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Abstract

The online multi-armed bandit problem and its generaliretiare repeated decision making prob-
lems, where the goal is to select one of several possiblsidesiin every round, and incur a cost
associated with the decision, in such a way that the totdlinoarred over all iterations is close
to the cost of the best fixed decision in hindsight. The dfere in these costs is known as the
regretof the algorithm. The terrbanditrefers to the setting where one only obtains the cost of the
decision used in a given iteration and no other information.

A very general form of this problem is the non-stochasticdiimear optimization problem,
where the set of decisions is a convex set in some Euclidearespnd the cost functions are linear.
Only recently an efficient algorithm attainir{@(ﬁ ) regret was discovered in this setting.

In this paper we propose a new algorithm for the bandit lirg#timization problem which
obtains a tighter regret bound 6(\@), whereQ is the total variation in the cost functions. This
regret bound, previously conjectured to hold in the fulbimhation case, shows that it is possible to
incur much less regret in a slowly changing environment éwehe bandit setting. Our algorithm
is efficient and applies several new ideas to bandit optitiwizauch as reservoir sampling.

Keywords: multi-armed bandit, regret minimization, online learning

1. Introduction

Consider a person who commutes to work every day. Each morning, stedmice of routes to

her office. She chooses one route every day based on her pasieexg. When she reaches her
office, she records the time it took her on that route that day, and useafthimation to choose
routes in the future. She doesn’t obtain any information on the other reliéesould have chosen

to work. She would like to minimize her total time spent commuting in the long run; hemvev
knowing nothing of how traffic patterns might change, she opts for the m@gmatic goal of
trying to minimize the total time spent commuting in comparison with the time she would have
spent had she full knowledge of the future traffic patterns but haddosshthe same fixed route
every day. This difference in cost (using time as a metric of cost) measavesuch she regrets

not knowing traffic patterns and avoiding the hassle of choosing a néwepary day.

*. Work done while the author was at Microsoft Research.
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This scenario, and many more like it, are modeled by the multi-armed bandit pratid
its generalizations. It can be succinctly described as follows: iterativelyrdine learner has to
choose an action from a set nfavailable actions. She then suffers a cost (or receives a reward)
corresponding to the action she took and no other information as to the metief available
actions. Her goal is to minimize hezgret which is defined as the difference between her total cost
and the total cost of the best single action knowing the costs of all actiomvamee.

Various models of the “unknown” cost functions have been consideréte last half a cen-
tury. Robbins (1952) pioneered the study of various stochastic costidms, followed by Hannan
(1957), Lai and Robbins (1985) and others. It is hard to do justice tadh®erous contributions
and studies and we refer the reader to the book of Cesa-Bianchi ayuiL{2006) for references.

In their influential paper, Auer et al. (2003) considered an advietsan-stochastic model of costs,
and gave an efficient algorithm that attains the optimal régneterms of the number of iterations,
T, a bound of(3(\ﬁ).2 The sublinear (i) regret bound implies that on average, the algorithm’s
cost converges to that of the best fixed action in hindsight.

The latter paper (Auer et al., 2003) was followed by a long line of workgdwch and Klein-
berg, 2004; McMahan and Blum, 2004; Flaxman et al., 2005; Dani et@G8)2vhich considered
the more general case of bandit online linear optimization over a convexitlomahis problem,
the learner has to choose a sequence of points from the convex dordaibtams their cost from an
unknown linear cost function. The objective, again, is to minimize the reiipagtijs, the difference
between the total cost of the algorithm and that of the best fixed point isilginid This generality
is crucial to allow forefficientalgorithms for problems with a large decision space, such as online
shortest path problem considered at the beginning. This line of worky/fmaminated in the work
of Abernethy et al. (2008), who obtained the first algorithm to @(eﬁ ) regret with polynomial
running time.

Even though thé®(/T) dependence ofi was a great achievement, this regret bound is weak
from the point of view of real-world bandit scenarios. Rarely would weoginter a case where
the cost functions are truly adversarial. Indeed, the first work on thisl@m assumed a stochastic
model of cost functions, which is a very restrictive assumption in manyscaSase reasonable
way to retain the appeal of worst-case bounds while approximating theysitstd nature of the
stochastic setting is to consider thariationin the cost vectors.

For example, our office commuter doesn’t expect the traffic gods tqpaersgainst her every
day. She might expect a certain predictability in traffic patterns. Most theysraffic pattern is
about the same, except for some fluctuations depending on the day aéd¢etime of the day, etc.
Coming up with a stochastic model for traffic patterns would be simply too osefu algorithm
that quickly learns the dominant pattern of the traffic, and achievestiggmaded by the (typically
small) variability in day-to-day traffic, would be much more desirable. Sugtetédounds naturally
interpolate between the stochastic models of Robbins and the worst casis ofokigeret al.

In this papet we present the first such bandit optimization algorithm in the worst-casa-adv
sarial setting, with regret bounded ﬁ;(\@), whereQ is the total observed variation in observed
costs, defined as the sum of squared deviations of the cost vectordHeir mean. This regret

1. Strictly speaking, here we talk aboexpectedegret, as all algorithms that attain non-trivial guarantees must use
randomization.

2. We use the notatiod to hide all constant terms (such as dependence on the dimension odtierpror the diameter
of the decision set) and other lower order terms which grow at a polyitbgac rate withT.

3. A preliminary version of this result was presented in Hazan and KaRog@).
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degrades gracefully with increasiy and in the worst case, we recover the regret badodT)
of Abernethy et al. (2008). Our algorithm is efficient, running in polyndrimae per iteration.

The conjecture that the regret of online learning algorithms should bededun terms of the
total variation was put forth by Cesa-Bianchi et al. (2007) in the fullrimfation model (where the
online player is allowed to observe the costs of actions she did not chobsis) conjecture was
recently resolved on the affirmative in Hazan and Kale (2008), in two impbdaline learning
scenarios, viz. online linear optimization and expert prediction. In addiiioiriazan and Kale
(2009b), we give algorithms with regret boundsQiog(Q)) for the Universal Portfolio Selection
problem and its generalizations. In this paper, we prove the surprigihthft such a regret bound
of 6(\@) is possible to obtain even when the only information available to the player is #te co
she incurred (in particular, we may not even be able to esti@aecurately in this model).

To prove our result we need to overcome the following difficulty: all presiapproaches for the
non-stochastic multi-armed bandit problem relied on the main tool of “unb@grselient estimator”,
that is, the use of randomization to extrapolate the missing information (casidoj The variation
in these unbiased estimators is unacceptably large even when the undeolyifignction sequence
has little or no variation.

