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Abstract

Standard statistical models of language fail to capture oneof the most striking properties of natural
languages: the power-law distribution in the frequencies of word tokens. We present a framework
for developing statistical models that can generically produce power laws, breaking generative mod-
els into two stages. The first stage, the generator, can be anystandard probabilistic model, while the
second stage, the adaptor, transforms the word frequenciesof this model to provide a closer match
to natural language. We show that two commonly used Bayesianmodels, the Dirichlet-multinomial
model and the Dirichlet process, can be viewed as special cases of our framework. We discuss two
stochastic processes—the Chinese restaurant process and its two-parameter generalization based
on the Pitman-Yor process—that can be used as adaptors in our framework to produce power-law
distributions over word frequencies. We show that these adaptors justify common estimation proce-
dures based on logarithmic or inverse-power transformations of empirical frequencies. In addition,
taking the Pitman-Yor Chinese restaurant process as an adaptor justifies the appearance of type
frequencies in formal analyses of natural language and improves the performance of a model for
unsupervised learning of morphology.

Keywords: nonparametric Bayes, Pitman-Yor process, language model,unsupervised

1. Introduction

It is important for models used in unsupervised learning to be able to describe the gross statisti-
cal properties of the data they are intended to learn from, otherwise these properties may distort
inferences about the parameters of the model. One of the most striking statistical properties of nat-
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ural languages is that the distribution of word frequencies is closely approximated by a power law.
That is, the probability that a wordw will occur with frequencynw in a sufficiently large corpus is
proportional ton−g

w . This observation—usually attributed to Zipf (1932), though it enjoys a long
and detailed history (Mitzenmacher, 2004)—stimulated intense research in the1950s (e.g., Simon,
1955) but has largely been ignored in modern machine learning and computational linguistics.

By developing models that can generically exhibit power laws, it may be possible to improve
methods for identifying structure in linguistic data. In particular, postulating a separate mechanism
within the model that accounts for the skewed distribution of word frequencies takes the burden of
explaining this distribution off the other components of the model, effectively reducing the frequen-
cies of those words. Such “damping” of word frequencies can often bedesirable. It is commonly
observed in applications of statistical natural language processing that reducing the counts of word
tokens, typically by taking their logarithms or inverse powers, can improve performance (Salton and
Buckley, 1988).

An extreme version of damping frequencies forms part of a tension exhibited by formal ap-
proaches to natural language: whether explanations should be based upon the distincttypesof words
that languages exhibit, or the frequencies with whichtokens(instances) of those words occur. One
place where this tension manifests is in accounts of morphology (the substructure of words), where
formal linguists develop accounts of why particular words appear in the lexicon (e.g., Pierrehum-
bert, 2003), while computational linguists focus on statistical models of the frequencies of tokens of
those words (e.g., Hakkani-Tür et al., 2002). The same tension arises in various areas of statistical
natural language processing and related fields. For example, one of themost successful forms of
smoothing used in statistical language models, Kneser-Ney smoothing, explicitlyinterpolates be-
tween type and token frequencies (Ney et al., 1994; Kneser and Ney, 1995; Chen and Goodman,
1998). Information retrieval systems can also differ in whether they use binary vectors indicating
the presence or absence of words in a document or a full vector of word frequencies (Baeza-Yates
and Ribeiro-Neto, 1999), and the same distinction appears in machine learning methods applied to
text (e.g., Blei et al., 2003; Thibaux and Jordan, 2007).

In this paper, we present a framework for developing generative modelsfor language that pro-
duce power-law distributions. Our framework is based upon the idea of specifying these models
in terms of two components: agenerator, an underlying generative model for words which need
not (and usually does not) produce a power-law distribution, and anadaptor, which transforms the
stream of words produced by the generator into one whose frequencies obey a power-law distribu-
tion. This framework is extremely general: any generative model for language can be used as a
generator, with the power-law distribution being produced as the result ofmaking an appropriate
choice for the adaptor.

Adopting this two-stage framework divides responsibility for the appearance of the tokens in
the corpus between the generator and the adaptor, with only a subset of the tokens being produced
by the generator. The parameters of the generator will be estimated based only on the tokens for
which the generator is considered responsible, rather than on the full set of tokens in the corpus.
By explaining away the presence of some of the tokens, the adaptor effectively damps the word
counts used to estimate the parameters of the generator. Estimation of these parameters will thus
be affected by assumptions about the form of the adaptor. We consider several adaptor-generator
pairs, focusing especially on the Chinese restaurant process (Aldous, 1985) and its two-parameter
generalization, derived from the Pitman-Yor process (Pitman, 1995; Pitmanand Yor, 1997; Ishwaran
and James, 2003), as adaptors. We show that using these stochastic processes as adaptors can
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produce appropriate power-law distributions while implementing different forms of damping. We
also show that the Pitman-Yor generalization of the Chinese restaurant process can be used to justify
parameter estimation based purely on type frequencies, and demonstrate that using this adaptor
improves the performance of a simple two-stage model applied to learning morphology.

Our work contributes to a growing body of research on Bayesian approaches to modeling and
learning language. This paper is not the first to propose the use of the Chinese restaurant process or
Pitman-Yor process for modeling language, and some of the models we discuss have been used in
previous work by ourselves and others (Goldwater et al., 2006a; Teh,2006b). However, considering
these models in greater depth allows us to make several novel contributions.First, we show how
the two-stage framework makes it possible to unify a variety of Bayesian models of language. This
unified picture offers us a way to concisely summarize existing Bayesian language models, and to
identify the mathematical relationships between these models. Second, we provide a quantitative
argument that these models are a good fit for language by virtue of the power-law distributions
they produce, detailing the differences between the distributions produced by different adaptors,
and discussing the use of different approximations. Third, we presentnew empirical studies that
provide insight into the practical effects of different approximations andparameter choices. Finally,
we expand on the idea, introduced by Goldwater et al. (2006a), that these models provide a way
to understand and model the relationship between linguistic types and tokens,and a mathematical
justification for commonly used smoothing and damping techniques.

In addition to considering the general properties of models developed in our two-stage frame-
work, we provide a detailed case study of applying this approach to an unsupervised learning prob-
lem: morphological segmentation. In this problem, the goal is to identify the meaningful compo-
nents from which words are comprised. This problem is challenging because natural languages
possess both regular and irregular morphology, with only a subset of words following regular mor-
phological rules. Linguists have long noted a strong relationship between frequency and regularity
in language, with irregular forms often being among the most frequent (Greenberg, 1966; Bybee,
1985). Without accounting for this fact, an unsupervised learning system is likely to be misled by
the very frequent irregular forms, and fail to appropriately model the regular patterns that are needed
to account for infrequent forms, which will comprise most unseen data. We show that the two-stage
framework proposed here can explain the relationship between frequency and regularity and thus
leads to better learning of regular patterns.

The morphological segmentation task is a good example of a situation where appropriately
modeling word frequencies can significantly affect the outcome of unsupervised learning. While
we explore this case in detail, the goal of this paper is not to develop state-of-the-art models for any
particular application. Rather, we hope to strengthen intuitions and insights intohow nonparametric
Bayesian models of language behave in general, in order to give other researchers a better sense of
when these tools may be helpful and how to use them. We consider other promising applications of
this approach, and ways in which it can be extended, in Section 9.

The plan of the paper is as follows. Section 2 summarizes related work. Section 3 discusses
stochastic processes that can produce power-law distributions and introduces the generic two-stage
modeling framework. Section 4 presents models based on the Chinese restaurant process and
Pitman-Yor Chinese restaurant process, stochastic processes from nonparametric Bayesian statis-
tics that produce power-law distributions. Section 5 shows how some other Bayesian language
models can be viewed as special cases of our two-stage framework. Section 6 examines some of the
consequences of using the adaptors introduced in Section 4: Section 6.1 discusses the implications
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of using these models for estimation of the parameters of the generator, Section 6.2 shows that es-
timation based on type and token frequencies are special cases of a two-stage language model, and
Section 6.3 uses these results to provide a novel justification for the use of Kneser-Ney smoothing.
Section 7 describes a two-stage model for unsupervised learning of the morphological structure of
words, and Section 8 presents the results of some experiments with this model demonstrating that its
performance improves as we move from estimation based upon tokens to types. Section 9 discusses
additional applications and extensions of our approach, and Section 10 concludes.

2. Related Work

Our two-stage approach fits within a more general trend of using Bayesianmodels for linguistic
data. Previous work has used Bayesian models in two ways: to understandand justify approaches
to smoothing, or as a method of unsupervised structure discovery and learning. Since we will touch
upon both of these topics in this paper, we now present a brief review of related work in each area.

Smoothing methods are schemes for regularizing empirical estimates of the probabilities of
words, with the goal of improving the predictive performance of languagemodels. The simplest
kind of smoothing involves adding a small constant to the empirical frequencies of words prior
to normalizing those frequencies (Chen and Goodman, 1998). This approach can be shown to be
equivalent to Bayesian estimation of a multinomial distribution using a Dirichlet prior (MacKay
and Peto, 1994), a method that has more recently evolved into the use of compound Dirichlet-
multinomial models for text (Elkan, 2006; Madsen et al., 2005). The observation of a correspon-
dence between smoothing methods and Bayesian inference has been usedto define more complex
smoothing schemes based on hierarchical Bayesian models (MacKay and Peto, 1994). The con-
nection between Pitman-Yor processes and Kneser-Ney smoothing is one instance of this broader
correspondence, and was independently pointed out by Teh (2006a,b) following our own work on
this topic (Goldwater et al., 2006a). More recently, Wood and Teh (2008,2009) have developed
more sophisticated cross-domain smoothing models by combining multiple hierarchical Pitman-
Yor processes.

Another strand of work on Bayesian models of language aims to improve unsupervised (or
semi-supervised) learning of linguistic structure. Much of this work can betraced back to the latent
Dirichlet allocation (LDA) model and related work on document clustering and topic modeling by
Blei and colleagues (Blei et al., 2002, 2003, 2004). While LDA takes a bag-of-words approach
to language modeling, recent research in the computational linguistics communityhas focused on
using similar Bayesian techniques to develop models of linguistic structure with more sophisticated
intra- and inter-word dependencies. For example, Goldwater et al. (2006b) presented a model based
on the hierarchical Dirichlet process (Teh et al., 2005) to identify word boundaries in unsegmented
text. This model is very similar to the hierarchical Pitman-Yor language model described in Section
6.3 as well as in Teh (2006a). Finkel et al. (2007) and Liang et al. (2007) introduced models for
learning better syntactic categories for parsing by extending the idea of theinfinite hidden Markov
model (Beal et al., 2002; Teh et al., 2005) to probabilistic context-free grammars (PCFGs) and
dependency trees. Johnson et al. (2007) described a different kind of infinite Bayesian model for
learning grammatical structure, the adaptor grammar, which is more directly based on the two-
stage framework presented here. An adaptor grammar can be seen as a two-stage model in which
the generator is a PCFG. Adaptor grammars have since been used for learning word segmentation,
syllable structure, and morphology in English and Sesotho (Johnson et al.,2007; Johnson, 2008a,b),
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as well as for named-entity clustering (Elsner et al., 2009). They have also been extended by Cohn
et al. (2009), Post and Gildea (2009), and O’Donnell et al. (2009),who independently proposed
very similar generalizations of the adaptor grammar for learning tree substitution grammars.

Finally, although this paper focuses primarily on the general Bayesian framework rather than
the specific application to morphological learning that we discuss in Sections 7and 8, it is worth
mentioning a few other notable approaches to the unsupervised learning ofmorphology. Probably
the most well-known systems are Linguistica (Goldsmith, 2001, 2006) and Morfessor (Creutz and
Lagus, 2004, 2005), both of which are based on probabilistic models using maximuma posteriori
estimation, and are freely available for download. A number of other systemsuse more heuristic
approaches; Goldsmith (2001) provides a thorough review. An interesting recent approach uses
sentence-aligned multilingual texts to perform simultaneous morphological segmentation on multi-
ple languages (Snyder and Barzilay, 2008). The Bayesian model usedin that work can be viewed
as an extension of the word segmentation model of Goldwater et al. (2006b)described above.

3. The Two-stage Approach

The key idea behind our two-stage framework is to divide the process of generating text into two
parts, one of which is sufficient to produce a power-law distribution overword frequencies. In this
section we briefly review mechanisms that give rise to power-law distributionsand then formally
define our framework.

3.1 Producing Power-law Distributions

Assume we want to generate a sequence ofn outcomes,z= (z1, . . . ,zn), with each outcomezi being
drawn from a set of (possibly unbounded) sizeK. Many of the stochastic processes that produce
power laws are based upon the principle ofpreferential attachment, where the probability that the
ith outcome,zi , takes on a particular valuek depends upon the frequency ofk in z−i = (z1, . . . ,zi−1)
(Mitzenmacher, 2004). For example, the number of links pointing to a given web page is sometimes
modeled as a power-law distribution, which can be explained by assuming that new web pages are
more likely to include links to already-popular pages (Mitzenmacher, 2004).An early preferential
attachment process, due to Simon (1955), chooseszi according to

P(zi = k|z−i) = a
1
K
+(1−a)

n(z−i)
k

i−1

wheren(z−i)
k is the number of timesk occurs inz−i , and 0< a< 1 is a parameter of the process. This

“rich-get-richer” process means that a few outcomes appear with very high frequency inz, while
most outcomes appear with low frequency—the key attribute of a power-law distribution. In this
case, the power law has parameterg= 1/(1−a).

