XA≤ xA}∩{xC < XC ≤ xC+ǫ}
]

P

[

xC < XC ≤ xC+ǫ
] is given

by

F(xA|xC) =
∂xC

[

F(xA,xC)
]

∂xC

[

F(xC)
] ∝ ∂xC

[

F(xA,xC)
]

,

where∂xC

[

·
]

is a mixed derivative operator with respect to{xγ,γ ∈C}.
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Proof We can proceed by induction on variable setXC with the base case given by Lemma 3. Let
XC =XC′∪Xβ with Xβ /∈XC′∪XA. LetM′≡M′(ξ)= {xC′ ≤XC′ ≤ xC′+ξ}=

⋂
γ∈C′
{xγ <Xγ≤ xγ+ξ}

andM ≡M(ξ,ε) = M′∩{xβ < Xβ ≤ xβ + ε} with ǫ = [ξT ε]T. Suppose that∂xC′

[

F(xC′)
]

> 0 and

we have computed

F(xA,xβ|xC′)≡ lim
ξ→0+

F
(

xA,xβ|M′(ξ)
)

=
∂xC′

[

F(xA,xβ,xC′)
]

∂xC′

[

F(xC′)
] ,

and

F(xβ|xC′)≡ lim
ξ→0+

F
(

xβ|M′(ξ)
)

=
∂xC′

[

F(xβ,xC′)
]

∂xC′

[

F(xC′)
] .

Then we can write

F(xA |M) =
P

[

{XA≤ xA}∩{xβ < Xβ ≤ xβ + ε} |M′
]

P

[

xβ < Xβ ≤ xβ + ε |M′
] =

F(xA,xβ+ε|M′)−F(xA,xβ|M′)
ε

F(xβ+ε|M′)−F(xβ|M′)
ε

.

Thus, since∂xC

[

F(xC)
]

> 0 by hypothesis, we obtain

F(xA|xC) = lim
ε→0+,ξ→0+

F(xA,xβ+ε|M′)−F(xA,xβ|M′)
ε

F(xβ+ε|M′)−F(xβ|M′)
ε

=
lim

ε→0+

F(xA,xβ + ε|xC′)−F(xA,xβ|xC′)

ε

lim
ε→0+

F(xβ + ε|xC′)−F(xβ|xC′)

ε

=
∂xβ,xC′

[

F(xA,xβ,xC′)
]

∂xβ,xC′

[

F(xβ,xC′)
] =

∂xC

[

F(xA,xC)
]

∂xC

[

F(xC)
] .

Thus a conditional CDF of the formF(xA|xC) can be obtained by differentiation of the joint CDF.
By Schwarz’s Theorem this differentiation is invariant to the order in whichvariables are processed
provided that the derivatives required to computeF(xA|xC) exist and are continuous.

A.1 Derivation of the Derivative-sum-product Algorithm

To begin, letG = (V,S,E) be a tree-structured CDN and suppose we wish to compute the joint
probabilityP(x) and evaluate it at observationx. We note that we can root the graph at some node
α and we can write the joint CDF as

F(x) = ∏
s∈N (α)

Ts
(

xτα
s

)

,

wherexτα
s

denotes the vector of configurations for all variables in the subtreeτα
s rooted at variable

nodeα and containing function nodes (Figure 19), andTs
(

xτα
s

)

corresponds to the product of all
functions located in the subtreeτα

s .
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Figure 19: Example of the subtreesτα
s ,τs

β for a tree-structured CDN given by the graphG .

Now suppose we are interested in computing the probability

P(x) = ∂x

[

F(x)
]

= ∂x

[

∏
s∈N (α)

Ts
(

xτα
s

)

]

.

Here, we take advantage of the fact that the graph has a tree structure,so that

∂x

[

∏
s∈N (α)

Ts
(

xτα
s

)

]

= ∂xα

[

∏
s∈N (α)

∂xτα
s \α

[

Ts
(

xτα
s

)

]

]

= ∂xα

[

∏
s∈N (α)

µs→α
(

xτα
s

)

]

.

We have introduced the set of functionsµs→α(x)≡ µs→α
(

xτα
s

)

defined by

µs→α(x)≡ µs→α
(

xτα
s

)

= ∂xτα
s \α

[

Ts
(

xτα
s

)

]

, (3)

where we have assumed that each of the derivatives/finite differenceshave been evaluated at the
desired valuesxτα

s \α. By its definition,µs→α(x) only depends on variables in the subtreeτα
s and

corresponds to the higher-order derivative of the joint CDF with respect to variables in the subtree
τα

s \α. We can thus view the functionsµs→α(x) as messages being passed from each function node
s∈N (α) in the CDN to a neighboring variable nodeα.

