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Abstract

The Indian buffet process is a stochastic process defininglaapility distribution over equiva-
lence classes of sparse binary matrices with a finite numfoemes and an unbounded number of
columns. This distribution is suitable for use as a priorivlyabilistic models that represent objects
using a potentially infinite array of features, or that irw@bipartite graphs in which the size of at
least one class of nodes is unknown. We give a detailed diervaf this distribution, and illustrate
its use as a prior in an infinite latent feature model. We tlegiew recent applications of the Indian
buffet process in machine learning, discuss its extenseamd summarize its connections to other
stochastic processes.

Keywords: nonparametric Bayes, Markov chain Monte Carlo, latentaldei models, Chinese
restaurant processes, beta process, exchangeableutistrit) sparse binary matrices

1. Introduction

Unsupervised learning aims to recover the latent structure respongiglerferating observed data.
One of the key problems faced by unsupervised learning algorithms iseitersrdning the amount
of latent structure—the number of clusters, dimensions, or variablesdedde account for the
regularities expressed in the data. Often, this is treated as a model selectdenp choosing
the model with the dimensionality that results in the best performance. This trgatfitbe prob-
lem assumes that there is a single, finite-dimensional representation tlesttigocharacterizes the
properties of the observed objects. An alternative is to assume that thebofdatent structure is
actually potentially unbounded, and that the observed objects only mamgparse subset of those
classes or features (Rasmussen and Ghahramani, 2001).

The assumption that the observed data manifest a subset of an unbamdant of latent
structure is often used in nonparametric Bayesian statistics, and hafiyrdssmome increasingly
popular in machine learning. In particular, this assumption is made in Dirichbeeps mixture
models, which are used for nonparametric density estimation (Antoniak; E8¢ébar and West,
1995; Ferguson, 1983; Neal, 2000). Under one interpretation ofiehdt process mixture model,
each datapoint is assigned to a latent class, and each class is assoittatedlistribution over

x. Also at the Machine Learning Department, Carnegie Mellon UniversitgtRrgh PA 15213, USA.

(©2011 Thomas L. Griffiths and Zoubin Ghahramani.



GRIFFITHS AND GHAHRAMANI

observable properties. The prior distribution over assignments of datgpo classes is specified
in such a way that the number of classes used by the model is boundedyotilg bumber of
objects, making Dirichlet process mixture models “infinite” mixture models (Rasem £2000).

Recent work has extended Dirichlet process mixture models in a numbeecfions, making
it possible to use nonparametric Bayesian methods to discover the kindsicfistrcommon in
machine learning: hierarchies (Blei et al., 2004; Heller and Ghahram@@g; 2Neal, 2003; Teh
et al., 2008), topics and syntactic classes (Teh et al., 2004) and thesoajgaearing in images
(Sudderth et al., 2006). However, the fact that all of these modelsamedbupon the Dirichlet
process limits the kinds of latent structure that they can express. In mahgsd# models, each
object described in a data set is associated with a latent variable that pickssingle class or
parameter responsible for generating that datapoint. In contrast, manysmedd in unsupervised
learning represent each object as having multiple features or beingga@dy multiple causes.
For instance, we could choose to represent each object with a bingor,weith entries indicating
the presence or absence of each feature (e.g., Ueda and Saitq,&@08kach feature to take on
a continuous value, representing datapoints with locations in a latent spgcel6lliffe, 1986), or
define a factorial model, in which each feature takes on one of a disetsté wlues (e.g., Zemel
and Hinton, 1994; Ghahramani, 1995). Infinite versions of these moetifiicult to define using
the Dirichlet process.

In this paper, we summarize recent work exploring the extension of thgamametric approach
to models in which objects are represented using an unknown number dffe&sigmes. Following
Griffiths and Ghahramani (2005, 2006), we provide a detailed derivafia distribution that can be
used to define probabilistic models that represent objects with infinitely maaykieatures, and
can be combined with priors on feature values to produce factorial artthaous representations.
This distribution can be specified in terms of a simple stochastic process calatitan buffet
processhby analogy to th€hinese restaurant proceased in Dirichlet process mixture models. We
illustrate how the Indian buffet process can be used to specify prioildisons in latent feature
models, using a simple linear-Gaussian model to show how such models cefirgeind used.

The Indian buffet process can also be used to define a prior distributanyisetting where the
latent structure expressed in data can be expressed in the form ofyarbitaix with a finite number
of rows and infinite number of columns, such as the adjacency matrix of diteggaph where one
class of nodes is of unknown size, or the adjacency matrix for a Mankameps with an unbounded
set of states. As a consequence, this approach has found a nunreeewtf applications within
machine learning. We review these applications, summarizing some of the flomsvenat have
been introduced in order to use the Indian buffet process in differdtings, as well as extensions
to the basic model and alternative inference algorithms. We also descrf®afahe interesting
connections to other stochastic processes that have been identifiedr the Chinese restaurant
process, we can arrive at the Indian buffet process in a numbdfereamt ways: as the infinite limit
of a finite model, via the constructive specification of an infinite model, or bygimalizing out an
underlying measure. Each perspective provides different intuitionissaggests different avenues
for designing inference algorithms and generalizations.

The plan of the paper is as follows. Section 2 summarizes the principles befimt® mixture
models, focusing on the prior on class assignments assumed in these madd#issam be defined in
terms of a simple stochastic process—the Chinese restaurant procabgnwlevelop a distribution
on infinite binary matrices by considering how this approach can be extandibe case where
objects are represented with multiple binary features. Section 3 discussesléhof a such a
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distribution in defining infinite latent feature models. Section 4 derives thelisbn, making use
of the Indian buffet process. Section 5 illustrates how this distribution eamsbd as a prior in a
nonparametric Bayesian model, defining an infinite-dimensional linearsizausodel, deriving a
sampling algorithm for inference in this model, and applying it to two simple data Setsion 6

describes further applications of this approach, both in latent featurelsadd for inferring graph
structures, and Section 7 discusses recent work extending the Indfahfrocess and providing
connections to other stochastic processes. Section 8 presents carchrsibdirections for future
work.

2. Latent Class Models

Assume we havbl objects, with theth object havind observable properties represented by a row
vectorx;. In a latent class model, such as a mixture model, each object is assumedng toelo

a single classg;, and the properties; are generated from a distribution determined by that class.
Using the matrixX = [x] xJ --- me to indicate the properties of al objects, and the vectar=

[c1Cp - cN]T to indicate their class assignments, the model is specified by a prior ovenrassig
vectorsP(c), and a distribution over property matrices conditioned on those assignméxits).
These two distributions can be dealt with separatBly) specifies the number of classes and their
relative probability, whilep(X|c) determines how these classes relate to the properties of objects.
In this section, we will focus on the prior over assignment vect®fs), showing how such a prior

can be defined without placing an upper bound on the number of classes.

2.1 Finite Mixture Models

Mixture models assume that the assignment of an object to a class is indepefttie assignments
of all other objects. If there af¢ classes, we have

N N
P(cl8) = i|:| P(cil8) = i|:|9ci,

where0 is a multinomial distribution over those classes, @rds the probability of clas& under
that distribution. Under this assumption, the probability of the properties df abjectsX can be
written as

N K
p(X[6) = _ukzl p(xi|ci = K) Bk. 1)

The distribution from which each; is generated is thus mixture of the K class distributions
p(xi|ci = k), with B¢ determining the weight of clags

The mixture weight® can be treated as a parameter to be estimated. In Bayesian approaches
to mixture modelingp is assumed to follow a prior distributigo(8), with a standard choice being
a symmetric Dirichlet distribution. The Dirichlet distribution on multinomials oeclasses has
parametersii,d»,...,dk, and is conjugate to the multinomial (e.g., Bernardo and Smith, 1994).

1. We will useP(+) to indicate probability mass functions, ap¢) to indicate probability density functions. We will
assume that; € RP, andp(X|c) is thus a density, although variants of the models we discuss also exigsdoete
data.
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The probability density for the paramet&of a multinomial distribution is given by

K ox—1
Mie=1 6"
(ag,02,...,0k)

Y

PO =75

in whichD(a1,02,...,0k) is the Dirichlet normalizing constant

K
D(01, 00z, ..., k) :/ 6% Ldg
Ak |!:|1 “
Mica T (o)
M (Sk10k)

where/Ay is the simplex of multinomials ovek classes, andi(-) is the gamma, or generalized
factorial, function, withl"(m) = (m— 1)! for any non-negative integen. In asymmetridDirichlet
distribution, allay are equal. For example, we could take= ¢ for all k. In this case, Equation 2
becomes

(@)

K
e
9 r K r(a) 9
and the mean d is the multinomial that is uniform over all classes.
The probability model that we have defined is

D(

e

)

=~

8|a ~ Dirichlet(g,%,..., %),

Ci |0 ~ Discreté0)
where Discretéd) is the multiple-outcome analogue of a Bernoulli event, where the probabilities
of the outcomes are specified Byi.e., P(¢c; = k|8) = 6x). The dependencies among variables in
this model are shown in Figure 1. Having defined a prioBprve can simplify this model by

integrating over all values & rather than representing them explicitly. The marginal probability of
an assignment vectar integrating over all values @, is

o)~ [ []Pele)poce

K gMeta/K—1
[Ti=1 O

= kel dg
a D(E, 8., 9)
_ D(m+gme+yg,....m+g)
Dk k> )

B F(g)K FN+a)’ ®)
wherem, = TN, 8(c; = k) is the number of objects assigned to classThe tractability of this
integral is a result of the fact that the Dirichlet is conjugate to the multinomial.

Equation 3 defines a joint probability distribution for all class assignnmzintgvhich individual
class assignments are not independent. Rather, thexanangeabléBernardo and Smith, 1994),
with the probability of an assignment vector remaining the same when the inditesabjects are
permuted. Exchangeability is a desirable property in a distribution overatsggnments, because
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(D—(—=(2),

Figure 1: Graphical model for the Dirichlet-multinomial model used in definiegxhinese restau-
rant process. Nodes are variables, arrows indicate dependeacteglates (Buntine,
1994) indicate replicated structures.

we have no special knowledge about the objects that would justify treatimy differently from
one another. However, the distribution on assignment vectors defin&djimtion 3 assumes an
upper bound on the number of classes of objects, since it only allowsassngs of objects to up
to K classes.

