Journal of Machine Learning Research 12 (2011) 455-490 Steahs/10; Revised 1/11; Published 2/11

Posterior Sparsity in Unsupervised Dependency Parsing

Jennifer Gillenwater JENGI@CIS.UPENN.EDU
Kuzman Ganchev KUZMAN @CIS.UPENN.EDU
Joao Graga GRACA@CIS.UPENN.EDU

Department of Computer and Information Science
University of Pennsylvania

Levine 302, 3330 Walnut St

Philadelphia, PA 19104, USA

Fernando Pereira PEREIRA@GOOGLE.COM
Google Inc.

1600 Amphitheatre Parkway

Mountain View, CA 94043, USA

Ben Taskar TASKAR@CIS.UPENN.EDU
Department of Computer and Information Science

University of Pennsylvania

Levine 302, 3330 Walnut St

Philadelphia, PA 19104, USA

Editor: Mark Johnson

Abstract

A strong inductive bias is essential in unsupervised gramnahction. In this paper, we explore
a particular sparsity bias in dependency grammars thatueages a small number of unique de-
pendency types. We use part-of-speech (POS) tags to grqagmdencies by parent-child types
and investigate sparsity-inducing penalties on the pistdrstributions of parent-child POS tag
pairs in the posterior regularization (PR) framework of @rat al. (2007). In experiments with 12
different languages, we achieve significant gains in déetttachment accuracy over the standard
expectation maximization (EM) baseline, with an averageieacy improvement of 6.5%, outper-
forming EM by at least 1% for 9 out of 12 languages. Furtheentite new method outperforms
models based on standard Bayesian sparsity-inducing péeaipriors with an average improve-
ment of 5% and positive gains of at least 1% for 9 out of 12 laggs. On English text in particular,
we show that our approach improves performance over otatr-ef-the-art techniques.

1. Introduction

We investigate unsupervised learning methods for dependency parsimdsrttoat impose sparsity
biases on the types of dependencies. We assume a corpus annotateattwifhspeech (POS) tags,
where the task is to induce a dependency model from the tag sequencesgfos sentences. In
this setting, thaypeof a dependency is defined as a simple pair: tag of the dependent (alsa kn
as the child), and tag of the head (also known as the parent) for thatdpe Given that POS
tags are typically designed to convey information about grammatical relatidaseasonable to
expect that only some of the possible dependency types would be refalizaty given language.
For instance, it is ungrammatical for nouns to dominate verbs, adjectivesimate adverbs, and
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determiners to dominate almost any part of speech. In other words, tiEededependency types
should be a sparse subset of all the possible types.

Previous work in unsupervised grammar induction has mostly focusedioevany sparsity
through priors on model parameters. For instance, Liang et al. (2B0iKgl et al. (2007) and John-
son et al. (2007) experimented with hierarchical Dirichlet processrammd Headden Il et al.
(2009) proposed a (non-hierarchical) Dirichlet prior. Such priesrparameters encourage a stan-
dard generative dependency parsing model (see Section 2) to limit theenointependent types
for each head type. Although not focused on sparsity, several stilndies use soft parameter shar-
ing to constrain the capacity of the model and hence couple different tfplependencies. To this
end, Cohen et al. (2008) and Cohen and Smith (2009) investigatedrad¥lagistic normal prior,
and Headden lIll et al. (2009) used a backoff scheme.

Our experiments (Section 6) show that the more effective sparsity pattene ithat limits the
total number of unique head-dependent tag pairs. Unlike sparsityiimglparameter priors, this
kind of sparsity bias does not induce competition between dependentftypeach head type.
Our experiments validate that this translates into accuracy improvements.ekcafit one of the
60 model settings we try for English, we observe higher accuracy thanthéthestsetting for a
parameter prior baseline. In our multi-lingual experiments, we similarly obseraverage absolute
accuracy gain of 5%.

As we show in Section 4, we can achieve the desired bias with a sparsityaiohen model
posteriors, using the posterior regularization (PR) framework (Gragh,€2007; Ganchev et al.,
2010). Specifically, to implement PR we augment the maximum likelihood objectitreeajener-
ative dependency model with a term that penalizes distributions overdegmhdent pairs that are
too permissive. We consider two choices for the form of the penalty, lao experimentally that
the following penalty works especially well: the model pays for the first timelétcte a word with
tagc as a dependent of a head with tagafter that, choosing a the same head pefgr any other
occurrence ot is free. While Ravi et al. (2010) also attempt a direct minimization of tag pairs fo
supertagging application, they do so with a two-stage integer program #pdlied after likelihood
maximization is complete.

The remainder of this paper is organized as follows. Section 2 reviewsetieragive model
for dependency parsing. Section 3 illustrates why the expectation-maxinmizaiming method
is insufficient and motivates sparse posteriors. Section 4 describembipavith PR constraints
and how to encode posterior sparsity under the PR framework. Sectiom@arizes previous
approaches that we compare to in our experiments, focusing in particulaiteampts to induce
sparsity via a parameter prior. Section 6 describes the results of dewynursing experiments
across 12 languages and against recent published state-of-tiestdts for the English language.
Section 7 analyzes these results, explaining why PR manages to learnotfferrmethods fail, and
Section 8 concludes. The model and all the code required to reproduerghriments are available
online atcode. googl e. con p/ pr-t ool ki t, version 2010.11.

