
Journal of Machine Learning Research 12 (2011) 1923-1953 Submitted 9/09; Revised 1/11; Published 6/11

Dirichlet Process Mixtures of Generalized Linear Models

Lauren A. Hannah LH140@DUKE.EDU

Department of Statistical Science
Duke University
Durham, NC 27708, USA

David M. Blei BLEI@CS.PRINCETON.EDU

Department of Computer Science
Princeton University
Princeton, NJ 08544, USA

Warren B. Powell POWELL@PRINCETON.EDU

Department of Operations Research and Financial Engineering
Princeton University
Princeton, NJ 08544, USA

Editor: Carl Edward Rasmussen

Abstract
We propose Dirichlet Process mixtures of Generalized Linear Models (DP-GLM), a new class of
methods for nonparametric regression. Given a data set of input-response pairs, the DP-GLM
produces a global model of the joint distribution through a mixture of local generalized linear
models. DP-GLMs allow both continuous and categorical inputs, and can model the same class
of responses that can be modeled with a generalized linear model. We study the properties of
the DP-GLM, and show why it provides better predictions and density estimates than existing
Dirichlet process mixture regression models. We give conditions for weak consistency of the joint
distribution and pointwise consistency of the regression estimate.
Keywords: Bayesian nonparametrics, generalized linear models, posterior consistency

1. Introduction

In this paper, we examine the general regression problem. The generalregression problem models
a response variableY as dependent on a set of covariatesx,

Y |x∼ f (m(x)).

The functionm(x) is themean function, which maps the covariates to the conditional mean of the
response; the distributionf characterizes the deviation of the response from its conditional mean.
The simplest example is linear regression, wherem(x) is a linear function ofx, and f is a Gaussian
distribution with meanm(x) and fixed variance.

Generalized linear models(GLMs) extend linear regression to many types of response variables
(McCullagh and Nelder, 1989). In their canonical form, a GLM assumes that the conditional mean
of the response is a linear function of the covariates, and that the response distribution is in an expo-
nential family. Many classical regression and classification methods are GLMs, including logistic
regression, multinomial regression, and Poisson regression.
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The GLM framework makes two assumptions about the relationship between thecovariates and
the response. First, the covariates enter the distribution of the response through a linear function;
a non-linear function may be applied to the output of the linear function, but only one that does
not depend on the covariates. Second, the variance of the response cannot depend on the covari-
ates. Both these assumptions can be limiting—there are many applications where we would like
the response to be a non-linear function of the covariates or where our uncertainty around the re-
sponse might depend on the covariates. In this paper, we develop a general regression algorithm
that relaxes both of these assumptions. Our method captures arbitrarily shaped response functions
and heteroscedasticity, that is, the property of the response distribution where both its mean and
variance change with the covariates, while still retaining the flexibility of GLMs.

Our idea is to model the mean functionm(x) by a mixture of simpler “local” response distri-
butions fi(mi(x)), each one applicable in a region of the covariates that exhibits similar response
patterns. To handle multiple types of responses, each local regression isa GLM. This means that
eachmi(x) is a linear function, but a non-linear mean function arises when we marginalize out the
uncertainty about which local response distribution is in play. (See Figure1 for an example with
one covariate and a continuous response function.) Furthermore, our method captures heteroscedas-
ticity: the variance of the response function can vary across mixture components and, consequently,
varies as a function of the covariates.

Finally, we use a Bayesian nonparametric mixture model to let the data determine both the
number and form of the local mean functions. This is critical for modeling arbitrary response dis-
tributions: complex response functions can be constructed with many local functions, while simple
response functions need only a small number. Unlike frequentist nonparametric regression methods,
for example, those that create a mean function for each data point, the Bayesian nonparametric ap-
proach uses only as complex a model as the data require. Moreover, it produces a generative model.
It can be used to infer properties other than the mean function, such as theconditional variance or
response quantiles.

Thus, we developDirichlet process mixtures of generalized linear models(DP-GLMs), a re-
gression tool that can model many response types and many response shapes. DP-GLMs generalize
several existing Bayesian nonparametric regression models (Müller et al., 1996; Shahbaba and Neal,
2009) to a variety of response distributions. We derive Gibbs sampling algorithms for fitting and
predicting with DP-GLMs. We investigate some asymptotic properties, including weak consistency
of the joint density estimate and consistency of the regression estimate. We study DP-GLMs with
several types of data.

The paper is organized as follows. In Section 2, we review the current research on Bayesian
nonparametric regression and discuss how the DP-GLM extends this field. In Section 3, we review
Dirichlet process mixture models and generalized linear models. In Section 4,we construct the
DP-GLM and derive algorithms for posterior computation. In Section 5 we give general conditions
for weak consistency of the joint density model and consistency of the regression estimate; we give
several models where the conditions hold. In Section 6 we study the DP-GLMand other methods on
three data sets; our study illustrates that the DP-GLM provides a powerfulnonparametric regression
model that can be used in many types of data analysis.
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2. Related Work

Existing methods for Bayesian nonparametric regression include Gaussianprocesses (GP), Bayesian
regression trees, and Dirichlet process mixtures.

GP priors assume that the observations arise from a Gaussian process model with known co-
variance function form (Rasmussen and Williams, 2006). GPs are can modelmany response types,
including continuous, categorical, and count data (Rasmussen and Williams,2006; Adams et al.,
2009). With the proper choice of covariance function, GPs can handle continuous and discrete co-
variates (Rasmussen and Williams, 2006; Qian et al., 2008). GPs assume thatthe response exhibits a
constant covariance; this assumption is relaxed with Dirichlet process mixtures of GPs (Rasmussen
and Ghahramani) or treed GPs (Gramacy and Lee, 2008).

Regression tree models, such as classification and regression trees (CART) (Brieman et al.,
1984), are a natural way to handle regression with continuous, categorical or mixed data. They split
the data into a fixed, tree-based partitioning and fit a regression model withineach leaf of the tree.
Bayesian regression trees place a prior over the size of the tree and canbe viewed as an automatic
bandwidth selection method for CART (Chipman et al., 1998). Bayesian treeshave been expanded
to include linear models (Chipman et al., 2002) and GPs (Gramacy and Lee, 2008) in the leaf nodes.

The Dirichlet process has been applied to regression problems. West etal. (1994), Escobar and
West (1995) and M̈uller et al. (1996) used joint Gaussian mixtures for continuous covariatesand
response. Rodriguez et al. (2009) generalized this method using dependent DPs, that is, Dirichlet
processes with a Dirichlet process prior on their base measures, in a settingwith a response defined
as a set of functionals. However, regression by a joint density estimate poses certain challenges.
The balance between fitting the response and the covariates, which often outnumber the response,
can be slanted toward fitting the covariates at the cost of fitting the response.

To avoid these issues—which amount to over-fitting the covariate distribution and under-fitting
the response—some researchers have developed methods that use local weights on the covariates
to produce local response DPs. This has been achieved with kernels and basis functions (Griffin
and Steel, 2010; Dunson et al., 2007), GPs (Gelfand et al., 2005) and general spatial-based weights
(Griffin and Steel, 2006, 2010; Duan et al., 2007). Still other methods, again based on dependent
DPs, capture similarities between clusters, covariates or groups of outcomes, including in non-
continuous settings (De Iorio et al., 2004; Rodriguez et al., 2009). The method presented here is
equally applicable to the continuous response setting and tries to balance its fitof the covariate and
response distributions by introducing local GLMs—the clustering structureis based on both the
covariates and how the response varies with them.

There is less research about Bayesian nonparametric models for other response types. Mukhopad-
hyay and Gelfand (1997) and Ibrahim and Kleinman (1998) used a DP prior for the random effects
portion of a GLM. Likewise, Amewou-Atisso et al. (2003) used a DP prior tomodel arbitrary
symmetric error distributions in a semi-parametric linear regression model. Thesemethods still
maintain the assumption that the covariates enter the model linearly and in the same way. Our work
is closest to Shahbaba and Neal (2009). They proposed a model that mixes over both the covariates
and response, where the response is drawn from a multinomial logistic model.The DP-GLM is a
generalization of their idea.