2.2 Infinite Mixture Models

Intuitively, defining an infinite mixture model means that we want to specify thbability of X in
terms of infinitely many classes, modifying Equation 1 to become

N oo
p(X|8) = u kzl p(xi|ci = k) Bk,

wheref is an infinite-dimensional multinomial distribution. In order to repeat the argtatsove,
we would need to define a prigu(0), on infinite-dimensional multinomials, and compute the prob-
ability of ¢ by integrating oveB. This is essentially the strategy that is taken in deriving infinite
mixture models from the Dirichlet process (Antoniak, 1974; Fergusod3;18hwaran and James,
2001; Sethuraman, 1994). Instead, we will work directly with the distributieer assignment
vectors given in Equation 3, considering its limit as the number of classesaghes infinity (cf.,
Green and Richardson, 2001; Neal, 1992, 2000).

Expanding the gamma functions in Equation 3 using the recufsign= (x— 1) (x—1) and
cancelling terms produces the following expression for the probability asaignment vectar.

Kemed (o)
o= ()" ({100 i :
whereK. is the number of classes for whiahx > 0, and we have re-ordered the indices such that
me > 0 for all k < K. There areKN possible values foc, which diverges a¥ — . As this
happens, the probability of any single set of class assignments goes toc@.KS < N andN is
finite, it is clear thaP(c) — 0 asK — «, sincet — 0. Consequently, we will define a distribution
over equivalence classes of assignment vectors, rather than theswbetmselves.

Specifically, we will define a distribution opartitions of objects. In our setting, a partition
is a division of the set oN objects into subsets, where each object belongs to a single subset
and the ordering of the subsets does not matter. Two assignment veetbredtlt in the same
division of objects correspond to the same partition. For example, if we ine€l tibjects, the class
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assignmentsgcy, cp,c3} = {1, 1,2} would correspond to the same partition{&s2, 1}, since all that
differs between these two cases is the labels of the classes. A partitiorefinescan equivalence
class of assignment vectors, which we derdtevith two assignment vectors belonging to the same
equivalence class if they correspond to the same partition. A distributiarpaviitions is sufficient

to allow us to define an infinite mixture model, provided the prior distribution on #nameters is
the same for all classes. In this case, these equivalence classes@sdagmments are the same as
those induced by identifiabilityp(X|c) is the same for all assignment vecterthat correspond to
the same partition, so we can apply statistical inference at the level of pagtitititer than the level
of assignment vectors.

Assume we have a partition & objects intoK, subsets, and we hat€ = Ky + K, class
labels that can be applied to those subsets. Then ther%am&gnment vectorsthat belong to
the equivalence class defined by that partitimh, We can define a probability distribution over
partitions by summing over all class assignments that belong to the equivalessedefined by
each partition. The probability of each of those class assignments is auex tne distribution
specified by Equation 4, so we obtain

P(lc)) = Z”P(C)

& (R

Rearranging the first two terms, we can compute the limit of the probability aftéipaasK — oo,
which is

li Ky K me G (u)
e O K KK+ r! rl ) FNT o)
L 1 (nm 1)) F(L<“+)a> 5)

k=1

The details of the steps taken in computing this limit are given in Appendix A.€lhesting
probabilities define a valid distribution over partitions, and thus over elguiga classes of class
assignments, providing a prior over class assignments for an infinite mixtutelm@bjects are
exchangeable under this distribution, just as in the finite case: the probalbiitpartition is not
affected by the ordering of the objects, since it depends only on thésmun

As noted above, the distribution over partitions specified by Equation 5edeiived in a vari-
ety of ways—by taking limits (Green and Richardson, 2001; Neal, 1991))2@rom the Dirichlet
process (Blackwell and MacQueen, 1973), or from other equivatenhastic processes (Ishwaran
and James, 2001; Sethuraman, 1994). We will briefly discuss a simplesgrtitat produces the
same distribution over partitions: the Chinese restaurant process.

2.3 The Chinese Restaurant Process

The Chinese restaurant process (CRP) was named by Jim Pitman andugsies, based upon
a metaphor in which the objects are customers in a restaurant, and the aessles tables at
which they sit (the process first appears in Aldous 1985, where it iswtdito Pitman, although
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1 4 2 6 7
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Figure 2: A partition induced by the Chinese restaurant process. Nsrimatcate customers (ob-
jects), circles indicate tables (classes).

it is identical to the extended Polya urn scheme introduced by Blackwell sacQMeen 1973).
Imagine a restaurant with an infinite number of tables, each with an infinite mwohbeats The
customers enter the restaurant one after another, and each chobse & tandom. In the CRP
with parameteia, each customer chooses an occupied table with probability proportionag to th
number of occupants, and chooses the next vacant table with probabifigrional toa. For
example, Figure 2 shows the state of a restaurant after 10 customershiosen tables using this
procedure. The first customer chooses the first table with probafikityl. The second customer
chooses the first table with probabili%, and the second table with probabili§f;. After the
second customer chooses the second table, the third customer chodisssttide with probability
2%0, the second table with probabili%, and the third table with probabiliti%. This process
continues until all customers have seats, defining a distribution over allosatfgeople to tables,
and, more generally, objects to classes. Extensions of the CRP ancttonsdo other stochastic
processes are pursued in depth by Pitman (2002).

The distribution over partitions induced by the CRP is the same as that givequati&n 5. If
we assume an ordering on dirobjects, then we can assign them to classes sequentially using the
method specified by the CRP, letting objects play the role of customers andscfdag the role of
tables. Theth object would be assigned to thih class with probability

M k<K
P(ci=k .,Cg) =< I-lta -

(CI |C17C27 7CI 1) { ﬁ k:K+1
wheremy is the number of objects currently assigned to class\dK, is the number of classes for
whichmy > 0. If all N objects are assigned to classes via this process, the probability of a partition
of objectsc is that given in Equation 5. The CRP thus provides an intuitive means oifipgca
prior for infinite mixture models, as well as revealing that there is a simple sdguprocess by
which exchangeable class assignments can be generated.

2.4 Inference by Gibbs Sampling

Inference in an infinite mixture model is only slightly more complicated than inéeréma mixture
model with a finite, fixed number of classes. The standard algorithm uséaféoence in infinite
mixture models is Gibbs sampling (Bush and MacEachern, 1996; Neal, .2@ibps sampling

2. Pitman and Dubins, both statisticians at the University of California,@eykwere inspired by the apparently infinite
capacity of Chinese restaurants in San Francisco when they nameddtesgr
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is a Markov chain Monte Carlo (MCMC) method, in which variables are ssicely sampled
from their distributions when conditioned on the current values of all othgables (Geman and
Geman, 1984). This process defines a Markov chain, which ultimatelyeoges to the distribution
of interest (see Gilks et al., 1996). Recent work has also exploreatiearal inference algorithms
for these models (Blei and Jordan, 2006), a topic we will return to later ipdper.

Implementing a Gibbs sampler requires deriving the full conditional distribéioall variables
to be sampled. In a mixture model, these variables are the class assigeme&htsrelevant full
conditional distribution id2(ci|c_i, X), the probability distribution over; conditioned on the class
assignments of all other objects,;, and the dataX. By applying Bayes’ rule, this distribution can
be expressed as

P(ci = Kl|c_i, X) O p(X|c)P(ci = k|c_),
where only the second term on the right hand side depends upon theutistribver class assign-
ments,P(c). Here we assume that the parameters associated with each class canrbeenhiagf,
so we that the probability of the data depends only on the class assignmins possible when a
conjugate prior is used on these parameters. For details, and alterihgdinehens that can be used
when this assumption is violated, see Neal (2000).

In a finite mixture model withP(c) defined as in Equation 3, we can compBte; = k|c_;) by
integrating ove®, obtaining

PG =klci) = / P(c; — k|6) p(6lc_i)d@

. a
- Nt ®

wherem_; i is the number of objects assigned to clessot including object. This is the posterior
predictive distribution for a multinomial distribution with a Dirichlet prior.

In an infinite mixture model with a distribution over class assignments definedzagiition 5,
we can use exchangeability to find the full conditional distribution. Since itdh@ngeableR([c|)
is unaffected by the ordering of objects. Thus, we can choose anrayde which theith object
is the last to be assigned to a class. It follows directly from the definition oftlieese restaurant
process that

Neits Moik>0
Pl =Kci)={ n17a K=Ki++1 (7)

0 otherwise

whereK_; | is the number of classes for whioh_; x > 0. The same result can be found by taking
the limit of the full conditional distribution in the finite model, given by Equation @éN 2000).
When combined with some choice pfX|c), Equations 6 and 7 are sufficient to define Gibbs
samplers for finite and infinite mixture models respectively. DemonstrationshifsGampling
in infinite mixture models are provided by Neal (2000) and Rasmussen Y2@hilar MCMC
algorithms are presented in Bush and MacEachern (1996), West é98#)( Escobar and West
(1995) and Ishwaran and James (2001). Algorithms that go beyond ¢hkedbanges in class
assignments allowed by a Gibbs sampler are given by Jain and Neal @@d®ahl (2003).

2.5 Summary

Our review of infinite mixture models serves three purposes: it shows fivdtérstatistical models
can be defined by specifying priors over infinite combinatorial objects; gtiftes how these priors
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can be derived by taking the limit of priors for finite models; and it demonstitata inference in
these models can remain possible, despite the large hypothesis spaces theawpver, infinite
mixture models are still fundamentally limited in their representation of objectsyasguhat each
object can only belong to a single class. In the next two sections, we usestbts underlying
infinite mixture models to derive methods for representing objects in terms atéhfimany latent
features, leading us to derive a distribution on infinite binary matrices.

3. Latent Feature Models

In a latent feature model, each object is represented by a vector of le&tute value$;, and the
propertiess; are generated from a distribution determined by those latent feature vaatest fea-
ture values can be continuous, as in factor analysis (Roweis and Gieatird 999) and probabilis-
tic principal component analysis (PCA; Tipping and Bishop, 1999), arelis, as in cooperative
vector quantization (CVQ; Zemel and Hinton, 1994; Ghahramani, 1995hd remainder of this
section, we will assume that feature values are continuous. Using the latriit] 1 --- || to
indicate the latent feature values for Bllobjects, the model is specified by a prior over features,
p(F), and a distribution over observed property matrices conditioned on thaseésp(X|F). As
with latent class models, these distributions can be dealt with separptElyspecifies the number
of features, their probability, and the distribution over values associatbdeach feature, while
p(X|F) determines how these features relate to the properties of objects. Osimididoe onp(F),
showing how such a prior can be defined without placing an upper bmutite number of features.