To overcome this problem we introduce two new tools: first, we use histatsa to construct
our gradient estimators. Next, in order to construct these estimators,esleaneaccurate method
of accumulating historical data. For this we use a method from data streamarghatgs known as
“reservoir sampling”. This method allows us to maintain an accurate “skefdhistory with very
little overhead.

An additional difficulty which arises is the fact that a learning rate parametezeds to be
set based on the total variatighto obtain theé(\FQ) regret bound. Typically, in other scenarios
where square root regret bound in some parameter is desired, a sjrhpleing trick works, but
requires the algorithm to be able to compute the relevant parameter aftgitevation. However,
as remarked earlier, even estimatf@ds non-trivial problem. We do manage to bypass this problem
by using a novel approach that implicitly mimics thehalving procedure.

2. Preliminaries

Throughout the paper we use the standard asymp@itjcnotation to hide dependence on (ab-
solute, problem-independent) constants. For convenience of notakiaousavth@() notation to
hide dependence on (problem-dependent) constants as well as dlylagtors: g = (5(f) if
g< cflogd(T) for some problem-dependent constant O and and a problem-independent con-
stantd > 0. Specifically, in the() notation we also hide terms which depend on the dimension
since this is fixed: we use this notation in order highlight the dependenceeqgratameter which
grows with time, viz. the quadratic variation. Unless specified otherwiseeelbys live inR", and

all matrices inR™". The vector nornj| - || denotes the standafgd norm.

We consider the online linear optimization model in which iteratively the online playasoses
a pointx; € X, whereX C R" is a convex compact set called thecision setAfter her choice, an
adversary supplies a linear cost functfgnand the player incurs a cost Bfx;). In this paper we
assume aobliviousadversary, which can choose arbitrary cost functipms advance, with prior
knowledge of the player’s algorithm, but the adversary does not leess to the random bits used
by the player (see Dani and Hayes, 2006 for more details on varioudsrafdalversaries).
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With some abuse of notation, we uketo also denote the cost vector such thax) = ftT X.
The only information available to the player is the cost incurred, that is, the si@q). Denote
the total number of game iterations By The standard game-theoretic measure of performance is
regret, defined as

T T
Regret = t;ft (Xt) — Qiyrgt;ft (%).

We make some normalizations on the cost vectors and the convex dd@irkeep the pre-
sentation clean. We assume that the cost vectors are scaled so thattmsian® bounded by one,
that is, ||f;|| < 1. This scaling only changes the regret bound by a constant fact@risifs known
upper bound on the norms of the cost vectors, we can scale down theectm's byG and run the
algorithm; the actual regret S times larger than the bound obtained here. Next, we askirise
scaled to fit inside the unit ball (in thle norm) centered at the origin, that is, for alk X, we have
IX|| < 1. We also assume that for some parametef0, 1), all the vectorgey, ..., ye,, whereg is
the standard basis vector with 1 in tiith coordinate and O everywhere else, are in the decision set
X.

The above assumptions can be met by translating and sc&liregppropriately. This only
changes the regret bound by a constant factob i§ a known upper bound on the diameter of
X, then we can translat& so that it contains the origin and scaled coordinate vegtgréor some
y > 0, and then scale it down HYy to make its diameter 1 and run the algorithm; the actual regret
is D times larger than the bound obtained here. In certain specific casesammertainly obtain
tighter constants by using a setmfinearly independent vectors contained insige but here we
make this simplifying assumption for the sake of cleanliness of presentation.

We denote byQy the total quadratic variation in cost vectors, that is,

-
Qr = Hft—Usz
P

wherep= 2 5T, f; is the mean of all cost vectors.

A symmetric matrixA is called positive semidefinite (denotedAy- O if all its eigenvalues are
non-negative. If all eigenvalues &f are strictly positive, the matrix is called positive definite. For
symmetric matrices we denote By< B the fact that the matriB — A is positive semidefinite. For
a positive definite matrbA we denote its induced norm Hix||a = VX" Ax. We make use of the
following simple generalization of the Cauchy-Schwarz inequality:

X'y < [Ix[la-[Iylla-s. (1)

This inequality follows by applying the usual Cauchy-Schwarz inequalitygo/éittorsAl/2x and
(AY2)~ly whereAl/2 is the matrix square root of the positive definite mafixhat is, a matri8
which satisfie8B = A.

For a twice differentiable functiof : R" — R, we denote its gradient by f and its Hessian by
21,

2.1 Reservoir Sampling

A crucial ingredient in our algorithm is a sampling procedure ubiquitousty iis streaming algo-
rithms known as “reservoir sampling” (Vitter, 1985). In a streaming prokitesralgorithm gets to
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see a stream of data in one pass, and not allowed to re-visit previousSlgipose the elements
of the stream are real numbdisf,, ... and our goal is to maintain a randomized estimate of the
current meany = %Ztrzlfr- The main constraint which precludes the trivial solution is that we
desire a sampling scheme that touches (i.e., observes the value of)wezlefeents in the stream.
The reservoir sampling method is to maintain a randomly chosen (without repatesubset
Sof sizek (also called a “reservoir”) from the stream, and then use the averatlpe shmple as
an estimator. This works as follows. InitialiZby including the firstk elementd,,f,,...,fk in
the stream. For every subsequent elenfigiwe decide to include it its with probability'{. If the
decision to include it is made, then a random eleme&isfreplaced by;.
The following lemma is standard (see Vitter, 1985) and we include a simple indywtof for
completeness:

Lemma 1 For every t> k, the set S is random subset chosen without replacement uniformly from
{f1,f2,.... Tt}

Proof We prove this by induction oh The statement is trivially true fdr= k. Assume that the
statement is true for sonte> m, and we now show+ 1. LetSbe an arbitrary subset of sike
of {fl,fz,...,ft}. We now show that the probability that the chosen set int thd-th round isS
is (ttl) For this, we have two casef:; 1 ¢ Sandfi,1 € S In the first case, the probability that

Sis the chosen subset at the end-tfi round isﬁ by the induction hypothesis. The conditional

t+1’ so the overall probability th&& is the chosen set

1 1

probability that it survives the+ 1-th is 1—
at the end of + 1-th round is(1— t+1) 0=
k k

In the second cas&will be the chosen set at the endtof 1-th round if the se§ chosen at the
end of thet-th round is one of thé+ 1 — k sets obtained fror& by replacingf;1 by an element of
{f1,f2,.. i }\S WhICh gets replaced by, ; in thet + 1-th round. The probability of this happen-

ing |st+(t)*" = (Hll) as required. [ |

k

Now suppose we defing to be the average of tHechosen numbers i, then the following
lemma is immediate:

Lemma 2 For every t> k, we haveE[fi] = p and VARL] < & 5% (fi—)? = 2Q:.

