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Abstract

In recent years, several methods have been proposed toreemhbitiple kernels instead of using a
single one. These different kernels may correspond to wdiffegent notions of similarity or may
be using information coming from multiple sources (differeepresentations or different feature
subsets). In trying to organize and highlight the similasitand differences between them, we give
a taxonomy of and review several multiple kernel learningathms. We perform experiments on
real data sets for better illustration and comparison aftag algorithms. We see that though there
may not be large differences in terms of accuracy, therdferdnce between them in complexity as
given by the number of stored support vectors, the sparkibecsolution as given by the number of
used kernels, and training time complexity. We see thatatiyersing multiple kernels instead of a
single one is useful and believe that combining kernels iardinear or data-dependent way seems
more promising than linear combination in fusing inforroatprovided by simple linear kernels,
whereas linear methods are more reasonable when combiminglex Gaussian kernels.
Keywords: support vector machines, kernel machines, multiple kdezehing

1. Introduction

The support vector machine (SVM) is a discriminative classifier propésetinary classifica-
tion problems and is based on the theory of structural risk minimization (Vape®8). Given
a sample olN independent and identically distributed training instanges,yi)}\ ; wherex; is
the D-dimensional input vector angl € {—1,+1} is its class label, SVM basically finds the lin-
ear discriminant with the maximum margin in the feature space induced by the mgdppuotion
®: RP — RS, The resulting discriminant function is

f(x) = (w,®(x)) +b.

The classifier can be trained by solving the following quadratic optimizatioblgnu
minimize }HWHZJFC S &
M e

with respecttow € RS, £ cRY, beR
subject toy; ((W, P(xi)) +b) >1—-& Vi

wherew is the vector of weight coefficient€, is a predefined positive trade-off parameter between
model simplicity and classification errdy,is the vector of slack variables, ahds the bias term
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of the separating hyperplane. Instead of solving this optimization probleratlyirthe Lagrangian
dual function enables us to obtain the following dual formulation:

o N 1 N N

maximize ) o — = aid;jyiyj (P(xi), P(Xj))

2% 22 N BRI
k(Xi,Xj)
with respect toa € R

N

subjectto Y ajy; =0
2
C>ai>0 Vi

wherek: RP x RP — R is named the&ernel functionanda is the vector of dual variables corre-
sponding to each separation constraint. Solving this, wwge{?‘zlaiyi¢(xi) and the discriminant
function can be rewritten as

N

f(x)_Zl iyik(xi, x) +b.

There are several kernel functions successfully used in the liteysuech as the linear kernel
(KLin), the polynomial kernelkpoy), and the Gaussian kernédgay):

Kuin (Xis X)) = (Xi, Xj)
kpoL(Xi,xj) = ((xi,xj)+1)9, geN
keau(Xi X)) = exp(—|xi —x|3/s"), s€Ry.

There are also kernel functions proposed for particular applicatsutd, as natural language pro-
cessing (Lodhi et al., 2002) and bioinformatics (8i&opf et al., 2004).

Selecting the kernel functidk(-, -) and its parameters (e.g}pr s) is an important issue in train-
ing. Generally, a cross-validation procedure is used to choose thepdréstming kernel function
among a set of kernel functions on a separate validation set diffecentthe training set. In recent
years, multiple kernel learning (MKL) methods have been proposedewireuse multiple kernels
instead of selecting one specific kernel function and its correspondnageters:

kn (xi,%}) = fy ({ken (X" X ") F o)

where the combination functiorfiy : RP — R, can be a linear or a nonlinear function. Kernel func-
tions, {km: RPm x RPm — R},ﬁ’bl, takeP feature representations (not necessarily different) of data
instancesx; = {x™}F_; wherex™ € RPm, andDy, is the dimensionality of the corresponding feature
representation) parameterizes the combination function and the more common implementation is

kn (xi,%}) = fy ({ken(X", XT) } s IN)

where the parameters are used to combine a set of predefined kerneladilnow the kernel
functions and corresponding kernel parameters before training)aldo possible to view this as

kn (xi,%}) = T ({km(x",X}"IN) }-1)
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where the parameters integrated into the kernel functions are optimized dw&ining. Most of
the existing MKL algorithms fall into the first category and try to combine predefkernels in an
optimal way. We will discuss the algorithms in terms of the first formulation bug the details of
the algorithms that use the second formulation where appropriate.

The reasoning is similar to combining different classifiers: Instead ofsthg@ single kernel
function and putting all our eggs in the same basket, it is better to have adskdtam algorithm
do the picking or combination. There can be two uses of MKL: (a) Diffekennels correspond to
different notions of similarity and instead of trying to find which works be&taaning method does
the picking for us, or may use a combination of them. Using a specific kernebma source of
bias, and in allowing a learner to choose among a set of kernels, a bétt@rrscan be found. (b)
Different kernels may be using inputs coming from different represientapossibly from different
sources or modalities. Since these are different representations, aheydtiferent measures of
similarity corresponding to different kernels. In such a case, combirenggeks is one possible way
to combine multiple information sources. Noble (2004) calls this method of combirmgels
intermediate combinatioand contrasts this witkarly combinatior{where features from different
sources are concatenated and fed to a single learnetjtencbmbinatior(where different features
are fed to different classifiers whose decisions are then combined sdedii trained combiner).

There is significant amount of work in the literature for combining multiple Kerrgection 2
identifies the key properties of the existing MKL algorithms in order to constu@xonomy,
highlighting similarities and differences between them. Section 3 categorizediscusses the
existing MKL algorithms with respect to this taxonomy. We give experimentalies Section 4
and conclude in Section 5. The lists of acronyms and notation used in this aapgiven in
Appendices A and B, respectively.

2. Key Properties of Multiple Kernel Learning

We identify and explain six key properties of the existing MKL algorithms in ptdeobtain a
meaningful categorization. We can think of these six dimensions (thoughecessarily orthogo-
nal) defining a space in which we can situate the existing MKL algorithms amdrséa structure
(i.e., groups) to better see the similarities and differences between thene fiogerties are the
learning method, the functional form, the target function, the training methedyase learner, and
the computational complexity.

2.1 The Learning Method
The existing MKL algorithms use different learning methods for determinindcéneel combina-

tion function. We basically divide them into five major categories:

1. Fixed rulesare functions without any parameters (e.g., summation or multiplication of the
kernels) and do not need any training.

2. Heuristic approachesise a parameterized combination function and find the parameters of
this function generally by looking at some measure obtained from eachlkanttion sepa-
rately. These measures can be calculated from the kernel matricesroasstkes performance
values of the single kernel-based learners trained separately usimgezael.

2213



GONEN AND ALPAYDIN

3. Optimization approacheslso use a parametrized combination function and learn the parame-
ters by solving an optimization problem. This optimization can be integrated to elkeased
learner or formulated as a different mathematical model for obtaining onlyaimbioation
parameters.

4. Bayesian approachdsterpret the kernel combination parameters as random variables, put
priors on these parameters, and perform inference for learning thentha base learner
parameters.

5. Boosting approachesnspired from ensemble and boosting methods, iteratively add a new
kernel until the performance stops improving.

2.2 The Functional Form

There are different ways in which the combination can be done and eacitstown combination
parameter characteristics. We group functional forms of the existing Migarighms into three
basic categories:

1. Linear combinatiormethods are the most popular and have two basic categories: unweighted
sum (i.e., using sum or mean of the kernels as the combined kernel) andedesgim. In the
weighted sum case, we can linearly parameterize the combination function:

P

kn (xi,%j) = fy ({ken(X" X[} In) = Z Nkm(X", X]")

m=1

wheren denotes the kernel weights. Different versions of this approactr diffehe way
they put restrictions om: the linear sum (i.e.n € RP), the conic sum (i.e. € RE), or

the convex sum (i.en € R® andSh._,nm=1). As can be seen, the conic sum is a special
case of the linear sum and the convex sum is a special case of the conicT$e conic
and convex sums have two advantages over the linear sum in terms ofetability. First,
when we have positive kernel weights, we can extract the relative imuartaf the combined
kernels by looking at them. Second, when we restrict the kernel weighs tmnnegative,
this corresponds to scaling the feature spaces and using the concatefatiem as the
combined feature representation:

\/m%(x;)
®n(x) = mq?Z(X )
VIRPR(XP)
and the dot product in the combined feature space gives the combirread: ker

V@) | [ /MPa(xt &

VN2®2(xf) AE ‘Dz 7)

P
<cbr](X|),¢>n(XJ>> = z nmkm | ’ j)

T0e00))  \ e
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The combination parameters can also be restricted using extra constraghtsassthe/ -
norm on the kernel weights or trace restriction on the combined kernel matraddition
to their domain definitions. For example, thenorm promotes sparsity on the kernel level,
which can be interpreted as feature selection when the kernels usemlifieature subsets.

2. Nonlinear combinationmethods use nonlinear functions of kernels, namely, multiplication,
power, and exponentiation.

3. Data-dependent combinatianethods assign specific kernel weights for each data instance.
By doing this, they can identify local distributions in the data and learn pricgrael combi-
nation rules for each region.

2.3 The Target Function

We can optimize different target functions when selecting the combinatiatidtmrparameters. We
group the existing target functions into three basic categories:

1. Similarity-based functionsalculate a similarity metric between the combined kernel matrix
and an optimum kernel matrix calculated from the training data and select ithigirgation
function parameters that maximize the similarity. The similarity between two kernel ma-
trices can be calculated using kernel alignment, Euclidean distance, Kulledaer (KL)
divergence, or any other similarity measure.

2. Structural risk functiongollow the structural risk minimization framework and try to mini-
mize the sum of a regularization term that corresponds to the model complesigneerror
term that corresponds to the system performance. The restrictiongrel keeights can be
integrated into the regularization term. For example, structural risk funcéioruse the/;-
norm, the/>-norm, or a mixed-norm on the kernel weights or feature spaces to pickdtel
parameters.

3. Bayesian functionseasure the quality of the resulting kernel function constructed from can-
didate kernels using a Bayesian formulation. We generally use the likelitrabé posterior
as the target function and find the maximum likelihood estimate or the maximum aiposter
estimate to select the model parameters.

2.4 The Training Method

We can divide the existing MKL algorithms into two main groups in terms of their trgimethod-
ology:

1. One-step methodsalculate both the combination function parameters and the parameters
of the combined base learner in a single pass. One can use a sequeprgalcapor a si-
multaneous approach. In the sequential approach, the combination fupetiameters are
determined first, and then a kernel-based learner is trained using the eahiieimel. In the
simultaneous approach, both set of parameters are learned together.

2. Two-step methodsse an iterative approach where each iteration, first we update the combi-
nation function parameters while fixing the base learner parameters, andi¢hgpdate the
base learner parameters while fixing the combination function parametegse Tho steps
are repeated until convergence.
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2.5 The Base Learner

There are many kernel-based learning algorithms proposed in the liteagdirgl of them can be
transformed into an MKL algorithm, in one way or another.

The most commonly used base learners are SVM and support vectessiegr (SVR), due
to their empirical success, their ease of applicability as a building block in tegfaethods, and
their ease of transformation to other optimization problems as a one-step tnaiathgd using the
simultaneous approach. Kernel Fisher discriminant analysis (KFD4)aezed kernel discrimi-
nant analysis (RKDA), and kernel ridge regression (KRR) are tbtleer popular methods used in
MKL.

Multinomial probit and Gaussian process (GP) are generally used irsBayapproaches. New
inference algorithms are developed for modified probabilistic models in @aodeyarn both the
combination function parameters and the base learner parameters.

2.6 The Computational Complexity

The computational complexity of an MKL algorithm mainly depends on its training odethe.,
whether it is one-step or two-step) and the computational complexity of itddaser.

One-step methods using fixed rules and heuristics generally do not spetdtime to find the
combination function parameters, and the overall complexity is determined bgitigexity of the
base learner to a large extent. One-step methods that use optimizationciggrtmalearn combina-
tion parameters have high computational complexity, due to the fact that gnggaerally modeled
as a semidefinite programming (SDP) problem, a quadratically constraindchtjagrogramming
(QCQP) problem, or a second-order cone programming (SOCP) problémse problems are
much harder to solve than a quadratic programming (QP) problem used iashefthe canonical
SVM.

Two-step methods update the combination function parameters and the lvase pesameters
in an alternating manner. The combination function parameters are gengrdéyed by solving
an optimization problem or using a closed-form update rule. Updating tleelbaer parameters
usually requires training a kernel-based learner using the combineel k&ar example, they can
be modeled as a semi-infinite linear programming (SILP) problem, which usesexig linear
programming (LP) solver and a canonical SVM solver in the inner loop.

3. Multiple Kernel Learning Algorithms

In this section, we categorize the existing MKL algorithms in the literature into bRy de-
pending on the six key properties discussed in Section 2. We first giuenenarizing table (see
Tables 1 and 2) containing 49 representative references and thea giere detailed discussion of
each group in a separate section reviewing a total of 96 references.

3.1 Fixed Rules

Fixed rules obtairkn (-,-) using fn(-) and then train a canonical kernel machine with the kernel
matrix calculated usingn (-,-). For example, we can obtain a valid kernel by takingghemation
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or multiplicationof two valid kernels (Cristianini and Shawe-Taylor, 2000):
kn(X,, ) kl( )Jrkz( i ])

kr] (xi,X ) kl(xl 5 Xj )kz( i j) (1)
We know that a matrbK is positive semidefinite if and only if T Kv > 0, for allu € RN. Trivially,
we can see that (x!,x}) + k2(x?,x%) gives a positive semidefinite kernel matrix:

L KnL=0"(K1+K2)u=0"K10+U0"Ko0 >0

andky (xt, ] xH)ko (X2 XS 2) also gives a positive semidefinite kernel due to the fact that the element-wise
product between two positive semidefinite matrices results in another pastividefinite matrix:

L' Knu=u"(Ki®Kzu>0.

We can apply the rules in (1) recursively to obtain the rules for more than émmels. For
example, the summation or multiplication®kernels is also a valid kernel:

Xlu zkﬁ‘I|7J

Xla I_lkm|7j

Pavlidis et al. (2001) report that on a gene functional classification temking an SVM with
an unweighted sum of heterogeneous kernels gives better results ¢heantbination of multiple
SVMs each trained with one of these kernels.