2. Parsing Model

The models we consider are based on the dependency model with val¥Evisg 6f Klein and
Manning (2004). We also investigate extensions to the DMV borrowed fvtw@Glosky (2008)
and Headden Il et al. (2009). These extensions are not crucialrtexperimental success with
posterior regularization, but we choose to explore them for better casopawith previous work.
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Pstop (fIV,7,f)
Pstop (FIN,L,f)
pstop(FIV,LF) Pstop(fIN,1,t)
penata(NV.D pront (V) penita(ADJIN,) penita(N|N,1) Penita(N|Vir)
N v ADJ N N

Regularization fixes many ambiguity problems

Figure 1: Example of a dependency tree with DMV probabilities. Right-dépatis of a head are
denoted byr, left-dependents by. The letterst and f denote ‘true’ and ‘false.” For
example, inpsiop(f | V.1, f) the f to the left of the conditioning bar indicates that the
model has decidedot to stop, and the othef indicatesV doesnot yet have any right
dependents. Note that tipgp(t | ...) are omitted in this diagram.

As will be discussed in the experiments section, both for the basic and faxthaded models
accuracy can be increased by applying posterior regularization. Isehtsn we briefly describe
the basic DMV model. Description of the extended models is deferred untikpgeFienents section.

The DMV model specifies the following generative process. For a seatamsisting of POS
tagsx, the root head POBXx) is generated first with probabilitgoot (1 (X)). For example, in Figure
1 this corresponds to generating Wevith probability proot (V).

After generating the root, the model next generates dependents ofatheFiost, it generates
right dependents. It decides whether to produce a right dependeditioned on the identity of
the root and the fact that it currently has no other right dependentsurlexample, this decision
is represented by the probabilifkiop(f | V,r, f). If it decides to generate a right dependent, it
generates a particular dependent POS by conditioning on the fact theeatld>OS is(x) and that
the directionality is to the right. In our example, this corresponds to the pilapaniig(N | V,r).
The model then returns to the choice of whether or not to stop generatintgdegendents, this
time conditioned on the fact that it already has at least one right dependeour example, this
corresponds to the probabilifystop(t | V,r,t), which indicates that the model is done generating
right dependents df.

After stopping the generation of right dependents, the model generfitéspgendents using the
mirror image of the right-dependent process. Once the root has gethatbof its dependents, the
dependents generate their own dependents in the same manner.

We follow the convention that the model generates dependents starting witghtraost one,
moving inward (leftward) until all right dependents are added, then ieggas the leftmost left
dependent and moves inward (rightward) from there. This is exemplifi€dgitre 1, where the
leftmost dependent of the finkl is genlerated before the other left dependent. This convention has
no effect on the final probability of a parse tree under the basic DMWae+er, as we will note in
the experiments section, it does affect dependency tree probabilitiesertdreded model.
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3. Learning with EM

The baseline for evaluating our sparse learning methods is the expectationizagéion (EM) al-

gorithm (Dempster et al., 1977). Before the empirical comparison in Sectinm@ introduce here

some notation and review the EM algorithm. In what follows, we denote the emtia&eled corpus

by X = {x%,...,x"}, and a set of corresponding parses for each corpus senteivce y*,...,y"}.
The EM algorithm is a popular method for optimizing marginal likelihood:

L(6) = IogZ Pe(X,Y).

We briefly review the interpretation of the EM algorithm given by Neal andidtin(1998), as
this interpretation best elucidates how the posterior regularization methotowese in Section 4
is a natural modification of the basic EM algorithm. Neal and Hinton (1998) &&fvas block
coordinate ascent on a function that lower-bound@). We form the lower bound, denot&dq, 0),
by applying Jensen’s inequality 10(8):

_ po(X,Y) po(X,Y) _
—Iogzq(Y) 3 zzq(Y)log =F(q,0).
Splitting up the log terms, we can then rewiitég, 6) as
F(q zq )10g(ps(X)pe(Y | X)) Zq )loga(Y
al > (1)
Zq Y)log Bo(Y | X)
= L(8) =KL (q(Y) [ pe(Y \ X))

Based on this formulation, we can view EM as performing coordinate ascentq,0). Starting
from an initial parameter estima@8, the algorithm iterates two block coordinate ascent steps until
a convergence criterion is attained:

E:qft= argqmaﬂq, 6') = argqminKL (Q(Y) || per(Y | X)),

M : 8! = argmaxF (g, 8) = argmaE 41 [log pe(X, Y)]. 2)
0 0

Note that the E-step just sefs(Y) = pg (Y |X), since it performs an unconstrained minimization
of a Kullback-Leibler divergence.

Figure 2 illustrates the large mismatch between an EM-trained DMV model andnbicical
statistics of dependency types. We will eventually show that posteriotamégation reduces the
mismatch much more successfully than approaches based on parameser prior

4. Learning with Sparse Posteriors

We stated in the introduction that posterior regularization makes gains cselifeamethods such
as EM by inducing sparsity in the posteriors. Before discussing how to kearodel with sparse
posteriors, we wish to further motivate the idea. The main intuition behind ourotheshthat a
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useful grammar should only allow a relatively small subset of all possilsenp&hild relations. If
we were asked to parse the tag sequdédicéD] N V, the dependency tree with V as root, N as its
child, and the remaining DT and ADJ as N's children is almost forced on es. ifvthe English
grammar allowed all possible parent-child relations, you would have hadnsidar 30 different
(projective) parse trees before selecting the correct one. Knoe/leidgnlikely relations simplifies
parsing for us. Thus, in this work we attempt to limit grammar ambiguity by inducigigenmar
that allows only a sparse set of possible dependency relation types.

