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Abstract
The online multi-armed bandit problem and its generalizations are repeated decision making prob-
lems, where the goal is to select one of several possible decisions in every round, and incur a cost
associated with the decision, in such a way that the total cost incurred over all iterations is close
to the cost of the best fixed decision in hindsight. The difference in these costs is known as the
regretof the algorithm. The termbanditrefers to the setting where one only obtains the cost of the
decision used in a given iteration and no other information.

A very general form of this problem is the non-stochastic bandit linear optimization problem,
where the set of decisions is a convex set in some Euclidean space, and the cost functions are linear.
Only recently an efficient algorithm attaining̃O(

√
T) regret was discovered in this setting.

In this paper we propose a new algorithm for the bandit linearoptimization problem which
obtains a tighter regret bound ofÕ(

√
Q), whereQ is the total variation in the cost functions. This

regret bound, previously conjectured to hold in the full information case, shows that it is possible to
incur much less regret in a slowly changing environment evenin the bandit setting. Our algorithm
is efficient and applies several new ideas to bandit optimization such as reservoir sampling.

Keywords: multi-armed bandit, regret minimization, online learning

1. Introduction

Consider a person who commutes to work every day. Each morning, she has a choice of routes to
her office. She chooses one route every day based on her past experience. When she reaches her
office, she records the time it took her on that route that day, and uses thisinformation to choose
routes in the future. She doesn’t obtain any information on the other routesshe could have chosen
to work. She would like to minimize her total time spent commuting in the long run; however,
knowing nothing of how traffic patterns might change, she opts for the morepragmatic goal of
trying to minimize the total time spent commuting in comparison with the time she would have
spent had she full knowledge of the future traffic patterns but had to choose the same fixed route
every day. This difference in cost (using time as a metric of cost) measureshow much she regrets
not knowing traffic patterns and avoiding the hassle of choosing a new path every day.

∗. Work done while the author was at Microsoft Research.
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This scenario, and many more like it, are modeled by the multi-armed bandit problem and
its generalizations. It can be succinctly described as follows: iteratively an online learner has to
choose an action from a set ofn available actions. She then suffers a cost (or receives a reward)
corresponding to the action she took and no other information as to the merit ofother available
actions. Her goal is to minimize herregret, which is defined as the difference between her total cost
and the total cost of the best single action knowing the costs of all actions in advance.

Various models of the “unknown” cost functions have been consideredin the last half a cen-
tury. Robbins (1952) pioneered the study of various stochastic cost functions, followed by Hannan
(1957), Lai and Robbins (1985) and others. It is hard to do justice to thenumerous contributions
and studies and we refer the reader to the book of Cesa-Bianchi and Lugosi (2006) for references.
In their influential paper, Auer et al. (2003) considered an adversarial non-stochastic model of costs,
and gave an efficient algorithm that attains the optimal regret1 in terms of the number of iterations,
T, a bound ofÕ(

√
T).2 The sublinear (inT) regret bound implies that on average, the algorithm’s

cost converges to that of the best fixed action in hindsight.
The latter paper (Auer et al., 2003) was followed by a long line of work (Awerbuch and Klein-

berg, 2004; McMahan and Blum, 2004; Flaxman et al., 2005; Dani et al., 2008) which considered
the more general case of bandit online linear optimization over a convex domain. In this problem,
the learner has to choose a sequence of points from the convex domain and obtains their cost from an
unknown linear cost function. The objective, again, is to minimize the regret,that is, the difference
between the total cost of the algorithm and that of the best fixed point in hindsight. This generality
is crucial to allow forefficientalgorithms for problems with a large decision space, such as online
shortest path problem considered at the beginning. This line of work finally culminated in the work
of Abernethy et al. (2008), who obtained the first algorithm to giveÕ(

√
T) regret with polynomial

running time.
Even though thẽO(

√
T) dependence onT was a great achievement, this regret bound is weak

from the point of view of real-world bandit scenarios. Rarely would we encounter a case where
the cost functions are truly adversarial. Indeed, the first work on this problem assumed a stochastic
model of cost functions, which is a very restrictive assumption in many cases. One reasonable
way to retain the appeal of worst-case bounds while approximating the steady-state nature of the
stochastic setting is to consider thevariation in the cost vectors.

For example, our office commuter doesn’t expect the traffic gods to conspire against her every
day. She might expect a certain predictability in traffic patterns. Most daysthe traffic pattern is
about the same, except for some fluctuations depending on the day of the week, time of the day, etc.
Coming up with a stochastic model for traffic patterns would be simply too onerous. An algorithm
that quickly learns the dominant pattern of the traffic, and achieves regret bounded by the (typically
small) variability in day-to-day traffic, would be much more desirable. Such regret bounds naturally
interpolate between the stochastic models of Robbins and the worst case models of Aueret al.

In this paper3 we present the first such bandit optimization algorithm in the worst-case adver-
sarial setting, with regret bounded bỹO(

√
Q), whereQ is the total observed variation in observed

costs, defined as the sum of squared deviations of the cost vectors from their mean. This regret

1. Strictly speaking, here we talk aboutexpectedregret, as all algorithms that attain non-trivial guarantees must use
randomization.

2. We use the notatioñO to hide all constant terms (such as dependence on the dimension of the problem, or the diameter
of the decision set) and other lower order terms which grow at a poly-logarithmic rate withT.

3. A preliminary version of this result was presented in Hazan and Kale (2009a).
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degrades gracefully with increasingQ, and in the worst case, we recover the regret boundÕ(
√

T)
of Abernethy et al. (2008). Our algorithm is efficient, running in polynomial time per iteration.

The conjecture that the regret of online learning algorithms should be bounded in terms of the
total variation was put forth by Cesa-Bianchi et al. (2007) in the full information model (where the
online player is allowed to observe the costs of actions she did not choose). This conjecture was
recently resolved on the affirmative in Hazan and Kale (2008), in two important online learning
scenarios, viz. online linear optimization and expert prediction. In addition,in Hazan and Kale
(2009b), we give algorithms with regret bounds ofO(log(Q)) for the Universal Portfolio Selection
problem and its generalizations. In this paper, we prove the surprising fact that such a regret bound
of Õ(

√
Q) is possible to obtain even when the only information available to the player is the cost

she incurred (in particular, we may not even be able to estimateQ accurately in this model).

To prove our result we need to overcome the following difficulty: all previous approaches for the
non-stochastic multi-armed bandit problem relied on the main tool of “unbiasedgradient estimator”,
that is, the use of randomization to extrapolate the missing information (cost function). The variation
in these unbiased estimators is unacceptably large even when the underlyingcost function sequence
has little or no variation.

To overcome this problem we introduce two new tools: first, we use historicalcosts to construct
our gradient estimators. Next, in order to construct these estimators, we need an accurate method
of accumulating historical data. For this we use a method from data streaming algorithms known as
“reservoir sampling”. This method allows us to maintain an accurate “sketch” of history with very
little overhead.

An additional difficulty which arises is the fact that a learning rate parameterη needs to be
set based on the total variationQ to obtain theÕ(

√
Q) regret bound. Typically, in other scenarios

where square root regret bound in some parameter is desired, a simpleη-halving trick works, but
requires the algorithm to be able to compute the relevant parameter after every iteration. However,
as remarked earlier, even estimatingQ is non-trivial problem. We do manage to bypass this problem
by using a novel approach that implicitly mimics theη-halving procedure.

2. Preliminaries

Throughout the paper we use the standard asymptoticO() notation to hide dependence on (ab-
solute, problem-independent) constants. For convenience of notation, we use theÕ() notation to
hide dependence on (problem-dependent) constants as well as polylog(T) factors: g = Õ( f ) if
g < c f logd(T) for some problem-dependent constantc > 0 and and a problem-independent con-
stantd > 0. Specifically, in theÕ() notation we also hide terms which depend on the dimensionn,
since this is fixed: we use this notation in order highlight the dependence on the parameter which
grows with time, viz. the quadratic variation. Unless specified otherwise, all vectors live inRn, and
all matrices inRn×n. The vector norm‖ · ‖ denotes the standardℓ2 norm.