We need to calculate the similarity between pairs of objects such as genessinpespecially
in bioinformatics applicationsRairwise kernelsare proposed to express the similarity between pairs
in terms of similarities between individual objects. Two pairs are said to be sintilanwach object
in one pair is similar to one object in the other pair. This approach can beled@s a pairwise
kernel using a kernel function between individual objects, calledjgmomic kerne{Ben-Hur and
Noble, 2005), as follows:

KE (D XG0, {37 }) = KOG, x?) KOG, XD) 4 KO, X7 K, xP).-

Ben-Hur and Noble (2005) combine pairwise kernels in two differentswéa) using an unweighted
sum of different pairwise kernels:

kr]({Xl,Xa} {XI? j ka{xla j} {le j )
and (b) using an unweighted sum of different genomic kernels in the igaikernel:

kp({xn j} {Xl7j )

(fooee) (). (e (o)

an(Xl,X )kr]( i j)+kn(l7 j)kr]( )
The combined pairwise kernels improve the classification performancedt@ip-protein interac-
tion prediction task.
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Representative Learning Functional Target Training Base Computhtiona
Sec. References Method  Form Function  Method Learner Complexity
3.1 Pavlidis et al. (2001) Fixed Lin. (unwei.) None 1-step (seq.) SVM QP
Ben-Hur and Noble (2005) Fixed Lin. (unwei.) None l-step(seq.) SVM P Q
3.2 de Diego et al. (2004, 2010a) Heuristic Nonlinear Val. error  2-step VMS QP
Moguerza et al. (2004); de Diego et al. (2010a) Heuristic Data-dep. oneN 1-step (seq.) SVM QP
Tanabe et al. (2008) Heuristic Lin. (convex) None l-step(seq.) SVM P Q
Qiu and Lane (2009) Heuristic Lin. (convex) None 1-step (seq.) SVR QP
Qiu and Lane (2009) Heuristic Lin. (convex) None 1-step (seq.) SVM QP
3.3 Lanckriet et al. (20044a) Optim. Lin. (linear)  Similarity 1-step(seq.) SVM DPSQP
Igel et al. (2007) Optim. Lin. (linear)  Similarity 1-step (seq.) SVM Grad.+QP
Cortes et al. (2010a) Optim. Lin. (linear)  Similarity 1-step (seq.) SVM MatHQP
3.4  Lanckriet et al. (2004a) Optim. Lin. (conic) Similarity 1-step (seq.) SVM C@P+QP
Kandola et al. (2002) Optim. Lin. (conic)  Similarity 1-step (seq.) SVM QP+QP
Cortes et al. (2010a) Optim. Lin. (conic)  Similarity 1-step(seq.) SVM QP+QP
3.5 Heetal (2008) Optim. Lin. (convex) Similarity 1-step (seq.) SVM QP+QP
Tanabe et al. (2008) Optim. Lin. (convex) Similarity 1-step (seq.) SVM QP+Q 9
Ying et al. (2009) Optim. Lin. (convex) Similarity 1-step (seq.) SVM Grad.+QP N
3.6  Lanckriet et al. (2002) Optim. Lin. (linear)  Str. risk 1-step (seq.) SVMSDP+QP
Qiu and Lane (2005) Optim. Lin. (linear)  Str. risk 1-step (seq.) SVR SDP+Q
Conforti and Guido (2010) Optim. Lin. (linear)  Str. risk 1-step (seq.) SVMSDP+QP
3.7 Lanckriet et al. (2004a) Optim. Lin. (conic) Str. risk 1-step (seq.) MSV QCQP+QP
Fung et al. (2004) Optim. Lin. (conic)  Str. risk 2-step KFDA QP+Mat. Inv.
Tsuda et al. (2004) Optim. Lin. (conic)  Str. risk 2-step KFDA Grad.+Ma¥. |
Qiu and Lane (2005) Optim. Lin. (conic)  Str. risk 1-step (seq.) SVR QCQP+
Varma and Ray (2007) Optim. Lin. (conic)  Str. risk 1-step (sim.) SVM SOCP
Varma and Ray (2007) Optim. Lin. (conic)  Str. risk 2-step SVM Grad.+QP
Cortes et al. (2009) Optim. Lin. (conic)  Str. risk 2-step KRR Grad.+Mat. In
Kloft et al. (2010a) Optim. Lin. (conic)  Str. risk 2-step SVM Newton+QP
Xu et al. (2010b) Optim. Lin. (conic) Str. risk 1-step (sim.) SVM Grad.
Kloft et al. (2010b); Xu et al. (2010a) Optim. Lin. (conic)  Str. risk 2pste SVM Analytical+QP
Conforti and Guido (2010) Optim. Lin. (conic)  Str. risk 1-step (seq.) SVMQCQP+QP

Table 1: Representative MKL algorithms.
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3.2 Heuristic Approaches
de Diego et al. (2004, 2010a) define a functional form of combining tevads:

1
Kn = E(K1+K2)+ f(Kl—Kz)

where the ternf (K1 — K;) represents the difference of information between whaandK pro-
vide for classification. They investigate three different functions:

1
kr] (Xi,Xj) = E(kl(xilﬂxzj!-) + kz(XiZ,ij)) +TYiY;j |k1(xilﬂxzj!-) - kz(Xiz,ij)’

1
kn (1, %) = 5 (ka (5 X}) +ka 0, x5) + Ty (Ka (6, %) — ke (0, X))
1
Kn = 5(K1+K2) +1(K1 —K3)(K1 —K3)

wheret € R, is the parameter that represents the weight assigned to thd (&rm- K») (selected
through cross-validation) and the first two functions do not ensurengaositive semidefinite
kernel matrices. It is also possible to combine more than two kernel fundiipagplying these
rules recursively.

Moguerza et al. (2004) and de Diego et al. (2010a) propose a matritidnal form of com-
bining kernels:

P
kn(Xi,Xj) = > Nm(%i, X} )Kn(X", X]")
m=1

wherenm(-,-) assigns a weight tém(-,-) according tox; andx;. They propose different heuris-
tics to estimate the weighing function values using conditional class probabifigg= y;|xi)
and Pty; = yi|x;), calculated with a nearest-neighbor approach. However, eachl Kenotion
corresponds to a different neighborhood apd-, -) is calculated on the neighborhood induced by
kn(+,-). For an unlabeled data instancehey take its class label once-a4 and once as-1, calcu-
late the discriminant valuef(x|y = +1) and f (x|ly = —1), and assign it to the class that has more
confidence in its decision (i.e., by selecting the class label with grg#{efy) value). de Diego
et al. (2010b) use this method to fuse information from several featpregentations for face veri-
fication. Combining kernels in a data-dependent manner outperforms #isecealdusion techniques
such as feature-level and score-level methods in their experiments.

We can also use a linear combination instead of a data-dependent combaratiéormulate
the combined kernel function as follows:

P
kn(Xi,Xj) = > Nekm(X{",X]")
m=1
where we select the kernel weights by looking at the performance vahiaged by each kernel

separately. For example, Tanabe et al. (2008) propose the followiednrrder to choose the
kernel weights for classification problems:
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whererTt, is the accuracy obtained using oy, andd is the threshold that should be less than or
equal to the minimum of the accuracies obtained from single-kernel lsar@ar and Lane (2009)
propose two simple heuristics to select the kernel weights for regressiblems:

Nm= PRm vm
> Ra
h=1
P
z IVlh_Mm
nm: h=1 Vm
(P=1) ¥ My
h=1

whereRy, is the Pearson correlation coefficient between the true outputs and tietpdelabels
generated by the regressor using the kernel métgixandMy, is the mean square error generated
by the regressor using the kernel matky,. These three heuristics find a convex combination of
the input kernels as the combined kernel.

Cristianini et al. (2002) define a notion of similarity between two kernels céidel align-
ment The empirical alignment of two kernels is calculated as follows:

(K1,K2)F

A(K1,Kz) = V (K1, K1)e (K2, K2)e

where(K1,Ko)r = 311 5111 ki (Xt x}ka(x?, x2). This similarity measure can be seen as the cosine

of the angle betweeK ; andK». yy" can be defined adeal kernelfor a binary classification task,
and the alignment between a kernel and the ideal kernel becomes

TN _ (K,yy")e Ky DF
Al )= VIKGKEWY Ty e NVKK)E

Kernel alignment has one key property due to concentration (i.e., thalpitity of deviation from
the mean decays exponentially), which enables us to keep high alignmernteshset when we
optimize it on a training set.

Qiu and Lane (2009) propose the following simple heuristic for classificatioblems to select
the kernel weights using kernel alignment:

AKm,yy"
o = F)( m¥Y') oy o)

S A(Knyy')
h=1

where we obtain the combined kernel as a convex combination of the inmai&er
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3.3 Similarity Optimizing Linear Approaches with Arbitrary Kernel Weight s

Lanckriet et al. (2004a) propose to optimize the kernel alignment as fallow

maximize AK{yy")
with respect tok py € S"
subjectto t(Kp) =1
Kn =0

where the trace of the combined kernel matrix is arbitrarily set to 1. Thidgmoban be converted
into the following SDP problem using arbitrary kernel weights in the combination

P
maximize (% NmK " yy "
with respect ton € R?, A e SN
subjectto tfA) <1

P
A erlmK%
p m= =0

Igel et al. (2007) propose maximizing the kernel alignment using grabiased optimization.
They calculate the gradients with respect to the kernel parameters as

0Kn T> T <0Kn >
—1 Kn,Kn)e — (Kn, Kk
OAKn.yy") <0nm yy F< n-Kn)r —(Kn,yy )r MmN )

OMem Ny/(Kn,Kn)#

In a transcription initiation site detection task for bacterial genes, they obt#ier lvesults by opti-
mizing the kernel weights of the combined kernel function that is compos&#® séquence kernels,
using the gradient above.

Cortes et al. (2010a) give a different kernel alignment definition, kvtiiey callcentered-kernel
alignment The empirical centered-alignment of two kernels is calculated as follows:

(K1, K3)F
V(KL KD)r (KS, KS)r

whereK ¢ is the centered version &f and can be calculated as

CA(K1,Kz) =

1 1 1
KC=K — leK — NK11T + m(1T|<1)11T
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wherel is the vector of ones with proper dimension. Cortes et al. (2010a) alpogedo optimize
the centered-kernel alignment as follows:

maximize CAKn,yy')
with respect ton € M 3

whereM = {n: ||n|j2 = 1}. This optimization problem (3) has an analytical solution:

M—1a
= Ml )

whereM = {(K&, KR Hp-g anda= {{K&,yy " )r Hs-

3.4 Similarity Optimizing Linear Approaches with Nonnegative Kernel Weights

Kandola et al. (2002) propose to maximize the alignment between a norvedgaar combination
of kernels and the ideal kernel. The alignment can be calculated as follows

nm<Km>ny>F

P
. &1
AKn,yy )= — :
N\/z Y NmNh(Km, Kn)F

m=1h=1

We should choose the kernel weights that maximize the alignment and this idba cast into the
following optimization problem:

maximize AKn,yy")
with respect ton € RY

and this problem is equivalent to

P
maximize 3 Nm(Km,yy )
m=1

; P
with respect ton € R’

P P

subject to Z Z NmNh(Km, Knh)g = C.
m=1h=1

Using the Lagrangian function, we can convert it into the following untraieed optimization
problem:

P P P
maximize z Nm(Km,yy )¢ — P—( Z Z NmNh(Km, Kn)r —C>
m=1 m=1h=1

with respect ton € RY.
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Kandola et al. (2002) take = 1 arbitrarily and add a regularization term to the objective func-
tion in order to prevent overfitting. The resulting QP is very similar to the hardyime&sVM
optimization problem and is expected to give sparse kernel combinationtaeigh

P

P P
maximize Z Nm(KmYY )F = 55 NmNn(Km, Kn)e =2 Z N
m=1h=1

: P
with respect ton € R’

where we only learn the kernel combination weights.
Lanckriet et al. (2004a) restrict the kernel weights to be nonnegatisie¢heir SDP formulation
reduces to the following QCQP problem:

P
maximize S nm(Kiyy ")r
m=1

with respect ton € RY

P P

subjectto 3 3 Nunn(Km Kn)r < 1. (5)
m=1h=1

Cortes et al. (2010a) also restrict the kernel weights to be nonnegaterenging the definition
of M in (3)to{n: |Inll==1, n € RY} and obtain the following QP:

minimize v Mv —2v'a
with respect tov € RY (6)

where the kernel weights are given lpy=v/||v||2.

3.5 Similarity Optimizing Linear Approaches with Kernel Weights on a Simplex

He et al. (2008) choose to optimize the distance between the combined kextnisd and the ideal
kernel, instead of optimizing the kernel alignment measure, using the follaygtigization prob-
lem:

minimize (Kn —yy',Kn —yy")Z
with respect ton € RY

P
subjectto y nm=1
2

This problem is equivalent to

P P

minimize % % NmNn(Km,Kn)F —2 Z Nm(Km. Yy )F
m=1h=1

with respect ton € RY,

P
subject to Z nm=1. (7)
m=1

2224



MULTIPLE KERNEL LEARNING ALGORITHMS

Nguyen and Ho (2008) propose another quality measure called fepagce-based kernel ma-
trix evaluation measure (FSM) defined as

sy +s

FSMEY) = . —m T,

where{s,,s_} are the standard deviations of the positive and negative classeSmand_} are
the class centers in the feature space. Tanabe et al. (2008) optimizertebAeights for the convex
combination of kernels by minimizing this measure:

minimize FSMKn,y)
with respect ton € RY

P
subjectto y nm=1.
2

This method gives similar performance results when compared to the SMQOgdietlam of Bach
et al. (2004) for a protein-protein interaction prediction problem using neshtime and memory.

Ying et al. (2009) follow an information-theoretic approach based on theliergence be-
tween the combined kernel matrix and the optimal kernel matrix:

minimize KL(A(0,Kn)[|A((0,yy"))
with respect ton € RY,
P
subjectto y nm=1
&
where0 is the vector of zeros with proper dimension. The kernel combinations teedgmn be
optimized using a projected gradient-descent method.

3.6 Structural Risk Optimizing Linear Approaches with Arbitrary Kern el Weights

Lanckriet et al. (2002) follow a direct approach in order to optimize thestricted kernel com-
bination weights. Thémplausibility of a kernel matrixw(K), is defined as the objective function
value obtained after solving a canonical SVM optimization problem (Here niye apnsider the
soft margin formulation, which uses tlig-norm on slack variables):

N 1NN
maximizew(K) =Y aj— = a;ayiyik(xi, Xj)
5% 72, 2, M

with respect toa € RY

N
subjectto y ajyi =0
2

C>0i>0 Vi

The combined kernel matrix is selected from the following set:

P
K =<K:K= anKm, K=0, tr(K)<c
m=1
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where the selected kernel matrix is forced to be positive semidefinite.

The resulting optimization problem that minimizes the implausibility of the combined kerne
matrix (the objective function value of the corresponding soft margin S\pkthuzation problem)
is formulated as

minimize w(K}?)
with respect toKp € &L
subjectto t(Kp) =c

whereK ['? is the kernel matrix calculated only over the training set and this problem eaagt
into the following SDP formulation:

minimize t
with respectton € R, te R, Ac R, veRY, 5cRY
subject to t(Kp) =c
( (yy") oK 1+v6+)\y> _
(1+v—3+Ay)T  t—203"1 |~
Kr] = 0.

This optimization problem is defined for a transductive learning setting andeed to be able to
calculate the kernel function values for the test instances as well asithiadrimstances.