The bound on the variance follows because the variance of a singlemindhosen element of
the stream i% st_1(fr — )2 So the variance of the averagekofandomly chosen elementsth
replacement i% st_1(f:— k)2 Since we choose theelements in the sampleithoutreplacement,
the variance is only smaller.

The main reason reservoir sampling is useful in our context is becawsaplas every element
obliviously, that is, a decision to sample is made without looking at the element. This implies that
the expected number of elements touched by the reservoir sampling btiseties procedure for
b is k+ th:kH'f‘ = O(klog(T)), which is very small compared to the length of the stre@if k
is set to some small value, like(log(T)) as in our applications.

2.2 Self-concordant Functions and the Dikin Ellipsoid

In this section we give a few definition and properties of self-concdrdarriers that we will cru-
cially need in the analysis. Our treatment of this subject follows Abernethay €2008), who in-
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troduced self-concordant functions to online learning. Self-corarare in convex optimization is a
beautiful and deep topic, and we refer the reader to Nesterov and NeKiir994) and Ben-Tal
and Nemirovski (2001) for a thorough treatment on the subject.

Definition 1 A convex functior® (x) defined on the interior of the convex compact &gtand
having three continuous derivatives, is said to b&-aelf-concordant barrier (wher& > 0 is the
self-concordance parameter) if the following conditions hold:

1. (Barrier property)R (x;) — o along every sequence of poimxdn the interior of X converg-
ing to a boundary point of.

2. (Differential properties)® satisfies
PR M)[h,h,h]| < 2(hT[O2R (x)]h)2,
1/2
0K (x)Th| < 8/2 [hTmzs&(x)h]} .
wherex is a point in the interior ofX, andh is an arbitrary vector irR". Here,R (x), 02R (x)
denote the Gradient and Hessian, respectivelyg ait pointx, and

3

3 _
. R(X)[hl’h27h3] - 0t10t,0t3

R.(X+1t1hy +tohy +tzh3)

t1=to=t3=0

Any n-dimensional closed convex set admits@m)-self-concordant barrier. However, such a
barrier may not necessarily be efficiently computable.
More concretely, the standard logarithmic barrier for a half-spdoce< b is given by

R(x) = —log(b—u'x),
and is 1-self-concordant. For polytopes definedhblalfspaces, the standard logarithmic barrier
(whichis just the sum of all barriers for the defining half-spaces) tesdh-concordance parameter

d=m

Definition 2 For a givenx € X, and anyh € R", define the norm induced by the Hessian, and its
dual norm, to be

Ih|lx :=y/hT[O2R (x)]h, and

Il == /hT[O2R (x)]~*h.
Definition 3 TheDikin ellipsoid of radius r centered at is the set

WH(X) ={y eR": [ly —X[lx <r}.

When a radius is unspecified, it is assumed td;fmo “the Dikin ellipsoid atx” refers to the Dikin
ellipsoid of radiusl centered ak.
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Definition 4 For any two distinct pointg andy in the interior of K, theMinkowsky functionri (y)
onXis
T(y) =inf{t > 0:x+t 1 (y—x) e K}.

The Minkowsky function measures the distance froto y as a portion of the total distance on the
ray fromx to the boundary off through the poiny, and hencey(y) € [0, 1].

The following facts about the Dikin ellipsoid and self concordant barnelisbe used in the
sequel (we refer to Nemirovskii, 2004 for proofs):

1. Wi(x) C X for anyx € K. This is crucial for most of our sampling steps (the “ellipsoidal
sampling”), since we sample from the Dikin ellipsdd (x;). SinceW(x;) is contained in
X, the sampling procedure yields feasible points.

2. The lengths of the principal axes of the ellipsdig{x) are 2/+/A;, whereh;, fori=1,2,....n
are the eigenvalues @R (x). Thus, the fact thati (x) C K and thatX is contained in the
unit ball implies that 2v/A; < 2 for all i, or in other words, AA; < 1 for alli. This implies
that[(12R (x)]~* < I, wherel is the identity matrix. Thus, we can relate the|% norm to the
standard’> norm|| - ||: for any vector,

Ihix = /hTE2R(X)]"*h < vhTlh = |h]|. ()

3. In the interior of the Dikin ellipsoid at, the Hessian off is “almost constant”: for any
h € R" such that|h||x < 1, we have

(1= [Ih)?D*R(x) = D*R(x+h) = (1~ [h]x) " *O0*R(x).

4. For anyd-self-concordant barrier of(C, and for any two distinct points andy in the interior
of K, it holds that (see Nemirovskii, 2004)

R (y) — R (x) <9In ( 3)

Definition 5 Letx® be the analytic center ak with respect to the self-concordant barri®r, that
is, the point insideX in whichOR (x°) = 0. For anyd > 0, define the convex bodis C X by

K = {X|e (X) < (1—9)}.
The following properties holds fak; :

Lemma 3 For anyx € X, there exists & € %5 such that|x — u|| < 20 which satisfies

R(U)—R(x°) < Sln%.
Proof Letu = &x°+ (1—9)x. Since
o ||X_XO|| o
X = X°+ u—x°),
Ju—e 7
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andx € X, we have that

me(uy < 1U=X1 _ 1Q=36=x) _ ;o
[Ix—x°]| [[x=x°|
which implies thau € %5. Next, note that
[X—ulf = [[d(x=x°)[| < 23,
sinceX is contained in the unit ball.
Finally, since® is ad-self-concordant barrier, we have by (3)
1 1 1
— °) < — < —_— = -
R(U)—R(X°) < Slogl—nxo(u) < ’9|091f(1f5) 8In6

3. The Main Theorem and Algorithm

Main result.Before describing the algorithm, let us state the main result of this paperlfgrma

Theorem 4 Let K be the underlying decision set in an online linear optimization instance, such
that K admits an efficiently computabfeself-concordant barrier. Then there exists a polynomial
time algorithm for this online linear optimization problem (Algorithm 1 below couplét the
halving procedure of Section 5) whose expected regret is boundiedl@ss. Let G be the total
variation of a cost function sequence in the online linear optimization instalrteen

E[Regret] = O (n\/SQT logT 4 nlog?T 4 nd Iog(T)) :

This theorem can be used with the well known logarithmic barrier to deriyetéounds for
the online-shortest-paths problem and other linearly constrained proldamsf course applicable
much more generally.