Empirical evidence that good grammars have sparse coverage of #iblpgarent-child rela-
tions can be seen in Figure 2. The grid corresponding to supervisathetar settings has many
white squares, which illustrates that many parent-child relations shouldzbawgosterior. Notice
also that while some parent tags can take many different child tags, soard tsgs can take just
a few child tags, and some tags cannot be parents; the number of alloilcethgs spans a wide
range. These empirical properties are not captured by previous attemgtbieve model spar-
sity with hierarchical Bayesian models, which push eaabhparent tag to allow only a few child
tags. Instead, the modeling framework should simply favor models with higiaibvatio of white
squares to blue squares.

The foregoing argument leads us to seek learning methods that will peledimed distribu-
tions pg(Y|X) that predict a large number of distinct dependency types. In the netibisewe
discuss different ways of counting dependency types, corregppiai slightly different measures
of ambiguity. In Section 4.3, we will explain how to use those measures as mot@a-penalties
on distributions over dependency trees.

We will then discuss how to apply the posterior regularization (PR) franle@draca et al.,
2007; Ganchev et al., 2010) to achieve the desired sparsity in grammatiorduThe approach,
reviewed in Section 4.2, is closely related to generalized expectation dats{Mann and McCal-
lum, 2007, 2008; Bellare et al., 2009), and is also indirectly related to adgay®iew of learning
with constraints on posteriors (Liang et al., 2009). The PR framework c@estraints on poste-
rior expectations to help guide parameter estimation. It allows for tractabl@rgaand inference
even when the constraints it enforces would be intractable to encodéydasadditional model
parameters or structure. In particular, PR allows a natural representétive dependency sparsity
constraints based on the ambiguity measures described below. For a mpletecanalysis of PR
and its application to a variety of NLP tasks, we refer the reader to Gamttadyv(2010).

4.1 Measures of Ambiguity

We now describe precisely how to count dependency types, which wil aidto specify different
kinds of dependency sparsity. For each child¢abeti range over some arbitrary enumeration of
all occurrences of in the corpus, and lgh be another tag. The indicat@gpi(X,Y) has value 1 if

p is the tag of the parent of théh occurrence o€, and value O otherwise. The number of unique
dependency types is then given by:

3 maxgen(X,Y), ©)
cp

where we sum over child-parent typeg, computing the maximum (logical or) over possible oc-
currences ot < p dependencies. Note that there is an asymmetry in this way of counting types:
occurrences of the child typeare enumerated with but all occurrences of the parent typare

or-ed in@cp;, that is,@pi is 1 if anyoccurrence of tag is the parent of théh occurrence of tag.

See the top sentence in Figure 4 for an example of this; there the noun chi&P®iB sequence N
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[} =1

E v NV1
Sparsity i r}

g — Pvwva Env =max(®nvi, Pyve)
Sparsity  is working £VV = max(@vvﬂ =1

Ean =max(Pan1) =1
\ [} =1 =3

Voani i NV2 %):ﬁcp

Use good grammars

d =1
VvV |ADJ N ANT

Use good grammars

Figure 3: Thel,/l., ambiguity measure for a toy example with gold parse trees. @t =
Eql@cpi]. For simplicity we ignore the root: ¢ edges here, though in our experiments
we incorporate their probabilities alsbeft: Two gold parse trees with two (hon-root)
children each. Edges in the trees have probability 1, and all other edgeshgity O.
Right: Computation of the grammar ambiguity measure, which is 3 in this case. The
same result can also be obtained usprg; instead.

V V is considered, and the probabilities of each of its possible parentsiamaed into one factor,
dnv1, Since the parents are both of the same ty¥e We use PR-AS, asymmetric PR, to refer to
PR training with constraints based on this ambiguity measure.

Instead of counting pairs of a child token and a parent type, we couldohbve counted pairs
of a child token and a parent token by lettipgange over altokensrather thartypes In that case,
each potential dependency would correspond to a different indiggdgrand the penalty would be
symmetric with respect to parents and children. We use PR-S, symmetric RRerttworPR training
with constraints based on this measure. The number of unique depertgipasyin this case is
given by:

> max@epij(X,Y).

cp
On actual dependency trees, where each child has a unique pareA§ BRI PR-S always yield
the same value. However, the values may be different when working wittibdisons over edge
types instead, as exemplified in Figure 4. Both PR-AS and PR-S perfagnwed. One approach
is not clearly better than the other when compared across the twelve lasggagve report results
for both versions in the results section.

In addition to PR-AS and PR-S, there is in fact a third way of counting—amathymmetric
method. For PR-AS all parent tokens are collapsed, but we could afsideo the case where all
child tokens are collapsed. Then the number of unique dependencywyppésbe:

> max@epj(X,Y).
cp !
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PR-Asymmetric

PR-AS PR-S Env =max(®nvi, Pyva) =1
- dyyr =1 dyyi11 = 0.3 vy =max(Pyn2) =04
/OJ\ dyviz = 0.7 fvv =max(Pyy2) = 0.6
rﬂ/ v v Enva =max(Pya2) = 0.5
Sparsity s working fAV _ maX((I)Avl) —06
Py N2 =04 | Pyno =04 éaN =max(®Pan1) = 0.4

/—\ Py o =0.6 dyyo1 = 0.6 chp =3.5
N v cp

dna2 =05 Ppna21 =0.5 PR-Symmetric
& Pny2 =05 | dyy23 =05 Env =max(®yvii, Pnviz, Pnvas) = 0.7
IY A.?:‘I/‘_;Hun Evn =max(Pyn21) = 0.4
&vv =max(Pyya1) = 0.6
0.6 q)AV1 =0.6 q>AV13 =0.6 fNA — maX(<I>NA21) =05
v [aDi] N Pan1 =04 | Pan12 =04 €ay =max(Pay13) = 0.6
Ust yood —grammars §AN = maX(q>AN12) =04
> p =32
cp

