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Abstract

Standard statistical models of language fail to captureobtiee most striking properties of natural
languages: the power-law distribution in the frequencifesard tokens. We present a framework
for developing statistical models that can genericallydpice power laws, breaking generative mod-
els into two stages. The first stage, the generator, can b&tangard probabilistic model, while the
second stage, the adaptor, transforms the word frequeunicies model to provide a closer match
to natural language. We show that two commonly used Bayes@atels, the Dirichlet-multinomial
model and the Dirichlet process, can be viewed as speciasad®ur framework. We discuss two
stochastic processes—the Chinese restaurant processadnm-parameter generalization based
on the Pitman-Yor process—that can be used as adaptors inaouework to produce power-law
distributions over word frequencies. We show that thesptadsjustify common estimation proce-
dures based on logarithmic or inverse-power transformatid empirical frequencies. In addition,
taking the Pitman-Yor Chinese restaurant process as artaadaptifies the appearance of type
frequencies in formal analyses of natural language andawgsrthe performance of a model for
unsupervised learning of morphology.

Keywords: nonparametric Bayes, Pitman-Yor process, language maaslipervised

1. Introduction

It is important for models used in unsupervised learning to be able to degbiebgross statisti-
cal properties of the data they are intended to learn from, otherwise thegerfles may distort
inferences about the parameters of the model. One of the most striking sthpistiperties of nat-
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ural languages is that the distribution of word frequencies is closelyappated by a power law.
That is, the probability that a wona will occur with frequencyn,, in a sufficiently large corpus is
proportional ton,®. This observation—usually attributed to Zipf (1932), though it enjoys a long
and detailed history (Mitzenmacher, 2004)—stimulated intense researchif3bs (e.g., Simon,
1955) but has largely been ignored in modern machine learning and cdiopatdinguistics.

By developing models that can generically exhibit power laws, it may belgeds improve
methods for identifying structure in linguistic data. In particular, postulatingpaiate mechanism
within the model that accounts for the skewed distribution of word fregesriakes the burden of
explaining this distribution off the other components of the model, effectieelycing the frequen-
cies of those words. Such “damping” of word frequencies can oftestel&able. It is commonly
observed in applications of statistical natural language processingethating the counts of word
tokens, typically by taking their logarithms or inverse powers, can improsfenpeance (Salton and
Buckley, 1988).

An extreme version of damping frequencies forms part of a tension exthibjtformal ap-
proaches to natural language: whether explanations should be lpasethe distinctypesof words
that languages exhibit, or the frequencies with whigkens(instances) of those words occur. One
place where this tension manifests is in accounts of morphology (the suthséro€ words), where
formal linguists develop accounts of why particular words appear in thedexe.g., Pierrehum-
bert, 2003), while computational linguists focus on statistical models of thadmies of tokens of
those words (e.g., Hakkanitf et al., 2002). The same tension arises in various areas of statistical
natural language processing and related fields. For example, one mibtesuccessful forms of
smoothing used in statistical language models, Kneser-Ney smoothing, expiititfgolates be-
tween type and token frequencies (Ney et al., 1994; Kneser and M68§%; Chen and Goodman,
1998). Information retrieval systems can also differ in whether they umrybvectors indicating
the presence or absence of words in a document or a full vector af freguencies (Baeza-Yates
and Ribeiro-Neto, 1999), and the same distinction appears in machine tparathods applied to
text (e.g., Blei et al., 2003; Thibaux and Jordan, 2007).

In this paper, we present a framework for developing generative mémdBnguage that pro-
duce power-law distributions. Our framework is based upon the ideaeaifgmg these models
in terms of two components: generator an underlying generative model for words which need
not (and usually does not) produce a power-law distribution, aratlaptor, which transforms the
stream of words produced by the generator into one whose freqeestmy a power-law distribu-
tion. This framework is extremely general: any generative model for Egegwan be used as a
generator, with the power-law distribution being produced as the resuiaking an appropriate
choice for the adaptor.

Adopting this two-stage framework divides responsibility for the appearah the tokens in
the corpus between the generator and the adaptor, with only a subsettokéims being produced
by the generator. The parameters of the generator will be estimated bagezhdhe tokens for
which the generator is considered responsible, rather than on thetfoll xkens in the corpus.
By explaining away the presence of some of the tokens, the adaptotieffiecdamps the word
counts used to estimate the parameters of the generator. Estimation of thesetpas will thus
be affected by assumptions about the form of the adaptor. We consicemakadaptor-generator
pairs, focusing especially on the Chinese restaurant process (Alt@85s) and its two-parameter
generalization, derived from the Pitman-Yor process (Pitman, 1995; Pénthyior, 1997; Ishwaran
and James, 2003), as adaptors. We show that using these stochastisspsoas adaptors can

2336



TWO-STAGE LANGUAGE MODELS

produce appropriate power-law distributions while implementing differemb$oof damping. We
also show that the Pitman-Yor generalization of the Chinese restauraesgroan be used to justify
parameter estimation based purely on type frequencies, and demonsttaisitigathis adaptor
improves the performance of a simple two-stage model applied to learning ahoggh

Our work contributes to a growing body of research on Bayesian appes to modeling and
learning language. This paper is not the first to propose the use of thes@lrestaurant process or
Pitman-Yor process for modeling language, and some of the models wedsmes been used in
previous work by ourselves and others (Goldwater et al., 2006a20€I6b). However, considering
these models in greater depth allows us to make several novel contribuimsis.we show how
the two-stage framework makes it possible to unify a variety of Bayesianlmofienguage. This
unified picture offers us a way to concisely summarize existing Bayesiandgegmodels, and to
identify the mathematical relationships between these models. Second, videpaoguantitative
argument that these models are a good fit for language by virtue of theryaw distributions
they produce, detailing the differences between the distributions prdduceifferent adaptors,
and discussing the use of different approximations. Third, we pressmtempirical studies that
provide insight into the practical effects of different approximationsgardmeter choices. Finally,
we expand on the idea, introduced by Goldwater et al. (2006a), tha thedels provide a way
to understand and model the relationship between linguistic types and tekeha, mathematical
justification for commonly used smoothing and damping techniques.

In addition to considering the general properties of models developed inwotstage frame-
work, we provide a detailed case study of applying this approach to aqpenssed learning prob-
lem: morphological segmentation. In this problem, the goal is to identify the mdahtwnpo-
nents from which words are comprised. This problem is challenging becaatural languages
possess both regular and irregular morphology, with only a subsetrafviollowing regular mor-
phological rules. Linguists have long noted a strong relationship betwegueincy and regularity
in language, with irregular forms often being among the most frequent(Bezg, 1966; Bybee,
1985). Without accounting for this fact, an unsupervised learning rsyistdikely to be misled by
the very frequent irregular forms, and fail to appropriately model theles patterns that are needed
to account for infrequent forms, which will comprise most unseen datasiWw that the two-stage
framework proposed here can explain the relationship between fregae regularity and thus
leads to better learning of regular patterns.

The morphological segmentation task is a good example of a situation whengpapfely
modeling word frequencies can significantly affect the outcome of umgised learning. While
we explore this case in detail, the goal of this paper is not to develop stdte-ait models for any
particular application. Rather, we hope to strengthen intuitions and insightsantaonparametric
Bayesian models of language behave in general, in order to give ofearchers a better sense of
when these tools may be helpful and how to use them. We consider other ipgapglications of
this approach, and ways in which it can be extended, in Section 9.

The plan of the paper is as follows. Section 2 summarizes related work. 1$8ctizcusses
stochastic processes that can produce power-law distributions andliog®the generic two-stage
modeling framework. Section 4 presents models based on the Chineseaesianocess and
Pitman-Yor Chinese restaurant process, stochastic processesdmparametric Bayesian statis-
tics that produce power-law distributions. Section 5 shows how some othyasin language
models can be viewed as special cases of our two-stage framewotionSeexamines some of the
consequences of using the adaptors introduced in Section 4. Sectiosdugs®s the implications
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of using these models for estimation of the parameters of the generator,nS&etishows that es-
timation based on type and token frequencies are special cases of tagedaguage model, and
Section 6.3 uses these results to provide a novel justification for the useesEkNey smoothing.
Section 7 describes a two-stage model for unsupervised learning of tiphohagical structure of
words, and Section 8 presents the results of some experiments with this moedeisieting that its
performance improves as we move from estimation based upon tokens to$gotion 9 discusses
additional applications and extensions of our approach, and Secticontudes.

2. Related Work

Our two-stage approach fits within a more general trend of using Bayesidels for linguistic
data. Previous work has used Bayesian models in two ways: to undesstdndstify approaches
to smoothing, or as a method of unsupervised structure discovery anthtpa®ince we will touch
upon both of these topics in this paper, we now present a brief revieglaiéd work in each area.

Smoothing methods are schemes for regularizing empirical estimates of thebpites of
words, with the goal of improving the predictive performance of languagdels. The simplest
kind of smoothing involves adding a small constant to the empirical frequeio€igrords prior
to normalizing those frequencies (Chen and Goodman, 1998). Thisagbpcan be shown to be
equivalent to Bayesian estimation of a multinomial distribution using a Dirichlet gkiacKay
and Peto, 1994), a method that has more recently evolved into the use obwadnpirichlet-
multinomial models for text (Elkan, 2006; Madsen et al., 2005). The obtervof a correspon-
dence between smoothing methods and Bayesian inference has be¢o dstide more complex
smoothing schemes based on hierarchical Bayesian models (MacKayetndl®94). The con-
nection between Pitman-Yor processes and Kneser-Ney smoothing isstaece of this broader
correspondence, and was independently pointed out by Teh (20@6kotwving our own work on
this topic (Goldwater et al., 2006a). More recently, Wood and Teh (2P089) have developed
more sophisticated cross-domain smoothing models by combining multiple hieedrBitiman-
Yor processes.

Another strand of work on Bayesian models of language aims to improvepengsed (or
semi-supervised) learning of linguistic structure. Much of this work catmdmed back to the latent
Dirichlet allocation (LDA) model and related work on document clusterindytapic modeling by
Blei and colleagues (Blei et al., 2002, 2003, 2004). While LDA takesgdiavords approach
to language modeling, recent research in the computational linguistics comrhasifpcused on
using similar Bayesian techniques to develop models of linguistic structure wit sophisticated
intra- and inter-word dependencies. For example, Goldwater et abli2@desented a model based
on the hierarchical Dirichlet process (Teh et al., 2005) to identify wanghidaries in unsegmented
text. This model is very similar to the hierarchical Pitman-Yor language modelitbed in Section
6.3 as well as in Teh (2006a). Finkel et al. (2007) and Liang et al.ARB@roduced models for
learning better syntactic categories for parsing by extending the idea wffithiee hidden Markov
model (Beal et al., 2002; Teh et al., 2005) to probabilistic context-fraengrars (PCFGs) and
dependency trees. Johnson et al. (2007) described a differehbkinfinite Bayesian model for
learning grammatical structure, the adaptor grammar, which is more directyl lmasthe two-
stage framework presented here. An adaptor grammar can be seenastager model in which
the generator is a PCFG. Adaptor grammars have since been used filmdesord segmentation,
syllable structure, and morphology in English and Sesotho (Johnson20@if;,Johnson, 2008a,b),
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as well as for named-entity clustering (Elsner et al., 2009). They hasdakn extended by Cohn
et al. (2009), Post and Gildea (2009), and O’Donnell et al. (2088} independently proposed
very similar generalizations of the adaptor grammar for learning tree substigraonmars.

Finally, although this paper focuses primarily on the general Bayesiamefark rather than
the specific application to morphological learning that we discuss in Sectiangd B, it is worth
mentioning a few other notable approaches to the unsupervised learnimgjotiology. Probably
the most well-known systems are Linguistica (Goldsmith, 2001, 2006) anéteksar (Creutz and
Lagus, 2004, 2005), both of which are based on probabilistic modelg osximuma posteriori
estimation, and are freely available for download. A number of other systemsore heuristic
approaches; Goldsmith (2001) provides a thorough review. An integesgitent approach uses
sentence-aligned multilingual texts to perform simultaneous morphologicalesggtion on multi-
ple languages (Snyder and Barzilay, 2008). The Bayesian modelmuseat work can be viewed
as an extension of the word segmentation model of Goldwater et al. (2688bjibed above.

3. The Two-stage Approach

The key idea behind our two-stage framework is to divide the processrargting text into two
parts, one of which is sufficient to produce a power-law distribution @xgd frequencies. In this
section we briefly review mechanisms that give rise to power-law distribuéiadsthen formally
define our framework.

