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Abstract

We propose Dirichlet Process mixtures of Generalized Lihdadels (DP-GLM), a new class of
methods for nonparametric regression. Given a data setpot-iesponse pairs, the DP-GLM
produces a global model of the joint distribution through itore of local generalized linear
models. DP-GLMs allow both continuous and categorical ispand can model the same class
of responses that can be modeled with a generalized linedelmdVe study the properties of
the DP-GLM, and show why it provides better predictions aedsity estimates than existing
Dirichlet process mixture regression models. We give diors for weak consistency of the joint
distribution and pointwise consistency of the regressaimate.

Keywords: Bayesian nonparametrics, generalized linear modelsepostonsistency

1. Introduction

In this paper, we examine the general regression problem. The geegredsion problem models
a response variab¥ as dependent on a set of covariates

Y |x~ f(m(x)).

The functionm(x) is themean functionwhich maps the covariates to the conditional mean of the
response; the distributioh characterizes the deviation of the response from its conditional mean.
The simplest example is linear regression, whma(e) is a linear function ok, andf is a Gaussian
distribution with meamm(x) and fixed variance.

Generalized linear mode(&LMs) extend linear regression to many types of response variables
(McCullagh and Nelder, 1989). In their canonical form, a GLM assumestitie conditional mean
of the response is a linear function of the covariates, and that the mesgdtribution is in an expo-
nential family. Many classical regression and classification methods aks@Ghcluding logistic
regression, multinomial regression, and Poisson regression.
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The GLM framework makes two assumptions about the relationship betweeovheates and
the response. First, the covariates enter the distribution of the respoosghta linear function;
a non-linear function may be applied to the output of the linear function, byt @ane that does
not depend on the covariates. Second, the variance of the respms& depend on the covari-
ates. Both these assumptions can be limiting—there are many applications wherewd like
the response to be a non-linear function of the covariates or wherenoartainty around the re-
sponse might depend on the covariates. In this paper, we develop mlgeggession algorithm
that relaxes both of these assumptions. Our method captures arbitrapbdstesponse functions
and heteroscedasticity, that is, the property of the response distributiereviloth its mean and
variance change with the covariates, while still retaining the flexibility of GLMs.

Our idea is to model the mean function(x) by a mixture of simpler “local” response distri-
butions fi(mi(x)), each one applicable in a region of the covariates that exhibits similar rgspon
patterns. To handle multiple types of responses, each local regressi@ddlLisl. This means that
eachm(x) is a linear function, but a non-linear mean function arises when we margralizthe
uncertainty about which local response distribution is in play. (See Fifioe an example with
one covariate and a continuous response function.) Furthermore, thod@aptures heteroscedas-
ticity: the variance of the response function can vary across mixture aoeng®and, consequently,
varies as a function of the covariates.

Finally, we use a Bayesian nonparametric mixture model to let the data deteroimehbk
number and form of the local mean functions. This is critical for modelingrarly response dis-
tributions: complex response functions can be constructed with many lowaldns, while simple
response functions need only a small number. Unlike frequentist rexmgértic regression methods,
for example, those that create a mean function for each data point, thei@ayenparametric ap-
proach uses only as complex a model as the data require. Moreoveditgas a generative model.
It can be used to infer properties other than the mean function, such esrttigional variance or
response quantiles.

Thus, we develoirichlet process mixtures of generalized linear mod@&@®-GLMs), a re-
gression tool that can model many response types and many respapss.dbP-GLMs generalize
several existing Bayesian nonparametric regression modéidgivet al., 1996; Shahbaba and Neal,
2009) to a variety of response distributions. We derive Gibbs samplingithlgxs for fitting and
predicting with DP-GLMs. We investigate some asymptotic properties, includ@ak wonsistency
of the joint density estimate and consistency of the regression estimate. WeD&u@LMs with
several types of data.

The paper is organized as follows. In Section 2, we review the curesetarch on Bayesian
nonparametric regression and discuss how the DP-GLM extends this fiebe:ction 3, we review
Dirichlet process mixture models and generalized linear models. In Sectwe 4pnstruct the
DP-GLM and derive algorithms for posterior computation. In Section 5 we general conditions
for weak consistency of the joint density model and consistency of tlieggign estimate; we give
several models where the conditions hold. In Section 6 we study the DP-dBldMther methods on
three data sets; our study illustrates that the DP-GLM provides a powerfiplarametric regression
model that can be used in many types of data analysis.
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2. Related Work

Existing methods for Bayesian nonparametric regression include Gapss@asses (GP), Bayesian
regression trees, and Dirichlet process mixtures.

GP priors assume that the observations arise from a Gaussian proadsiswiibh known co-
variance function form (Rasmussen and Williams, 2006). GPs are can madglresponse types,
including continuous, categorical, and count data (Rasmussen and WilR&®&, Adams et al.,
2009). With the proper choice of covariance function, GPs can haondkncous and discrete co-
variates (Rasmussen and Williams, 2006; Qian et al., 2008). GPs assumhe tlesiponse exhibits a
constant covariance; this assumption is relaxed with Dirichlet process mextfiiGPs (Rasmussen
and Ghahramani) or treed GPs (Gramacy and Lee, 2008).

Regression tree models, such as classification and regression treB3)((Bsieman et al.,
1984), are a natural way to handle regression with continuous, cateigmrmixed data. They split
the data into a fixed, tree-based partitioning and fit a regression model wabimleaf of the tree.
Bayesian regression trees place a prior over the size of the tree ahe vgawed as an automatic
bandwidth selection method for CART (Chipman et al., 1998). Bayesiantiee@&sbeen expanded
to include linear models (Chipman et al., 2002) and GPs (Gramacy and L@8),if@he leaf nodes.

The Dirichlet process has been applied to regression problems. Wes(¥194), Escobar and
West (1995) and Nller et al. (1996) used joint Gaussian mixtures for continuous covaraes
response. Rodriguez et al. (2009) generalized this method usingdiepddPs, that is, Dirichlet
processes with a Dirichlet process prior on their base measures, in a settirgresponse defined
as a set of functionals. However, regression by a joint density estimags pertain challenges.
The balance between fitting the response and the covariates, which oftenrier the response,
can be slanted toward fitting the covariates at the cost of fitting the response

To avoid these issues—which amount to over-fitting the covariate distributidmider-fitting
the response—some researchers have developed methods that Lseiglts on the covariates
to produce local response DPs. This has been achieved with kermkelsais functions (Griffin
and Steel, 2010; Dunson et al., 2007), GPs (Gelfand et al., 2005)eseda) spatial-based weights
(Griffin and Steel, 2006, 2010; Duan et al., 2007). Still other methodsndgased on dependent
DPs, capture similarities between clusters, covariates or groups of owcamiiding in non-
continuous settings (De lorio et al., 2004; Rodriguez et al., 2009). Thleateresented here is
equally applicable to the continuous response setting and tries to balancefithéitcovariate and
response distributions by introducing local GLMs—the clustering strudtubased on both the
covariates and how the response varies with them.

There is less research about Bayesian nonparametric models forestpense types. Mukhopad-
hyay and Gelfand (1997) and Ibrahim and Kleinman (1998) used a DPfpr the random effects
portion of a GLM. Likewise, Amewou-Atisso et al. (2003) used a DP priomimdel arbitrary
symmetric error distributions in a semi-parametric linear regression model. Tnetheds still
maintain the assumption that the covariates enter the model linearly and in the agin@uwwork
is closest to Shahbaba and Neal (2009). They proposed a model tleet owier both the covariates
and response, where the response is drawn from a multinomial logistic midueDP-GLM is a
generalization of their idea.