Asymptotic properties of Dirichlet process mixture models have been studied mostly in the con-
text of density estimation, specifically consistency of the posterior density for DP Gaussian mixture
models (Barron et al., 1999; Ghosal et al., 1999; Ghosh and Ramamoorthi,2003; Walker, 2004;
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Tokdar, 2006) and semi-parametric linear regression models (Amewou-Atisso et al., 2003; Tokdar,
2006). Recently, the posterior properties of DP regression estimators have been studied. Rodriguez
et al. (2009) showed point-wise consistency (asymptotic unbiasedness)for the regression estimate
produced by their model assuming continuous covariates under different treatments with a con-
tinuous responses and a conjugate base measure (normal-inverse Wishart). In Section 5 we show
weak consistency of the joint density estimate produced by the DP-GLM. Thisis used to show
pointwise consistency of the regression estimate in both the continuous and categorical response
settings. In the continuous response setting, our results generalize thoseof Rodriguez et al. (2009)
and Rodrıguez (2009). In the categorical response setting, our theory provides results for the clas-
sification model of Shahbaba and Neal (2009).

3. Mathematical Background

In this section we provide mathematical background. We review Dirichlet process mixture models
and generalized linear models.

3.1 Dirichlet Process Mixture Models

TheDirichlet process(DP) is a distribution over distributions (Ferguson, 1973). It is denoted,

G∼ DP(αG0),

whereG is a random distribution. There are two parameters. The base distributionG0 is a dis-
tribution over the same space asG. For example, ifG is a distribution on reals thenG0 must be
a distribution on reals too. The concentration parameterα is a positive scalar. One property of
the DP is that random distributionsG are discrete, and each places its mass on a countably infinite
collection of atoms drawn fromG0.

Consider the model

G ∼ DP(αG0),

θi ∼ G.

Marginalizing out the random distribution, the joint distribution ofn replicates ofθi is

p(θ1:n |αG0) =
∫ ( n

∏
i=1

G(θi)

)

P(G)dG.

This joint distribution has a simpler form. The conditional distribution ofθn givenθ1:(n−1) follows
a Polya urn distribution (Blackwell and MacQueen, 1973),

θn|θ1:(n−1) ∼
1

α+n−1

n−1

∑
i=1

δθi +
α

α+n−1
G0. (1)

With this conditional distribution, we use the chain rule to specify the joint distribution.
Equation (1) reveals theclustering propertyof the joint distribution ofθ1:n: there is a positive

probability that eachθi will take on the value of anotherθ j , leading some of the variables to share
values. This equation also reveals the roles of scaling parameterα and base distributionG0. The
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unique values contained inθ1:n are drawn independently fromG0, and the parameterα determines
how likely θn+1 is to be a newly drawn value fromG0 rather than take on one of the values from
θ1:n.

In a DP mixture,θi is a latent variable that parameterizes the distribution of an observed data
point, point (Antoniak, 1974),

P∼ DP(αG0),

Θi ∼ P,

xi |θi ∼ f (· |θi).

Consider the posterior distribution ofθ1:n given x1:n. Because of the clustering property, obser-
vations group according to their shared parameters. Unlike finite clusteringmodels, however, the
number of groups is not assumed known in advance of seeing the data. For this reason, DP mixtures
are sometimes called “infinite clustering” models.

3.2 Generalized Linear Models

Generalized linear models (GLMs) build on linear regression to provide a flexible suite of predictive
models. GLMs relate a linear model to a response via a link function; examples include familiar
models like logistic regression, Poisson regression, and multinomial regression. See McCullagh and
Nelder (1989).

GLMs have three components: the conditional probability model of responseY given covariates
x, the linear predictor, and the link function. GLMs assume that the responsedistribution is in the
exponential family,

f (y|η) = exp

(

yη−b(η)
a(φ)

+c(y,φ)
)

.

Here we give the canonical form of the exponential family, wherea, b, andc are known functions
specific to the exponential family,φ is a scale parameter (sometimes called a dispersion parameter),
andη is the canonical parameter. A linear predictor,Xβ, is used to determine the canonical param-
eter through a set of transformations. The mean response isb′(η) = µ= E[Y|X] (Brown, 1986).
However, we can choose a link functiong such thatµ= g−1(Xβ), which definesη equal toXβ.

4. Dirichlet Process Mixtures of Generalized Linear Models

We now turn to Dirichlet process mixtures of generalized linear models (DP-GLMs), a Bayesian
predictive model that places prior mass on a large class of response densities. Given a data set of
covariate-response pairs, we describe Gibbs sampling algorithms for approximate posterior infer-
ence and prediction. We derive theoretical properties of the DP-GLM in Section 5.

4.1 Model Formulation

In a DP-GLM, we assume that the covariatesX are modeled by a mixture of exponential-family
distributions, the responseY is modeled by a GLM conditioned on the covariates, and that these
models are connected by associating a set of GLM coefficients with each exponential family mixture
component. Letθ = (θx,θy) be the bundle of parameters overX andY |X, and letG0 be a base
measure on the space of both. For example,θx might be a set ofd-dimensional multivariate Gaussian
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Figure 1: The top figure shows the training data (gray) fitted into clusters, with the prediction given
a single sample from the posterior,θ(i) (red). The bottom figure shows the smoothed
regression estimate (black) for the Gaussian model of Equation (2) with the testing data
(blue). Data plot multipole moments(X) against power spectrumCℓ (Y) for cosmic
microwave background radiation (Bennett et al., 2003).

location and scale parameters for a vector of continuous covariates;θy might be ad+2-vector of
reals for their corresponding GLM linear prediction coefficients, along with a GLM dispersion
parameter. The full model is

P∼ DP(αG0),

θ = (θi,x,θi,y)|P∼ P,

Xi |θi,x ∼ fx(·|θi,x),

Yi |xi ,θi,y ∼ GLM(·|Xi,θi,y).

The density fx describes the covariate distribution; the GLM fory depends on the form of the
response (continuous, count, category, or others) and how the response relates to the covariates (i.e.,
the link function).

The Dirichlet process clusters the covariate-response pairs(x,y). When both are observed, that
is, in “training,” the posterior distribution of this model will cluster data points according to near-
by covariates that exhibit the same kind of relationship to their response. When the response is
not observed, its predictive expectation can be understood by clustering the covariates based on the
training data, and then predicting the response according to the GLM associated with the covariates’
cluster. The DP prior acts as a kernel for the covariates; instead of being a Euclidean metric, the DP
measures the distance between two points by the probability that the hidden parameter is shared.
See Figure 1 for a demonstration of the DP-GLM.

We now give a few examples of the DP-GLM that will be used throughout thispaper.
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4.1.1 EXAMPLE : GAUSSIAN MODEL

We now give an example of the DP-GLM for continuous covariates/response that will be used
throughout the rest of the paper. For continuous covariates/response in R, we model locally with
a Gaussian distribution for the covariates and a linear regression model for the response. The co-
variates have meanµi, j and varianceσ2

i, j for the j th dimension of theith observation; the covariance
matrix is diagonal in this example. The GLM parameters are the linear predictorβi,0, . . . ,βi,d and
the response varianceσ2

i,y. Here,θx,i = (µi,1:d,σi,1:d) andθy,i = (βi,0:d,σi,y). This produces a mixture
of multivariate Gaussians. The full model is,

P∼ DP(αG0), (2)

θi |P∼ P,

Xi, j |θi,x ∼ N
(

µi j ,σ2
i j

)

, j = 1, . . . ,d,

Yi |Xi ,θi,y ∼ N

(

βi0+
d

∑
j=1

βi j Xi j ,σ2
iy

)

.

This model has been proposed by West et al. (1994), Escobar and West (1995) and M̈uller et al.
(1996). However, they use a fully populated covariance matrix that gives de factoβ parameters.
This is computationally expensive for larger problems and adds posterior likelihood associated with
the covariates, rather than the response. A discussion of the problems associated with the latter issue
is given in Section 4.4.