We consider the online linear optimization model in which iteratively the online player chooses
a pointxt ∈ K , whereK ⊆ R

n is a convex compact set called thedecision set. After her choice, an
adversary supplies a linear cost functionft , and the player incurs a cost offt(xt). In this paper we
assume anobliviousadversary, which can choose arbitrary cost functionsft in advance, with prior
knowledge of the player’s algorithm, but the adversary does not have access to the random bits used
by the player (see Dani and Hayes, 2006 for more details on various models of adversaries).
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With some abuse of notation, we useft to also denote the cost vector such thatft(x) = f⊤t x.
The only information available to the player is the cost incurred, that is, the scalarft(xt). Denote
the total number of game iterations byT. The standard game-theoretic measure of performance is
regret, defined as

RegretT =
T

∑
t=1

ft(xt)−min
x∈K

T

∑
t=1

ft(x).

We make some normalizations on the cost vectors and the convex domainK to keep the pre-
sentation clean. We assume that the cost vectors are scaled so that their norms are bounded by one,
that is,‖ft‖ ≤ 1. This scaling only changes the regret bound by a constant factor: ifG is a known
upper bound on the norms of the cost vectors, we can scale down the cost vectors byG and run the
algorithm; the actual regret isG times larger than the bound obtained here. Next, we assumeK is
scaled to fit inside the unit ball (in theℓ2 norm) centered at the origin, that is, for allx ∈K , we have
‖x‖ ≤ 1. We also assume that for some parameterγ ∈ (0,1), all the vectorsγe1, . . . ,γen, whereei is
the standard basis vector with 1 in thei-th coordinate and 0 everywhere else, are in the decision set
K .

The above assumptions can be met by translating and scalingK appropriately. This only
changes the regret bound by a constant factor: ifD is a known upper bound on the diameter of
K , then we can translateK so that it contains the origin and scaled coordinate vectorsγ′ei for some
γ′ > 0, and then scale it down byD to make its diameter 1 and run the algorithm; the actual regret
is D times larger than the bound obtained here. In certain specific cases, one can certainly obtain
tighter constants by using a set ofn linearly independent vectors contained insideK , but here we
make this simplifying assumption for the sake of cleanliness of presentation.

We denote byQT the total quadratic variation in cost vectors, that is,

QT :=
T

∑
t=1

‖ft −µ‖2,

whereµ= 1
T ∑T

t=1 ft is the mean of all cost vectors.
A symmetric matrixA is called positive semidefinite (denoted byA � 0 if all its eigenvalues are

non-negative. If all eigenvalues ofA are strictly positive, the matrix is called positive definite. For
symmetric matrices we denote byA � B the fact that the matrixB−A is positive semidefinite. For
a positive definite matrixA we denote its induced norm by‖x‖A =

√
x⊤Ax. We make use of the

following simple generalization of the Cauchy-Schwarz inequality:

x⊤y ≤ ‖x‖A · ‖y‖A−1. (1)

This inequality follows by applying the usual Cauchy-Schwarz inequality to the vectorsA1/2x and
(A1/2)−1y, whereA1/2 is the matrix square root of the positive definite matrixA, that is, a matrixB
which satisfiesBB = A.

For a twice differentiable functionf : Rn→R, we denote its gradient by∇ f and its Hessian by
∇2 f .

2.1 Reservoir Sampling

A crucial ingredient in our algorithm is a sampling procedure ubiquitously used in streaming algo-
rithms known as “reservoir sampling” (Vitter, 1985). In a streaming problemthe algorithm gets to
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see a stream of data in one pass, and not allowed to re-visit previous data. Suppose the elements
of the stream are real numbersf1, f2, . . . and our goal is to maintain a randomized estimate of the
current meanµt := 1

t ∑t
τ=1 fτ. The main constraint which precludes the trivial solution is that we

desire a sampling scheme that touches (i.e., observes the value of) very few elements in the stream.
The reservoir sampling method is to maintain a randomly chosen (without replacement) subset

S of sizek (also called a “reservoir”) from the stream, and then use the average ofthe sample as
an estimator. This works as follows. InitializeS by including the firstk elementsf1, f2, . . . , fk in
the stream. For every subsequent elementft , we decide to include it inSwith probability k

t . If the
decision to include it is made, then a random element ofS is replaced byft .

The following lemma is standard (see Vitter, 1985) and we include a simple inductive proof for
completeness:

Lemma 1 For every t≥ k, the set S is random subset chosen without replacement uniformly from
{f1, f2, . . . , ft}.

Proof We prove this by induction ont. The statement is trivially true fort = k. Assume that the
statement is true for somet ≥ m, and we now showt + 1. Let S be an arbitrary subset of sizek
of {f1, f2, . . . , ft}. We now show that the probability that the chosen set in thet + 1-th round isS
is 1

(t+1
k )

. For this, we have two cases:ft+1 /∈ S and ft+1 ∈ S. In the first case, the probability that

S is the chosen subset at the end oft-th round is 1
(t

k)
by the induction hypothesis. The conditional

probability that it survives thet +1-th is 1− k
t+1, so the overall probability thatS is the chosen set

at the end oft +1-th round is(1− k
t+1) · 1

(t
k)
= 1

(t+1
k )

.

In the second case,Swill be the chosen set at the end oft+1-th round if the setS′ chosen at the
end of thet-th round is one of thet +1−k sets obtained fromSby replacingft+1 by an element of
{f1, f2, . . . , ft}\S, which gets replaced byft+1 in thet +1-th round. The probability of this happen-
ing is t+1−k

(t
k)
· k

t+1 · 1
k = 1

(t+1
k )

, as required.

Now suppose we define ˜µt to be the average of thek chosen numbers inS, then the following
lemma is immediate:

Lemma 2 For every t≥ k, we haveE[µ̃t ] = µt and VAR[µ̃t ]≤ 1
kt ∑t

τ=1(fτ−µt)
2 = 1

ktQt .

The bound on the variance follows because the variance of a single randomly chosen element of
the stream is1t ∑t

τ=1(fτ−µt)
2. So the variance of the average ofk randomly chosen elementswith

replacement is1kt ∑t
τ=1(fτ−µt)

2. Since we choose thek elements in the samplewithoutreplacement,
the variance is only smaller.

The main reason reservoir sampling is useful in our context is because it samples every element
obliviously, that is, a decision to sample is made without looking at the element. This implies that
the expected number of elements touched by the reservoir sampling based estimation procedure for
µt is k+∑T

t=k+1
k
t = O(k log(T)), which is very small compared to the length of the stream,T, if k

is set to some small value, likeO(log(T)) as in our applications.

2.2 Self-concordant Functions and the Dikin Ellipsoid

In this section we give a few definition and properties of self-concordant barriers that we will cru-
cially need in the analysis. Our treatment of this subject follows Abernethy etal. (2008), who in-
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troduced self-concordant functions to online learning. Self-concordance in convex optimization is a
beautiful and deep topic, and we refer the reader to Nesterov and Nemirovskii (1994) and Ben-Tal
and Nemirovski (2001) for a thorough treatment on the subject.

Definition 1 A convex functionR (x) defined on the interior of the convex compact setK , and
having three continuous derivatives, is said to be aϑ-self-concordant barrier (whereϑ > 0 is the
self-concordance parameter) if the following conditions hold:

1. (Barrier property)R (xi)→∞ along every sequence of pointsxi in the interior ofK converg-
ing to a boundary point ofK .