One problem with this kind of model is that different permutations of the outcomes z have dif-
ferent probabilities. While this may be appropriate for some settings, the assumption of a temporal
ordering restricts the contexts in which such models can be applied. In particular, it is much more
restrictive than the assumption of independent sampling that underlies most statistical language
models. Consequently, we will focus on a different preferential attachment scheme, based upon the
two-parameter species sampling model (Pitman, 1995; Pitman and Yor, 1997) known as the Pitman-
Yor process (Ishwaran and James, 2003). We will refer to this scheme as the Pitman-Yor Chinese
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restaurant process (PYCRP), as it is a generalization of the more widely known Chinese restaurant
process (CRP; Aldous, 1985). Under these schemes, outcomes follow apower-law distribution, but
remainexchangeable: the probability of a set of outcomes is not affected by their ordering (Aldous,
1985). In addition to its theoretical benefits, the property of exchangeability has practical value in
permitting the use of standard sampling algorithms for inference. We return to discussion of the
CRP and PYCRP in Section 4 after introducing the basic conceptual framework of the two-stage
language model.

3.2 The Generator and Adaptor

In our two-stage modeling framework, a sequence of word tokensw = (w1, . . . ,wn) is generated as
follows:

1. Generate a sequence of lexical itemsℓℓℓ = (ℓ1, . . . , ℓK) from some probability distributionPϕ
parameterized byϕ. For example,(ℓ1, . . . , ℓ4) = (the, dog, a, the). We refer toPϕ as the
lexicon generator(or simply generator). Note that our use of the termlexical itemis non-
standard. Ignoring homophony, a lexicon normally contains one instance of each word type.
Here,Pϕ is a discrete distribution and the lexical items are generated independently, sothe
same word type may occur more than once inℓℓℓ.1 In the remainder of the paper, we uselexical
item to refer to the items produced by the generator,word typeto refer to unique wordforms,
andwordor tokento refer to word tokens.

2. Generate a sequence of integersz = (z1, . . . ,zn) with 1 ≤ zi ≤ K, wherezi = k indicates
that wi = ℓk (that is, zi is the index of the lexical item corresponding towi). For exam-
ple, (z1, . . . ,z9) = (1,2,1,1,3,1,1,4,3), so that, in combination with(ℓ1, . . . , ℓ4) from above,
(w1, . . . ,w9) = (the, dog, the, the, a, the, the, the, a). The integersz are assumed to be
generated by some stochastic processPγ with one or more parametersγ. We refer to this
process as theadaptor.

We use the notation TwoStage(Pγ,Pϕ) to refer to a two-stage model with adaptorPγ and generator
Pϕ. A graphical model illustrating the dependencies between the variables in thisframework is
shown in Figure 1.

The two-stage modeling framework is very general: many different distributions could be used
for the generator and adaptor. However, given the discussion above, it is sensible to assume that
Pγ is chosen so that the frequencies with which different integer outcomes are produced follow a
power-law distribution. In this case, whenPϕ is a distribution with infinite support, the power-law
distribution over integers produced in Step 2 will result in a power-law distribution over the fre-
quencies in the final sequence of words. Thus, the adaptor “adapts” the word frequencies produced
by the generator to fit a power-law distribution. Different choices for thegenerator model will allow
different kinds of linguistic structure to be learned. Here, we show that morphological structure can
be learned using a generator that produces words by choosing a stem and suffix and concatenating
them together. In other work, we have used different generators to discover word boundaries in
unsegmented text (Goldwater et al., 2006b; Johnson, 2008a) and to infer tree substitution grammars
from parsed corpora or strings (Cohn et al., 2010).

1. The assumption of independence between lexical items is not strictly necessary, but is mathematically and computa-
tionally convenient. An example of a more complex distribution over lexical items that enforces uniqueness is given
in Brent (1999).
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wi

ℓkzi

n

K

Adaptor Generator

ϕγ

Figure 1: A graphical model representation of the two-stage language modeling framework. Ar-
rows indicate dependencies between variables, and solid-line boxes indicate replicated
portions of the model, with the number of copies shown in the lower right hand corner.
Variables associated with the generator are on the right; those associated with the adaptor
are on the left. Depending on the application, the wordswi may or may not be directly
observed.

4. Chinese Restaurant Processes as Adaptors

While any stochastic process that results in a power-law distribution over word frequencies can be
used as an adaptor, the choice of adaptor will have significant implications for the resulting model.
In this section, we discuss two stochastic processes that are particularly suitable as adaptors in the
two-stage framework: the Chinese restaurant process (Aldous, 1985; Pitman, 1995; Griffiths, 2006)
and the Pitman-Yor Chinese restaurant process (Pitman, 1995; Pitman and Yor, 1997; Ishwaran
and James, 2003). Both the CRP and PYCRP are used in nonparametric Bayesian statistics, with
the more widely known CRP arising as the distribution over the sizes of mixture components in
infinite mixture models (Rasmussen, 2000). We review the definitions of these processes, discuss
the properties that make them useful as adaptors, and define the two-stage models that result from
using CRP or PYCRP adaptors.

4.1 The Chinese Restaurant Process

The Chinese restaurant process is a simple stochastic process that can be described using the analogy
of a restaurant with an infinite number of tables, each of which has an infiniteseating capacity.
Customers enter the restaurant one at a time, and choose a table at which to sit. The probability
of choosing an occupied table is proportional to the number of people already sitting there, and the
probability of choosing an unoccupied table is proportional to some constant parameterα. That is,
if zi is the index of the table chosen by theith customer, then

P(zi = k|z−i ,α) =







n
(z−i )
k

i−1+α 1≤ k≤ K(z−i)

α
i−1+α k= K(z−i)+1
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Figure 2: An illustration of the Chinese restaurant process, reproduced from Goldwater et al.
(2009). Black dots indicate the number of customers sitting at each table for the ex-
ample casez−10 = (1,2,1,1,3,1,1,4,3). Below each table isP(z10 = k|z−10). Note that
the number of customers at each table—and thusP(z10 = k|z−10), the probability distri-
bution over the next customer—would remain the same for any ordering of theintegers
in z−10. This is the property of exchangeability.

wherez−i is the seating arrangement of the previousi −1 customers,n(z−i)
k is the number of cus-

tomers already assigned to tablek by z−i , K(z−i) is the total number of occupied tables inz−i , and
α ≥ 0 is a parameter of the process determining how “spread out” the customers become. Higher
values ofα mean that more new tables will be occupied relative to the number of customers,leading
to a more uniform distribution of customers across tables. The first customerby definition sits at
the first table, so this distribution is well-defined even whenα = 0. See Figure 2 for an illustration.

Under this model, the probability of a particular sequence of table assignmentsfor n customers
is given by

P(z|α) = 1·
n

∏
i=2

P(zi |z−i ,α)

=

(

n

∏
i=2

1
i−1+α

)

(

αK(z)−1
)

(

K(z)

∏
k=1

(n(z)k −1)!

)

=
Γ(1+α)
Γ(n+α)

·αK(z)−1 ·
K(z)

∏
k=1

(n(z)k −1)! (1)

where the Gamma function is defined asΓ(x) =
∫ ∞

0 ux−1e−udu for x> 0, and is a generalized facto-
rial function: Γ(x) = (x−1)! for positive integerx, andΓ(x) = (x−1)Γ(x−1) for anyx> 0.2

It is easy to see that any reordering of the table assignments inz will result in the same factors
in Equation 1, so the CRP is exchangeable.3 As the number of customers becomes large, the CRP
produces a power-law distribution over the number of customers seated ateach table, where the
power-law exponentg is equal to 1 (Arratia et al., 1992).

2. It is more standard to see the joint distribution of table assignments in the CRP given asP(z) = Γ(α)
Γ(n+α) ·αK(z) ·

∏K(z)
k=1 (n

(z)
k −1)!. This distribution is derived from the Dirichlet process (see Section 5.2), which is defined only for

α > 0, and is equivalent to Equation 1 in that case. We use the distribution in Equation 1 because it is defined also
for α = 0, which is a possible (if uninteresting) parameter value in the CRP.

3. When considering exchangeability, the table assignments should be viewed as partitioning the integers 1, . . . , i into
equivalence classes. The requirement thatzi ∈ 1, . . . ,max(zi−1)+1 ensures there is a 1-to-1 mapping between equiv-
alence classes and the set of integers inz.
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The preceding paragraphs indicate how the CRP can be used to create a power-law distribution
over integers, but to create a distribution over words we need to combine it with a lexicon generator
to make a full two-stage model. For expository purposes, we continue to usethe generic lexicon
generatorPϕ, a distribution parameterized byϕ, so the full model is TwoStage(CRP(α),Pϕ). This
model can be viewed as a restaurant in which each table is labeled with a lexical item produced by
Pϕ. Each customer represents a word token, so that the number of customersat a table corresponds
to the frequency of the lexical item labeling that table. A new word token is generated by seating
a new customer, producing either a new token of an existing lexical item (if thecustomer sits at an
existing table: in this case the new token will have the same word type as the lexical item labeling
that table) or the first token of a new lexical item (if the customer sits at a new table: in this case a
new label is generated usingPϕ, and all later customers at this table will be additional tokens of the
same word type).

Under this model, the probability that theith token in a sequence takes on the valuew, given the
previous labels and table assignments, can be found by summing over all the existing tables labeled
with w, plus a possible new table labeled withw:

P(wi = w|z−i ,ℓℓℓ(z−i),α,ϕ)

=
K(z−i)

∑
k=1

P(wi = w|zi = k, ℓk)P(zi = k|z−i ,α)

+P(wi = w|zi = K(z−i)+1,ϕ)P(zi = K(z−i)+1|z−i ,α)

=
K(z−i)

∑
k=1

I(ℓk = w)
n(z−i)

k

i−1+α
+Pϕ(w)

α
i−1+α

=
n(w−i)

w +αPϕ(w)

i−1+α
(2)

whereℓℓℓ(z−i) are the labels of all the tables inz−i , I(.) is an indicator function taking on the value 1

when its argument is true and 0 otherwise, andn(w−i)
w is the number of previous occurrences of the

word typew in w−i (that is, the number of customers thatz−i assigns to tables labeled withw). This
distribution is illustrated in Figure 3.

The probability of an entire sequence of wordsP(w |α,ϕ) can be found by marginalizing outℓℓℓ
andz from the joint distributionP(w,z,ℓℓℓ |α,ϕ). Note that unlessℓzi = wi for all i, P(w,z,ℓℓℓ |α,ϕ) =
0, so we need only sum over cases whereℓzi = wi for all i. In this situation,P(w,z,ℓℓℓ |α,ϕ) =
P(z,ℓℓℓ |α,ϕ) = P(z|α)Pϕ(ℓℓℓ),4 so we can compute the desired distribution as

P(w |α,ϕ) = ∑
z,ℓℓℓ

P(z|α)Pϕ(ℓℓℓ)

= ∑
z,ℓℓℓ

Γ(1+α)
Γ(n+α)

αK(z)−1
K(z)

∏
k=1

(

Pϕ(ℓk)(n
(z)
k −1)!

)

(3)

where the sums range only over thoseℓℓℓ andz such thatℓzi = wi for all i.

4. We usePϕ(ℓℓℓ) rather than the equivalentP(ℓℓℓ |ϕ) for consistency with our notation for the generator probability of an
individual lexical itemPϕ(ℓ); bothPϕ(ℓℓℓ) andP(ℓℓℓ |ϕ) represent the probability of producing lexical itemsℓℓℓ using the
generator parameterized byϕ. Note that in contrast,P(w |ϕ) 6= Pϕ(w), as the latter requires that all tokens inw are
produced by the generator, whereas the former does not.
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. . .the dog a the

Figure 3: An illustration of the two-stage restaurant, adapted from Goldwater et al. (2009). In this
example,(ℓ1, . . . , ℓ4) = (the, dog, a, the) andz−10 = (1,2,1,1,3,1,1,4,3). Each label
ℓk is shown on tablek. Black dots indicate the number of occurrences of each label
in w−10 = (the, dog, the, the, a, the, the, the, a). Under this seating arrangement,

P(w10 = the) =
6+αPϕ(the)

9+α , P(w10 = dog) =
1+αPϕ(dog)

9+α , P(w10 = a) =
2+αPϕ(a)

9+α , and

for any other wordw, P(w10 = w) = αPϕ(w)
9+α .

Notice that the distribution over words given in Equation 2 leads to an alternative way of viewing
the TwoStage(CRP(α),Pϕ) model, as a cache model. Under this view, each word is generated in
one of two ways: from a cache of previously occurring lexical items (with probability n

n+α if we use
the CRP adaptor) or as a novel lexical item (with probabilityα

n+α ). Items from the cache are chosen
with probability proportional to the number of times they have occurred before in w. Novel items
are chosen according to the probability distribution of the lexicon generator(which means that,
strictly speaking, they are not always “novel”—that is, novel word types—since the generator may
produce duplicates). This interpretation clarifies the significance of the parametersα andPϕ. Prior
expectations regarding the probability of encountering a novel lexical itemare reflected in the value
of α, so lower values ofα will lead to an expectation of fewer lexical items (and word types) during
inference. Prior expectations about the relative probabilities of different novel items are reflected
in Pϕ, so the choice of generator determines the kinds of lexical items that are likelyto be inferred
from the data. If the generator is a distribution over an infinite number of items,the cache model
makes it clear that the number of different word types that will be observed in a finite corpus is not
fixed in advance. Rather, new word types can be generated “on the fly”from an infinite supply. In
general, the number of different word types observed in a corpus will slowly grow as the size of the
corpus grows.