3.1 Producing Power-law Distributions

Assume we want to generate a sequenaeaftcomesz = (z,...,z,), with each outcoma being
drawn from a set of (possibly unbounded) sike Many of the stochastic processes that produce
power laws are based upon the principlepadferential attachmentvhere the probability that the
ith outcomez;, takes on a particular valdedepends upon the frequencyloin z_; = (z,...,7_1)
(Mitzenmacher, 2004). For example, the number of links pointing to a gienpage is sometimes
modeled as a power-law distribution, which can be explained by assumingethateb pages are
more likely to include links to already-popular pages (Mitzenmacher, 2004 garly preferential
attachment process, due to Simon (1955), chogssscording to

1 nZ)
P(z =k|z) = e + (1—a)ﬁ
wherenl((z*i) is the number of timek occurs inz_;, and 0< a < 1 is a parameter of the process. This
“rich-get-richer” process means that a few outcomes appear with vehyflrequency inz, while
most outcomes appear with low frequency—the key attribute of a powerikvibdtion. In this
case, the power law has parameger 1/(1—a).

One problem with this kind of model is that different permutations of the outsarhave dif-
ferent probabilities. While this may be appropriate for some settings, thenptisn of a temporal
ordering restricts the contexts in which such models can be applied. Inydartit is much more
restrictive than the assumption of independent sampling that underlies tatistical language
models. Consequently, we will focus on a different preferential attanhssheme, based upon the
two-parameter species sampling model (Pitman, 1995; Pitman and Yor, 188vh kas the Pitman-
Yor process (Ishwaran and James, 2003). We will refer to this schertie &itman-Yor Chinese
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restaurant process (PYCRP), as it is a generalization of the more widelyrkChinese restaurant
process (CRP; Aldous, 1985). Under these schemes, outcomes fatlowes-law distribution, but
remainexchangeabtethe probability of a set of outcomes is not affected by their ordering (48do
1985). In addition to its theoretical benefits, the property of exchariggdias practical value in
permitting the use of standard sampling algorithms for inference. We returisdosgion of the
CRP and PYCRP in Section 4 after introducing the basic conceptual fratkefvthe two-stage
language model.

3.2 The Generator and Adaptor

In our two-stage modeling framework, a sequence of word tokeagws, ..., W,) is generated as
follows:

1. Generate a sequence of lexical itefns (¢1,...,¢x) from some probability distributiof,
parameterized by. For example(/1,...,¢4) = (t he, dog, a, t he). We refer toPy as the
lexicon generatoor simply generato). Note that our use of the terfaxical itemis non-
standard. Ignoring homophony, a lexicon normally contains one instdrezeb word type.
Here,Py is a discrete distribution and the lexical items are generated independerttiig so
same word type may occur more than oncétrin the remainder of the paper, we usgical
itemto refer to the items produced by the generatand typeto refer to unique wordforms,
andword or tokento refer to word tokens.

2. Generate a sequence of integers (z,...,z,) with 1 < z < K, wherez = k indicates
thatw, = ¢ (that is, z is the index of the lexical item correspondingwg). For exam-
ple,(z,...,29) = (1,2,1,1,3,1,1,4,3), so that, in combination witf¢s, ..., ¢4) from above,
(wy,...,Wq) = (the, dog, the, the, a, the, the, the, a). The integerz are assumed to be
generated by some stochastic procBssvith one or more parametegs We refer to this
process as thadaptor.

We use the notation TwoSta@®,Py) to refer to a two-stage model with adap®rand generator
Py. A graphical model illustrating the dependencies between the variables ifrahiswork is
shown in Figure 1.

The two-stage modeling framework is very general: many different disimitsicould be used
for the generator and adaptor. However, given the discussion athesesensible to assume that
P, is chosen so that the frequencies with which different integer outconegsraduced follow a
power-law distribution. In this case, whéy is a distribution with infinite support, the power-law
distribution over integers produced in Step 2 will result in a power-law digioh over the fre-
guencies in the final sequence of words. Thus, the adaptor “adapteiatd frequencies produced
by the generator to fit a power-law distribution. Different choices foigireerator model will allow
different kinds of linguistic structure to be learned. Here, we show thaphwbogical structure can
be learned using a generator that produces words by choosing arsesuffix and concatenating
them together. In other work, we have used different generators ¢owtis word boundaries in
unsegmented text (Goldwater et al., 2006b; Johnson, 2008a) andrttré&fsubstitution grammars
from parsed corpora or strings (Cohn et al., 2010).

1. The assumption of independence between lexical items is not stricégseay, but is mathematically and computa-
tionally convenient. An example of a more complex distribution over lexicaistéhat enforces uniqueness is given
in Brent (1999).
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Figure 1: A graphical model representation of the two-stage languagelimgpdramework. Ar-
rows indicate dependencies between variables, and solid-line boxeatendéplicated
portions of the model, with the number of copies shown in the lower right harntec
Variables associated with the generator are on the right; those assodidtéuevadaptor
are on the left. Depending on the application, the wavdsmay or may not be directly
observed.

4. Chinese Restaurant Processes as Adaptors

While any stochastic process that results in a power-law distribution ovet frequencies can be
used as an adaptor, the choice of adaptor will have significant implicatorise resulting model.
In this section, we discuss two stochastic processes that are particuligalyls as adaptors in the
two-stage framework: the Chinese restaurant process (Aldous; B88&an, 1995; Griffiths, 2006)
and the Pitman-Yor Chinese restaurant process (Pitman, 1995; Pitmarogntl9¥7; Ishwaran
and James, 2003). Both the CRP and PYCRP are used in nonparameggidBagtatistics, with
the more widely known CRP arising as the distribution over the sizes of mixtum@aaeents in
infinite mixture models (Rasmussen, 2000). We review the definitions of thiesegses, discuss
the properties that make them useful as adaptors, and define the twaystdgls that result from
using CRP or PYCRP adaptors.

4.1 The Chinese Restaurant Process

The Chinese restaurant process is a simple stochastic process thatesetibed using the analogy
of a restaurant with an infinite number of tables, each of which has an infe#@tng capacity.
Customers enter the restaurant one at a time, and choose a table at whichrteegrobability
of choosing an occupied table is proportional to the number of peoplaglsgting there, and the
probability of choosing an unoccupied table is proportional to some cdrssameten. That is,
if z is the index of the table chosen by title customer, then

nf”)

P(z =k|z_j,a) = 1t

e S
i—1+a
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_9S _1 _2 _1 _a
9+a 9+a 9+a 9+a 9+a

Figure 2: An illustration of the Chinese restaurant process, reprddfioen Goldwater et al.
(2009). Black dots indicate the number of customers sitting at each tableefaxth
ample case_10=(1,2,1,1,3,1,1,4,3). Below each table i®(z = k| z_10). Note that
the number of customers at each table—and Bagy = k|z_10), the probability distri-
bution over the next customer—would remain the same for any ordering afitégers
in z_10. This is the property of exchangeability.

wherez_; is the seating arrangement of the previousl customersn,(f*‘) is the number of cus-
tomers already assigned to taklby z_;, K(z_;) is the total number of occupied tableszn, and
a > 0 is a parameter of the process determining how “spread out” the custoewmmé. Higher
values ofo mean that more new tables will be occupied relative to the number of custdezating
to a more uniform distribution of customers across tables. The first custoyrafinition sits at
the first table, so this distribution is well-defined even wher 0. See Figure 2 for an illustration.

Under this model, the probability of a particular sequence of table assignfoentsustomers
is given by

P(zla) = 1~.|£lP(a]z_i,0()

. <||j s 11+a> (ax@) Ci)(n(k” —1)!)

F(l+0()_ K(z)fl‘K(Z) () _
Finta) a |!:I1(nk 1)! (@D)

where the Gamma function is definedidx) = [ u*~te Udufor x > 0, and is a generalized facto-
rial function: I (x) = (x— 1)! for positive integex, andr (x) = (x— 1)I" (x— 1) for anyx > 0.2

It is easy to see that any reordering of the table assignmeatwilhresult in the same factors
in Equation 1, so the CRP is exchangeabls the number of customers becomes large, the CRP
produces a power-law distribution over the number of customers seatatlattable, where the
power-law exponeng is equal to 1 (Arratia et al., 1992).

2. It is more standard to see the joint distribution of table assignments in tifegBRen asP(z) = l.[éf:é) oK@

HE:(Zl)(nf(z) —1)!. This distribution is derived from the Dirichlet process (see Sectio) &Rich is defined only for
o > 0, and is equivalent to Equation 1 in that case. We use the distribution irtifguabecause it is defined also
for a = 0, which is a possible (if uninteresting) parameter value in the CRP.

3. When considering exchangeability, the table assignments should bedvasapartitioning the integers.1. i into
equivalence classes. The requirementthatl,...,max(zj_1) + 1 ensures there is a 1-to-1 mapping between equiv-
alence classes and the set of integers in
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The preceding paragraphs indicate how the CRP can be used to createrdaw distribution
over integers, but to create a distribution over words we need to combiiitl dvexicon generator
to make a full two-stage model. For expository purposes, we continue ttheggeneric lexicon
generatoPy, a distribution parameterized gy so the full model is TwoStag€RRa),Py). This
model can be viewed as a restaurant in which each table is labeled with d igtc@roduced by
Py. Each customer represents a word token, so that the number of custdrageble corresponds
to the frequency of the lexical item labeling that table. A new word token isigead by seating
a new customer, producing either a new token of an existing lexical item (fubmer sits at an
existing table: in this case the new token will have the same word type as thd lexicdabeling
that table) or the first token of a new lexical item (if the customer sits at a r@er ten this case a
new label is generated usifiy, and all later customers at this table will be additional tokens of the
same word type).

Under this model, the probability that thtl token in a sequence takes on the vaiiigiven the
previous labels and table assignments, can be found by summing over aidtiregetables labeled
with w, plus a possible new table labeled with

P(VVI = W‘ Zfi,f(zfi))avq))

K(z-i)
= > Pw=w|z=kH&)Pz=k|z,0a)
k=1

: n a
= 3 (k= k Py (W) ———
kzl (k )|—1+a+ ¢(W)|—1+a
') + oPy (W)

=2 9 (2)

wherel(z_;) are the labels of all the tablesin;, I(.) is an indicator function taking on the value 1

when its argument is true and O otherwise, afjtt") is the number of previous occurrences of the
word typew in w_; (that is, the number of customers tlzat assigns to tables labeled wit). This
distribution is illustrated in Figure 3.

The probability of an entire sequence of woR{sv|a,¢$) can be found by marginalizing oét
andz from the joint distributiorP(w,z,£|a,¢). Note that unlesg; = w; for all i, P(w,z,£¢|a,¢)
0, so we need only sum over cases whéye=w; for all i. In this situation,P(w,z£¢|a,¢)
P(z,£|a,$) = P(z|a)Py(£),* so we can compute the desired distribution as

Pwla,¢) = %P(ZIG)PW)

o T(Ha) g @
= S ] (R0 -2) @

where the sums range only over thdsendz such that; = w; for all i.

4. We usePy (¢) rather than the equivale®(€|¢) for consistency with our notation for the generator probability of an
individual lexical itemPy (¢); both Py (€) andP(£|¢) represent the probability of producing lexical itefnssing the
generator parameterized iy Note that in contras®(w|¢) # Py(w), as the latter requires that all tokensarare
produced by the generator, whereas the former does not.
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GICECICEeR

Figure 3: An illustration of the two-stage restaurant, adapted from Goldwagd. (2009). In this
example,(¢1,...,44) = (the, dog, a, the) andz_10=(1,2,1,1,3,1,1,4,3). Each label
fx is shown on tablék. Black dots indicate the number of occurrences of each label
in w_10 = (t he, dog, the, the, a, the, the, the, a). Under this seating arrangement,

P(wio = the) = # QL") Pwio = dog) = 24209 P(wo = a) = 22, and
for any other wordw, P(wyo = w) = “g’i(év ),

Notice that the distribution over words given in Equation 2 leads to an alteenaély of viewing
the TwoStageCRRa),P,) model, as a cache model. Under this view, each word is generated in
one of two ways: from a cache of previously occurring lexical items (wittbability n%a if we use
the CRP adaptor) or as a novel lexical item (with probabﬁﬁx). Items from the cache are chosen
with probability proportional to the number of times they have occurred befow. Novel items
are chosen according to the probability distribution of the lexicon genefatich means that,
strictly speaking, they are not always “novel”—that is, novel word $ypsince the generator may
produce duplicates). This interpretation clarifies the significance of treavgdersx andPy. Prior
expectations regarding the probability of encountering a novel lexicaldatemeflected in the value
of a, so lower values oft will lead to an expectation of fewer lexical items (and word types) during
inference. Prior expectations about the relative probabilities of diffarevel items are reflected
in Py, so the choice of generator determines the kinds of lexical items that aretiikieyinferred
from the data. If the generator is a distribution over an infinite number of itdres;ache model
makes it clear that the number of different word types that will be obdarva finite corpus is not
fixed in advance. Rather, new word types can be generated “on thiedig’an infinite supply. In
general, the number of different word types observed in a corpuslalysgrow as the size of the
COrpus grows.