The non-stochastic multi-armed bandit probleAcase of particular interest, which has been
studied most extensively, is the “basic” multi-armed bandit (MAB) probleranalin each iteration
the learner pulls the arm of one outtlot machines and obtains an associated reward, assumed
to be in the rang€0,1]. The learner’s objective is to minimize his regret, that is, the difference
between his cumulative reward and that of the best fixed slot machine igigjiivid

This is a special case of the more general problem considered eadiepaesponds to taking
the convex sefX to be then-dimensional simplex of probability distributions over the arms. Since
then-dimensional simplex admits a simpieself-concordant barrier, an immediate corollary of our
main theorem is:

Corollary 5 There exists an efficient algorithm for the multi-armed-bandit problense/egpected
regret is bounded by

E[Regret] = O(n2 Qrlog(T) +n*®log?(T) + nz'slog(T)> :

The additional factor of/n factor is because our results assume tfigt < 1, and so we need to
scale the costs down hyn to apply our bounds. In comparison, the best previously known bounds
for this problem isO(v/nT) (Audibert and Bubeck, 2010). Even though our bound is worse in the
dependence on, the dependence on the parameter which grows,vizss much better.
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3.1 Overview of the Algorithm

The underlying scheme of our algorithm follows the recent approachbefrfethy et al. (2008),
who use the Follow-The-Regularized-Leader (FTRL) methodology withcemcordant barrier
functions as a regularization (see also exposition in Hazan and Kale.28@8he top level, at
every iteration this algorithm simply chooses the point that would have minimizeidtlecost so
far, including an additional regularization cost functi®ix), that is, we predict with the point

9

t-1_
X = argmin [n T;fTT (X) + R(x)

wheren is a learning rate parameter.

Here,ft is an estimator for the vectdy, which is carefully constructed to have low variance.
In the full-information setting, when we can simply $et=f;, such an algorithm can be shown to
achieve low regret (see exposition in Abernethy et al., 2008 and nefeseherein). In the bandit
setting, a variety of “one-point-gradient-estimators” are used (Flaxmen 2005; Abernethy et al.,
2008) which produce an unbiased estimdtaf f; by evaluating; at just one point.

In order to obtain variation based bounds on the regret, we modify thesstb&stimators of
previous approaches by incorporating our experience with prevagivector as a “prior belief” on
the upcoming cost vector. Essentially, we produce an unbiased estimaberdifference between
the average cost vector in the past and the current cost vector

This brings out the issue that the past cost vectors are unfortunatelyrgéeown. However,
since we had many opportunities to learn about the past and it is an aiggoégaany functions,
our knowledge about the past cumulative cost vector is much better thandivedge of any one
cost vector in particular. We denote py dur estimator of% st_,fr. The straightforward way of
maintaining this estimator would be to average all previous estimftdd®wever, this estimator is
far from being sufficiently accurate for our purposes.

Instead, we use the reservoir sampling idea of Section 2.1 to construgf.thisr"each coor-
dinatei € [n], we maintain a reservoir of size §1,S2,...,Sk The estimator fog(i) is then
b (i) = % z'j‘zlsJ. The firstnkrounds we devote to initialize these reservoirs with samples from the
stream. This increases the overall regret of our algorithm by a coruftakt

Our current approach is to use separate exploration steps in ordemstuml;. While it is
conceivable that there are more efficient methods of integrating exploratio exploitation, as
done by the algorithm in the other iterations, reservoir sampling turns outegtbEmely efficient
and incurs only a logarithmic penalty in regret.

The general scheme is given in Algorithm 1. It is composed of exploratiqs stalled $v -
PLEXSAMPLE steps, and exploration-exploitation steps, callediESOIDSAMPLE steps. Note that
we use the notatiowy, for the actual point ink chosen by the algorithm in either of these steps.

It remains to precisely state then®LEXSAMPLE and B LIPSOIDSAMPLE procedures. The
SIMPLEXSAMPLE procedure is the simpler of the two. It essentially performs reservoir sagnplin
on all the coordinates with a reservoir of skeThe initial nk time iterations are used to initialize
this reservoir to have correct expectation (i.e., in these iterations we saritplprabability one
and fill all bucketsS;), and incur an additional additive regret of at mokt

Now, the SMPLEXSAMPLE procedure is invoked with probabiliﬂ)f for any time period > nk.
Once invoked, it samples a coordinates [n] with the uniform distribution. The point; chosen
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Algorithm 1 Bandit Online Linear Optimization
1: Input: n > 0, 9-self-concordang , reservoir size parametkr
2: Initialization: for alli € [n], j € [K], setS ; = 0. Setx; = argminey [R(X)] andy = 0. Let
m:{1,2...,nk} — {1,2,...,nk} be a random permutation.
3 fort=1toT do

4 Setr = 1 with probability min{ % 1}, and 0 with probability - min{ ", 1}.
5. ifr=1then
6: /I SIMPLEXSAMPLE step
7: if t <nkthen
8: Seti; = (1(t) modn)+1.
9: else
10: Seti; uniformly at random from{1,2,...,n}.
11: end if
12: Setlk < SIMPLEXSAMPLE (it).
13; Setf, = 0.
14: else
15: /[ ELLIPSOIDSAMPLE step
16: Setpk =fk_4.
17: Setf; «+ ELLIPSOIDSAMPLE (X, [} )-
18: end if t
19:  Updatex; 1 = argmine g [N ZFTT)H' R (X)
=
Di(x)

20: end for

by the algorithm is the corresponding verigx of the {-scaled)n-dimensional simplex (which is
assumed to be contained inside’jj to obtain the coordinatk(i;) as the cost.

It then chooses one of the samplgs;, S, 2, ..., S, x uniformly at random and replaces it with
the valuef(i;), and updatep, - This exactly implements the reservoir sampling for each coordinate,
and detailed in Algorithm 2.

As for the E.LIPSOIDSAMPLE procedure, it is a modification of the sampling procedure of
Abernethy et al. (2008). The poigt chosen by the algorithm is uniformly at random chosen from
the endpoints of the principal axes of the Dikin ellips¥ié(x;) centered ak;. The analysis of
Abernethy et al. (2008) already does the hard work of making certainhtballipsoidal sampling
is unbiased and has low variation with respect to the regularization. Howeviake advantage
of the low variation in the data, we incorporate the previous information in thma fuf {i. This
modification seems to be applicable more generally, not only to the algorithmerhathy et al.
(2008). However, plugged into this recent algorithm we obtain the besilpe regret bounds and
also an efficient algorithm.

Before we proceed with the analysis, let us make a small formal claim thastionates ofy
are unbiased far> nk:
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Algorithm 2 SIMPLEXSAMPLE(it)
1: Predicty; = yg,, that is, the-th standard basis vector scaledyby

2: Observe the codf y: = fi(it).

3: if some bucket for; is emptythen

4:  Setj to the index of the empty bucket.
5: else

6:  Setj uniformly at random fron{1,... k}.
7: end if

8: Update the sampl§, j = %ft(it).

9: if t < nkthen

10:  Returny =0.