We can now writeTs
(

xτα
s

)

as a product of functions owing to the tree structure of the graphG ,
so that

Ts
(

xτα
s

)

= φs(xα,xN (s)\α) ∏
β∈N (s)\α

Tβ

(

xτs
β

)

, (4)
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wherexτs
β

denotes the vector of configurations for all variables in the subtreeτs
β which is rooted at

function nodesand contains nodeβ (Figure 19), andTβ is the product of all functions in the subtree
τs

β. Substituting Equation (4) into Equation (3), we obtain

µs→α(x)≡ µs→α
(

xτα
s

)

= ∂xτα
s \α

[

φs(xα,xN (s)\α) ∏
β∈N (s)\α

Tβ

(

xτs
β

)

]

= ∂xN (s)\α

[

φs(xα,xN (s)\α) ∏
β∈N (s)\α

∂xτs
β\β

[

Tβ

(

xτs
β

)]

]

= ∂xN (s)\α

[

φs(xα,xN (s)\α) ∏
β∈N (s)\α

µβ→s

(

xτs
β

)

]

. (5)

Here we have defined messagesµβ→s(x)≡ µβ→s

(

xτs
β

)

from variable nodes to function nodes. Sim-

ilar to the definition forµs→α(x), the messageµβ→s(x) only depends on variables in the subtree
τs

β and corresponds to the higher-order derivative of the joint CDF with respect to variables in the
subtreeτs

β \β.
Finally, to compute the messagesµβ→s(x) from variables to functions, we can write each of the

functionsTβ
(

xτs
β

)

as a product such that

Tβ
(

xτs
β

)

= ∏
s′∈N (β)\s

Ts′
(

xτβ
s′

)

,

whereTs′ is defined identically toTs above but for function nodes′. Substituting this into the
expression forµβ→s(x) in Equation (5) yields

µβ→s(x) = ∂xτs
β\β

[

Tβ
(

xτs
β

)

]

= ∏
s′∈N (β)\s

∂x
τβ
s′ \β

[

Ts′
(

xτβ
s′

)

]

= ∏
s′∈N (β)\s

µs′→β(x).

Thus, to compute messages from variables to functions, we simply take the product of all incoming
messages except for the message coming from the destination function node. As in the sum-product
algorithm, variables with only two neighboring functions simply pass messages through unchanged.
We see here that the process of differentiation in a CDN can be implemented asan algorithm in
which we pass messagesµα→s from variables to neighboring function nodes and messagesµs→α
from functions to neighboring variable nodes. Messages can be computedrecursively from one
another as described above: we start from an arbitrary root variablenodeα and propagate messages
up from leaf nodes to the root node. As in the sum-product algorithm, leaf variable nodesα′ send
the messageµα′→s(x) = 1 while leaf function nodesφs(xα′) send the messageµs→α′(x) = φs(xα′).

The message-passing algorithm proceeds until messages have been propagated along every edge
in the network and the root variable node has received all incoming messages from the remainder
of the network. Once all messages have been sent, we can obtain the probability density of the
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variables in the graph from differentiating the product of incoming messages at the root nodeα, so
that

P(x) = ∂xα

[

∏
s∈N (α)

µs→α(x)

]

.

A.2 Ordinal Regression

In many domains, one is faced with the problem of predicting multinomial variablesthat can each
take one of a finite number of values in some discrete setX = {r1, · · · , rK} for some integerK. Such
multinomial variables can then be distinguished as being of the type

• Nominal, or categorical, so that the setX does not admit an ordering of variable values.

• Ordinal, so that the setX admits a total ordering over variable values of the typer1≺ ·· · ≺ rK .

An example of a nominal variable is gender, such asX = {Male,Female} and an example of an
ordinal variable is a grading schemeX = {A,B,C,D} so that the possible variable values satisfy the
total orderingD≺C≺ B≺ A.

In ordinal regression, the goal is to predict a discrete variabley ∈ {r1, · · · , rK} given a set of
featuresx, wherer1≺ ·· · ≺ rK are an ordered set of labels. Unlike the general problem of multiclass
classification in which variables to be predicted are nominal, output labels in thesetting of ordinal
regression are not permutation-invariant and so any model for the problem should account for the
orderings of the output variable values.

One model for performing ordinal regression is thecumulative model(McCullagh, 1980), which
relates an input vectorx to an ordinal outputy via a functionf and a set ofcutpointsθ(r1)< · · ·<
θ(rK) along the real lineR so thaty = rk if θ(rk−1) < f (x)+ ε ≤ θ(rk), whereε is additive noise
and we defineθ(r0) = −∞,θ(rK) = ∞ (Figure 20). IfP(ε) is the probability density function from
which the noise variableε is drawn, then we can write

P
[

y= rk
]

= P
[

θ(rk−1)< f (x)+ ε≤ θ(rk)
]

= P
[

{θ(rk−1)− f (x)< ε}
⋂
{ε≤ θ(rk)− f (x)}

]

= Fε(θ(rk−1)− f (x))−Fε(θ(rk)− f (x)),

whereFε ≡ F(ε) is the corresponding cumulative distribution function forP(ε). The above equa-
tion defines a likelihood function for a given observed pair(x,y), so that the cutpointsθ(rk) and
the regression functionf (x) can subsequently be estimated from training data by maximizing the
likelihood function with respect to the cutpointsθ(rk) and the regression functionf (x).