4.2 The Pitman-Yor Generalization

For much of this paper, we will be focusing on an adaptor based on the P¥argrocess. This
adaptor is a generalization of the CRP, defined as

nZ-i)_g

k= .

Pz =Kz ,ab)=0 TP 1<k<K(z) @)
K(z_i
Ez—lfg k=K(z_i)+1

where 0< a < 1 andb > 0 are parameters of the process. As in the CRE 1 by definition.
Whena = 0 andb = q, this process reduces to the CRP, so we refer to it as the Pitman-Yor €hines
restaurant process (PYCRP). Like the CRP, the PYCRP is exchdageabproduces a power-law
distribution on the number of customers seated at each table. In this cagewtelaw exponerg
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Wall Street Journal Pitman-Yor process (a=1, b =0.8)
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Figure 4: Simulating power laws in natural language, illustrated using Zipf.plbte Zipf plot
displays the log frequency of a word as a function of the log of the ranthatf fre-
quency (i.e., the number of words with frequency greater than or equbhtovord).
A power-law distribution in word frequency, with the probability of a fregag of ny,
proportional tony?, results in a straight line on the plot with slopg(@ — 1). Here,
the left-hand plot shows the distribution of word frequencies in sectio28 fdfem the
Penn Wall Street Journal treebank, while the right-hand plot showsstrédtion of the
number of customers at each table produced by 500,000 draws fronY{bBHPwith
parameters. = 0.8 andb = 1. Both plots have a slope of roughiyl.25, corresponding
to a power-law distribution with exponent= 1.8.

is equal to I+ a (Pitman, 2006), which includes tlgex= 1.8 seen for natural languages (see Figure
4). We defer further discussion of the significance of the paramat@nslb to Section 6.2.

Under the PYCRP, the probability of a particular seating arrangemsnt

P(zla,b) = 1'_|2LP(zi]z_i,a,b)

n 1 K(z)-1 K(z)n? -1 .
- (At (e (1)

M(1+b) (K@-1 K@ r(n® —a)
F(n+b) ( [1 ketd) ) { [ Faza )

=1

As with the CRP, we can define a generic two-stage model with a PYCRP adgpissuming a
generatoPy parameterized by. Under this TwoStag®YCRRa, b), Py) model, the probability of
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generating worav given the seating arrangement and label assignments of the previais ig/or

Pwi=w|z i,£(zi),ab,¢)

K(z-i)
= 5 Pw=w|z=k&)P(z=k|z-i,ab)

k=1

+P(wi=w|a=K(zfi)+1,¢)P(a=K(zfi)+1|zfi,a,b)
Kz n<z*i)—a K(z_i)a+b
= w)-X Alz-ja+h

k; =W TRW S g

N’ — Kw(z_i)a+ (K(z_)a+ b)Py(w)
= 1 %)

—1+b

whereKy(z_;) is the number of tables labeled within z_;. The joint distribution of a sequence of
wordsw is given by

P(w[a,b,¢) = %P(Z!& b)Py (£)

-1 n@
— I’iig ( ka+b><|_| Py (k) ( ?)> (6)

where, as in Equation 3, the sums are over only tifasedz such that’;, = w; for all i.

5. Relationship to Other Models

The two-stage framework outlined in the previous sections has three Ispeeses that correspond
to models that have previously been used in computational linguistics and statisgdirichlet-
multinomial model, the Dirichlet process, and the two-parameter Poisson-Btrariocess. In each
of the following subsections, we first present the relevant equivalamc then show that it holds.

5.1 The Dirichlet-multinomial Model

Proposition 1 A TwoStageCRR o), Multinomial(¢p)) model is equivalent to a
Dirichlet(ad)-multinomial model.

As mentioned in Section 1, several researchers have proposedd@ualggmuage models based
on the Dirichlet-multinomial model (MacKay and Peto, 1994; Madsen et al5)2@0s0 known as
the Dirichlet compound multinomial model (Elkan, 2006). In this model, wordsdaawn from a
multinomial distribution:

w; |8 ~ Multinomial(8)

where® = (04,...,6x). That s, for a corpus/ = (wy,...,W,) made up of a finite lexicon of words

(01,...,0k), P(W = |8) = B andP(w|8) = [1K_, 8%, whereny is the number of occurrences
of 4 in w. In addition, the parametefsare themselves drawn from a Dirichlet distribution with
hyperparametef = (B4, .. .,Bk):

6|B ~ Dirichlet(f).
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The Dirichlet distribution is defined as

K
P(BIB) = op !
®IB) = c[15

(i1 Br)

Mica T (Br)

wheref > 0. It is conjugateto the multinomial, meaning that the posterior distribution over the
parameter® given a corpusv takes on the same parametric form as the prior—specifically, a

Dirichlet distribution with parametery + Bk, whereny is the number of occurrences of outcokne
inw:

with ¢

P@|w,B) O Pw|6)P(®[B)

K K
0O [exped
k=1 k=1
K ng-+Pr—1
— ekk k .

=
Il

1

Due to the conjugacy of the Dirichlet and multinomial distributions, it is easy to coenihe
predictive distribution ofv; conditioned on the values of the previously observed wardsand the
hyperparameter3:

Pwi = j|w-i.B) = [ Pwi—j)P(B|wi.P)d8

r(n + Z|}(<:1 Bk) enj+Bj enk+[3k—1 de
I'If—lr(nkJer)/A : |!;|, “

M(n+ 3 iB) Ty +Bj+1) Ml (e +Be)
Mia T (Mk+ Br) F(n+ Yk Be+1)

n;j +B;
N+ Sk B

(7)

where all counts are with respectwo ;, andA indicates the probability simplex: the set of values
for 8 >= 0 such thaty, 6x = 1. The third line can be derived using elementary calculus and the def-
inition of the Gamma function, but can also be seen to hold by noting that the Birdiktribution
must sum to 1, and therefore

K K
P 1do — Miea T (Be)
/Al[ll “ M (Tie1Br)

holds for any positive values @. Comparing Equation 7 to Equation 2 reveals that the Dirichlet-
multinomial model is a special case of our two-stage framework, with a CRRt@dand a finite
generator distribution. In particular, a TwoStég&R o), Multinomial(¢)) model is equivalent to

a Dirichlet-multinomial model witl3 = a¢.
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5.2 The Dirichlet Process

Proposition 2 A TwoStagéCRRa),Py) model (where § has infinite support) is equivalent to a
DP(a, Py) model.

The Dirichlet process (DP; Ferguson, 1973), used in nonparamedyiedan statistics, can be
seen as an infinite-dimensional analogue of the symmetric Dirichlet distribwi@irichlet dis-
tribution where allp; are equalf. Whereas each sample from a Dirichlet distribution returns a
distribution® over a finite set of outcomes, each sample from a Dirichlet process sedulistri-
bution G over a countably infinite set of outcomes. The Dirichlet process has treoneders. The
base distribution G, (which may be discrete or continuous) determines the probability that any
particular outcome will be in the support & The concentration parameten, determines the
variance in the probabilities of those outcomes ur@er

Typically, the Dirichlet process is used as a prior in infinite mixture models1R84; Escobar
and West, 1995; Neal, 2000; Rasmussen, 2000), where the conicenparameter determines the
relative size of each mixture component, and the base distribution determgngotiable param-
eters for the component distributions. Instead, we can use the Diriclet$s to define a simple
language model as follows:

G|(X,P¢ ~ DP((X,P¢),
w |G ~ G

where DRa, Py ) refers to a Dirichlet process with concentration parametend base distribution
Go = Py. The corresponding graphical model can be seen in Figure 5. Justiasegrated out the
0 parameters of the Dirichlet-multinomial model, we can integrate out the distribGtimnobtain
the following predictive distribution over words (Blackwell and MacQuekv 3):

i—1 a

wi |w_j,a,Py ~ ——— Y d(wj)+ —P,

I| iU, o |71+G;1(J)+|71+G¢
whered(w;) is a point mass atv;. Rewriting the predictive distribution as a probability mass
function reveals that the OR, Py) model is equivalent to a TwoSta@eRRa), Py) model:

i+ aPy(w)

P(Wi:W|W,i,CX,P¢) = i—1+a

Note that althoughG assigns probability to a countably infinite set of outcomes, the predictive
distribution can be computed using only the frequencies of previous itenthatase distribution
Po.

It is worth pointing out that this DP language model can still technically be \deagea mixture
model, although a degenerate one. Each lexical item corresponds taratsapixture component
parameterized by its labék and with a 0/1 likelihood functionP(w; |¢z) = | (wi = ¢3). Thus,
every data point in a single mixture component is identical. As a result, thetjab&goplications of
two-stage models and infinite mixture models are somewhat different. Infinite nmixtadels are

5. Specifically, as described by Neal (2000), the predictive distribuifca Dirichlet process mixture model can be
obtained by taking the limit als goes to infinity of ak-component finite mixture model with a symmetric Dirichlet
prior.
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Figure 5: A graphical representation of the Dirichlet process langoragke|.

more appropriate when the base distribution is a simple parameterized distri@utjora Gaussian)
and the clusters are expected to have some variability, whereas two-stdgs rae intended for
cases where the base distribution may be more complex (e.g., a PCFG) buthervariability
between data points in a single cluster. An interesting area for future werklisombining these
two features to create models with complex base distributions as well as variabihiy output of
each cluster.

5.3 The Pitman-Yor Process

Proposition 3 A TwoStagéPYCRRa,b),Py) model (where fhas infinite support) is equivalent to
aPYRa,b,Py) model.

Above, we described the Dirichlet process as the infinite dimensionalgueaty the Dirichlet
distribution. Another way of defining the Dirichlet process, which leadséd?itman-Yor process
as a generalization, is through the “stick-breaking” construction (Satiam, 1994). Recall that
the distributionG produced by the Dirichlet process has two parts: a countably infinitef peise
sible outcomes drawn from the base distributi&f) and weights assigned to those outcomes. The
stick-breaking construction describes the distribution of these weighteridhis construction, we
define a sequence of random variabMg\(2, . ..), each following a Betd,a) distribution. The
distribution of the weights from the Dirichlet process is the same as the distnboftithe set of
random variables in which thih variable is defined to bﬁ'j‘j(l—vj )Vk. Intuitively, this is the
distribution we obtain over portions of a stick of length 1 when we break tlet imto two pieces
with sizes proportional tovg, 1— V1), then break the remainder into proportioks, (1 —V>), and
so forth.

The stick-breaking construction for the Dirichlet process has just ananpetera, but can
be generalized through the introduction of a second parameter to defing distébution, the
Pitman-Yor process (PYP; Pitman, 1995; Pitman and Yor, 1997; Ishveardidames, 2003). The
stick-breaking construction for this two-parameter distribution is similar to tivaingabove, ex-
ceptV; is drawn from a Bet@d — a, ja+ b) distribution. Integrating over the weights in the two-
parameter stick-breaking construction gives a predictive distributionighgitnilar to that of the
Dirichlet process. More specifically, if we uge= (z,...,z,) to index the possible outcomes,
we obtain the predictive distribution given in Equation 4, that is, the PYCRE. rElationship
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between the PYCRP and the Pitman-Yor process is thus analogous to theebdhe CRP and
the Dirichlet process: the PYCRP is the discrete distribution on partitions otthinategrating

over a distribution (the Pitman-Yor process) with weights generated fromwihiparameter stick-
breaking process. Therefore, just as TwoSta@RR a),Py) is equivalent to DR, Py), we have

that TwoStagePYCRRa,b),Py) is equivalent to PYRa, b, Py).

6. Effects of the Adaptor on Frequencies

We have now defined the two-stage modeling framework, shown thatas®a&yesian language
models proposed elsewhere can be viewed as special cases of thizdr&mand presented two
adaptors that generate power-law distributions over words. In this sget@®consider how using
these adaptors affects estimates of the parameters of the generatoredbgsghat produces the
underlying lexicon. In doing this, we return to our second motivating aoncihe issue of how
we might explain the damping of word frequencies, with the extreme case te=iogciliation of
models based on unique wolypeswith those based on the observed frequencies of wakens
We first discuss the general implications of using the CRP and PYCRPtioragisig the parame-
ters of the generator. We then explain how, in a TwoSBYy€RRa, b), Py) language model, the
parameters of the PYCRP determine whether the parameters of the gendidielinferred based
on word types, tokens, or some interpolation between the two. Finally, we ttad this Pitman-
Yor language model provides a principled explanation for the combinatitokeh counts and type
counts found in Kneser-Ney smoothing (Ney et al., 1994; Kneser agd1985).

6.1 Impact of the Adaptor on Frequencies used for Estimation

By introducing an adaptor into our model, we provide a route by which wden® can appear in
a corpus without having been directly produced by the generator. Assequence, any estimate
of the parameters of the generator will be based only on those tokenshichn the generator is
considered responsible, which will be a subset of the tokens in thesoFpe adaptor will thus have
the effect of damping the frequencies from which the parameters of tiez@fer are estimated, with
the nature of this damping depending on the properties of the adaptorrticufz, we will show
that using the CRP or PYCRP as adaptors is approximately equivalent to tagithee generator
parameters from log transformed or inverse-power transformed takens; respectively.