2. (Differential properties)R satisfies

|∇3R (x)[h,h,h]| ≤ 2(h⊤[∇2R (x)]h)3/2,

|∇R (x)⊤h| ≤ ϑ1/2
[

h⊤∇2R (x)h]
]1/2

.

wherex is a point in the interior ofK , andh is an arbitrary vector inRn. Here,∇R (x),∇2R (x)
denote the Gradient and Hessian, respectively, ofR at pointx, and

∇3R (x)[h1,h2,h3] =
∂3

∂t1∂t2∂t3
R (x+ t1h1+ t2h2+ t3h3)

∣
∣
∣
∣
t1=t2=t3=0

Any n-dimensional closed convex set admits anO(n)-self-concordant barrier. However, such a
barrier may not necessarily be efficiently computable.

More concretely, the standard logarithmic barrier for a half-spaceu⊤x≤ b is given by

R (x) = − log(b−u⊤x),

and is 1-self-concordant. For polytopes defined bym halfspaces, the standard logarithmic barrier
(which is just the sum of all barriers for the defining half-spaces) has the self-concordance parameter
ϑ = m.

Definition 2 For a givenx ∈ K , and anyh ∈ R
n, define the norm induced by the Hessian, and its

dual norm, to be

‖h‖x :=
√

h⊤[∇2R (x)]h, and

‖h‖⋆x :=
√

h⊤[∇2R (x)]−1h.

Definition 3 TheDikin ellipsoidof radius r centered atx is the set

Wr(x) = {y ∈ R
n : ‖y−x‖x ≤ r}.

When a radius is unspecified, it is assumed to be1; so “the Dikin ellipsoid atx” refers to the Dikin
ellipsoid of radius1 centered atx.
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Definition 4 For any two distinct pointsx andy in the interior ofK , theMinkowsky functionπx(y)
onK is

πx(y) = inf{t ≥ 0 : x+ t−1(y−x) ∈K }.

The Minkowsky function measures the distance fromx to y as a portion of the total distance on the
ray fromx to the boundary ofK through the pointy, and henceπx(y) ∈ [0,1].

The following facts about the Dikin ellipsoid and self concordant barrierswill be used in the
sequel (we refer to Nemirovskii, 2004 for proofs):

1. W1(x) ⊆ K for any x ∈ K . This is crucial for most of our sampling steps (the “ellipsoidal
sampling”), since we sample from the Dikin ellipsoidW1(xt). SinceW1(xt) is contained in
K , the sampling procedure yields feasible points.

2. The lengths of the principal axes of the ellipsoidW1(x) are 2/
√

λi , whereλi , for i = 1,2, . . . ,n
are the eigenvalues of∇2R (x). Thus, the fact thatW1(x)⊆ K and thatK is contained in the
unit ball implies that 2/

√
λi ≤ 2 for all i, or in other words, 1/λi ≤ 1 for all i. This implies

that[∇2R (x)]−1≤ I , whereI is the identity matrix. Thus, we can relate the‖ · ‖⋆x norm to the
standardℓ2 norm‖ · ‖: for any vectorh,

‖h‖⋆x =
√

h⊤[∇2R (x)]−1h ≤
√

h⊤Ih = ‖h‖. (2)

3. In the interior of the Dikin ellipsoid atx, the Hessian ofR is “almost constant”: for any
h ∈ R

n such that‖h‖x < 1, we have

(1−‖h‖x)2∇2R (x) � ∇2R (x+h) � (1−‖h‖x)−2∇2R (x).

4. For anyϑ-self-concordant barrier onK , and for any two distinct pointsx andy in the interior
of K , it holds that (see Nemirovskii, 2004)

R (y)−R (x)≤ ϑ ln

(
1

1−πx(y)

)

. (3)

Definition 5 Let x◦ be the analytic center ofK with respect to the self-concordant barrierR , that
is, the point insideK in which∇R (x◦) = 0. For anyδ > 0, define the convex bodyKδ ⊆ K by

Kδ := {x|πx◦(x)≤ (1−δ)}.

The following properties holds forKδ :

Lemma 3 For anyx ∈K , there exists au ∈Kδ such that‖x−u‖ ≤ 2δ which satisfies

R (u)−R (x◦) ≤ ϑ ln
1
δ
.

Proof Let u = δx◦+(1−δ)x. Since

x = x◦+
‖x−x◦‖
‖u−x◦‖(u−x◦),
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andx ∈K , we have that

πx◦(u) ≤
‖u−x◦‖
‖x−x◦‖ =

‖(1−δ)(x−x◦)‖
‖x−x◦‖ = 1−δ,

which implies thatu ∈Kδ. Next, note that

‖x−u‖= ‖δ(x−x◦)‖ ≤ 2δ,

sinceK is contained in the unit ball.
Finally, sinceR is aϑ-self-concordant barrier, we have by (3)

R (u)−R (x◦) ≤ ϑ log
1

1−πx◦(u)
≤ ϑ log

1
1− (1−δ)

= ϑ ln
1
δ
.

3. The Main Theorem and Algorithm

Main result.Before describing the algorithm, let us state the main result of this paper formally.

Theorem 4 Let K be the underlying decision set in an online linear optimization instance, such
thatK admits an efficiently computableϑ-self-concordant barrier. Then there exists a polynomial
time algorithm for this online linear optimization problem (Algorithm 1 below coupledwith the
halving procedure of Section 5) whose expected regret is bounded asfollows. Let QT be the total
variation of a cost function sequence in the online linear optimization instance.Then

E[RegretT ] = O
(

n
√

ϑQT logT +nlog2T +nϑ log(T)
)

.

This theorem can be used with the well known logarithmic barrier to derive regret bounds for
the online-shortest-paths problem and other linearly constrained problems, and of course applicable
much more generally.

The non-stochastic multi-armed bandit problem.A case of particular interest, which has been
studied most extensively, is the “basic” multi-armed bandit (MAB) problem where in each iteration
the learner pulls the arm of one out ofn slot machines and obtains an associated reward, assumed
to be in the range[0,1]. The learner’s objective is to minimize his regret, that is, the difference
between his cumulative reward and that of the best fixed slot machine in hindsight.

This is a special case of the more general problem considered earlier and corresponds to taking
the convex setK to be then-dimensional simplex of probability distributions over the arms. Since
then-dimensional simplex admits a simplen-self-concordant barrier, an immediate corollary of our
main theorem is:

Corollary 5 There exists an efficient algorithm for the multi-armed-bandit problem whose expected
regret is bounded by

E[RegretT ] = O
(

n2
√

QT log(T)+n1.5 log2(T)+n2.5 log(T)
)

.

The additional factor of
√

n factor is because our results assume that‖ft‖ ≤ 1, and so we need to
scale the costs down by

√
n to apply our bounds. In comparison, the best previously known bounds

for this problem isO(
√

nT) (Audibert and Bubeck, 2010). Even though our bound is worse in the
dependence onn, the dependence on the parameter which grows, viz.T, is much better.
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3.1 Overview of the Algorithm

The underlying scheme of our algorithm follows the recent approach of Abernethy et al. (2008),
who use the Follow-The-Regularized-Leader (FTRL) methodology with self concordant barrier
functions as a regularization (see also exposition in Hazan and Kale 2008). At the top level, at
every iteration this algorithm simply chooses the point that would have minimized thetotal cost so
far, including an additional regularization cost functionR (x), that is, we predict with the point

xt = argmin
K

[

η
t−1

∑
τ=1

f̃⊤τ (x)+R (x)

]

,

whereη is a learning rate parameter.
Here, f̃t is an estimator for the vectorft , which is carefully constructed to have low variance.

In the full-information setting, when we can simply setf̃t = ft , such an algorithm can be shown to
achieve low regret (see exposition in Abernethy et al., 2008 and references therein). In the bandit
setting, a variety of “one-point-gradient-estimators” are used (Flaxman etal., 2005; Abernethy et al.,
2008) which produce an unbiased estimatorf̃t of ft by evaluatingft at just one point.

In order to obtain variation based bounds on the regret, we modify the unbiased estimators of
previous approaches by incorporating our experience with previous cost vector as a “prior belief” on
the upcoming cost vector. Essentially, we produce an unbiased estimator ofthedifference between
the average cost vector in the past and the current cost vector.