Figure 4: Thel1/{, ambiguity measure for a toy example using edge posteriors. Pggt=
Eql@cpi], and similarly®cpij = Eq[@cpij]. For simplicity we ignore the roots ¢ edges
here, though in our experiments we incorporate their probabilities also.tiih®0OS
tag sequences considered are the same as in 3; we also consider thewaohddren
here for easy comparison. In this unsupervised setting, instead of galsl we have
an example posterior distribution over parents for each child. We illustratputation
of the grammar ambiguity measure for both PR-AS (left), and PR-S(rightceSial
grammars tend to have few edge types, it should make sense tHay theof the set of
supervised trees in 3 was smaller.

This type of counting leads however to some unintuitive results. For instaonsider a parse tree
consisting of a verb with two noun children. Thegry1 = 2. This does not correspond to a count
of unique parent-child pairs, so it does not serve our ultimate goal ags/BIR-AS or PR-S. Hence,
we do not experiment with this ambiguity measure in this work.

4.2 Posterior Regularization

Having defined several ambiguity measures, we now step back andbeeber general PR frame-
work. After this overview, we will show how to apply this general framekvto penalize with
respect to the specific ambiguity measures we defined. In general, HiR Gaen as a penalty on
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the standard marginal log-likelihood objective, which we define first as:
Likelihood objective: £(6) = logpg(X) +logp(0)
= 3 093 po(x.y)] +logp(6), )
Xe y

where8 represents the model parametey) is a (optional) prior probability on the parameters,
and the sum is over the unlabeled sample data. Recall that wetosgenote a single sentence’s
POS tags, anyg to denote a single hidden parse tree.

Here we present the penalty version of PR; Ganchev et al. (201&jilokes constraint-set ver-
sion of PR and give more details. In PR, the desired bias is specified withe#yen expectations
of featuresp. For any distributiorg over latent variables, we can define a penalty aitherm of
the feature expectations:

[|Eqlo0X, Y)]l|
whereY represents an assignment of parse trees for all sentences in theXofar computational
tractability, rather than penalizing the model’s posteriors directly, we usendhaay distribution,
and penalize the marginal log-likelihood of a model by the KL-divergemckenalty term with
respect tay. For a fixed set of model paramet&the PR penalty term we will use is given by:

Penalty term: minKL (q(Y) || pe(Y X)) + o |[Eqle(X, Y)]|[5 (%)

whereo is the strength of the regularization. As we will see, using an auxiliary disioitog will
make the final objective easier to optimize. Ganchev et al. (2010) dedwibdo compute this
penalty term in general, but we will defer that explanation to Section 4.3 wleedescribe our
particular penalty term. The PR framework seeks to maximize:

PR objective: J(8) = £(8) —rrain KL (q(Y) || pe(Y|X)) + oHEq[(p(X,Y)]HB} . (6)

The objective in Equation 6 can be optimized by a variant of the EM algorithem{@ter et al.,
1977) used to optimize the objective in Equation 4.

4.3 (1/¢. Regularization

The previous section gave the penalty version of the PR objective in tiegadease. We will now
show how the ambiguity measures we want to incorporate fit into this framew®plecifically,
notice that we can view Equation 3 as a mixed-norm penalty on the feaye® that the generic
 from Equation 5 becomes //.,. More precisely, we will penalize the following quantity: the
sum {1 norm) overc of the maximum (. norm) over occurrences afof the posterior probability

of selecting a parent with tagfor that child. To compute the value of the PR objective and also to
optimize it, we need to compute the projection:

arg minkL (a(Y) [po(Y[X)) + 0’5 maxEqlei(X.Y)]
cp

which can equivalently be written as:

Projection : min KL (q(Y) | pe(Y|X))+OZECp
W 7 (7)
S.t. ECP > EQ[(pCpI(XvY)] VC, p7i7
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wherea is the strength of the regularization, aég corresponds to the maximum expectation of
@cpi over allcandp. Note that the projection problem is convexgand can be solved efficiently in
the dual (just as for the maximum entropy/log linear model fitting). The formulatfdEquation 7
makes the derivation of the dual easier (see Ganchev et al., 2010 éowvatibn of the dual in the
general case). The dual of the projection problem is a fairly simple goopemization problem
with simplex constraints (scaled loy:

. - min | YIX Co(X.Y
PrOJeCtlon dua |)\|>|||| 09(; pe( ‘ )eXﬁ )‘ (p( ) )>>
.. Acpi < )
S EI cpis O

wheregis the vector of feature valuggy,; for assignmenY of parse trees to the entire corpisand

A is the vector of dual parameteks,. The optimal primal solution is related to the dual solution
by the equatiomg(Y) O pg(Y[X)exp(—X-@(X,Y)). We solve the dual via projected gradient, as
described by Bertsekas (1995). Note that projection onto the simplekramis can be done very
efficiently as described in Bertsekas (1995).

Wheno is zero, the projection is an identity mapping and the algorithm reduces to EM. Fo
intermediate values af, the constraints work to decrease the confidence of the highest fiiybab
parent tags for each child instance. For parent tags that are suppgrt@any high-probability
instances, this pressure is distributed among many instances and has litte Efe parent tags
that are supported by few high-probability instances however, theapilitly of these instances is
more severely reduced, which can (after several iterations of theithlgdreffectively eliminate
that parent tag as a possibility for the given child tag.