We can see how the choice of adaptor affects the frequencies usestifoating the parameters
¢ of the generator by considering how to estimitifom the observed corpus.® In general, the
parameters of generators can be estimated using Markov chain Monten@dlods, as we demon-
strate in Section 7. Here, we will present some general results chaagjdrow the frequencies
used in estimation are damped by using the CRP or PYCRP as an adaptor.

For either maximum-likelihood or Bayesian estimation, the relationship betyvaen the cor-
pusw is characterized by the likelihod®(w | ¢) (where we suppress the conditioning on the adaptor
parameterst or (a,b) here and in the remainder of this section). As noted in Section 4, the likeli-
hood can be expressed as

P(wi¢) = %P(Z)Pd) @) (8)

6. Under the interpretation of this model as a Pitman-Yor process mixtadeinthis is analogous to estimating the
base measur@q in a Dirichlet process mixture model (e.g., Neal, 2000).

2350



TWO-STAGE LANGUAGE MODELS

where the sum ranges over thasé pairs that generats.

Equation 8 makes it clear that the likelihood is affected not only byt also byP(z). Neverthe-
less, we can still make some basic statements about the relationship betaréd by considering
the properties of the model as a whole. First, notice that the total frequgnaf/each word type
w, as obtained by summing the counts on all tables labeled with that type, will éguéquency
of win the corpusv. Second, all that matters for the estimatiorpaf(the parameter(s) associated
with word typew) is the number of tables labeled with since this value is equal to the number of
times we have draww from the generator—all other instanceswofire produced by the adaptor.
Thus, we can gain insight into how estimatespddre likely to be affected by the choice of adaptor
by considering how the adaptor affects the relationship between the fregoéa word type and
the number of tables labeled with that type.

The analysis given in the previous paragraph suggests that we waninjfgute the expected
number of tables labeled with a given word type under different adapiings expectation can
be computed from the posterior distribution @rand £ given w, which can be decomposed as
P(z,£|w) = P(€|z,w)P(z|w). Note thatP(£|z,w) is equal to one iz andw are consistent witl,
and zero otherwise, so we can compite,£|w) by computingP(z| w) subject to this consistency
constraint, that is, such that for each word typethe appropriate,, tokens ofw are of typew.

In order to simplify the mathematics, in the rest of this section we assume thates@dl item
¢; produced by the generator is independent and identically distributed (i.ivéth ¢. That is, if
L= (fl,...,gK), then

K
Py (€) ZJl%%)

First, we consider the CRP adaptor. In this case, we can obtain a gooukipation to the
expectation of the number of tables over the posterior distribution. Therjmorstéstribution is
exchangeable, so we can calculate the distribution over the number ofl lerici@s for a given
word typew by imagining that then, instances ofv are the firstn,, tokens in our corpus. The
posterior probability distribution for the seating assignment oftiméoken is

P(z =kw =w|z_i,€(z_;),p)
Pwi=w|z_i,£(z-i),9)

Pz =klw =wz i £z.).¢) =

where

P(z =kw =w|zi€z),¢) = { i Hlhe=w) 1<k<K(z)

i—1+a
ira PeW)  k=K(z.)+1
and the denominator is given by Equation 2. Dividing through yields

(z_j)

e (le=w) 1<k<K(z)
Pz =klw =wz i £z),¢) = ™ *;‘P“W) . (9)

which we can now use to calculate the expected number of occupied tabletefieal entries)
for a word type that occurs,, times. Takingw; =w for i = 1,...,n, means thaPy(w) is fixed
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for all n, decisions, andxPy(w) simply becomes a constant. Inspection of Equation 9 reveals
that the posterior distribution on seating assignments for all tokens ofwyfgegiven by the
CRP with parameteoPy(w) and a total ofn, customers. As Antoniak (1974) showed, the ex-

pected number of occupied tables in this cageRg(w) $™, 1/(aPy(w) +i — 1), or approximately

Py (W) Iog%w = O(log(nw)).

Unfortunately, we cannot apply a similar analysis for use of the PYCRptadaVhile the CRP
treats each word type independently (that is, ignoring dependencies gietiegator, in a CRP the
number of tables associated with a word type is independent of the nuntabtex associated with
other word types), this is not true for the PYCRP. As with the CRP, the pitifes defined by the
generator multiply with the terms of the PYCRP when we generate a new tablatso th

>V —a) - 1(h=w) 1<k<K(z)

(10)
(K(z-i)a+b)-Py(w) k=K(z_i)+1.

P@zMMzWZM@O@)D{

However, this distribution does not take the form of another PYCRP. Weoady say that the
probability of choosing a new table under this distribution is bounded abpwaebprobability
of choosing a new table under a PYCRP with parametesisd bRy (w). Ignoring the effect of
the number of tables associated with other word types, we expect the nofrtabies to be less
than the number produced by simply running a PYC&BPR, (w)) over then,, tokens ofw. The
expectation of the number of tables occupied after seatjingustomers increases @ng,) for the
PYCRP (Teh, 2006a), providing an upper bound on the number of taldlehould expect a word
with frequencyn,, to produce when the PYCRP is used as an addptor.

These results provide a rough heuristic for understanding how usir@RReand the PYCRP as
adaptors damps the frequencies from which the parameters of the tpeeesestimated: using the
CRP and PYCRP as adaptors will be approximately equivalent to estimatiordgpand inverse-
power transformed frequencies respectively. To evaluate the ayoofrthese approximations, we
conducted an experiment using a corpus derived from sections b&0the Penn Wall Street
Journal treebank (Marcus et al., 1993). The corpus consisted, bf8Qnique word types, with a
total of 831,190 tokens. We then examined the parameter estimates progusmetal two-stage
models, varying both the generator and the adaptor.

In all models, the generator was taken to be a multinomial distribution over theoftdbulary,
with a symmetric Dirichlef§) prior. This generator was used because it is relatively generic, since
any distribution over a discrete set ultimately grounds out in a multinomial, aralbedt allows
us to parametrically explore the consequences of varying the strength pfitr. We used three
different kinds of prior, corresponding to different settings of thpdrparameter = 0.001L 3 =1,
andp — co. With 3 = 0.001, the prior prefers sparse multinomial distributions, which means that the
number of tables assignedwohas a strong effect on the resulting estimatégf word types with
many tables will tend to have high,, while the sparse prior will push the estimated parameters
for the remaining word types closer to zero. Wgh= 1, the prior is uniform over multinomials,
which provides some regularization of the resulting estimates towards theramwifstribution. With
[ — o, the prior forces the estimated parameters to be the uniform distributionlowarrd types,
so the number of tables assigned to any given word type has no efféioe @stimates. Note that
the i.i.d. generator assumption made above only holds \@herro.

7. We recently became aware of work by Buntine and Hutter (2010), iohathe expected number of occupied tables
in the PYCRP is derived. In future work, we hope to include this result ireoalysis.
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We combined these three generators with a total of fifteen different adaptar each generator,
five models used a CRP adaptor with= {1,10,100,1000 10000 and ten others used a PYCRP
adaptor witha = {0.1,0.2,...,1.0} andb = 1. For each combination of generator and adaptor,
a Markov chain Monte Carlo (MCMC) algorithm was used to calculate thea@genumber of
occupied tables (from which the corresponding multinomial parametersegtireated) for each
word in the corpus. Details of this algorithm are provided in Appendix A. FEdudisplays the
results: the expected number of occupied tables is shown, plotted as blEclkad a function of
ny for all combinations of generators and adaptors. To produce the figrorels were binned by
frequency using bins that were uniform on a log scale, and the postedan of the number of
occupied tables per word was averaged within bins.

Figure 6 also shows as gray lines the number of tables predicted by thsticeapproximations
described above. The predictions for the CRP (left column) assume thauthber of tables is
equal toaPy(w) 3™, 1/(aPy(w) +i — 1), using the appropriate value afbut takingPy (w) to be
uniform over all words. The result is accurate wtgytw) is constrained to be uniform (row (c);
B — o), but underestimates the number of tables for high frequency wordsRylie) is itself more
sensitive to the number of tables (rows (a) and @b 0.001 or 1). The predictions for the PYCRP
(right column) assume that the number of tables is equaf,taand provide a good approximate
upper bound on the number of tables, with the actual numbers being cloggs tgpper bound
whenPy (w) is free to become higher for high-frequency words (row (a)). Iregain the heuristic
of the number of tables increasing@g,) seems more accurate whepis small.

The influence of the prior on the number of tables per word under the tige snodel with
PYCRP adaptor can be understood in terms of how the prior affects teeattiffe between the pos-
terior distribution on the number of tables and the simpler PYCRP we use toxapate it. The
approximation PYCRP always assigns a higher probability to new tables thaoskerior distribu-
tion, but the difference between the two for a wavavill depend on the value d#(w), since the
approximation assumes the probability of a new table is proportiot&(o;)a+ bRy (w), while the
true probability is proportional t& (z_;)aPy(w) + bRy (w). With a prior that allows the number of
tables to have a strong influence®y{w) (row (a)), the most frequent words will tend to have much
larger values ofPy(w) than the less frequent words, so the difference between the approximatio
and the true distribution for the most frequent words will not be verytgtdawever, wherPy (w)
is constrained to be more uniform (rows (b) and (c)), the differented®n the approximation and
the true distribution for frequent words is much larger, so the approximastioad.

A surprising feature of the PYCRP models is the nonmonotonic relationshipebetw; and
the true number of tables occupiedwywhich is noticeable with higher values a{excepta= 1)
in the bottom two plots on the right. This behavior is due to a confluence ofrfaethich include
both the high value o& and the very large number of tables required to account for all the words
in the corpus (a result of the large number of word types). Under thesenstances, when the
total number of tokens ofv is small, it is not possible to have a table with enough tokens of
so that the probability of placing another tokenvobn that table is much higher than placing the
token on a new tabl®. Thus, the posterior distribution over the number of tableswiowill be

8. Empirically, the total number of tablds inferred by our sampler is around 65,000, so the posterior probabil-
ity of assigning a token ol to a new table witha = .9, b = 1, and uniformPy(w) is roughly proportional to

((65,000)(0.9) + l)Tl114 ~ 2, wheras the probability of assignimgto an old table is proportional mf(z*‘) -0.9,
which is actually less than two unless there are already more than two takéins old table. Even with five tokens
already on the old table, the probability of using the old table is only about twat@ftusing the new table.
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Figure 6: Mean number of occupied tables as a function of word frexyu@f) under models of the
text of sections 0-20 of the Penn Wall Street Journal treebank. Tae thws of panels
correspond to multinomial generators with Diricti@tpriors and (a3 = 0.001, (b)B =
1, and (c)B — «. Each row shows the results of using the CRP (left) and PYCRP (right)
as adaptors. All axes are on a log scale. Black dots and error bawstis@mpirical
means and standard errors computed using MCMC; gray lines indicatexapptions
described in the text. The left-hand column shows results for the CRP widmeter
o = {1,10,100,1000 10000 (from bottom to top; results for the first three are nearly
identical and lie on top of each other in the graphs). The right-hand colbowssresults
for the PYCRP withh = 1 anda={0.1,0.2,...,1.0} (from bottom to top).
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relatively uniform, and the average number of inferred tables will be laaigéive to the size ofy,.
However, asy, increases, it becomes possible to cluster the tokens so as to place a lardpern
on each table. There is a bigger win in probability for inferring a configunatiah fewer tables
whenny, is large, because this situation implies that more of the tokens were generated|d
tables with many existing tokens, which have much higher probability than talilegevo or even

a handful of existing tokens. Note that whignis uniform (i.e., low for all words, as in row (c)), the
probability of a new table is quickly outweighed by the probability of an existildetaven with
low counts. However, whefd is small so thaPy is estimated to be higher for more frequent words,
the nonmonotonicity is not observed untjj becomes much larger.

Overall, the theoretical and empirical results presented in this sectionstubgeour two-stage
approach can provide a way to justify the use of logarithmic and inversefoequency damping
in text processing applications. More significantly, this justification explaing adopting these
schemes improves performance: it compensates for the kind of “richelpetrt processes that
produce power-law distributions in natural language.

6.2 Types and Tokens

The most extreme kind of frequency damping is throwing away all but a singtance of each
word type, and only keeping track of the unique word types that appdheinorpus. Just as we
can explain other forms of frequency damping in terms of our two-stagesfrerk, we can show
that the TwoStagéYCRRa,b),Py) model provides a justification for the role of word types in
formal analyses of natural language. We will now show that estimatiomsehbdased upon type
and token frequencies are special cases of the Pitman-Yor languagé sardesponding to the
extreme values of the parameteValues ofa between these extremes identify estimation methods
that interpolate between types and tokens.