11: else

12:  Returnif defined asyi € {1,2,...,n}, seti (i) := £ T, S ;.
13: end if

Algorithm 3 ELLIPSOIDSAMPLE (Xt, %)

1: Let {vi,...,vn} and {A1,...,An} be the set of orthogonal eigenvectors and eigenvalues of
2R (Xt).
Chooséd; uniformly at random from{1,...,n} andg; = +1 with probability /2.
Predicty; = x +&\;, 7%V
Observe the cosf yt.
Returnf; defined as:

te

13

I
=
_l_
Ql

Whered :=n (fy: — i y1) st)\ilt/zvit.

Claim 1 For allt > nk, and for all i=1,2,...,n, the reservoir for i, 5= {S1,S2,...,Sk} isa
random subset of size k chosen without replacement {fatn),f,(i),...,fi(i)}. Hence, we have

Ell] = W

Proof Fort = nkthe claim follows because the choice of the random permutatiensures that
the set of timegt : (m(t) modn)+1=i} is arandom subset of sikechosen without replacement
from {1,2,...,nk}.

Fort > nk the claim follows from the properties of reservoir sampling, as we show fitwe
is because MPLEXSAMPLE simulates reservoir sampling. We just showed that at timek, the
claim is true. Then, at time= nk+ 1 and onwards, reservoir sampling performs select-and-replace
with probability'f‘ (i.e., it selectd; (i) with probability% and replaces a random element of the pre-
vious § with it). The algorithm does exactly the same thingMSLEX SAMPLE is invoked with
probability”t—", and with probability%, we have; = i. Thus, the overall probability of sample-and-
replace i§t, exactly as in reservoir sampling. |
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4. Analysis

In this section, we prove a regret bound, in a slightly easier setting whekaaw an upper bound
Q on the total variatiorQr. The main theorem proved here is the following:

Theorem 6 Let Q be an estimated upper bound or.QSuppose that Algorithm 1 is run with
n= min{1 /'2%, ﬁ} and k=log(T). Then, if @ < Q, the expected regret is bounded as follows:

E[Regret] = O(n«/ﬁQIogT+nIog2(T)+n8|og(T)).

Although this bound requires an estimate of the total variation, we show in tt@8& how to
remove this dependence, thereby proving Theorem 4. In this sectioketdghe simpler proof of
Theorem 6 and give precise proofs of the main lemmas involved.
Proof For clarity, we present the proof as a series of lemmas whose complefs ppgear after
this current proof.

We first relate the expected regret of Algorithm 1 which plays the pginfert =1,2,... with
thef, cost vectors to the expected regret of another algorithm that playsthts powith thef; cost
vectors.

Lemma 7 Foranyu € X,

T T .
e [tzlmyt | <e|3ecw

Intuitively, this bound holds since in every. EPSOIDSAMPLE step, the expectation df andy;
(conditioned on all previous randomization) drendx; respectively, the expected costs for both
algorithms is the same in such rounds. In thef8.ExSAMPLE steps, we havé = 0 and we can
bound|f, (y; —u)| by 2. The expected number of such step(aklog(T)) = O(nlog?(T)), which
yields the extra additive term.

We therefore turn to boundingthlftT(xt —u). For this, we apply standard techniques (origi-
nally due to Kalai and Vempala 2005) which bounds the regret of any feth@aleader type algo-
rithm by terms which depend on the stability of the algorithm, measured by how/ttlesuccessive
predictionsx; andx;; are:

<E +2nlog?(T).

Lemma 8 For any sequence of cost vectdys. .., fr € R", the FTRL algorithm with &-self con-
cordant barrier®_has the following regret guarantee: for aoye %, we have

T T
- - 2
flixx—u) < S (X —X.1)+—9logT.
tz%t (Xt —u) < 2;_1( t— Xt+1) N g

We now turn to bounding the terfﬁ(xt —Xt+1). The following main lemma gives such bounds,
and forms the main part of the theorem. We go into detail of its proof in the metiog, as it
contains the main new ideas.

Lemma 9 Lett be anELLIPSOIDSAMPLE step. Then we have

Tl (e —xr1) < 64nn?fe — w12+ 64002 — 12+ 20 (% — Xer1). (4)
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A similar but much easier statement can be made fsPSEXSAMPLE steps. Trivially, since we
setf; = 0 in such steps, we hawe = ;1. Thus, we have

fl (% —X41) = 0 = 21 (X —Xeq1)-
By adding the non-negative termgd?||f; — 4 ||°, we get that for any MPLEX SAMPLE stept, we
have .
f (4 —Xer1) < 64NN°YIF— ]2+ 20 (X — Xeq1). (5)

Let Tg be the set of all ELIPSOIDSAMPLE steps. Summing up either (4) or (5), as the case may
be, over all time periodswe get

T T
£l (% —xe1) < 64NN2 Y |fe — W||? + 64nn?
A" 2,

t= tele

.
||H—ﬁtH2+ZZH(Xt—Xt+1) (6)
=

We bound each term of the inequality (6) above separately. The firsttmrhe easily bounded by
the total variation, even though it is the sum of squared deviations frongaigameans. Essentially,
the means don’t change very much as time goes on.
Lemma 10 T, |[fi —|I? < Qr.

The second term, in expectation, is just the variance of the estimatoifs;, which can be
bounded in terms of the size of the reservoir and the total variation (see L&nma
Lemma 11 E[Fcr, [l — &%) < 2L Qr.

The third term can be bounded by the sum of successive differefidhke means, which, in
turn, can be bounded the logarithm of the total variation.

Lemma 12 S 1" (% —xt11) < 2log(Qr +1) +4.

Let Q > Qr be a given upper bound. Plugging the bounds from Lemmas 10, 11 24ntbX6),
and using the valuk = log(T ), we obtain

.
Zfi (X —X+1) < 1281n°Q+4log(Qr +1) +8.
t=

log(Qr+1)

where we will choosg > g2 SO that logQr +1) < 8nn?Q. Hence, via Lemmas 8 and 7, we

have for anyu € X,
il 29
E [fo(yt - u)] < 123n°Q+ o logT + 2nlog?(T) + 4log(Qr +1) + 8.
t=

Now, choosing] = min{ s'ﬁ?g) , %} for the upper boun® > Qr, and we get the following

regret bound:

<0 (n\/{}QIogT +ndlog(T) + nlogz(T)> .

;
E [t;ftT(Yt —u)

Here, we absorb the lower order terms 41Qg + 1) + 8 in the other terms using th@(-) notation.
The restriction that) < % arises from the proof of Lemma 13 below. |
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4.1 Proof of Main Lemmas

Proof [Lemma 7]

Lett be an ELIPSOIDSAMPLE step. We first show thd|[f;] = f;. We condition on all the random-
ness prior to this step, thug, iS fixed. In the following,E; denotes this conditional expectation.
Now, condition on the choici and average over the choicegpf

- 1 - - -
Boi = 3 o0 (=BT 0+ 80 2vi) ) N e, = n((fr— ) TV Vi
ge{l,—1}

Hence,

E6] = 3 10— R) v =i

since thev; form an orthonormal basis. Thug,[fi] = E¢[Gt] + [ = ft.