A.3 Derivative-sum-product Message Updates for Learning to Rank in Multiplayer Games

Here we present the DSP algorithm for updating player ranks. Messages are ensured to be properly
normalized locally by computing the constantZ = lim

z→∞
µ(z) for each message and multiplying the

message pairµ,λ byZ−1.

• Initialize for each player score nodeXk:

µXk→gn(xk) = sk(xk),

λXk→gn(xk) = ∂xk

[

sk(xk)
]

.
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Figure 20: An illustration of the ordinal regression model. A given point has label y = rk if
θ(rk−1)< f (x)+ ε≤ θ(rk), whereε is a noise variable.

• Pass messages from function nodegn to team performance nodeRn for neighboring player
nodesXn, n= 1, · · · ,N:

µgn→Rn(r ,x) = ∑
s,t|Xs∪Xt=Xn

Xs
⋂

Xt= /0

∂xs

[

gn(xn, rn)
]

∏
j|Xj∈Xs

µXj→gn(x j) ∏
j|Xj∈Xt

λXj→gn(x j),

λgn→Rn(r ,x) = ∑
s,t|Xs∪Xt=Xn

Xs
⋂

Xt= /0

∂xs,rn

[

gn(xn, rn)
]

∏
j|Xj∈Xs

µXj→gn(x j) ∏
j|Xj∈Xt

λXj→gn(x j).

• Setµhn−1,n→Rn(r ,x) = λhn−1,n→Rn(r ,x) = 1 for n = 1. Pass messages from team performance
nodeRn to neighboring team performance nodesRn+1 and function nodeshn,n+1 for n =
1, · · · ,N:

µRn→hn,n+1(r ,x) = µhn−1,n→Rn(r ,x)µgn→Rn(r ,x),

λRn→hn,n+1(r ,x) = λhn−1,n→Rn(r ,x)µgn→Rn(r ,x)

+µhn−1,n→Rn(r ,x)λgn→Rn(r ,x),

µhn,n+1→Rn+1(r ,x) = µRn→hn,n+1(r ,x)∂rn

[

hn,n+1(rn, rn+1)
]

+λRn→hn,n+1(r ,x)hn,n+1(rn, rn+1),

λhn,n+1→Rn+1(r ,x) = µRn→hn,n+1(r ,x)∂rn,rn+1

[

hn,n+1(rn, rn+1)
]

+λRn→hn,n+1(r ,x)∂rn+1

[

hn,n+1(rn, rn+1)
]

.

• Setµhn,n+1→Rn(r ,x) = λhn,n+1→Rn(r ,x) = 1 for n= N. Pass messages from team performance
nodeRn to neighboring team performance nodesRn−1 and function nodeshn−1,n for n =
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1, · · · ,N:

µRn→hn−1,n(r ,x) = µhn,n+1→Rn(r ,x)µgn→Rn(r ,x),

λRn→hn−1,n(r ,x) = λhn,n+1→Rn(r ,x)µgn→Rn(r ,x)

+µhn,n+1→Rn(r ,x)λgn→Rn(r ,x),

µhn−1,n→Rn−1(r ,x) = µRn→hn−1,n(r ,x)∂rn

[

hn−1,n(rn−1, rn)
]

+λRn→hn−1,n(r ,x)hn−1,n(rn−1, rn),

λhn−1,n→Rn−1(r ,x) = µRn→hn−1,n(r ,x)∂rn−1,rn

[

hn−1,n(rn−1, rn)
]

+λRn→hn−1,n(r ,x)∂rn−1

[

hn−1,n(rn−1, rn)
]

.

• Pass messages from each team performance nodeRn to neighboring function nodesgn:

µRn→gn(r ,x) = µhn−1,n→Rn(r ,x)µhn,n+1→Rn(r ,x),

λRn→gn(r ,x) = λhn−1,n→Rn(r ,x)µhn,n+1→Rn(r ,x)

+µhn−1,n→Rn(r ,x)λhn,n+1→Rn(r ,x).

• Pass messages from function nodesgn to neighboring player score nodesXk:

µgn→Xk(r ,x) = ∑
s,t|Xs∪Xt=Xn\Xk

Xs
⋂

Xt= /0

∏
j|Xj∈Xs

µXj→gn(x j) ∏
j|Xj∈Xt

λXj→gn(x j)

·
(

∂xs

[

gn(xn, rn)
]

λRn→gn(r ,x)+∂xs,rn

[

gn(xn, rn)
]

µRn→gn(r ,x)

)

,

λgn→Xk(r ,x) = ∑
s,t|Xs∪Xt=Xn\Xk

Xs
⋂

Xt= /0

∏
j|Xj∈Xs

µXj→gn(x j) ∏
j|Xj∈Xt

λXj→gn(x j)

·
(

∂xs,xk

[

gn(xn, rn)
]

λRn→gn(r ,x)+∂xs,xk,rn

[

gn(xn, rn)
]

µRn→gn(r ,x)

)

.

• For each player score nodeXk,

µXk→sk(r ,x) = µgn→Xk(r ,x),

λXk→sk(r ,x) = λgn→Xk(r ,x).

• Update player skill functionssk(xk) using the multiplicative rule

sk(xk)← sk(xk)µgn→Xk(x, r).
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