Recall the joint distribution over words defined by the TwoSt&YCRRa, b), Py ) model (from

Equation 6):
r(1+b) (K2 ( n —a)
P(w|d) I‘n+b ( ka+b>(|‘| Py (k) T—a)

where the sum ranges over thasand/{ that generatav. Whenb = 0, this equation reduces to

o) O r®_a
Pwl¢) = Z%F(n)'aK() 1(K(Z)—1)!~k|:|lp¢(€k)ﬁ

(K@ - w1 17
BN I ‘“)

The distributionP(w | ¢) determines how the data influence estimates df, so we will consider
howP(w|¢) changes under different limits af

Whena — 0, theak(?~! term in Equation 11 causes the sum of&¥) to be dominated by the
partition of customers with the smallest valuekafz), that is, the fewest number of tables. Since
seating arrangements are restricted so#hat w;, the dominant arrangement contains exactly one
table, and one occurrence Bf(w), per word typew. Therefore estimates d@f will be based on
word types.
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Whena — 1, ak@-1 51, Ifne=1 then% = 1, but otherwise this term approaches
0. Therefore all terms in the sum approach 0 except for those wharithenly a single token
assigned to each table. In this cagz) = n and/x = wg, which means thaly is responsible
for generating all the word tokens in the data. Estimate$ will consequently be based on word
tokens.

The extreme values of theparameter in the PYCRP thus correspond to type-based inference
(a=0) or token-based inferenca £ 1), while choosing other values abetween 0 and 1 provides

a systematic way of smoothly interpolating between the type-based and taked-&xtremes.

6.3 Pitman-Yor Processes and Kneser-Ney Smoothing

In addition to justifying the role of types in formal analyses of language iegeusing the PYCRP
as an adaptor to create a Pitman-Yor language model can provide anatiqrianf the assumptions
behind a specific scheme for combining token and type frequenciesekNey smoothing. In this
section, we outline the relationship between Kneser-Ney smoothing and tBRRRYhowing that
the predictive distribution of the Kneser-Ney smoother can be viewed apnoximation to that
of the Pitman-Yor language model. This relationship was first pointed out onfexence paper
presenting preliminary versions of some of the results in this paper (Goldeiaa¢, 2006a), and
then independently identified by Teh (2006a,b), who expanded on thesvalti®n and presented the
first empirical comparisons of the two methods. We return to the results ofiead@omparisons
briefly below.

The Kneser-Ney smoother estimates the probability that a word token willdpedamparticular
type by combining type and token frequencies, and has proven patycaféactive for n-gram
models (Ney et al., 1994; Kneser and Ney, 1995; Chen and Goodm@8).1%0 use am-gram
language model, we need to estimate the probability distribution over word tiysesagparticular
history, that is, then — 1 preceding tokens. Assume we are given a muluself N tokens that
all share a common history, and we want to predict the next tokgn;, that will occur with that
history. For example, the history might bethe, with w = (house book way school house)..(We
use a multiset rather than a vector because we care only about the cbtirgsvord types inw,
not their ordering.) Assume that we also havether multisetsv( | ... . w(H), each associated with
one ofH other histories. The interpolated Kneser-Ney (IKN) smoother (CherGamdiman, 1998)
makes the prediction

nw” —1(niy) > D)D Y I >D)D  sul(wew)

(12)

whereD is a “discount factor” specified as a parameter of the model, the sumhaaetudesw,
and we have suppressed the dependenaebn. .., wH),

We can define a two-stage model that approximates the Kneser-Ney smoptssuming that
eachw(" is produced by a two-stage restaurant with a PYCRP adaptor (i.e., asegsstaurant for
each history), where all the restaurants share the same generaongpenized byp. We assume
is a multinomial distribution, which we estimate using maximume-likelihood estimation. Under this
model, the probability that tokemy . 1 takes on the value givenw and¢ is

P(WN+1 = W|Wa ¢) = z P(WN+1 = W‘Wa Z’¢)P(Z|Wa q))
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where z is the seating assignment far, and P(wn;1 = w|w,z,¢) is equivalent toP(wn;1 =
wlé(z),z,¢), given by Equation 5. Substituting in Equation 5 and assurhird), this becomes

P(Wn+1=wW|w,9)
_ Z nw B KW(Z)aI—\iI_ K(Z)ap¢ (W) P(Z‘W, ¢)

z

MP(Ew,¢) < Kw(z)aP(zlw,9) = K(z)aR(w)P(z|w,$)
- Z N Z N * Z ¢ N
W < Kw(2)aP(zw,9) < TwKw(2)aR(w)P(z|w,¢)
- N Z N Hy e |q<|
_ nw — EZ[KW(Z)] a + ZW’ EZ[KW'(Z>] a P(b (W) (13)

N N

whereE;[Kw(2)] = 5,Kw(z)P(z]w,¢), andKy(z) is the number of tables with labal under the
seating assignmemt The other histories enter into this expression ¢iaSince all thew" are
assumed to be produced from a single set of paramétetfse maximum-likelihood estimate of
Py (W) will approach

~ Salwew®)
Pow) = Yw Ynl(wW ew)

asa approaches 0, since only a single instance of each word type in eaxicoil contribute to

the estimate ob. Substituting this value dPy(w) into Equation 13 reveals the correspondence to
the Kneser-Ney smoother (Equation 12). The only difference is thatdihgtant discount factdd

is replaced byaE;[Kw(z)], which will increase slowly as,, increases.

Note that the formulation given above is very general in that we do noifg@eparticular gen-
erator modePy. However, to complete the correspondence with Iifyram smoothing, we can
assume that the generator for the model that computes the distribution aeetywes conditioned
on a history of sizen is another two-stage PYCRP model that computes probabilities conditioned
on histories of siz&n— 1. The recursion bottoms out with a uniform distribution over\thevord
types in the vocabular$y(w) = 1/W. This hierarchical Pitman-Yor language model (Teh, 2006b)
is analogous to the hierarchical Dirichlet process introduced by Teb6€d0 Intuitively, we can
imagine a separate restaurant for each history of sizghere the counts in that restaurant cor-
respond to the distribution of word tokens given that history. If a cust@iterat a new table in
one of these restaurants, the label on that table is distributed accordirggdouthts in a “backoff”
restaurant with history size— 1. All restaurants with the same fina} 1 history words will share
the same backoff restaurant.

As noted above, there are slight differences between the predictitiis 8itman-Yor language
model and IKN smoothing due to the replacement of the constant discatort Eain IKN with an
expression that increases as a functiongfinterestinglymodified Kneser-NefViIKN) smoothing
(Chen and Goodman, 1998) also replaces the single coriziariKN with a small set oD values
that increase as a function of, (Chen and Goodman 1998 use three valuespfoe 1, 2, and 3
or more). MKN was introduced by Chen and Goodman (1998) as an dlterna IKN that was
shown to work better in practice. So it has been known for a number of yteat increasin@® with
ny seems to provide better predictions, and initial experiments with the Pitman-gudga model
(Teh, 2006a,b) did not show improvements over MKN (although they did/ smprovements over
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IKN). However, these experiments were performed on a relatively smogils of text (16 million
words of newswire). More recently, Huang and Renals (2010) dpedl@ parallel approximate
training algorithm for the Pitman-Yor language model and performed a moreudb set of ex-
periments comparing IKN, MKN, and the Pitman-Yor language model within adpeecognition
system. The models were trained on a large corpus of conversatiorahsf00 million words)
and evaluated on perplexity and word error rate. The Pitman-Yor motehed the best results
on both measures, and gains over the other two models became larggpuas sine increased. So
although empirical investigation was sufficient to develop a very closeajpation to the Pitman-
Yor language model, discovery of the true model has nevertheless lett¢o lnaguage models in
practice.

7. Types and Tokens in Modeling Morphology

Our attempt to develop statistical models of language that generically prpduae-law distribu-
tions was motivated by the possibility that models that account for this statistgahrity might be
able to learn linguistic information better than those that do not. Our two-stagedgae modeling
framework allows us to create exactly these sorts of models, with the genaradoicing individual
lexical items, and the adaptor producing the power-law distribution ovedsvadn this section, we
show that adding a PYCRP adaptor to a simple generative model for mogyhodm vastly im-
prove unsupervised learning of the morphological structure of Englisthwe explore the effects
of varying the PYCRP parameters in this task. Morphology provides a pkantig interesting case
for testing our model, as it is one context in which formal linguists focus @mowting for the
appearance of word types (e.g., Pierrehumbert, 2003), while compuatidimayuists have typically
developed supervised models based on the token frequencies of thode (@.g., Hakkani-dr
et al., 2002). Interestingly, previous work ansupervisedearning of morphology often ignores
token frequencies, instead using word types as input (Goldsmith, 2006; Snover and Brent,
2003; Monson et al., 2004). This fact suggests that the additional information provided by to-
ken frequencies may actually be harmful for learning morphology usimglatd models. Indeed,
the results we report below support this hypothesis; we provide sonsébfmexplanations in the
Section 8.1.2, where we discuss the results of our first set of experiments

Previous morphology learning models have sidestepped the problematprebg token fre-
guencies by simply ignoring them and using only a list of unique word typéspas instead. It
is worth reiterating here that our own two-stage model can be made to behanalently: with
appropriate values of the PYCRP parameters (specifieayb = 0), our two-stage model assigns
every token of the same word type to the same table, so that the parametergehénator model
(here, the morphology model) are inferred based on a list of uniquetyped. The result is equiv-
alent to that of a model consisting only of the generator, where the input is @ hgord types,
as in the systems mentioned above. However, our full two-stage model isfledbde than these
other systems. First, by choosing different adaptor parameters,editfdamping regimes can be
achieved. Although these too could be simulated through different pegsimg schemes (e.g.,
taking logs of token frequencies rather than removing frequencies lghtioceir model is more

9. Descriptions of Goldsmith’s Linguistica system (Goldsmith, 2001, 2@@6pot mention that frequencies are dis-
carded before analysis. However, the version of the program waldaded frormht t p: / / hunani ti es. uchi cago
edu/ facul ty/ gol dsnit h produced the same results when run on a full corpus as when run droatlie unique
word types in the corpus.
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promising precisely because it can achieve the effects of damping whiledete actual input
frequencies unchanged. Thus, unlike previous models, ours caseldeta learn directly from a
corpus without preprocessing. This makes it possible to extend the madebtporate additional
information available from the corpus but not from a word list, such agetunal information. The
experiments presented here are intended only to explore the effectfenéulifparameter values,
and do not take immediate advantage of this difference between our modeteaunalus unsuper-
vised systems. However, recent work using adaptor grammars hasssegggome ways in which
context can be incorporated into models based on the two-stage framéovakample by learning
collocations between words at the same time as sub-word units (John88a; 26hnson and Gold-
water, 2009). Another example of using contextual information might be dehidlarkov model
for part-of-speech tagging, where the standard multinomial emission digiribucould be replaced
with our morphology model, so that the learned part-of-speech classgd @ informed both by
corpus context and morphological structure. Itis difficult to see howkihsof joint learning could
take place in a probabilistic model requiring one instance of each word $yipgat.

7.1 A Lexicon Generator for Morphology

Many languages contain words built up of smaller units of meaningpaphemes These units
can contain lexical information (as stems) or grammatical information (asgffiker example, the
English wordwalkedcan be parsed into the stemalk and the past-tense suffigd Knowledge of
morphological structure enables language learners to understancbald@ novel wordforms, and
is important for many natural language processing tasks in morphologimddlianguages (Collins
et al., 1999; Larkey et al., 2002; Cowan and Collins, 2005; Koehn avah#, 2007).

As a basic model of morphology, we assume that each word consists ofjla stem and
(possibly empty) suffix, and belongs to some inflectional class. Eachislassociated with a stem
distribution and a suffix distribution. We assume that stems and suffixesdeeandent given the
class, so the joint probability of generating a particular ctassemt, and suffixf is defined as

P(c,t, f) =P(c)P(t|c)P(f|c)

where the distributions on the right hand side are all assumed to be multinontiekaged from
symmetric Dirichlet priors with hyperparametetst, and ¢ respectively. So far, we have been
assuming that the generator in a two-stage model is a distribution over lexinaltitat are strings.
However, in this morphology model, the generator produces analysesgsgclass, stem, suffix),
rather than the strings themselves. We will therefore distinguish betweerb#iéJan each table,
which we continue to assume is a string, and the analysis of thatAdhgl which is an object
produced by the generator. We can, if we wish, compute the probabilityatfeh regardless of its
analysis as

P) = z [(¢=t.f)P(c)P(t|c)P(f|c)

(ct,f)

wheret.f is the concatenation dfand f, andl(.) is an indicator function taking on the value 1
when its argument is true, and 0 otherwise.