4.2 The Pitman-Yor Generalization

For much of this paper, we will be focusing on an adaptor based on the Pitman-Yor process. This
adaptor is a generalization of the CRP, defined as

P(zi = k|z−i ,a,b) =







n
(z−i )
k −a
i−1+b 1≤ k≤ K(z−i)

K(z−i)a+b
i−1+b k= K(z−i)+1

(4)

where 0≤ a < 1 andb ≥ 0 are parameters of the process. As in the CRP,z1 = 1 by definition.
Whena= 0 andb= α, this process reduces to the CRP, so we refer to it as the Pitman-Yor Chinese
restaurant process (PYCRP). Like the CRP, the PYCRP is exchangeable and produces a power-law
distribution on the number of customers seated at each table. In this case, thepower-law exponentg
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Figure 4: Simulating power laws in natural language, illustrated using Zipf plots. The Zipf plot
displays the log frequency of a word as a function of the log of the rank ofthat fre-
quency (i.e., the number of words with frequency greater than or equal tothat word).
A power-law distribution in word frequency, with the probability of a frequency of nw

proportional ton−g
w , results in a straight line on the plot with slope 1/(g− 1). Here,

the left-hand plot shows the distribution of word frequencies in sections 0-20 from the
Penn Wall Street Journal treebank, while the right-hand plot shows the distribution of the
number of customers at each table produced by 500,000 draws from the PYCRP with
parametersa= 0.8 andb= 1. Both plots have a slope of roughly−1.25, corresponding
to a power-law distribution with exponentγ = 1.8.

is equal to 1+a (Pitman, 2006), which includes theg≈ 1.8 seen for natural languages (see Figure
4). We defer further discussion of the significance of the parametersa andb to Section 6.2.

Under the PYCRP, the probability of a particular seating arrangementz is

P(z|a,b) = 1·
n

∏
i=2

P(zi |z−i ,a,b)

=

(

n

∏
i=2

1
i−1+b

)(

K(z)−1

∏
k=1

(ka+b)

)





K(z)

∏
k=1

n(z)k −1

∏
i=1

(i−a)





=
Γ(1+b)
Γ(n+b)

(

K(z)−1

∏
k=1

(ka+b)

)(

K(z)

∏
k=1

Γ(n(z)k −a)

Γ(1−a)

)

.

As with the CRP, we can define a generic two-stage model with a PYCRP adaptor by assuming a
generatorPϕ parameterized byϕ. Under this TwoStage(PYCRP(a,b),Pϕ) model, the probability of
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generating wordw given the seating arrangement and label assignments of the previous words is

P(wi = w|z−i ,ℓℓℓ(z−i),a,b,ϕ)

=
K(z−i)

∑
k=1

P(wi = w|zi = k, ℓk)P(zi = k|z−i ,a,b)

+P(wi = w|zi = K(z−i)+1,ϕ)P(zi = K(z−i)+1|z−i ,a,b)

=
K(z−i)

∑
k=1

I(ℓk = w)
n(z−i)

k −a

i−1+b
+Pϕ(w)

K(z−i)a+b
i−1+b

=
n(w−i)

w −Kw(z−i)a+(K(z−i)a+b)Pϕ(w)

i−1+b
(5)

whereKw(z−i) is the number of tables labeled withw in z−i . The joint distribution of a sequence of
wordsw is given by

P(w |a,b,ϕ) = ∑
z,ℓℓℓ

P(z|a,b)Pϕ(ℓℓℓ)

= ∑
z,ℓℓℓ

Γ(1+b)
Γ(n+b)

(

K(z)−1

∏
k=1

(ka+b)

)(

K(z)

∏
k=1

Pϕ(ℓk)
Γ(n(z)k −a)

Γ(1−a)

)

(6)

where, as in Equation 3, the sums are over only thoseℓℓℓ andz such thatℓzi = wi for all i.

5. Relationship to Other Models

The two-stage framework outlined in the previous sections has three special cases that correspond
to models that have previously been used in computational linguistics and statistics: the Dirichlet-
multinomial model, the Dirichlet process, and the two-parameter Poisson-Dirichlet process. In each
of the following subsections, we first present the relevant equivalency, and then show that it holds.

5.1 The Dirichlet-multinomial Model

Proposition 1 A TwoStage(CRP(α),Multinomial(ϕ)) model is equivalent to a
Dirichlet(αϕ)-multinomial model.

As mentioned in Section 1, several researchers have proposed Bayesian language models based
on the Dirichlet-multinomial model (MacKay and Peto, 1994; Madsen et al., 2005), also known as
the Dirichlet compound multinomial model (Elkan, 2006). In this model, words are drawn from a
multinomial distribution:

wi |θ ∼ Multinomial(θ)

whereθ = (θ1, . . . ,θK). That is, for a corpusw = (w1, . . . ,wn) made up of a finite lexicon of words
(ℓ1, . . . , ℓK), P(wi = ℓk |θ) = θk andP(w |θ) = ∏K

k=1 θnk
k , wherenk is the number of occurrences

of ℓk in w. In addition, the parametersθ are themselves drawn from a Dirichlet distribution with
hyperparametersβ = (β1, . . . ,βK):

θ |β ∼ Dirichlet(β).
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The Dirichlet distribution is defined as

P(θ |β) = c
K

∏
k=1

θβk−1
k

with c =
Γ(∑K

k=1 βk)

∏K
k=1 Γ(βk)

whereβk > 0. It is conjugateto the multinomial, meaning that the posterior distribution over the
parametersθ given a corpusw takes on the same parametric form as the prior—specifically, a
Dirichlet distribution with parametersnk+βk, wherenk is the number of occurrences of outcomek
in w:

P(θ |w,β) ∝ P(w |θ)P(θ |β)

∝
K

∏
k=1

θnk
k

K

∏
k=1

θβk−1
k

=
K

∏
k=1

θnk+βk−1
k .

Due to the conjugacy of the Dirichlet and multinomial distributions, it is easy to compute the
predictive distribution ofwi conditioned on the values of the previously observed wordsw−i and the
hyperparametersβ:

P(wi = j |w−i ,β) =
∫

∆
P(wi = j |θ)P(θ |w−i,β)dθ

=
Γ(n+∑K

k=1 βk)

∏K
k=1 Γ(nk+βk)

∫
∆

θn j+β j
j ∏

k6= j

θnk+βk−1
k dθ

=
Γ(n+∑K

k=1 βk)

∏K
k=1 Γ(nk+βk)

·
Γ(n j +β j +1)∏ j 6=k Γ(nk+βk)

Γ(n+∑K
k=1 βk+1)

=
n j +β j

n+∑K
k=1 βk

(7)

where all counts are with respect tow−i , and∆ indicates the probability simplex: the set of values
for θ >= 0 such that∑k θk = 1. The third line can be derived using elementary calculus and the def-
inition of the Gamma function, but can also be seen to hold by noting that the Dirichlet distribution
must sum to 1, and therefore ∫

∆

K

∏
k=1

θβk−1
k dθ =

∏K
k=1 Γ(βk)

Γ(∑K
k=1 βk)

holds for any positive values ofβk. Comparing Equation 7 to Equation 2 reveals that the Dirichlet-
multinomial model is a special case of our two-stage framework, with a CRP adaptor and a finite
generator distribution. In particular, a TwoStage(CRP(α),Multinomial(ϕ)) model is equivalent to
a Dirichlet-multinomial model withβ = αϕ.

2347



GOLDWATER, GRIFFITHS AND JOHNSON

5.2 The Dirichlet Process

Proposition 2 A TwoStage(CRP(α),Pϕ) model (where Pϕ has infinite support) is equivalent to a
DP(α,Pϕ) model.

The Dirichlet process (DP; Ferguson, 1973), used in nonparametric Bayesian statistics, can be
seen as an infinite-dimensional analogue of the symmetric Dirichlet distribution (a Dirichlet dis-
tribution where allβi are equal).5 Whereas each sample from a Dirichlet distribution returns a
distributionθ over a finite set of outcomes, each sample from a Dirichlet process returns a distri-
butionG over a countably infinite set of outcomes. The Dirichlet process has two parameters. The
base distribution, G0, (which may be discrete or continuous) determines the probability that any
particular outcome will be in the support ofG. The concentration parameter, α, determines the
variance in the probabilities of those outcomes underG.

Typically, the Dirichlet process is used as a prior in infinite mixture models (Lo,1984; Escobar
and West, 1995; Neal, 2000; Rasmussen, 2000), where the concentration parameter determines the
relative size of each mixture component, and the base distribution determines the probable param-
eters for the component distributions. Instead, we can use the Dirichlet process to define a simple
language model as follows:

G|α,Pϕ ∼ DP(α,Pϕ),

wi |G ∼ G

where DP(α,Pϕ) refers to a Dirichlet process with concentration parameterα and base distribution
G0 = Pϕ. The corresponding graphical model can be seen in Figure 5. Just aswe integrated out the
θ parameters of the Dirichlet-multinomial model, we can integrate out the distributionG to obtain
the following predictive distribution over words (Blackwell and MacQueen, 1973):

wi |w−i ,α,Pϕ ∼
1

i−1+α

i−1

∑
j=1

δ(w j)+
α

i−1+α
Pϕ

whereδ(w j) is a point mass atw j . Rewriting the predictive distribution as a probability mass
function reveals that the DP(α,Pϕ) model is equivalent to a TwoStage(CRP(α),Pϕ) model:

P(wi = w|w−i ,α,Pϕ) =
n(w−i)

w +αPϕ(w)

i−1+α
.

Note that althoughG assigns probability to a countably infinite set of outcomes, the predictive
distribution can be computed using only the frequencies of previous items andthe base distribution
Pϕ.

It is worth pointing out that this DP language model can still technically be viewed as a mixture
model, although a degenerate one. Each lexical item corresponds to a separate mixture component
parameterized by its labelℓk and with a 0/1 likelihood function:P(wi |ℓzi ) = I(wi = ℓzi ). Thus,
every data point in a single mixture component is identical. As a result, the potential applications of
two-stage models and infinite mixture models are somewhat different. Infinite mixture models are

5. Specifically, as described by Neal (2000), the predictive distributionof a Dirichlet process mixture model can be
obtained by taking the limit ask goes to infinity of ak-component finite mixture model with a symmetric Dirichlet
prior.
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Figure 5: A graphical representation of the Dirichlet process languagemodel.

more appropriate when the base distribution is a simple parameterized distribution(e.g., a Gaussian)
and the clusters are expected to have some variability, whereas two-stage models are intended for
cases where the base distribution may be more complex (e.g., a PCFG) but there is no variability
between data points in a single cluster. An interesting area for future work lies in combining these
two features to create models with complex base distributions as well as variabilityin the output of
each cluster.

5.3 The Pitman-Yor Process

Proposition 3 A TwoStage(PYCRP(a,b),Pϕ) model (where Pϕ has infinite support) is equivalent to
a PYP(a,b,Pϕ) model.

Above, we described the Dirichlet process as the infinite dimensional analogue of the Dirichlet
distribution. Another way of defining the Dirichlet process, which leads to the Pitman-Yor process
as a generalization, is through the “stick-breaking” construction (Sethuraman, 1994). Recall that
the distributionG produced by the Dirichlet process has two parts: a countably infinite set of pos-
sible outcomes drawn from the base distributionG0, and weights assigned to those outcomes. The
stick-breaking construction describes the distribution of these weights. Under this construction, we
define a sequence of random variables (V1,V2, . . .), each following a Beta(1,α) distribution. The
distribution of the weights from the Dirichlet process is the same as the distribution of the set of
random variables in which thekth variable is defined to be∏k−1

j=1(1−Vj)Vk. Intuitively, this is the
distribution we obtain over portions of a stick of length 1 when we break that stick into two pieces
with sizes proportional to (V1, 1−V1), then break the remainder into proportions (V2, 1−V2), and
so forth.

The stick-breaking construction for the Dirichlet process has just one parameter,α, but can
be generalized through the introduction of a second parameter to define a new distribution, the
Pitman-Yor process (PYP; Pitman, 1995; Pitman and Yor, 1997; Ishwaranand James, 2003). The
stick-breaking construction for this two-parameter distribution is similar to that given above, ex-
ceptVj is drawn from a Beta(1−a, ja+b) distribution. Integrating over the weights in the two-
parameter stick-breaking construction gives a predictive distribution thatis similar to that of the
Dirichlet process. More specifically, if we usez = (z1, . . . ,zn) to index the possible outcomes,
we obtain the predictive distribution given in Equation 4, that is, the PYCRP. The relationship
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between the PYCRP and the Pitman-Yor process is thus analogous to that between the CRP and
the Dirichlet process: the PYCRP is the discrete distribution on partitions obtained by integrating
over a distribution (the Pitman-Yor process) with weights generated from thetwo-parameter stick-
breaking process. Therefore, just as TwoStage(CRP(α),Pϕ) is equivalent to DP(α,Pϕ), we have
that TwoStage(PYCRP(a,b),Pϕ) is equivalent to PYP(a,b,Pϕ).

6. Effects of the Adaptor on Frequencies

We have now defined the two-stage modeling framework, shown that several Bayesian language
models proposed elsewhere can be viewed as special cases of this framework, and presented two
adaptors that generate power-law distributions over words. In this section, we consider how using
these adaptors affects estimates of the parameters of the generator—the process that produces the
underlying lexicon. In doing this, we return to our second motivating concern: the issue of how
we might explain the damping of word frequencies, with the extreme case beingreconciliation of
models based on unique wordtypeswith those based on the observed frequencies of wordtokens.
We first discuss the general implications of using the CRP and PYCRP for estimating the parame-
ters of the generator. We then explain how, in a TwoStage(PYCRP(a,b),Pϕ) language model, the
parameters of the PYCRP determine whether the parameters of the generatorwill be inferred based
on word types, tokens, or some interpolation between the two. Finally, we show that this Pitman-
Yor language model provides a principled explanation for the combination oftoken counts and type
counts found in Kneser-Ney smoothing (Ney et al., 1994; Kneser and Ney, 1995).