Asymptotic properties of Dirichlet process mixture models have been studisttlyrivothe con-
text of density estimation, specifically consistency of the posterior densiyRdsaussian mixture
models (Barron et al., 1999; Ghosal et al., 1999; Ghosh and Ramam@&d@d; Walker, 2004,

1925



HANNAH, BLEI AND POWELL

Tokdar, 2006) and semi-parametric linear regression models (AmewoseAdisal., 2003; Tokdar,

2006). Recently, the posterior properties of DP regression estimatgrdban studied. Rodriguez
et al. (2009) showed point-wise consistency (asymptotic unbiasedioeslsg regression estimate
produced by their model assuming continuous covariates under diffeestments with a con-

tinuous responses and a conjugate base measure (normal-inverset)Wish8ection 5 we show

weak consistency of the joint density estimate produced by the DP-GLM.iFhised to show

pointwise consistency of the regression estimate in both the continuous gdrieal response
settings. In the continuous response setting, our results generalizeofti®sdriguez et al. (2009)

and Rodriguez (2009). In the categorical response setting, oulythemrides results for the clas-
sification model of Shahbaba and Neal (2009).

3. Mathematical Background

In this section we provide mathematical background. We review Dirichletgsmixture models
and generalized linear models.

3.1 Dirichlet Process Mixture Models

TheDirichlet procesgDP) is a distribution over distributions (Ferguson, 1973). It is denoted,

G~ DP(GG()),

whereG is a random distribution. There are two parameters. The base distriliB§icsma dis-
tribution over the same space @s For example, ifG is a distribution on reals the@y must be
a distribution on reals too. The concentration parametes a positive scalar. One property of
the DP is that random distributiod are discrete, and each places its mass on a countably infinite
collection of atoms drawn frorGg.

Consider the model

G ~ DP(aGp),
6 ~ G

Marginalizing out the random distribution, the joint distributiornaeplicates oB; is

P(B1:n|0Go) :/ (_ﬁG(&)) P(G)dG.

This joint distribution has a simpler form. The conditional distributio®pgiven8,,,_) follows
a Polya urn distribution (Blackwell and MacQueen, 1973),

8/ 1 S, @ g (1)
nPLn=1) cx+n—1i; " Ta+n—1""

With this conditional distribution, we use the chain rule to specify the joint distributio

Equation (1) reveals thelustering propertyof the joint distribution of61.,: there is a positive
probability that eacl®; will take on the value of anothd;, leading some of the variables to share
values. This equation also reveals the roles of scaling parameted base distributioftg. The
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unigue values contained B ., are drawn independently frofig, and the parameter determines
how likely 6,,1 is to be a newly drawn value frofdg rather than take on one of the values from
erm

In a DP mixture,; is a latent variable that parameterizes the distribution of an observed data
point, point (Antoniak, 1974),

P ~ DP(aGy),
Qi ~P,
Xﬂeim/fﬂfeo.

Consider the posterior distribution 6f., given x;.,. Because of the clustering property, obser-
vations group according to their shared parameters. Unlike finite clusteraggls, however, the
number of groups is not assumed known in advance of seeing the dathisfeason, DP mixtures
are sometimes called “infinite clustering” models.

3.2 Generalized Linear Models

Generalized linear models (GLMs) build on linear regression to provideialtesuite of predictive
models. GLMs relate a linear model to a response via a link function; exampglesiénfamiliar
models like logistic regression, Poisson regression, and multinomial regreSee McCullagh and
Nelder (1989).

GLMs have three components: the conditional probability model of regpbgisen covariates
X, the linear predictor, and the link function. GLMs assume that the resgbsis#ution is in the
exponential family,

f(yln) —exp<ma_($)(m+0(y,<p)>-

Here we give the canonical form of the exponential family, wreere, andc are known functions
specific to the exponential familgis a scale parameter (sometimes called a dispersion parameter),
andn is the canonical parameter. A linear predicif, is used to determine the canonical param-
eter through a set of transformations. The mean resportsénis= p = E[Y|X] (Brown, 1986).
However, we can choose a link functigrsuch thap = g~1(XpB), which defines) equal toXp.

4. Dirichlet Process Mixtures of Generalized Linear M odels

We now turn to Dirichlet process mixtures of generalized linear models (DS a Bayesian

predictive model that places prior mass on a large class of responsitieenGiven a data set of
covariate-response pairs, we describe Gibbs sampling algorithms farxapgte posterior infer-

ence and prediction. We derive theoretical properties of the DP-GLM@i&h 5.

4.1 Model Formulation

In a DP-GLM, we assume that the covariatésare modeled by a mixture of exponential-family
distributions, the responséis modeled by a GLM conditioned on the covariates, and that these
models are connected by associating a set of GLM coefficients with epohemtial family mixture
component. Le® = (6y,6y) be the bundle of parameters overandY | X, and letGo be a base
measure on the space of both. For exanmlenight be a set afl-dimensional multivariate Gaussian
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Figure 1: The top figure shows the training data (gray) fitted into clustétstiwe prediction given
a single sample from the posteri@!) (red). The bottom figure shows the smoothed
regression estimate (black) for the Gaussian model of Equation (2) withdtiegelata
(blue). Data plot multipole momentsX) against power spectru@, (Y) for cosmic
microwave background radiation (Bennett et al., 2003).

location and scale parameters for a vector of continuous covartjtesight be ad 4 2-vector of
reals for their corresponding GLM linear prediction coefficients, alornit) & GLM dispersion
parameter. The full model is

P ~ DP(aGy),
6= (ei,x,ei,y)“:)’\“ Pv
Xi[81x ~ fx(+[6ix),
Yi[Xi,8iy ~ GLM(:[X;, 8iy).

The densityfx describes the covariate distribution; the GLM fpdepends on the form of the
response (continuous, count, category, or others) and how thenissspelates to the covariates (i.e.,
the link function).

The Dirichlet process clusters the covariate-response paiys When both are observed, that
is, in “training,” the posterior distribution of this model will cluster data pointsading to near-
by covariates that exhibit the same kind of relationship to their responsean\tfie response is
not observed, its predictive expectation can be understood by clgstbartovariates based on the
training data, and then predicting the response according to the GLMassbwith the covariates’
cluster. The DP prior acts as a kernel for the covariates; instead af adtaclidean metric, the DP
measures the distance between two points by the probability that the hiddengber is shared.
See Figure 1 for a demonstration of the DP-GLM.

We now give a few examples of the DP-GLM that will be used throughoutpidyer.
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4.1.1 EXAMPLE: GAUSSIAN MODEL

We now give an example of the DP-GLM for continuous covariates/ressptimat will be used
throughout the rest of the paper. For continuous covariates/resjoits we model locally with
a Gaussian distribution for the covariates and a linear regression modkefoesponse. The co-
variates have mean ; and variance?; for the j' dimension of thé'" observation; the covariance
matrix is diagonal in this example. The GLM parameters are the linear pre@igior .3 ¢ and
the response variancx%y. Here,0x; = (Mi,1.d,0i 1.d) andBy; = (Bi 0.4, Oiy). This produces a mixture
of multivariate Gaussians. The full model is,

P ~ DP(aGy), 2)
9i|PNP,
X;.j16ix~ N (Wj, o) , j=1,....4d,

d
YilX, 8y ~N (Bio+ > Bimj,o?y> :
=1

This model has been proposed by West et al. (1994), Escobar astd(Y295) and Miller et al.
(1996). However, they use a fully populated covariance matrix thasgiegactoy parameters.
This is computationally expensive for larger problems and adds postertihtkod associated with
the covariates, rather than the response. A discussion of the probleoesadsd with the latter issue
is given in Section 4.4.