Lanckriet et al. (20044a,c) consider predicting function classificatisae@ated with yeast pro-
teins. Different kernels calculated on heterogeneous genomic datalynamao acid sequences,
protein-protein interactions, genetic interactions, protein complex datag)xréssion data, are
combined using an SDP formulation. This gives better results than SVMsdraitieeach kernel
in nine out of 13 experiments. Qiu and Lane (2005) extentide SVR to a QCQP formulation
for regression problems. Conforti and Guido (2010) propose an8t@ formulation that removes
trace restriction on the combined kernel matrix and introduces constraietsheskernel weights
for an inductive setting.

3.7 Structural Risk Optimizing Linear Approaches with Nonnegative Kernel Weights

Lanckriet et al. (20044a) restrict the combination weights to have notivegalues by selecting the
combined kernel matrix from

P
%:{KK: anKﬁh nZO, Kto) tr(K)SC}
m=1
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and reduce the SDP formulation to the following QCQP problem by selectingthbined kernel
matrix from %p instead of% :

1 N
minimize =ct— Zlai
2 &

with respect toa € R, t e R
subjectto (Km)t>a' ((yy") oKIa  vm

N
aiyi=0

i; 1Yl

C>ai>0 Vi

where we can jointly find the support vector coefficients and the keombmation weights. This
optimization problem is also developed for a transductive setting, but wa gty take the number
of test instances as zero and find the kernel combination weights for anotivel setting. The
interior-point methods used to solve this QCQP formulation also return the optahes of the
dual variables that correspond to the optimal kernel weights. Qiu and [2005) give also a
QCQP formulation of regression usiagube SVR. The QCQP formulation is used for predicting
siRNA efficacy by combining kernels over heterogeneous data so{@aesnd Lane, 2009). Zhao
et al. (2009) develop a multiple kernel learning method for clustering pmublesing the maximum
margin clustering idea of Xu et al. (2005) and a nonnegative linear cotityinaf kernels.

Lanckriet et al. (2004a) combine two different kernels obtained freterdogeneous informa-
tion sources, namely, bag-of-words and graphical representatiorthe Reuters-21578 data set.
Combining these two kernels with positive weights outperforms the singleekezsults obtained
with SVM on four tasks out of five. Lanckriet et al. (2004b) use a QdQ@Rhulation to integrate
multiple kernel functions calculated on heterogeneous views of the genataeldtained through
different experimental procedures. These views include amino acigtsegs, hydropathy profiles,
gene expression data and known protein-protein interactions. Thietpwadask is to recognize the
particular classes of proteins, namely, membrane proteins and ribosasteihpr The QCQP ap-
proach gives significantly better results than any single kernel and theiginted sum of kernels.
The assigned kernel weights also enable us to extract the relative impofithe data sources
feeding the separate kernels. This approach assigns near zerdsaeighndom kernels added
to the candidate set of kernels before training. Dehak et al. (2008)inentree different ker-
nels obtained on the same features and get better results than scorddusipeaker verification
problem.

A similar result about unweighted and weighted linear kernel combinatiosdhatained by
Lewis et al. (2006a). They compare the performances of unweightedeighted sums of kernels
on a gene functional classification task. Their results can be summarizetiwitjuidelines: (a)
When all kernels or data sources are informative, we should use theigimed sum rule. (b)
When some of the kernels or the data sources are noisy or irrelevartipwiel ®ptimize the kernel
weights.

Fung et al. (2004) propose an iterative algorithm using the kerneliseiminant analysis as
the base learner to combine heterogeneous kernels in a linear mannernvidgatve weights. The
proposed method requires solving a simple nonsingular system of lineati@giof sizg N + 1)
and a QP problem having decision variables at each iteration. On a colorectal cancer diagnosis
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task, this method obtains similar results using much less computation time comparkttoga
kernel for standard kernel Fisher discriminant analysis.

Tsuda et al. (2004) learn the kernel combination weights by minimizing arozippaition of
the cross-validation error for kernel Fisher discriminant analysisrderdo update the kernel com-
bination weights, cross-validation error should be approximated with aetiffieble error function.
They use the sigmoid function for error approximation and derive thetapdées of the kernel
weights. This procedure requires invertindNax N matrix and calculating the gradients at each
step. They combine heterogeneous data sources using kernels, whitlixad linearly and non-
linearly, for bacteria classification and gene function prediction taskheF@iscriminant analysis
with the combined kernel matrix that is optimized using the cross-validation apgmoximation,
gives significantly better results than single kernels for both tasks.

In order to consider the capacity of the resulting classifier, Tan and \(2fti#}) optimize the
nonnegative combination coefficients using the minimal upper bound of theik/&hervonenkis
dimension as the target function.

Varma and Ray (2007) propose a formulation for combining kernels udingar combination
with regularized nonnegative weights. The regularization on the keomabimation weights is
achieved by adding a term to the objective function and integrating a sehefraints. The primal
optimization problem with these two madifications can be given as

o] N P
minimize 5||Wn||§+C Zéi + Y Omim
i= m=1

with respect towp € R%, £ eRY, be R, neR’
subject toy; ((wn,®Pn (xi)) +b) > 1-§& Vi
An=>p

where®n (-) corresponds to the feature space that implicitly constructs the combineel kamo-
tion kn (xi,x;j) = zmzlnmkmu{“,xj“) andwn, is the vector of weight coefficients assignedig(-)

The parameteré ¢ R?*P p € RR, ando € RP encode our prior information about the kernel
weights. For example, assigning higlmgvalues to some of the kernels effectively eliminates them
by assigning zero weights to them. The corresponding dual formulatiomiigdes the following

SOCP problem:

N
maximize Zlon —p's
£

with respect toa € RY, &€ R}

P

N
subject toom— &' A(:, Z o Yiyjkm(X", X} Vm

I\) \

N

-Zlaiyi =0 Vm
i=

C>ai>0 Vi

Instead of solving this SOCP problem directly, Varma and Ray (2007) atgmwpe an alternating
optimization problem that performs projected gradient updates for kesgights and solves a QP
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problem to find the support vector coefficients at each iteration. The poiptanization problem
for givenn is written as

. 1 N P
minimize J(n) = EHWnH%—FC ZLEi + S Omim
i= m=1

with respecttowny e RS, £€RY, beR
subject toy; ((wn,®n (xi)) +b) > 1-& Vi

and the corresponding dual optimization problem is

z
z

maximize J(n)

N P
Z ajViYj <ankm " X| >+ ZlO'mr]m

kn (Xi,Xj)

with respect toa € RY
N
subject to Zlonyi =0 Vm
i=

C>a; >0 Vi
The gradients with respect to the kernel weights are calculated as

aJ(n) 1NN Okn (xi, X;) 1c ¢
Nm 0" 22 leaiajyiyj'n:om Z““Jy'ylk"‘( rXp)vm

ONm

and these gradients are used to update the kernel weights while corgsinemimegativity and other
constraints.

Usually, the kernel weights are constrained by a trace ortheorm regularization. Cortes
et al. (2009) discuss the suitability of tHg-norm for MKL. They combine kernels with ridge
regression using th&-norm regularization over the kernel weights. They conclude that ubmg
¢1-norm improves the performance for a small number of kernels, buadegrthe performance
when combining a large number of kernels. However/thsorm never decreases the performance
and increases it significantly for larger sets of candidate kernels. tvah €009) compare the
£1-norm and the/>-norm for image and video classification tasks, and conclude thabtherm
should be used when the combined kernels carry complementary information.

Kloft et al. (2010a) generalize the MKL formulation for arbitraytnorms withp > 1 by regu-
larizing over the kernel coefficients (done by addirig || B to the objective function) or equivalently,
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constraining them||()||p < 1). The resulting optimization problem is

P
p—1
N

p—1

1| P /NN - p
maximize Y o — = aidYiyikm(X", X))
D IPRPR R

with respect toa € R}
N
subject to Zlaiyi =0

C>a; >0 Vi

and they solve this problem using alternative optimization strategies baseevadnriNdescent and
cutting planes. Xu et al. (2010b) add an entropy regularization term thsteeonstraining the
norm of the kernel weights and derive an efficient and smooth optimizationefvork based on
Nesterov’s method.

Kloft et al. (2010b) and Xu et al. (2010a) propose an efficient optitiimanethod for arbitrary
¢p-norms withp > 1. Although they approach the problem from different perspectivey, find
the same closed-form solution for updating the kernel weights at eactiateriloft et al. (2010b)
use a block coordinate-descent method and Xu et al. (2010a) useuivalence between group
Lasso and MKL, as shown by Bach (2008) to derive the update equ&ath studies formulate an
alternating optimization method that solves an SVM at each iteration and updaertieéweights
as follows:

Nm= T (8)
P

where|lwm||3 =nZ 3 31 aidjyiyjkn(x™, xT) from the duality conditions.

When we restrict the kernel weights to be nonnegative, the SDP formulaitiGonforti and
Guido (2010) reduces to a QCQP problem.

Lin et al. (2009) propose a dimensionality reduction method that uses multiplelk¢éo embed
data instances from different feature spaces to a unified feature.splae method is derived from
a graph embedding framework using kernel matrices instead of data maffleedearning phase
is performed using a two-step alternate optimization procedure that updatdsribnsionality re-
duction coefficients and the kernel weights in turn. McFee and LandR0&9) propose a method
for learning a unified space from multiple kernels calculated over heteeogs data sources. This
method uses a partial order over pairwise distances as the input anttesoan embedding us-
ing graph-theoretic tools. The kernel (data source) combination rulerisslédy solving an SDP
problem and all input instances are mapped to the constructed common engjosatte.

Another possibility is to allow only binarg, for kernel selection. We get rid of kernels whose
Nm = 0 and use the kernels whogg = 1. Xu et al. (2009b) define a combined kernel over the set of
kernels calculated on each feature independently and perform featetion using this definition.
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The defined kernel function can be expressed as

kn (Xi, X; ankxl m], x;j[m])

where[] indexes the elements of a vector and {0,1}P. For efficient learningy is relaxed into
the continuous domain (i.e.,22 n > 0). Following Lanckriet et al. (2004a), an SDP formulation is
derived and this formulation is cast into a QCQP problem to reduce the time catyple

3.8 Structural Risk Optimizing Linear Approaches with Kernel Weights on a Simplex

We can think of kernel combination as a weighted average of kernelsarsidern < ]Ri and
Zﬁ.zlﬂm = 1. Joachims et al. (2001) show that combining two kernels is beneficialtifdfahem
achieve approximately the same performance and use different datecesstas support vectors.
This makes sense because in combination, we want kernels to be uséifidnhgelves and com-
plementary. In a web page classification experiment, they show that comibi@ngord and the
hyperlink representations through the convex combination of two kernelsr(> = 1—n1) can
achieve better classification accuracy than each of the kernels.

Chapelle et al. (2002) calculate the derivative of the margin and theatige\of the radius (of
the smallest sphere enclosing the training points) with respect to a keraeh@tzr0:

aHW”%_ AL _ OK(Xi, X))
L Z;O"“'y‘yl 36
oR? Ok(Xi,Xi) & oK(xi,X;)

wherea is obtained by solving the canonical SVM optimization problem fnd obtained by

solving the QP problem defined by Vapnik (1998). These derivatimasbe used to optimize the
individual parameters (e.g., scaling coefficient) on each feature usidfernating optimization

procedure (Weston et al., 2001; Chapelle et al., 2002; GrandvaleCand, 2003). This strategy
is also a multiple kernel learning approach, because the optimized paransetdys interpreted as
the kernel parameters and we combine these kernel values over alefeatu

Bousquet and Herrmann (2003) rewrite the gradient of the margin bgaiegK with Ky and
taking the derivative with respect to the kernel weights gives

ZZa.a,y.y, X', X)) ¥m

wherewn, is the weight vector obtained usifg in training. In an iterative manner, an SVM is
trained to obtaim, thenn is updated using the calculated gradient while considering nonnegativity
(i.e.,n € RP) and normalization (i.e3F,_;nm = 1). This procedure considers the performance (in
terms of margin maximization) of the resulting classifier, which uses the combaradlknatrix.

ownls =~ & & ok r1 Xu,

N - ZZ aidyiyj————
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Bach et al. (2004) propose a modified primal formulation that uses the tediglrnorm on
feature spaces and tlignorm within each feature space. The modified primal formulation is

2
1( kP N
minimize = AmllWmll2 | +C Y &
2 (é 2,

with respect town, € RS, £ cRY, be R

P
subject toy; ( Z (W, Pm(X")) +b> >1-& Vi

m=1

where the feature space constructed usihg-) has the dimensionalit$, and the weight,.
When we consider this optimization problem as an SOCP problem, we obtainlltwirig dual
formulation:

1 N
minimize Zy? — Zai
2 &
with respecttoy € R, o € RY

N N
subject toy?d?, > Ziz 00 YiYjkm(X", X]) VM
i=1j=1

N
i; (P4
C>a;>0 Vi 9)

where we again get the optimal kernel weights from the optimal dual vasiad the weights
satisfyern:l d2nm = 1. The dual problem is exactly equivalent to the QCQP formulation of Lanck
riet et al. (2004a) when we taldy, = /tr (Kym) /c. The advantage of the SOCP formulation is
that Bach et al. (2004) devise an SMO-like algorithm by adding a MoMesida regularization
term, I/25F_; a2 ||wm||3, to the primal objective function and deriving the corresponding dual fo
mulation. Using th&/;-norm on feature spaces, Yamanishi et al. (2007) combine tree kdonels
identifying human glycans into four blood components: leukemia cells, egyttes, plasma, and
serum. Except on plasma task, representing glycans as rooted tremsnalniding kernels improve
performance in terms of the area under the ROC cu@zen et al. (2009) use the formulation of
Bach et al. (2004) to combine different feature subsets for proteiiistadvediction problem and
extract information about the importance of these subsets by looking atitmetekernel weights.

Bach (2009) develops a method for learning linear combinations of amergal number of
kernels, which can be expressed as product of sums. The methodiedapmonlinear variable
selection and efficiently explores the large feature spaces in polynomial time.
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Sonnenburg et al. (2006a,b) rewrite the QCQP formulation of Bach exG04§:

minimize y
with respect toy € R, a € RY

N
subject to _Zaiyi =0

C>a;>0 Vi

1 N N
y> éi;glaiajyiyjkrn(xim,X?“)—i;ai vm

Sm(a)
and convert this problem into the following SILP problem:

maximize 6
with respect tod € R, n € R?

P
subjectto  nn=1
P
> NmSn(a) > 6 Vac{a:aecRN, a'y=0 C>a>0}
m=1

where the problem has infinitely many constraints due to the possible valaes of

The SILP formulation has lower computational complexity compared to the SDR&QP
formulations. Sonnenburg et al. (2006a,b) use a column generationaabpio solve the resulting
SILPs using a generic LP solver and a canonical SVM solver in the inopr Both the LP solver
and the SVM solver can use the previous optimal values for hot-start tindh&a new optimal
values faster. These allow us to use the SILP formulation to learn the lammdlination weights
for hundreds of kernels on hundreds of thousands of training inssagificiently. For example,
they perform training on a real-world splice data set with millions of instanoes €omputational
biology with string kernels. They also generalize the idea to regressierglass classification, and
strictly convex and differentiable loss functions.