6.1 Impact of the Adaptor on Frequencies used for Estimation

By introducing an adaptor into our model, we provide a route by which word tokens can appear in
a corpus without having been directly produced by the generator. As a consequence, any estimate
of the parameters of the generator will be based only on those tokens for which the generator is
considered responsible, which will be a subset of the tokens in the corpus. The adaptor will thus have
the effect of damping the frequencies from which the parameters of the generator are estimated, with
the nature of this damping depending on the properties of the adaptor. In particular, we will show
that using the CRP or PYCRP as adaptors is approximately equivalent to estimating the generator
parameters from log transformed or inverse-power transformed token counts, respectively.

We can see how the choice of adaptor affects the frequencies used forestimating the parameters
ϕ of the generator by considering how to estimateϕ from the observed corpusw.6 In general, the
parameters of generators can be estimated using Markov chain Monte Carlomethods, as we demon-
strate in Section 7. Here, we will present some general results characterizing how the frequencies
used in estimation are damped by using the CRP or PYCRP as an adaptor.

For either maximum-likelihood or Bayesian estimation, the relationship betweenϕ and the cor-
pusw is characterized by the likelihoodP(w |ϕ) (where we suppress the conditioning on the adaptor
parametersα or (a,b) here and in the remainder of this section). As noted in Section 4, the likeli-
hood can be expressed as

P(w|ϕ) = ∑
z,ℓℓℓ

P(z)Pϕ(ℓℓℓ) (8)

6. Under the interpretation of this model as a Pitman-Yor process mixture model, this is analogous to estimating the
base measureG0 in a Dirichlet process mixture model (e.g., Neal, 2000).
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where the sum ranges over thosez,ℓℓℓ pairs that generatew.
Equation 8 makes it clear that the likelihood is affected not only byϕ but also byP(z). Neverthe-

less, we can still make some basic statements about the relationship betweenw andϕ by considering
the properties of the model as a whole. First, notice that the total frequencynw of each word type
w, as obtained by summing the counts on all tables labeled with that type, will equalthe frequency
of w in the corpusw. Second, all that matters for the estimation ofϕw (the parameter(s) associated
with word typew) is the number of tables labeled withw, since this value is equal to the number of
times we have drawnw from the generator—all other instances ofw are produced by the adaptor.
Thus, we can gain insight into how estimates ofϕ are likely to be affected by the choice of adaptor
by considering how the adaptor affects the relationship between the frequency of a word type and
the number of tables labeled with that type.

The analysis given in the previous paragraph suggests that we want to compute the expected
number of tables labeled with a given word type under different adaptors. This expectation can
be computed from the posterior distribution onz andℓℓℓ given w, which can be decomposed as
P(z,ℓℓℓ |w) = P(ℓℓℓ |z,w)P(z|w). Note thatP(ℓℓℓ |z,w) is equal to one ifz andw are consistent withℓℓℓ,
and zero otherwise, so we can computeP(z,ℓℓℓ |w) by computingP(z|w) subject to this consistency
constraint, that is, such that for each word typew, the appropriatenw tokens ofw are of typew.
In order to simplify the mathematics, in the rest of this section we assume that eachlexical item
ℓ j produced by the generator is independent and identically distributed (i.i.d.) given ϕ. That is, if
ℓℓℓ= (ℓ1, . . . , ℓK), then

Pϕ(ℓℓℓ) =
K

∏
ℓ=1

Pϕ(ℓ j).

First, we consider the CRP adaptor. In this case, we can obtain a good approximation to the
expectation of the number of tables over the posterior distribution. The posterior distribution is
exchangeable, so we can calculate the distribution over the number of lexical entries for a given
word typew by imagining that thenw instances ofw are the firstnw tokens in our corpus. The
posterior probability distribution for the seating assignment of theith token is

P(zi = k|wi = w,z−i ,ℓℓℓ(z−i),ϕ) =
P(zi = k,wi = w|z−i ,ℓℓℓ(z−i),ϕ)

P(wi = w|z−i ,ℓℓℓ(z−i),ϕ)

where

P(zi = k,wi = w|z−i ,ℓℓℓ(z−i),ϕ) =







n
(z−i )
k

i−1+α · I(ℓk = w) 1≤ k≤ K(z−i)

α
i−1+α ·Pϕ(w) k= K(z−i)+1

and the denominator is given by Equation 2. Dividing through yields

P(zi = k|wi = w,z−i ,ℓℓℓ(z−i),ϕ) =











n
(z−i )
k

n
(w−i )
w +αPϕ(w)

· I(ℓk = w) 1≤ k≤ K(z−i)

α
n
(w−i )
w +αPϕ(w)

·Pϕ(w) k= K(z−i)+1
(9)

which we can now use to calculate the expected number of occupied tables (i.e., lexical entries)
for a word type that occursnw times. Takingwi = w for i = 1, . . . ,nw means thatPϕ(w) is fixed
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for all nw decisions, andαPϕ(w) simply becomes a constant. Inspection of Equation 9 reveals
that the posterior distribution on seating assignments for all tokens of typew is given by the
CRP with parameterαPϕ(w) and a total ofnw customers. As Antoniak (1974) showed, the ex-
pected number of occupied tables in this case isαPϕ(w)∑nw

i=11/(αPϕ(w)+ i −1), or approximately

αPϕ(w) log nw+αPϕ(w)
αPϕ(w)

= O(log(nw)).
Unfortunately, we cannot apply a similar analysis for use of the PYCRP adaptor. While the CRP

treats each word type independently (that is, ignoring dependencies in thegenerator, in a CRP the
number of tables associated with a word type is independent of the number oftables associated with
other word types), this is not true for the PYCRP. As with the CRP, the probabilities defined by the
generator multiply with the terms of the PYCRP when we generate a new table, so that

P(zi = k|wi = w,z−i ,ℓℓℓ(z−i),ϕ) ∝

{

(n(z−i)
k −a) · I(ℓk = w) 1≤ k≤ K(z−i)

(K(z−i)a+b) ·Pϕ(w) k= K(z−i)+1.
(10)

However, this distribution does not take the form of another PYCRP. We can only say that the
probability of choosing a new table under this distribution is bounded above by the probability
of choosing a new table under a PYCRP with parametersa and bPϕ(w). Ignoring the effect of
the number of tables associated with other word types, we expect the numberof tables to be less
than the number produced by simply running a PYCRP(a,bPϕ(w)) over thenw tokens ofw. The
expectation of the number of tables occupied after seatingnw customers increases asO(na

w) for the
PYCRP (Teh, 2006a), providing an upper bound on the number of tableswe should expect a word
with frequencynw to produce when the PYCRP is used as an adaptor.7

These results provide a rough heuristic for understanding how using theCRP and the PYCRP as
adaptors damps the frequencies from which the parameters of the generator are estimated: using the
CRP and PYCRP as adaptors will be approximately equivalent to estimation from log and inverse-
power transformed frequencies respectively. To evaluate the accuracy of these approximations, we
conducted an experiment using a corpus derived from sections 0-20 from the Penn Wall Street
Journal treebank (Marcus et al., 1993). The corpus consisted of 30,114 unique word types, with a
total of 831,190 tokens. We then examined the parameter estimates produced by several two-stage
models, varying both the generator and the adaptor.

In all models, the generator was taken to be a multinomial distribution over the fullvocabulary,
with a symmetric Dirichlet(β) prior. This generator was used because it is relatively generic, since
any distribution over a discrete set ultimately grounds out in a multinomial, and because it allows
us to parametrically explore the consequences of varying the strength of the prior. We used three
different kinds of prior, corresponding to different settings of the hyperparameters:β= 0.001,β= 1,
andβ→∞. With β= 0.001, the prior prefers sparse multinomial distributions, which means that the
number of tables assigned tow has a strong effect on the resulting estimate ofϕw: word types with
many tables will tend to have highϕw, while the sparse prior will push the estimated parameters
for the remaining word types closer to zero. Withβ = 1, the prior is uniform over multinomials,
which provides some regularization of the resulting estimates towards the uniform distribution. With
β → ∞, the prior forces the estimated parameters to be the uniform distribution over all word types,
so the number of tables assigned to any given word type has no effect onthe estimates. Note that
the i.i.d. generator assumption made above only holds whenβ → ∞.

7. We recently became aware of work by Buntine and Hutter (2010), in which the expected number of occupied tables
in the PYCRP is derived. In future work, we hope to include this result in our analysis.
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We combined these three generators with a total of fifteen different adaptors. For each generator,
five models used a CRP adaptor withα = {1,10,100,1000,10000} and ten others used a PYCRP
adaptor witha = {0.1,0.2, . . . ,1.0} and b = 1. For each combination of generator and adaptor,
a Markov chain Monte Carlo (MCMC) algorithm was used to calculate the expected number of
occupied tables (from which the corresponding multinomial parameters wereestimated) for each
word in the corpus. Details of this algorithm are provided in Appendix A. Figure 6 displays the
results: the expected number of occupied tables is shown, plotted as black dots, as a function of
nw for all combinations of generators and adaptors. To produce the figure, words were binned by
frequency using bins that were uniform on a log scale, and the posteriormean of the number of
occupied tables per word was averaged within bins.

Figure 6 also shows as gray lines the number of tables predicted by the heuristic approximations
described above. The predictions for the CRP (left column) assume that the number of tables is
equal toαPϕ(w)∑nw

i=11/(αPϕ(w)+ i −1), using the appropriate value ofα but takingPϕ(w) to be
uniform over all words. The result is accurate whenPϕ(w) is constrained to be uniform (row (c);
β→∞), but underestimates the number of tables for high frequency words when Pϕ(w) is itself more
sensitive to the number of tables (rows (a) and (b);β = 0.001 or 1). The predictions for the PYCRP
(right column) assume that the number of tables is equal tona

w, and provide a good approximate
upper bound on the number of tables, with the actual numbers being closer tothis upper bound
whenPϕ(w) is free to become higher for high-frequency words (row (a)). In general, the heuristic
of the number of tables increasing asO(na

w) seems more accurate whennw is small.
The influence of the prior on the number of tables per word under the two-stage model with

PYCRP adaptor can be understood in terms of how the prior affects the difference between the pos-
terior distribution on the number of tables and the simpler PYCRP we use to approximate it. The
approximation PYCRP always assigns a higher probability to new tables than the posterior distribu-
tion, but the difference between the two for a wordw will depend on the value ofPϕ(w), since the
approximation assumes the probability of a new table is proportional toK(z−i)a+bPϕ(w), while the
true probability is proportional toK(z−i)aPϕ(w)+bPϕ(w). With a prior that allows the number of
tables to have a strong influence onPϕ(w) (row (a)), the most frequent words will tend to have much
larger values ofPϕ(w) than the less frequent words, so the difference between the approximation
and the true distribution for the most frequent words will not be very great. However, whenPϕ(w)
is constrained to be more uniform (rows (b) and (c)), the difference between the approximation and
the true distribution for frequent words is much larger, so the approximationis bad.

A surprising feature of the PYCRP models is the nonmonotonic relationship betweennw and
the true number of tables occupied byw, which is noticeable with higher values ofa (excepta= 1)
in the bottom two plots on the right. This behavior is due to a confluence of factors, which include
both the high value ofa and the very large number of tables required to account for all the words
in the corpus (a result of the large number of word types). Under these circumstances, when the
total number of tokens ofw is small, it is not possible to have a table with enough tokens ofw
so that the probability of placing another token ofw on that table is much higher than placing the
token on a new table.8 Thus, the posterior distribution over the number of tables forw will be

8. Empirically, the total number of tablesK inferred by our sampler is around 65,000, so the posterior probabil-
ity of assigning a token ofw to a new table witha = .9, b = 1, and uniformPϕ(w) is roughly proportional to

((65,000)(0.9)+1) 1
30,114 ≈ 2, wheras the probability of assigningw to an old table is proportional ton(z−i)

k −0.9,
which is actually less than two unless there are already more than two tokens on the old table. Even with five tokens
already on the old table, the probability of using the old table is only about twice that of using the new table.
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Figure 6: Mean number of occupied tables as a function of word frequency (nw) under models of the
text of sections 0-20 of the Penn Wall Street Journal treebank. The three rows of panels
correspond to multinomial generators with Dirichlet(β) priors and (a)β = 0.001, (b)β =
1, and (c)β → ∞. Each row shows the results of using the CRP (left) and PYCRP (right)
as adaptors. All axes are on a log scale. Black dots and error bars show the empirical
means and standard errors computed using MCMC; gray lines indicate approximations
described in the text. The left-hand column shows results for the CRP with parameter
α = {1,10,100,1000,10000} (from bottom to top; results for the first three are nearly
identical and lie on top of each other in the graphs). The right-hand column shows results
for the PYCRP withb= 1 anda= {0.1,0.2, . . . ,1.0} (from bottom to top).
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relatively uniform, and the average number of inferred tables will be largerelative to the size ofnw.
However, asnw increases, it becomes possible to cluster the tokens so as to place a larger number
on each table. There is a bigger win in probability for inferring a configuration with fewer tables
whennw is large, because this situation implies that more of the tokens were generated from old
tables with many existing tokens, which have much higher probability than tables with zero or even
a handful of existing tokens. Note that whenPϕ is uniform (i.e., low for all words, as in row (c)), the
probability of a new table is quickly outweighed by the probability of an existing table even with
low counts. However, whenβ is small so thatPϕ is estimated to be higher for more frequent words,
the nonmonotonicity is not observed untilnw becomes much larger.

Overall, the theoretical and empirical results presented in this section suggest that our two-stage
approach can provide a way to justify the use of logarithmic and inverse-power frequency damping
in text processing applications. More significantly, this justification explains why adopting these
schemes improves performance: it compensates for the kind of “rich-get-richer” processes that
produce power-law distributions in natural language.