We can break the matrik into two components: a binary matrik indicating which features
are possessed by each object, with= 1 if objecti has featuré and 0 otherwise, and a second
matrix V indicating the value of each feature for each objéatan be expressed as the elementwise
(Hadamard) product & andV, F=Z®V, asillustrated in Figure 3. In many latent feature models,
such as PCA and CVQ, objects have non-zero values on every feaarevery entry of is 1. In
sparselatent feature models (e.g., sparse PCA; d’Aspremont et al., 2004; dallitt Uddin, 2003;
Zou et al., 2006) only a subset of features take on non-zero valueséh object, and picks out
these subsets.

A prior onF can be defined by specifying priors fdrandV separately, witlp(F) = P(Z)p(V).
We will focus on defining a prior o#, since the effective dimensionality of a latent feature model is
determined by. Assuming tha¥ is sparse, we can define a prior for infinite latent feature models
by defining a distribution over infinite binary matrices. Our analysis of latessanodels provides
two desiderata for such a distribution: objects should be exchangeablénfarence should be
tractable. It also suggests a method by which these desiderata can bedsagisfit with a model
that assumes a finite number of features, and consider the limit as the nurféauces approaches
infinity.

4. A Distribution on Infinite Sparse Binary Matrices
In this section, we derive a distribution on infinite binary matrices by starting avéiimple model

that assumeK features, and then taking the limit Es— . The resulting distribution corresponds
to a simple generative process, which we term the Indian buffet process
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(a) K features (b) K features (c) K features
0914 0| O —O.# 11 3] 0] 0] 4
2 f1-32 0|09 0 2] 5/ 0| 3]0
(8] [S] 8]
L 2 2
a Q' | 0| 0.2 -2.8 Q| 0] 1) 4
o o o
z Z |18/ 0 Z | 2|0
-0.1 5

Figure 3: Feature matrices. A binary matdxas shown in (a), can be used as the basis for sparse
infinite latent feature models, indicating which features take non-zeros/akiement-
wise multiplication ofZ by a matrixV of continuous values gives a representation like
that shown in (b). IV contains discrete values, we obtain a representation like that shown

in (c).

4.1 A Finite Feature Model

We haveN objects anK features, and the possession of featkitey objecti is indicated by a
binary variablezy. Each object can possess multiple features. Zhthus form a binaryN x K
feature matrixZ. We will assume that each object possesses fe&twith probability i, and that
the features are generated independently. In contrast to the class isdetsed above, for which
S kB =1, the probabilitiesy can each take on any value[d 1]. Under this model, the probability
of a matrixZ giventt= {1y, 1o, ..., Tk }, IS

K N

K
_ T — N
P(ZITT)—DliDP(ZukIW)—Dlﬂ{l‘(l i)™

wheremy = zi’\‘zlzik is the number of objects possessing feature
We can define a prior om by assuming that eacty follows a beta distribution. The beta
distribution has parametersands, and is conjugate to the binomial. The probability of amy

under the Bet@, s) distribution is given by

B T[{(_l(l— .nk)sfl
P(Tk) = By
whereB(r,s) is the beta function,
B(r,s) = Olnf(l(l—rrk)51drrk
_ Fr(s
= Te+s (8)

We will taker = % ands =1, so Equation 8 becomes

r(a
B(%.1) = gy = 5
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(—(—=(2),

Figure 4: Graphical model for the beta-binomial model used in definingnitiiearn buffet process.
Nodes are variables, arrows indicate dependencies, and plates @Gurbv) indicate
replicated structures.

K

exploiting the recursive definition of the gamma function.
The probability model we have defined is

Ti|o ~ Beta(g, 1),
Zk | Tk ~ Bernoulli(T). (9)

Eachz is independent of all other assignments, conditionedigrand thery are generated in-
dependently. A graphical model illustrating the dependencies among thgables is shown in
Figure 4. Having defined a prior ag we can simplify this model by integrating over all values for
mtrather than representing them explicitly. The marginal probability of a bimeatyix Z is

K N
P(Z) :!1/<Hfﬁww>MWNm

k=1 B(%vl)

K (me+ $)N(N—me+1)

= Il

1) FIN+1+g)

(10)

Again, the result follows from conjugacy, this time between the binomial atal distributions.
This distribution is exchangeable, depending only on the canats

This model has the important property that the expectation of the numbemnefero entries
in the matrixZ, E [1T21] = E[Yikzk], has an upper bound that is independenKofSince each
column of Z is independent, the expectationKstimes the expectation of the sum of a single
column,E [17z . This expectation is easily computed,

N N 1 a
Esz:E-:/ dme=N-—K_ 11
[1'z] i; (zk) i;OT[kp(T[k) =Nig (11)
where the result follows from the fact that the expectation of a Begya@andom variable is .
ConsequentlyE [17Z1] = KE [17z = {{%. For finiteK, the expectation of the number of entries
in Z is bounded above biya.

Palls

3. The motivation for choosing= % will be clear when we take the limK — o in Section 4.3, while the choice of
s=1 will be relaxed in Section 7.1.
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Figure 5: Binary matrices and the left-ordered form. The binary matrix otefhés transformed
into the left-ordered binary matrix on the right by the functlori(-). This left-ordered
matrix was generated from the exchangeable Indian buffet processiwith0. Empty
columns are omitted from both matrices.

4.2 Equivalence Classes

In order to find the limit of the distribution specified by Equation 1Kas> o, we need to define
equivalence classes of binary matrices—the analogue of partitionssignasent vectors. ldenti-
fying these equivalence classes makes it easier to be precise abobjdbis @ver which we are
defining probability distributions, but the reader who is satisfied with the inglitiga of taking the
limit asK — oo can safely skip the technical details presented in this section.

Our equivalence classes will be defined with respect to a function omybinatrices,of(-).
This function maps binary matrices keft-orderedbinary matrices.lof(Z) is obtained by order-
ing the columns of the binary matrix from left to right by the magnitude of the binary number
expressed by that column, taking the first row as the most significant bé.|€ftiordering of a
binary matrix is shown in Figure 5. In the first row of the left-ordered mathi@ columns for which
z1ix = 1 are grouped at the left. In the second row, the columns for whjck 1 are grouped at the
left of the sets for whiclzyx = 1. This grouping structure persists throughout the matrix.

Considering the process of placing a binary matrix in left-ordered formvates the defini-
tion of a further technical term. Thustory of featurek at object is defined to bézy, . .., Z;_1)k)-
Where no object is specified, we will ugistoryto refer to the full history of feature (zy, .. ., Znk)-

We will individuate the histories of features using the decimal equivaletfisobinary numbers cor-
responding to the column entries. For example, at object 3, featuresearhe of four histories:

0, corresponding to a feature with no previous assignments, 1, beirgguaddor whichzy = 1

but zx = 0, 2, being a feature for whichy = 1 butzy = 0, and 3, being a feature possessed by
both previous objects were assignég,. will denote the number of features possessing the history
h, with Ko being the number of features for whiaty = 0 andK, = zﬁN:th being the number of
features for whichm, > 0, soK = Ko+ K. The functionlof thus places the columns of a matrix
in ascending order of their histories.

lof(-) is a many-to-one function: many binary matrices reduce to the same lefedrttam,
and there is a unique left-ordered form for every binary matrix. We cas tiseof(-) to define a
set of equivalence classes. Any two binary matri¢esdZ arelof-equivalentifiof(Y)=1of(2),
that is, if Y andZ map to the same left-ordered form. Tihd -equivalence class of a binary matrix
Z, denotedZ], is the set of binary matrices that def-equivalent taZ. lof-equivalence classes
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are preserved through permutation of either the rows or the columns of ix,rpadvided the same
permutations are applied to the other members of the equivalence classtniegfinference at
the level oflo f-equivalence classes is appropriate in models where feature ordéidentifiable,
with p(X|F) being unaffected by the order of the columng-ofAny model in which the probability
of X is specified in terms of a linear function Bf such as PCA or CVQ, has this property.

We need to evaluate the cardinality [@f, being the number of matrices that map to the same
left-ordered form. The columns of a binary matrix are not guaranteed tmipee: since an object
can possess multiple features, it is possible for two features to be padgssxactly the same set
of objects. The number of matrices ] is reduced ifZ contains identical columns, since some
re-orderings of the columns & result in exactly the same matrix. Taking this into account, the

cardinality of[Z] is (KON_KKZN_l) = % whereK is the count of the number of columns with
full history h.

lof-equivalence classes play the same role for binary matrices as partitidos aksignment
vectors: they collapse together all binary matrices (assignment vectatgjitier only in column
ordering (class labels). This relationship can be made precise by exarntieihgf-equivalence
classes of binary matrices constructed from assignment vectors. Dedickss matrixgenerated
by an assignment vectarto be a binary matriZ wherezy = 1 if and only if¢; = k. It is straight-
forward to show that the class matrices generated by two assignmentsvibetbcorrespond to the

same patrtition belong to the sarod -equivalence class, and vice versa.