4.4 Optimization Algorithms

The optimization algorithm for the PR objective uses a minorization-maximizatiaregtwe akin
to EM. Recall that we defined the PR objective (Equation 6) as:

3(8) = £(8) —min |KL (a(Y) || pe(Y1X)) + 0| [Eql@(X, V][]
If we further define:
F'(0,8) = £(8) — [KL (a(Y) | Pe(Y|X)) + o] [EqeX,V)]|l5]

then we can express the PR objective in a form very similar to that of théopsdy introduced
lower bound on EM (Equation 1):
J(0) = mC?xF’(q,e).

This objective can then be optimized by modifying the E-step of EM to includB-@rm penalty:
Eqtl= argqmax:/(q, o) = argqminKL @(Y) Il pet(Y[X)) + o[EqleX,Y)]|[5-  (8)

The projected posteriorg*1(Y) are then used to compute sufficient statistics and update the

model’'s parameters in the M-step, which remains unchanged, as in Equatithischeme is

illustrated in Figure 5. The following proposition is adapted from Ganchex. €2010), who pro-
vide a version for hard constraints.
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Eqldlll

Figure 5: Modified EM for maximizing the PR objectivéd) via block-coordinate ascent on lower-
boundF’(q,8). E'-step minimizeKL (q(Y)||ps(Y X)) + 0 ||Eqe(X, Y)][5.-

Proposition 4.1 For the modified EM algorithm illustrated in Figure 5, which iterates Eestep
(Equation 8) with the normaM-step (Equation 2), monotonically increases the PR objective:
J(e+1) > J(eh).

Proof The proof is analogous to the proof of monotonic increase of the stamtMrdbjective.
Essentially:

JOH =F'(g"2,6h) > F/(d 8" > /(g1 8') = J(8").
The E’-step setsf ™! = argmay F’'(q,6'), hencel(6') = F'(q'*1,6"). The M-step set§'t!

argmayF'(q""1,8), henceF'(q1,6'1) > F/(g"",8"). Finally, J(8""1) = max,F’(qg,6'"?)
F’(q”l,et“).

| NAVANI

As for standard EM, to prove that coordinate ascenEiq, 8) converges to stationary points
of J(8), we need to make additional assumptions on the regularity of the likelihootidorend
boundedness of the parameter space as in Tseng (2004). This aoalybis easily extended to our
setting, but is beyond the scope of the current paper.

We note that optimizing the PR objective does take substantially longer than optirikailig
hood by itself. When optimizing likelihood, we can get the optimal posteriorafidE-step using
just one call to the inside-outside algorithm for each sentence. For PBhhthe function we are
optimizing in theE'-step is aKL plus a penalty term, so to find its minimum we have to follow
the negative gradient. Each step along the negative gradient requiedta the inside-outside
algorithm—several calls if the initial step size we try does not satisfy the Woliditions. Thus, it
might be better to use an optimization schedule witgrstep would not be fully optimized in ear-
lier iterations, perhaps taking just a single step along the negative gratifent, in latelE’-steps,
we could increase the precision of the optimization by taking more gradiec¢ntesteps (if they
are required to get close to the minimum). Fortunately, in practice we foundathi@ast for the
experiments in this paper, the optimization did not take so long that such auseheas necessary.
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5. Prior Learning Approaches and Model Extensions

We will compare PR to simple EM and to the methods of several previous studisction 6.
Before that, we review the theory behind the previous work.

5.1 Bayesian Learning

The main learning method we will compare with experimentally is Bayesian learriingusparsity-
inducing prior. We will also compare our accuracy to that achieved grabmethods that use other
priors. This latter comparison will be less direct though, as these priodstte@ncode linguistic
information at a finer-grained level.

Recent advances in Bayesian inference methods have been appliedtgiaMmar induction
with varying levels of success. These approaches have focusegkotirig linguistic knowledge
into the DMV by using a Dirichlet prior to sparsify parameters (Cohen et @D82Headden Il
etal., 2009), or using logistic normal priors to tie parameters (Cohen e0aB; £ohen and Smith,
2009). In the following subsections, we will review those methods; expatmheomparisons are
given in Section 6.

5.1.1 SPARSITY-INDUCING PRIORS

Dirichlet priors have been often used in DMV learning. More precise&y/pitior distribution of the
parameters of the DMV represented as a probabilistic context-free grafR@RG) is specified as
a product of Dirichlets:p(6) = [acw, D(8a;0a) where the underlying CFG 6 = (W,Vr,R S
with Vy, Vr, andR a set of non-terminals, terminals, and rules, respectively Sendtart symbol.
(See Smith, 2006 for a detailed encoding of the DMV as a PCFG.) Each Ditrinttlds prior has

the form:
1

D(GA;Q(A):Z I—l 6A<B)UA—>B_1’
B:A—BeR

whereZ is a normalization term and ttees are hyperparameters.

The true posterior over the parametep&d|X) O Sy p(Y,X|0)p(8), is generally multi-modal
and intractable to compute. The typical variational approximation is to defia@pmoximate fac-
tored posterior over both parameters and latent variab(&s,8) = q(Y)q(8), and use mean-field
updates to minimiz&L (q(Y)q(8)||p(Y,6|X)) . As shown by Kurihara and Sato (2004), this can
be done efficiently with the product of Dirichlets type of prior. Assuming theenparameters of
the prior are fixed, the coordinate descent algorithm for updaf(iNg, q(6) is similar to EM. In the
E-like-step, inference fo¥ is performed using the approximate mean paramé&ets,[6]. The
M-like-step is a slight modification to the standard BMstep, both shown below:

EM M -step 8,1 (B) O Eqa[#asp(Y)],
Dirichlet M -like-step :@A“(B) O exp(W(Eq 1 [#asp(Y)] +0asp)),

wherey is the digamma function. As Figure 6 illustrates, @yfx)) is upper bounded by = x.