6.2 Types and Tokens

The most extreme kind of frequency damping is throwing away all but a singleinstance of each
word type, and only keeping track of the unique word types that appear inthe corpus. Just as we
can explain other forms of frequency damping in terms of our two-stage framework, we can show
that the TwoStage(PYCRP(a,b),Pϕ) model provides a justification for the role of word types in
formal analyses of natural language. We will now show that estimation schemes based upon type
and token frequencies are special cases of the Pitman-Yor language model, corresponding to the
extreme values of the parametera. Values ofa between these extremes identify estimation methods
that interpolate between types and tokens.

Recall the joint distribution over words defined by the TwoStage(PYCRP(a,b),Pϕ) model (from
Equation 6):

P(w |ϕ) = ∑
z,ℓℓℓ

Γ(1+b)
Γ(n+b)

(

K(z)−1

∏
k=1

(ka+b)

)(

K(z)

∏
k=1

Pϕ(ℓk)
Γ(n(z)k −a)

Γ(1−a)

)

where the sum ranges over thosez andℓℓℓ that generatew. Whenb= 0, this equation reduces to

P(w |ϕ) = ∑
z,ℓℓℓ

Γ(1)
Γ(n)

·aK(z)−1(K(z)−1)! ·
K(z)

∏
k=1

Pϕ(ℓk)
Γ(n(z)k −a)

Γ(1−a)

= ∑
z,ℓℓℓ

(K(z)−1)!
(n−1)!

·aK(z)−1 ·
K(z)

∏
k=1

Pϕ(ℓk)
Γ(n(z)k −a)

Γ(1−a)
. (11)

The distributionP(w |ϕ) determines how the dataw influence estimates ofϕ, so we will consider
howP(w |ϕ) changes under different limits ofa.

Whena→ 0, theaK(z)−1 term in Equation 11 causes the sum over(z,ℓℓℓ) to be dominated by the
partition of customers with the smallest value ofK(z), that is, the fewest number of tables. Since
seating arrangements are restricted so thatℓzi = wi , the dominant arrangement contains exactly one
table, and one occurrence ofPϕ(w), per word typew. Therefore estimates ofϕ will be based on
word types.
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Whena → 1, aK(z)−1 → 1. If nk = 1 then Γ(n(z)k −a)
Γ(1−a) = 1, but otherwise this term approaches

0. Therefore all terms in the sum approach 0 except for those where there is only a single token
assigned to each table. In this case,K(z) = n and ℓk = wk, which means thatPϕ is responsible
for generating all the word tokens in the data. Estimates ofϕ will consequently be based on word
tokens.

The extreme values of thea parameter in the PYCRP thus correspond to type-based inference
(a= 0) or token-based inference (a= 1), while choosing other values ofa between 0 and 1 provides
a systematic way of smoothly interpolating between the type-based and token-based extremes.

6.3 Pitman-Yor Processes and Kneser-Ney Smoothing

In addition to justifying the role of types in formal analyses of language in general, using the PYCRP
as an adaptor to create a Pitman-Yor language model can provide an explanation of the assumptions
behind a specific scheme for combining token and type frequencies: Kneser-Ney smoothing. In this
section, we outline the relationship between Kneser-Ney smoothing and the PYCRP, showing that
the predictive distribution of the Kneser-Ney smoother can be viewed as anapproximation to that
of the Pitman-Yor language model. This relationship was first pointed out in a conference paper
presenting preliminary versions of some of the results in this paper (Goldwater et al., 2006a), and
then independently identified by Teh (2006a,b), who expanded on this observation and presented the
first empirical comparisons of the two methods. We return to the results of empirical comparisons
briefly below.

The Kneser-Ney smoother estimates the probability that a word token will belong to a particular
type by combining type and token frequencies, and has proven particularly effective for n-gram
models (Ney et al., 1994; Kneser and Ney, 1995; Chen and Goodman, 1998). To use ann-gram
language model, we need to estimate the probability distribution over word types given a particular
history, that is, then− 1 preceding tokens. Assume we are given a multisetw of N tokens that
all share a common history, and we want to predict the next token,wN+1, that will occur with that
history. For example, the history might bein the, with w = (house book way school house . . .). (We
use a multiset rather than a vector because we care only about the counts of the word types inw,
not their ordering.) Assume that we also haveH other multisetsw(1), . . . ,w(H), each associated with
one ofH other histories. The interpolated Kneser-Ney (IKN) smoother (Chen andGoodman, 1998)
makes the prediction

P(wN+1 = w|w) =
n(w)

w − I(n(w)
w > D)D
N

+
∑w′ I(n(w)

w′ > D)D

N
∑h I(w∈ w(h))

∑w′ ∑h I(w′ ∈ w(h))
(12)

whereD is a “discount factor” specified as a parameter of the model, the sum overh includesw,
and we have suppressed the dependence onw(1), . . . ,w(H).

We can define a two-stage model that approximates the Kneser-Ney smoother by assuming that
eachw(h) is produced by a two-stage restaurant with a PYCRP adaptor (i.e., a separate restaurant for
each history), where all the restaurants share the same generator, parameterized byϕ. We assumeϕ
is a multinomial distribution, which we estimate using maximum-likelihood estimation. Under this
model, the probability that tokenwN+1 takes on the valuew givenw andϕ is

P(wN+1 = w|w,ϕ) = ∑
z

P(wN+1 = w|w,z,ϕ)P(z|w,ϕ)
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where z is the seating assignment forw, and P(wN+1 = w|w,z,ϕ) is equivalent toP(wN+1 =
w|ℓℓℓ(z),z,ϕ), given by Equation 5. Substituting in Equation 5 and assumingb= 0, this becomes

P(wN+1 = w|w,ϕ)

= ∑
z

nw
w −Kw(z)a+K(z)aPϕ(w)

N
P(z|w,ϕ)

= ∑
z

nw
wP(z|w,ϕ)

N
−∑

z

Kw(z)aP(z|w,ϕ)
N

+∑
z

K(z)aPϕ(w)P(z|w,ϕ)
N

=
nw

w

N
−∑

z

Kw(z)aP(z|w,ϕ)
N

+∑
z

∑w′ Kw′(z)aPϕ(w)P(z|w,ϕ)
N

=
nw

w −Ez[Kw(z)]a
N

+
∑w′ Ez[Kw′(z)]a

N
Pϕ(w) (13)

whereEz[Kw(z)] = ∑zKw(z)P(z|w,ϕ), andKw(z) is the number of tables with labelw under the
seating assignmentz. The other histories enter into this expression viaϕ. Since all thew(h) are
assumed to be produced from a single set of parametersϕ, the maximum-likelihood estimate of
Pϕ(w) will approach

Pϕ(w) =
∑h I(w∈ w(h))

∑w′ ∑h I(w′ ∈ w(h))

asa approaches 0, since only a single instance of each word type in each context will contribute to
the estimate ofϕ. Substituting this value ofPϕ(w) into Equation 13 reveals the correspondence to
the Kneser-Ney smoother (Equation 12). The only difference is that the constant discount factorD
is replaced byaEz[Kw(z)], which will increase slowly asnw increases.

Note that the formulation given above is very general in that we do not specify a particular gen-
erator modelPϕ. However, to complete the correspondence with IKNn-gram smoothing, we can
assume that the generator for the model that computes the distribution over word types conditioned
on a history of sizen is another two-stage PYCRP model that computes probabilities conditioned
on histories of sizen−1. The recursion bottoms out with a uniform distribution over theW word
types in the vocabulary,P0(w) = 1/W. ThishierarchicalPitman-Yor language model (Teh, 2006b)
is analogous to the hierarchical Dirichlet process introduced by Teh (2006a). Intuitively, we can
imagine a separate restaurant for each history of sizen, where the counts in that restaurant cor-
respond to the distribution of word tokens given that history. If a customersits at a new table in
one of these restaurants, the label on that table is distributed according to the counts in a “backoff”
restaurant with history sizen−1. All restaurants with the same finaln−1 history words will share
the same backoff restaurant.

As noted above, there are slight differences between the predictions ofthis Pitman-Yor language
model and IKN smoothing due to the replacement of the constant discount factorD in IKN with an
expression that increases as a function ofnw. Interestingly,modified Kneser-Ney(MKN) smoothing
(Chen and Goodman, 1998) also replaces the single constantD in IKN with a small set ofD values
that increase as a function ofnw (Chen and Goodman 1998 use three values, fornw = 1, 2, and 3
or more). MKN was introduced by Chen and Goodman (1998) as an alternative to IKN that was
shown to work better in practice. So it has been known for a number of years that increasingD with
nw seems to provide better predictions, and initial experiments with the Pitman-Yor language model
(Teh, 2006a,b) did not show improvements over MKN (although they did show improvements over
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IKN). However, these experiments were performed on a relatively small corpus of text (16 million
words of newswire). More recently, Huang and Renals (2010) developed a parallel approximate
training algorithm for the Pitman-Yor language model and performed a more thorough set of ex-
periments comparing IKN, MKN, and the Pitman-Yor language model within a speech recognition
system. The models were trained on a large corpus of conversational speech (200 million words)
and evaluated on perplexity and word error rate. The Pitman-Yor model achieved the best results
on both measures, and gains over the other two models became larger as corpus size increased. So
although empirical investigation was sufficient to develop a very close approximation to the Pitman-
Yor language model, discovery of the true model has nevertheless led to better language models in
practice.

7. Types and Tokens in Modeling Morphology

Our attempt to develop statistical models of language that generically producepower-law distribu-
tions was motivated by the possibility that models that account for this statistical regularity might be
able to learn linguistic information better than those that do not. Our two-stage language modeling
framework allows us to create exactly these sorts of models, with the generator producing individual
lexical items, and the adaptor producing the power-law distribution over words. In this section, we
show that adding a PYCRP adaptor to a simple generative model for morphology can vastly im-
prove unsupervised learning of the morphological structure of English,and we explore the effects
of varying the PYCRP parameters in this task. Morphology provides a particularly interesting case
for testing our model, as it is one context in which formal linguists focus on accounting for the
appearance of word types (e.g., Pierrehumbert, 2003), while computational linguists have typically
developed supervised models based on the token frequencies of those words (e.g., Hakkani-T̈ur
et al., 2002). Interestingly, previous work onunsupervisedlearning of morphology often ignores
token frequencies, instead using word types as input (Goldsmith, 2001, 2006; Snover and Brent,
2003; Monson et al., 2004).9 This fact suggests that the additional information provided by to-
ken frequencies may actually be harmful for learning morphology using standard models. Indeed,
the results we report below support this hypothesis; we provide some possible explanations in the
Section 8.1.2, where we discuss the results of our first set of experiments.

Previous morphology learning models have sidestepped the problems presented by token fre-
quencies by simply ignoring them and using only a list of unique word types asinput instead. It
is worth reiterating here that our own two-stage model can be made to behaveequivalently: with
appropriate values of the PYCRP parameters (specifically,a= b= 0), our two-stage model assigns
every token of the same word type to the same table, so that the parameters of the generator model
(here, the morphology model) are inferred based on a list of unique wordtypes. The result is equiv-
alent to that of a model consisting only of the generator, where the input is a list of word types,
as in the systems mentioned above. However, our full two-stage model is moreflexible than these
other systems. First, by choosing different adaptor parameters, different damping regimes can be
achieved. Although these too could be simulated through different preprocessing schemes (e.g.,
taking logs of token frequencies rather than removing frequencies entirely), our model is more

9. Descriptions of Goldsmith’s Linguistica system (Goldsmith, 2001, 2006)do not mention that frequencies are dis-
carded before analysis. However, the version of the program we downloaded fromhttp://humanities.uchicago.
edu/faculty/goldsmith produced the same results when run on a full corpus as when run on a list of the unique
word types in the corpus.
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promising precisely because it can achieve the effects of damping while leaving the actual input
frequencies unchanged. Thus, unlike previous models, ours can be used to learn directly from a
corpus without preprocessing. This makes it possible to extend the model toincorporate additional
information available from the corpus but not from a word list, such as contextual information. The
experiments presented here are intended only to explore the effects of different parameter values,
and do not take immediate advantage of this difference between our model andprevious unsuper-
vised systems. However, recent work using adaptor grammars has suggested some ways in which
context can be incorporated into models based on the two-stage framework, for example by learning
collocations between words at the same time as sub-word units (Johnson, 2008a; Johnson and Gold-
water, 2009). Another example of using contextual information might be a hidden Markov model
for part-of-speech tagging, where the standard multinomial emission distributions could be replaced
with our morphology model, so that the learned part-of-speech classes would be informed both by
corpus context and morphological structure. It is difficult to see how thiskind of joint learning could
take place in a probabilistic model requiring one instance of each word type as input.

7.1 A Lexicon Generator for Morphology

Many languages contain words built up of smaller units of meaning, ormorphemes. These units
can contain lexical information (as stems) or grammatical information (as affixes). For example, the
English wordwalkedcan be parsed into the stemwalk and the past-tense suffix-ed. Knowledge of
morphological structure enables language learners to understand and produce novel wordforms, and
is important for many natural language processing tasks in morphologically rich languages (Collins
et al., 1999; Larkey et al., 2002; Cowan and Collins, 2005; Koehn and Hoang, 2007).