4.1.2 EXAMPLE: MULTINOMIAL MODEL (SHAHBABA AND NEAL, 2009)

This model was proposed by Shahbaba and Neal (2009) for nontiteeaification, using a Gaus-
sian mixture to model continuous covariates and a multinomial logistic model fotegarécal
response withK categories. The covariates have mggnand varianccerﬁ  for the jt" dimension of

theith observation; the covariance matrix is diagonal for simplicity. The GLM patarsare thd
linear predictoBi o, - - ., Bidk, kK= 1,...,K. The full model is,

P ~ DP(aGy), (3)
6i|P~P,
Xi.j18ix ~ N (1j,05) j=1,....d,
eXp(Bi,O.k + Z?:l BLj,kXi,j)
i 1exp(Bios+ Z?:l BijcXij)

P(Y =KX, 81y) =

4.1.3 EXAMPLE: POISSONMODEL WITH CATEGORICAL COVARIATES

We model the categorical covariates by a mixture of multinomial distributions andatnt re-
sponse by a Poisson distribution. If covarigteask categories, letp; j 1,...,pi,j k) be the proba-
bilities for categories 1..,K. The covariates are then coded by indicator variah]g@l,:k}, which
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are used with the linear predict, 0,3 1.1k, ---,Bi.d,1x. The full model is,

P~ DP(GGO), 4)
6i|P~P,

P(Xi,j = k|Bix) = Pijk j=1,....d, k=1,....K,

d K

A%, 6y = eXp(Bi,o+ > Bi,j,kl{x”_k}> ;
J=1k=1
—Nink

P(Yi:kp(iaei,y):eﬂ)\l, k=0,1,2,....

We apply Model (4) to data in Section 6.

4.2 Heteroscedasticity and Overdispersion

One advantage of the DP-GLM is that it provides a strategy for handlingram problems in
predictive modeling. Many models, such as GLMs and Gaussian precenséie assumptions
about data dispersion and homoscedasticity. Overdispersion occurglanarameter GLMs when
the data variance is larger than the variance predicted by the model meddopaalhyay and
Gelfand (1997) have successfully used DP mixtures over GLM intepagpimeters to create classes
of models that include overdispersion. The DP-GLM retains this propleutyjs not limited to
linearity in the covariates.

A model ishomoscedastiwhen the response variance is across constant all covariates; a model
is heteroscedastiowhen the response variance changes with the covariates. Models like GteMv
homoscedastic and give poor fits when that assumption is violated in the datontrast, the
DP-GLM captures heteroscedasticity when mixtures of GLMs are usedmbture model setting
allows variance to be modeled by a separate parameter in each clusteramilegtion of clusters in
a single covariate location. This leads to smoothly transitioning heteroscepastesior response
distributions.

This property is shown in Figure 2, where we compare a DP-GLM to a hadastc model
(Gaussian processes) and heteroscedastic modifications of honsigceuzdels (treed Gaussian
processes and treed linear models). The DP-GLM is robust to hetdestiwedata—it provides a
smooth mean function estimate, while the other models are not as robust aepnmn-smooth
estimates.

4.3 Posterior Prediction With a DP-GL M

The DP-GLM is used in prediction problems. Given a collection of covaresgonse pairb =
(X%, Yi)r,, we estimate the joint distribution ¢K,Y)|D . For a new set of covariateswe use the
joint to compute the conditional distributio¥i] x, D and the conditional expectatidR[Y |x,D]. We
give the step-by-step process for formulating specific DP-GLM modelscamputing the condi-
tional distribution of the response.

4.3.1 (HOOSING THEMIXTURE COMPONENT ANDGLM

We begin by choosindy and the GLM. The Dirichlet process mixture model and GLM provide
flexibility in both the covariates and the response. Dirichlet process mixtucelsiallow many
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Figure 2: Modeling heteroscedasticity with the DP-GLM and other Bayegiaparametric meth-
ods. The estimated mean function is given along with a 90% predicted cordidearval
for the estimated underlying distribution. DP-GLM produces a smooth meatidarand
confidence interval.

types of variables to be modeled by the covariate mixture and subsequemdiiptraed for use as a
covariate in the GLM. Note that certain mixture distributions support certagstgpcovariates but
may not necessarily be a good fit. The same care that goes into choosiitiens and GLMs in
a parametric setting is required here.

4.3.2 (HOOSING THEBASE MEASURE AND OTHER HYPERPARAMETERS

The choice of the base measu#g affects how expressive the DP-GLM is, the computational effi-
ciency of the prediction and whether some theoretical properties, sudyamptotic unbiasedness,
hold. For example( for the Gaussian model is a distribution o\r, oi, Bi 0.4, Giy). A conju-
gate base measure is normal-inverse-gamma for each covariate dimertsionlévariate normal
inverse-gamma for the response parameters. Ghisllows all continuous, integrable distributions
to be supported, retains theoretical properties, such as asymptoticedreas, and yields efficient
posterior approximation by collapsed Gibbs sampling (Neal, 2000). In sumtharbase measure
is chosen in line with data size, distribution type, distribution features (subletasogeneity, and
others) and computational constraints.

Hyperparameters for the DP-GLM include the DP scaling paramet@nd hyperparameters
parameters for the base measGie We can place a gamma prior on(Escobar and West, 1995);
the parameters do may also have a prior. Each level of prior reduces the influence of therhy
parameters, but adds computational complexity to posterior inferencelf&sand West, 1995).
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4.3.3 APPROXIMATING THE POSTERIOR ANDFORMING PREDICTIONS

We derive all quantities of interest—that is, conditional distributions aneé&tions—from the
posterior of the joint distribution ofx,y). Define f(x,y| D) as the joint posterior distribution given
dataD and f(x,y|61,n) as the joint distribution given parametés, that are associated with data
D = (X,Y;){L,. The posterior can be expressed through a conditional expectation,

f(X7y|D):E[f<X7y‘eln)|D} (5)

While the true posterior distributiori(x,y| D), may be impossible to compute, the joint distribution
conditioned orf4., has the form

a 1 0
f(X,y[01n) = arn [[ fy(yIx,0) fx(X|8)Go(dB) + atn 21 fy(yIx, 6;) fx(x|6;).
i=

We approximate the expectation in Equation (5) by Monte Carlo integration hdipgsterior
samples 0B1,

1 M
fxy|D) ~ 7 3 Fxy|6l).

We use Markov chain Monte Carlo (MCMC), specifically Gibbs sampling, t@ialM i.i.d.
samples from this distribution. (See Escobar, 1994, MacEachern, E3@ébar and West, 1995
and MacEachern andiler, 1998 for foundational work; Neal, 2000 provides a review aatbf
the art algorithms.) We construct a Markov chain on the hidden vari@ilesuch that its limiting
distribution is the posterior. We give implementation details in Appendix A.