4.3 Taking the Infinite Limit
Under the distribution defined by Equation 10, the probability of a partidallequivalence class
of binary matrices|Z], is

P(z]) = P(Z)

_ Kk B RT(me+ F(N-me+1) (12)
M2t Knl fh FN+1+%) '

In order to take the limit of this expression Es— o, we will divide the columns o into two
subsets, corresponding to the features for wimigh= 0 and the features for whiam, > 0. Re-
ordering the columns such thai > 0 if k < K, , andmy = 0 otherwise, we can break the product
in Equation 12 into two parts, corresponding to these two subsets. Thegbitbds becomes

1 M (me+ 2)F(N—m+1)
1) FN+1+%)

_ <gr(g)r(N+1))K—K+ Ke O (mye+ &) (N —my+1)
FIN+1+2) 1) FN+1+%)
_ (&W&)F(NH))K i&lr(w+.‘é>r<N—m<+1>
F(N+1+9) e TERIFIN+D)
K

(13)

(a)K+ K (N=m I+ )

K/ Ll N! ’
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where we have used the fact thgix) = (x— 1) (x— 1) for x > 1. Substituting Equation 13 into
Equation 12 and rearranging terms, we can compute our limit

K 1.
o ak K NI |K_+| (N=m! 7+ %)
K—>co |—|2 K Kol KK+ |‘|ﬂ-\‘:1(j+%) N!

k=1
_ 9 epiaty [ Nmome D! (14)
MK vl N! ’

whereHy is theNth harmonic numbeiHy = Z 1T J The details of the steps taken in computing
this limit are given in Appendix A. Again, thls distribution is exchangeable: eeithe number of
identical columns nor the column sums are affected by the ordering on abjects

4.4 The Indian Buffet Process

The probability distribution defined in Equation 14 can be derived from alsistpchastic process.
As with the CRP, this process assumes an ordering on the objects, gaenénatimatrix sequen-
tially using this ordering. We will also use a culinary metaphor in defining owhststic process,
appropriately adjusted for geograghyMany Indian restaurants offer lunchtime buffets with an
apparently infinite number of dishes. We can define a distribution over inbimitey matrices by
specifying a procedure by which customers (objects) choose digregr@s).

In our Indian buffet process (IBPIN customers enter a restaurant one after another. Each cus-
tomer encounters a buffet consisting of infinitely many dishes arrangelihie. & he first customer
starts at the left of the buffet and takes a serving from each dish,istpafter a Poisso() number
of dishes as his plate becomes overburdened. ifrheustomer moves along the buffet, sampling
dishes in proportion to their popularity, serving himself with probabfftywheremy is the number
of previous customers who have sampled a dish. Having reached thd alhgmvious sampled
dishes, theth customer then tries a Poiss8filumber of new dishes.

We can indicate which customers chose which dishes using a binary atiitk N rows and
infinitely many columns, whergy = 1 if the ith customer sampled thHeh dish. Figure 6 shows
a matrix generated using the IBP with= 10. The first customer tried 17 dishes. The second
customer tried 7 of those dishes, and then tried 3 new dishes. The thirdweudtaed 3 dishes tried
by both previous customers, 5 dishes tried by only the first customer, aad &ishes. Vertically

concatenating the choices of the customers produces the binary matrix shthe figure.
(i)

UsingK;" to indicate the number of new dishes sampled byittheustomer, the probability of
any particular matrix being produced by this process is
Ky — 1
P(Zz) = —2 — - Pl —aHiy} |‘| (N— rm) (m‘ iy (15)

M

As can be seen from Figure 6, the matrices produced by this procegsremally not in left-ordered
form. However, these matrices are also not ordered arbitrarily bethedeoisson draws always
result in choices of new dishes that are to the right of the previously sdmddbes. Customers

are not exchangeable under this distribution, as the number of dismuedcaﬂ(f) depends upon

4. This work was started when both authors were at the Gatsby Compatatiearoscience Unitin London, where the
Indian buffet is the dominant culinary metaphor.
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Figure 6: A binary matrix generated by the Indian buffet process with10.

the order in which the customers make their choices. However, if we onlaftagtion to the
lof-equivalence classes of the matrices generated by this process, Wwetbbtaxchangeable dis-

tribution P([Z]) given by Equation 14”' L ;! matrices generated via this process map to the same
h!

left-ordered form, ané([Z]) is obtalned by multiplyind®(Z) from Equation 15 by this quantity.

It is possible to define a similar sequential process that directly produdistridbution onlo f
equivalence classes in which customers are exchangeable, but thiresegore effort on the part
of the customers. In thexchangeablindian buffet process, the first customer samples a Poigjon(
number of dishes, moving from left to right. Thtd customer moves along the buffet, and makes
a single decision for each set of dishes with the same history. If theit&,atishes with histonh,
under whichmy, previous customers have sampled each of those dishes, then the custoplessa
Binomial(iﬁ, Kn) number of those dishes, starting at the left. Having reached the end odwbps
sampled dishes, thi¢h customer then tries a Poiss8f(humber of new dishes. Attending to the
history of the dishes and always sampling from the left guarantees thatghking matrix is in
left-ordered form, and it is easy to show that the matrices produced byrthiegs have the same
probability as the corresponditgf-equivalence classes under Equation 14.

4.5 A Distribution over Collections of Histories

In Section 4.2, we noted thhi f-equivalence classes of binary matrices generated from assignment
vectors correspond to partitions. Likewisef-equivalence classes of general binary matrices cor-
respond to simple combinatorial structures: vectors of non-negativesistelgixing some ordering

of N objects, a collection of feature histories on those objects can be refmedsna frequency
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vectorK = (Ky,...,Kon_1), indicating the number of times each history appears in the collection.
A collection of feature histories can be translated into a left-ordered bmatgix by horizontally
concatenating an appropriate number of copies of the binary vect@seiing each history into

a matrix. A left-ordered binary matrix can be translated into a collection of fedtistories by
counting the number of times each history appears in that matrix. Since parttiers subset

of all collections of histories—namely those collections in which each objgma in only one
history—this process is strictly more general than the CRP.

This connection betwed f-equivalence classes of feature matrices and collections of feature
histories suggests another means of deriving the distribution specifiedumsti&n 14, operating
directly on the frequencies of these histories. We can define a distributiegotors of non-negative
integersK by assuming that eadk, is generated independently from a Poisson distribution with

parametenB(my,N —m,+ 1) = aw wheremy, is the number of non-zero elements in
the historyh. This gives
Kh
_ ! mp— 1IN —m,)!
P(K) = h|:|1 Kl exp{—a NI
N-_1 N
ashes K 21/ (my— DN —mp) 1\ <
= i, exp{ oHn} |_| ( I\fl ) ,
Mh=1 K '
which is easily seen to be the samePd§Z]) in Equation 14. The harmonic number in the expo-
nential term is obtained by summi _1),\!1(!'\‘ ™! over all historiesh. There are( ) histories for

which my, = j, so we have

22t (my— 1) <N

2

h=1

1
7 (16)

”‘hi—l'i

4.6 Properties of this Distribution

These different views of the distribution specified by Equation 14 makeaigéiiforward to derive
some of its properties. First, the effective dimension of the mdde),follows a Poissorm(Hy)
distribution. This is easily shown using the generative process desdribgdction 4.5:K, =
zﬁN:th, and under this process is thus the sum of a set of Poisson distributicasum of a set
of Poisson distributions is a Poisson distribution with parameter equal to thefdhe parameters
of its components. Using Equation 16, thisably. Alternatively, we can use the fact that the
number of new columns generated at itierow is Poissof), with the total number of columns
being the sum of these quantities.

A second property of this distribution is that the number of features pesdd®/ each object
follows a Poissory) distribution. This follows from the definition of the exchangeable IBP. The
first customer chooses a Poissmyiiumber of dishes. By exchangeability, all other customers must
also choose a Poissar)(hnumber of dishes, since we can always specify an ordering on custome
which begins with a particular customer.

Finally, it is possible to show tha remains sparse & — . The simplest way to do this is to
exploit the previous result: if the number of features possessed byobgatt follows a Poisson()
distribution, then the expected number of entrieZirs Na. This is consistent with the quantity
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obtained by taking the limit of this expectation in the finite model, which is given iraEguo 11:
liMk e E [17Z1] = limk e 5% = Na.
K

4.7 Inference by Gibbs Sampling

We have defined a distribution over infinite binary matrices that satisfies fomer @esiderata—
objects (the rows of the matrix) are exchangeable under this distributiormHins to be shown
that inference in infinite latent feature models is tractable, as was the casérfite mixture mod-
els. We will derive a Gibbs sampler for sampling from the distribution definethé IBP, which
suggests a strategy for inference in latent feature models in which thareehble IBP is used as
a prior. We will consider alternative inference algorithms later in the paper.

To sample from the distribution defined by the IBP, we need to compute théiomadl distri-
bution P(zx = 1|Z_y)), whereZ _, denotes the entries & other tharzk. In the finite model,
whereP(Z) is given by Equation 10, it is straightforward to compute the conditional digtab
for anyzk. Integrating overy gives

1
P(zk=1z-ix) = /OP(Zik’le)p(le‘Z—i,k)dW

_ Mikty 17
N+g an
wherez_; i is the set of assignments of other objects, not includifigr featurek, andm_; « is the
number of objects possessing featkraot includingi. We need only condition on_; i rather than
Z_ i) because the columns of the matrix are generated independently undeidhis pr

In the infinite case, we can derive the conditional distribution from theaxgbable IBP. Choos-
ing an ordering on objects such that ttieobject corresponds to the last customer to visit the buffet,
we obtain Mok

P(zk=1z-ix) = N
for anyk such thaim_; x > 0. The same result can be obtained by taking the limit of Equation 17
asK — . Similarly the number of new features associated with ohjsbibuld be drawn from a
Poissonf;) distribution. This can also be derived from Equation 17, using the sardeokiimiting
argument as that presented above to obtain the terms of the Poisson.

This analysis results in a simple Gibbs sampling algorithm for generating sampiestie
distribution defined by the IBP. We start with an arbitrary binary matrix. Wa itezate through the
rows of the matrixj. For each columik, if m_; is greater than 0 we sef = 1 with probability
given by Equation 18. Otherwise, we delete that column. At the end of thewe add Poissor))
new columns that have ones in that row. After sufficiently many passeaghrthe rows, the
resulting matrix will be a draw from the distributid®(Z) given by Equation 15.

This algorithm suggests a heuristic strategy for sampling from the postésiaobdtionP(Z|X)
in a model that uses the IBP to define a prior&nin this case, we need to sample from the full
conditional distribution

(18)

P(zk = 1[Z (i), X) U p(X|Z)P(zk = 1|Z _ik))

wherep(X|Z) is the likelihood function for the model, and we assume that parameters of the like
lihood have been integrated out. We can proceed as in the Gibbs sam@erafiove, simply
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incorporating the likelihood term when sampling for columns for whichm_; i is greater than 0
and drawing the new columns from a distribution where the prior is Poi§gan(d the likelihood
is given byP(X|Z).