4.1.2 EXAMPLE : MULTINOMIAL MODEL (SHAHBABA AND NEAL , 2009)

This model was proposed by Shahbaba and Neal (2009) for nonlinearclassification, using a Gaus-
sian mixture to model continuous covariates and a multinomial logistic model for a categorical
response withK categories. The covariates have meanµi, j and varianceσ2

i, j for the j th dimension of
the ith observation; the covariance matrix is diagonal for simplicity. The GLM parameters are theK
linear predictorβi,0,k, . . . ,βi,d,k, k= 1, . . . ,K. The full model is,

P∼ DP(αG0), (3)

θi |P∼ P,

Xi, j |θi,x ∼ N
(

µi j ,σ2
i j

)

, j = 1, . . . ,d,

P(Yi = k|Xi ,θi,y) =
exp
(

βi,0,k+∑d
j=1 βi, j,kXi, j

)

∑K
ℓ=1exp

(

βi,0,ℓ+∑d
j=1 βi, j,ℓXi, j

) , k= 1, . . . ,K.

4.1.3 EXAMPLE : POISSONMODEL WITH CATEGORICAL COVARIATES

We model the categorical covariates by a mixture of multinomial distributions and the count re-
sponse by a Poisson distribution. If covariatej hasK categories, let(pi, j,1, . . . , pi, j,K) be the proba-
bilities for categories 1, . . . ,K. The covariates are then coded by indicator variables,1{Xi, j=k}, which
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are used with the linear predictor,βi ,0,βi,1,1:K, . . . ,βi,d,1:K . The full model is,

P∼ DP(αG0), (4)

θi |P∼ P,

P(Xi, j = k|θi,x) = pi, j,k, j = 1, . . . ,d, k= 1, . . . ,K,

λi |Xi ,θi,y = exp

(

βi,0+
d

∑
j=1

K

∑
k=1

βi, j,k1{Xi, j=k}

)

,

P(Yi = k|Xi ,θi,y) =
e−λi λk

i

ℓ!
, k= 0,1,2, . . . .

We apply Model (4) to data in Section 6.

4.2 Heteroscedasticity and Overdispersion

One advantage of the DP-GLM is that it provides a strategy for handling common problems in
predictive modeling. Many models, such as GLMs and Gaussian processes, make assumptions
about data dispersion and homoscedasticity. Overdispersion occurs in single parameter GLMs when
the data variance is larger than the variance predicted by the model mean. Mukhopadhyay and
Gelfand (1997) have successfully used DP mixtures over GLM interceptparameters to create classes
of models that include overdispersion. The DP-GLM retains this property,but is not limited to
linearity in the covariates.

A model ishomoscedasticwhen the response variance is across constant all covariates; a model
is heteroscedasticwhen the response variance changes with the covariates. Models like GLMs are
homoscedastic and give poor fits when that assumption is violated in the data. In contrast, the
DP-GLM captures heteroscedasticity when mixtures of GLMs are used. The mixture model setting
allows variance to be modeled by a separate parameter in each cluster or by acollection of clusters in
a single covariate location. This leads to smoothly transitioning heteroscedasticposterior response
distributions.

This property is shown in Figure 2, where we compare a DP-GLM to a homoscedastic model
(Gaussian processes) and heteroscedastic modifications of homoscedastic models (treed Gaussian
processes and treed linear models). The DP-GLM is robust to heteroscedastic data—it provides a
smooth mean function estimate, while the other models are not as robust or provide non-smooth
estimates.

4.3 Posterior Prediction With a DP-GLM

The DP-GLM is used in prediction problems. Given a collection of covariate-response pairsD =
(Xi ,Yi)

n
i=1, we estimate the joint distribution of(X,Y) |D . For a new set of covariatesx, we use the

joint to compute the conditional distribution,Y |x,D and the conditional expectation,E[Y |x,D]. We
give the step-by-step process for formulating specific DP-GLM models and computing the condi-
tional distribution of the response.

4.3.1 CHOOSING THEM IXTURE COMPONENT AND GLM

We begin by choosingfx and the GLM. The Dirichlet process mixture model and GLM provide
flexibility in both the covariates and the response. Dirichlet process mixture models allow many
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Figure 2: Modeling heteroscedasticity with the DP-GLM and other Bayesian nonparametric meth-
ods. The estimated mean function is given along with a 90% predicted confidence interval
for the estimated underlying distribution. DP-GLM produces a smooth mean function and
confidence interval.

types of variables to be modeled by the covariate mixture and subsequently transformed for use as a
covariate in the GLM. Note that certain mixture distributions support certain types of covariates but
may not necessarily be a good fit. The same care that goes into choosing distributions and GLMs in
a parametric setting is required here.

4.3.2 CHOOSING THEBASE MEASURE AND OTHER HYPERPARAMETERS

The choice of the base measureG0 affects how expressive the DP-GLM is, the computational effi-
ciency of the prediction and whether some theoretical properties, such asasymptotic unbiasedness,
hold. For example,G0 for the Gaussian model is a distribution over(µi ,σi ,βi,0:d,σi,y). A conju-
gate base measure is normal-inverse-gamma for each covariate dimension and multivariate normal
inverse-gamma for the response parameters. ThisG0 allows all continuous, integrable distributions
to be supported, retains theoretical properties, such as asymptotic unbiasedness, and yields efficient
posterior approximation by collapsed Gibbs sampling (Neal, 2000). In summary, the base measure
is chosen in line with data size, distribution type, distribution features (such asheterogeneity, and
others) and computational constraints.

Hyperparameters for the DP-GLM include the DP scaling parameterα and hyperparameters
parameters for the base measureG0. We can place a gamma prior onα (Escobar and West, 1995);
the parameters ofG0 may also have a prior. Each level of prior reduces the influence of the hyper-
parameters, but adds computational complexity to posterior inference (Escobar and West, 1995).
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4.3.3 APPROXIMATING THE POSTERIOR ANDFORMING PREDICTIONS

We derive all quantities of interest—that is, conditional distributions and expectations—from the
posterior of the joint distribution of(x,y). Define f (x,y|D) as the joint posterior distribution given
dataD and f (x,y|θ1:n) as the joint distribution given parametersθ1:n that are associated with data
D = (Xi ,Yi)

n
i=1. The posterior can be expressed through a conditional expectation,

f (x,y|D) = E [ f (x,y|θ1:n) |D] . (5)

While the true posterior distribution,f (x,y|D), may be impossible to compute, the joint distribution
conditioned onθ1:n has the form

f (x,y|θ1:n) =
α

α+n

∫
T

fy(y|x,θ) fx(x|θ)G0(dθ)+
1

α+n

n

∑
i=1

fy(y|x,θi) fx(x|θi).

We approximate the expectation in Equation (5) by Monte Carlo integration usingM posterior
samples ofθ1:n,

f (x,y|D)≈
1
M

M

∑
m=1

f (x,y|θ(m)
1:n ).

We use Markov chain Monte Carlo (MCMC), specifically Gibbs sampling, to obtain M i.i.d.
samples from this distribution. (See Escobar, 1994, MacEachern, 1994, Escobar and West, 1995
and MacEachern and M̈uller, 1998 for foundational work; Neal, 2000 provides a review and state of
the art algorithms.) We construct a Markov chain on the hidden variablesθ1:n such that its limiting
distribution is the posterior. We give implementation details in Appendix A.

We use a similar strategy to construct the conditional distribution ofY |X = x,D. The conditional
distribution is

f (Y |X = x,D) =
f (Y,x|D)∫
f (y,x|D)dy

.

Again usingM i.i.d. samples from the posterior ofθ1:n |D,

f (Y |X = x,D)≈
1
M

M

∑
m=1

f (Y |X = x,θ(m)
1:n ),

=
1
M

M

∑
m=1

α
∫
T fy(Y|X = x,θ) fx(x|θ)G0(dθ)+∑n

i=1 fy(Y|X = x,θ(m)
i ) fx(x|θ

(m)
i )

α
∫
T fx(x|θ)G0(dθ)+∑n

i=1 fx(x|θ
(m)
i )

.

We use the same methodology to compute the conditional expectation of the response given a
new set of covariatesx and the observed dataD, E[Y |X = x,D]. Again using iterated expectation,
we condition on the latent variables,

E [Y |X = x,D] = E [E [Y |X = x,θ1:n] |D] . (6)

Conditional on the latent parametersθ1:n that generated the observed data, the inner expectation is

E[Y|X = x,θ1:n] =
α
∫
T E [Y|X = x,θ] fx(x|θ)G0(dθ)+∑n

i=1E [Y|X = x,θi ] fx(x|θi)

α
∫
T fx(x|θ)G0(dθ)+∑n

i=1 fx(x|θi)
.