We use a similar strategy to construct the conditional distributiof| 8f = x, D. The conditional
distribution is

F(Y[X =x D) = —X[D)
J t(y,x|D)dy

Again usingM i.i.d. samples from the posterior 6f.,|D,
13 (m)
f(Y|X=xD)~ ] Z fY|X=%61),
m=1

_ L3 Sy B =X h(XO)Co(d0) + 314 (VX = 6™ f(x16™)
M o [ Tx(X8)Go(dB) + 51y Fx(x(6™)
We use the same methodology to compute the conditional expectation of thasegpeen a
new set of covariatesand the observed daf E[Y | X = x,D]. Again using iterated expectation,
we condition on the latent variables,

E[Y|X=x,D]=E[E[Y|X =X,01n] |D]. (6)
Conditional on the latent parametérs, that generated the observed data, the inner expectation is

- A f,E[Y|X = x,0] f(x18)Go(d8) + ST, E[Y|X = x,8] fx(x6))
EIYIX = 8] = = @ T(X8)Co(d8) = 51 (X6 |

Since we assuméis a GLM,E[Y|X = x, 6] is available in closed form as a functiono&nd®.
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The outer expectation of Equation (6) is usually intractable. We approximayeMionte Carlo
integration withM posterior samples &,

1 (m)

EJY|X = x,D] ~ Ehmzx%n.

|vlm:l

4.4 Comparison tothe Dirichlet Process Mixture Model Regression

The DP-GLM models the respon¥econditioned on the covariateé& An alternative is one where
we model(X,Y) from a common mixture component in a classical DP mixture (see Section 3), and
then form the conditional distribution of the response from this joint. We tiget® the mathe-
matical differences between these approaches and the conseqokthose differences. (They are
compared empirically in Section 6.)

A Dirichlet process mixture model (DPMM) has the form,

P ~ DP(aGy), @)
B[P~ P,
Xi|ei,x ~ fx(x|ei7x)a
Yil6iy ~ fy(YIBiy).

This model has been studied in Escobar and West (1995) wherg) are assumed to have a
joint Gaussian distribution. When the covariance matrix is assumed to be dlatmnregression
estimate is generally poor. However, when the covariance matrix is assurbedutly populated,
computation becomes difficult with more than a few covariate dimensions. Ws fmtthe case
with diagonal covariance. We study why it performs poorly and how the@D® improves on

it with minimal increase in computational difficulty. The difference between &li¢d) and the
DP-GLM is that the distribution of given® is conditionally independent of the covariabesThis
difference has consequences on the posterior distribution and, teysgterior predictions.

One consequence is that the GLM response component acts to remaovtabohbias for sam-
ples near the boundary of the covariates in the training data set. The GLMIlitsar predictor
through the training data; all predictions for boundary and out-of-sangsariates follow the local
predictors. The traditional DP model, however, only fits a local mean; alhttary and out-of-
sample predictions center around that mean. The boundary effectsmapaied in Figure 3. The
DP-GLM can be viewed as a Bayesian analogy of a locally linear kertigiasr while the regular
DP is similar to the Nadaraya-Watson kernel estimator (Nadaraya, 196dohyd.964).

Another consequence is that the proportion of the posterior likelihoodeto the response
differs between the two methods. Consider the log of the posterior of theNDBVen in Model
(7). Assume thaty is a single parameter exponential, whéye= (3,

d

K
(DR [z<sq>+ 3. (0l Bo)+ 3 (B )

=1

: (8)

Here,/ denotes log likelihood and™ means “proportional in the log space.” The log of the DP-
GLM posterior for a single parameter exponential family GLM, wheye= (o, ...,Bq), has the
form,

K d d
¢(89P9™ D) I ((Bc (ye|BE ((8c,x |D)| . 9
( D) i; [J; (Bc.,1>+c; (y \Bc,xc)+le (6 | >] 9)
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As the number of covariates grows, the likelihood associated with the ctagagaows in both
equations. However, the likelihood associated with the response alse giitiwthe extra response
parameters in Equation (9), whereas it is fixed in Equation (8).

These posterior differences lead to two predictive differences. FrstDP-GLM is much
more resistant to dimensionality than the DPMM. Since the number of respelasedrparameters
grows with the number of covariate dimensions in the DP-GLM, the relativeepos weight of
the response does not shrink as quickly in the DP-GLM as it does in theNDPMis keeps the
response variable important in the selection of the mixture components and thakeP-GLM a
better predictor than the DPMM as the number of dimensions grows.

As the dimensionality grows, however, the DP-GLM produces less stabtictipns than the
DPMM. While the additional GLM parameters help maintain the relevance of gponse, they
also add noise to the prediction. This is seen in Figure 3. The GLM paranietéis figure have
a Gaussian base measure, effectively creating a local ridge regréssidower dimensions, the
DP-GLM produced more stable results than the DPMM because a smaller nahténger clusters
were required to fit the data well. The DPMM, however, consistently predistable results in
higher dimensions as the response became more of a sample average ttanaadmge. The
DPMM has the potential to predict well if changes in the mean function coineitiheunderlying
local modes of the covariate density. However, the DP-GLM forces thariates into clusters that
coincide more with the response variable due to the inclusion of the slopa@ars.

We now discuss the theoretical properties of the DP-GLM.

5. Asymptotic Properties of the DP-GLM M odel

In this section, we study the asymptotic properties of the DP-GLM model, nanesllg sonsistency
of the joint density estimate and pointwise consistency (asymptotic unbias¢dhése regression
estimate. Consistency is the notion that posterior distribution accumulates ingedase to the
true distribution. Weak consistency assures that the posterior distribatomallates in regions of
densities where “properly behaved” functions (i.e., bounded and emt§) integrated with respect
to the densities in the region are arbitrarily close to the integral with respecetué density.
We then use the weak consistency results to give conditions for asymptaimsedness of the
regression estimate. Both consistency and asymptotic unbiasednesBemtiastist justification of
Bayesian methods; more observations lead to models that tend toward thecttealue. Neither
weak consistency nor asymptotic unbiasedness are guaranteed foiddpiocess mixture models.

Notation for this section is more complicated than the notation for the modelfolety) be
the true joint distribution ofx,y); in this case, we will assume th#f is a density. LetF be the
set of all density functions ovék,y). LetMN' be the prior overF induced by the DP-GLM model.
LetE,[-] denote the expectation under the true distributionlgrd-| be the expectation under the
prior M.

In general, an estimator is a function of observations. Assuming a true digirilbof those
observations, an estimator is called unbiased if its expectation under théuistr is equal to
the value that it estimates. If an estimator has this property, it is called consibighe case of

1. In unpublished results, we tried other base measures, such adaaidaplistribution. They produced less stable
results than the Gaussian base measure.
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Comparison over Dimensions
DP Mixture DPGLM

Ot

02

Figure 3: A plain Dirichlet process mixture model regression (left) veDdsSLM, plotted against
the number of spurious dimensions (vertical plots). We give the estimatedfmeztion
along with a 90% predicted confidence interval for the estimated underligtgpdtion.
Data have one predictive covariate and a varying number of spurioasiates. The
covariate data were generated by a mixture model. DP-GLM produces dghenawean
function and is much more resistant to spurious dimensionality.

DP-GLM, that would mean for everyin a fixed domain and everyn > 0,

Eto [Bre [Y[x, (%, Y)ial] = Eg[Y X
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Since we use Bayesian priors in DP-GLM, we will have bias in almost all cades best we
can hope for is a consistent estimator, where as the number of obsesvgitaws to infinity, the
mean function estimate converges to the true mean function. That is, fgrewes,

Ent[Y[% (X, Y)iL1] = Eg[Y[X] asn— oo.