As a basic model of morphology, we assume that each word consists of a single stem and
(possibly empty) suffix, and belongs to some inflectional class. Each classis associated with a stem
distribution and a suffix distribution. We assume that stems and suffixes are independent given the
class, so the joint probability of generating a particular classc, stemt, and suffix f is defined as

P(c, t, f ) = P(c)P(t |c)P( f |c)

where the distributions on the right hand side are all assumed to be multinomial, generated from
symmetric Dirichlet priors with hyperparametersκ,τ, andφ respectively. So far, we have been
assuming that the generator in a two-stage model is a distribution over lexical items that are strings.
However, in this morphology model, the generator produces analyses of strings (class, stem, suffix),
rather than the strings themselves. We will therefore distinguish between the label ℓk on each table,
which we continue to assume is a string, and the analysis of that labelA(ℓk), which is an object
produced by the generator. We can, if we wish, compute the probability of alabel regardless of its
analysis as

P(ℓ) = ∑
(c,t, f )

I(ℓ= t. f )P(c)P(t |c)P( f |c)

wheret. f is the concatenation oft and f , andI(.) is an indicator function taking on the value 1
when its argument is true, and 0 otherwise.

Our generator model for morphology is inspired by the model described byGoldsmith (2001),
and is intended to encode two basic linguistic intuitions. The first is that different morphological
classes contain different sets of stems and suffixes. Also, although stemsand suffixes are not truly
independent even within a morphological class, morphological boundaries do tend to coincide with
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points of low predictability in a string of phonemes or characters (Harris, 1955). That is, there is
greater independence between stems and suffixes than between other possible substrings. Another
way of looking at this is that, if we know that, for example, past and presenttense verbs are each
relatively common, then if we see a particular verb very frequently in the past tense, we would
expect to see it very frequently in the present tense as well (Yarowskyand Wicentowski, 2000).

We also note two important differences between our model and that of Goldsmith. First, Gold-
smith’s model is recursive (i.e., a word stem can be further split into a smaller stem plus suffix),
which makes it better able to deal with complex morphology than the model presented here. How-
ever, the simplifying assumption of a single stem and suffix per word is often sufficient for English
inflectional morphology. We emphasize that our primary goal here is to illustrate the effects of the
generator-adaptor framework rather than to develop a state-of-the-art morphology learning system.

The second difference between Goldsmith’s model and our own is that Goldsmith’s model as-
sumes that all occurrences of each word type have the same analysis. The model here allows differ-
ent tokens with the same observed form to have different analyses whena> 0 orb> 0. This feature
could be important for representing homonymous words with different morphological analyses.

7.2 Gibbs Sampler

Our goal in defining this morphology model is to be able to automatically infer the morphological
structure of a language. Since our model is exchangeable, this can be done using Gibbs sampling,
a standard Markov chain Monte Carlo method (Gilks et al., 1996). In Markov chain Monte Carlo,
variables in the model are repeatedly sampled, with each sample conditioned onthe current values of
all other variables in the model. This process defines a Markov chain whose stationary distribution
is the posterior distribution over model variables given the input data.

Rather than sampling all the variables in our two-stage model simultaneously, our Gibbs sampler
alternates between sampling the variables in the generator and those in the adaptor (here, a PYCRP).
Our algorithm iterates over the following two steps, as illustrated in Figure 7:

1. Fix the assignmentz of words to tables, and sample a new morphological analysisA(ℓk) for
the label on each table.

2. Fix the morphological analysesA(ℓℓℓ) of the labels, and sample a new table assignmentzi for
each word tokenwi .

In Step 1, we compute the probability distribution over analyses of the current labelA(ℓk) con-
ditioned on the analyses of all other labelsA(ℓℓℓ−k):

P(A(ℓk) = (c, t, f ) |A(ℓℓℓ−k),κ,τ,φ)
∝ I(ℓk = t. f ) ·P(c, t, f |A(ℓℓℓ−k),κ,τ,φ)
= I(ℓk = t. f ) ·P(c|c−i,z,κ) ·P(t | t−i ,c,z,τ) ·P( f | f−i ,c,z,φ)

= I(ℓk = t. f ) ·
mc+κ
m+κC

·
mt,c+ τ
mc+ τT

·
mf ,c+φ
mc+φF

(14)

where the notationx−i is now used to indicate(x1, . . . ,xi−1,xi+1, . . . ,xn) (by exchangeability, we can
nevertheless treatxi as though it is the last of then variables when computing probabilities);C,T,
andF are the total possible number of classes, stems, and suffixes; andmx is the number of tables in
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i =
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(b)
A(ℓ1) = (1,NULL,walked)) |A(ℓℓℓ−1),κ,τ,φ) ∝

5+κ
6+2κ

·
τ

5+21τ
·

φ
5+25φ

A(ℓ1) = (1,w,alked)) |A(ℓℓℓ−1),κ,τ,φ) ∝
5+κ
6+2κ

·
τ

5+21τ
·

φ
5+25φ

A(ℓ1) = (1,wa,lked)) |A(ℓℓℓ−1),κ,τ,φ) ∝
5+κ
6+2κ

·
1+ τ

5+21τ
·

φ
5+25φ

. . .

A(ℓ1) = (2,wa,lked)) |A(ℓℓℓ−1),κ,τ,φ) ∝
1+κ
6+2κ

·
1+ τ

1+21τ
·

1+φ
1+25φ

. . .

A(ℓ1) = (2,walked,NULL)) |A(ℓℓℓ−1),κ,τ,φ) ∝
1+κ
6+2κ

·
τ

1+21τ
·

φ
1+25φ

(c) P(z1 = 1|wi = w,z−i ,ℓℓℓ(z−i),ϕ,a,b) ∝ 2−a

P(z1 = 6|wi = w,z−i ,ℓℓℓ(z−i),ϕ,a,b) ∝ 1−a

P(z1 = 7|wi = w,z−i ,ℓℓℓ(z−i),ϕ,a,b) ∝ (6a+b)Pϕ(walked)

Figure 7: An example illustrating our Gibbs sampler. In this example, the corpusw = (walked,
jumped, walk, walked, walks, jumped, greeted, walked, walked), and initially z =
(1, 2, 3, 1, 4, 2, 5, 6, 1). (a) illustrates the current seating arrangement, with numbers
above each table indicating the indicesi of customers seated there and the number below
each table indicating the indexk of the table. The morphological analysis associated with
each table is also shown.T andF for this corpus (the total number of possible stems and
suffixes) are 21 and 25, and we letC = 2. To complete a full Gibbs iteration, we first
resample the analyses, and then the table assignments. In this case, we startby removing
the current analysis ofwalked on table 1 (and its associated counts), and computing the
probability of each of the 14 possible new analyses, as shown in (b). We sample from this
distribution, replace the new analysis on table 1 (incrementing the associated counts), and
repeat for the remaining five tables. Then, we sample new values forz1 . . .z9 in a similar
fashion. (c) shows the computations forz1, which is restricted to taking on the values 1,
6, or 7 (a new table) because only these tables may be labeled withwalked.
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A(ℓℓℓ−z) whose label includesx. (We usem to distinguish these counts over labels from then counts
over tokens.) The last line is obtained by integrating over the multinomial parameters for the classes,
stems, and suffixes as in Equation 7; for example,P(c|c−i ,z,κ) =

∫
P(c|θc)P(θc |c−i ,z,κ)dθc

whereθc are the parameters of the multinomial distribution over classes.
In the experiments presented here,C is fixed empirically andT andF are determined for each

set of input data by computing the number of possible segmentations of the words in the data into
stems and suffixes (i.e., determining all the prefix and suffix strings for those words; the empty
string is considered as a possible stem as well as a possible suffix).

In Step 2 of our sampler, we compute the distribution over table assignmentszi for the ith word
token using Equation 10, repeated below with the conditioning adaptor parameters included:

P(zi = k|wi = w,z−i ,ℓℓℓ(z−i),a,b,ϕ) ∝

{

(n(z−i)
k −a) · I(ℓk = w) 1≤ k≤ K(z−i)

(K(z−i)a+b) ·Pϕ(w) k= K(z−i)+1

wherePϕ(w) is found using Equation 14 by summing over all possible analyses.
Note that in Step 2, tables may appear or disappear, which will cause the label counts to change.

When a table is removed, the class, stem, and suffix counts of its label are decremented. When a
new table is added, a morphological analysis is chosen at random according to Equation 14, and the
appropriate counts are incremented.

8. Experiments

In this section, we use the simple morphology model defined above as an example to demonstrate
that applying an appropriate adaptor can significantly improve the learning of linguistic structure.
We also examine how the choice of parameters in the PYCRP affects learning behavior. We perform
two experiments, one using verbs in standard written form from a corpus of newspaper text, and the
other using all words from a corpus of phonemically transcribed child-directed speech. In each
experiment, evaluations were performed on a single sample taken after 1000iterations of our Gibbs
sampler, withC= 6 classes,κ = .5 andτ = φ = .001.10 For the PYCRP parameters, we fixedb= 0
and experimented with values ofa between 0 and 1.11

8.1 Experiment 1: Verbs

We begin by describing the data and evaluation method used in this experiment, followed by the
experimental results.

8.1.1 DATA AND EVALUATION

We prepared a data set consisting of English verbs in written form from thePenn Wall Street Journal
treebank (Marcus et al., 1993), a corpus of hand-tagged and parsed text from the Wall Street Journal.
Using the part-of-speech tags, we extracted all the verbs from sections0-21 of the corpus, which
yielded 137,997 tokens belonging to 7,761 types. This list of verbs servedas the input to the

10. Although we fixed the values for the hyperparameters in our experiments, all of our models can be extended to
include prior distributions over the hyperparameters. In that case the hyperparameter values can be inferred by
sampling. (West, 1992).

11. Technically, settinga= 0 andb= 0 leads to undefined results, but algorithmically one can simulate lima→0 by using
exactly one table for each word type, which is what we did.
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morphological segmentation system. In this data set, the total number of unique prefix stringsT is
22,396, and the total number of unique suffix stringsF is 21,544.

To create a gold standard for evaluation, we automatically segmented each verb in the input
corpus using heuristics based on its part-of-speech tag and spelling. For example, verbs tagged as
VBD (past tense) orVBN (past participle) and ending in-ed were assigned a morpheme boundary
before the-ed, while most verbs tagged asVBZ (third person present singular) and ending in-swere
assigned a boundary before the-s. (TheVBZ formsdoesandgoes, as well as forms ending in-xes
or -ches, such asmixes, were assigned a boundary before-es instead.) Potentially irregular forms
such as past participles ending in-n were examined by hand to ensure correct segmentation.

It is important to note that any choice of segmentation will lead to some inconsistencies due
to spelling rules that insert or delete characters before certain endings.The segmentation we used
prefers consistency among suffixes rather than stems when there is a conflict. That is, suffixes will
be the same across words such asjump.edandstat.ed, or jump.sandstate.s, but the stems instat.ed
andstate.swill be different.

Given the gold standard analysis for each word and a sample analysis from our algorithm, seg-
mentation accuracy was computed in two different ways. First, for each word type, the most fre-
quent suffix for that type (in the sampled hypothesis) was determined and counted once to evaluate
the proportion of types with each suffix. Second, since different tokens of the same type may be
assigned different analyses, the proportion of word tokens with each suffix is also displayed. This
analysis gives more weight to the results of frequent words, and also takes into account any uncer-
tainty in the model (although in fact less than 1.5% of types have multiple analysesfor any value of
a).

8.1.2 RESULTS

As a model for learning morphology, our generator by itself is not very effective. Only 55.4% of
word types and 62.2% of word tokens are segmented correctly. For comparison, baseline accuracy
for a system that always leaves words unsegmented is 30.7% for types and 57.1% for tokens. It turns
out that for most words, the segmentation identified by the generator model is actually the same as
the unsegmented baseline, as illustrated in Figure 8. In other words, the model simply memorizes
full words rather than splitting off (non-empty) suffixes. This is particularly true of frequent words,
which is why token accuracy is so similar for the baseline and the generator model.

One might expect that the sparse Dirichlet priors used in our generator,which encourage fewer
total stems and suffixes overall, would push the system towards a more parsimonious solution (i.e.,
fewer complete memorized wordforms). We know that the priors do have someeffect, because the
maximum-likelihood solution for this model is the baseline described above, with each word left
unsegmented. However, even with much stronger Dirichlet priors than the ones reported here, the
performance of the generator model alone is underwhelming. The reasonis twofold. First, our
generator model assumes complete independence between stem and suffixprobabilities given the
class of the word. In reality, stem and suffix probabilities are not completelyindependent (e.g.,
announcetends to occur more often with-edthan doeshead). As the amount of data for a particular
verb accumulates, any deviation from independence becomes more apparent, and the model resolves
this by memorizing entire words rather than segmenting them. This tendency is compounded by
a second factor, which is that the most frequent words in the data are almost all irregular (e.g.,
rise/rose). Since our model deals only with segmentation, irregular words must be analyzed as
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Figure 8: Confusion matrices for the morphological generator model alone(equivalent to the two-
stage morphology model witha= 1) on the verb data set. The area of a square at location
(i, j) is proportional to the number of word types (left) or tokens (right) with true suffix i
and found suffixj.

having empty suffixes. This raises the overall probability of empty suffixes, making the model less
likely to propose non-empty suffixes even when these are appropriate.

These issues may seem particular to our very simple model, or to the problem ofmorphological
learning in English. However, we would argue that they are far more general. While it is true
that English verbal morphology is notorious for its large number of irregular verbs, irregularity is
found to varying degrees across all languages and types of linguistic structure. For example, in
English, idiomatic expressions such asX has got it madeor X is fit to be tied12 can be viewed
as syntactically irregular forms, in the sense that they both use the passiveconstruction but have
no corresponding active version. And, like other idioms, they also have irregular (that is, non-
compositional) semantics. Importantly, the relationship between frequency and regularity observed
in the current experiment (i.e., that irregular forms tend to be the most frequent) seems to be a
very general property of language (Greenberg, 1966; Bybee, 1985). Together with the power-law
distribution of linguistic forms, this fact implies that irregular forms will often dominate the input
to statistical learning systems, which in turn may cause significant problems foran unsupervised
model that does not take these facts into account.