Since we assumeY is a GLM,E [Y|X = x,θ] is available in closed form as a function ofx andθ.
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The outer expectation of Equation (6) is usually intractable. We approximate itby Monte Carlo
integration withM posterior samples ofθ1:n,

E [Y |X = x,D]≈
1
M

M

∑
m=1

E

[

Y |X = x,θ(m)
1:n

]

.

4.4 Comparison to the Dirichlet Process Mixture Model Regression

The DP-GLM models the responseY conditioned on the covariatesX. An alternative is one where
we model(X,Y) from a common mixture component in a classical DP mixture (see Section 3), and
then form the conditional distribution of the response from this joint. We investigate the mathe-
matical differences between these approaches and the consequencesof those differences. (They are
compared empirically in Section 6.)

A Dirichlet process mixture model (DPMM) has the form,

P∼ DP(αG0), (7)

θi |P∼ P,

Xi |θi,x ∼ fx(x|θi,x),

Yi |θi,y ∼ fy(y|θi,y).

This model has been studied in Escobar and West (1995) where(Xi ,Yi) are assumed to have a
joint Gaussian distribution. When the covariance matrix is assumed to be diagonal, the regression
estimate is generally poor. However, when the covariance matrix is assumed tobe fully populated,
computation becomes difficult with more than a few covariate dimensions. We focus on the case
with diagonal covariance. We study why it performs poorly and how the DP-GLM improves on
it with minimal increase in computational difficulty. The difference between Model (7) and the
DP-GLM is that the distribution ofY givenθ is conditionally independent of the covariatesX. This
difference has consequences on the posterior distribution and, thus, the posterior predictions.

One consequence is that the GLM response component acts to remove boundary bias for sam-
ples near the boundary of the covariates in the training data set. The GLM fitsa linear predictor
through the training data; all predictions for boundary and out-of-samplecovariates follow the local
predictors. The traditional DP model, however, only fits a local mean; all boundary and out-of-
sample predictions center around that mean. The boundary effects are compared in Figure 3. The
DP-GLM can be viewed as a Bayesian analogy of a locally linear kernel estimator while the regular
DP is similar to the Nadaraya-Watson kernel estimator (Nadaraya, 1964; Watson, 1964).

Another consequence is that the proportion of the posterior likelihood devoted to the response
differs between the two methods. Consider the log of the posterior of the DPMM given in Model
(7). Assume thatfy is a single parameter exponential, whereθy = β,

ℓ(θdp|D) ∝
K

∑
i=1

[

ℓ(βCi )+ ∑
c∈Ci

ℓ(yc |βCi )+
d

∑
j=1

ℓ(θCi ,x j |D)

]

. (8)

Here,ℓ denotes log likelihood and “∝” means “proportional in the log space.” The log of the DP-
GLM posterior for a single parameter exponential family GLM, whereθy = (β0, . . . ,βd), has the
form,

ℓ(θdpglm|D) ∝
K

∑
i=1

[

d

∑
j=0

ℓ(βCi , j)+ ∑
c∈Ci

ℓ(yc |βT
Ci

xc)+
d

∑
j=1

ℓ(θCi ,x j |D)

]

. (9)
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As the number of covariates grows, the likelihood associated with the covariates grows in both
equations. However, the likelihood associated with the response also grows with the extra response
parameters in Equation (9), whereas it is fixed in Equation (8).

These posterior differences lead to two predictive differences. First,the DP-GLM is much
more resistant to dimensionality than the DPMM. Since the number of response related parameters
grows with the number of covariate dimensions in the DP-GLM, the relative posterior weight of
the response does not shrink as quickly in the DP-GLM as it does in the DPMM. This keeps the
response variable important in the selection of the mixture components and makes the DP-GLM a
better predictor than the DPMM as the number of dimensions grows.

As the dimensionality grows, however, the DP-GLM produces less stable predictions than the
DPMM. While the additional GLM parameters help maintain the relevance of the response, they
also add noise to the prediction. This is seen in Figure 3. The GLM parametersin this figure have
a Gaussian base measure, effectively creating a local ridge regression.1 In lower dimensions, the
DP-GLM produced more stable results than the DPMM because a smaller number of larger clusters
were required to fit the data well. The DPMM, however, consistently produced stable results in
higher dimensions as the response became more of a sample average than a local average. The
DPMM has the potential to predict well if changes in the mean function coincidewith underlying
local modes of the covariate density. However, the DP-GLM forces the covariates into clusters that
coincide more with the response variable due to the inclusion of the slope parameters.

We now discuss the theoretical properties of the DP-GLM.

5. Asymptotic Properties of the DP-GLM Model

In this section, we study the asymptotic properties of the DP-GLM model, namely weak consistency
of the joint density estimate and pointwise consistency (asymptotic unbiasedness) of the regression
estimate. Consistency is the notion that posterior distribution accumulates in regions close to the
true distribution. Weak consistency assures that the posterior distribution accumulates in regions of
densities where “properly behaved” functions (i.e., bounded and continuous) integrated with respect
to the densities in the region are arbitrarily close to the integral with respect to the true density.
We then use the weak consistency results to give conditions for asymptotic unbiasedness of the
regression estimate. Both consistency and asymptotic unbiasedness act asfrequentist justification of
Bayesian methods; more observations lead to models that tend toward the “correct” value. Neither
weak consistency nor asymptotic unbiasedness are guaranteed for Dirichlet process mixture models.

Notation for this section is more complicated than the notation for the model. Letf0(x,y) be
the true joint distribution of(x,y); in this case, we will assume thatf0 is a density. LetF be the
set of all density functions over(x,y). Let Π f be the prior overF induced by the DP-GLM model.
Let E f0[·] denote the expectation under the true distribution andEΠ f [·] be the expectation under the
prior Π f .

In general, an estimator is a function of observations. Assuming a true distribution of those
observations, an estimator is called unbiased if its expectation under that distribution is equal to
the value that it estimates. If an estimator has this property, it is called consistent. In the case of

1. In unpublished results, we tried other base measures, such as a Laplacian distribution. They produced less stable
results than the Gaussian base measure.
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Figure 3: A plain Dirichlet process mixture model regression (left) versusDP-GLM, plotted against
the number of spurious dimensions (vertical plots). We give the estimated meanfunction
along with a 90% predicted confidence interval for the estimated underlying distribution.
Data have one predictive covariate and a varying number of spurious covariates. The
covariate data were generated by a mixture model. DP-GLM produces a smoother mean
function and is much more resistant to spurious dimensionality.

DP-GLM, that would mean for everyx in a fixed domainA and everyn> 0,

E f0 [EΠ f [Y|x,(Xi,Yi)
n
i=1]] = E f0[Y|x].
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Since we use Bayesian priors in DP-GLM, we will have bias in almost all cases. The best we
can hope for is a consistent estimator, where as the number of observations grows to infinity, the
mean function estimate converges to the true mean function. That is, for every x∈ A ,

EΠ f [Y|x,(Xi,Yi)
n
i=1]→ E f0[Y|x] asn→ ∞.

5.1 Weak Consistency of the Joint Posterior Distribution

Weak consistency is the idea that the posterior distribution,Π f ( f |(Xi ,Yi)
n
i=1) collects in weak neigh-

borhoods of the true distribution,f0(x,y). A weak neighborhood off0 of radiusε,Wε( f0), is defined
as follows,

Wε( f0) =

{

f :

∣

∣

∣

∣

∫
f0(x,y)g(x,y)dxdy−

∫
f (x,y)g(x,y)dxdy

∣

∣

∣

∣

< ε
}

for every bounded, continuous functiong. Aside from guaranteeing that the posterior collects in
regions close to the true distribution, weak consistency can be used to showconsistency of the
regression estimate under certain conditions. We give conditions for weakconsistency for joint pos-
terior distribution of the Gaussian and multinomial models and use these results to show consistency
of the regression estimate for these same models.

We now give a theorem for the asymptotic unbiasedness of the Gaussian model.