5.1 Weak Consistency of the Joint Posterior Distribution

Weak consistency is the idea that the posterior distribufidiif | (X;,Y;)I"_,) collects in weak neigh-
borhoods of the true distributiofig(x,y). A weak neighborhood ofy of radiuse, M. (fo), is defined
as follows,

wi(to) = {1 : | [ otxyigixy)aray- [ fixy)axy)acy <

for every bounded, continuous functign Aside from guaranteeing that the posterior collects in
regions close to the true distribution, weak consistency can be used tocsi@istency of the
regression estimate under certain conditions. We give conditions for eegaistency for joint pos-
terior distribution of the Gaussian and multinomial models and use these reshitsig@nsistency

of the regression estimate for these same models.

We now give a theorem for the asymptotic unbiasedness of the Gaussiah mod

Theorem 1 Let M’ be the prior induced by the Gaussian model of Equation (2).o(i,¥) has
compact support, is absolutely continuous over that domainGyidas supporiR9 x Ri x RIHL
R., then

N (We(fo) | (X%, Y)g) — 1

as n— oo for everye > 0.

Posterior consistency of similar models, namely Dirichlet process mixtureauésgns, has been
extensively studied by Ghosal et al. (1999), Ghosh and Ramamod08)2and Tokdar (2006) and
convergence rates in Walker et al. (2007). The compact suppaditmnfor fg allows for broad
array of base measures to produce weakly consistent posteriorJols#a (2006) for results on

non-compactly supportefy.
We now give an analogous theorem for the multinomial model.

Theorem 2 Let M’ be the prior induced by the multinomial model of Equation (3). o[ has
compact support, is absolutely continuoGs, has supporR? x RY x R41, andPy,[Y = k|X = X
is absolutely continuous in x fork 1,... K, then

M7 (7(fo) | (%6, ¥)Ly) — 1
as n— oo for everye > 0.

The proofs of Theorems 1 and 2 are given in the Appendix.
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5.2 Consistency of the Regression Estimate

We approach consistency of the regression estimate by using weaktenogifor the posterior of
thejoint distribution and then placing additional integrability constraints on the baseuned@g.
We now give results for the Gaussian and multinomial models.

Theorem 3 LetM be the prior induced by the Gaussian model of Equation (2). If
() Goand § satisfy the conditions of Theorem 1, and
(i) [(Bo+ T, Bix)Go(dB) < o for every x C,

then
im B, [Eni [Y]x, (%, Y)Ia]] = Ego[YX

almost surelyP’? .
Similarly, we give a theorem for the multinomial model.
Theorem 4 LetMNT be the prior induced by the multinomial model of Equation (3). If
() Goand § satisfy the conditions of Theorem 2, and
(i) Pg[Y =k|X =x]is continuous in x fork=1,... K,

then
im B, [Prye[Y = Kjx, 06, Y]] = Pro[Y = kix]

almost surey?’$ fork=1,...,K.
See Appendix B for proofs of Theorems 3 and 4.

5.3 Consistency Example: Gaussian M odel

Examples of prior distributions that satisfy Theorems 1 and 3 are as follows.

5.3.1 NORMAL-INVERSEWISHART

Note that in the Gaussian case, slope parameters can be generatet bgvafiance matrix: using
a conjugate prior, a Normal-Inverse-Wishart, will produce an instahtteeddP-GLM. Define the
following model, which was used by Wler et al. (1996),

P ~ DP(aGy), (10)
6i|P~P,
(X, Yi) 6 ~ N(, 2).

The last line of Model (10) can be broken down in the following manner,
Xi ‘el ~ N(Umzx)a
Yi 8 ~ N (b + b ZMb(X — i), 05 — b 5 ')
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where
'Y s_ [ o2 b }
2 [I& ]7 b 2
We can then definp as,
Bo=ky—b"Z My, Bra=b"Z*h

The base measuf& is defined as,
(K, Z) ~ Normal Inverse Wisha(h,v,a,B).

Here A is a mean vectowy is a scaling parameter for the meanis a scaling parameter for the
covariance, an® is a covariance matrix.

5.3.2 DAGONAL NORMAL-INVERSE-GAMMA

It is often more computationally efficient to specify ttitis a diagonal matrix. In this case, we
can specify a conjugate base measure component by component:
0i,j ~ Inverse Gammi;, b;), i=1,...,d,
Hi,j |0 ~N(Aj, 05 /Vj), j=1,....d,
oiy ~ Inverse Gammay, by),
Bi.j [ Oiy ~ Nat1(Ay, 0y /Vy).

The Gibbs sampler can still be collapsed, but the computational cost is mueh tloan the full
Normal-Inverse-Wishart.

5.3.3 NoRMAL MEAN, LOG NORMAL VARIANCE

Conjugate base measures tie the mean to the variance and can be a posmi#ifcheteroscedastic
data sets. The following base measure was proposed by Shahbabeaar{d(009),

log(ai j) ~ N(Mj 6,5 5), i=v.1,....d,
MJ NN(mLu?st,p)v ] :1,...,d,
Bij ~N(mjg,S ) j=0,....d.

5.4 Consistency Example: Multinomial Model
Now consider the multinomial model of Shahbaba and Neal (2009), givetodel (3),
P ~ DP(aGo),
6i|P~P,
Xi.j18ix ~ N (1j,05) ji=1,....d,
exp(Biok+ 31 BijkXi.)
S exp(Bios+ Y i1BijeXij)

Examples of prior distributions that satisfy Theorems 2 and 4 are as follows.

P(Yi =kIX,6iy) =
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5.4.1 NORMAL-INVERSEWISHART
The covariates have a Normal-Inverse-Wishart base measure whileLtiep@&ameters have a
Gaussian base measure,
(Mi x, Zix) ~ Normal Inverse Wishafh,v,a,B),
Bi./j’kNN(mj’k,sik), j:O,...,d, k:]_,..‘,K.

5.4.2 DAGONAL NORMAL-INVERSE-GAMMA

Itis often more computationally efficient to specify tRatis a diagonal matrix. Again, we can spec-
ify a conjugate base measure component by component while keeping dilssi@abase measure
on the GLM components,

0 j ~ Inverse Gamm;, bj), ji=1,....d,
Hij| Oij ~ N(Aj, 0 /v)), ji=1,....d,
Bi,j,k|0i,yNN(mj,kaS]2,k)7 j=0,...,d, k=1,....K

5.4.3 NORMAL MEAN, LOG NORMAL VARIANCE

Likewise, for heteroscedastic covariates we can use the log normaiissseire of Shahbaba and
Neal (2009),

log(ai j) ~ N(Mj 6,7 5), j=1,....d,
Mij ~ N(mj,wsjz,u)a ji=1,...,d,
Bi,j,kNN(mLkﬁ,Sik’ﬁ) j=0,...,d, k=1,...,K.

6. Empirical Study

We compare the performance of DP-GLM regression to other regresstrods. We studied data
sets that illustrate the strengths of the DP-GLM, including robustness wjitkee® data type, het-
eroscedasticity and higher dimensionality than can be approached with matitiethods. Shah-
baba and Neal (2009) used a similar model on data with categorical degaaiad count responses;
their numerical results were encouraging. We tested the DP-GLM on theviojalata sets.