Kim et al. (2006) show that selecting the optimal kernel from the set ofeconombinations
over the candidate kernels can be formulated as a convex optimizationmprobhés formulation
is more efficient than the iterative approach of Fung et al. (2004). ‘4 ¢2007a) formulate an
SDP problem inspired by Kim et al. (2006) for learning an optimal kerner @ convex set of
candidate kernels for RKDA. The SDP formulation can be modified so thanijaintly optimize
the kernel weights and the regularization parameter. Ye et al. (200@8) 8érive QCQP and SILP
formulations equivalent to the previous SDP problem in order to redudeibecomplexity. These
three formulations are directly applicable to multiclass classification becausesitRKDA as the
base learner.

De Bie et al. (2007) derive a QCQP formulation of one-class classificasomy a convex
combination of multiple kernels. In order to prevent the combined kernel &neerfitting, they also
propose a maodified mathematical model that defines lower limits for the kernghtse Hence,
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each kernel in the set of candidate kernels is used in the combined kewchele obtain a more
regularized solution.

Zien and Ong (2007) develop a QCQP formulation and convert this formulatitwo differ-
ent SILP problems for multiclass classification. They show that their formuléithe multiclass
generalization of the previously developed binary classification methoBadif et al. (2004) and
Sonnenburg et al. (2006b). The proposed multiclass formulation is testédferent bioinfor-
matics applications such as bacterial protein location prediction (Zien and200d@) and protein
subcellular location prediction (Zien and Ong, 2007, 2008), and owtpesfindividual kernels and
unweighted sum of kernels. Hu et al. (2009) combine the MKL formulatictieri and Ong (2007)
and the sparse kernel learning method of Wu et al. (2006). This hyppicdbach learns the optimal
kernel weights and also obtains a sparse solution.

Rakotomamonjy et al. (2007, 2008) propose a different primal probtenMKL and use a
projected gradient method to solve this optimization problem. The proposed foimalation is

minimize = : i||w 15+C S g
ZmZﬂ]m e iZ\ |

with respect town € R™, £ cRY, be R, ncRY

m=1
P
> =1

m=1

P
subject toy; < > (W, D (x™) +b> >1-& Vi

and they define the optimal SVM objective function value gigeasJ(n):

L 121 2 A
minimize J(n) = > —[wWm[2+C &
=1 "m i=

with respect town € RS £ cRY, be R

m=1

P
subject toy; ( Z (W, Dm(X")) + b) >1-§& Vi
Due to strong duality, one can also calculdtg) using the dual formulation:

N 1 N N P
maximizeJ(n) =) a;— 5 aioiViYi mKm(X™, X
(n) i; 2;}; VY] (n;n ( ,))

kﬂ (Xiaxj)

with respect toa € RY

N
subject to _zlaiyi =0

C>a;>0 Vi
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The primal formulation can be seen as the following constrained optimizatidaepno

minimize J(n)
with respect ton € RY

P
subject to Z Nm=1. (10)
m=1

The overall procedure to solve this problem, callesi EMKL, consists of two main steps: (a)
solving a canonical SVM optimization problem with giverand (b) updating using the following
gradient calculated wittr found in the first step:

J(n) 1NN Okn(x"x1) 1 XN m om
=—Z aidyiyj——=—— =—5 aid;yiyikm(Xi, X))  vm.
N 22 JZl iajYyiyj Nm Zi;]Zl i0jYiYjKm(X J)

The gradient update procedure must consider the nonnegativity améiiwation properties of the
kernel weights. The derivative with respect to the kernel weights istlgxaquivalent (up to a
multiplicative constant) to the gradient of the margin calculated by Bousqddtdarrmann (2003).
The overall algorithm is very similar to the algorithm used by Sonnenburp €G06a,b) to solve
an SILP formulation. Both algorithms use a canonical SVM solver in ordemalocutatea at
each step. The difference is that they use different updating proeeflorn, namely, a projected
gradient update and solving an LP. Rakotomamonjy et al. (2007, 2008) ttat SMPLEMKL

is more stable than solving the SILP formulationM8LEMKL can be generalized to regression,
one-class and multiclass classification (Rakotomamonijy et al., 2008).

Chapelle and Rakotomamonjy (2008) propose a second order method, HaksdaNnMKL,
extending SMPLEMKL. HESSIANMKL updates kernel weights at each iteration using a con-
strained Newton step found by solving a QP problem. Chapelle and Rakotojyaf2008) show
that HESSIANMKL converges faster thani8PLEMKL.

Xu et al. (2009a) propose a hybrid method that combines the SILP formulationnenburg
et al. (2006b) and ®PLEMKL of Rakotomamonijy et al. (2008). The SILP formulation does not
regularize the kernel weights obtained from the cutting plane method arrlL SMKL uses the
gradient calculated only in the last iteration. The proposed model ovescboth disadvantages
and finds the kernel weights for the next iteration by solving a small QPemrghihis regularizes
the solution and uses the past information.

The alternating optimization method proposed by Kloft et al. (2010b) andt>al. €2010a)
learns a convex combination of kernels when we uséitimorm for regularizing the kernel weights.
When we takep = 1, the update equation in (8) becomes

Wl |2

. . (11)
> [[Whll2
h=1

NMm=

The SDP formulation of Conforti and Guido (2010) reduces to a QCQBlgmowhen we use
a convex combination of the base kernels.

Longworth and Gales (2008, 2009) introduce an extra regularizationttethe objective func-
tion of SMPLEMKL (Rakotomamonjy et al., 2008). This modification allows changing the level
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of sparsity of the combined kernels. The extra regularization term is

1

AZ(nm—) _Aznm *Azr]m

where) is regularization parameter that determines the solution sparsity. For exdangéeyalues
of A force the mathematical model to use all the kernels with a uniform weight, afeneall values
produce sparse combinations.

Micchelli and Pontil (2005) try to learn the optimal kernel over the conuglk df predefined
basic kernels by minimizing a regularization functional. Their analysis shoatsatlty optimizing
kernel can be expressed as the convex combination of basic kerrrghgiod et al. (2005, 2006)
build practical algorithms for learning a suboptimal kernel when the basieleare continuously
parameterized by a compact set. This continuous parameterization allowtingeleernels from
basically an infinite set, instead of a finite number of basic kernels.

Instead of selecting kernels from a predefined finite set, we can ircteasumber of candi-
date kernels in an iterative manner. We can basically select kernels framauntably infinite
set constructed by considering base kernels with different kermahyeters Qzogiir-Akytiz and
Weber, 2008; Gehler and Nowozin, 2008). Gehler and Nowozin (2@@pose a forward selection
algorithm that finds the kernel weights for a fixed size of candidate leaseng one of the methods
described above, then adds a new kernel to the set of candidatéskemnt# convergence.

Most MKL methods do not consider the group structure between the lkezombined. For
example, a group of kernels may be calculated on the same set of featdresem if we assign
a nonzero weight to only one of them, we have to extract the features indtirggtphase. When
kernels have such a group structure, it is reasonable to pick all orafaihem in the combined
kernel. Szafranski et al. (2008, 2010) follow this idea and deriv&h. method by changing the
mathematical model used by Rakotomamonjy et al. (2007). Saketha Nathz2610) propose an-
other MKL method that considers the group structure between the kentkthia method assumes
that every kernel group carries important information. The proposedulation enforces thé,-
norm at the group level and tifg-norm within each group. By doing this, each group is used in the
final learner, but sparsity is promoted among kernels in each groupy fohaulate the problem
as an SCOP problem and give a highly efficient optimization algorithm thatais@rror-descent
approach.

Subrahmanya and Shin (2010) generalize group-feature selectionnel kelection by intro-
ducing a log-based concave penalty term for obtaining extra sparsitys tbédled sparse multiple
kernel learning (SMKL). The reason for adding this concave penalty ig explained as the lack
of ability of convex MKL methods to obtain sparse formulations. They showw3haKL obtains
more sparse solutions than convex formulations for signal processitigatfons.

Most of the structural risk optimizing linear approaches can be casted ganexal framework
(Kloft et al., 2010a,b). The unified optimization problem with the Tikhonov f&gzation can be
written as

W[5 P
minimize +CSL (Wi, ®m(x")) +b,yi | +un(p
anl m Zl ml m, Pm i p

with respect town € RS be R, n € R}
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whereL (-, ) is the loss function used. Alternatively, we can use the Ivanov reguliarizastead of
the Tikhonov regularization by integrating an additional constraint into thienggation problem:

minimize = i w3 +C S L §<W Pm(X")) +b,Yi
=y - my Fm\A )
Zn‘cl Nm i; m=1 I |

with respect town € RS, be R, n € RY
subject to|[n||p < 1.

Figure 1 lists the MKL algorithms that can be casted into the general framedesdribed
above. Zien and Ong (2007) show that their formulation is equivalent sethbBach et al. (2004)
and Sonnenburg et al. (2006a,b). Using unified optimization problems giveve and the results
of Zien and Ong (2007), Kloft et al. (2010a,b) show that the formulatioitis pr= 1 in Figure 1
fall into the same equivalence class and introduce a new formulationpmitii. The formulation
of Xu et al. (2010a) is also equivalent to those of Kloft et al. (2010a,b)

Tikhonov Regularization Ivanov Regularization

Bach et al. (2004)

Sonnenburg et al. (2006a,b)
Rakotomamonijy et al. (2007, 2008)
Zien and Ong (2007)

Varma and Ray (2007)

o
Il
=

Xu et al. (2010a)

p>1 { Kloft et al. (2010a,b)

Figure 1: MKL algorithms that can be casted into the general framewodtied.

3.9 Structural Risk Optimizing Nonlinear Approaches

Ong et al. (2003) propose to learn a kernel function instead of a lkaateix. They define a kernel
function in the space of kernels callechgperkernel Their construction includes convex combi-
nations of an infinite number of pointwise nonnegative kernels. Hypeekeiare generalized to
different machine learning problems such as binary classification,sgigre and one-class classi-
fication (Ong and Smola, 2003; Ong et al., 2005). When they use the regdlaisk functional
as the empirical quality functional to be optimized, the learning phase carrfoerped by solving
an SDP problem. Tsang and Kwok (2006) convert the resulting optimizataiigms into SOCP
problems in order to reduce the time complexity of the training phase.

Varma and Babu (2009) propose a generalized formulation called digrdrenultiple kernel
learning (GMKL) that contains two regularization terms and a loss functioneotjective func-
tion. This formulation regularizes both the hyperplane weights and thellamdbination weights.
The loss function can be one of the classical loss functions, such @& loiss for classification,
or e-loss for regression. The proposed primal formulation applied to bidasgification problem
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with hinge loss and the regularization functiof,), can be written as

o1 N
minimize 5||Wn||§+CiZlEi +r(n)
with respect towp € R%, £ e RY, be R, neR’
subject toy; ((wn,®n (xi)) +b) > 1-& Vi

where(Dr]( ) corresponds to the feature space that implicitly constructs the combineel kemo-
tionkn (-,-) andwy is the vector of weight coefficients assigneditg(-). This problem, different
from the primal problem of PLEMKL, is not convex, but the solution strategy is the same. The
objective function value of the primal formulation givgris used as the target function:

. 1 N
minimize J(n) = éHwn |5+C ZlEi +r(n)
i=
with respect towp € R%, £ €RY, beR
subject toy; ((wn,®n (xi)) +b) > 1-& Vi

and the following dual formulation is used for the gradient step:

N 1NN
maximizeJ(n) =S a; — = aiaiyiyikn (Xi,X;) +r(n
()i;'Zi;,;""”(") (n)

i N
with respect toa € R

N
subjectto a;yi=0
i; (P4

C>a;>0 Vi

The regularization function(-) andkn (-, -) can be any differentiable function gfwith continuous
derivative. The gradient with respect to the kernel weights is calcuteted

2Jin) or(n) 11X X okn (Xi, ;)

ONm onNm 24 le Y] ONm

Varma and Babu (2009) perform gender identification experiments otedrfaage data set by
combining kernels calculated on each individual feature, and henckefioels whose,, goes to
0, they perform feature selectioniMLEMKL and GMKL are trained with the kernel functions
kp () andkq (-, ), respectively:

§06.%)) z Nmexp((—ym (M) = x5{m)?)

D
P (i, X |‘|exp( Mo (Xi [T — x,-[m])z):exp(n;—nm(xi[m]—x,-[m])2>.

They show that GMKL Witrkrp] (+,-) performs significantly better thanPLEMKL with kﬁ ().
We see that usin@ﬁ(-,) as the combined kernel function is equivalent to using different scaling
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parameters on each feature and using an RBF kernel over these feetileds with unit radius, as
done by Grandvalet and Canu (2003).

Cortes et al. (2010b) develop a nonlinear kernel combination method bad€¢RR and poly-
nomial combination of kernels. They propose to combine kernels as follows:

kn(X., Z Nauge.. QPkl( i J)qlkZ( i j)qz" ke (XI » Xj )q
geQ

whereQ = {q: q € Z%, S _10m <d} andngq, ¢ > 0. The number of parameters to be learned
is too large and the combined kernel is simplified in order to reduce the learoimplexity:

kn(xi,xj) = Y ninF..ngku(xi,x})Tke(xf, x§)%® .. ke (X7, x])*
geER

whereR = {q: q€Z%, S _,dm=d} andn € RP. For example, whed = 2, the combined kernel
function becomes

k Xla =

p
Z ﬂmﬂhkm i J)kh(xlhaxlj]) (12)

?M'U

The combination weights are optimized using the following min-max optimization problem:

minimize maximize —a ' (Kp +Al)a+2y "o
NeM OeRN

whereM is a positive, bounded, and convex set. Two possible choices forttié aee the/;-norm
and/,-norm bounded sets defined as

={n:neRY, In—nell <A} (13)
My={n:neRY, [[n—ngll2 <A} (14)

wherengy andA are two model parameters. A projection-based gradient-descent ahgaaif be
used to solve this min-max optimization problem. At each iteratias,obtained by solving a KRR
problem with the current kernel matrix ands updated with the gradients calculated usinghile
considering the bound constraints prlue to; or Mo.

Lee et al. (2007) follow a different approach and combine kernelgwsaompositional method
that constructs &P x N) x (P x N) compositional kernel matrix. This matrix and the training
instances replicateld times are used to train a canonical SVM.

3.10 Structural Risk Optimizing Data-Dependent Approaches

Lewis et al. (2006b) use a latent variable generative model using the maxantropy discrim-
ination to learn data-dependent kernel combination weights. This method @srdigenerative
probabilistic model with a discriminative large margin method.

Gonen and Alpaydin (2008) propose a data-dependent formulation dadlelized multiple
kernel learning (LMKL) that combines kernels using weights calculateh fa gating model. The
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proposed primal optimization problem is

minimize = z [Wm||34C ZLEI

with respect towp € RS, £ e RY, be R, V ¢ RP*(PgHD)
subject toy; (Z Nm(Xi| V) (Wm, Pm(x")) +b> >1-§& Vi

where the gating mode(+|-), parameterized by, assigns a weight to the feature space obtained
with ®,(-). This optimization problem is not convex and a two-step alternate optimizatiae-pro
dure is used to find the classifier parameters and the gating model paramiteza we fix the
gating model parameters, the problem becomes convex and we obtain thérfgltual problem:

N N N
maximize J(V Zl lelaiajyiyjkl’] (Xi,Xj)
i: I=

: N
with respect toa € R

N
subjectto § ajy; =0
i; 1Yi

C>a;j>0 Vi

where the combined kernel matrix is represented as

kn (%, X)) Z N (Xi[V )k O™, XT)Nm(Xj V).