Furthermore, it is easy to see thatfy;| = x;, sincey; is drawn from a symmetric distribution
centered ak; (namely, the uniform distribution on the endpoints of the principal axes dbikia
ellipsoid centered at;). Thus, we conclude that

Edlf{ (e —u)] = f{ (e —u) = Eeff{ (e —u)],
and hence, taking expectation over all the randomness, we have
E[f{ (v —u)] = Ef{ (xx —u)].

Now, lett be a SMPLEX_‘SAMPLE step or aIEernativer < nk. In this case, we havd (y; —
Wl < |Ifelllly: — ul| <2, andf{ (x; —u) = 0 sincef; = 0. Thus,

E[f{ (e —u)] < Ef{ (x—u)]+2
Overall, if X is the number of 81PLEXSAMPLE sampling steps or initialization steps, we have
Ef (ye—u)] < Eeff{ (x —u)]+2E[X].

Finally, using the fact tha [X] = nk-+ 3,1 & < nk(log(T) +1) < 2nlog?(T), the proof is com-

plete. [ |

Proof [Lemma 8]
By Lemma 15 (see Section 4.2) applied to the sequérgeas defined in (19), for any € K

]
PRACEIED ST i[a«u) ~R(xy)).
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By Lemma 3, there exists a vectoy € % C X for 8= 1, such thatju; — u|| < 2 and in addition,
R(u1) — R (x1) <dlog(T). Hence,

T T T
floe—u) < SH (xx—uy) + 5§ (ur—u)
A" A" A"
: 1

IN

;
ZFtT (Xt —Xtr1) + ﬁ[i’i(ul) — R (X1)] +t; [Ife[/Juz — ul|

t=

Lo 9 L2
fi (X% —Xep1)+=logT+ 'y =
2" o T

IN

IN

S T (e —xe1) + 29 logT
t—Xty1) +— :
t; t n
In the last step, we upper bougd_; £ < %IogT, which is valid forn < 1/4, say. [ |

Now we turn to proving Lemma 9. We first develop some machinery to assitiensmas 13
and 14 are essentially generalizations of similar lemmas from Abernethy 20@8)(to the case in
which we have both sampling and ellipsoidal steps.

Lemma 13 For any time period t nk, the next minimizet; . ; is “close” to x;:
Xtr1 € W% (Xt).

Proof If tis a SMPLEXSAMPLE step, therx; = x;.1 and the lemma is trivial. So assume that
an B.LIPSOIDSAMPLE step. Now, recall that

Xt11= argxngécndbt(x) and x; = argxrg(nQJt_l(x),

where®(x) = nsL ; f/ x+ R (x). Since the barrier functio®_ goes to infinity as we get close to
the boundary, the pointg andx;.1 are both in the interior of{. We now show that all points on
the boundary of/v% (xt) have higherd; value than®d;(x;), and sincex;;1 is the minimizer of the
strictly convex functior®;, we conclude that;. 1 must lie in the interior oW% (Xt)-

First, note that since is in the interior ofX, the first order optimality condition givés®; _1(x;) =
0, and we conclude thatid,(x,) = nf,. Now consider any point iz on the boundary dW% (%),

that is,y = x; + h for some vectoh such that|h||x, = 3. Using the multi-variate Taylor expansion,
we get

(Dt(y) = th(Xt+h) = QDt(Xt)+D¢t(xt)Th+%hTD2<Dt(E)h = th(Xt)—H]f;—h—&—%hTDZth(E)h
(7)

for someg on the line segment betwegnandx; + h. This latter fact also implies th3l€ — x;||x, <
[h|lx < 3. Hence, by (3),

PRE) = (1§ PTPR() = ZTPR(X).
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Thush" (2R (§)h > 1|y = 1. Next, we boundf, h| as follows:

r It 1= *
] < [fell bl < Sl

Claim 2 ||l < 3n.

Proof We havef; = [i + &, whereg; = n ((fe— M) "wr) et)\ilt/zvit. We have

2= [ (6~ 50 "w) et | (PR 0] [ (0 T ) ed 2w
= () ve)
sincev; [1%R (x)]~*vi, = 1/A;,. Hence,

fell < Bl + 1805 < R+ nl(fe—F) Tyl < 3n,

since| (%, < [I]| < 1. We also used the facts thgt || < 1 and||f; — i || < 2. [ |

Hence, from (7) we get

3n 1
D (y) > q’t(Xt)—ﬂ'?-FE > ®y(xy),

sincen < ﬁ This concludes the proof that all boundary pointSN%f(xt) have higherd; value
than® (x; ). [ |

Lemma 14 For any time period t nk, we have
th—><t+1”>2<t < AN (% —X1).

Proof Applying the Taylor series expansion to the functibparound the poink;, we get that for
some pointz on the line segment joining to X;, 1, we have

P (%) = Pp(Xer1) + 0P (Xer1) " (% —Xes1) + (X1 —Xe) " 02O (2) (X1 —Xe) = P (Xeqa) + [ X1 —Xt]|Z,

becausél®;(x;1) = 0 sincex;;1, the minimizer ofd, is in the interior of . We also used the
fact that[?dy (z) = 02K (z). Thus, we have

Xer1 —X[|2 = Pr(x) — Pe(Xer1) = Proa(X) — Proa(Xesr) + 0T (e —Xer1) < N (X —Xeva),

sincex; is the minimizer of®;_; in K. It remains to show tha}||x;1 — X¢||2, < [|X+1— X¢[|2, for
which it suffices to show} 2R (x;) < 0?R (z).

By Lemma 13 we have 1 € W »(Xt), and hence; € W »(x) (sincez is on the line segment
betweernx; andx;.1). Therefore, using (3) we ha\@jzﬂ((xt) < 0% (z) as required. |
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Proof [Lemma 9]
First, we have

(Fo— 1) "0 —xern) < 1=l - e — Xerallx (by (1))
< JIfe— wll -/ 4nF (% — Xe41) (Lemma 14)

VAN

. o 1
< 2r1Hft—Hth2+§ftT(Xt—Xt+1)-

The last inequality follows using the fact thaih < %(a2 +b?) for real numbers, b. Simplifying,
we get that

an|If; — 1 132+ 21 (X — Xes1)
81 ([[fe — P ll32+ Il — e ll32) + 204" (X — Xe1)
320 (181137 + Ml — Fill®) + 20" (% — Xe41).-

?IT(XI — Xt4+1)

(VAN VAN VAN

The last inequality is becauge |5 < 2|| - || from (2) and the assumption th4t is contained inside
the unit ball.