6.1 Data Sets

We selected three data sets with continuous response variables. Theyttigatigus data difficul-
ties within regression, such as error heteroscedasticity, moderate dimeditgil0—12 covariates),
various input types and response types.

e Cosmic Microwave Background (CM B) (Bennett et al., 2003). The data set consists of 899
observations which map positive integées 1,2,...,899, called ‘multipole moments,’ to the
power spectrunC,. Both the covariate and response are considered continuous. The data
pose challenges because they are highly nonlinear and heterosce8emsticthis data set is
only two dimensions, it allows us to easily demonstrate how the various methpdsaah
estimating a mean function while dealing with non-linearity and heteroscedasticity.

1939



HANNAH, BLEI AND POWELL

e Concrete Compressive Strength (CCS) (Yeh, 1998). The data set has eight covariates: the
components cement, blast furnace slag, fly ash, water, superplastciaese aggregate and
fine aggregate, all measuredkg per m®, and the age of the mixture in days; all are con-
tinuous. The response is the compressive strength of the resultinget®raiso continuous.
There are 1,030 observations. The data have relatively little noise. Mi#garise from the
moderate dimensionality of the data.

e Solar Flare (Solar) (Bradshaw, 1989). The response is the number of solar flares in a 24
hour period in a given area; there are 11 categorical covariatevariams are binary and 4
have 3 to 6 classes for a total of 22 categories. The response is the silirtypes of solar
flares for the area. There are 1,389 observations. Difficulties aatectdy the moderately
high dimensionality, categorical covariates and count response. gegss@on methods can
appropriately model this data.

Data set testing sizes ranged from very small (20 observations) to niedered (800 observations).
Small data set sizes were included due to interests in (future) online appigatio

6.2 Competitors

The competitors represent a variety of regression methods; some metkodshaisuitable for
certain types of regression problems.

e Ordinary Least Squares (OLS). A parametric method that often provides a reasonable fit
when there are few observations. Although OLS can be extended dowitls any set of
basis functions, finding basis functions that span the true function is autliffask. We
naively choosél1X; ... Xy]" as basis functions. OLS can be modified to accommodate both
continuous and categorical inputs, but it requires a continuous resgonction.

e CART. A nonparametric tree regression method (Brieman et al., 1984) geneyaieebat-
lab function classregtree. It accommodates both continuous and categorical inputs and any
type of response.

e Bayesian CART. A tree regression model with a prior over tree size (Chipman et al., 1998);
it was implemented iR with thetgp package.

e Bayesian Treed Linear Model. A tree regression model with a prior over tree size and a
linear model in each of the leaves (Chipman et al., 2002); it was implementevith the
tgp package.

e Gaussian Processes (GP). A nonparametric method that can accommodate only continuous
inputs and continuous responses. GPs were generateddtisb by the prograngpml of
Rasmussen and Williams (2006).

e Treed Gaussian Processes. A tree regression model with a prior over tree size and a GP on
each leaf node (Gramacy and Lee, 2008); it was implementRdnith thetgp package.
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Method Mean Absolute Error Mean Square Error
Training set size 30 50 100 250 500 30 50 100 250 500
DP-GLM 058 051 049 048 045|100 094 091 094 083
Linear Regression | 0.66 0.65 0.63 0.65 0.6831.08 1.04 1.01 1.04 0.96
CART 0.62 0.60 0.60 056 056145 134 143 129 141

Bayesian CART 0.66 064 054 050 047104 101 093 094 0.84

Treed Linear Modell 0.64 052 0.49 048 0.46| 1.10 095 093 095 0.85
Gaussian Process | 0.55 053 050 051 0.4y1.06 097 093 096 0.85
Treed GP 052 049 048 048 046| 1.03 095 095 096 0.89

Table 1: Mean absolute and square errors for methods on the CMB ddta saining data size.
The best results for each size of training data are in bold.

e Basic DP Regression. Similar to DP-GLM, except the response is a function onlyugf
rather tharo + 5 Bix;. For the Gaussian model,
P ~ DP(aGy),
6i|P~P,
Xi|8; ~ N(M’,X,Giz,x),
Yi[8 ~ Nk, 07y )-

This model was explored in Section 4.4.

e Poisson GLM (GLM). A Poisson generalized linear model, used on the Solar Flare data set.
It is suitable for count responses.

6.3 Cosmic Microwave Background (CMB) Results

For this data set, we used a Gaussian model with base measure

b ~ N(my, %), g ~ exp{N(mys,si¢) },
Bod ~ N(m),’o;d, %,O:d)a 05 ~ exp{N(mX,& ﬁ,s)} :

This prior was chosen because the variance tails are heavier than eseigeenma and the mean
is not tied to the variance. It is a good choice for heterogeneous dasaiseeof those features.
Computational details are given in Appendix C.

All non-linear methods except for CART (DP-GLM, Bayesian CART, tréeear models, GPs
and treed GPs) did comparably on this data set; CART had difficulty findingppropriate band-
width. Linear regression did poorly due to the non-linearity of the data sestfdf heteroscedas-
ticity for the DP-GLM, GPs, treed GPs and treed linear models on 250 traimitagpbints can be
seen in Figure 2. See Figure 4 and Table 1 for results.

6.4 Concrete Compressive Strength (CCS) Results

The CCS data set was chosen because of its moderately high dimensiorabynginuous covari-
ates and response. For this data set, we used a Gaussian model apdjatedrase measure with
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CMB Dataset
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Figure 4. The average mean absolute error (top) and mean squaretbettom) for ordinary least
squares (OLS), tree regression, Gaussian processes and DRt CMB data set.
The data were normalized. Meaty — one standard deviation are given for each method.

conditionally independent covariate and response parameters,

(Ux, 02) ~ Normal— Inverse— Gammamy, s, ay, by),
(Bod,05) ~ Multivariate Normal— Inverse— GamméaMy, S, ay, by).

This base measure allows the sampler to be fully collapsed but has fevaratevassociated pa-
rameters than a full Normal-Inverse-Wishart base measure, givingdtterljit in a moderate di-

mensional setting. In testing, it also provided better results for this datassethh exponentiated
Normal base measure used for the CMB data set; this is likely due to the lowaraiseariance of

the CCS data set. Computational details are given in Appendix C.

Results on this data set were more varied than those for the CMB data sehaGse best
performance overall; on smaller sets of training data, the DP-GLM outpeeid frequentist CART.
Linear regression, basic DP regression and Bayesian CART allrpertbcomparatively poorly.
Treed linear models and treed GPs performed very well most of the time,abutdnvergence
problems leading to overall higher levels of predictive error. Convergéssues were likely caused
by the moderate dimensionality (8 covariates) of the data set. See FigureTataded® for results.

6.5 Solar Flare Results

The Solar data set was chosen to demonstrate the flexibility of DP-GLM. Megrgssion tech-
niques cannot accommodate categorical covariates and most canmoinacdate a count-type re-
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CCS Dataset
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Figure 5: The average mean absolute error (top) and mean squaretbettom) for ordinary least
squares (OLS), tree regression, Gaussian processes, locatieffcand the DP-GLM
Poisson model on the CCS data set. The data were normalized.Meaone standard
deviation are given for each method.