5. An Example: A Linear-Gaussian Latent Feature Model with Binary Features

We have derived a prior for infinite sparse binary matrices, and indidatedstatistical inference
can be done in models defined using this prior. In this section, we will shewtlhis prior can be

put to use in models for unsupervised learning, illustrating some of the ifsatesan arise in this
process. We will describe a simple linear-Gaussian latent feature moddhjch tihe features are
binary. As above, we will start with a finite model and then consider the infiniié

5.1 A Finite Linear-Gaussian Model

In our finite model, theD-dimensional vector of properties of an objéck; is generated from a
Gaussian distribution with meaA and covariance matriXy = 0§<I, wherez; is aK-dimensional
binary vector, and\ is aK x D matrix of weights. In matrix notatiork [X] = ZA. If Z is a feature
matrix, this is a form of binary factor analysis. The distributionXofivenZ, A, andoy is matrix
Gaussian:

1 (X —ZA) (X~ ZA))) (19)

X|Z,A,0x) = —————-exp|—
p( ‘ LAY X) (2T[0>2(>ND/2 p{ ZO_X

where t(-) is the trace of a matrix. This makes it easy to integrate out the model paramefeos
do so, we need to define a prior 8 which we also take to be matrix Gaussian:

PIAIOR) = 5o exp{— o trATA)), (20)

(2r03) Oa
whereap is a parameter setting the diffuseness of the prior. The dependencieg #reorariables

in this model are shown in Figure 7.
Combining Equations 19 and 20 results in an exponentiated expressionimgyvthie trace of

1 1
—(X=ZA)T(X-ZA) + ?ATA

Ox 2
1 1 1 1 1
= XX = 5 XTZA = SATZIX+AT(5ZTZ+ 5 1DA
Ox o% 0% 0% o4
LoxT T T T(2M) -1 T
=%(X (I =ZMZ T)X) + (MZTX —A)T(o3M)1(MZTX —A),

5. As was pointed out by an anonymous reviewer, this is a heuristic stnatttger than a valid algorithm for sampling
from the posterior because it violates one of the assumptions of Mahikor Monte Carlo algorithms, with the order
in which variables are sampled being dependent on the state of the Mdr&iov This is not an issue in the algorithm

for sampling fromP(Z), since the columns d® are independent, and the kernels corresponding to sampling from

each of the conditional distributions thus act independently of one another
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Figure 7: Graphical model for the linear-Gaussian model with binary featu

2

wherel is the identity matrixM = (Z7Z + 2%1)~%, and the last line is obtained by completing the
A

square for the quadratic term Ain the second line. We can then integrate Aub obtain

p(X[Z,0x,04)
~ [ p(X[Z.A.0x)p(Alow) dA

1 1 T T
(2r) (N TKID/2 D GKD exp{—ﬂtr(x (I—zZMZ ")X)}

/exp{—;tr((MZTX “A)T(@M)LMZTX — A))}dA

A 1 T T
= exp{—=—=tr(X' (I —ZMZ " )X

1

_ 2
(2mND/2g N KIPGKD|ZTZ g—gl |b/2

1 &
exp{—ﬁtr(XT(l —Z(sz+;§|) 17T)X)). 21)

This result is intuitive: the exponentiated term is the difference between tiee product matrix
of the raw values oK and their projections onto the space spanned byegularized to an extent
determined by the ratio of the variance of the noisXito the variance of the prior oA. This is
simply the marginal likelihood for a Bayesian linear regression model (Mi2Ga0).

We can use this derivation @f{X|Z,0x,04) to infer Z from a set of observations, provided
we have a prior oZ. The finite feature model discussed as a prelude to the IBP is such alpéor.
full conditional distribution forzy is given by:

P(zk|X,Z_(ik),0x,0a) O p(X|Z,0x,0a)P(zk|Z-ik)- (22)

While evaluatingp(X|Z,0x,04a) always involves matrix multiplication, it need not always involve
a matrix inverseZ'Z can be rewritten ag; z! z;, allowing us to use rank one updates to efficiently
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compute the inverse when only onés modified. DefiningM _j = (¥ ijzj + %%I )71, we have
M_ = (Mfl—ZiTZi)fl
T,
M = Mttzlz)t
SToM
_ M_i_';/i'l\—/l'zii ZZIT"\i‘l' (24)

Iteratively applying these updates allowéX|Z,0x,04), to be computed via Equation 21 for dif-
ferent values ofk without requiring an excessive number of inverses, although a full vadate
should be made occasionally to avoid accumulating numerical errors. tbedspart of Equation
22,P(zk|z-ik), can be evaluated using Equation 17.

5.2 Taking the Infinite Limit
To make sure that we can define an infinite version of this model, we neeéddk ttatp(X|Z,0x,04)
remains well-defined i has an unbounded number of colum&Asappears in two places in Equa-
2 2
tion 21: in|Z7Z + 21| and inZ(Z7Z + Z1)~*ZT. We will examine how these behavekis- c.
A A
If Z is in left-ordered form, we can write it 48 ; Z,|, whereZ_, consists oK columns with

sumsmy > 0, andZg consists 0Ky columns with sumsn, = 0. It follows that the first of the two
expressions we are concerned with reduces to

2 T 2
o Z'Z, 0O o
2z | = |70 o]
A A
02 Ko . 02
X X
=X 1zTz + K| (25)
<0§\> o

The appearance & in this expression is not a problem, as we will see shortly. The abundénce o
zeros inZ leads to a direct reduction of the second expression to

T 0% |\ 15T T o% 15T
Z2(Z'2+3N)12T =222+ S k)2,
o4 Oa

which only uses the finite portion &. Combining these results yields the likelihood for the infinite
model

1

p(X|Z,O'x,O'A) =
(2mor2a K P PlzTz, + B o2

1 02 _
exp{— (X1 (1 =Z.(Z1Z, + Zlk,)ZDX)). (26)
0% O

TheK, in the exponents afx andox appears as a result of introducibg2 multiples of the factor

K

of (%%) * from Equation 25. The likelihood for the infinite model is thus just the likelihcwdlie
A

finite model defined on the firgt, columns ofZ.
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The heuristic Gibbs sampling algorithm defined in Section 4.7 can now be usieid model.
Assignments to classes for whiaf_; x > 0 are drawn in the same way as for the finite model, via
Equation 22, using Equation 26 to obtgiX|Z,ox,0a) and Equation 18 foP(zk|z_ik). As in
the finite case, Equations 23 and 24 can be used to compute inversesitifficide distribution
over the number of new features can be approximated by truncation, tompuobabilities for
a range of values d{f) up to some reasonable upper bound. For each valp€Z,0x,0a) can
be computed from Equation 26, and the prior on the number of new clasBess&onf;). More
elaborate samplers which do not require truncation are presented irsMead (2007) and in Teh

et al. (2007).

5.3 Demonstrations

As a first demonstration of the ability of this algorithm to recover the latent tsireicesponsible
for having generated observed data, we applied the Gibbs sampler fiofithite linear-Gaussian
model to a simulated data set consisting of 1006images, each generated by randomly assigning
a feature to each image to a class with probabilify, @nd taking a linear combination of the
weights associated with features to which the images were assigned (a sin@dlaeti@aas used by
Ghahramani, 1995). Some of these images are shown in Figure 8, togéth#rewveightsA that
were used to generate them. The non-zero elemersvedére all equal to D, andoy was set to
0.5, introducing a large amount of noise.

The algorithm was initialized witK ; = 1, choosing the feature assignments for the first column
by settingz; = 1 with probability 05. oa was set to . The Gibbs sampler rapidly discovered
that four classes were sufficient to account for the data, and gedo¢o a distribution focused on
matricesZ that closely matched the true class assignments. The results are showrnren@igach
of the features is represented by the posterior mean of the feature wéigbtgenX andZ, which
is

g2
E[AIX,Z] = (ZTZ+31)1ZTX.
Oa
for a single sampl&. The results shown in the figure are from the 200th sample produced by the
algorithm.

These results indicate that the algorithm can recover the features useddrmatg simulated
data. In a further test of the algorithm with more realistic data, we applied it &easet consisting
of 100 240x 320 pixel images. We represented each imageysing a 100-dimensional vector
corresponding to the weights of the mean image and the first 99 principabc@nis. Each image
contained up to four everyday objects—a $20 bill, a Klein bottle, a prehishamclaxe, and a
cellular phone. The objects were placed in fixed locations, but were fmthie scenes by hand,
producing some small variation in location. The images were then taken with aekmiution
webcam. Each object constituted a single latent feature responsible folbdkeved pixel values.
The images were generated by sampling a feature vegtdrom a distribution under which each
feature was present with probabilityS) and then taking a photograph containing the appropriate
objects using a LogiTech digital webcam. Sample images are shown in Figayre™he only noise
in the images was the noise from the camera.

The Gibbs sampler was initialized with, = 1, choosing the feature assignments for the first
column by settingz; = 1 with probability 05. ga, 0x, anda were initially set to (6, 1.7, and
1 respectively, and then sampled by adding Metropolis steps to the MCMd@thaigo Figure 9
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Demonstration of the linear-Gaussian model described in the s@xg, a binary repre-
sentation. (a) 100 images were generated as binary linear combinatiomsr cfets of
class weights, shown in the images on the left. The images on the right arestieeiqo
mean weight\ for a single sample of after 200 iterations, ordered to match the true
classes. (b) The images on the left show four of the datapoints to which ttiel nvas
applied. The numbers above each image indicate the classes responsgaadmting
that image, matching the order above. The images on the right show thetjoresliaf
the model for these images, based on the posterior mean weights, togethisrevatass
assignments from the sampl&d (c) Trace plot of lod?(X,Z) over 200 iterations. (d)
Trace plot ofK,, the number of classes, over 200 iterations. The data were generated
from a model withK, = 4.
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Figure 9: Data and results for the application of the infinite linear-Gaussiaelntmphotographic
images. (a) Four sample images from the 100 in the data set. Each image ha@4820
pixels, and contained from zero to four everyday objects. (b) Theegos mean of the
weights @) for the four most frequent binary features from the 1000th sampleh Ea
image corresponds to a single feature. These features perfectly intiegteesence or
absence of the four objects. The first feature indicates the presétioe $20 bill, the
other three indicate the absence of the Klein bottle, the handaxe, and thHeoellp(c)
Reconstructions of the images in (a) using the binary codes inferreddse timages.
These reconstructions are based upon the posterior méafoothe 1000th sample. For
example, the code for the first image indicates that the $20 bill is absent, whidgtar
three objects are not. The lower panels show trace plots for the dimensiaofatitg
representationk(, ) and the parameters, ox, andoa over 1000 iterations of sampling.
The values of all parameters stabilize after approximately 100 iterations.
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shows trace plots for the first 1000 iterations of MCMC for the numberatifes used by at least
one objectK.,, and the model parametess, 0x, anda. All of these quantities stabilized after
approximately 100 iterations, with the algorithm finding solutions with approximatahgn latent
features.