Theorem 1 Let Π f be the prior induced by the Gaussian model of Equation (2). If f0(x,y) has
compact support, is absolutely continuous over that domain andG0 has supportRd×R

d
+×R

d+1×
R+, then

Π f (Wε( f0) |(Xi,Yi)
n
i=1)→ 1

as n→ ∞ for everyε > 0.

Posterior consistency of similar models, namely Dirichlet process mixtures of Gaussians, has been
extensively studied by Ghosal et al. (1999), Ghosh and Ramamoorthi (2003), and Tokdar (2006) and
convergence rates in Walker et al. (2007). The compact support condition for f0 allows for broad
array of base measures to produce weakly consistent posteriors. SeeTokdar (2006) for results on
non-compactly supportedf0.

We now give an analogous theorem for the multinomial model.

Theorem 2 Let Π f be the prior induced by the multinomial model of Equation (3). If f0(x) has
compact support, is absolutely continuous,G0 has supportRd×R

d
+×R

d+1, andP f0[Y = k|X = x]
is absolutely continuous in x for k= 1, . . . ,K, then

Π f (Wε( f0) |(Xi,Yi)
n
i=1)→ 1

as n→ ∞ for everyε > 0.

The proofs of Theorems 1 and 2 are given in the Appendix.
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5.2 Consistency of the Regression Estimate

We approach consistency of the regression estimate by using weak consistency for the posterior of
the joint distribution and then placing additional integrability constraints on the base measureG0.
We now give results for the Gaussian and multinomial models.

Theorem 3 Let Π f be the prior induced by the Gaussian model of Equation (2). If

(i) G0 and f0 satisfy the conditions of Theorem 1, and

(ii)
∫
(β0+∑d

i=1 βixi)G0(dβ)< ∞ for every x∈ C ,

then
lim
n→∞

E f0 [EΠ f [Y|x,(Xi,Yi)
n
i=1]] = E f0[Y|x]

almost surelyP∞
f0.

Similarly, we give a theorem for the multinomial model.

Theorem 4 Let Π f be the prior induced by the multinomial model of Equation (3). If

(i) G0 and f0 satisfy the conditions of Theorem 2, and

(ii) P f0[Y = k|X = x] is continuous in x for k= 1, . . . ,K,

then
lim
n→∞

E f0 [PΠ f [Y = k|x,(Xi,Yi)
n
i=1]] = P f0[Y = k|x]

almost surelyP∞
f0 for k= 1, . . . ,K.

See Appendix B for proofs of Theorems 3 and 4.

5.3 Consistency Example: Gaussian Model

Examples of prior distributions that satisfy Theorems 1 and 3 are as follows.

5.3.1 NORMAL-INVERSE-WISHART

Note that in the Gaussian case, slope parameters can be generated by a full covariance matrix: using
a conjugate prior, a Normal-Inverse-Wishart, will produce an instance of the DP-GLM. Define the
following model, which was used by M̈uller et al. (1996),

P∼ DP(αG0), (10)

θi |P∼ P,

(Xi ,Yi) |θi ∼ N(µ,Σ).

The last line of Model (10) can be broken down in the following manner,

Xi |θi ∼ N(µx,Σx) ,

Yi |θi ∼ N
(

µy+bTΣ−1
x b(Xi −µx),σ2

y −bTΣ−1
x b
)

,
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where

µ=

[

µy

µx

]

, Σ =

[

σ2
y bT

b Σx

]

.

We can then defineβ as,

β0 = µy−bTΣ−1
x µx, β1:d = bTΣ−1

x .

The base measureG0 is defined as,

(µ,Σ)∼ Normal Inverse Wishart(λ,ν,a,B).

Hereλ is a mean vector,ν is a scaling parameter for the mean,a is a scaling parameter for the
covariance, andB is a covariance matrix.

5.3.2 DIAGONAL NORMAL-INVERSE-GAMMA

It is often more computationally efficient to specify thatΣx is a diagonal matrix. In this case, we
can specify a conjugate base measure component by component:

σi, j ∼ Inverse Gamma(a j ,b j), j = 1, . . . ,d,

µi, j |σi, j ∼ N(λ j ,σi, j/ν j), j = 1, . . . ,d,

σi,y ∼ Inverse Gamma(ay,by),

βi, j |σi,y ∼ Nd+1(λy,σy/νy).

The Gibbs sampler can still be collapsed, but the computational cost is much lower than the full
Normal-Inverse-Wishart.

5.3.3 NORMAL MEAN, LOG NORMAL VARIANCE

Conjugate base measures tie the mean to the variance and can be a poor fit for small, heteroscedastic
data sets. The following base measure was proposed by Shahbaba and Neal (2009),

log(σi, j)∼ N(mj,σ,s
2
j,σ), j = y,1, . . . ,d,

µi, j ∼ N(mj,µ,s
2
j,µ), j = 1, . . . ,d,

βi, j ∼ N(mj,β,s
2
j,β) j = 0, . . . ,d.

5.4 Consistency Example: Multinomial Model

Now consider the multinomial model of Shahbaba and Neal (2009), given inModel (3),

P∼ DP(αG0),

θi |P∼ P,

Xi, j |θi,x ∼ N
(

µi j ,σ2
i j

)

, j = 1, . . . ,d,

P(Yi = k|Xi ,θi,y) =
exp
(

βi,0,k+∑d
j=1 βi, j,kXi, j

)

∑K
ℓ=1exp

(

βi,0,ℓ+∑d
j=1 βi, j,ℓXi, j

) , k= 1, . . . ,K.

Examples of prior distributions that satisfy Theorems 2 and 4 are as follows.
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5.4.1 NORMAL-INVERSE-WISHART

The covariates have a Normal-Inverse-Wishart base measure while the GLM parameters have a
Gaussian base measure,

(µi,x,Σi,x)∼ Normal Inverse Wishart(λ,ν,a,B),

βi, j,k ∼ N(mj,k,s
2
j,k), j = 0, . . . ,d, k= 1, . . . ,K.

5.4.2 DIAGONAL NORMAL-INVERSE-GAMMA

It is often more computationally efficient to specify thatΣx is a diagonal matrix. Again, we can spec-
ify a conjugate base measure component by component while keeping the Gaussian base measure
on the GLM components,

σi, j ∼ Inverse Gamma(a j ,b j), j = 1, . . . ,d,

µi, j |σi, j ∼ N(λ j ,σi, j/ν j), j = 1, . . . ,d,

βi, j,k |σi,y ∼ N(mj,k,s
2
j,k), j = 0, . . . ,d, k= 1, . . . ,K.

5.4.3 NORMAL MEAN, LOG NORMAL VARIANCE

Likewise, for heteroscedastic covariates we can use the log normal basemeasure of Shahbaba and
Neal (2009),

log(σi, j)∼ N(mj,σ,s
2
j,σ), j = 1, . . . ,d,

µi, j ∼ N(mj,µ,s
2
j,µ), j = 1, . . . ,d,

βi, j,k ∼ N(mj,k,β,s
2
j,k,β) j = 0, . . . ,d, k= 1, . . . ,K.

6. Empirical Study

We compare the performance of DP-GLM regression to other regressionmethods. We studied data
sets that illustrate the strengths of the DP-GLM, including robustness with respect to data type, het-
eroscedasticity and higher dimensionality than can be approached with traditional methods. Shah-
baba and Neal (2009) used a similar model on data with categorical covariates and count responses;
their numerical results were encouraging. We tested the DP-GLM on the following data sets.

6.1 Data Sets

We selected three data sets with continuous response variables. They highlight various data difficul-
ties within regression, such as error heteroscedasticity, moderate dimensionality (10–12 covariates),
various input types and response types.

• Cosmic Microwave Background (CMB) (Bennett et al., 2003). The data set consists of 899
observations which map positive integersℓ= 1,2, . . . ,899, called ‘multipole moments,’ to the
power spectrumCℓ. Both the covariate and response are considered continuous. The data
pose challenges because they are highly nonlinear and heteroscedastic. Since this data set is
only two dimensions, it allows us to easily demonstrate how the various methods approach
estimating a mean function while dealing with non-linearity and heteroscedasticity.
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• Concrete Compressive Strength (CCS) (Yeh, 1998). The data set has eight covariates: the
components cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate and
fine aggregate, all measured inkg per m3, and the age of the mixture in days; all are con-
tinuous. The response is the compressive strength of the resulting concrete, also continuous.
There are 1,030 observations. The data have relatively little noise. Difficulties arise from the
moderate dimensionality of the data.