This brings out the issue that the past cost vectors are unfortunately also unknown. However,
since we had many opportunities to learn about the past and it is an aggregate of many functions,
our knowledge about the past cumulative cost vector is much better than theknowledge of any one
cost vector in particular. We denote by ˜µt our estimator of1t ∑t

τ=1 fτ. The straightforward way of
maintaining this estimator would be to average all previous estimatorsf̃t . However, this estimator is
far from being sufficiently accurate for our purposes.

Instead, we use the reservoir sampling idea of Section 2.1 to construct this ˜µt . For each coor-
dinatei ∈ [n], we maintain a reservoir of sizek, Si,1,Si,2, . . . ,Si,k. The estimator forµt(i) is then
µ̃t(i) =

1
k ∑k

j=1Si, j . The firstnk rounds we devote to initialize these reservoirs with samples from the
stream. This increases the overall regret of our algorithm by a constantof nk.

Our current approach is to use separate exploration steps in order to constructµ̃t . While it is
conceivable that there are more efficient methods of integrating exploration and exploitation, as
done by the algorithm in the other iterations, reservoir sampling turns out to beextremely efficient
and incurs only a logarithmic penalty in regret.

The general scheme is given in Algorithm 1. It is composed of exploration steps, called SIM -
PLEXSAMPLE steps, and exploration-exploitation steps, called ELLIPSOIDSAMPLE steps. Note that
we use the notationyt for the actual point inK chosen by the algorithm in either of these steps.

It remains to precisely state the SIMPLEXSAMPLE and ELLIPSOIDSAMPLE procedures. The
SIMPLEXSAMPLE procedure is the simpler of the two. It essentially performs reservoir sampling
on all the coordinates with a reservoir of sizek. The initial nk time iterations are used to initialize
this reservoir to have correct expectation (i.e., in these iterations we sample with probability one
and fill all bucketsSi j ), and incur an additional additive regret of at mostnk.

Now, the SIMPLEXSAMPLE procedure is invoked with probabilitynk
t for any time periodt > nk.

Once invoked, it samples a coordinateit ∈ [n] with the uniform distribution. The pointyt chosen

1295



HAZAN AND KALE

Algorithm 1 Bandit Online Linear Optimization
1: Input: η > 0, ϑ-self-concordantR , reservoir size parameterk
2: Initialization: for all i ∈ [n], j ∈ [k], setSi, j = 0. Setx1 = argminx∈K [R (x)] andµ̃0 = 0. Let

π : {1,2. . . ,nk}→ {1,2, . . . ,nk} be a random permutation.
3: for t = 1 toT do
4: Setr = 1 with probability min

{
nk
t ,1

}
, and 0 with probability 1−min

{
nk
t ,1

}
.

5: if r = 1 then
6: // SIMPLEXSAMPLE step
7: if t ≤ nk then
8: Setit = (π(t) modn)+1.
9: else

10: Setit uniformly at random from{1,2, . . . ,n}.
11: end if
12: Setµ̃t ← SIMPLEXSAMPLE(it).
13: Setf̃t = 0.
14: else
15: // ELLIPSOIDSAMPLE step
16: Setµ̃t = µ̃t−1.
17: Setf̃t ← ELLIPSOIDSAMPLE(xt , µ̃t).
18: end if

19: Updatext+1 = argminx∈K

[

η
t

∑
τ=1

f̃⊤τ x+R (x)

]

︸ ︷︷ ︸

Φt(x)

20: end for

by the algorithm is the corresponding vertexγeit of the (γ-scaled)n-dimensional simplex (which is
assumed to be contained inside ofK ) to obtain the coordinateft(it) as the cost.

It then chooses one of the samplesSit ,1,Sit ,2, . . . ,Sit ,k uniformly at random and replaces it with
the valueft(it), and updates ˜µt . This exactly implements the reservoir sampling for each coordinate,
and detailed in Algorithm 2.

As for the ELLIPSOIDSAMPLE procedure, it is a modification of the sampling procedure of
Abernethy et al. (2008). The pointyt chosen by the algorithm is uniformly at random chosen from
the endpoints of the principal axes of the Dikin ellipsoidW1(xt) centered atxt . The analysis of
Abernethy et al. (2008) already does the hard work of making certain that the ellipsoidal sampling
is unbiased and has low variation with respect to the regularization. However, to take advantage
of the low variation in the data, we incorporate the previous information in the form of µ̃. This
modification seems to be applicable more generally, not only to the algorithm of Abernethy et al.
(2008). However, plugged into this recent algorithm we obtain the best possible regret bounds and
also an efficient algorithm.

Before we proceed with the analysis, let us make a small formal claim that ourestimates ofµt
are unbiased fort ≥ nk:
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Algorithm 2 SIMPLEXSAMPLE(it)
1: Predictyt = γeit , that is, theit-th standard basis vector scaled byγ.
2: Observe the costf⊤t yt = ft(it).
3: if some bucket forit is emptythen
4: Set j to the index of the empty bucket.
5: else
6: Set j uniformly at random from{1, . . . ,k}.
7: end if
8: Update the sampleSit , j =

1
γ ft(it).

9: if t < nk then
10: Returnµ̃t = 0.
11: else
12: Returnµ̃t defined as:∀i ∈ {1,2, . . . ,n}, setµ̃t(i) := 1

k ∑k
j=1Si, j .

13: end if

Algorithm 3 ELLIPSOIDSAMPLE(xt , µ̃t)

1: Let {v1, . . . ,vn} and {λ1, . . . ,λn} be the set of orthogonal eigenvectors and eigenvalues of
∇2R (xt).

2: Chooseit uniformly at random from{1, . . . ,n} andεt =±1 with probability 1/2.

3: Predictyt = xt + εtλ
−1/2
it vit .

4: Observe the costf⊤t yt .
5: Returnf̃t defined as:

f̃t = µ̃t + g̃t

Whereg̃t := n
(
f⊤t yt − µ̃⊤t yt

)
εtλ

1/2
it vit .

Claim 1 For all t ≥ nk, and for all i= 1,2, . . . ,n, the reservoir for i, Si = {Si,1,Si,2, . . . ,Si,k} is a
random subset of size k chosen without replacement from{f1(i), f2(i), . . . , ft(i)}. Hence, we have
E[µ̃t ] = µt .

Proof For t = nk the claim follows because the choice of the random permutationπ ensures that
the set of times{t : (π(t) modn)+1= i} is a random subset of sizek chosen without replacement
from {1,2, . . . ,nk}.

For t > nk the claim follows from the properties of reservoir sampling, as we show now. This
is because SIMPLEXSAMPLE simulates reservoir sampling. We just showed that at timet = nk, the
claim is true. Then, at timet = nk+1 and onwards, reservoir sampling performs select-and-replace
with probability k

t (i.e., it selectsft(i) with probability k
t and replaces a random element of the pre-

vious Si with it). The algorithm does exactly the same thing: SIMPLEXSAMPLE is invoked with
probability nk

t , and with probability1
n, we haveit = i. Thus, the overall probability of sample-and-

replace isk
t , exactly as in reservoir sampling.
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4. Analysis

In this section, we prove a regret bound, in a slightly easier setting where we know an upper bound
Q on the total variationQT . The main theorem proved here is the following:

Theorem 6 Let Q be an estimated upper bound on QT . Suppose that Algorithm 1 is run with

η = min
{√

logT
n2Q , 1

25n

}

and k= log(T). Then, if QT ≤Q, the expected regret is bounded as follows:

E[RegretT ] = O
(

n
√

ϑQlogT +nlog2(T)+nϑ log(T)
)

.

Although this bound requires an estimate of the total variation, we show in the Section 5 how to
remove this dependence, thereby proving Theorem 4. In this section we sketch the simpler proof of
Theorem 6 and give precise proofs of the main lemmas involved.
Proof For clarity, we present the proof as a series of lemmas whose complete proofs appear after
this current proof.