One solution to these problems would be to simply change the input by removing repeated
tokens of each type, that is, to present the system with only a list of unique word types. As discussed
in the introduction to this section, many previous morphology learning systems have taken this
approach. Instead, we address the problem by applying our two-stageframework, adding a PYCRP
adaptor to our generator model. With this approach, we find that for a wide range ofa, from 0 up
to about 0.6 or 0.7, results are stable and considerably better than when using the generator model
alone (or, equivalently, the 2-stage model witha= 1). Accuracy scores are shown in Figure 9, and
confusion matrices for the model witha= 0.6 are shown in Figure 10. Given our discussion above,
it should be no surprise that the better performance is due to the system finding more non-empty

12. These examples are due to Jackendoff (2002).
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Figure 9: Percentage of verb types and tokens assigned the gold standard analysis.
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Figure 10: Confusion matrices for the 2-stage morphology model witha= 0.6.

suffixes overall. This is illustrated both in the confusion matrices and in Figure11, which shows
the true distribution of words with each suffix and the distribution found by thetwo-stage system
for various values ofa. Again, we see that the distribution is stable for 0≤ a≤ 0.7. Fora> 0.7,
empty suffixes begin to take over, causing performance to drop. Figure 12 indicates that the average
number of tables per word type fora ≤ .7 rises slowly from one to about four, whereas higher
values ofa cause a sharp increase in the average number of tables per type, up to almost 18. It is
this increase that seems to be problematic for learning.

Finally, we provide a summary of the final sample in each of two runs of our sampler, with
a = 0.1 anda = 0.6, in Table 1. An interesting feature seen in Table 1(b) is that the system has
created a separate class for verbs with irregular past tense forms (second from the top). Also, in both
runs, the system frequently hypothesizes analyses in which stem identity is kept constant across
forms (as instat.e, stat.ing, stat.ed, stat.es), whereas the gold standard maintains suffix identity
(state, stat.ing, stat.ed, state.s). This leads the system to assume-e and-essuffixes where the gold
standard hasNULL and-s, and to place stems ending ine in separate classes from the other stems.
This kind of problem is common to many morphological learning systems, and cannot be solved
with a purely concatenative approach to morphology. It is also worth notingthat, if the goal is
to achieve a segmentation with the fewest total number of stems plus suffixes (minimizing storage
cost) then the choice of segmentation taken by the system is actually better than the gold standard,
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Figure 11: Results of the two-stage morphology learner for various values ofa on the verb data set.
The proportion of word types (top) and tokens (bottom) found with each suffix is shown,
along with the distribution of suffixes in the gold standard.
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Figure 12: Average number of tables used per word type for each valueof a.
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since the total number of distinct stems plus suffixes is smaller. Only a few extrasuffixes must be
included to avoid near duplication of a large number of stems.

The primary remaining source of error that can be seen in the confusion matrices comes from
wordforms analyzed as containing no suffix, where actually some non-empty suffix was present. In
most cases, these were words where only a single inflected form was present in the data, so there
was no reason for the system to postulate a complex analysis.

8.2 Experiment 2: Child-directed Speech

Experiment 1 used a corpus of verbs in orthographic form as input data, partly because learning
English verbs is a standard task for computational models of morphology, and partly because this
choice of corpus makes it possible to evaluate against a gold standard. However, using a single part
of speech is a gross oversimplification of the learning problem. We therefore performed a second
experiment using a corpus of phonemically transcribed child-directed speech, as described below.

8.2.1 DATA

The original source of the data used in this experiment was the Brown corpus (Brown, 1973) from
the CHILDES database (MacWhinney and Snow, 1985), which contains transcribed parent-child
interactions from long-term observational studies on three English-learning children. We extracted
all the words spoken by caretakers, and converted the representations of these from standard written
form to phonemic form using a phonemic dictionary.13 Variations in pronunciation indicated in the
original transcriptions (e.g.,goingvs. goin’) were preserved as much as possible in the phonemic
forms (go1N, go1n),14 and many non-words (e.g.,hm) were also retained, making this corpus some-
what noisy. There are a total of 369,443 word tokens in the corpus belonging to 6,807 types. The
total number of unique prefix stringsT is 14,639, and the total number of unique suffix stringsF
is 16,313. Since there is no gold standard for this corpus, our evaluation is qualitative, based on
examining the output of the algorithm.

8.2.2 RESULTS

Qualitatively, the results of varying the PYCRP parametera are similar for this data set and the
corpus of English verbs. Table 2 shows that asa increases, the number of different suffixes found
decreases, and the proportion of word types analyzed with empty suffixes increases. As an indicator
of the effect on other suffixes, the proportion of words found to contain the most common non-
empty suffixz is also shown. As in the verb corpus, the highest values ofa lead to analyses with
almost no interesting morphological structure, while for lower values, many words are found to
contain non-empty suffixes.

An interesting difference between the results from the two corpora is noticeable for the lowest
values ofa. In the verb corpus, results were very similar for values ofa ≤ .7. Here, there is a
more graded effect, and fora ≤ .2 the system actually produces too many different suffix types.
Examining the output of the system witha = 0 (summarized in Table 3) illustrates the problem.
Five of the classes are reasonable: three contain primarily nouns, with possible suffixes NULL and

13. We thank James Morgan and the Metcalf Infant Research Lab at Brown University for providing the phonemic
dictionary for this corpus.

14. We usetypewriter font to indicate phonemic symbols. The phonemic alphabet used in this dataset is provided in
Appendix B.
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(a) a= 0.1

Tables Stems Suffixes
1473 advis 9 ed 499

rang 8 ing 371
eliminat 8 e 255
pass 8 NULL 177
settl 8 es 171
compar 8
. . .

1936 remov 13 ed 615
assum 10 e 539
enabl 9 ing 480
produc 9 es 296
continu 9 en 6
prov 8
. . .

1333 represent 9 NULL 612
back 9 ed 305
contend 8 ing 250
list 8 s 166
maintain 8
walk 8
. . .

1255 see 13 NULL 650
adjust 12 ed 228
yield 10 ing 217
want 9 s 148
limit 8 n 12
fill 8
. . .

1319 total 13 NULL 674
work 10 ed 255
respond 9 ing 244
add 9 s 146
equal 8
shift 8
. . .

1531 open 11 NULL 715
ask 9 ed 337
fund 8 ing 285
turn 8 s 194
reflect 8
demand 8
. . .

(b) a= 0.6

Tables Stems Suffixes
2684 reach 44 NULL 1240

discuss 42 ed 859
push 42 ing 466
match 38 es 70
learn 37 s 49
talk 35
. . .

4127 say 138 NULL 3697
think 96 s 267
see 91 ing 132
know 70 ting 15
keep 63 n 13
find 60 th 3
. . .

3672 includ 113 ed 1485
increas 111 e 1003
requir 73 ing 849
involv 68 es 335
reduc 66
indicat 64
. . .

4351 us 182 ed 1712
continu 110 e 1293
mov 81 ing 933
provid 68 es 413
fac 67
receiv 63
. . .

4268 offer 97 NULL 1851
add 78 ed 1084
report 73 ing 872
boost 66 s 461
start 56
follow 56
. . .

3902 reflect 76 NULL 1601
help 68 ed 1204
develop 64 ing 721
show 61 s 375
consider 55 -sorting 1
allow 52
. . .

Table 1: Sample solutions for the WSJ verb corpus with (a)a= .1 and (b)a= .6, with boundaries
initialized at random. The number of tables assigned to each class is shown in column 1,
followed by the most frequent stems and suffixes in that class, and their table counts.
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a Suffix types % NULL %-z
0 78 58.0 10.2
.1 76 64.1 9.6
.2 40 73.8 8.8
.3 17 80.8 7.7
.4 17 84.9 6.6
.5 13 88.0 5.4
.6 12 90.5 4.8
.7 13 94.3 2.9
.8 10 99.6 2.2
.9 12 98.7 0.8
1 11 99.8 0.2

Table 2: Effects of varying the parameteraon the results from the Bernstein-Ratner-Morgan corpus.
Columns show the total number of suffix types found, percentage of wordtypes with empty
suffixes, and percentage of word types with the suffix-z.

-z, and two contain large numbers of verbs with a variety of inflectional and derivational suffixes
(including allomorphic and phonetic variants). The final class, however,contains a set of words
that are phonologically rather than morphosyntactically similar. In particular,the words dominating
this class are very short (mostly monosyllabic) and consist of common sequences of phonemes.
Among these words, the hypothesized “stems” consist of the initial consonant(s) and vowel of a
syllable, and the “suffixes” are the final consonant(s), or occasionally a second syllable. Rather than
morphological structure, the system has discovered phonological structure.

Interestingly, as the value ofa is increased, the system’s tendency to split words into half-
syllables decreases faster than its tendency to split words at morpheme boundaries. Moving from
a= 0 to a= .3 reduces the number of hypothesized suffix types from 78 to 17 (those found in the
noun and verb classes in Table 3, plus-n, -6n, -l, -&d, and-1nz) and reduces the percentage
of words with non-empty suffixes by 54%, but only reduces the percentage of words with the-z
suffix by 25%. All six classes in this condition correspond roughly to eithernouns or verbs. We
hypothesize that adding just a small amount of frequency information (witha = .3, the sampled
solution contained 12,463 tables, versus 6,807 witha= 0) is enough for the system to realize that
half-syllables do not have the same kind of near-independence between“stem” and “suffix” that true
stem-suffix words do. Unfortunately, since there is no gold standard forthis corpus, we don’t know
the true percentage of morphologically complex types, or types with the-z suffix. In future work,
it would be useful to perform a more detailed analysis of a representativesample of the corpus to
get a better sense of the accuracy of the system and the kinds of errorsit makes.

8.3 Discussion

Our two experiments demonstrate how the PYCRP adaptor can be used within our two-stage frame-
work to interpolate between type and token frequencies in a model for learning non-trivial linguistic
structure. Our results suggest that, for induction of regular morphology, statistics derived from the
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Tables Stems Suffixes Tables Stems Suffixes
915 gArti 2 NULL 777 1212 jAmp 6 NULL 736

barbar6 2 z 138 fOl 6 z 153
kIC1n 2 spIl 6 1N 83
kro 2 slip 6 s 64
k&m6l 2 kUk 6 d 49
TIN 2 yEl 5 1n 38
Cer 2 f9t 5 i 32
skQt 2 r9d 5 6r 25
pIkC6r 2 sp&Nk 5 t 16
nobadi 2 pIk 5 6l 16
bAt6rfl9 2 tep 5
b&nded 2 tArn 5
. . . . . .

867 EvribAdi 2 NULL 761 1437 ple 9 NULL 687
notbUk 2 z 106 muv 8 1N 170
lEp6rd 2 kQnt 7 1n 98
fAn6l 2 slIp 7 z 97
pl&n 2 klin 7 6r 79
wUd 2 tiC 6 d 65
brAD6r 2 wOk 6 s 59
r&mbl6r 2 mark 6 t 57
duti 2 rol 6 i 53
kartun 2 dr9v 6 6z 45
f9rm6n 2 rAb 6 6rz 27
dorbEl 2 k&ri 6
. . . . . .

862 kUS6n 2 NULL 735 1514 NULL 22 NULL 255
p6tuny6 2 z 127 p& 19 t 89
meri6n 2 & 19 n 84
DEm 2 bi 18 z 73
pEns1l 2 hI 16 d 72
pep6r 2 e 16 l 65
bAlb 2 pE 15 r 52
fom 2 ste 15 k 44
stAf1n 2 t9 15 p 41
b9s1k6l 2 dI 15 s 40
hEv6n 2 w9 14 ni 38
tEl6fon 2 bE 14 nz 36
. . . . . . . . .

Table 3: Sample solution for the Brown-Morgan corpus witha= 0. For each class, the number of
tables assigned to that class is shown in column 1, followed by the most frequent stems
and suffixes in that class, with their table counts. Note that sincea= 0, table counts in this
case are equal to type counts.
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lexicon are more useful than statistics derived from corpus frequencies. This result agrees with the
previous computational work of Albright and Hayes (2003), and supports the conclusions of Bybee
(2001). It also justifies the use of word lists in many previous morphologicallearning systems (Plaut
and Gonnerman, 2000; Regier et al., 2001; Snover and Brent, 2003).Interestingly, our experiments
also suggest that partially damping corpus frequencies may be as effective, or perhaps even more
effective, than fully damping frequencies (i.e., using only lexical statistics).

Of course, the experiments described here are limited in scope. The evidence against token-
based learning of morphology would be stronger if additional experiments were performed with a
larger variety of data from multiple languages, and if more detailed analysis were undertaken on
the output from the Brown-Morgan corpus of child-directed speech. It would also be desirable to
extend our model to account for more complex morphology, since the limitation to asingle stem
and suffix is inadequate to account for the morphology of most languages(including English, if
derivational as well as inflectional morphology is considered). However, we emphasize that our fo-
cus here was not to develop a state-of-the-art morphological induction system, but rather to explore
the consequences of using the PYCRP adaptor and its different parameter settings. We found that,
with appropriate parameter settings, our model was sufficient to identify common suffixes in both
corpora, and distinguish roughly between noun stems and verb stems in the Brown-Morgan corpus.

We have proposed that there are two main reasons that using the PYCRP adaptor to damp corpus
frequencies yields better morphological segmentations than learning directlyfrom corpus frequen-
cies. First, the generator model assumes that stems and suffixes are independent given the morpho-
logical class, but this assumption is only approximately correct. Damping corpus frequencies brings
the assumptions of the model and the data more in line, whereas using full corpus frequencies pro-
vides more evidence that stems and suffixes are not truly independent and therefore should not be
split. Second, the most frequent words in any language tend to be irregular, and due to the power-
law distribution of word frequencies, these words strongly dominate the corpus statistics. The effect
of these suffix-less words is so strong that, despite a prior preferencefor solutions with fewer stems
and suffixes, the system learns that most words should have no suffix.This causes many regular
forms to go unsegmented.