Using the definition ofy; from Algorithm 3, we get that

2
6052 = 2 (-0 ') hi- (i [0PR 00 e )
2
= 2 ((f—F) ")
°|lfe — 1
207(|[f — w2+ [l — ).

VARVAN

The first inequality follows by applying Cauchy-Schwarz and using tbetfet||y; || < 1. Plugging
this bound into the previous bound we conclude that

B0 1) < 6402 — b2+ 64007 b — 2+ 20 (% —Xc).

Proof [Lemma 10]

Recall thaty = argmin, 5t_; ||fr — u||%. As a first step, we show that

—

T
Ife—wll® < 3 IIfe— el
1 =1

T
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This is proved by induction oh For T = 1 the inequality is trivial; we actually have equality.
Assume correctness for sorme- 1. Moving toT, we have

T T-1
Ife—el® =3 Ilfe—pl®+ [Ifr — e
& &

T-1

< Zx I[fe — b _q |12+ |1f1 — 12 (By inductive hypothesis)
t=
T-1 )

< 21 Ife = b lI? + lIfr — e 112 (br_q = argmine 3 [|fe — x||?)
t=

-
DALNIR
)

T T
Ife—wl®> < 5 Ilfe—ul* =Qr.
2; 2;

Hence,

Proof [Lemma 11]
Any ELLIPSOIDSAMPLE stept must have > nk, so by Claim 1 the algorithm exactly implements
reservoir sampling with a reservoir of sikéor each of then coordinates.

Now, for any coordinaté, fi (i) is the average of R samples chosenithoutreplacement from
R. Thus, we hav&|fi(i)] = (i), and henc&[({ (i) — 1 (1))?] = VAR (i)].

Now consider another estimatat(i), which averagek samples chosewith replacement from
K. Itis a well-known statistical fact (see, e.qg., Rice, 2001) that AR)] < VAR|v(i)]. Thus, we
bound VAR (i)] instead.

Supposé > nk. Letpu= + 5, fi. SinceE[v(i)] = W (i), we have

VAR[Vi()] = E[(vi(i) — (1)?] < E[
1

t
kgé
Summing up over all coordinatéswe get

Qr.

1
< =
Qt_kt

AP

E[If -1 < 3 VARW()] <
I
Summing up over all ELIPSOIDSAMPLE stepd, we get

s ) 1 log(T)
E[t;Ellut—ut!] < teEEQT < = Qr
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Proof [Lemma 12]

We have
T
t=

.
t; W (% —Xes1) = ZlXtJrl(“H-l — W) + WXe — XT41bbr g

Thus, sincd|x:|| < 1 and||ik|| <1, we have

T T
S W) < Y [l +4

To proceed, we appeal to Lemma 16 (see Section 4.2), and applyxt fer||fi — p||. Let
p= 21y, f.. Arguing as in Lemma 10, we have

thz = ti”ft_“t”z < int—ull2 < Qr.

Notice that

t - 101 o1
fr — fo=cfit(C——5) ) fo=-(fi— 1)
T;T t_lng t t t—1glT t 1
Hence,
1 1 1
[ —Hall = ;Ilft—u_ll\ < th+f||Ut—U~t—1||a

from which we conclude that for al> 2 we havel|py, — y_1]| < 1t:tl,1xt <S¢ %xt. Now, we apply

Lemma 16 to conclude that

T
ZZHH+1—HH+4 < 2log(Qr +1) +4.
t=

4.2 Auxiliary Lemmas

In this section, we give a number of auxiliary lemmas that are independeng ahalysis of the
algorithm. These lemmas give useful bounds that are used in the main analysis

The first lemma gives a general regret bound for any follow-thetaeiged-leader style algo-
rithm. The proof of this bound is essentially due to Kalai and Vempala (2005).

Lemma 15 Consider an online linear optimization instance over a convexgetwvith a regular-
ization function® and a sequencéx } defined by

t—1
_ i T
Xp = argxrgﬂlrg{zlfT X+ K(x)} :
For everyu € X, the sequencéx; } satisfies the following regret guarantee

T T 1

t;ftT(Xt —u) < t;ff(xt —Xt41) + n [R(U) = R (x1)].
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Proof For convenience, denote liy= %9{, and assume we start the algorithm from 0 with an
arbitraryxg. The lemma is now proved by induction dn

In the base case, far = 1, by definition we have that; = argmin{® (x)}, and thusp(x1) <
fo(u) for all u, thusfo(xo) —fo(u) < fo(Xo) —fo(X1).

Now assume that that for soriie> 1, we have

ti)ft (%) —fe(u) < éoft (Xt) — fe(Xe+1)-

We now prove the claimed inequality far+ 1. Sincext,2 = argmind{ 3,5 ft(x) } we have:

T+1 T+l T+1 T+1
t;) fe(Xt) — t; fi(u) < t; fe(Xt) — t; fi(XT+2)
T

= ;(ft(xt) —fi(x742)) +froa(xri1) —froa(xri2)
;

;(ft(xt) —ft(Xt+1)) +Frea(xria) = Fria(xre2)

T+1

— t; fe(%e) — fe (Xes1)-

IN

In the third line we used the induction hypothesisdos x7.,. We conclude that
T T
Zift(xt) —fi(u) < th<xt) — fi(Xe11) + [—fo(X0) +fo(u) +fo(x0) —fo(x1)]
t= t=

T 1
= t;ft(xt) —fi(Xe1) + n [R(u) = R(x1)].

Lemma 16 Suppose we have real numbegsxy, . .., xt such thatd < x <1 and ztxtz < Q. Then
1
—x < log(Q+1)+1.
&

Proof By Lemma 17 below, the values of that maximizeth:l %xt must have the following
structure: there is & such that for alt < k, we havex, = 1, and for any index > k, we have
Xcr1/% > /%, which implies tha < k/t. We first note thak < Q, sinceQ > 3§ ; x2 = k. Now,
we can bound the value as follows:

1

Sl < 5 1e 3 K Clogke kL < log@+ 1)
X < ) -+ - < log(k+1)+k-- < log(Q+1)+1.
242t e

=~
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Lemma 17 Leta > ap > ...ar > 0. Then the optimal solution of
maxz aX; subject to
|

Vi:0<x<1

>®<Q

has the following properties: X x2 > ... %7, and for any pair of indices, jj, with i < j, either
xi=1,%=0o0rx/xj > a/a,.

Proof The fact that in the optimal solutiaxy > X, > ...xr is obvious, since otherwise we could
permute theq’s to be in decreasing order and increase the value.

The second fact follows by the Karush-Kuhn-Tucker (KKT) optimalitpditions, which imply
the existence of constanisAy,. .., AT, p1,...,P7 for which the optimal solution satisfies

Vii—a+2u5+Ai+pi =0.