We first relate the expected regret of Algorithm 1 which plays the pointsyt , for t = 1,2, . . . with
theft cost vectors to the expected regret of another algorithm that plays the pointsxt with the f̃t cost
vectors.

Lemma 7 For anyu ∈K ,

E

[
T

∑
t=1

f⊤t (yt −u)

]

≤ E

[
T

∑
t=1

f̃⊤t (xt −u)

]

+2nlog2(T).

Intuitively, this bound holds since in every ELLIPSOIDSAMPLE step, the expectation off̃t andyt

(conditioned on all previous randomization) areft andxt respectively, the expected costs for both
algorithms is the same in such rounds. In the SIMPLEXSAMPLE steps, we havẽft = 0 and we can
bound|f⊤t (yt−u)| by 2. The expected number of such steps isO(nklog(T)) = O(nlog2(T)), which
yields the extra additive term.

We therefore turn to bounding∑T
t=1 f̃⊤t (xt −u). For this, we apply standard techniques (origi-

nally due to Kalai and Vempala 2005) which bounds the regret of any follow-the-leader type algo-
rithm by terms which depend on the stability of the algorithm, measured by how close the successive
predictionsxt andxt+1 are:

Lemma 8 For any sequence of cost vectorsf̃1, . . . , f̃T ∈ R
n, the FTRL algorithm with aϑ-self con-

cordant barrierR has the following regret guarantee: for anyu ∈K , we have

T

∑
t=1

f̃⊤t (xt −u) ≤
T

∑
t=1

f̃⊤t (xt −xt+1)+
2
η

ϑ logT.

We now turn to bounding the term̃f⊤t (xt−xt+1). The following main lemma gives such bounds,
and forms the main part of the theorem. We go into detail of its proof in the next section, as it
contains the main new ideas.

Lemma 9 Let t be anELLIPSOIDSAMPLE step. Then we have

f̃⊤t (xt −xt+1) ≤ 64ηn2‖ft −µt‖2+64ηn2‖µt − µ̃t‖2+2µ⊤t (xt −xt+1). (4)
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A similar but much easier statement can be made for SIMPLEXSAMPLE steps. Trivially, since we
setf̃t = 0 in such steps, we havext = xt+1. Thus, we have

f̃⊤t (xt −xt+1) = 0 = 2µ⊤t (xt −xt+1).

By adding the non-negative term 64ηn2‖ft −µt‖2, we get that for any SIMPLEXSAMPLE stept, we
have

f̃⊤t (xt −xt+1) ≤ 64ηn2‖ft −µt‖2+2µ⊤t (xt −xt+1). (5)

Let TE be the set of all ELLIPSOIDSAMPLE stepst. Summing up either (4) or (5), as the case may
be, over all time periodst we get

T

∑
t=1

f̃⊤t (xt −xt+1) ≤ 64ηn2
T

∑
t=1

‖ft −µt‖2+64ηn2 ∑
t∈TE

‖µt − µ̃t‖2+2
T

∑
t=1

µt(xt −xt+1) (6)

We bound each term of the inequality (6) above separately. The first termcan be easily bounded by
the total variation, even though it is the sum of squared deviations from changing means. Essentially,
the means don’t change very much as time goes on.

Lemma 10 ∑T
t=1‖ft −µt‖2 ≤ QT .

The second term, in expectation, is just the variance of the estimators ˜µt of µt , which can be
bounded in terms of the size of the reservoir and the total variation (see Lemma2).

Lemma 11 E
[

∑t∈TE
‖µt − µ̃t‖2

]
≤ logT

k QT .

The third term can be bounded by the sum of successive differences of the means, which, in
turn, can be bounded the logarithm of the total variation.

Lemma 12 ∑T
t=1µ⊤t (xt −xt+1) ≤ 2log(QT +1)+4.

Let Q≥QT be a given upper bound. Plugging the bounds from Lemmas 10, 11, and 12 into (6),
and using the valuek= log(T), we obtain

T

∑
t=1

f⊤t (xt −xt+1) ≤ 128ηn2Q+4log(QT +1)+8.

where we will chooseη≥ log(QT+1)
8n2Q so that log(QT +1)≤ 8ηn2Q. Hence, via Lemmas 8 and 7, we

have for anyu ∈K ,

E

[
T

∑
t=1

f⊤t (yt −u)

]

≤ 128ηn2Q+
2ϑ
η

logT +2nlog2(T)+4log(QT +1)+8.

Now, choosingη = min
{√

ϑ log(T)
n2Q , 1

25n

}

, for the upper boundQ≥ QT , and we get the following

regret bound:

E

[
T

∑
t=1

f⊤t (yt −u)

]

≤ O
(

n
√

ϑQlogT +nϑ log(T)+nlog2(T)
)

.

Here, we absorb the lower order terms 4log(QT +1)+8 in the other terms using theO(·) notation.
The restriction thatη≤ 1

25n arises from the proof of Lemma 13 below.
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4.1 Proof of Main Lemmas

Proof [Lemma 7]
Let t be an ELLIPSOIDSAMPLE step. We first show thatE[f̃t ] = ft . We condition on all the random-
ness prior to this step, thus, ˜µt is fixed. In the following,Et denotes this conditional expectation.
Now, condition on the choiceit and average over the choice ofεt :

Et [g̃t |it ] = ∑
εt∈{1,−1}

1
2

n
(

(ft − µ̃t)
⊤(xt + εtλ

−1/2
it vit )

)

λ1/2
it εtvit = n((ft− µ̃t)

⊤vit )vit .

Hence,

Et [g̃t ] =
n

∑
i=1

1
n
·n((ft− µ̃t)

⊤vi)vi = ft − µ̃t ,

since thevi form an orthonormal basis. Thus,Et [f̃t ] = Et [g̃t ]+ µ̃t = ft .
Furthermore, it is easy to see thatEt [yt ] = xt , sinceyt is drawn from a symmetric distribution

centered atxt (namely, the uniform distribution on the endpoints of the principal axes of theDikin
ellipsoid centered atxt). Thus, we conclude that

Et [f⊤t (yt −u)] = f⊤t (xt −u) = Et [f̃⊤t (xt −u)],

and hence, taking expectation over all the randomness, we have

E[f⊤t (yt −u)] = E[f̃⊤t (xt −u)].

Now, let t be a SIMPLEXSAMPLE step or alternativelyt ≤ nk. In this case, we have|f⊤t (yt −
u)‖ ≤ ‖ft‖‖yt −u‖ ≤ 2, andf̃⊤t (xt −u) = 0 sincẽft = 0. Thus,

E[f⊤t (yt −u)] ≤ E[f̃⊤t (xt −u)]+2.

Overall, if X is the number of SIMPLEXSAMPLE sampling steps or initialization steps, we have

E[f⊤t (yt −u)] ≤ Et [f̃⊤t (xt −u)]+2E[X].

Finally, using the fact thatE[X] = nk+∑T
t=nk+1

nk
t ≤ nk(log(T)+1)≤ 2nlog2(T), the proof is com-

plete.

Proof [Lemma 8]
By Lemma 15 (see Section 4.2) applied to the sequence{xt} as defined in (19), for anyu ∈K

T

∑
t=1

f̃⊤t (xt −u) ≤
T

∑
t=1

f̃⊤t (xt −xt+1)+
1
η
[R (u)−R (x1)].
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By Lemma 3, there exists a vectoru1 ∈Kδ ⊆K for δ = 1
T , such that‖u1−u‖ ≤ 2

T and in addition,
R (u1)−R (x1)≤ ϑ log(T). Hence,

T

∑
t=1

f̃⊤t (xt −u) ≤
T

∑
t=1

f̃⊤t (xt −u1) +
T

∑
t=1

f̃⊤t (u1−u)

≤
T

∑
t=1

f̃⊤t (xt −xt+1)+
1
η
[R (u1)−R (x1)]+

T

∑
t=1

‖ft‖‖u1−u‖

≤
T

∑
t=1

f̃⊤t (xt −xt+1)+
ϑ
η

logT +
T

∑
t=1

2
T

≤
T

∑
t=1

f̃⊤t (xt −xt+1)+
2ϑ
η

logT.