Our generator model for morphology is inspired by the model describésaidiysmith (2001),
and is intended to encode two basic linguistic intuitions. The first is that diffen@rphological
classes contain different sets of stems and suffixes. Also, although atehssiffixes are not truly
independent even within a morphological class, morphological boursddmieend to coincide with
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points of low predictability in a string of phonemes or characters (Harri8519That is, there is
greater independence between stems and suffixes than between atiblepsubstrings. Another
way of looking at this is that, if we know that, for example, past and presase verbs are each
relatively common, then if we see a particular verb very frequently in thetpase, we would
expect to see it very frequently in the present tense as well (YaroarstkyVicentowski, 2000).

We also note two important differences between our model and that of @ivthdg=irst, Gold-
smith’s model is recursive (i.e., a word stem can be further split into a smédier glus suffix),
which makes it better able to deal with complex morphology than the model prdsere How-
ever, the simplifying assumption of a single stem and suffix per word is oftéicient for English
inflectional morphology. We emphasize that our primary goal here is to iltesina effects of the
generator-adaptor framework rather than to develop a state-ofith@gvhology learning system.

The second difference between Goldsmith’s model and our own is thas@itkds model as-
sumes that all occurrences of each word type have the same analysimnotiel here allows differ-
ent tokens with the same observed form to have different analysesavh@rorb > 0. This feature
could be important for representing homonymous words with different nodmpfcal analyses.

7.2 Gibbs Sampler

Our goal in defining this morphology model is to be able to automatically infer themotwgical
structure of a language. Since our model is exchangeable, this caméeisiog Gibbs sampling,
a standard Markov chain Monte Carlo method (Gilks et al., 1996). In Mackain Monte Carlo,
variables in the model are repeatedly sampled, with each sample conditiotiedoamrent values of
all other variables in the model. This process defines a Markov chainengtasonary distribution
is the posterior distribution over model variables given the input data.

Rather than sampling all the variables in our two-stage model simultaneousGilidas sampler
alternates between sampling the variables in the generator and those ingtue éusre, a PYCRP).
Our algorithm iterates over the following two steps, as illustrated in Figure 7:

1. Fix the assignmerzt of words to tables, and sample a new morphological anakyig for
the label on each table.

2. Fix the morphological analys@g?) of the labels, and sample a new table assignmefior
each word tokem;.

In Step 1, we compute the probability distribution over analyses of the d¢uatesi A(¢x) con-
ditioned on the analyses of all other labAlg_):

P(A(fk) = (C>ta f) |A(efk)7 K7T7(p)
O 1(lc=t.1)-P(ct, f| AL ), K,T,0)
= l(lc=t.T)-P(c|c_i,z,K)-P(t|ti,c,z,T)-P(f[f_i,c.z,9)
— I(Ek:t‘f)' n‘b_i_K .n],C—'_T mf,c—i—(p

: 14
M+KC me+1T mc+ oF (14)

where the notatior_; is now used to indicatéxs, . .., Xi—1,X+1, - -, %) (Dy exchangeability, we can
nevertheless treat as though it is the last of thevariables when computing probabilitie§); T,
andF are the total possible number of classes, stems, and suffixesiasthe number of tables in
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A(ly) = (1,wa, 1ked))|A(l_1),K,T,@) O
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P(21:1|Wi :W,Z,i,f(zfi),q)’a,b) 0 2-a
P(21:6|Wi :W7Z—i7£(z—i)7¢7a7b) 0 1-a
P(Zl = 7|W| - W, Z—i?‘e(z—i)7¢7a7 b) D (6a+ b)P¢ (Walked)

Figure 7: An example illustrating our Gibbs sampler. In this example, the cavpagwal ked,

j unped, wal k, wal ked, wal ks, j unped, gr eet ed, wal ked, wal ked), and initially z =

(1, 2,3,1,4, 2,5, 6, 1). (a) illustrates the current seating arranggméh numbers
above each table indicating the indidexf customers seated there and the number below
each table indicating the indéof the table. The morphological analysis associated with
each table is also showii.andF for this corpus (the total number of possible stems and
suffixes) are 21 and 25, and we {&t= 2. To complete a full Gibbs iteration, we first
resample the analyses, and then the table assignments. In this case, e rsiardving

the current analysis ofal ked on table 1 (and its associated counts), and computing the
probability of each of the 14 possible new analyses, as shown in (b)akvgls from this
distribution, replace the new analysis on table 1 (incrementing the assoaatets); and
repeat for the remaining five tables. Then, we sample new values.forg in a similar
fashion. (c) shows the computations fr which is restricted to taking on the values 1,
6, or 7 (a new table) because only these tables may be labeledatithd.
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A(_;) whose label includes. (We usemto distinguish these counts over labels from th@unts
over tokens.) The lastline is obtained by integrating over the multinomial parestiet¢he classes,
stems, and suffixes as in Equation 7; for exampl&|c_i,z,Kk) = [ P(c|6¢)P(6c|C_i,z,K)dB
wherebf, are the parameters of the multinomial distribution over classes.

In the experiments presented hetds fixed empirically andl andF are determined for each
set of input data by computing the number of possible segmentations of ths iadihe data into
stems and suffixes (i.e., determining all the prefix and suffix strings foethasds; the empty
string is considered as a possible stem as well as a possible suffix).

In Step 2 of our sampler, we compute the distribution over table assignménitsheith word
token using Equation 10, repeated below with the conditioning adaptor peanrecluded:

(N —a) - 1(h=w) 1<k<K(z)

P(z =k|wi=w,z_;,£(z_j),a,b,¢) 0 {
(K(z-i)a+b)-Py(w) k=K(z_i)+1

wherePy(w) is found using Equation 14 by summing over all possible analyses.

Note that in Step 2, tables may appear or disappear, which will cause thedalns to change.
When a table is removed, the class, stem, and suffix counts of its labelapmdmted. When a
new table is added, a morphological analysis is chosen at random exgrctrdEquation 14, and the
appropriate counts are incremented.

8. Experiments

In this section, we use the simple morphology model defined above as anlexandgmonstrate
that applying an appropriate adaptor can significantly improve the learilggaistic structure.
We also examine how the choice of parameters in the PYCRP affects leaetiagior. We perform
two experiments, one using verbs in standard written form from a cofusaspaper text, and the
other using all words from a corpus of phonemically transcribed chileletid speech. In each
experiment, evaluations were performed on a single sample taken afteitdi@@@ns of our Gibbs
sampler, withC = 6 classesx = .5 andt = @ = .00119 For the PYCRP parameters, we fixee: 0
and experimented with values abetween 0 and 1%

8.1 Experiment 1: Verbs

We begin by describing the data and evaluation method used in this experigitntetl by the
experimental results.

8.1.1 DaTA AND EVALUATION

We prepared a data set consisting of English verbs in written form frofaeha Wall Street Journal
treebank (Marcus et al., 1993), a corpus of hand-tagged andigaerddérom the Wall Street Journal.
Using the part-of-speech tags, we extracted all the verbs from se@i@hsof the corpus, which
yielded 137,997 tokens belonging to 7,761 types. This list of verbs sewatie input to the

10. Although we fixed the values for the hyperparameters in our expatgnall of our models can be extended to
include prior distributions over the hyperparameters. In that case therfpgrameter values can be inferred by
sampling. (West, 1992).

11. Technically, setting = 0 andb = 0 leads to undefined results, but algorithmically one can simulatg irby using
exactly one table for each word type, which is what we did.
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morphological segmentation system. In this data set, the total number of umafuestringsT is
22,396, and the total number of unique suffix strifgis 21,544.

To create a gold standard for evaluation, we automatically segmented edchn ke input
corpus using heuristics based on its part-of-speech tag and spellingx&aple, verbs tagged as
VBD (past tense) oWBN (past participle) and ending ied were assigned a morpheme boundary
before theed, while most verbs tagged &BZ (third person present singular) and endingswere
assigned a boundary before t#ge (The VBZ forms doesandgoes as well as forms ending ixes
or -ches such agnixes were assigned a boundary befeesinstead.) Potentially irregular forms
such as past participles ending-mwere examined by hand to ensure correct segmentation.

It is important to note that any choice of segmentation will lead to some inconsissetue
to spelling rules that insert or delete characters before certain endingssegmentation we used
prefers consistency among suffixes rather than stems when there iiet.c®hat is, suffixes will
be the same across words sucljuasp.edandstat.ed or jump.sandstate.s but the stems istat.ed
andstate.swill be different.

Given the gold standard analysis for each word and a sample analysi®noalgorithm, seg-
mentation accuracy was computed in two different ways. First, for eact type, the most fre-
guent suffix for that type (in the sampled hypothesis) was determinedoamder] once to evaluate
the proportion of types with each suffix. Second, since different ®kérthe same type may be
assigned different analyses, the proportion of word tokens with a#tik is also displayed. This
analysis gives more weight to the results of frequent words, and alss tao account any uncer-
tainty in the model (although in fact less than 1.5% of types have multiple andibrsasy value of
a).

8.1.2 RESULTS

As a model for learning morphology, our generator by itself is not veligcéfe. Only 55.4% of
word types and 62.2% of word tokens are segmented correctly. For cempabaseline accuracy
for a system that always leaves words unsegmented is 30.7% for tygh&3 486 for tokens. It turns
out that for most words, the segmentation identified by the generator moaligdlg the same as
the unsegmented baseline, as illustrated in Figure 8. In other words, thé simagy memorizes
full words rather than splitting off (non-empty) suffixes. This is partidylaue of frequent words,
which is why token accuracy is so similar for the baseline and the generatt® mo

One might expect that the sparse Dirichlet priors used in our genendtimh encourage fewer
total stems and suffixes overall, would push the system towards a moma@aicus solution (i.e.,
fewer complete memorized wordforms). We know that the priors do have stiest, because the
maximume-likelihood solution for this model is the baseline described above, withward left
unsegmented. However, even with much stronger Dirichlet priors thamiereported here, the
performance of the generator model alone is underwhelming. The réasanfold. First, our
generator model assumes complete independence between stem angrshéhilities given the
class of the word. In reality, stem and suffix probabilities are not compl&tdigpendent (e.g.,
announceends to occur more often witedthan doediead. As the amount of data for a particular
verb accumulates, any deviation from independence becomes moremippad the model resolves
this by memorizing entire words rather than segmenting them. This tendency i®gondgd by
a second factor, which is that the most frequent words in the data aretafhosegular (e.g.,
rise/rosg. Since our model deals only with segmentation, irregular words must bgzedaas
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Figure 8: Confusion matrices for the morphological generator model &kanevalent to the two-
stage morphology model with= 1) on the verb data set. The area of a square at location
(i,]) is proportional to the number of word types (left) or tokens (right) with twfési
and found suffixj.

having empty suffixes. This raises the overall probability of empty suffixedking the model less
likely to propose non-empty suffixes even when these are appropriate.

These issues may seem particular to our very simple model, or to the probieartiological
learning in English. However, we would argue that they are far morergengVhile it is true
that English verbal morphology is notorious for its large number of irregudebs, irregularity is
found to varying degrees across all languages and types of linguisiiise. For example, in
English, idiomatic expressions such ¥shas got it mader X is fit to be tied? can be viewed
as syntactically irregular forms, in the sense that they both use the passisguction but have
no corresponding active version. And, like other idioms, they also haggular (that is, non-
compositional) semantics. Importantly, the relationship between frequedaggularity observed
in the current experiment (i.e., that irregular forms tend to be the mosteéngjgeems to be a
very general property of language (Greenberg, 1966; Byb&dg)19ogether with the power-law
distribution of linguistic forms, this fact implies that irregular forms will often doatethe input
to statistical learning systems, which in turn may cause significant problenas fansupervised
model that does not take these facts into account.

One solution to these problems would be to simply change the input by remoyegtes
tokens of each type, that is, to present the system with only a list of unigrebtyipes. As discussed
in the introduction to this section, many previous morphology learning systewestaken this
approach. Instead, we address the problem by applying our twofstagework, adding a PYCRP
adaptor to our generator model. With this approach, we find that for a &rugerofa, from O up
to about 0.6 or 0.7, results are stable and considerably better than whgrthesgenerator model
alone (or, equivalently, the 2-stage model wath- 1). Accuracy scores are shown in Figure 9, and
confusion matrices for the model with= 0.6 are shown in Figure 10. Given our discussion above,
it should be no surprise that the better performance is due to the systeangfindre non-empty

12. These examples are due to Jackendoff (2002).
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Figure 9: Percentage of verb types and tokens assigned the goldrstanddysis.
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Figure 10: Confusion matrices for the 2-stage morphology modelavit0.6.

suffixes overall. This is illustrated both in the confusion matrices and in Figgiyrevhich shows
the true distribution of words with each suffix and the distribution found bytwitestage system
for various values of. Again, we see that the distribution is stable fox@ < 0.7. Fora > 0.7,
empty suffixes begin to take over, causing performance to drop. Figurelitates that the average
number of tables per word type fer< .7 rises slowly from one to about four, whereas higher
values ofa cause a sharp increase in the average number of tables per type, up $0 B8md is
this increase that seems to be problematic for learning.