That s, it slightly discounts the value rfthough by no more than 0.5, gs- x— 0.5 lower bounds

it. Thus, exgy(x+a)) is similar to addingr — 0.5 tox. For anya < 0.5, this encourages parameter

sparsity in theDirichlet M -like-step, since smal will get squashed to zero by the digamma.
This Dirichlet prior method is applied in several previous studies. Cohah £008) use this

method for dependency parsing with the DMV and achieve improvementdasear EM. They set
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Figure 6: The digamma function.

Step Learning Method | Formula
Standard EM gttt = argmin, KL (q(Y) || pe(Y X))
E-like | Dirichlet Prior Same as standard EM, but withreplacinggt
PR g =argmin KL (q(Y) || per(Y|X)) + o|[Eq[@(X,Y)]||
Standard EM 61 O Ego1 logpe(X,Y)]
M-like | Dirichlet Prior 61 0 exp((Eq1 [log (X, Y)] +a))
PR Same as standard EM

Table 1: E-like and M-like steps for the three main learning methods we corimptdnie work. The
main differences are that PR changes the standard E-step to add a permajtwhile a
Dirichlet prior changes the standard M-step to add pseudo-counts.

all hyperparameters to 0.25, resulting in a sparsifying prior (this is the me#feded to as VB-
Dirichlet in their work). In this paper we will refer to our own implementation a$timethod as the
“sparsifying Dirichlet prior” (SDP) method. We will show experiments agmdyit to both the DMV
and the E-DMV. In particular we will show that while it achieves parametarsty, this is not the
optimal sparsity to aim for in dependency parsing. Intuitively, sparsitpcafd(c | p,d) means
requiring that each parent tag has few unique child tags. But as thevagaegrid in Figure 2
illustrates, some parents should be allowed many different types of chiléi@mmexample, VBZ,
VBD, VBP, VB, IN, NN, etc. all should be able to have non-zex@iq(c | p,d) for manyc. We
will show that posterior regularization is one way to achieve a better typgao§isy.

Headden Il et al. (2009) also use a Dirichlet prior to train both the DM #re E-DMV.
However, they set all hyperparameters to 1, so their prior is not aimededifying. It nevertheless
produces different results than standard EM because it sets parama&terding to the mean of the
posteriorq(0) instead of the mode. We will refer to this (non-sparsifying) Dirichlet priothod as
DP in the remainder of this paper. We have now covered the two learning dsetlewill directly
compare to, EM and Dirichlet priors, so we summarize their respective EatikeM-like steps
along with those of PR in Table 1 for ease of comparison.
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5.1.2 RRAMETER-TYING PRIORS

In addition to Dirichlet priors, other types of priors have been used, lyalogistic normal priors
(LN) (Cohen et al., 2008) and shared logistic normal priors (SLN) @Dadnd Smith, 2009). While
the SDP aims to induce parameter sparsity, LN and SLN aim to tie parameterstobathall of the
methods have the same goal of favoring more concise grammars. By tyingegiara for different
tags, the grammar is not really as ambiguous as the full range of possihtagter settings would
suggest.

The LN prior has the fornp(8) = Macw, N(Ha,Za), Wherepa is a mean vector ankla is a
covariance matrix for a normal distribution over the PCFG rules with lefthatedts The>a allow
rules with identical lefthand sides to co-vary, effectively tying thesematars. For example, LN
can tie the parametefgnig(c1 | p,d) and pehid(C2 | p,d). The SLN prior extends the capabilities
of the LN prior by allowing any arbitrary parameters to be tied. In this cagmmeters such as
Pehild(C | p1,d) and pehiig(C | p2,d) can be tied even though they correspond to PCGF rules with
different lefthand sides. We compare in the experimental section agamst iesults from using
LN and SLN and show that our posterior regularization method prodiughetaccuracy results.

5.2 Other Learning Approaches

Several additional training alternatives have been proposed besgtesiBn methods. In particular,
we will briefly describe here four such methods: contrastive estimatiof), @Ewed determinis-
tic annealing (SDA), structural annealing (SA), and direct model minimizakioough an integer
program. We present an empirical comparison to the first three of thesedsethSection 6 and
show we can often achieve superior performance with posterior rézatian. The fourth method
has not yet been applied to the dependency parsing task we evaluat¢hswiork, so we defer
direct comparison.

The first approach, contrastive estimation (CE), has been used to tcpiiméar models on
unlabeled data (Smith and Eisner, 2005b,a). The basic idea is to maximize térfgllo

Syev exp(@- f(x,y))

; 9)
i1 Y (xy)en(x) <y €XPO - F(X,Y))

log

wheref is some vector of feature functions, aN¢x()) is a set o that are in the “neighborhood”
of x(). The intuition behind this method is that if a person chose to proatit@ut of all the
possiblex in N(x(), then we want to learn a model that assigns higher valué)t¢the numerator

in Equation 9) than to these othrr Restricting to a neighborhood is necessary for tractability,
and the choice of neighborhood can encode linguistic knowledge. Ronpe, for dependency
parsing Smith and Eisner (2005a) formed neighborhoods by deletingremyvord fromx(), or
transposing any two words.