Assuming that the regions of expertise of kernels are linearly sepaveblean express the gating
model using softmax function:

exp((Vm, X9) + Vo)
P

> exp((Vh,X9) + Vo)
he1

Nm(X|V) = vm (15)

whereV = {vm,vmo}rﬁ’ﬁl, x9 € RPs is the representation of the input instance in the feature space in
which we learn the gating model and there Bre (D + 1) parameters whei; is the dimension-
ality of the gating feature space. The softmax gating model uses kernelomgettive manner
and generally a single kernel is active for each input. We may also usggtheid function instead
of softmax and thereby allow multiple kernels to be used in a cooperative manne

1

Nm(X|V) = exp(— (V. X%} — Vi) vm. (16)

The gating model parameters are updated at each iteration by calcaliting' oV and performing
a gradient-descent step@@en and Alpaydin, 2008).

Inspired from LMKL, two methods that learn a data-dependent keuredtion are used for
image recognition applications (Yang et al., 2009a,b, 2010); they differin ¢fating models that
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are constants rather than functions of the input. Yang et al. (2009dgdhe training set into clus-
ters as a preprocessing step, and then cluster-specific kernel waighearned using alternating
optimization. The combined kernel function can be written as

kr] Xla Z rlrc?km i J)”CJ

wheren' corresponds to the weight of kernig|(-, -) in the cluste; belongs to. The kernel weights
of the cluster that the test instance is assigned to are used in the testing Ydwaget al. (2009b,
2010) use instance-specific kernel weights instead of cluster-speeiights. The corresponding
combined kernel function is

kr]Xn ZHWM|31)

wheren™ corresponds to the weight of kerrigh(-,-) for x; and these instance-specific weights
are optimized using alternating optimization over the training set. In the testing,pthaskernel
weights for a test instance are all taken to be equal.

3.11 Bayesian Approaches

Girolami and Rogers (2005) formulate a Bayesian hierarchical modediank variational Bayes
estimators for classification and regression problems. The proposiibdetinction can be for-
mulated as

N P

fx) =3 ai 3 Nmkm(x",x")

i= m=1

wheren is modeled with a Dirichlet prior and is modeled with a zero-mean Gaussian with an
inverse gamma variance prior. Damoulas and Girolami (2009b) extend thisdanggradding aux-
iliary variables and developing a Gibbs sampler. Multinomial probit likelihoodeLto obtain an
efficient sampling procedure. Damoulas and Girolami (2008, 20094y #mse methods to differ-
ent bioinformatics problems, such as protein fold recognition and remotelagynproblems, and
improve the prediction performances for these tasks.

Girolami and Zhong (2007) use the kernel combination idea for the covarimatrices in GPs.
Instead of using a single covariance matrix, they define a weighted summvafi@nce matrices
calculated over different data sources. A joint inference is perforimeboth the GP coefficients
and the kernel combination weights.

Similar to LMKL, Christoudias et al. (2009) develop a Bayesian approackdmbining dif-
ferent feature representations in a data-dependent way under tlfi@&vork. A common co-
variance function is obtained by combining the covariances of featureseptations in a nonlinear
manner. This formulation can identify the noisy data instances for eachde&jpresentation and
prevent them from being used. Classification is performed using theasth@d approach with the
common covariance function.
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3.12 Boosting Approaches

Inspired from ensemble and boosting methods, Bennett et al. (2002) modify the decision function
in order to use multiple kernels:

N P

f(x)= Zl Zlo({“km(x{",xm) +b.

The parameterfa™}P _; andb of the KRR model are learned using gradient-descent in the function
space. The columns of the combined kernel matrix are generated on the fly from the heterogeneous
kernels. Bi et al. (2004) develop column generation boosting methods for binary classification and
regression problems. At each iteration, the proposed methods solve an LP or a QP on a working set
depending on the regularization term used.

Crammer et al. (2003) modify the boosting methodology to work with kernels by rewriting two
loss functions for a pair of data instances by considering the pair as a single instance:

ExpLosgk(xi,X;),iy;j) = exp(=yiyjK(xi,Xj))
LogLosgk(xi,X;),yiy;) = log(1+exp(—yiy;jk(xi,X;))).

We iteratively update the combined kernel matrix using one of these two loss functions.

4. Experiments

In order to compare several MKL algorithms, we perform 10 different experiments on four data
sets that are composed of different feature representations. We use both the linear kernel and the
Gaussian kernel in our experiments; we will give our results with the linear kernel first and then
compare them with the results of the Gaussian kernel. The kernel matrices are hormalized to unit
diagonal before training.

4.1 Compared Algorithms

We implement two single-kernel SVM and 16 representative MKL algorithms in MATL AR
solve the optimization problems with the MOSEK optimization software (Mosek, 2011).
We train SVMs on each feature representation singly and report the results of the one with the
highest average validation accuracy, which will be referreg\ag (best). We also train an SVM
on the concatenation of all feature representations, which will be referr@dnagall).
RBMKL denotes rule-based MKL algorithms discussed in SectiorRBMKL (mean) trains an
SVM with the mean of the combined kernelRBMKL (product) trains an SVM with the product of
the combined kernels.
ABMKL denotes alignment-based MKL algorithms. For determining the kernel weikBnsgL
(ratio) uses the heuristic in (2) of Section 3.2 (Qiu and Lane, 200BWKL (conic) solves the QCQP
problem in (5) of Section 3.4 (Lanckriet et al., 2004a), aBtKL (convex) solves the QP problem
in (7) of Section 3.5 (He et al., 2008). In the second step, all methods train an SVM with the kernel
calculated with these weights.
CABMKL denotes centered-alignment-based MKL algorithms. In the firstGtegVIKL (linear)
uses the analytical solution in (4) of Section 3.3 (Cortes et al., 2010afABMKL (conic) solves

1. Implementations are availabletdtp://www.cmpe.boun.edu.tr/ ~gonen/mkl .
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the QP problem in (6) of Section 3.4 (Cortes et al., 2010a) for determininietimel weights. In
the second step, both methods train an SVM with the kernel calculated withvileagss.

MKL is the original MKL algorithm of Bach et al. (2004) that is formulated as theC®O
problem in (9) of Section 3.&impleMKL is the iterative algorithm of Rakotomamonijy et al. (2008)
that uses projected gradient updates and trains SVMs at each iteratiolvaalse optimization
problem in (10) of Section 3.8.

GMKL is the generalized MKL algorithm of Varma and Babu (2009) discusseddtid®e3.9. In
our implementationkn (-, -) is the convex combination of base kernels aqglis taken as 12(n —
1/P)"(n—1/P).

GLMKL denotes the group Lasso-based MKL algorithms proposed by Kloft €G10b) and
Xu et al. (2010a)GLMKL (p = 1) updates the kernel weights using (11) of Section 3.8 and learns a
convex combination of the kernelsLMKL (p = 2) updates the kernel weights settipg= 2 in (8)
of Section 3.7 and learns a conic combination of the kernels.

NLMKL denotes the nonlinear MKL algorithm of Cortes et al. (2010b) discussBddtion 3.9
with the exception of replacing the KRR in the inner loop with an SVM as the basedeNLMKL
uses the quadratic kernel given in (1RLMKL (p = 1) andNLMKL (p = 2) select the kernel weights
from the setgM; in (13) and94; in (14), respectively. In our implementation, is taken a$ and
A is assigned to 1 arbitrarily.

LMKL denotes the localized MKL algorithm ofdaen and Alpaydin (2008) discussed in Sec-
tion 3.10.LMKL (softmax) uses the softmax gating model in (15), wheres&L (sigmoid) uses the
sigmoid gating model in (16). Both methods use the concatenation of all feapnesentations in
the gating model.

4.2 Experimental Methodology

Our experimental methodology is as follows: Given a data set, if learningestidsets are not
supplied separately, a random one-third is reserved as the test sthiearanaining two-thirds is
used as the learning set. If the learning set has more than 1000 dataéssiaiscresampled using

5 x 2 cross-validation to generate 10 training and validation sets, with stratificatioerwise, we

use 30-fold cross-validation. The validation sets of all folds are usegtimize the common
hyperparameteC (trying values 0.01, 0.1, 1, 10, and 100). The best hyperparameatégaration

(the one that has the highest average accuracy on the validation foldsgdsto train the final
learners on the training folds. Their test accuracies, support veetoemtages, active kerdel
counts, and numbers of calls to the optimization toolbox for solving an SVM optiloizaroblem

or a more complex optimization problénare measured; we report their averages and standard
deviations. The active kernel count and the number of calls to the optimizattioox for SVM
(best) are taken as 1 and, respectively, because it uses only one of the feature representation
but needs to train the individual SVMs on all feature representatiormdehoosing the best.
Similarly, the active kernel count and the number of calls to the optimization edtiscsVM (all)

are taken aP and 1, respectively, because it uses all of the feature representhatibinains a single
SVM.

2. A kernel isactive if it needs to be calculated to make a prediction for an unseen test instance
3. All algorithms except the MKL formulation of Bach et al. (2004)KL, solve QP problems when they call the
optimization toolbox, whereadKL solves an SOCP problem.
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The test accuracies and support vector percentages are compiagethe 5< 2 cv paired- test
(Alpaydin, 1999) or the pairetdtest according to the resampling scheme used. The active kernel
counts and the number of calls to the optimization toolbox are compared usingiliteex®¥i’s
signed-rank test (Wilcoxon, 1945). For all statistical tests, the signdechavel,a, is taken as 0.05.
We want to test if by combining kernels, we get accuracy higher thanfahg single kernels. In the
result tables, a superscriptdenotes that the performance valuesweM (best) and the compared
algorithm are statistically significantly different, whé&r@nda denote that the compared algorithm
has statistically significantly higher and lower average tB&M (best), respectively. Similarly,
we want to test if an algorithm is better than a straightforward concatendtibie anput features,
SVM (all), and if it is better than fixed combination, name®BMKL (mean); for those, we use the
superscript® andc, respectively.

4.3 Protein Fold Prediction Experiments

We perform experiments on the Protein Fol®R(R EIN) prediction data séfrom the MKL Repos-
itory, composed of 10 different feature representations and two leefore694 instances (311 for
training and 383 for testing). The properties of these feature refedEss are summarized in Ta-
ble 3. We construct a binary classification problem by combining the majotstaliclassega, B}

into one class andla/B,a + B} into another class. Due to the small size of this data set, we use
30-fold cross-validation and the pairetkst. We do three experiments on this data set using three
different subsets of kernels.

Name Dimension Data Source

Com 20 Amino-acid composition

SEC 21 Predicted secondary structure

HYD 21 Hydrophobicity

VoL 21 Van der Waals volume

PoL 21 Polarity

PLz 21 Polarizability

L1 22 Pseudo amino-acid composition at interval 1

L4 28 Pseudo amino-acid composition at interval 4
L14 48 Pseudo amino-acid composition at interval 14
L30 80 Pseudo amino-acid composition at interval 30
BLO 311 Smith-Waterman scores with the BLOSUM 62 matrix
Pam 311 Smith-Waterman scores with the PAM 50 matrix

Table 3: Multiple feature representations in trred?EIN data set.

Table 4 lists the performance values of all algorithms on tReTIN data set with (©OMm-SEC-
HyYD-VoL-PoL-PLz). All combination algorithms exce®BMKL (product) andGMKL outperform
SVM (best) by more than four per cent in terms of average test accumidyiKL (p = 1), NLMKL
(p = 2), LMKL (softmax), andLMKL (sigmoid) are the only four algorithms that obtain more than 80
per cent average test accuracy and are statistically significantly manatetharsVM (best), SVM
(all), andRBMKL (mean). Nonlinear combination algorithms, nameBBMKL (product), NLMKL
(p = 1), andNLMKL (p = 2), have the disadvantage that they store statistically significantly more

4. Available athttp://mkl.ucsd.edu/dataset/protein-fold-prediction
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support vectors than all other algorithra8MKL (conic) andCABMKL (conic) are the two MKL al-
gorithms that perform kernel selection and use less than five kernels ame¢hage, while the others
use all six kernels, exceptABMKL (linear) which uses five kernels in one of 30 folds. The two-step
algorithms, excep&EMKL, LMKL (softmax), andLMKL (sigmoid), need to solve fewer than 20 SVM
problems on the averageLMKL (p = 1) andGLMKL (p = 2) solve statistically significantly fewer
optimization problems than all the other two-step algorithodKL (softmax) andLMKL (sigmoid)
solve many SVM problems; the large standard deviations for this performahge are mainly
due to the random initialization of the gating model parameters and it takes lmngeme folds to
converge.

Table 5 summarizes the performance values of all algorithms on rleg BN data set with
(Com-SEC-HYD-VOL-POL-PLz-L1-L4-L14-L30). All combination algorithms exce®RBMKL
(product) outperformSVM (best) by more than two per cent in terms of average test accuracy.
NLMKL (p = 1) andNLMKL (p = 2) are the only two algorithm that obtain more than 85 per cent av-
erage test accuracy and are statistically significantly more accurat&arbest), SVM (all), and
RBMKL (mean). When the number of kernels combined becomes large as in this experimant, as
result of multiplication RBMKL (product) starts to have very small kernel values at the off-diagonal
entries of the combined kernel matrix. This causes the classifier to behawe ikarest-neighbor
classifier by storing many support vectors and to perform badly in terragevhge test accuracy.
As observed in the previous experiment, the nonlinear combination algoritranggly, RBMKL
(product), NLMKL (p = 1), andNLMKL (p = 2), store statistically significantly more support vectors
than all other algorithmsABMKL (conic), ABMKL (convex), CABMKL (linear), CABMKL (conic),

MKL, SimpleMKL, andGMKL are the seven MKL algorithms that perform kernel selection and use
fewer than 10 kernels on the average, while others use all 10 kerneigdarSo the results of the
previous experimenGLMKL (p = 1) andGLMKL (p = 2) solve statistically significantly fewer op-
timization problems than all the other two-step algorithms and the very high sthaeldations for
LMKL (softmax) andLMKL (sigmoid) are also observed in this experiment.