Finally, we provide a summary of the final sample in each of two runs of aupks, with
a= 0.1 anda= 0.6, in Table 1. An interesting feature seen in Table 1(b) is that the system has
created a separate class for verbs with irregular past tense forrnadgeam the top). Also, in both
runs, the system frequently hypothesizes analyses in which stem identgpticdnstant across
forms (as instat.e, stat.ing, stat.ed, stat)esvhereas the gold standard maintains suffix identity
(state, stat.ing, stat.ed, statp.ghis leads the system to assurmeand-essuffixes where the gold
standard hablULL and-s, and to place stems endingein separate classes from the other stems.
This kind of problem is common to many morphological learning systems, antbtae solved
with a purely concatenative approach to morphology. It is also worth ndtiaty if the goal is
to achieve a segmentation with the fewest total number of stems plus suffixés{zitig storage
cost) then the choice of segmentation taken by the system is actually betteralgoidistandard,
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since the total number of distinct stems plus suffixes is smaller. Only a fewaxfiges must be
included to avoid near duplication of a large number of stems.

The primary remaining source of error that can be seen in the confusitit@sacomes from
wordforms analyzed as containing no suffix, where actually some notyesuffix was present. In
most cases, these were words where only a single inflected form wsenpia the data, so there
was no reason for the system to postulate a complex analysis.

8.2 Experiment 2: Child-directed Speech

Experiment 1 used a corpus of verbs in orthographic form as input dattly because learning
English verbs is a standard task for computational models of morpholodypatly because this
choice of corpus makes it possible to evaluate against a gold standavevétpusing a single part
of speech is a gross oversimplification of the learning problem. We therpformed a second
experiment using a corpus of phonemically transcribed child-directeztbpas described below.

8.2.1 DaTA

The original source of the data used in this experiment was the Browng@Bvown, 1973) from
the CHILDES database (MacWhinney and Snow, 1985), which containsdribed parent-child
interactions from long-term observational studies on three Englishitepachildren. We extracted
all the words spoken by caretakers, and converted the represestattihiese from standard written
form to phonemic form using a phonemic diction&fyariations in pronunciation indicated in the
original transcriptions (e.ggoingvs. goin’) were preserved as much as possible in the phonemic
forms @o1N, goln),2* and many non-words (e.dm) were also retained, making this corpus some-
what noisy. There are a total of 369,443 word tokens in the corpus dielpio 6,807 types. The
total number of unique prefix stringsis 14,639, and the total number of unique suffix strikgs
is 16,313. Since there is no gold standard for this corpus, our evaluatiaralisatjve, based on
examining the output of the algorithm.

8.2.2 RESULTS

Qualitatively, the results of varying the PYCRP parametere similar for this data set and the
corpus of English verbs. Table 2 shows thatdscreases, the number of different suffixes found
decreases, and the proportion of word types analyzed with empty stfic@ases. As an indicator
of the effect on other suffixes, the proportion of words found to darttee most common non-
empty suffixz is also shown. As in the verb corpus, the highest valueslefd to analyses with
almost no interesting morphological structure, while for lower values, masrgsvare found to
contain non-empty suffixes.

An interesting difference between the results from the two corpora is abiedor the lowest
values ofa. In the verb corpus, results were very similar for valuesaef .7. Here, there is a
more graded effect, and far< .2 the system actually produces too many different suffix types.
Examining the output of the system with= 0 (summarized in Table 3) illustrates the problem.
Five of the classes are reasonable: three contain primarily nouns, veisibfsuffixes NULL and

13. We thank James Morgan and the Metcalf Infant Research LaboatrBUniversity for providing the phonemic
dictionary for this corpus.

14. We usd ypewr i t er font to indicate phonemic symbols. The phonemic alphabet used in thiselagprovided in
Appendix B.
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(@)a=0.1 (b)a=0.6

Tables Stems Suffixes Tables Stems Suffixes

1473  advis 9 ed 499 2684  reach 44  NULL  124(
rang 8 ing 371 discuss 42 ed 859
elimnat 8 e 255 push 42  ing 466
pass 8 NULL 177 match 38 es 70
settl 8 es 171 learn 37 s 49
compar 8 talk 35

1936 remov 13 ed 615 4127 say 138 NULL 3697
assum 10 e 539 think 96 s 267
enabl 9 ing 480 see 91 ing 132
produc 9 es 294 know 70  ting 15
continu 9 en 6 keep 63 n 13
prov 8 find 60 th 3

1333  represent 9  NULL 612 3672  includ 113 ed 1485%
back 9 ed 305 increas 111 e 1003
contend 8 ing 250 requir 73 ing 849
list 8 s 166 involv 68 es 335
maintain 8 reduc 66
walk 8 indicat 64

1255 see 13 NULL 650 4351 us 182 ed 1712
adjust 12 ed 228 continu 110 e 1293
yield 10 ing 217 mov 81 ing 933
want 9 s 148 provid 68 es 413
limit 8 n 12 fac 67
fill 8 receiv 63

1319  total 13 NULL 674 4268  offer 97 NULL 1851
work 10 ed 255 add 78 ed 1084
respond 9  ing 244 report 73 ing 872
add 9 s 146 boost 66 s 461
equal 8 start 56
shift 8 follow 56

1531  open 11 NULL 715 3902  reflect 76  NULL 1601
ask 9 ed 337 help 68 ed 1204
fund 8 ing 285 develop 64 ing 721
turn 8 s 194 show 61 s 375
reflect 8 consider 55  -sorting 1
demand 8 allow 52

Table 1: Sample solutions for the WSJ verb corpus witha@@).1 and (b)a = .6, with boundaries
initialized at random. The number of tables assigned to each class is shoalanmcl,
followed by the most frequent stems and suffixes in that class, and thieircaimts.
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a Suffixtypes % NULL %z

0 78 58.0 10.2
1 76 64.1 9.6
2 40 73.8 8.8
3 17 80.8 7.7
4 17 84.9 6.6
5 13 88.0 5.4
6 12 90.5 4.8
7 13 94.3 2.9
8 10 99.6 2.2
9 12 98.7 0.8
1 11 99.8 0.2

Table 2: Effects of varying the paramegeon the results from the Bernstein-Ratner-Morgan corpus.
Columns show the total number of suffix types found, percentage oftypes with empty
suffixes, and percentage of word types with the suffix

-z, and two contain large numbers of verbs with a variety of inflectional angdad®nal suffixes
(including allomorphic and phonetic variants). The final class, howeeettains a set of words
that are phonologically rather than morphosyntactically similar. In partidhl@rords dominating
this class are very short (mostly monosyllabic) and consist of common seegi®f phonemes.
Among these words, the hypothesized “stems” consist of the initial confghand vowel of a
syllable, and the “suffixes” are the final consonant(s), or occakjomnaecond syllable. Rather than
morphological structure, the system has discovered phonologicaistuc

Interestingly, as the value @ is increased, the system’s tendency to split words into half-
syllables decreases faster than its tendency to split words at morphemgabies. Moving from
a= 0toa= .3 reduces the number of hypothesized suffix types from 78 to 17 (tbosel in the
noun and verb classes in Table 3, plus - 6n, -1, - &, and- 1nz) and reduces the percentage
of words with non-empty suffixes by 54%, but only reduces the pergerddwords with the z
suffix by 25%. All six classes in this condition correspond roughly to eitftems or verbs. We
hypothesize that adding just a small amount of frequency information @th3, the sampled
solution contained 12,463 tables, versus 6,807 with0) is enough for the system to realize that
half-syllables do not have the same kind of near-independence betsterti and “suffix” that true
stem-suffix words do. Unfortunately, since there is no gold standartiifocorpus, we don’t know
the true percentage of morphologically complex types, or types withzfsffix. In future work,
it would be useful to perform a more detailed analysis of a representstingle of the corpus to
get a better sense of the accuracy of the system and the kinds ofiemaises.

8.3 Discussion

Our two experiments demonstrate how the PYCRP adaptor can be used withiroegtage frame-
work to interpolate between type and token frequencies in a model foilgaran-trivial linguistic
structure. Our results suggest that, for induction of regular morphpstgtystics derived from the
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Tables Stems Suffixes Tables Stems Suffixes

915 gArti 2 NULL 7771|1212 jAwp 6 NULL 736
bar bar 6 2 2z 138 fa 6 z 153
kl Cln 2 spll 6 1IN 83
kro 2 slip 6 s 64
k&nbl 2 k Uk 6 d 49
TIN 2 yEl 5 1n 38
Cer 2 f ot 5 i 32
skQ 2 r9d 5 6r 25
pl kCér 2 Sp&Nk 5t 16
nobadi 2 pl k 5 6l 16
bAt6rfl9 2 tep 5
b&nded 2 tArn 5

867 EvribAdi 2 NULL 761 1437 ple 9 NULL 687
not bUk 2 2z 106 miv 8 1IN 170
| Ep6rd 2 knt 7 1In 98
f An6l 2 slip 7 z 97
pl &n 2 kl'in 7 6r 79
wud 2 tiC 6 d 65
br AD6r 2 wCk 6 s 59
r &bl 6r 2 mar k 6 t 57
duti 2 rol 6 i 53
kartun 2 dr 9v 6 6z 45
f9rmbn 2 r Ab 6 6rz 27
dor bEl 2 K&ri 6

862 kUs6n 2 NULL 735 | 1514 NULL 22 NULL 255
pétuny6 2 z 127 p& 19 t 89
merién 2 & 19 n 84
DEm 2 bi 18 z 73
pEns1l 2 hi 16 d 72
pep6r 2 e 16 | 65
bAl b 2 pE 15 r 52
fom 2 ste 15 k 44
st Af 1n 2 t9 15 p 41
b9s1k6l 2 dl 15 s 40
hEv6n 2 wo 14 ni 38
t El 6f on 2 bE 14 nz 36

Table 3: Sample solution for the Brown-Morgan corpus veite 0. For each class, the number of
tables assigned to that class is shown in column 1, followed by the most ffriesieens
and suffixes in that class, with their table counts. Note that sire®, table counts in this
case are equal to type counts.
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lexicon are more useful than statistics derived from corpus frequerithes result agrees with the
previous computational work of Albright and Hayes (2003), and stipploe conclusions of Bybee
(2001). It also justifies the use of word lists in many previous morpholotgaahing systems (Plaut
and Gonnerman, 2000; Regier et al., 2001; Snover and Brent, 200&)estingly, our experiments
also suggest that partially damping corpus frequencies may be aswffautiperhaps even more
effective, than fully damping frequencies (i.e., using only lexical statistics)

Of course, the experiments described here are limited in scope. The ewidgainst token-
based learning of morphology would be stronger if additional experimeeaits performed with a
larger variety of data from multiple languages, and if more detailed analysis uvelertaken on
the output from the Brown-Morgan corpus of child-directed speettvould also be desirable to
extend our model to account for more complex morphology, since the limitatiorsitogée stem
and suffix is inadequate to account for the morphology of most languaggsading English, if
derivational as well as inflectional morphology is considered). Howewe emphasize that our fo-
cus here was not to develop a state-of-the-art morphological indugtsbers, but rather to explore
the consequences of using the PYCRP adaptor and its different paraeititeys. We found that,
with appropriate parameter settings, our model was sufficient to identify consuoftixes in both
corpora, and distinguish roughly between noun stems and verb stems irothie-Blorgan corpus.

We have proposed that there are two main reasons that using the PY@&ptBrad damp corpus
frequencies yields better morphological segmentations than learning difirectiycorpus frequen-
cies. First, the generator model assumes that stems and suffixes aenidelefgiven the morpho-
logical class, but this assumption is only approximately correct. Dampingisdirgquencies brings
the assumptions of the model and the data more in line, whereas using fulsdoeguencies pro-
vides more evidence that stems and suffixes are not truly independeétiteaefore should not be
split. Second, the most frequent words in any language tend to be immegutbdue to the power-
law distribution of word frequencies, these words strongly dominate thmisatatistics. The effect
of these suffix-less words is so strong that, despite a prior prefefenselutions with fewer stems
and suffixes, the system learns that most words should have no sliffis.causes many regular
forms to go unsegmented.

Finally, we note that there are other important connections between owtage-model and
psycholinguistic theories of morphological processing. One questioonaien to many psycholin-
guists is the extent to which morphologically complex words are stored acdgsed as single lex-
ical units, as opposed to being decomposed into individual morphemegsd¢Alad Gordon, 1999;
Hay, 2001; Hay and Baayen, 2005). Our model provides an answéistguestion, predicting
specific testable relationships between word frequency, statistical indepee of stem and suffix,
and the probability of decomposition. While a thorough examination of thesbcioms and a
comparison to behavioral data is beyond the scope of this paper, we abntkextension of our
model (described further in the following section) has produced promgielgminary results in
this area (O’Donnell, in preparation).