Method Mean Absolute Error Mean Squared Error
30 50 100 250 500 30 50 100 250 500
DP-GLM 054 050 045 042 040|047 041 033 028 027

Location/Scale DP | 0.66 0.62 0.58 0.56 0.540.68 0.59 0.52 048 0.45
Linear Regression | 0.61 0.56 051 0.50 050066 050 043 041 0.40
CART 0.72 062 052 043 034087 065 046 033 0.23
Bayesian CART 078 0.72 0.63 055 054095 080 061 049 046
Treed Linear Model| 1.08 0.95 0.60 0.35 1.107.85 956 4.28 0.26 1232
Gaussian Process | 053 052 038 0.31 0.26/ 0.49 045 026 018 0.14

Treed GP 0.73 040 047 028 022|140 030 3.40 0.20 011

Table 2: Mean absolute and square errors for methods on the CCS tihiatsining data size.
The best results for each size of training data are in bold.

sponse. For this data set, we used the following DP-GLM,
P ~ DP(aGy),
i |P~P,
Xii 18~ (Pija,---»PijiK())s
' K(i)
Yi |6 ~ Poisson{ Bio+ 3 Y Bijulix =k} | -
j=1k=1

We used a conjugate covariate base measure and a Gaussian base foeBsur

(Pj.1,---» Pjx(j)) ~ Dirichlet(aj 1, ..., aj k), Bjk ~ N(mj./k,sjz’k).
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Solar Dataset
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Figure 6: The average mean absolute error (top) and mean squavebettom) for tree regres-
sion, a Poisson GLM (GLM) and DP-GLM on the Solar data set. Mean one standard
deviation are given for each method.

Method Mean Absolute Error Mean Squared Error

50 100 200 500 800 50 100 200 500 800
DP-GLM 052 049 048 045 044|084 076 0.71 069 0.63
Poisson Regression0.65 0.59 0.54 0.52 0.480.87 0.84 0.80 0.73 0.64
CART 053 048 050 047 0.47y1.13 0.88 1.03 0.88 0.83
Bayesian CART 059 052 051 047 045086 0.80 0.78 0.71 0.60
Gaussian Process| 0.55 047 047 045 044|114 083 0.83 0.81 0.67

Table 3: Mean absolute and square errors for methods on the Solaretatatsaining data size.
The best results for each size of training data are in bold.

Computational details are given in Appendix C.

The only other methods that can handle this data set are CART, Bayesiah &#RPoisson
regression. GP regression was run with a squared exponentialasmarfunction and Gaussian
errors to make use of the ordering in the covariates. The DP-GLM had gedormance under
both error measures. The high mean squared error values suggésteghantist CART overfit
while the high mean absolute error for Poisson regression suggests dictiot adequately fit
nonlinearities. See Figure 6 and Table 3 for results.

6.6 Discussion

The DP-GLM is a relatively strong competitor on all of the data sets. It wa® stable than most
of its Bayesian competitors (aside from GPs) on the CCS data set. Our magydisst that the DP-
GLM would be a good choice for small sample sizes when there is significantqmowledge; in

those cases, it acts as an automatic outlier detector and produces a e¢ssikithilar to a Bayesian
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GLM. Results from Section 4 suggest that the DP-GLM is not appropraatprbblems with high
dimensional covariates; in those cases, the covariate posterior swampsybase posterior with
poor numerical results.

7. Conclusions and Future Work

We developed the Dirichlet process mixture of generalized linear models5(D\), a flexible
Bayesian regression technique. We discussed its statistical and empiojpaftes; we gave con-
ditions for asymptotic unbiasedness and gave situations in which they hady,five tested the
DP-GLM on a variety of data sets against state of the art Bayesian comgpefitee DP-GLM was
competitive in most setting and provided stable, conservative estimatesyikieaxtremely small
sample sizes.

One concern with the DP-GLM is computational efficiency as implemented. sliltewere
generated using MCMC, which does not scale well to large data sets. Amadite implementation
using variational inference (Blei and Jordan, 2006), possibly onlar&atonal inference (Sato,
2001), would greatly increase computational feasibility for large data sets.

Our empirical analysis of the DP-GLM has implications for regression metttadsrely on
modeling a joint posterior distribution of the covariates and the responseexpariments suggest
that the covariate posterior can swamp the response posterior, biull caoeleling can mitigate the
effects for problems with low to moderate dimensionality. A better understanadd allow us
to know when and how such modeling problems can be avoided.
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Appendix A.

In the Gibbs sampler, the state is the collection of laljels...,z,) and parameter®j,...,0x),
where6; is the parameter associated with clusteandK is the number of unique labels given
z1n. In a collapsed Gibbs sampler, all or part(6f, .. .,6) is eliminated through integration. Let
zi=(z,...,%4-1,%Z+1,---,Zn). A basic inference algorithm is given in Algorithm 1. Convergence
criteria for the Gibbs samplers in our numerical examples are given in App€h See Gelman
et al. (2004) for a more complete discussion on convergence criteria.

We can sample from the distributigiz | D,z_;, 07 ) as follows,

P(z|D,z.i,61x) O p(z|z-i)p(Xi[Z1n, D, 814) P(Yi | Xi; 210, D, 07 ).- (11)

The first part of Equation (11) is the Chinese Restaurant Proces=ipovalue,

Nz; . . .

—1— if z =z for somej #i

. D) = n—1+a ] ’
P(a]z-i) { G itz £z forall £,
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Algorithm 1: Gibbs Sampling Algorithm for the DP-GLM
Require: Starting stat€z,...,z,), (6],...,06§), convergence criteria.
1: repeat
2. fori=1ltondo
Samplez, from p(z |D,z;,6;.«).
end for
for c=1toK do
Sampled; given{(X,Y;) : z =c}.
end for
if Convergence criteria are migten
Record(z,...,z,) and(6j,...,06%).
10:  endif
11: until M posterior samples obtained.

Heren, is the number of elements with the lalzgl The second term of Equation (11) is the same
as in other Gibbs sampling algorithms. If possible, the component pararéigtecsn be integrated
out (in the case of conjugate base measures and parameters that pedire the covariates)
andp(X;|z1:n, D, 6]« ) can be replaced with

| POX121,D.83.4)P(Bi ¢ | 21) 0.

The third term of Equation (11) is not found in traditional Dirichlet procasdure model samplers.
In some cases, this term can also be collapsed, such as Gaussian modeINeitmal-Inverse-
Gamma base measure. In that case,

PO %, 2,D0) =~ /2 () Y2exp((<1/2m+ 1ytog (14 (v - m?) ).
R S
=V (meV 1+ X Ye),
My = i,
Nn = Nyo + Ne,

@ =4(Lo+1/2(meVIm) + YT Ye — Vi) / ((nyo + ne) XV KT ) .

Here, we definél = {[1Xj] : zj = Z}, Yo = {Y} : zj = z}, X = [1X], n¢ is the number of data
associated with labe} and the base measure is define as,

2
02 ~ Inverse- Gammanyo, ).

B|og ~ N(mp,a3V).

Appendix B.

Proofs for the main theorems.

B.1 Proof of Theorem 1
Both Theorems 1 and 2 rely on a theorem by Schwartz (1965).
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Theorem 5 (Schwartz, 1965) LetM be a prior on#. Then, ifl1f places positive probability on

all neighborhoods
{ /fo (X,Y) Iogf o, y)dxdy< 6}
f(xy)

for everyd > 0, thenl' is weakly consistent at f

The proof for Theorem 1 follows closely both Ghosal et al. (1999) ®oidiar (2006).