Figure 9 (b) shows the posterior meanagffor the four most frequent features in the 1000th
sample produced by the algorithm. These features perfectly indicateeinpeeand absence of
the four objects. Three less common features coded for slight diffesendhe locations of those
objects. Figure 9 (c) shows the feature vecimfsom this sample for the four images in Figure 9(b),
together with the posterior means of the reconstructions of these imageis aniplez E[A|X, Z].
Similar reconstructions are obtained by averaging over all values mfoduced by the Markov
chain. The reconstructions provided by the model clearly pick out thear@ieontent of the images,
removing the camera noise in the original images.

These applications of the linear-Gaussian latent feature model are idtpngerily to demon-
strate that this nonparametric Bayesian approach can efficiently learfyisgtisepresentations
without requiring the dimensionality of those representations to be fixed &.pfitie data set
consisting of images of objects was constructed in a way that removes mengy/lmsic challenges
of computer vision, with objects appearing in fixed orientations and locatidaaling with these
issues requires using a more sophisticated image representation or a mptexcikelihood func-
tion than the linear-Gaussian model. Despite its simplicity, the example of identifyerapjects in
images illustrates the kind of problems for which the IBP provides an apptegrior. We describe
a range of other applications of the Indian buffet process in detail ingkisection.

6. Further Applications and Alternative Inference Algorit hms

We now outline six applications of the Indian buffet process, each oftwhges the same prior
over infinite binary matrices?(Z), but different choices for the likelihood relating such matrices to
observed data. These applications provide an indication of the poterggbtithe IBP in machine
learning, and have also led to a number of alternative inference algoritimt) we will describe
briefly.

6.1 Choice Behavior

Choice behavior refers to our ability to decide between several optioodeldl of choice behavior
are of interest to psychology, marketing, decision theory, and compeiterce. Our choices are
often governed by features of the different options. For examplenwheosing which car to buy,
one may be influenced by fuel efficiency, cost, size, make, etclr&t al. (2006) present a non-
parametric Bayesian model based on the IBP which, given the choicerdats,latent features of
the options and the corresponding weights of these features. The likefilnoctibn is taken from
Tversky’s (1972) classic “elimination by aspects” model of choice, wittptiodability of choosing
option A over optionB being proportional to the sum of the weights of the distinctive featurés of
The IBP is the prior over these latent features, which are assumed to eeisent or absent.
The likelihood function used in this model does not have a natural conjpgatemeaning that
the approach taken in our Gibbs sampling algorithm—integrating out the pararasseciated with
the features—cannot be used. This ledh@ et al. to develop a similar Markov chain Monte Carlo
algorithm for use with a non-conjugate prior. The basic idea behind theithigois analogous to
Algorithm 8 of Neal (2000) for Dirichlet process mixture models, usingtaosauxiliary variables
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to represent the weights associated with features that are currenthosstgsed by any of the
available options. These auxiliary variables effectively provide a Moarto@pproximation to the
sum over parameters used in our Gibbs sampler (although there is naiapgion error introduced
through this step).

6.2 Modeling Protein Interactions

Proteomics aims to understand the functional interactions of proteins, anfieisl @f growing
importance to modern biology and medicine. One of the key concepts in prote@mraprotein
complex a group of several interacting proteins. Protein complexes can beimep¢ally deter-
mined by doing high-throughput protein-protein interaction screensicayy the results of such
experiments are subjected to mixture-model based clustering methods. ¢tpa@votein can be-
long to multiple complexes at the same time, making the mixture model assumption invalid. Ch
et al. (2006) proposed a nonparametric Bayesian approach badee &P for identifying protein
complexes and their constituents from interaction screens. The lateny i@@anrezy indicates
whether protein belongs to complek. The likelihood function captures the probability that two
proteins will be observed to bind in the interaction screen as a functionofitemy complexes they
both belong toy ¢, zkzjx. The approach automatically infers the number of significant complexes
from the data and the results are validated using affinity purification/mass@petry experimen-

tal data from yeast RNA-processing complexes.

6.3 Binary Matrix Factorization for Modeling Dyadic Data

Many interesting data sets adgadic there are two sets of objects or entities and observations are
made on pairs with one element from each set. For example, the two sets nniglst @ movies
and viewers, and the observations are ratings given by viewers to mélesatively, the two sets
might be genes and biological tissues and the observations may be expiessls for particular
genes in different tissues. Dyadic data can often be represented asesaind many models
of dyadic data can be expressed in terms of matrix factorization. Modelgaoficldata make it
possible to predict, for example, the ratings a viewer might give to a movial lmaseatings from
other viewers, a task known asllaborative filtering A traditional approach to modeling dyadic
data isbi-clustering simultaneously clustering both the rows (e.g., viewers) and the columns (e.g.,
movies) of the observation matrix using coupled mixture models. Howevere dgmwe discussed,
mixture models provide a very limited latent variable representation of datadsvieteal. (2007)
presented a more expressive model of dyadic data based on the @vogpar version of the Indian
buffet process. In this model, both movies and viewers are represkytbohary latent vectors
with an unbounded number of elements, corresponding to the featuremtbby possess (e.g.,
“likes horror movies”). The two corresponding infinite binary matrices axtewria a real-valued
weight matrix which links features of movies to features of viewers, resuitiregbinary matrix
factorization of the observed ratings.

The basic inference algorithm used in this model was similar to the non-cdejugesion of
the Gibbs sampler outlined above, but the authors also developed a nuimoeebMetropolis-
Hastings proposals that are mixed with the steps of the Gibbs sampler. Quusalrdirectly han-
dles the number of new features associated with each object, facilitatingf éme more difficult
aspects of non-conjugate inference. Another proposal is a “splitehergve, analogous to similar
proposals used in models based on the CRP (Jain and Neal, 2004; Da8)l, A contrast to the
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Gibbs sampler, which slowly affects the number of features used in the fapdéknging a single
feature allocation for a single object at a time, the split-merge proposalresdbrge-scale moves
such as dividing a single feature into two, or collapsing two features toge@mmbining these
large-scale moves with the Gibbs sampler can result in a Markov chain Manle &gorithm that
explores the space of latent matrices faster.

6.4 Extracting Features from Similarity Judgments

One of the goals of cognitive psychology is to determine the kinds of reptasons that underlie
people’s judgments. In particular, tlaelditive clusteringnethod has been used to infer people’s
beliefs about the features of objects from their judgments of the similarity eettreem (Shepard
and Arabie, 1979). Given a square matrix of judgments of the similarity betiNesbjects, where
sj is the similarity between objectsand j, the additive clustering model seeks to recovél aK
binary feature matri¥ and a vector oK weights associated with those features such shat
ZE:]_kaikfjk. A standard problem for this approach is determining the valu,dbr which a
variety of heuristic methods have been used. Navarro and Griffith§{p08sented a nonparametric
Bayesian solution to this problem, using the IBP to define a prioF @md assuming tha; has

a Gaussian distribution with megf;lwk fik fjk (following Tenenbaum, 1996). Using this method
provides a posterior distribution over the effective dimensioR,df, , and gives both a weight and
a posterior probability for the presence of each feature.

Samples from the posterior distribution over feature matrices reveal saprésgugly rich rep-
resentations expressed in classic similarity data sets. Performing postiiente makes it possi-
ble to discover that there are multiple sensible sets of features that cooldhdéor human similar-
ity judgments, while previous approaches that had focused on findingntlie best set of features
might only find one such set. For example, the nonparametric Bayesian ragdals that people’s
similarity judgments for numbers from 0-9 can be accounted for by a selatdifes that includes
both the odd and the even numbers, while previous additive clusteringsesdl.g., Tenenbaum,
1996) had only produced the odd numbers.

The additive clustering model, like the choice model discussed above,tiseamase in which
non-conjugate inference is necessary. In this case, the infereraréttaiy is rendered simpler by
the fact that no attempt is made to model the similarity of an object to iggelfAs a consequence, a
feature possessed by a single object has no effect on the likelihabthe@number of such features
and their associated weights can be drawn directly from the prior. mferthus proceeds using an
algorithm similar to the Gibbs sampler derived above, with the addition of a MaiseHastings
step to update the weights associated with each feature.

6.5 Latent Features in Link Prediction

Network data, indicating the relationships among a group of people or ofdjests been analyzed
by both statisticians and sociologists. A basic goal of these analyses istiprga/hich unobserved
relationships might exist. For example, having observed friendly interactiorong several pairs
of people, a sociologist might seek to predict which other people are likddg foiends with one
another. This problem of link prediction can be solved using a probabilistaehfor the structure
of graphs. One popular class of models, known as stochastic blockmadgilsne that each entity
belongs to a single latent class, and that the probability of a relationship gXigtween two en-
tities depends only on the classes of those entities (Nowicki and Snijd&s;, W&ang and Wong,
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1987). This is analogous to a mixture model, in which the probability that an tohgsccertain
observed properties depends only on its latent class. Nonparamesiongeof stochastic block-
models can be defined using the Chinese restaurant process (Kem2@08},, corresponding to
an underlying stochastic process that generalizes the Dirichlet prRegsnd Teh, 2009).

Just as allowing objects to have latent features rather than a single lasmitraies it possible
to go beyond mixture models, this approach allows us to define models for lgtiction that
are richer than stochastic blockmodels. Miller et al. (2010) defined a afasmparametric latent
feature models that can be used for link prediction. The key idea is to daén@obability of the
existence of a link between two entities in terms of a “squashing functionh(as¢he logistic or
probit) applied to a real-valued score for that link. The scores thenndepe the features of the
two entities. For a set dfl entities, the pairwise scores are given by Me N matrix ZWZ T,
whereZ is a binary feature matrix, as used throughout this paper\mgla matrix of real-valued
feature weights. Since the feature weights can be positive or negattards can interact to either
increase or decrease the probability of a link. The resulting model is strictly expressive than a
stochastic blockmodel and produces more accurate predictions, palidulzases where multiple
factors interact to influence the existence of a relationship (such as ireti&ah to co-author a
paper, for example).