9. Further Applications and Extensions

The morphological segmentation model considered in the preceding sdlitistrates how differ-
ent assumptions about word frequency can result in different csiocisi about the latent structure
expressed in linguistic data. However, the potential of the two-stageagpto modeling language
lies in its generality, with any existing probabilistic model of language potentiatipgas a gen-
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erator that can be combined with different adaptors. In this section, msd=r how the two-stage
framework can be applied to some other popular probabilistic models, how bhe&xtended to
work with other kinds of linguistic structure, and how the challenges of sgadiiarger corpora
that arise with these applications and extensions can be addressed.

9.1 Applying the Two-stage Framework to Other Models

While the tension between types and tokens has been most explicit in compaititiguistics, sim-
ilar issues arise in other areas of research involving the analysis of xexemple, information
retrieval systems typically represent documents in one of two ways: aseyhiactor indicating
which words appear in the document, or as a vector of word frequenayts (Baeza-Yates and
Ribeiro-Neto, 1999). These two kinds of representations have diffsteengths and weaknesses,
with the basic issue being that multiple occurrences of a word in a documesrdosome infor-
mation about the relevance of that document to a query, but not in a wancheases linearly with
the number of instances. As a consequence, information retrieval systpitelly make use of
some kind of scheme for damping word frequencies.

Our two-stage framework provides a way to define an adaptive dampiegecfor information
retrieval models that have a probabilistic interpretation, such as tlwe Bayes classifier. In the
standard nive Bayes classifier, each class is assumed to be associated with a multinotmial-dis
tion over words, and the words that appear in each document are aksubgedrawn independently
from that distribution. This model can be used as the generator for atage-sodel, with an adap-
tor such as the PYCRP being used to guarantee that the resulting wanéricgodistribution has
statistical properties closer to natural language. This is essentially the nesdkiruour analysis in
Section 6.1, where we show that multinomial generators estimated using this anedsilar to
those that damp word frequencies. Evidence that this approach shadillgood empirical results
comes from the work of Elkan (2006), who used a Dirichlet compound muftialomodel (which
is a special case of our framework, as noted above) to improve periomn several information
retrieval tasks.

More complex machine learning models that have been applied to text alsa tusce be-
tween representing documents in terms of types or tokens. For examplé Datehlet allocation
(Blei et al., 2003) treats each document as a “bag of words”, repiexsdy a vector of word fre-
guencies, as does its nonparametric analogue based on the hierddatitddt process (Teh et al.,
2005). In contrast, a recent hierarchical nonparametric Bayesiarlrhaded on the beta process
treats documents as binary vectors of word types (Thibaux and J&@@n). It is straightforward
to define a two-stage model in which LDA is used as a generator, which vproldde a way
to automatically interpolate between these two extremes. Probabilistic inferetitis model is
comparable in computational complexity to the Gibbs sampling scheme commonly itisedDd
(Griffiths and Steyvers, 2004): to return to the restaurant metaphdralee, while a new random
variable is introduced for each word indicating the table from which it is drae number of
random variables that need to be sampled in the LDA model scales with theuotaken of tables
rather than the total number of words.

9.2 Extending the Framework to Other Linguistic Structures

We argued briefly above that the tendency of irregular forms to dominapeigstatistics is not
specific to the problem addressed here, but can be expected to ocoanjnlinguistic learning
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tasks. Similarly, nearly all probabilistic models used for language learningt(nuably, hidden
Markov models and PCFGSs) encode strong independence assumptionstsitfitzse in our mor-
phology generator model. Thus, we extrapolate from the results of periexents to suggest that
using the PYCRP or other power-law adaptors in combination with more sthnuzaels as gen-
erators may be able to improve unsupervised learning in many areas ohtgngumdeed, in other
recent work we have developed several two-stage models for ledimgugstic structure, achieving
results comparable to, and in some cases better than, the best existing s¥steexample, adap-
tor grammars (Johnson et al., 2007) combine a PYCRP adaptor with a PClEGige to create
a model for learning linguistic tree structures without the strong indepeedassumptions made
by a standard PCFG. The adaptor effectively caches entire subtrélest$requent structures can
be reused, and will be assigned probabilities that are higher than thegprafdthe PCFG rules
that would be needed to create them anew. Although PCFGs are typicalbjaies with syntactic
constituency structure, they can also be used to express other typesuidtimgelationships, and
adaptor grammars have been used to learn word segmentation, syllalfers{romrphology, de-
pendency parses, and named-entity clusters (Johnson et al., 2663pdp2008a,b; Johnson and
Goldwater, 2009; Cohen et al., 2010; Elsner et al., 2009). In fact, iten possible to express the
standard LDA model using the adaptor grammar framework (Johnso@).201

In addition to adaptor grammars, the two-stage framework provides thedfasisther recent
model for learning trees, independently introduced by Cohn et al. 26@8t and Gildea (2009),
and O’Donnell et al. (2009% This model can be viewed as a generalization of the adaptor grammar.
In an adaptor grammar, all trees produced by the generator are comyitategrminal symbols at
all leaf nodes. In contrast, the model presented by the authors abowes #fle generator to pro-
duce incomplete tree fragments@ementary treeswith either terminal or non-terminal symbols
as leaves. It therefore instantiates a nonparametric Bayesian mode¢-autrstitution grammar
(Joshi, 2003). So far, the model has been used in NLP research weitrde-substitution gram-
mars from parsed sentences (Cohn et al., 2009; Post and Gilded,&@D® induce dependency
structure from strings (Cohn et al., 2010). It has also shown promigeraxiel of human language
processing, with applications to children’s acquisition of syntax (O’'Dérateal., 2009) and adult
morphological processing (O’'Donnell, in preparation).

9.3 Strategies for Scaling to Larger Corpora

Using the two-stage framework with adaptors based on the CRP introdpotsrdially challenging
problem of probabilistic inference. In these models, each word is assdeigth a random variable
indicating its source (or the table from which it was generated, under steeurant analogy). The
number of random variables in the model thus grows linearly with the numbeorals. While this
is not unusual for probabilistic models of language that involve latenthlasgfor example, LDA
has the same property), it means that alternatives to the simple Gibbs sampdirithaigve used in
our morphological segmentation example will need to be developed in ordpplpthese models
to large corpora of the kind used in modern machine learning and computdithgnestics. There
are three strategies for dealing with this scaling problem: using the two-stagework to justify
heuristic approximations but not explicitly performing inference, explorengitelization schemes,

15. There are actually very slight differences in formulation betweemib@el introduced by O’Donnell et al. (2009)
and the other two, but they are conceptually similar.
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and applying approximate inference techniques such as variationancter We consider these
options in turn.

Part of the motivation for our detailed treatment of the relationship betwedwotstage frame-
work and existing smoothing methods was to point out that these highly sfigclce®thods can be
viewed as heuristic approximations to a model that makes reasonable asssmapbait the struc-
ture of natural language. Kneser-Ney smoothing approximates a simpiesdion of our two-stage
framework, suggesting that it might be possible to derive similar heuristioajppations for more
complex models. Some very simple approximations aremimemal and maximalschemes dis-
cussed by Cowans (2006) and Wallach (2008) in relation to other Baylesiguage models. These
make the respective assumptions that only one token of each type is doawithe base distribu-
tion, or that all tokens of each type are drawn from the base distributionekkr, the prospect of
developing better approximations to more complex models seems promisinga#igpggen recent
results on the approximate and asymptotic properties of discrete modelsdrates Pitman-Yor
process (e.g., Teh, 2006a; Buntine and Hutter, 2010). One strategptying two-stage models
to large corpora may thus be to avoid performing inference explicitly, anddadsderive approxi-
mations based on these results.

A second strategy is parallelization. As noted above, the property thatsnpakbabilistic
inference potentially problematic in two-stage models—the number of latenblesiacreasing
linearly with the number of words in a corpus—is shared with other probabilistidels such as
LDA. Parallelization has proven to be an effective strategy for applyingatsaaich as LDA to very
large corpora (e.g., Newman et al., 2009). Recent work has alreadyiesd how parallelization
can be used to increase the scale of the corpora on which language ivagkzison the Pitman-Yor
process can be applied, making it possible to use these models on a compaising 200 million
words (Huang and Renals, 2010).

Finally, variational inference presents a third avenue for developingstage models that can
be applied to large corpora, trading the stochastic approximation prodhyc&itbbs sampling for
a deterministic approximation to the posterior distribution over the latent variabkke model.
Recent work has focused on applying this strategy with adaptor gramwiaicd) can be used to
express many two-stage models as noted above. This work suggestarihbwal inference may
yield a different pattern of scaling in the computational cost of using thesteisianaking it more
plausible that they can be applied to large corpora (Cohen et al., 2010).

10. Conclusion

In this paper we have introduced a framework for developing statisticatlmad language that
breaks those models into two stages: one stage in which a basic set of ititals generated,
and one stage in which the frequencies of those items are adapted to mattztiishiea structure

of natural language. This two-stage framework solves two basic prodtemssatistical models

of language: defining models that can generically exhibit power-lawuéecy distributions, and
understanding how the observed frequencies of words should beedantpen estimating param-
eters. Surprisingly, our work shows that these two problems are diret#ited, with damping of

frequencies falling naturally out of our framework when we take into actthe possibility that

a secondary “rich-get-richer” process might be responsible for dthesplaw distribution in word

frequencies.
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More generally, the framework we have introduced in this paper illustratesitheas from
nonparametric Bayesian statistics can be valuable in the context of compalditiguistics. The
key innovation in nonparametric Bayesian statistics is the idea of defining moikelpotentially
infinite complexity, allowing the structures recovered by those models to gsowmcge data are
observed. In many ways, computational linguistics is the ideal applicationsatlda, since larger
corpora always bring with them new vocabulary items, new constituerdsy@m constructions to
be incorporated into a model. Recent work provides many other exampjgssting that nonpara-
metric Bayesian statistics and natural language may be well suited to onergBathket al., 2002;
Liang et al., 2007; Goldwater et al., 2006a,b; Teh et al., 2005; Teh,&20060hn et al., 2010) and
we anticipate that this relationship will continue to be fruitful.
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Appendix A. Details of Table Count Approximation Experiments

The generator used in this model was assumed to be a multinomial distributioB0y¢é#r word
types, with¢ being the probabilities assigned to these types. Estimatignveds performed using
Markov chain Monte Carlo. Taking a symmetric Dirich[&tprior over, the posterior distribution
overd givenw and a particular value afand/ is Dirichlet with hyperparameters,, + 3, wherem,,

is the number of lexical items corresponding to the word tyg§e. the number of tables on whigh
appears). The mean probabilitywsiunder this distribution is proportional ta, + 3. Consequently,

we can compute the posterior meanpdby drawing samples of and¢ from P(z,£|w), computing

the mean probability of each word typegiven each of these samples, and then averaging the results
across samples.

To draw samples frorR(z,£|w) we used a Gibbs sampling procedure very similar to that used
with the morphology model in the main text. Since the lexical items had no interngkasait was
only necessary to sample the table assignmeiutr each word token in the corpus in each sweep
of sampling. This was done by drawing a value from the distribution

R . 1(£,=w) (" —a) 1<
Pz =2z-i,w,€(z-)) D{ P(6, = w)(K(z_)at+bh) z—

z<K(z-)
K(z-i)+1
wherez_; is all zbut z, ngz*i) is the number of timesoccurs inz_;, K(z_;) is the number of unique
values inz_;, anda andb are the parameters of the PYCRP adaptor (the CRP adaptor was simulated
by takinga = 0, in which casé plays the same role ag. P(¢, = w;) was obtained by integrating
over the posterior distribution angivenz_; andé(z_;), namely(my, +B)/ S w(mwx+B).

A total of 1000 sweeps of sampling were conducted for each adaptbtharposterior mean
of ¢ was computed for each sweep, which involved finding the mean numbericdllextries for
each word typev. These values where then averaged over the last 500 iterations ditigctre
initial sweeps to allow convergence of the Markov chain. The results showigure 6 are thus
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the posterior mean of the number of lexical entries assigned to each wadjitygn the corpus
w, and provide an indication of how word frequency translates into theiémcjes from which the
generator is estimated in this model.

Appendix B. Phonemic Symbols

The following ASCII characters are used in the phonemic transcriptiongiBibwn-Morgan cor-
pus, which was used as input to the morphological learner in Section 8.2.

Consonants Vowels
| ASCIl  Example| ASCIl Example| [ ASCIl Example| ASCIl Example]
D THe k Cut & thAt e bAY
N SiING | Lamp 1 hopelEss| i bEE
S SHip m Man 6 About 0 bOAt
T THin n Net 7 bOY u bOOt
yA aZure p Pipe 9 flY
C CHip r Run A bUt
b Boy S Sit E bEt
d Dog t Toy I blt
f Fox v View 0 IAW
g Go w We Q bOUt
h Hat y You u pUt
j Jump z Zip a hOt
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