Two other non-Bayesian approaches of note are skewed determinisgalany (SDA) and
structural annealing (SA) (Smith and Eisner, 2006). SDA biases tovgaatter dependency links
as in the K&M initializer, and flattens the likelihood function to alleviate the difficultgstaping
local maxima. Alternatively, SA biases strongly toward short dependimicyin early iterations,
then relaxes this constraint over time.

A final related learning approach is that of Ravi et al. (2010). Thiskvattempts to directly
minimize the number of tag bigrams for a supertagging task starting from thegepaiint of EM,
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then applying first one simple integer program, then a second more complgeriptegram. This
method is similar to ours in that instead of using a prior, it attempts a direct minimizétimg o
pairs. One natural way to adapt it to dependency parsing would be ¢odmawnteger program that
minimizes the number of parent-child tag pairs subject to the constraint thgtsm@ence can still
be assigned a complete parse tree. We do not compare to this propopgatiadalirectly, but
suspect that it would produce somewhat similar results to our PR methodifarence would be
that while PR is very tightly integrated with EM, trading off between EM and theyant@rogram
would not be as straightforward as tuning a single hyperparameter.

5.3 Model Extensions

Before discussing experimental results, we detour to describe the iextes the basic DMV that
we experimented with. We implemented three model extensions, borrowedvfo@tosky (2008)
and Headden Il et al. (2009). The first extension relates to the sti@pilities, and the second
two relate to dependent probabilities. With our experiments on these exterabils, we aim to
show that PR also achieves significant gains over other methods in a nrmopéezamodel space.

5.3.1 EXTENDING STOP PROBABILITIES

The first extension conditions whether to stop generating dependentg/gmadirection on a larger
set of previous decisions. Specifically, the probability of stopping in iqudeir direction depends
not only on whether there are any dependents in that direction alragdysb on how many. In the
example of Figure 1, this corresponds to changiggy(f | V., f) to psiop(f | V,r,0) and similarly
for all the other stop probabilities. The 0 in this case indicatesHas no other right dependents
when it decides whether to continue generating right dependents.

In later sections of this paper, when we talk about a model with maximum stopcyedethis
means we distinguish the cases 0£0..,S— 2, and> S— 1 dependents in a given direction. The
basic DMV has maximum stop valency 2 because it distinguishes betweery zavondependents
and at least one dependent in a given direction. A model with maximum skepcyeof 3 would
distinguish between having 0, 1, or at least 2 dependents in a particutatialr. In this case,
when a head generates more dependents in a particular direction afteroitsl skependent, the
stopping distribution it draws from will always be the same—for hpaahd directiord this will be

Pstop(- | P,d,2).

5.3.2 EXTENDING DEPENDENTPROBABILITIES

The second model extension we implement is analogous to the first, but appiependent tag
probabilities instead of stop probabilities. That is, we expand the set @il@s the model con-
ditions on when selecting a particular dependent tag. Again, what conditismhow many other
dependents were already generated in the same direction. For the exalfigierenl1, this means
Pehild(N | V,r) becomegchiig(N | V,r,0) and similarly for all othemehiig. In later sections of this
paper, when we talk about a model with maximum child valegBcthis means we distinguish be-
tween having 01,...,C— 2, and> C — 1 dependents in a particular direction. The basic DMV has
maximum child valency 1 because it does not make these distinctions.

This extension to the child probabilities dramatically increases model complepiggifigally,
the number of parameters grows@<T?). Thus, the third and final model extension we implement
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is to add a backoff for the child probabilities that does not condition on thaitgeof the parent
POS (see Equation 10).

With this model extension, the order in which dependents are generattiégcelevant to the
probability of an overall parse tree. We choose to follow the standarddsxgeneration order. In
cases where the identity of the rightmost and leftmost dependents havatergnduence on the
true stop probability than the inner dependents, this ordering will work to tleehscadvantage.
We do not investigate in this work which languages this holds true for, thauayinging this ordering
might be one additional way to increase parsing accuracy for some lgegua

5.3.3 GOMPLETE MODEL

Formally, under the extended DMV the probability of a sentence with POStagd dependency
treey is given by:

Pa(X,Y) =Proot(r (X)) x

[] Pstop( False| yp, Ya, Yue) Penita (Ye | Yp: Ya: Yo )

yey

|_| Pstop(true | x,left,xy ) pstop(true | x,right, x, ),

XeX
wherer (x) is the root tag of the dependency trgeés the dependency gf on heady, in direction
yd, andyy,, Vv, Xy, andxy, indicate valency. To formally define these last four variables, firallet
denote the model’'s maximum child valency andMgtlenote maximum stop valency. Further, let
acpd to be the number of,’s dependents that are further in directignthany., anday (axr) be the
total number of dependents of parartb the left (right). Then we can formally express the valency
variables as:

Yve = Min(Ve, acpd), Yve = Min(Vs, acpd),
Xy = min(Vs, ax), Xy, =Min(Vs, axr ).

In the third model extension, the backoff for the child probability to a prditibot dependent on
parent POSpchila (Ve | Yd, Vv, ), can formally be expressed by:

APenitd (Ye | Yps Yo Ve ) + (1= A) Penita (Ye | Yas Ve ) (10)

for A € [0,1]. In Headden IIl et al. (2009) is a learned model parameter. In our experiments,
we do not try to tuné\, but rather fix it at 3. This is a crude approximation to the value used
by Headden Ill et al. (2009). The way Headden Il et al. (2009ose the weightingl — A) for

the backoff is through a Dirichlet prior. To capture the intuition that evesds $ewer times should
be more strongly smoothed, this prior has hyperparameter ¥ataethe standard child probability
and value K for the backoff probability, wher& is the number of PCFG rules with a particular
nonterminal on the left-hand side. This ensures that the backoff gtidpabonly ignored when
enough examples of the full child probability have been seen. The priordahe backoff 2 to 1,
which is why in our approximation of this scheme we use weight1/3.