In the last step, we upper bound∑T
t=1

2
T ≤ ϑ

η logT, which is valid forη < 1/4, say.

Now we turn to proving Lemma 9. We first develop some machinery to assist us.Lemmas 13
and 14 are essentially generalizations of similar lemmas from Abernethy et al. (2008) to the case in
which we have both sampling and ellipsoidal steps.

Lemma 13 For any time period t≥ nk, the next minimizerxt+1 is “close” to xt :

xt+1 ∈W1
2
(xt).

Proof If t is a SIMPLEXSAMPLE step, thenxt = xt+1 and the lemma is trivial. So assume thatt is
an ELLIPSOIDSAMPLE step. Now, recall that

xt+1 = argmin
x∈K

Φt(x) and xt = argmin
x∈K

Φt−1(x),

whereΦt(x) = η∑t
s=1 f̃⊤t x+R (x). Since the barrier functionR goes to infinity as we get close to

the boundary, the pointsxt andxt+1 are both in the interior ofK . We now show that all points on
the boundary ofW1

2
(xt) have higherΦt value thanΦt(xt), and sincext+1 is the minimizer of the

strictly convex functionΦt , we conclude thatxt+1 must lie in the interior ofW1
2
(xt).

First, note that sincext is in the interior ofK , the first order optimality condition gives∇Φt−1(xt)=
0, and we conclude that∇Φt(xt) = ηf̃t . Now consider any point inz on the boundary ofW1

2
(xt),

that is,y = xt +h for some vectorh such that‖h‖xt =
1
2. Using the multi-variate Taylor expansion,

we get

Φt(y) = Φt(xt +h) = Φt(xt)+∇Φt(xt)
⊤h+

1
2

h⊤∇2Φt(ξ)h = Φt(xt)+ηf̃⊤t h+
1
2

h⊤∇2Φt(ξ)h
(7)

for someξ on the line segment betweenxt andxt +h. This latter fact also implies that‖ξ−xt‖xt ≤
‖h‖xt ≤ 1

2. Hence, by (3),

∇2R (ξ) � (1−‖ξ−xt‖xt )
2∇2R (xt) �

1
4

∇2R (xt).
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Thush⊤∇2R (ξ)h ≥ 1
4‖h‖xt =

1
8. Next, we bound|f̃⊤t h| as follows:

|f̃⊤t h| ≤ ‖f̃t‖⋆xt
‖h‖xt ≤

1
2
‖f̃t‖⋆xt

.

Claim 2 ‖f̃t‖⋆xt
≤ 3n.

Proof We havẽft = µ̃t + g̃t , whereg̃t = n
(
(ft − µ̃t)

⊤yt
)

εtλ
1/2
it vit . We have

‖g̃t‖⋆2
xt
=
[

n
(

(ft − µ̃t)
⊤yt

)

εtλ
1/2
it vit

]⊤
[∇2R (xt)]

−1
[

n
(

(ft − µ̃t)
⊤yt

)

εtλ
1/2
it vit

]

= n2
(

(ft − µ̃t)
⊤yt

)2
,

sincev⊤it [∇
2R (xt)]

−1vit = 1/λit . Hence,

‖f̃t‖⋆xt
≤ ‖µ̃t‖⋆xt

+‖g̃t‖⋆xt
≤ ‖µ̃t‖+n|(ft− µ̃t)

⊤yt | ≤ 3n,

since‖µ̃t‖⋆xt
≤ ‖µ̃t‖ ≤ 1. We also used the facts that‖yt‖ ≤ 1 and‖ft − µ̃t‖ ≤ 2.

Hence, from (7) we get

Φt(y) ≥ Φt(xt)−η · 3n
2
+

1
16

> Φt(xt),

sinceη ≤ 1
25n. This concludes the proof that all boundary points ofW1

2
(xt) have higherΦt value

thanΦt(xt).

Lemma 14 For any time period t≥ nk, we have

‖xt −xt+1‖2xt
≤ 4ηf̃⊤t (xt −xt+1).

Proof Applying the Taylor series expansion to the functionΦt around the pointxt , we get that for
some pointzt on the line segment joiningxt to xt+1, we have

Φt(xt) = Φt(xt+1)+∇Φt(xt+1)
⊤(xt−xt+1)+(xt+1−xt)

⊤∇2Φt(zt)(xt+1−xt) = Φt(xt+1)+‖xt+1−xt‖2zt
,

because∇Φt(xt+1) = 0 sincext+1, the minimizer ofΦt , is in the interior ofK . We also used the
fact that∇2Φt(zt) = ∇2R (zt). Thus, we have

‖xt+1−xt‖2zt
= Φt(xt)−Φt(xt+1) = Φt−1(xt)−Φt−1(xt+1)+ηf̃⊤t (xt−xt+1) ≤ ηf̃⊤t (xt−xt+1),

sincext is the minimizer ofΦt−1 in K . It remains to show that14‖xt+1−xt‖2xt
≤ ‖xt+1−xt‖2zt

, for
which it suffices to show1

4∇2R (xt)� ∇2R (zt).
By Lemma 13 we havext+1 ∈W1/2(xt), and hencezt ∈W1/2(xt) (sincezt is on the line segment

betweenxt andxt+1). Therefore, using (3) we have14∇2R (xt)� ∇2R (zt) as required.
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Proof [Lemma 9]
First, we have

(f̃t −µt)
⊤(xt −xt+1) ≤ ‖f̃t −µt‖⋆xt

· ‖xt −xt+1‖xt (by (1))

≤ ‖f̃t −µt‖⋆xt
·
√

4ηf̃⊤t (xt −xt+1) (Lemma 14)

≤ 2η‖f̃t −µt‖⋆2
xt
+

1
2

f̃⊤t (xt −xt+1).

The last inequality follows using the fact thatab≤ 1
2(a

2+b2) for real numbersa,b. Simplifying,
we get that

f̃⊤t (xt −xt+1) ≤ 4η‖f̃t −µt‖⋆2
xt
+2µ⊤t (xt −xt+1)

≤ 8η
(
‖f̃t − µ̃t‖⋆2

xt
+‖µt − µ̃t‖⋆2

xt

)
+2µ⊤t (xt −xt+1)

≤ 32η
(
‖g̃t‖⋆2

xt
+‖µt − µ̃t‖2

)
+2µ⊤t (xt −xt+1).

The last inequality is because‖ · ‖⋆x ≤ 2‖ · ‖ from (2) and the assumption thatK is contained inside
the unit ball.

Using the definition of̃gt from Algorithm 3, we get that

‖g̃t‖⋆2
xt

= n2
(

(ft − µ̃t)
⊤yt

)2
λit ·

(

v⊤it [∇
2R (xt)]

−1vit

)

= n2
(

(ft − µ̃t)
⊤yt

)2

≤ n2‖ft − µ̃t‖2

≤ 2n2[‖ft −µt‖2+‖µt − µ̃t‖2].

The first inequality follows by applying Cauchy-Schwarz and using the fact that‖yt‖ ≤ 1. Plugging
this bound into the previous bound we conclude that

f̃⊤t (xt −xt+1) ≤ 64ηn2‖ft −µt‖2+64ηn2‖µt − µ̃t‖2+2µ⊤t (xt −xt+1).