Table 6 gives the performance values of all algorithms on theTi2IN data set with a larger
set of kernels, namely, @v-SEC-HYD-VoOL-POL-PLZ-L1-L4-L14-L30-BLo-Pam). All combi-
nation algorithms exce@®BMKL (product) outperformSVM (best) by more than three per cent in
terms of average test accuradyLMKL (p = 1) andNLMKL (p = 2) are the only two algorithms
that obtain more than 87 per cent average test accuracy. In this expgiB®KL (ratio), GMKL,
GLMKL (p = 1), GLMKL (p = 2), NLMKL (p = 1), NLMKL (p = 2), andLMKL (sigmoid) are sta-
tistically significantly more accurate th&8VM (best), SVM (all), andRBMKL (mean). As noted
in the two previous experiments, the nonlinear combination algorithms, naREMKL (product),
NLMKL (p = 1), andNLMKL (p = 2), store statistically significantly more support vectors than all
other algorithmsABMKL (conic), ABMKL (convex), CABMKL (linear), CABMKL (conic), MKL, Sim-
pleMKL, andGMKL are the seven MKL algorithms that perform kernel selection and use fhare
12 kernels on the average, while others use all 12 kernels, exceptKEL(\d = 1) which uses 11
kernels in one of 30 folds. Similar to the results of the two previous experimn@bkgKL (p = 1)
andGLMKL (p = 2) solve statistically significantly fewer optimization problems than all the other
two-step algorithms, but the very high standard deviations¥o¢L (softmax) andLMKL (sigmoid)
are not observed in this experiment.
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Algorithm Test Accuracy  Support Vector  Active Kernel — CalisSolver
SVM (best) 72.06£0.745¢  58.29+1.00%¢ 1.00+0.005¢ 6.00+ 0.00P¢
SVM (all) 79.13t0.45 ¢ 62.14:1.04 ¢ 6.00+0.00 1.0 0.00
RBMKL (mean)  78.01+0.63 60.8%:1.02 6.08:0.00 1.0& 0.00
RBMKL (product)  72.35£0.95%  100.00:£0.00*¢  6.00+0.00 1.06: 0.00
ABMKL (conic)  79.03:0.92 ¢  49.96:1.08%  4.60+0.5(02¢ 1.00+ 0.00
ABMKL (convex)  76.90t1.172¢  29.54+-0.8%¢ 6.00+0.00 1.0 0.00
ABMKL (ratio) 78.06+0.62 56.95-1.072%  6.00+0.00 1.0& 0.00
CABMKL (linear) 79.51-0.78°¢  49.81-0.822¢ 597+0.18%¢ 1.00+ 0.00
CABMKL (conic)  79.28t0.97 ¢ 49.84+0.72% 4.73+0.520¢ 1.00+ 0.00
MKL 76.38:1.195¢  29.65+1.02%¢  6.00+0.00 1.0 0.00
SimpleMKL 76.34£1.245%¢  20.62:1.08C  6.00+0.00 18.83% 4.27¢
GMKL 74.96:0.502¢  79.85+0.7(0F°¢ 2.37+0.56%¢  37.10t 3.23b¢
GLMKL (p=1)  77.7::0.96 55.86:0.9%%¢  6.00+0.00 6.1 0.31bc
GLMKL (p=2)  77.20£0.42%¢  75.34-0.70°°  6.00+0.00 5.0t 0.00¢
NLMKL (p=1)  83.49:0.76"¢  85.67:0.86°° 6.00+0.00 17.5& 0.51b¢
NLMKL (p=2)  82.30:0.62°¢  89.57t0.77°¢ 6.00+0.00 13.4@ 4.4Fbc
LMKL (softmax)  80.24:1.372P¢  27.24t1.762¢  6.00+0.00 85.27-41.77"¢
LMKL (sigmoid) ~ 81.910.92%¢  30.95+2.74%  6.00+0.00 103.98-62.690¢

Table 4: Performances of single-kernel SVM and representative Migarithms on the ROTEIN

data set with (©M-SEC-HYD-VoOL-PoL-PLZ) using the linear kernel.

Algorithm Test Accuracy  Support Vector  Active Kernel  CalisSolver
SVM (best) 72.15-0.68%  47.50:1.25P¢  1.00:0.002¢ 10.00t 0.00P¢
SVM (all) 79.63:0.74 ¢  43.45:1.0: ¢ 10.00:0.00 1.0& 0.00
RBMKL (mean)  81.32:0.74 61.62:1.31 10.08-0.00 1.0e: 0.00
RBMKL (product) 53.04:0.222%¢  100.0Q:0.0G"°  10.00+0.00 1.0@: 0.00
ABMKL (conic)  80.45:0.68%¢  48.16+1.08%¢  6.90+0.662¢  1.00+ 0.00
ABMKL (convex) 77.47:0.622¢  87.860.76°°  9.03+0.6P2¢  1.00+ 0.00
ABMKL (ratio) 76.22t1.145%¢  3554+1.08% 10.00+0.00 1.0& 0.00
CABMKL (linear)  77.15t0.632¢  73.84+-0.80°°  9.90+0.31¢  1.00+ 0.00
CABMKL (conic)  81.02+0.67 48.32-0.86%¢  6.93+0.74%  1.00+ 0.00
MKL 79.74t1.02 ¢  56.00:0.85%  8.73:0.522%¢  1.00+ 0.00
SimpleMKL 74.53:0.902¢  80.22:1.05%°  4.73+1.14%¢ 23.83t 7.46%C
GMKL 74.68:0.682¢  80.36:0.8FP°  5.73-0.9Tc 29.10t 8.47M
GLMKL (p=1)  79.770.86 ¢  55.94-0.93%  10.00+0.00 6.8% 0.57¢
GLMKL (p=2)  78.00:0.43%¢  72.49+:1.00%¢ 10.00£0.00 5.03 0.1&b¢
NLMKL (p=1)  85.38:0.70%¢  93.84+0.51°° 10.00+0.00 14.7% 0.430¢
NLMKL (p=2)  85.40t0.69"°  93.86+0.51°° 10.00+0.00 18.0& 0.00%¢
LMKL (softmax) ~ 81.11+1.82 36.06:3.62%¢  10.0Q:0.00 34.4@:23.175¢
LMKL (sigmoid) ~ 81.90£2.01 51.94:2.14%  10.00:0.00 31.63:13.170¢

Table 5: Performances of single-kernel SVM and representative Migarithms on the ROTEIN
data set with (©M-SEC-HYD-VoOL-PoL-PLZ-L1-L4-L14-L30) using the linear kernel.
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Algorithm Test Accuracy  Support Vector  Active Kernel ~ CalisSolver
SVM (best) 78.37:1.08%  93.09+0.73%¢  1.00+0.002¢ 12.00+ 0.00P°
SVM (all) 82.010.76' ¢ 89.32:0.9% ¢  12.00+0.00 1.0 0.00
RBMKL (mean)  83.57:0.59 65.94-0.93 12.08-0.00 1.0& 0.00
RBMKL (product) 53.04t0.212%¢  100.00:0.00¢  12.00+0.00 1.0& 0.00
ABMKL (conic) 83.52+0.94 63.021.35  7.30+0.882¢  1.00+ 0.00
ABMKL (convex)  83.76+1.02 64.36:1.56¢  6.87+0.94°%¢  1.00+ 0.00
ABMKL (ratio) 85.65-0.67°°  57.87+1.24  12.00+0.00 1.0e 0.00
CABMKL (linear)  83.48+0.92 68.0:1.48°° 11.87:0.35%¢  1.00+ 0.00
CABMKL (conic)  83.43+0.95 62.121.63¢  8.43+0.7FC 1,00+ 0.00
MKL 83.55:1.25 81.731.08°  7.67+0.762%¢  1.00+ 0.00
SimpleMKL 83.96:1.20 86.41:0.98°  9.83:0.91¢ 54.53+ 9.92¢
GMKL 85.67:0.910¢  79.53+2.71bC  9.93+0.74°C  47.40+10.8F0C
GLMKL (p=1)  85.96:0.96°¢  79.06:1.04%¢ 11.97+0.18%¢ 14.77+ 0.570¢
GLMKL (p=2)  85.02:1.20"¢  62.06+1.02% 12.00+0.00 5.66c 0.67
NLMKL (p=1)  87.00:0.66"°  96.78t0.32°¢ 12.00+0.00 4.83 0.3&b¢
NLMKL (p=2)  87.28:0.65"°  96.64t0.32°¢ 12.00+0.00 17.72 0.43bc
LMKL (softmax) ~ 83.72+1.35 37.55:2.54% 12.00+0.00 25.9% 5.750¢
LMKL (sigmoid) ~ 85.06:0.8FP¢  48.99+1.5¢0¢  12.00+0.00 25.4& 9.36"¢

Table 6: Performances of single-kernel SVM and representative Migarithms on the ROTEIN
data set with (©M-SEC-HYD-VOL-POL-PLz-L1-L4-L14-L30-BLO-PaM) using the lin-
ear kernel.

4.4 Pendigits Digit Recognition Experiments

We perform experiments on the Pendigit(®1G1TS) digit recognition data sefrom the MKL
Repository, composed of four different feature representatiori)f@92 instances (7,494 for train-
ing and 3,498 for testing). The properties of these feature represastat®summarized in Table 7.
Two binary classification problems are generated from the?GI1TS data set: In the PNDIGITS-
EO data set, we separate even digits from odd digits; in #eDRGITS-SL data set, we separate
small (‘0" - ‘'4") digits from large (‘5’ - ‘9’) digits.

Name Dimension Data Source

DyYN 16 8 successive pen points on two-dimensional coordinate sy
StA4 16 4x 4 image bitmap representation

STA8 64 8x 8 image bitmap representation

STA16 256 16x 16 image bitmap representation

Table 7: Multiple feature representations in treN®I1GITS data set.

Table 8 summarizes the performance values of all algorithms ongR@RI1Ts-EO data set.
We see thaBVM (best) is outperformed (by more than three per cent) by all other algorithms in

5. Available athitp://mkl.ucsd.edu/dataset/pendigits
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terms of average test accuracy, which implies that integrating differemtniraition sources helps.
RBMKL (product), NLMKL (p = 1), NLMKL (p = 2), LMKL (softmax), andLMKL (sigmoid) achieve
statistically significantly higher average test accuracies than the other Mgdrithms. NLMKL

(p = 1) andNLMKL (p = 2) are the only two algorithms that get more than 99 percent average
test accuracy and improve the average test accura®BbIKL (mean) statistically significantly,

by nearly six per cent. When we look at the percentages of suppdudrsestored, we see that
RBMKL (product) stores statistically significantly more support vectors than the other algorithms,
wheread. MKL (softmax) andLMKL (sigmoid) store statistically significantly fewer support vectors.
All combination algorithms excepiBMKL (convex) use four kernels in all folds. All two-step
algorithms exceptMKL (softmax) andLMKL (sigmoid) need to solve less than 15 SVM optimization
problems on the average. As observed beforkL (softmax) andLMKL (sigmoid) have very high
standard deviations in the number of SVM optimization calls due to the random iritializof the
gating model parameters; note that convergence may be slow at times, btaridard deviations

of the test accuracy are small.

Table 9 lists the performance values of all algorithms on theRGI1TS-SL data set. We again
see thaBVM (best) is outperformed (more than five per cent) by all other algorithms in terms of av-
erage test accuracRBMKL (product), NLMKL (p = 1), NLMKL (p = 2), LMKL (softmax), andLMKL
(sigmoid) achieve statistically significantly higher average test accuracies than treMbiti algo-
rithms. Similar to the results on theeRDIGITS-EO data setNLMKL (p = 1) andNLMKL (p = 2)
are the only two algorithms that get more than 99 percent average tesi@cby improving the av-
erage test accuracy 8BMKL (mean) nearly eight per cent for this experiment. As observed on the
PENDIGITS-EO data set, we see tHRBMKL (product) stores statistically significantly more support
vectors than the other algorithms, where®L (softmax) andLMKL (sigmoid) store fewer support
vectors. All combination algorithms excepBMKL (convex) use four kernels in all folds, whereas
this latter uses exactly three kernels in all folds by eliminating &representation. All two-step
algorithms exceptMKL (softmax) andLMKL (sigmoid) need to solve less than 20 SVM optimiza-
tion problems on the averag&LMKL (p = 1) andGLMKL (p = 2) solve statistically significantly
fewer SVM problems than the other two-step algorithms.

4.5 Multiple Features Digit Recognition Experiments

We perform experiments on the Multiple Featuresuili FEAT) digit recognition data sétfrom
the UCI Machine Learning Repository, composed of six different featepresentations for 2,000
handwritten numerals. The properties of these feature representatosisnramarized in Table 10.
Two binary classification problems are generated from the MFEAT data set: In the MLTIFEAT-
EO data set, we separate even digits from odd digits; in tbeVFEAT-SL data set, we separate
small (‘0" - ‘4’) digits from large (‘5" - '9") digits. We do two experimentsrothese data set using
two different subsets of feature representations.

Table 11 gives the performance values of all algorithms on theVFEAT-EO data set with
(Fou-KAR-Pi1x-ZER). Though all algorithms exce@®ABMKL (linear) have higher average test ac-
curacies thaisVM (best); only LMKL (sigmoid) is statistically significantly more accurate thavim
(best), SVM (all), andRBMKL (mean). Note that even thougRBMKL (product) is hot more accu-
rate thansSvM (all) or RBMKL (mean), nonlinear and data-dependent algorithms, nanmglyKL
(p=1), NLMKL (p = 2), LMKL (softmax), andLMKL (sigmoid), are more accurate than these two

6. Available athttp:/archive.ics.uci.edu/ml/datasets/Multiple+Fea tures .
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Algorithm Test Accuracy  Support Vector  Active Kernel — CalisSolver
SVM (best) 88.93:0.28%¢ 20.90+1.22 ¢ 1.00+0.00%¢  4.00+ 0.005¢
SVM (all) 92.12t0.42 ¢ 22.22+0.72 ¢ 4.00+0.00 1.0&: 0.00
RBMKL (mean)  93.34+0.28 18.9%0.67 4.06:0.00 1.0& 0.00
RBMKL (product) 98.46+0.16%° 51.08+0.485¢  4.004+0.00 1.0& 0.00
ABMKL (conic) 93.40£0.15 17.5200.7F¢  4.00£0.00 1.06- 0.00
ABMKL (convex)  93.53+0.26 13.83:0.73¢  3.90+0.322¢  1.00+ 0.00
ABMKL (ratio) 93.35+0.20 18.89-0.68 4.06:0.00 1.0& 0.00
CABMKL (linear)  93.42+0.16 17.48-0.74%  4.00+0.00 1.0& 0.00
CABMKL (conic)  93.42+0.16 17.48-0.74%  4.00+0.00 1.0e 0.00
MKL 93.28+0.29 19.26:0.67°°  4.00+0.00 1.0& 0.00
SimpleMKL 93.29+0.27 19.04-0.71 4.06:0.00 8.7 3.92b¢
GMKL 93.28+0.26 19.08:0.72 4.08:0.00 8.6& 3.66¢
GLMKL (p=1)  93.34-0.27 19.02-0.73 4.06-0.00 3.26c 0.63¢
GLMKL (p=2)  93.32+0.25 16.91-0.62%  4.00+0.00 3.8@ 0.420¢
NLMKL (p=1)  99.36+0.08"° 19.55+0.48 4.0@:0.00 11.6& 6.26%¢
NLMKL (p=2)  99.38:0.07°° 19.79+0.52 4.06:0.00 10.9a- 4.31b¢
LMKL (softmax) ~ 97.14:0.39%¢  7.25+0.6%2  4.00+0.00 97.7@:55.48%
LMKL (sigmoid) ~ 97.80:0.20¢  11.7H-0.782%  4.00+0.00 87.7@:47.30"¢

Table 8: Performances of single-kernel SVM and

representative MHdorithms on the
PENDIGITS-EO data set using the linear kernel.