• Solar Flare (Solar) (Bradshaw, 1989). The response is the number of solar flares in a 24
hour period in a given area; there are 11 categorical covariates. 7 covariates are binary and 4
have 3 to 6 classes for a total of 22 categories. The response is the sum of all types of solar
flares for the area. There are 1,389 observations. Difficulties are created by the moderately
high dimensionality, categorical covariates and count response. Few regression methods can
appropriately model this data.

Data set testing sizes ranged from very small (20 observations) to moderate sized (800 observations).
Small data set sizes were included due to interests in (future) online applications.

6.2 Competitors

The competitors represent a variety of regression methods; some methods are only suitable for
certain types of regression problems.

• Ordinary Least Squares (OLS). A parametric method that often provides a reasonable fit
when there are few observations. Although OLS can be extended for use with any set of
basis functions, finding basis functions that span the true function is a difficult task. We
naively choose[1X1 . . . Xd]

T as basis functions. OLS can be modified to accommodate both
continuous and categorical inputs, but it requires a continuous response function.

• CART. A nonparametric tree regression method (Brieman et al., 1984) generated by theMat-
lab function classregtree. It accommodates both continuous and categorical inputs and any
type of response.

• Bayesian CART. A tree regression model with a prior over tree size (Chipman et al., 1998);
it was implemented inR with the tgp package.

• Bayesian Treed Linear Model. A tree regression model with a prior over tree size and a
linear model in each of the leaves (Chipman et al., 2002); it was implemented inR with the
tgp package.

• Gaussian Processes (GP). A nonparametric method that can accommodate only continuous
inputs and continuous responses. GPs were generated inMatlab by the programgpml of
Rasmussen and Williams (2006).

• Treed Gaussian Processes. A tree regression model with a prior over tree size and a GP on
each leaf node (Gramacy and Lee, 2008); it was implemented inR with the tgp package.
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Method Mean Absolute Error Mean Square Error
Training set size 30 50 100 250 500 30 50 100 250 500
DP-GLM 0.58 0.51 0.49 0.48 0.45 1.00 0.94 0.91 0.94 0.83
Linear Regression 0.66 0.65 0.63 0.65 0.63 1.08 1.04 1.01 1.04 0.96
CART 0.62 0.60 0.60 0.56 0.56 1.45 1.34 1.43 1.29 1.41
Bayesian CART 0.66 0.64 0.54 0.50 0.47 1.04 1.01 0.93 0.94 0.84
Treed Linear Model 0.64 0.52 0.49 0.48 0.46 1.10 0.95 0.93 0.95 0.85
Gaussian Process 0.55 0.53 0.50 0.51 0.47 1.06 0.97 0.93 0.96 0.85
Treed GP 0.52 0.49 0.48 0.48 0.46 1.03 0.95 0.95 0.96 0.89

Table 1: Mean absolute and square errors for methods on the CMB data set by training data size.
The best results for each size of training data are in bold.

• Basic DP Regression. Similar to DP-GLM, except the response is a function only ofµy,
rather thanβ0+∑βixi . For the Gaussian model,

P∼ DP(αG0),

θi |P∼ P,

Xi |θi ∼ N(µi,x,σ2
i,x),

Yi |θi ∼ N(µi,y,σ2
i,y).

This model was explored in Section 4.4.

• Poisson GLM (GLM). A Poisson generalized linear model, used on the Solar Flare data set.
It is suitable for count responses.

6.3 Cosmic Microwave Background (CMB) Results

For this data set, we used a Gaussian model with base measure

µx ∼ N(mx,s
2
x), σ2

x ∼ exp
{

N(mx,s,s
2
x,s)
}

,

β0:d ∼ N(my,0:d,s
2
y,0:d), σ2

y ∼ exp
{

N(mx,s,s
2
x,s)
}

.

This prior was chosen because the variance tails are heavier than an inverse gamma and the mean
is not tied to the variance. It is a good choice for heterogeneous data because of those features.
Computational details are given in Appendix C.

All non-linear methods except for CART (DP-GLM, Bayesian CART, treed linear models, GPs
and treed GPs) did comparably on this data set; CART had difficulty finding an appropriate band-
width. Linear regression did poorly due to the non-linearity of the data set. Fits for heteroscedas-
ticity for the DP-GLM, GPs, treed GPs and treed linear models on 250 training data points can be
seen in Figure 2. See Figure 4 and Table 1 for results.

6.4 Concrete Compressive Strength (CCS) Results

The CCS data set was chosen because of its moderately high dimensionality and continuous covari-
ates and response. For this data set, we used a Gaussian model and a conjugate base measure with
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Figure 4: The average mean absolute error (top) and mean squared error (bottom) for ordinary least
squares (OLS), tree regression, Gaussian processes and DP-GLMon the CMB data set.
The data were normalized. Mean+/− one standard deviation are given for each method.

conditionally independent covariate and response parameters,

(µx,σ2
x)∼ Normal− Inverse−Gamma(mx,sx,ax,bx),

(β0:d,σ2
y)∼ Multivariate Normal− Inverse−Gamma(My,Sy,ay,by).

This base measure allows the sampler to be fully collapsed but has fewer covariate-associated pa-
rameters than a full Normal-Inverse-Wishart base measure, giving it a better fit in a moderate di-
mensional setting. In testing, it also provided better results for this data set than the exponentiated
Normal base measure used for the CMB data set; this is likely due to the low noiseand variance of
the CCS data set. Computational details are given in Appendix C.

Results on this data set were more varied than those for the CMB data set. GPshad the best
performance overall; on smaller sets of training data, the DP-GLM outperformed frequentist CART.
Linear regression, basic DP regression and Bayesian CART all performed comparatively poorly.
Treed linear models and treed GPs performed very well most of the time, but had convergence
problems leading to overall higher levels of predictive error. Convergence issues were likely caused
by the moderate dimensionality (8 covariates) of the data set. See Figure 5 andTable 2 for results.

6.5 Solar Flare Results

The Solar data set was chosen to demonstrate the flexibility of DP-GLM. Manyregression tech-
niques cannot accommodate categorical covariates and most cannot accommodate a count-type re-
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Figure 5: The average mean absolute error (top) and mean squared error (bottom) for ordinary least
squares (OLS), tree regression, Gaussian processes, location/scale DP and the DP-GLM
Poisson model on the CCS data set. The data were normalized. Mean+/− one standard
deviation are given for each method.

Method Mean Absolute Error Mean Squared Error
30 50 100 250 500 30 50 100 250 500

DP-GLM 0.54 0.50 0.45 0.42 0.40 0.47 0.41 0.33 0.28 0.27
Location/Scale DP 0.66 0.62 0.58 0.56 0.54 0.68 0.59 0.52 0.48 0.45
Linear Regression 0.61 0.56 0.51 0.50 0.50 0.66 0.50 0.43 0.41 0.40
CART 0.72 0.62 0.52 0.43 0.34 0.87 0.65 0.46 0.33 0.23
Bayesian CART 0.78 0.72 0.63 0.55 0.54 0.95 0.80 0.61 0.49 0.46
Treed Linear Model 1.08 0.95 0.60 0.35 1.10 7.85 9.56 4.28 0.26 1232
Gaussian Process 0.53 0.52 0.38 0.31 0.26 0.49 0.45 0.26 0.18 0.14
Treed GP 0.73 0.40 0.47 0.28 0.22 1.40 0.30 3.40 0.20 0.11

Table 2: Mean absolute and square errors for methods on the CCS data set by training data size.
The best results for each size of training data are in bold.

sponse. For this data set, we used the following DP-GLM,

P∼ DP(αG0),

θi |P∼ P,

Xi, j |θi ∼ (pi, j,1, . . . , pi, j,K( j)),

Yi |θi ∼ Poisson

(

βi,0+
d

∑
j=1

K( j)

∑
k=1

βi, j,k1{Xi, j=k}

)

.