Proof [Lemma 10]

Recall thatµt = argminµ∑t
τ=1‖fτ−µ‖2. As a first step, we show that

T

∑
τ=1

‖ft −µt‖2 ≤
T

∑
τ=1

‖ft −µT‖2.
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This is proved by induction ont. For T = 1 the inequality is trivial; we actually have equality.
Assume correctness for someT−1. Moving toT, we have

T

∑
t=1

‖ft −µt‖2 =
T−1

∑
t=1

‖ft −µt‖2+‖fT −µT‖2

≤
T−1

∑
t=1

‖ft −µT−1‖2+‖fT −µT‖2 (By inductive hypothesis)

≤
T−1

∑
t=1

‖ft −µT‖2+‖fT −µT‖2 (µT−1 = argminx ∑T−1
t=1 ‖ft −x‖2)

=
T

∑
t=1

‖ft −µT‖2.

Hence,
T

∑
τ=1

‖ft −µt‖2 ≤
T

∑
τ=1

‖ft −µ‖2 = QT .

Proof [Lemma 11]
Any ELLIPSOIDSAMPLE stept must havet ≥ nk, so by Claim 1 the algorithm exactly implements
reservoir sampling with a reservoir of sizek for each of then coordinates.

Now, for any coordinatei, µ̃t(i) is the average of ak samples chosenwithoutreplacement from
Ft . Thus, we haveE[µ̃t(i)] = µt(i), and henceE[(µ̃t(i)−µt(i))

2] = VAR[µ̃t(i)].
Now consider another estimatorνt(i), which averagesk samples chosenwith replacement from

Ft . It is a well-known statistical fact (see, e.g., Rice, 2001) that VAR[µ̃t(i)]≤ VAR[νt(i)]. Thus, we
bound VAR[νt(i)] instead.

Supposet > nk. Let µ= 1
T ∑T

t=1 ft . SinceE[νt(i)] = µt(i), we have

VAR[νt(i)] = E[(νt(i)−µt(i))
2] ≤ E[(νt(i)−µ(i))2]

=
1
k

t

∑
τ=1

1
t
(fτ(i)−µ(i))2

Summing up over all coordinatesi, we get

E[‖µ̃t −µt‖2] ≤ ∑
i

VAR[νt(i)] ≤
1
kt

Qt ≤
1
kt

QT .

Summing up over all ELLIPSOIDSAMPLE stepst, we get

E

[

∑
t∈TE

‖µ̃t −µt‖2
]

≤ ∑
t∈TE

1
kt

QT ≤
log(T)

k
QT .
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Proof [Lemma 12]
We have

T

∑
t=1

µ⊤t (xt −xt+1) =
T

∑
t=1

xt+1(µt+1−µt)+µ1x1−xT+1µT+1.

Thus, since‖xt‖ ≤ 1 and‖µt‖ ≤ 1, we have

T

∑
t=1

µ⊤t (xt −xt+1) ≤
T

∑
t=2

‖µt+1−µt‖+4.

To proceed, we appeal to Lemma 16 (see Section 4.2), and apply it forxt := ‖ft − µt‖. Let
µ= 1

T ∑T
t=1 ft . Arguing as in Lemma 10, we have

∑
t

x2
t =

T

∑
t=1

‖ft −µt‖2 ≤
T

∑
t=1

‖ft −µ‖2 ≤ QT .

Notice that

µt −µt−1 =
1
t

t

∑
τ=1

fτ−
1

t−1

t−1

∑
τ=1

fτ =
1
t
ft +(

1
t
− 1

t−1
)

t−1

∑
τ=1

fτ =
1
t
(ft −µt−1).

Hence,

‖µt −µt−1‖ =
1
t
‖ft −µt−1‖ ≤

1
t
xt +

1
t
‖µt −µt−1‖,

from which we conclude that for allt ≥ 2 we have‖µt −µt−1‖ ≤ t−1

1−t−1 xt ≤ ∑t
2
t xt . Now, we apply

Lemma 16 to conclude that

T

∑
t=2

‖µt+1−µt‖+4 ≤ 2log(QT +1)+4.

4.2 Auxiliary Lemmas

In this section, we give a number of auxiliary lemmas that are independent ofthe analysis of the
algorithm. These lemmas give useful bounds that are used in the main analysis.

The first lemma gives a general regret bound for any follow-the-regularized-leader style algo-
rithm. The proof of this bound is essentially due to Kalai and Vempala (2005).

Lemma 15 Consider an online linear optimization instance over a convex setK , with a regular-
ization functionR and a sequence{xt} defined by

xt = argmin
x∈K

{
t−1

∑
τ=1

f⊤τ x+R (x)

}

.

For everyu ∈K , the sequence{xt} satisfies the following regret guarantee

T

∑
t=1

fTt (xt −u) ≤
T

∑
t=1

fTt (xt −xt+1)+
1
η
[R (u)−R (x1)].
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Proof For convenience, denote byf0 =
1
ηR , and assume we start the algorithm fromt = 0 with an

arbitraryx0. The lemma is now proved by induction onT.
In the base case, forT = 1, by definition we have thatx1 = argminx{R (x)}, and thusf0(x1)≤

f0(u) for all u, thusf0(x0)− f0(u)≤ f0(x0)− f0(x1).
Now assume that that for someT ≥ 1, we have

T

∑
t=0

ft(xt)− ft(u) ≤
T

∑
t=0

ft(xt)− ft(xt+1).

We now prove the claimed inequality forT +1. SincexT+2 = argminx{∑T+1
t=0 ft(x)} we have:

T+1

∑
t=0

ft(xt)−
T+1

∑
t=0

ft(u) ≤
T+1

∑
t=0

ft(xt)−
T+1

∑
t=0

ft(xT+2)

=
T

∑
t=0

(ft(xt)− ft(xT+2))+ fT+1(xT+1)− fT+1(xT+2)

≤
T

∑
t=0

(ft(xt)− ft(xt+1))+ fT+1(xT+1)− fT+1(xT+2)

=
T+1

∑
t=0

ft(xt)− ft(xt+1).

In the third line we used the induction hypothesis foru = xT+2. We conclude that

T

∑
t=1

ft(xt)− ft(u) ≤
T

∑
t=1

ft(xt)− ft(xt+1)+ [−f0(x0)+ f0(u)+ f0(x0)− f0(x1)]

=
T

∑
t=1

ft(xt)− ft(xt+1)+
1
η
[R (u)−R (x1)] .

Lemma 16 Suppose we have real numbers x1,x2, . . . ,xT such that0≤ xt ≤ 1 and∑t x2
t ≤Q. Then

T

∑
t=1

1
t
xt ≤ log(Q+1)+1.

Proof By Lemma 17 below, the values ofxt that maximize∑T
t=1

1
t xt must have the following

structure: there is ak such that for allt ≤ k, we havext = 1, and for any indext > k, we have
xk+1/xt ≥ 1

k/
1
t , which implies thatxt ≤ k/t. We first note thatk≤Q, sinceQ≥ ∑k

t=1x2
t = k. Now,

we can bound the value as follows:

T

∑
t=1

1
t
xt ≤

k

∑
t=1

1
t
+

T

∑
t=k+1

k
t2 ≤ log(k+1)+k · 1

k
≤ log(Q+1)+1.
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Lemma 17 Let a1≥ a2≥ . . .aT > 0. Then the optimal solution of

max∑
i

aixi subject to

∀i : 0≤ xi ≤ 1

∑
i

x2
i ≤Q

has the following properties: x1 ≥ x2 ≥ . . .xT , and for any pair of indices i, j, with i < j, either
xi = 1, xi = 0 or xi/x j ≥ ai/a j .

Proof The fact that in the optimal solutionx1 ≥ x2 ≥ . . .xT is obvious, since otherwise we could
permute thexi ’s to be in decreasing order and increase the value.

The second fact follows by the Karush-Kuhn-Tucker (KKT) optimality conditions, which imply
the existence of constantsµ,λ1, . . . ,λT ,ρ1, . . . ,ρT for which the optimal solution satisfies

∀i : −ai +2µxi +λi +ρi = 0.

Furthermore, the complementary slackness condition says that the constantsλi ,ρi are equal to zero
for all indices of the solution which satisfyxi /∈ {0,1}. For suchxi , the KKT equation is

−ai +2µxi = 0,

which implies the lemma.