Algorithm Test Accuracy  Support Vector Active Kernel  CalisSolver
SVM (best) 84.44+0.49% 39.3H-0.77°¢  1.00+0.005¢ 4.00+ 0.00P¢
SVM (all) 89.48:0.67 ¢ 19.55:t0.62 ¢ 4.00+0.00 1.0 0.00
RBMKL (mean)  91.11+0.34 16.22-0.59 4.06-0.00 1.0& 0.00
RBMKL (product) 98.37:0.11%¢  60.28:0.6%°  4.00+0.00 1.0 0.00
ABMKL (conic)  90.97:0.49 20.93:0.46°¢  4.00+0.00 1.0& 0.00
ABMKL (convex)  90.85:0.51 24.5%0.6%°¢  3.00+0.002¢ 1.00+ 0.00
ABMKL (ratio) 91.12+0.32 16.23:0.57 4.06:0.00 1.0 0.00
CABMKL (linear)  91.02+0.47 20.8%-0.49°¢  4.00+0.00 1.0& 0.00
CABMKL (conic) ~ 91.02+0.47 20.96:0.50°¢  4.00+0.00 1.0& 0.00
MKL 90.85+0.45 23.52-0.56°¢  4.00+0.00 1.0& 0.00
SimpleMKL 90.84+0.50 23.480.55°¢  4.00£0.00 14.5a 3.92b¢
GMKL 90.85+0.47 23.46:0.54°  4.00£0.00 15.66= 3.340¢
GLMKL (p=1)  90.90+0.46 23.33:0.52%  4.00+0.00 4.96- 0.57b¢
GLMKL (p=2)  91.12+0.44 20.46-0.53%¢  4.00+0.00 4.0 0.005¢
NLMKL (p=1)  99.110.10%¢ 17.37:0.17 4.06:0.00 18.1@ 0.32b¢
NLMKL (p=2)  99.070.12% 17.66+0.23 4.06-0.00 10.9a 3.7¢%¢
LMKL (softmax)  97.77Z:-0.58%  57240.46%2¢ 4.00+0.00 116.60-73.345¢
LMKL (sigmoid) ~ 97.13:0.40"¢  6.69+0.222%  4.00+0.00 119.08:-45.04°¢

PENDIGITS-SL data set using the linear kernel.
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Name Dimension Data Source

Fac 216 Profile correlations

Fou 76 Fourier coefficients of the shapes
KAR 64 Karhunen-Leve coefficients

MOR 6 Morphological features

Pix 240 Pixel averages in:2 3 windows
ZER 47 Zernike moments

Table 10: Multiple feature representations in the i FEAT data set.

Algorithm Test Accuracy  Support Vector  Active Kernel  CalisSolver
SVM (best) 95.96:0.50%¢ 21.37:0.81 ¢ 1.00+0.00%¢  4.00+ 0.00P¢
SVM (all) 97.79+0.25 21.630.73 ¢ 4.00+0.00 1.0& 0.00
RBMKL (mean)  97.94+0.29 23.42:0.79 4.08:-0.00 1.0 0.00
RBMKL (product) 96.43:0.382¢  92.11-1.18%  4.00+0.00 1.0 0.00
ABMKL (conic) 97.85+0.25 19.4@-1.02¢  2.00+0.002¢  1.00+ 0.00
ABMKL (convex) 95.97:£0.572¢ 21.45t0.92 ¢ 1.20+0.42%  1.00+ 0.00
ABMKL (ratio) 97.82+0.32 22.330.57%  4.00£0.00 1.0& 0.00
CABMKL (linear) 95.78+0.37%¢ 19.25+1.092¢  4.00+0.00 1.0& 0.00
CABMKL (conic)  97.85+0.25 19.37:1.032¢  2.00+0.00%¢  1.00+ 0.00
MKL 97.88:0.31 21.0%0.87 ¢ 3.50+0.532¢  1.00+ 0.00
SimpleMKL 97.87:0.32 20.98:0.94 ¢ 3.40+0.702¢ 2250t 6.650¢
GMKL 97.88:0.31 21.08:0.88 ¢ 3.50+0.532¢ 25.90+10.080¢
GLMKL (p=1)  97.90+0.25 21.31#0.78 ¢ 4.00+0.00 11.1@ 0.74b¢
GLMKL (p=2)  98.010.24 19.19-0.61%  4.00+0.00 4.9 0.32bc
NLMKL (p=1)  98.670.22 56.9%1.17°¢  4.00£0.00 450 1.840¢
NLMKL (p=2)  98.61:0.24 53.611.20°  4.00+0.00 5.66c 3.03P¢
LMKL (softmax) ~ 98.16+0.50 17.4@:1.17°¢  4.00+0.00 36.76:14.1F%¢
LMKL (sigmoid) ~ 98.94+-0.29°¢  15.23+1.082¢  4.00+0.00 88.20:36.00°¢

Table 11: Performances of single-kernel SVM and representativel. Migorithms on the
MuULTIFEAT-EO data set with (Bu-KAR-PIX-ZER) using the linear kernel.

algorithms. Alignment-based and centered-alignment-based MKL algorittamsgIp ABMKL (ra-
tio), ABMKL (conic), ABMKL (convex), CABMKL (linear) andCABMKL (convex), are not more accu-
rate tharRBMKL (mean). We see thadBMKL (convex) andCABMKL (linear) are statistically signif-
icantly less accurate the8VM (all) andRBMKL (mean). If we compare the algorithms in terms of
support vector percentages, we note that MKL algorithms that use gisodfithe combined ker-
nels, namelyRBMKL (product), NLMKL (p = 1), andNLMKL (p = 2), store statistically significantly
more support vectors than all other algorithms. If we look at the activeekepunts, 10 out of 16
MKL algorithms use all four kernels. The two-step algorithms solve statisticigihifecantly more
optimization problems than the one-step algorithms.

Table 12 summarizes the performance values of all algorithms on the MEAT-EO data set
with (FAC-FoOu-KAR-MOR-PIX-ZER). We note thaNLMKL (p = 1) andLMKL (sigmoid) are the
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two MKL algorithms that achieve average test accuracy greater tharuat ®g999 per cent, while
NLMKL (p = 1), NLMKL (p = 2), andLMKL (sigmoid) are statistically significantly more accurate
thanRBMKL (mean). All other MKL algorithms excepRBMKL (product) and CABMKL (linear)
achieve average test accuracies between 98 per cent and 99 perSoerlar to the results of
the previous experimenRBMKL (product), NLMKL (p = 1), andNLMKL (p = 2) store statistically
significantly more support vectors than all other algorithms. When we lotiieatumber of active
kernels ABMKL (convex) selects only one kernel and this is the same kernel3ti&t (best) picks.
ABMKL (conic) andCABMKL (conic) use three kernels, whereas all other algorithms use more than
five kernels on the averag&LMKL (p = 1), GLMKL (p = 2), NLMKL (p = 1), andNLMKL (p=2)
solve fewer optimization problems than the other two-step algorithms, nagalyeMKL, GMKL,
LMKL (softmax), andLMKL (sigmoid).

Table 13 lists the performance values of all algorithms on the MFEAT-SL data set with
(Fou-KAR-PIX-ZER). SVM (best) is outperformed by the other algorithms on the average and
this shows that, for this data set, combining multiple information sources, indepty of the
combination algorithm used, improves the average test accurRBIKL (product), NLMKL (p =
1), NLMKL (p = 2), andLMKL (sigmoid) are the four MKL algorithms that achieve statistically
significantly higher average test accuracies tRBMKL (best), SVM (all), RBMKL (mean). NLMKL
(p = 1) andNLMKL (p = 2) are the two best algorithms and are statistically significantly more
accurate than all other algorithms, exceptkL (sigmoid). However,NLMKL (p = 1) andNLMKL
(p = 2) store statistically significantly more support vectors than all other algorithrogpéRBMKL
(product). All MKL algorithms use all of the kernels and the two-step algorithms solve Statily
significantly more optimization problems than the one-step algorithms.

Table 14 gives the performance values of all algorithms on theMFEAT-SL data set with
(FAC-Fou-KAR-MOR-PIX-ZER). GLMKL (p = 2), NLMKL (p = 1), NLMKL (p = 2), LMKL (soft-
max), andLMKL (sigmoid) are the five MKL algorithms that achieve higher average test accuracies
thanRBMKL (mean). CABMKL (linear) is the only algorithm that has statistically significantly lower
average test accuracy thawM (best). No MKL algorithm achieves statistically significantly higher
average test accuracies ttawiM (best), SVM (all), andRBMKL (mean). MKL algorithms with non-
linear combination rules, namelRRBMKL (product), NLMKL (p = 1) andNLMKL (p = 2), again use
more support vectors than the other algorithms, whereas LMKL with a dgterdient combination
approach stores statistically significantly fewer support vec®Bs4KL (conic), ABMKL (convex),
andCABMKL (conic) are the three MKL algorithms that perform kernel selection and use tiaagr
five kernels on the average, while others use all of the ker@l8IKL (p = 1) andGLMKL (p = 2)
solve statistically significantly fewer optimization problems than all the other twoatgrithms
and the very high standard deviations EMKL (softmax) andLMKL (sigmoid) are also observed in
this experiment.

4.6 Internet Advertisements Experiments

We perform experiments on the Internet AdvertisementsW#RrT) data setfrom the UCI Machine
Learning Repository, composed of five different feature repregensa(different bags of words);
there is also some additional geometry information of the images, but we igrondritour experi-
ments due to missing values. After removing the data instances with missing veduleaye a total

7. Available athttp:/archive.ics.uci.edu/ml/datasets/Internet+Adv ertisements
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Algorithm Test Accuracy  Support Vector  Active Kernel — CallsSolver
SVM (best) 98.39:0.36 10.3@:0.83% 1.00£0.00%  6.00+ 0.00P°
SVM (all) 98.24+0.40 14.44-0.74 6.00:0.00 1.0@ 0.00
RBMKL (mean)  98.09:0.31 15.16-0.83 6.00:0.00 1.0e: 0.00
RBMKL (product) 95.87+0.31%¢  100.00t0.00¢  6.00+0.00 1.0& 0.00
ABMKL (conic)  98.24+0.38 13.08:0.93 3.06:0.002¢  1.00+ 0.00
ABMKL (convex)  98.39+0.36 10.36-0.835%¢  1.00+0.00%¢  1.00+ 0.00
ABMKL (ratio) 98.19+0.25 14.13%0.64 6.00:0.00 1.0& 0.00
CABMKL (linear)  96.90+0.34 16.89-0.9P°¢ 590+0.322¢  1.00+ 0.00
CABMKL (conic) ~ 98.15+0.41 12.54-0.75 3.06:0.002¢  1.00+ 0.00
MKL 98.31-0.34 14.88-0.81 5.40:0.702¢  1.00+ 0.00
SimpleMKL 98.25+0.37 14.89-0.70 5.60:0.522¢  37.50:12.090¢
GMKL 98.24+0.34 14.330.88 ¢ 5.60+0.52¢ 31.70+10.79%¢
GLMKL (p=1)  98.28:0.31 14.440.82 ¢ 6.00+0.00 9.3@ 1.250¢
GLMKL (p=2)  98.37:0.28 17.04-0.80°  6.00+0.00 4.9 0.320¢
NLMKL (p=1)  99.00t0.16 ¢  47.50t1.27°¢ 6.00£0.00 8.3@t 2.71bc
NLMKL (p=2)  98.93:t0.18 ¢  46.78t1.07°° 6.00£0.00 12.0a- 3.16%¢
LMKL (softmax) ~ 98.34:0.25 11.36:1.83 6.00:0.00 94.90:24.735¢
LMKL (sigmoid) ~ 99.24t0.18 ¢  17.88:1.06 6.00:0.00 94.90:57.645¢

Table 12: Performances of single-kernel SVM and representativel Mi#igorithms on the
MuULTIFEAT-EO data set with (kc-Fou-KAR-MOR-PIX-ZER) using the linear kernel.

Algorithm Test Accuracy  Support Vector Active Kernel — CdlisSolver
SVM (best) 90.54-1.125¢  28.90+-1.692¢ 1.00+0.002¢  4.00+ 0.00P¢
SVM (all) 94.45+0.44 40.26:1.28 ¢ 4.00+0.00 1.0 0.00
RBMKL (mean)  95.00+0.76 24.731.19 4.06:0.00 1.0e 0.00
RBMKL (product) 96.51-0.38%¢  95.31-0.60"°  4.00+0.00 1.06: 0.00
ABMKL (conic)  95.12+0.36 33.44:1.20%°  4.00+0.00 1.0& 0.00
ABMKL (convex) 94.51-0.59 24.341.19 4.06:-0.00 1.0& 0.00
ABMKL (ratio) 94.93+0.73 24.88:1.02 4.00:0.00 1.0& 0.00
CABMKL (linear)  95.10+0.38 33.44:1.24%¢  4,00+0.00 1.0e 0.00
CABMKL (conic) ~ 95.10+0.38 33.44-1.245%¢  4.00+0.00 1.0& 0.00
MKL 94.81-0.67 24.46-1.13 4.06-0.00 1.0e 0.00
SimpleMKL 94.84+0.64 24.46-1.18 4.06:0.00 15.5@ 8.11b¢
GMKL 94.84+0.64 24.4%1.18 4.06:0.00 15.6@ 8.07
GLMKL (p=1)  94.84+0.69 24.341.27 4.06:0.00 6.2 1.03P¢
GLMKL (p=2)  95.18:0.32 32.34:1.36%°  4.00+0.00 426 0.635¢
NLMKL (p=1)  98.64-0.25%° 50.17+1.3P 4.00+0.00 9.26 4.80°¢
NLMKL (p=2)  98.63:0.28" 57.02:1.26"° 4.00+0.00 9.1G: 3.28%¢
LMKL (softmax) ~ 96.24+0.90 24.16:3.29 4.06:0.00 41.76:31.28b¢
LMKL (sigmoid) ~ 97.16:0.60"°  20.18:1.062¢  4.00+0.00 75.5@:28.38%¢

Table 13: Performances of single-kernel SVM and representativel Mi#igorithms on the
MULTIFEAT-SL data set with (Bu-KAR-PIX-ZER) using the linear kernel.
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Algorithm Test Accuracy  Support Vector  Active Kernel — CalisSolver
SVM (best) 94.99+0.85% 17.96+0.89%¢ 1.00+0.00% 6.00+ 0.00P¢
SVM (all) 97.69+0.44 23.34-1.13 6.06:0.00 1.0&: 0.00
RBMKL (mean) 97.6A40.50 20.9&0.847 6.00:0.00 1.0&: 0.00
RBMKL (product) 96.0H-0.175¢ 97.58-0.48°¢  6.00+0.00 1.0&: 0.00

ABMKL (conic) ~ 96.84:0.39  27.4%0.92° 450:0.53%  1.00+ 0.00
ABMKL (convex)  96.46+0.34 33.78:0.90°¢  4.60+0.52b¢ 1.00+ 0.00

ABMKL (ratio) 97.66+0.46 20.95-0.88 6.08:0.00 1.06: 0.00
CABMKL (linear)  89.18:0.81R% 57.22+1.47%¢  6,00+0.00 1.06: 0.00
CABMKL (conic)  96.84+0.39 27.52:0.950¢  4.50+0.530c 1.00+ 0.00
MKL 97.40+0.37 32.58:0.82%  6.00+0.00 1.0&: 0.00
SimpleMKL 97.51:0.37 32.530.94%¢  6.00:0.00 14.4a 3.27%¢
GMKL 97.5H0.35 32.731.08%¢  6.00+0.00 14.2@ 4.590¢
GLMKL (p=1)  97.510.28 32.49:0.93%  6.00+0.00 6.7 0.950¢
GLMKL (p=2)  97.810.22 25.19-1.06%¢  6.00+0.00 5.0t 0.820¢
NLMKL (p=1)  98.79+0.28 38.44-0.96°¢  6.00+0.00 12.1@ 3.98¢
NLMKL (p=2)  98.82:0.20 43.99-0.99°°  6.00+0.00 10.76 4.62%¢
LMKL (softmax) ~ 97.79:0.62 14.71#1.10%  6.00+0.00 59.0@-31.425¢

LMKL (sigmoid) ~ 98.48:0.70  16.1@8-2.09%¢  6.00+0.00 107.6@:76.96%¢

Table 14: Performances of single-kernel SVM and representativel Mi#igorithms on the
MULTIFEAT-SL data set with (kC-FOu-KAR-MOR-PIX-ZER) using the linear kernel.

of 3,279 images in the data set. The properties of these feature reptiesenéae summarized in
Table 15. The classification task is to predict whether an image is an adwegtiser not.