We used a conjugate covariate base measure and a Gaussian base measure for β,

(p j,1, . . . , p j,K( j))∼ Dirichlet(a j,1, . . . ,a j,K( j)), β j,k ∼ N(mj,k,s
2
j,k).
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Figure 6: The average mean absolute error (top) and mean squared error (bottom) for tree regres-
sion, a Poisson GLM (GLM) and DP-GLM on the Solar data set. Mean+/− one standard
deviation are given for each method.

Method Mean Absolute Error Mean Squared Error
50 100 200 500 800 50 100 200 500 800

DP-GLM 0.52 0.49 0.48 0.45 0.44 0.84 0.76 0.71 0.69 0.63
Poisson Regression 0.65 0.59 0.54 0.52 0.48 0.87 0.84 0.80 0.73 0.64
CART 0.53 0.48 0.50 0.47 0.47 1.13 0.88 1.03 0.88 0.83
Bayesian CART 0.59 0.52 0.51 0.47 0.45 0.86 0.80 0.78 0.71 0.60
Gaussian Process 0.55 0.47 0.47 0.45 0.44 1.14 0.83 0.83 0.81 0.67

Table 3: Mean absolute and square errors for methods on the Solar data set by training data size.
The best results for each size of training data are in bold.

Computational details are given in Appendix C.
The only other methods that can handle this data set are CART, Bayesian CART and Poisson

regression. GP regression was run with a squared exponential covariance function and Gaussian
errors to make use of the ordering in the covariates. The DP-GLM had good performance under
both error measures. The high mean squared error values suggests that frequentist CART overfit
while the high mean absolute error for Poisson regression suggests that itdid not adequately fit
nonlinearities. See Figure 6 and Table 3 for results.

6.6 Discussion

The DP-GLM is a relatively strong competitor on all of the data sets. It was more stable than most
of its Bayesian competitors (aside from GPs) on the CCS data set. Our resultssuggest that the DP-
GLM would be a good choice for small sample sizes when there is significant prior knowledge; in
those cases, it acts as an automatic outlier detector and produces a result that is similar to a Bayesian
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GLM. Results from Section 4 suggest that the DP-GLM is not appropriate for problems with high
dimensional covariates; in those cases, the covariate posterior swamps theresponse posterior with
poor numerical results.

7. Conclusions and Future Work

We developed the Dirichlet process mixture of generalized linear models (DP-GLM), a flexible
Bayesian regression technique. We discussed its statistical and empirical properties; we gave con-
ditions for asymptotic unbiasedness and gave situations in which they hold; finally, we tested the
DP-GLM on a variety of data sets against state of the art Bayesian competitors. The DP-GLM was
competitive in most setting and provided stable, conservative estimates, evenwith extremely small
sample sizes.

One concern with the DP-GLM is computational efficiency as implemented. All results were
generated using MCMC, which does not scale well to large data sets. An alternative implementation
using variational inference (Blei and Jordan, 2006), possibly online variational inference (Sato,
2001), would greatly increase computational feasibility for large data sets.

Our empirical analysis of the DP-GLM has implications for regression methodsthat rely on
modeling a joint posterior distribution of the covariates and the response. Our experiments suggest
that the covariate posterior can swamp the response posterior, but careful modeling can mitigate the
effects for problems with low to moderate dimensionality. A better understandingwould allow us
to know when and how such modeling problems can be avoided.
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Appendix A.

In the Gibbs sampler, the state is the collection of labels(z1, . . . ,zn) and parameters(θ∗
1, . . . ,θ∗

K),
whereθ∗

c is the parameter associated with clusterc andK is the number of unique labels given
z1:n. In a collapsed Gibbs sampler, all or part of(θ∗

1, . . . ,θ∗
K) is eliminated through integration. Let

z−i = (z1, . . . ,zi−1,zi+1, . . . ,zn). A basic inference algorithm is given in Algorithm 1. Convergence
criteria for the Gibbs samplers in our numerical examples are given in Appendix C. See Gelman
et al. (2004) for a more complete discussion on convergence criteria.

We can sample from the distributionp(zi |D,z−i,θ∗
1:K) as follows,

p(zi |D,z−i,θ∗
1:K) ∝ p(zi |z−i)p(Xi |z1:n,D,θ∗

1:K)p(Yi |Xi ,z1:n,D,θ∗
1:K). (11)

The first part of Equation (11) is the Chinese Restaurant Process posterior value,

p(zi |z−i) =

{

nzj

n−1+α if zi = zj for somej 6= i,
α

n−1+α if zi 6= zj for all j 6= i.
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Algorithm 1: Gibbs Sampling Algorithm for the DP-GLM

Require: Starting state(z1, . . . ,zn), (θ∗
1, . . . ,θ∗

K), convergence criteria.
1: repeat
2: for i = 1 ton do
3: Samplezi from p(zi |D,z−i ,θ∗

1:K).
4: end for
5: for c= 1 toK do
6: Sampleθ∗

c given{(Xi ,Yi) : zi = c}.
7: end for
8: if Convergence criteria are metthen
9: Record(z1, . . . ,zn) and(θ∗

1, . . . ,θ∗
K).

10: end if
11: until M posterior samples obtained.

Herenzj is the number of elements with the labelzj . The second term of Equation (11) is the same
as in other Gibbs sampling algorithms. If possible, the component parametersθ∗

1:K can be integrated
out (in the case of conjugate base measures and parameters that pertain strictly to the covariates)
andp(Xi |z1:n,D,θ∗

1:K) can be replaced with
∫

p(Xi |z1:n,D,θ∗
1:K)p(θ

∗
1:K |z1:n)dθ∗

1:K .

The third term of Equation (11) is not found in traditional Dirichlet processmixture model samplers.
In some cases, this term can also be collapsed, such as Gaussian model witha Normal-Inverse-
Gamma base measure. In that case,

p(Yi |Xi ,zc,Dc) =
Γ((nn+1)/2)

Γ(nn/2)
(nnsn)

−1/2exp

(

−1/2(nn+1) log

(

1+
1

nnsn
(Yi −mn)

2
))

,

Ṽ =
(

V−1+ X̃T
c X̃c

)−1
,

m̂n = Ṽ
(

m0V
−1+ X̃T

c Yc
)

,

mn = X̃im̂n,

nn = ny0+nc,

s2
n = 4

(

s2
y0+1/2

(

m0V
−1mT

0 +YT
c Yc− m̂T

nṼ−1m̂n
))

/
(

(ny0+nc)X̃cṼX̃T
c

)

.

Here, we defineX̃c = {[1Xj ] : zj = zc}, Yc = {Yj : zj = zc}, X̃i = [1Xi ], nc is the number of data
associated with labelzc and the base measure is define as,

σ2
y ∼ Inverse−Gamma(ny0,s

2
y0),

β |σ2
y ∼ N(m0,σ2

yV).

Appendix B.

Proofs for the main theorems.

B.1 Proof of Theorem 1

Both Theorems 1 and 2 rely on a theorem by Schwartz (1965).
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Theorem 5 (Schwartz, 1965) Let Π f be a prior onF . Then, ifΠ f places positive probability on
all neighborhoods

{

f :
∫

f0(x,y) log
f0(x,y)
f (x,y)

dxdy< δ
}

for everyδ > 0, thenΠ f is weakly consistent at f0.

The proof for Theorem 1 follows closely both Ghosal et al. (1999) andTokdar (2006).
Proof Without loss of generality, assumed = 1. Sincef0 has compact support, there exists anx0

and ay0 such thatf0(x,y) = 0 for |x| > x0 or |y| > y0. Fix ε > 0. Following Remark 3 of Ghosal
et al. (1999), there exist̄σx > 0 andσ̄y > 0 such that

∫ x0

−x0

∫ y0

−y0

f0(x,y) log
f0(x,y)∫ x0

−x0

∫ y0
−y0

φ( x−θx
σ̄x

)φ( y−θy

σ̄y
) f0(x,y)dθxdθy

< ε/2.