5. Tuning the Learning Rate: Proof of Theorem 4

Theorem 6 requiresa priori knowledge of a good boundQ on the total quadratic variationQT . This
may not be possible in many situations. Typically, in online learning scenarios where a regret bound
of O(

√
AT) for some quantityAT which grows withT is desired, one first gives an online learning

algorithmL(η) whereη≤ 1 is a learning rate parameter which obtains a regret bound of

RegretT ≤ ηAT +O(1/η).

Then, we can obtain a master online learning algorithm whose regret growslike O(
√

AT) as follows.
We start withη = 1, and run the learning algorithmL(η). Then, the master algorithm tracks how
AT grows withT. As soon asAT quadruples, the algorithm resetsη to half its current value, and
restarts withL(η). This simple trick can be shown to obtainO(

√
AT) regret.

Unfortunately, this trick doesn’t work in our case, whereAT = QT , since we cannot even com-
pute QT accurately in the bandit setting. For this reason, obtaining a regret boundof Õ(

√
QT)

becomes quite non-trivial. In this section, we give a method to obtain such a regret bound. At its
heart, we still make use of theη-halving trick, but in a subtle way. We assume that we know a good
bound on log(T) in advance. This is not a serious restriction, it can be circumvented by standard
tricks, but we make this assumption in order to simplify the exposition.

We design our master algorithm in the following way. LetL(η) be Algorithm 1 with the given
parameterη andk = log(T). We initialize η0 = 1

25n. The master algorithm then runs in phases
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indexed byi = 0,1,2, . . .. In phasei, the algorithm runsL(ηi) whereηi = η0/2i . The decision to
end a phasei and start phasei +1 is taken in the following manner: letti be first period of phasei,
and lett be the current period. We start phasei+1 as soon as

t

∑
τ=ti

f̃⊤τ (xτ−xτ+1) ≥
2
ηi

ϑ log(T).

Thus, phasei ends at time periodt − 1, and the pointxt computed byL(ηi) is discarded by the
master algorithm sinceL(ηi+1) starts at this point andxt is reset to the initial point ofL(ηi+1).
Note that this sum can be computed by the algorithm, and hence the algorithm is well-defined. This
completes the description of the master algorithm.

5.1 Analysis

DefineIi = {ti , ti +1, . . . , ti+1−1}, that is, the interval of time periods which constitute phasei.
By Lemma 8, for anyu ∈K , we have

∑
t∈Ii

f̃⊤t (xt −u) ≤ ∑
t∈Ii

f̃⊤t (xt −xt+1)+
2
ηi

ϑ log(T) ≤ 4
ηi

ϑ log(T).

Note that this inequality uses the fact that the sum∑t
τ=ti f̃

⊤
τ (xτ−xτ+1) is a monotonically increasing

ast increases, since by Lemma 14, we have thatf̃⊤t (xt −xt+1)≥ 0.
Let i⋆ be the index of the final phase. Summing up this bound over all phases, we have

T

∑
t=1

f̃⊤t (xt −u) ≤
i⋆

∑
i=0

4
ηi

ϑ log(T) ≤ 8
ηi⋆

ϑ log(T).

Then, using Lemma 7 we get that the expected regret of this algorithm is bounded by

E

[
T

∑
t=1

f⊤t (yt −u)

]

≤ E
[

1
ηi⋆

]

· (8ϑ log(T))+O(nlog2(T)). (8)

We now need to boundE
[

1
ηi⋆

]

. If the choice of the randomness in the algorithm is such thati⋆ = 0,

then 1
ηi⋆
≤ 25n is an upper bound.

Otherwise,i⋆ > 0, and so the phasei⋆−1 is well-defined. For brevity, letJ = Ii⋆−1∪ {ti⋆},
and letJE be the ELLIPSOIDSAMPLE steps inJ. For this interval, we have (here,xti⋆ is the point
computed byL(ηi⋆−1), which is discarded by the master algorithm when phasei⋆ starts):

∑
t∈J

f̃⊤t (xt −xt+1) ≥
2

ηi⋆−1
ϑ log(T) =

1
ηi⋆

ϑ log(T).

Applying the bound (6), and using the fact thatηi⋆−1 = 2ηi⋆ , we get

∑
t∈J

f̃⊤t (xt −xt+1) ≤ 128ηi⋆n
2 ∑

t∈J

‖ft −µt‖2+128ηi⋆n
2 ∑

t∈JE

‖µt − µ̃t‖2+2∑
t∈J

µ⊤t (xt −xt+1).

Putting these together, and dividing byηi⋆ , we get

1

η2
i⋆

ϑ log(T) ≤ 128n2 ∑
t∈J

‖ft −µt‖2+128n2 ∑
t∈JE

‖µt − µ̃t‖2+
2

ηi⋆
∑
t∈J

µ⊤t (xt −xt+1). (9)
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Lemmas 10 and 12 give us the following upper bounds:

∑
t∈J

‖ft −µt‖2 ≤ QT and ∑
t∈J

µ⊤t (xt −xt+1) ≤ 2log(QT +1)+4.

Denote the expectation of a random variable conditioned on all the randomness before phasei⋆−1
by Ei⋆−1. By Lemma 11 we have the bound

Ei⋆−1

[

∑
t∈JE

‖µt − µ̃t‖2
]

≤ log(T)
k

QT .

Taking the expectation conditioned on all the randomness before phasei⋆−1 on both sides of in-
equality (9) and applying the above bounds, and usingk= log(T), we get

1

η2
i⋆

ϑ log(T) ≤ 256n2QT +
4log(QT +1)+8

ηi⋆
.

Hence, one of 256n2QT or 2
ηi⋆

log(QT) must be at least1
2η2

i⋆
ϑ log(T). In the first case, we get the

bound 1
ηi⋆
≤ 25n

√
QT

ϑ log(T) . In the second case, we get the bound1
ηi⋆
≤ 8log(QT+1)+16

ϑ log(T) .

In all cases (including the case wheni⋆ = 0), we have 1
ηi⋆
≤O

(

n
√

QT
ϑ log(T) +n

)

, and hence we

can bound

E
[

1
ηi⋆

]

· (ϑ log(T)) = O
(

n
√

ϑQT logT +nϑ log(T)
)

.

Plugging this into (8), and fork= log(T), we get that the expected regret is bounded by

E

[
T

∑
t=1

f⊤t (yt −u)

]

= O
(

n
√

ϑQT log(T)+nlog2(T)+nϑ log(T)
)

.

6. Conclusions and Open Problems

In this paper, we gave the first bandit online linear optimization algorithm whose regret is bounded
by the square-root of the total quadratic variation of the cost vectors. These bounds naturally inter-
polate between the worst-case and stochastic models of the problem.4

This algorithm continues a line of work which aims to prove variation-based regret bounds for
any online learning framework. So far, such bounds have been obtained for four major online learn-
ing scenarios: expert prediction, online linear optimization, portfolio selection (and exp-concave
cost functions), and bandit online linear optimization in this paper.

The concept of variational regret bounds in the setting of the ubiquitous multi-armed bandit
problem opens many interesting directions for further research and open questions:

1. Improve upon the bounds presented in this paper by removing the dependence on the number
of iterations completely - that is, remove the poly(log(T)) terms in the regret bound.

4. In the stochastic multi-armed bandit setting, the regret is known to be bounded by a logarithm in the number of
iterations rather than square root (Auer et al., 2002). However, notethat the regret is defined differently in the
stochastic case, which makes the logarithmic dependency even possible.In this paper we consider a stronger notion
of worst-case regret.
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2. For the special case of the classic non-stochastic MAB problem, obtain regret bounds which
depend on the variation of the best action in hindsight (vs. the total variation).

3. Is it possible to improve regret for the classic non-stochastic multi-armed bandit problem
without using the self-concordance methodology (perhaps by extendingthe algorithm in
Hazan and Kale (2008) to the bandit setting)?
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