Finally, we note that there are other important connections between our two-stage model and
psycholinguistic theories of morphological processing. One question of concern to many psycholin-
guists is the extent to which morphologically complex words are stored and processed as single lex-
ical units, as opposed to being decomposed into individual morphemes (Alegre and Gordon, 1999;
Hay, 2001; Hay and Baayen, 2005). Our model provides an answer tothis question, predicting
specific testable relationships between word frequency, statistical independence of stem and suffix,
and the probability of decomposition. While a thorough examination of these predictions and a
comparison to behavioral data is beyond the scope of this paper, we note that an extension of our
model (described further in the following section) has produced promisingpreliminary results in
this area (O’Donnell, in preparation).

9. Further Applications and Extensions

The morphological segmentation model considered in the preceding sectionsillustrates how differ-
ent assumptions about word frequency can result in different conclusions about the latent structure
expressed in linguistic data. However, the potential of the two-stage approach to modeling language
lies in its generality, with any existing probabilistic model of language potentially acting as a gen-
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erator that can be combined with different adaptors. In this section, we consider how the two-stage
framework can be applied to some other popular probabilistic models, how it can be extended to
work with other kinds of linguistic structure, and how the challenges of scaling to larger corpora
that arise with these applications and extensions can be addressed.

9.1 Applying the Two-stage Framework to Other Models

While the tension between types and tokens has been most explicit in computational linguistics, sim-
ilar issues arise in other areas of research involving the analysis of text. For example, information
retrieval systems typically represent documents in one of two ways: as a binary vector indicating
which words appear in the document, or as a vector of word frequency counts (Baeza-Yates and
Ribeiro-Neto, 1999). These two kinds of representations have different strengths and weaknesses,
with the basic issue being that multiple occurrences of a word in a document docarry some infor-
mation about the relevance of that document to a query, but not in a way that increases linearly with
the number of instances. As a consequence, information retrieval systemstypically make use of
some kind of scheme for damping word frequencies.

Our two-stage framework provides a way to define an adaptive damping scheme for information
retrieval models that have a probabilistic interpretation, such as the naı̈ve Bayes classifier. In the
standard näıve Bayes classifier, each class is assumed to be associated with a multinomial distribu-
tion over words, and the words that appear in each document are assumed to be drawn independently
from that distribution. This model can be used as the generator for a two-stage model, with an adap-
tor such as the PYCRP being used to guarantee that the resulting word frequency distribution has
statistical properties closer to natural language. This is essentially the model used in our analysis in
Section 6.1, where we show that multinomial generators estimated using this modelare similar to
those that damp word frequencies. Evidence that this approach should lead to good empirical results
comes from the work of Elkan (2006), who used a Dirichlet compound multinomial model (which
is a special case of our framework, as noted above) to improve performance on several information
retrieval tasks.

More complex machine learning models that have been applied to text also facea choice be-
tween representing documents in terms of types or tokens. For example, latent Dirichlet allocation
(Blei et al., 2003) treats each document as a “bag of words”, represented by a vector of word fre-
quencies, as does its nonparametric analogue based on the hierarchicalDirichlet process (Teh et al.,
2005). In contrast, a recent hierarchical nonparametric Bayesian model based on the beta process
treats documents as binary vectors of word types (Thibaux and Jordan,2007). It is straightforward
to define a two-stage model in which LDA is used as a generator, which wouldprovide a way
to automatically interpolate between these two extremes. Probabilistic inference inthis model is
comparable in computational complexity to the Gibbs sampling scheme commonly used with LDA
(Griffiths and Steyvers, 2004): to return to the restaurant metaphor used above, while a new random
variable is introduced for each word indicating the table from which it is drawn, the number of
random variables that need to be sampled in the LDA model scales with the total number of tables
rather than the total number of words.

9.2 Extending the Framework to Other Linguistic Structures

We argued briefly above that the tendency of irregular forms to dominate corpus statistics is not
specific to the problem addressed here, but can be expected to occur inmany linguistic learning
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tasks. Similarly, nearly all probabilistic models used for language learning (most notably, hidden
Markov models and PCFGs) encode strong independence assumptions similar to those in our mor-
phology generator model. Thus, we extrapolate from the results of our experiments to suggest that
using the PYCRP or other power-law adaptors in combination with more standard models as gen-
erators may be able to improve unsupervised learning in many areas of language. Indeed, in other
recent work we have developed several two-stage models for learninglinguistic structure, achieving
results comparable to, and in some cases better than, the best existing systems. For example, adap-
tor grammars (Johnson et al., 2007) combine a PYCRP adaptor with a PCFG generator to create
a model for learning linguistic tree structures without the strong independence assumptions made
by a standard PCFG. The adaptor effectively caches entire subtrees so that frequent structures can
be reused, and will be assigned probabilities that are higher than the product of the PCFG rules
that would be needed to create them anew. Although PCFGs are typically associated with syntactic
constituency structure, they can also be used to express other types of linguistic relationships, and
adaptor grammars have been used to learn word segmentation, syllable structure, morphology, de-
pendency parses, and named-entity clusters (Johnson et al., 2007; Johnson, 2008a,b; Johnson and
Goldwater, 2009; Cohen et al., 2010; Elsner et al., 2009). In fact, it is even possible to express the
standard LDA model using the adaptor grammar framework (Johnson, 2010).

In addition to adaptor grammars, the two-stage framework provides the basisof another recent
model for learning trees, independently introduced by Cohn et al. (2009), Post and Gildea (2009),
and O’Donnell et al. (2009).15 This model can be viewed as a generalization of the adaptor grammar.
In an adaptor grammar, all trees produced by the generator are complete,with terminal symbols at
all leaf nodes. In contrast, the model presented by the authors above allows the generator to pro-
duce incomplete tree fragments orelementary trees, with either terminal or non-terminal symbols
as leaves. It therefore instantiates a nonparametric Bayesian model of tree-substitution grammar
(Joshi, 2003). So far, the model has been used in NLP research to induce tree-substitution gram-
mars from parsed sentences (Cohn et al., 2009; Post and Gildea, 2009) and to induce dependency
structure from strings (Cohn et al., 2010). It has also shown promise asa model of human language
processing, with applications to children’s acquisition of syntax (O’Donnell et al., 2009) and adult
morphological processing (O’Donnell, in preparation).

9.3 Strategies for Scaling to Larger Corpora

Using the two-stage framework with adaptors based on the CRP introduces apotentially challenging
problem of probabilistic inference. In these models, each word is associated with a random variable
indicating its source (or the table from which it was generated, under the restaurant analogy). The
number of random variables in the model thus grows linearly with the number ofwords. While this
is not unusual for probabilistic models of language that involve latent variables (for example, LDA
has the same property), it means that alternatives to the simple Gibbs sampling algorithm we used in
our morphological segmentation example will need to be developed in order to apply these models
to large corpora of the kind used in modern machine learning and computational linguistics. There
are three strategies for dealing with this scaling problem: using the two-stage framework to justify
heuristic approximations but not explicitly performing inference, exploring parallelization schemes,

15. There are actually very slight differences in formulation between themodel introduced by O’Donnell et al. (2009)
and the other two, but they are conceptually similar.
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and applying approximate inference techniques such as variational inference. We consider these
options in turn.

Part of the motivation for our detailed treatment of the relationship between our two-stage frame-
work and existing smoothing methods was to point out that these highly successful methods can be
viewed as heuristic approximations to a model that makes reasonable assumptions about the struc-
ture of natural language. Kneser-Ney smoothing approximates a simple application of our two-stage
framework, suggesting that it might be possible to derive similar heuristic approximations for more
complex models. Some very simple approximations are theminimal andmaximalschemes dis-
cussed by Cowans (2006) and Wallach (2008) in relation to other Bayesian language models. These
make the respective assumptions that only one token of each type is drawn from the base distribu-
tion, or that all tokens of each type are drawn from the base distribution. However, the prospect of
developing better approximations to more complex models seems promising, especially given recent
results on the approximate and asymptotic properties of discrete models basedon the Pitman-Yor
process (e.g., Teh, 2006a; Buntine and Hutter, 2010). One strategy for applying two-stage models
to large corpora may thus be to avoid performing inference explicitly, and instead derive approxi-
mations based on these results.

A second strategy is parallelization. As noted above, the property that makes probabilistic
inference potentially problematic in two-stage models—the number of latent variables increasing
linearly with the number of words in a corpus—is shared with other probabilisticmodels such as
LDA. Parallelization has proven to be an effective strategy for applying models such as LDA to very
large corpora (e.g., Newman et al., 2009). Recent work has already examined how parallelization
can be used to increase the scale of the corpora on which language modelsbased on the Pitman-Yor
process can be applied, making it possible to use these models on a corpus containing 200 million
words (Huang and Renals, 2010).

Finally, variational inference presents a third avenue for developing two-stage models that can
be applied to large corpora, trading the stochastic approximation producedby Gibbs sampling for
a deterministic approximation to the posterior distribution over the latent variablesin the model.
Recent work has focused on applying this strategy with adaptor grammars,which can be used to
express many two-stage models as noted above. This work suggests that variational inference may
yield a different pattern of scaling in the computational cost of using these models, making it more
plausible that they can be applied to large corpora (Cohen et al., 2010).

10. Conclusion

In this paper we have introduced a framework for developing statistical models of language that
breaks those models into two stages: one stage in which a basic set of lexicalitems is generated,
and one stage in which the frequencies of those items are adapted to match the statistical structure
of natural language. This two-stage framework solves two basic problemsfor statistical models
of language: defining models that can generically exhibit power-law frequency distributions, and
understanding how the observed frequencies of words should be damped when estimating param-
eters. Surprisingly, our work shows that these two problems are directly related, with damping of
frequencies falling naturally out of our framework when we take into account the possibility that
a secondary “rich-get-richer” process might be responsible for the power-law distribution in word
frequencies.
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More generally, the framework we have introduced in this paper illustrates how ideas from
nonparametric Bayesian statistics can be valuable in the context of computational linguistics. The
key innovation in nonparametric Bayesian statistics is the idea of defining modelswith potentially
infinite complexity, allowing the structures recovered by those models to grow as more data are
observed. In many ways, computational linguistics is the ideal application of this idea, since larger
corpora always bring with them new vocabulary items, new constituents, and new constructions to
be incorporated into a model. Recent work provides many other examples suggesting that nonpara-
metric Bayesian statistics and natural language may be well suited to one another (Beal et al., 2002;
Liang et al., 2007; Goldwater et al., 2006a,b; Teh et al., 2005; Teh, 2006a,b; Cohn et al., 2010) and
we anticipate that this relationship will continue to be fruitful.
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Appendix A. Details of Table Count Approximation Experiments

The generator used in this model was assumed to be a multinomial distribution over30,114 word
types, withϕ being the probabilities assigned to these types. Estimation ofϕ was performed using
Markov chain Monte Carlo. Taking a symmetric Dirichlet(β) prior overϕ, the posterior distribution
overϕ givenw and a particular value ofz andℓℓℓ is Dirichlet with hyperparametersmw+β, wheremw

is the number of lexical items corresponding to the word typew (ie. the number of tables on whichw
appears). The mean probability ofw under this distribution is proportional tomw+β. Consequently,
we can compute the posterior mean ofϕ by drawing samples ofz andℓℓℓ from P(z,ℓℓℓ|w), computing
the mean probability of each word typew given each of these samples, and then averaging the results
across samples.

To draw samples fromP(z,ℓℓℓ|w) we used a Gibbs sampling procedure very similar to that used
with the morphology model in the main text. Since the lexical items had no internal analyses, it was
only necessary to sample the table assignmentzi for each word token in the corpus in each sweep
of sampling. This was done by drawing a value from the distribution

P(zi = z|z−i ,w,ℓℓℓ(z−i)) ∝

{

I(ℓz = wi)(n
(z−i)
z −a) 1≤ z≤ K(z−i)

P(ℓz = wi)(K(z−i)a+b) z= K(z−i)+1

wherez−i is all z butzi , n(z−i)
z is the number of timeszoccurs inz−i , K(z−i) is the number of unique

values inz−i , anda andb are the parameters of the PYCRP adaptor (the CRP adaptor was simulated
by takinga= 0, in which caseb plays the same role asα). P(ℓz = wi) was obtained by integrating
over the posterior distribution onϕ givenz−i andℓℓℓ(z−i), namely(mwi +β)/∑w(mw+β).

A total of 1000 sweeps of sampling were conducted for each adaptor, and the posterior mean
of ϕ was computed for each sweep, which involved finding the mean number of lexical entries for
each word typew. These values where then averaged over the last 500 iterations, discarding the
initial sweeps to allow convergence of the Markov chain. The results shown in Figure 6 are thus
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the posterior mean of the number of lexical entries assigned to each word type given the corpus
w, and provide an indication of how word frequency translates into the frequencies from which the
generator is estimated in this model.

Appendix B. Phonemic Symbols

The following ASCII characters are used in the phonemic transcriptions in the Brown-Morgan cor-
pus, which was used as input to the morphological learner in Section 8.2.

Consonants
ASCII Example ASCII Example

D THe k Cut
N siNG l Lamp
S SHip m Man
T THin n Net
Z aZure p Pipe
C CHip r Run
b Boy s Sit
d Dog t Toy
f Fox v View
g Go w We
h Hat y You
j Jump z Zip

Vowels
ASCII Example ASCII Example

& thAt e bAY
1 hopelEss i bEE
6 About o bOAt
7 bOY u bOOt
9 flY
A bUt
E bEt
I bIt
O lAW
Q bOUt
U pUt
a hOt
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