Let P0 be a measure onR3 ×R
2
+, that is, a measure for(µx,β0,β1,σx,σy). Define it such that

dP0 = f0×δ0×δσ̄x ×δσ̄y. Fix aλ > 0 andκ > 0. Choose a large compact setK such that[−x0,x0]×
[−y0,y0]× [−y0,y0]×{σ̄x}×{σ̄y} ⊂ K.LetB = {P : |P(K)/P0(K)−1|< κ}. Since the support of
G0 isR3×R

2
+, Π(B)> 0.

Following Ghosal et al. (1999) and Tokdar (2006), it can be shown that there exists a setC such
thatΠ(B ∩C )> 0 and for everyP∈ B ∩C ,

∫ x0

−x0

∫ y0

−y0

f0(x,y) log

∫
K φ( x−µx

σx
)φ( y−β0−β1x

σy
)dP0∫

K φ( x−µx
σx

)φ( y−β0−β1x
σy

)dP
<

κ
1−κ

+2κ < ε/2

for a suitable choice ofκ. Therefore, forf = φ∗P for everyP∈ B ∩C ,

∫
f0(x,y) log

f0(x,y)
f (x,y)

dxdy≤
∫ x0

−x0

∫ y0

−y0

f0(x,y) log
f0(x,y)∫ x0

−x0

∫ y0
−y0

φ( x−θx
σ̄x

)φ( y−θy

σ̄y
) f0(x,y)dθxdθy

+
∫ x0

−x0

∫ y0

−y0

f0(x,y) log

∫
K φ( x−µx

σx
)φ( y−β0−β1x

σy
)dP0∫

K φ( x−µx
σx

)φ( y−β0−β1x
σy

)dP

< ε.

Therefore,Π f places positive measure on all weak neighborhoods off0, and hence satisfies Theo-
rem 5.

Proof [Theorem 2] The proof of Theorem 2 follows along the same lines as the proof for Theorem
1. Instead of the continuous response, however, there is a categorical response. The continuity
condition on the response probabilities ensures that there exists ay0 > 0 such that there arem
continuous functionsb1(x), . . . ,bm(x) with |bi(x)|< y0 and

P f0[Y = i |X = x] =
exp(bi(x))

∑m
j=1exp(b j(x))

.
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Using arguments similar to those in the previous proof, there existsσ̄x > 0 such that,
∫ x0

−x0

f0(x, i) log
f0(x, i)∫ x0

−x0
φ( x−θx

σ̄x
) f0(x)

exp(bi(x))
∑m

j=1 exp(b j (x))
dθx

< ε/2.

DefineP0 such thatdP0 = f0(x)×{σ̄x}×b1(x)×·· ·×bm(x). The rest of the proof follows as pre-
viously, with small modifications.

B.2 Proof of Theorem 3

We now show pointwise convergence of the conditional densities. The following propositions will
be used to prove Theorems 3 and 4.Letfn(x,y) be the Bayes estimate of the density underΠ f after
n observations,

fn(x,y) =
∫
F

f (x,y)Π f (d f |(Xi ,Yi)
n
i=1) .

Proposition 6 Weak consistency ofΠ f at f0 for the Gaussian model and the multinomial model
implies that fn(x,y) converges pointwise to f0(x,y) and fn(x) converges pointwise to f0(x) for (x,y)
in the compact support of f0.

Proof Both fn(x,y) and fn(x) can be written as expectations of bounded functions with respect to
the posterior measure. In the Gaussian case, bothfn(x,y) and fn(x) are absolutely continuous; in
the multinomial case,fn(x) is absolutely continuous while the probabilityP fn[Y = k|x] is absolutely
continuous inx for k= 1, . . . ,K. Due to absolute continuity, the result holds.

This can be used to show that the conditional density estimate converges pointwise to the true
conditional density.

Proposition 7 Let fn(x,y) an fn(x) be as in Proposition 6. Then fn(y|x) converges pointwise to
f0(y|x) for any(x,y) in the compact support of f0.

Proof From Proposition 6,fn(x,y) converges pointwise tof0(x,y) and fn(x) converges pointwise
to f0(x). Then,

lim
n→∞

fn(y|x) = lim
n→∞

fn(x,y)
fn(x)

=
f0(x,y)
f0(x)

= f0(y|x).

The denominator value,fn(x), is greater than 0 almost surely because it is a mixture of Gaussian
densities.

Now we proceed to the proof of Theorem 3.
Proof [Theorem 3] The conditions for Theorem 3 assure that Propositions 6 and 7 hold. Because
of this and the fact thatG0 places positive measure only on densities with a finite expectation, the
results hold.

B.3 Proof of Theorem 4

The proof follows in the same manner as that for Theorem 3.
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Appendix C.

Implementation details.

C.1 CMB Computational Details

The DP-GLM was run on the largest data size tested several times; log posterior probabilities were
evaluated graphically, and in each case the posterior probabilities seem to have stabilized well before
1,000 iterations. Therefore, all runs for each sample size were given a1,000 iteration burn-in with
samples taken every 5 iterations until 2,000 iterations had been observed. The scaling parameterα
was given a Gamma prior with shape and scale set to 1. The means and variances of each component
and all GLM parameters were also given a log-normal hyper distribution. The model was most
sensitive to the hyper-distribution onσy, the GLM variance. Small values were used (log(my) ∼
N(−3,2)) to place greater emphasis on response fit. The non-conjugate parameters were updated
using the Hamiltonian dynamics method of Neal (2010). Hyperparameters were chosen based on
performance on a subset of 100 data points; values were then held fixedall other data sets. This
may produce an overly confident error assessment, but the limited size of the data set did not allow
a pure training-validation-testing three way partition. A non-conjugate basemeasure was used on
this data set due to small sample sizes and heteroscedasticity. The conjugate measure, a normal-
inverse-gamma, assumes a relationship between the variance and the mean,

µ|σ2,λ,ν ∼ N(λ,σ2/ν).

Therefore, smaller variances greatly encourage the meanµ to remain in a small neighborhood
around around the prior value,λ. Naturally, this property can be overcome with many observa-
tions, but it makes strong statements about the mean in situations with few total samples or few
samples per cluster due to heteroscedasticity. This model was implemented in Matlab; a run on the
largest data set took about 500 seconds.

C.2 CCS Computational Details

Again, the DP-GLM was run on the largest data size tested several times; logposterior probabilities
were evaluated graphically, and in each case the posterior probabilities seem to have stabilized
well before 1,000 iterations. Therefore, all runs for each sample size were given a 1,000 iteration
burn-in with samples taken every 5 iterations until 2,000 iterations had been observed. The scaling
parameterα was given a Gamma prior with shape and scale set to 1. The hyperparameters of the
conjugate base measure were set manually by trying different settings over four orders of magnitude
for each parameter on a single subset of training data. Again, this may produce an overly confident
error assessment, but the limited size of the data set did not allow a pure training-validation-testing
three way partition. All base measures were conjugate, so the sampler was fully collapsed.α was
updated using Hamiltonian dynamics (Neal, 2010). Original results were generated by Matlab; the
longest run times were about 1000 seconds. This method has been re-implemented in Java in a
highly efficient manner; the longest run times are now under about 10 seconds. Run times would
likely be even faster if variational methods were used for posterior sampling(Blei and Jordan, 2006).

1949



HANNAH , BLEI AND POWELL

C.3 Solar Computational Details

Again, the DP-GLM was run on the largest data set size tested several times; log posterior probabil-
ities were evaluated graphically, and in each case the posterior probabilitiesseem to have stabilized
well before 1,000 iterations. Therefore, all runs for each sample size were given a 1,000 itera-
tion burn-in with samples taken every 5 iterations until 2,000 iterations had beenobserved. The
scaling parameterα was set to 1 and the Dirichlet priors toDir (1,1, . . . ,1). The response param-
eters were given a Gaussian base distribution with a mean set to 0 and a variance chosen after
trying parameters with four orders of magnitude on a fixed training data set. This may produce an
overly confident error assessment, but the limited size of the data set did not allow a pure training-
validation-testing three way partition. All covariate base measures were conjugate and theβ base
measure was Gaussian, so the sampler was collapsed along the covariate dimensions and used in the
auxiliary component setting of Algorithm 8 of Neal (2000). Theβ parameters were updated using
Metropolis-Hastings. Results were in generated by Matlab; run times were substantially faster than
the other methods implemented in Matlab (under 200 seconds).
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