Name Dimension Data Source

URL 457 Phrases occurring in the URL

ORIGURL 495 Phrases occurring in the URL of the image
ANCURL 472 Phrases occurring in the anchor text

ALT 111 Phrases occurring in the alternative text
CAPTION 19 Phrases occurring in the caption terms

Table 15: Multiple feature representations in thevikRT data set.

Table 16 lists the performance values of all algorithms on the#RT data set. We can see that
all MKL algorithms excepiRBMKL (product) achieve similar average test accuracies. However,
no MKL algorithm is statistically significantly more accurate trRBMKL (mean), and ABMKL
(convex) is statistically significantly worse. We see again that algorithms that combinel&do
multiplying them, namelyRBMKL (product), NLMKL (p = 1), andNLMKL (p = 2), store statistically
significantly more support vectors than other MKL algorithms. 10 out of 36.Milgorithms use
all five kernels;ABMKL (conic) andABMKL (convex) eliminate two representations, namely, URL
and QRIGURL. GMKL (p=1) andGMKL (p = 2) solve statistically significantly fewer optimization
problems than the other two-step algorithms.
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Algorithm Test Accuracy  Support Vector  Active Kernel — CallsSolver
SVM (best) 95.45+0.31 64.9@& 5.41°° 1.00+0.00% 500+ 0.00°¢
SVM (all) 96.43:0.24 41.9% 1.76 5.0@:0.00 1.0&= 0.00
RBMKL (mean) 96.53:0.58 34.4@ 425  5.06:0.00 1.0 0.00
RBMKL (product)  89.98:0.4%¢  96.61t 1.7P* 5.00+0.00 1.0G- 0.00

ABMKL (conic) 95.69+0.27 44.16 2.63 ¢ 3.00£0.002¢  1.00+ 0.00
ABMKL (convex) 95.10:0.522¢ 58.07t 2.47°¢ 3.00:0.00%¢  1.00+ 0.00

ABMKL (ratio) 96.23:0.61 35.0% 2.92 5.00-0.00 1.0 0.00
CABMKL (linear)  95.86+0.19 36.43 1.50 5.00-0.00 1.06- 0.00
CABMKL (conic)  95.84+0.19 38.06- 2.36 4.40-0.52°¢  1.00+ 0.00
MKL 96.32:0.50 35.82 4.35 4.10-0.32¢  1.00+ 0.00
SimpleMKL 96.37+0.46 33.7& 4.40 4.60:0.522¢  27.00t 7.390¢
GMKL 96.40+0.49 33.1& 3.49 4.70:0.485%¢  27.20t 7.940¢
GLMKL (p=1)  96.35:0.55 32.8% 3.56 5.00:0.00 5.46 1.07°¢
GLMKL (p=2)  96.56+0.32 35.62 1.55 5.00:0.00 490 0.7450¢

NLMKL (p=1)  95.96+0.50 67.63% 3.46° 5.00£0.00 15.9¢ 5.38%
NLMKL (p=2)  96.13t0.31 65.7@& 3.03° 5.00+0.00 13.0& 0.00%¢
LMKL (softmax) ~ 95.68:0.53 24.18& 5.74 5.08:0.00 38.8@:-24.1F5¢
LMKL (sigmoid) ~ 95.49+0.48 18.2212.16 5.0@:-0.00 56.6@-53.7G9¢

Table 16: Performances of single-kernel SVM and representative. Mlgorithms on the AD-
VERT data set using the linear kernel.

4.7 Overall Comparison

After comparing algorithms for each experiment separately, we give aralbecomparison on 10
experiments using the nonparametric Friedman’s test on rankings with tleg'Stonestly signif-
icant difference criterion as the post-hoc test (3am2006).

Figure 2 shows the overall comparison between the algorithms in terms of mificktson
error. First of all, we see that combining multiple information sources clearlyaugs the classifi-
cation performance becauSgM (best) is worse than all other algorithm&LMKL (p = 2), NLMKL
(p = 1), NLMKL (p = 2), LMKL (softmax), andLMKL (sigmoid) are statistically significantly more
accurate thaisvM (best). MKL algorithms using a trained, weighted combination on the average
seem a little worse (but not statistically significantly) than the untrained, uimegigsum, namely,
RBMKL (mean). NLMKL (p = 1), NLMKL (p = 2), LMKL (softmax), andLMKL (sigmoid) are more ac-
curate (but not statistically significantly) th&BMKL (mean). These results seem to suggest that if
we want to improve the classification accuracy of MKL algorithms, we shoulestigate nonlinear
and data-dependent approaches to better exploit information prowdditfdrent kernels.

Figure 3 illustrates the overall comparison between the algorithms in terms afppers vec-
tor percentages. We note that algorithms are clustered into three gr@a)psonfinear MKL al-
gorithms, (b) single-kernel SVM and linear MKL algorithms, and (c) dapeshdent MKL al-
gorithms. Nonlinear MKL algorithms, namelfRBMKL (product), NLMKL (p = 1) and NLMKL
(p = 2), store more (but not statistically significantly) support vectors than skeyieel SVM and
linear MKL algorithms, whereas they store statistically significantly more swpgmtors than
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Figure 2: Overall comparison of single-kernel SVM and represemstdil{L algorithms in terms
of misclassification error using the linear kernel.
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Figure 3: Overall comparison of single-kernel SVM and represemtdil L algorithms in terms
of support vector percentages using the linear kernel.
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data-dependent MKL algorithms. Data-dependent MKL algorithms, namidi. (softmax) and
LMKL (sigmoid), store fewer (but not statistically significantly) support vectors thanleikgrnel
SVM and linear MKL algorithms, whereasvKL (softmax) stores statistically significantly fewer
support vectors thaVM (best) andSVM (all).

Figure 4 gives the overall comparison between the algorithms in terms oé &etimel counts.
We see thabBMKL (conic), ABMKL (convex), CABMKL (linear), CABMKL (conic), MKL, SimpleMKL,
andGMKL use fewer kernels (statistically significantly in the case of the first two algosithhan
other combination algorithms. Even if we optimize the alignment and centeredvaignmeasures
without any regularization on kernel weights us#gMKL (conic), ABMKL (convex), andCABMKL
(conic), we obtain more sparse (but not statistically significantly) kernel combirsatimemMKL
and SimpleMKL, which regularize kernel weights using thenorm. Trained nonlinear and data-
dependent MKL algorithms, namelyMKL (p = 1), NLMKL (p = 2), LMKL (softmax), andLMKL
(sigmoid), tend to use all of the kernels without eliminating any of them, whereas datndent
algorithms use the kernels in different parts of the feature space with linefithe gating model.

Figure 5 shows the overall comparison between the algorithms in terms of tineizzgtion
toolbox call counts. We clearly see that the two-step algorithms need to soheeaptimization
problems than the other combination algorithigigapleMKL, GMKL, NLMKL (p = 1), NLMKL (p =
2), LMKL (softmax), andLMKL (sigmoid) require solving statistically significantly more optimization
problems than the one-step algorithms, whereas the differences betwesrthtep algorithms and
GLMKL (p = 1) andGLMKL (p = 2) are not statistically significant.

4.8 Overall Comparison Using Gaussian Kernel

We also replicate the same set of experiments, excepeoin #1TS data set, using three different
Gaussian kernels for each feature representation. We select thed Wadths as{/Dm/2,v/Dm,
2+/Dm} whereDp, is the dimensionality of the corresponding feature representation.

Figure 6 shows the overall comparison between the algorithms in terms of meiicktgon
error. We see that no MKL algorithm is statistically significantly better tRBMKL (mean) and
conclude that combining complex Gaussian kernels does not help mABRIKL (ratio), MKL,
SimpleMKL, GMKL, GLMKL (p = 1), andGLMKL (p = 2) obtain accuracy results comparable to
RBMKL (mean). As an important result, we see that nonlinear and data-dependent Mktithms,
namely,NLMKL (p = 1), NLMKL (p = 2), LMKL (softmax), andLMKL (sigmoid), are outperformed
(but not statistically significantly) bRBMKL (mean). If we have highly nonlinear kernels such as
Gaussian kernels, there is no need to combine them in a nonlinear or gataddat way.

Figure 7 illustrates the overall comparison between the algorithms in terms affgpers vec-
tor percentages. Different from the results obtained with simple lineaelsralgorithms do not
exhibit a clear grouping. However, data-dependent MKL algorithmsetyg LMKL (softmax) and
LMKL (sigmoid), tend to use fewer support vectors, whereas nonlinear MKL algoritharagly,
RBMKL (product), NLMKL (p = 1), andNLMKL (p = 2), tend to store more support vectors than
other algorithms.

Figure 8 gives the overall comparison between the algorithms in terms oé &etimel counts.
ABMKL (ratio), GLMKL (p = 2), NLMKL (p = 1), NLMKL (p = 2), andLMKL (sigmoid) do not elim-
inate any of the base kernels even though we have three differergl&don each feature repre-
sentation. When combining complex Gaussian kernels, trained MKL algoritorm®timprove
the classification performance statistically significantly, but they can eliminate sbthe kernels.
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Figure 4: Overall comparison of single-kernel SVM and represemetaMii(L algorithms in terms
of active kernel counts using the linear kernel.
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Figure 5: Overall comparison of single-kernel SVM and represemstdil{ L algorithms in terms
of optimization toolbox call counts using the linear kernel.
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Figure 6: Overall comparison of single-kernel SVM and represemetaMii(L algorithms in terms
of misclassification error using the Gaussian kernel.
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Figure 7: Overall comparison of single-kernel SVM and represemstdil{L algorithms in terms
of support vector percentages using the Gaussian kernel.
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We see thaABMKL (conic), ABMKL (convex), CABMKL (conic), MKL, SimpleMKL, GMKL, GLMKL
(p=1), andLMKL (softmax) use fewer kernels (statistically significantly in the case of the first three
algorithms) than other combination algorithms.

Figure 9 shows the overall comparison between the algorithms in terms of tineizztion
toolbox call counts. Similar to the previous results obtained with simple lineaekethe two-step
algorithms need to solve more optimization problems than the other combination atggrith

5. Conclusions

There is a significant amount of work on multiple kernel learning methods. i$Higcause in
many applications, one can come up with many possible kernel functions steddnof choosing
one among them, we are interested in an algorithm that can automatically deterhigheones
are useful, which ones are not and therefore can be pruned, amnurethe useful ones. Or, in
some applications, we may have different sources of information comingdifferent modalities
or corresponding to results from different experimental methodologidsach has its own (pos-
sibly multiple) kernel(s). In such a case, a good procedure for keormabination implies a good
combination of inputs from those multiple sources.

In this paper, we give a taxonomy of multiple kernel learning algorithms tohightight the
similarities and differences among the proposed algorithms in the literaturey wiithen review
in detail. The dimensions we compare the existing MKL algorithms are the learnitigppdiehe
functional form, the target function, the training method, the base leandrthe computational
complexity. Then by looking at these dimensions, we form 12 groups of M&ants to allow an
organized discussion of the literature.

We also perform 10 experiments on four real data sets with simple lineari&eme eight ex-
periments on three real data sets with complex Gaussian kernels companhiLL@lgorithms
in practice. When combining simple linear kernels, in terms of accuracy, &ésaé using multi-
ple kernels is better than using a single one but that in combination, trained dioiedination is
not always better than an untrained, unweighted combination and that @antindata-dependent
combination seem more promising. When combining complex Gaussian kera@gdtiinear
combination is better than nonlinear and data-dependent combinations thiltanounweighted
combination. Some MKL variants may be preferred because they use $eypport vectors or
fewer kernels or need fewer calls to the optimizer during training. Thevelatiportance of these
criteria depend on the application at hand.

We conclude that multiple kernel learning is useful in practice and that iharaple evidence
that better MKL algorithms can be devised for improved accuracy, deetesomplexity and train-
ing time.
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Appendix A. List of Acronyms

GMKL Generalized Multiple Kernel Learning

GP Gaussian Process
KFDA  Kernel Fisher Discriminant Analysis
KL Kullback-Leibler

KRR Kernel Ridge Regression

LMKL Localized Multiple Kernel Learning

LP Linear Programming

MKL Multiple Kernel Learning

QCQP Quadratically Constrained Quadratic Programming
QP Quadratic Programming

RKDA Regularized Kernel Discriminant Analysis
SDP Semidefinite Programming

SILP Semi-infinite Linear Programming

SMKL  Sparse Multiple Kernel Learning

SOCP  Second-order Cone Programming

SVM Support Vector Machine

SVR Support Vector Regression

Appendix B. List of Notation

R Real numbers

R, Nonnegative real numbers
Ryt Positive real numbers

RN RealN x 1 matrices

RMxN  RealM x N matrices

SN Real symmetridN x N matrices
N Natural numbers

/ Integers

7, Nonnegative integers

x|[p Thelp-norm of vectorx
(x,y) Dot product between vectoxsandy
k(x,y) Kernel function betweer andy

K Kernel matrix

X7 Transpose of matriX

tr(X)  Trace of matrixX

IIX|[e  Frobenius norm of matriX

X®Y Element-wise product between matriceandY
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