Proof Without loss of generality, assunge= 1. Sincefy has compact support, there existsxgn
and ayp such thatfo(x,y) = 0 for |x| > Xg or |y| > yo. Fix € > 0. Following Remark 3 of Ghosal
et al. (1999), there exist, > 0 andoy > 0 such that

fo(X,y
[, oxios 75 P o505 oy 00,0,

Let Py be a measure oR3 x Ri, that is, a measure fdy, Bo,B1,0x,0y). Define it such that
dRy = fo x &0 x 85, x &, FixaA >0 andk > 0. Choose a large compact gesuch thaf—xo, o] x
[—Yo,Yo] X [=Yo,Yo] x {0x} x {0y} C K.Let B={P : |P(K)/Po(K) — 1| < k}. Since the support of
GoisR3x R2,M(B) > 0.

Following Ghosal et al. (1999) and Tokdar (2006), it can be showtrthieae exists a sef such
thatM (BN C) > 0 and for evenP € BN,

( )(p(y—ﬁo le) dp K
/ / ( )(p(y Bo le) TS < 1_K+2K<€/2

for a suitable choice af. Therefore, forf = @« P for everyP € BN C,

fo(x,y)
fo(X,Y) Iog dxdy / / o(x,y)lo
/ f Yo on YO (2= Xex) o= ey)fo(X,y)dexdey

fK(p(X ux)(p<y Bo— le)de
+/ / (X lix)(p(y Bo BlX)dp

Therefore[1 places positive measure on all weak neighborhood,adnd hence satisfies Theo-
rem 5.
|

Proof [Theorem 2] The proof of Theorem 2 follows along the same lines as thed for Theorem
1. Instead of the continuous response, however, there is a catégespanse. The continuity
condition on the response probabilities ensures that there exigts-&0 such that there arm
continuous functionby(X), ..., bm(X) with |b;(x)| < yo and

o expbi(x)
BrolY =1IX =X = S ep(b; (0
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Using arguments similar to those in the previous proof, there exjstsO such that,

fo(X, I)

Xo
/ fo(x,1)log _ _
o 15 (p(XOXSX)fO(x)%dGX

<g/2

DefineP, such thatdRy = fo(X) x {0x} x by(X) x - -+ x by(X). The rest of the proof follows as pre-
viously, with small modifications. [ |

B.2 Proof of Theorem 3

We now show pointwise convergence of the conditional densities. Theviatiopropositions will
be used to prove Theorems 3 and 4.Egk,y) be the Bayes estimate of the density unidérafter
n observations,

fa(xy) = /7 FOoy)MT (A | (%, Y)y)

Proposition 6 Weak consistency 61" at f, for the Gaussian model and the multinomial model
implies that £(x,y) converges pointwise tg(fx,y) and f,(x) converges pointwise tg () for (x,y)
in the compact support op.f

Proof Both f,(x,y) and fy(X) can be written as expectations of bounded functions with respect to
the posterior measure. In the Gaussian case, hg#y) and f,(x) are absolutely continuous; in
the multinomial casefy(x) is absolutely continuous while the probabilRy, [Y = k|x] is absolutely
continuous ik for k=1,..., K. Due to absolute continuity, the result holds. |

This can be used to show that the conditional density estimate convergdéwipeito the true
conditional density.

Proposition 7 Let fy(x,y) an f,(x) be as in Proposition 6. Them(fy|x) converges pointwise to
fo(y|x) for any(x,y) in the compact support ob.f

Proof From Proposition 6f,(x,y) converges pointwise téy(x,y) and f,(x) converges pointwise
to fo(x). Then,
fn(X7 y) fO(Xa y)

M, ) = M = = T o)

The denominator valuef,(x), is greater than 0 almost surely because it is a mixture of Gaussian
densities. |

Now we proceed to the proof of Theorem 3.
Proof [Theorem 3] The conditions for Theorem 3 assure that Propositiomsl & dold. Because
of this and the fact thaf( places positive measure only on densities with a finite expectation, the
results hold. |

B.3 Proof of Theorem 4

The proof follows in the same manner as that for Theorem 3.
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Appendix C.

Implementation details.

C.1 CMB Computational Details

The DP-GLM was run on the largest data size tested several times; logipoptebabilities were
evaluated graphically, and in each case the posterior probabilities seaxetsthbilized well before
1,000 iterations. Therefore, all runs for each sample size were gited08 iteration burn-in with
samples taken every 5 iterations until 2,000 iterations had been obsehedcdling parameter
was given a Gamma prior with shape and scale setto 1. The means andeswéaach component
and all GLM parameters were also given a log-normal hyper distributiore ribdel was most
sensitive to the hyper-distribution asy, the GLM variance. Small values were used (log) ~
N(—3,2)) to place greater emphasis on response fit. The non-conjugate pasameterupdated
using the Hamiltonian dynamics method of Neal (2010). Hyperparameteescliesen based on
performance on a subset of 100 data points; values were then heldafixatier data sets. This
may produce an overly confident error assessment, but the limited size déth set did not allow
a pure training-validation-testing three way partition. A non-conjugate Imesesure was used on
this data set due to small sample sizes and heteroscedasticity. The conjugateena normal-
inverse-gamma, assumes a relationship between the variance and the mean,

H’sz}nV ~ N(}\,O'Z/V).

Therefore, smaller variances greatly encourage the rpenremain in a small neighborhood
around around the prior valua, Naturally, this property can be overcome with many observa-
tions, but it makes strong statements about the mean in situations with few totdesaompew
samples per cluster due to heteroscedasticity. This model was implemented ib;Matla on the
largest data set took about 500 seconds.

C.2 CCSComputational Details

Again, the DP-GLM was run on the largest data size tested several timgsdogrior probabilities
were evaluated graphically, and in each case the posterior probabilites teehave stabilized
well before 1,000 iterations. Therefore, all runs for each sample sére given a 1,000 iteration
burn-in with samples taken every 5 iterations until 2,000 iterations had besemveldl. The scaling
parameten was given a Gamma prior with shape and scale set to 1. The hyperpasofcies

conjugate base measure were set manually by trying different setting®overders of magnitude
for each parameter on a single subset of training data. Again, this maygareah overly confident
error assessment, but the limited size of the data set did not allow a puredraatidation-testing

three way partition. All base measures were conjugate, so the sampleullyasflapsed.a was

updated using Hamiltonian dynamics (Neal, 2010). Original results werraied by Matlab; the
longest run times were about 1000 seconds. This method has been reienf@d in Java in a
highly efficient manner; the longest run times are now under about Ihdsc Run times would
likely be even faster if variational methods were used for posterior san{@diagand Jordan, 2006).
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C.3 Solar Computational Details

Again, the DP-GLM was run on the largest data set size tested several ltixpessterior probabil-
ities were evaluated graphically, and in each case the posterior probabk#iéesto have stabilized
well before 1,000 iterations. Therefore, all runs for each sample size given a 1,000 itera-
tion burn-in with samples taken every 5 iterations until 2,000 iterations had dizserved. The
scaling parameten was set to 1 and the Dirichlet priors Rir (1,1,...,1). The response param-
eters were given a Gaussian base distribution with a mean set to 0 and receast@osen after
trying parameters with four orders of magnitude on a fixed training data bet.nfay produce an
overly confident error assessment, but the limited size of the data settdalawo a pure training-
validation-testing three way partition. All covariate base measures wejegade and thg base
measure was Gaussian, so the sampler was collapsed along the covariagatisand used in the
auxiliary component setting of Algorithm 8 of Neal (2000). Thearameters were updated using
Metropolis-Hastings. Results were in generated by Matlab; run times wiestesttially faster than
the other methods implemented in Matlab (under 200 seconds).
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