Furthermore, the complementary slackness condition says that the constpnése equal to zero
for all indices of the solution which satisky ¢ {0,1}. For suchx;, the KKT equation is

—8; + 2% =0,

which implies the lemma. |

5. Tuning the Learning Rate: Proof of Theorem 4

Theorem 6 requirea priori knowledge of a good bour@ on the total quadratic variatio@y. This
may not be possible in many situations. Typically, in online learning scenahiesa regret bound
of O(+v/Ar) for some quantityAr which grows withT is desired, one first gives an online learning
algorithmL(n) wheren < 1 is a learning rate parameter which obtains a regret bound of

Regret < nAr+0(1/n).

Then, we can obtain a master online learning algorithm whose regret tikev@( /At ) as follows.
We start withn = 1, and run the learning algorithir(n). Then, the master algorithm tracks how
At grows withT. As soon asAr quadruples, the algorithm resetgo half its current value, and
restarts with_(n). This simple trick can be shown to obta®{\/Ar) regret.

Unfortunately, this trick doesn’t work in our case, whéxe= Qy, since we cannot even com-
pute Qr accurately in the bandit setting. For this reason, obtaining a regret tm‘uﬁ@l\/G)
becomes quite non-trivial. In this section, we give a method to obtain sudjret lound. At its
heart, we still make use of thghalving trick, but in a subtle way. We assume that we know a good
bound on logT) in advance. This is not a serious restriction, it can be circumvented bgasthn
tricks, but we make this assumption in order to simplify the exposition.

We design our master algorithm in the following way. L&t)) be Algorithm 1 with the given
parameten andk = log(T). We initializeng = % The master algorithm then runs in phases
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indexed byi = 0,1,2,.... In phasé, the algorithm rund.(n;) wheren; = no/2'. The decision to
end a phaseand start phaset+ 1 is taken in the following manner: lgtbe first period of phase
and lett be the current period. We start phasel as soon as

Zf —Xp1) > nz_alog(T).
|

Thus, phase ends at time periotl— 1, and the poink; computed byL(n;) is discarded by the
master algorithm sinc&(n;;1) starts at this point ang; is reset to the initial point of.(nj1).
Note that this sum can be computed by the algorithm, and hence the algorithiiréefireed. This
completes the description of the master algorithm.

5.1 Analysis

Definel; = {ti,ti+1,...,t 1 — 1}, that is, the interval of time periods which constitute phase
By Lemma 8, for any € X, we have

floe—u) < S (x —X1)+ r?_ﬁ log(T) < :_19 log(T).
I |

te] teli

Note that this inequality uses the fact that the @mi fTT(xT — Xr4+1) IS @ monotonically increasing
ast increases, since by Lemma 14, we have thé; —x;.1) > 0.
Leti* be the index of the final phase. Summing up this bound over all phaseswee h

th Xg—Uu) < % Slog

Then, using Lemma 7 we get that the expected regret of this algorithm islbduny

E [if? o —u>] <E [nl

We now need to bound {i} If the choice of the randomness in the algorithm is suchithatO,

(T)-

} - (89 1og(T)) + O(nlog?(T)). (8)

then— < 25nis an upper bound.

Other\lee i* > 0, and so the phasé —1 is well-defined. For brevity, led = l;«_1 U {ti},
and letJe be the ELIPSOIDSAMPLE steps inJ. For this interval, we have (herg,, is the point
computed by (ni=—1), which is discarded by the master algorithm when phiastarts):

- 2 1
£ (% — x > Slog(T) = T).
IEZ (Xt —Xtp1) > — a(T) . (T)

Applying the bound (6), and using the fact timgt_; = 2n;-, we get
fo (X —xty1) < 128007 2 Ifi WlI?+1280i-n* Y [l — MZHZM(xt —Xi11).
te te te

teJe

Putting these together, and dividing hy, we get

1
Tﬁlog(T)§1281ZZIIft—M||2+1281ZZIIM utH2+rT W (% —X1).  (9)
te te

i*
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Lemmas 10 and 12 give us the following upper bounds:

left—utll2 < Qr and Zu?(xt—xtm < 2log(Qr +1) +4
te te

Denote the expectation of a random variable conditioned on all the randsrbatore phasé — 1
by Ei~_1. By Lemma 11 we have the bound

- log(T
s [ m —utuZ] < 29 0q,.
tede
Taking the expectation conditioned on all the randomness before phadeon both sides of in-

equality (9) and applying the above bounds, and ukiagog(T), we get

1 4log(Qr +1)+8
= (T) < 256n°Qr + (m* )+8

Hence, one of 256Qr or i —log(Qr) must be at Ieas;l—ﬁ log(T). In the first case, we get the

L 8log(Qr+1)+16
boundm* < 25n Slog( 7 In the second case, we get the bomﬁhd< mog( T

+ n) and hence we

In all cases (including the case whign= 0), we have? <0 (n
can bound

9 Iog( )

E{nl] (9log(T (nm+nﬁlog )

Plugging this into (8), and fdt = log(T ), we get that the expected regret is bounded by
T
E [Zlfj (yi—u)| =0 (n\/ﬁQT log(T) + nlog?(T) +n8|og(T)) .
t=

6. Conclusions and Open Problems

In this paper, we gave the first bandit online linear optimization algorithm evhegret is bounded
by the square-root of the total quadratic variation of the cost vecttmass& bounds naturally inter-
polate between the worst-case and stochastic models of the prbblem.

This algorithm continues a line of work which aims to prove variation-basgeré&ounds for
any online learning framework. So far, such bounds have been obfaintur major online learn-
ing scenarios: expert prediction, online linear optimization, portfolio sele¢and exp-concave
cost functions), and bandit online linear optimization in this paper.

The concept of variational regret bounds in the setting of the ubiquitout-anoned bandit
problem opens many interesting directions for further research anmdoy@stions:

1. Improve upon the bounds presented in this paper by removing thedipanon the number
of iterations completely - that is, remove the pdbg(T)) terms in the regret bound.

4. In the stochastic multi-armed bandit setting, the regret is known to bededuby a logarithm in the number of
iterations rather than square root (Auer et al., 2002). However, thatethe regret is defined differently in the
stochastic case, which makes the logarithmic dependency even possithlis. paper we consider a stronger notion
of worst-case regret.
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2. For the special case of the classic non-stochastic MAB problem, oegietibounds which
depend on the variation of the best action in hindsight (vs. the total variation

3. Is it possible to improve regret for the classic non-stochastic multi-armeditbyaroblem
without using the self-concordance methodology (perhaps by extekenalgorithm in
Hazan and Kale (2008) to the bandit setting)?
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