6.6 Independent Components Analysis and Sparse Factor Analysis

Independent Components Analysis (ICA) is a model which explains ebdaignals in terms of a
linear superposition, or mixing, of independent hidden sources (Cob®®, Bell and Sejnowski,

1995; MacKay, 1996; Cardoso, 1998). ICA has been used to sadvprtblem of “blind source

separation” in which the goal is to unmix the hidden sources from the dadxbanixed signals

without assuming much knowledge of the hidden source distribution. Thislmyddeexample, a

listener in a cocktail party who may want to unmix the signals received on hisaveinto the many

independent sound sources that produced them. ICA is closely reldteddoanalysis, except that
while in factor analysis the sources are assumed to be Gaussian distribu@4,the sources are
assumed to have any distribution other than the Gaussian.

One of the key practical problems in ICA is determining the number of hidderces. Knowles
and Ghahramani (2007) provided a solution to this problem by devising-ga@metric Bayesian
model for ICA based on the IBP. The basic assumption of this ICA model ishikeatumber of
potential sources is unbounded, but that any particular source is ltypica present in a given
signal. The IBP provides a natural model for determining which soumeegrasent in each signal.

In the notation of Section 3, the observed signals are represented byia Kathe presence or
absence of the hidden sources by the IBP distributed mat@xd the value taken by the sources by
the matrixV. Knowles and Ghahramani (2007) considered several variants ofddel, including
ICA models where the elements ¥f have Laplacian distributions, sparse FA models where the
elements oV have Gaussian distributions, and one and two parameter versions ofRle Bth
cases. The model was applied to discovering gene signatures fronexqaession microarray data
from an ovarian cancer study.

Rai and Dauré (2009) developed two interesting extensions of this model also motivated by
applications to gene expression data. First they considered both faatgsia and factor regression
models, where the latter refers to solving a regression problem with a typlaedig number of
input features by making predictions based solely on the factor repa¢isen Second, they used
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an IBP to model the sparsity in the factor loading matrix (rather than the factmusce matrix in
nonparametric ICA) and they moreover assume that the factors are relagadh other through a
hierarchy. They used Kingman’s coalescent as a nonparametriciBayaedel for this hierarchy,
following the inference algorithms developed in Teh et al. (2008). Thispsipows a nice example
of how the IBP can be integrated with other nonparametric Bayesian distrisuti@ fairly modular
manner to solve useful inference problems.

6.7 Bipartite Graphs and Learning Hidden Causes

Wood et al. (2006) used the IBP as part of an algorithm for learning ttiuetsre of graphical
models. Specifically, they focused on the case where an unknown nuiffitidden variables (e.g.,
diseases) are causes for some set of observed variables (e.g.,/mgnRather than defining a prior
over the number of hidden causes, Wood et al. used a non-parametesi&aapproach based on
the IBP to model the structure of graphs with countably infinitely many hiddesesa The binary
variablezy indicates whether hidden variabitehas a direct causal influence on observed variable
i; in other words whethek is a parent of in the graph. The data being modeled were the values
of the set of observed variables over a number of trials, where eaighblawas either present or
absent on each trial. Each hidden variable could be either presergenmtaim a particular trial, with
the probabilities of these states being determined by a parameter of the modefdervariables
were assumed to combine via a noisy-OR (Pearl, 1988) to influence thevethsariables.

Wood et al. (2006) described an MCMC algorithm for inference in this mddlee many of the
cases discussed in this section, this model lacked natural conjugate prierence was done using
a variant on the Gibbs sampler introduced above, with additional steps toyntioeifalues of the
hidden variables. The sampling step for the introduction of new hidderesant® the graph was
facilitated by an analytic result making it possible to sum out the values of tiebles associated
with those causes in a way that is analogous to summing out the parametersjogat® model.
However, Wood and Griffiths (2007) developed a sequential Mont @igorithm for use in this
model, similar to algorithms that have been developed for use with the CRP dsuebarnhead,
2004). This algorithm is a form of particle filter, updating the posterior distidin onZ one row
at a time (in this case, as new observed variables are added to the da&tajariitle filter provides
an efficient and straightforward alternative for inference in modelsl#tat conjugate priors, and
generalizes naturally to other models using the IBP.

6.8 Structuring Markov Transition Matrices

Discrete Markov processes are widely used in machine learning, asfgradden Markov models
and state-space models. Nonparametric Bayesian methods have beém defate “infinite” ver-
sions of these models, allowing the number of states in a hidden Markov moldelunbounded
(Beal et al., 2002). An infinite discrete Markov process can be defigessuming that transitions
from each state follow a Chinese restaurant process, with transitiorfstrebeen made frequently
in the past being more likely in the future. When a new transition is generatedettt state is
drawn from a higher-level Chinese restaurant process that iscshearess all states. The resulting
distribution can also be obtained from a hierarchical Dirichlet procesis €T al., 2004).

Fox et al. (2010) recently explored another way of defining an infiniterelis Markov process,
which allows for more structure in the transition matrix. In this model, it is assunatech state
can only make transitions to a subset of other states. Thus, each stateciatasswith a binary
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vector indicating whether or not it makes transitions to other states. With aitendet of states,
a distribution over these vectors can be defined using the IBP. Thisagipveas used to define a
nonparametric autoregressive hidden Markov model, in which a sequémontinuous variables
were predicted as a linear function of the variables at the previous timésiefhe parameters of
the function were determined by a latent Markov process. The resultinglmad able to identify
meaningful action components in motion capture data. In addition to introduciogehmodel, this
paper explored the use of “birth and death” moves in the Markov chainé/@arlo algorithm used
for inference, in which entire columns of the matrix produced by the IBRwszated or destroyed.

6.9 Other Inference Algorithms

The broad range of settings in which the IBP has been applied haverageduhe development of
more efficient methods for probabilistic inference in the resulting nonpdrenBayesian models.
As discussed above, several innovations have been used to speeglimikie Markov chain Monte
Carlo algorithms used with specific models. Other work has explored scHermaaking inference
in the linear-Gaussian model discussed in Section 5 more efficient anthlec@ldarger data sets.
For example, if instead of integrating out the weight makixthe posterior distribution oveX is
maintained, it is possible to use an alternative sampling scheme that still mixesyouige the
time for each iteration scales linearlyf(Doshi-Velez and Ghahramani, 2009a). This observation
also provides the basis for a parallelization scheme in which the featureéfesént objects are
computed on different machines, with the potential to make large-scale afpigaf this linear-
Gaussian model possible (Doshi-Velez et al., 2010). Similar principles mgly apthe other
models using the IBP discussed in this section.

An alternative approach to probabilistic inference is to reject the stoclamgiroximations pro-
vided by MCMC algorithms in favor of deterministic approximations, using vamaticnference to
approximate the posterior. A mean field approximation to the IBP was develppBdshi-Velez
et al. (2009), building on similar approximations for Dirichlet process mixtooelels (Blei and
Jordan, 2006). This variational inference method was applied to the inf@#tenodel discussed
in Section 6.6, and compared against sampling schemes on both synthegakaata. The results
of these comparisons suggested that the variational approach pravide efficient strategy for
inference in this model when the dimensionality of the observed data is higiativaal inference
may thus be useful in working with some of the other models discussed in thisrseat least in
specific regimes.

7. Extensions and Connections to Other Processes

The Indian buffet process gives a way to characterize our distribatianfinite binary matrices in
terms of a simple stochastic process. In this section we review how the |Bfee@xtended to yield
more general classes of distributions, and summarize some of the conadxtareen the IBP and
other stochastic processes. Our derivation of the IBP was basednsidenng the infinite limit
of a distribution on finite binary matrices. As with the CRP, this distribution can lag¢sderived
via a stick-breaking construction, or by marginalizing out an underlyingsorea These different
views of the IBP yield different generalizations of the distribution, ancediiit opportunities for
developing inference algorithms.
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7.1 A Two-Parameter Generalization

As was discussed in Section 4.6, the distribution on the number of featurebjpet and on the
total number of features produced by the IBP are directly coupled,ghmmuThis is an undesirable
constraint, as the sparsity of a matrix and its dimensionality should be able tondagyendently.
Ghahramani et al. (2007) introduced a two-parameter generalizatior BFhthat separates these
two aspects of the distributichThis generalization keeps the average number of features per object
ata as before, but allows the overall number of represented featureade feoma, an extreme
where all features are shared between all objectdptoan extreme where no features are shared at
all. Between these extremes lie many distributions that capture the amountiofjséyapropriate

for different domains.

As the one-parameter model, this two-parameter model can be derivediby th& limit of
a finite model, but usingg|a, 3 ~ Bete(“?B,B) instead of Equation 9. Here we will focus on the
equivalent sequential generative process. To return to the langfidge Indian buffet, the first
customer starts at the left of the buffet and samples Poig$atighes. Thdth customer serves
himself from any dish previously sampled by > 0 customers with probabilityn/(B+1i — 1),
and in addition from Poissdaf/(B+i— 1)) new dishes. The paramef@is introduced in such a
way as to preserve the expected number of features per odjéxti the expected overall number of
features i zi'\':l%, and the distribution oK is Poisson with this mean. The total number of
features used thus increase{3dacreases. For finitg, the expected number of features increases
asafInN, but if 3 > 1 the logarithmic regime is preceded by linear growth at sidall 3.

Figure 10 shows three matrices drawn from the two-parameter IBP, allowithl0 but with
B=0.2,B=1, andp = 5 respectively. Although all three matrices have roughly the same number
of non-zero entries, the number of features used varies considefdtdynall values of3 features
become likely to be shared by all objects. At high valuef ééatures are more likely to be spe-
cific to particular objects. Further details about the properties of this disbibare provided in
Ghahramani et al. (2007).

Prior sample from IBP prior sample from IBP with a=10 B=1 Prior sample from IBP with a=10 B=5
with a=10 p=0.2 0 o r T T T T T
) 0

|—':
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20
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L " L L
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Figure 10: Three samples from the two-parameter Indian buffet ppogitis o = 10 andf3 = 0.2
(left), B = 1 (middle), and3 = 5 (right).

7.2 A Stick-Breaking Construction

Our strategy of taking the limit of a finite exchangeable distribution in deriviedBf was inspired
by the derivation of the CRP as the limit of a Dirichlet-multinomial model. Howevergtlare many

6. The original idea and analysis was described in an unpublished n&ellizsh (2005).
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other routes by which the CRP can be derived. One of these is via the IBinxhcess (Ferguson,
1973). A simple way to think about the Dirichlet process is in terms of a pitityatmeasure over
probability measures. The parameters of the process are its concentratiwha base measure
Go. In a typical use, we would draw a measdrom the Dirichlet process, and then generate
parameters for a modegt by sampling them independently fro@ Since the Dirichlet process
generates discrete measures with probability 1, it is possible for multiple per@peand @;
drawn fromG to take the same value. We can thus imagine indexing the values takendpyntitie
discrete variableg, such thatz = z; if and only if ¢ = @;. Thez thus index unique values df,
and correspond to a partition of the indices of ¢gheThe distribution over partitionsproduced by
the Dirichlet process, integrating ovér is the CRP (Blackwell and MacQueen, 1973).

A straightforward way to understand how the Dirichlet process allocatdsapilities to a dis-
crete set of atoms is to think about assigning probabilities in terms of breakipigces of a stick.
The stick is one unit in length, corresponding to the fact that our probabiltiest sum to one.
Each piece of stick we break off represents the probability assignedtbeardiscrete atom. After
breaking off each piece, we then consider how much of the remaindezdé bff as the next piece.
Sethuraman (1994) showed that if this process is repeated infinitely wfitéra proportion of the
stick drawn from a Beftax, 1) distribution being broken off at each step, the lengths of the pieces
of broken stick are equivalent to the probabilities assigned to a discitaté @®ms by the Dirich-
let process with parameter. This stick-breaking representation of the Dirichlet process is useful
in deriving its properties, and in developing inference algorithms sucheagatfiational inference
algorithm proposed by Blei and Jordan (2006).

Teh et al. (2007) showed that a similar stick-breaking construction caefieed for the IBP.
First, we imagine sorting theg representing the probability of each feature being possessed by
an object from largest to smallest. Then, if we consider the proportionecstibk that is broken
off and discarded at each break in the stick-breaking constructiothéoDirichlet process, the
distribution of the sequence of stick lengths corresponds exactly to thibdisin of these ordered
probabilities. This stick-breaking construction identifies an interesting rakdtip between the IBP
and the Dirichlet process, and is useful for exactly the same reasopatticular, the stick-breaking
construction was used in defining the variational inference algorithm sumedan Section 6.9, and
can also be used to derive other inference algorithms for the IBP, swugllta sampling (Teh et al.,
2007).

7.3 Connections to the Beta Process

The relationship between the CRP and the Dirichlet process is an instaacenafe general re-
lationship between exchangeable distributions and underlying probabilitgure=a The results
summarized in the previous paragraph indicate that we can write

N
Pe2)= [ [|P@iGpEG

where thez are drawn independently from the meas@,ewhich is generated from the Dirichlet
process. The fact that we can represent the exchangeable distriB(#jas the result of generating
thez independently from a latent measure is a specific instance of the morabereciple stated
in de Finetti’s exchangeability theorem, which indicates #ratexchangeable distribution can be
represented in this way (see Bernardo and Smith, 1994, for details)rai$és a natural question:
is there a similar measure underlying the exchangeable distribution productled IBP?
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Thibaux and Jordan (2007) provided an answer to this question, shtianhthe exchangeable
distribution produced by the IBP corresponds to the use of a latent nedaessed on the beta process
(Hjort, 1990). The beta process provides a source of Bernoullinpetexsr associated with the
elements of a (possibly continuous) index set. Sampling each dtlivedependently according
to the distribution defined by the appropriate parameter results in the sameudiistribn Z as
the IBP. This perspective also makes it straightforward to define aredogfuthe two-parameter
process described in Section 7.1, and to extend the IBP to a hierarchidal that can capture
correlations in the features exhibited in multiple data sets. Teh a@ntirG2010) also recently
used the relationship to the beta process to define a variant of the IBPrdldatcps a power-law
distribution in feature frequencies, exploiting a connection to stable peseV¥ariants of this kind
may be useful in settings where power-law distributions are common, suchtasal language
processing.

7.4 Relaxing the Assumption of Exchangeability

The IBP assumes independence between the columasanfd only the kind of weak dependency
implied by exchangeability for the rows @f. Both of these assumptions have been relaxed in sub-
sequent work. Producing correlations between the colum#soain be done by supplementing the
IBP with a secondary process capturing patterns in the latent featuwebi(ielez and Ghahramani,
2009b). Modifying the assumption of exchangeability is potentially more pnuditie. Exchange-
ability was one of our original desiderata, since it is a reasonable assumpticany settings and
simplifies probabilistic inference. However, this assumption is not warrantedses where we
have additional information about the properties of our observationh,asithe fact that they were
produced in a particular temporal sequence, or reflect a known pattearrelation. The chal-
lenge is thus to identify how the assumption of exchangeability can be relaxisl waintaining
the tractability of probabilistic inference. Two recent papers have ptegastrategies for modifying
the IBP to capture different forms of dependency between the ro&s of

The first kind of dependency can arise as the consequence ofatises being generated in a
specific sequence. In such a case, it might be appropriate to assuthe thétnt features associated
with observations made closer in time should be more correlated. A strategytbfying the IBP
to capture this kind of dependency was introduced by Van Gael et &19)20n this model—the
Markov Indian buffet process—it is assumed that the rows afe generated via a Markov process,
where the values in each column are generated based on the coriagpaides in the previous
row. This Markov process has two parameters, giving the probability@frathe previous row
changing to a 1, and the probability of a 1 in the previous row remaining mgeta By assuming
that these parameters are generated from a Beta distribution and taking aéifog@us to that used
in the derivation of the IBP, it is possible to define a distribution over et classes of binary
matrices in which the rows of the matrix reflect a Markov dependency steuctihis model can be
used to define richer nonparametric models for temporal data, such afngte iimctorial hidden
Markov model, and probabilistic inference can be carried out using assicgler (see Van Gael
et al., 2009, for details).

A second kind of dependency can be the result of known degreetatédness among observa-
tions. For example, one might seek to draw inferences about a grogmplgwith known genetic
relationships, or about a set of organisms or languages with a knovutiewary history. In cases
where the degrees of relatedness can be expressed in a tree, thgepbyilo Indian buffet process
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(Miller et al., 2008) can be used. In this model, the tree expresses thaddamy structure that
governs the rows af, and each column is generated independently by sampling from a stochastic
process defined on the tree. The parameters of the stochastic proesgeeified in a way that
guarantees the total number of columns follows a Poisson distribution, amdidgieal IBP is re-
covered as the special case where the tree is degenerate, with alidganeeting at the root. Trees
can be used to capture a wide range of dependency structures, igghadiral exchangeability, and
probabilistic inference by MCMC remains tractable because belief prtipagan the tree can be
used to efficiently compute the relevant conditional probabilities.

8. Conclusions and Future Work

The methods that have been used to define infinite latent class models cdertzked to models in
which objects are represented in terms of a set of latent features, ethtbuderive distributions on
infinite binary matrices that can be used as priors for such models. Wehisedethod to derive a
prior that is the infinite limit of a simple distribution on finite binary matrices, and gibtlat the
same distribution can be specified in terms of a simple stochastic process-ditirelaffet process.
This distribution satisfies our two desiderata for a prior for infinite latertufeamodels: objects
are exchangeable, and inference remains tractable. When usediasia prodels that represent
objects using latent features, this distribution can be used to automaticallyttieferumber of
features required to account for observed data. More generallgnibe used as a prior in any
setting where a sparse binary matrix with a finite number of rows and infinite euafilcolumns is
appropriate, such as estimating the adjacency matrix of a bipartite graph thieesize of one class
of nodes is unknown.

Recent work has made significant progress on turning this nonparamgricach to inferring
latent features into a tool that can be used to solve a wide range of madnini@tgproblems. These
advances include more sophisticated MCMC algorithms, schemes for paiadjgbicobabilistic
inference, and deterministic methods for approximating posterior distribudiegrsiatent feature
matrices. The connections between the IBP and other stochastic popesdee the groundwork
for further understanding and extending this class of probabilistic model&ing it possible to
modify the distribution over feature assignments and to capture differétarips of dependency
that might exist among the latent features of objects. As with the CRP, theediffeiews of the
IBP that result from considering the stick-breaking construction or tttedying measure that is
marginalized out to obtain the combinatorial stochastic process each tdfffeent extensions,
generalizations, and inference algorithms.

Despite the wide array of successful applications of the IBP and rel@&#tbdtions, we view
one of the primary contributions of this work to be the idea that we can définermonparametric
Bayesian models to suit the unique challenges of machine learning. Owssuicctransferring
the strategy of taking the limit of a finite model from latent classes to latent &=atwggests that
the same strategy might be applied with other representations, broadenkigdbef latent struc-
ture that can be recovered through unsupervised learning. Thisedeaes support both from
other examples of new nonparametric models defined via a similar strategyT{esigis, 2008),
and from theoretical analyses of the conditions under which infinite modelainewell defined
when obtained as limits of finite models (Orbanz, 2010). We anticipate that wikkige other
combinatorial structures for which this strategy will result in new and uiskistributions.
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Appendix A. Details of Limits

This appendix contains the details of the limits of three expressions thatrapfeguations 5 and
14.

The first expression is

Kl Mea(K—k+1)
KKK~ T K
KK %K&—u...ﬂfl)m—l(m - 1)K
B (K — DK, (-1 Ky —1)!
g 1—T++ KK+71 N

For finiteK., all terms except the first go to zerolds— .
The second expression is

ek (N

For finitem, anda, all terms except the first go to zerolés— .
The third expression is

(Frte) -
Mii(i+%) B

K
_ rl 10(; . (27)
=1\ 14

We can now use the fact that
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to compute the limit of Equation 27 & — o, obtaining

K
N 1 N
lim e = |_|1exp{—0(%}
e\ 14 )=
N 1
= exp{—aZT}
=1
= exp{—aHn},
as desired.
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