6. Experiments

In this section we present positive experimental results validating the PR dnéthSection 6.2 we
detail experiments with different regularization strengthen English and analyze the correlation

470



POSTERIORSPARSITY IN UNSUPERVISEDDEPENDENCYPARSING

Bg Cz De Dk En Es Jp NI Pt Se Si Tr
tags 11 58 51 24 34 17 74 162 19 31 26 P8
sentences 5K 24K 13K 2K 5K 04K 12K 7K 2K 3K 05K 3K
wordtypes | 11K 40K 20K 6K 10K 3K 2K 11K 7K 8K 3K 10K
word tokens| 27K 139K 77K 11K 37K 2K 43K 43K 14K 23K 3K 18K

Table 2: Training corpus statistics for sentences with lengtii®, after stripping punctuation. Bg
stands for Bulgarian, Cz for Czech, De for German, Dk for DanishfpEEnglish, Es for
Spanish, Jp for Japanese, NI for Dutch, Pt for Portuguese, Swledish, Sl for Slovene,
and Tr for Turkish.

between accuracy and the PR learning curves. The maximum accuramhiege is 64.5% using
an E-DMV with PR-S anay = 160. This is significantly above the best result of the SDP baseline,
which is only 53.6%. In Section 6.3 we present a summary of related work)@iteg to categorize
the many dimensions along which researchers have explored modificatites riwost basic EM
DMV setup. While direct comparison of accuracy numbers from all relatexdk is difficult, we
present evidence that combining PR with a few of those modifications (&ampbe random pool
initialization) would result in the best accuracy yet achieved, especiallgriger sentences. In Sec-
tion 6.4 we apply PR to 11 additional languages, using English to select thlaregtion strength.
Our multi-lingual results show that the PR method is indeed very broadly apjdicéveraging
over all languages, there seem to only be minor differences in accheagen PR-S and PR-AS,
and both produce approximately equally sparse grammars. Under the BRAXS beats the SDP
baseline for 10 out of 12 languages, Danish (DKk) and Swedish (8&) e exceptions.

We conclude this overview of the experiments with two key points that we lfest #R to be a
very useful and robust method for improving unsupervised depeyqersing:

e All except one of the 60 PR settings we try for English result in higher aoguihan thdoest
SDP setting.

¢ In our multi-lingual experiments PR makes an average absolute accuriacgfdi®o over
SDP for the DMV model.

6.1 Corpora

We evaluated our models on 12 languages—the English Penn Treebardkighaal., 1993) and 11
languages from the CoNLL X shared task: Bulgarian [Bg] (Simov et ab220Czech [Cz] (Boho-
mova et al., 2001), German [De] (Brants et al., 2002), Danish [DK] ifkaon et al., 2003), Spanish
[Es] (Civit and Marti, 2004), Japanese [Jp] (Kawata and BarteBQR®utch [NI] (Van der Beek
et al., 2002), Portuguese [Pt] (Afonso et al., 2002), Swedish [S&ddh and Hall, 2005), Slovene
[Si] (DZeroski et al., 2006), and Turkish [Tr] (Oflazer et al., 2008)pr English we trained on sec-
tions 2-21 of the Penn Treebank and tested on section 23. For the othaadgs, our training
and test sets were exactly those used in CoNLL X shared task. Following &nditBisner (2006),
we stripped punctuation from the sentences and kept only those sentérieagth< 10. Table 2
shows the size of the different training corpora after that filtering.
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6.2 Results on English

We start with a comparison between EM and the two sparsity-inducing methBdand the spar-
sifying Dirichlet prior (SDP), on the English corpus. For all models we tfam100 iterations.
Following Klein and Manning (2004), we use a “harmonic initializer”, whichwi# refer on this
paper as K&M. This initialization uses the posteriors of a “pseudo” E-stéptéd parameters: pos-
terior root probabilities are uniformpreet (r(x)) = ‘—i‘ and head-dependent probabilities are inversely
proportional to the string distance between head and depemwgRtlyc | Yp, Yd, Yv.) O ﬁ nor-
malized to form a proper probability distribution. This initialization biases therpatars to prefer
local attachments.

At the end of training, we smooth the resulting models by addif§to each learned parameter,
merely to remove the chance of zero probabilities for unseen events.igWetdother to tune this
value at all as it makes very little difference for final parses.) We scomelady the attachment
accuracy—the fraction of words assigned the correct parent—of Witeirbi (best) parses. We
compare the performance of all training procedures both on the origii& Bodel as well as on
the extended model E-DMV.

In Gracga et al. (2010), the authors found that for PR, projecting @tdieg consistently im-
proved results on the task of word alignment. Consequently, they alveagpute the projected
distributionq and decode using rather than the model distribution. In this work, we found that
projecting at decode time produced worse results. Thus, the followingise® not use projection
at decode time.

Following Cohen et al. (2008) we search for the best sparsifyingwyetexa for SDP training.
See Table 5 in Appendix A for more details on the searchofoiVe find as Cohen et al. (2008)
did that 025 is optimal for the DMV. SDP only achieves accuracy 46.4 in this settingeaed in
its best E-DMV setting\(s-Vc= 4-4, a = 0.1), it only reaches accuracy 53.6. These values are far
below most of the PR accuracies we will now discuss.

A comparison between EM and PR for both DMV and E-DMV are shown ineTabPR always
performs better than EM. We performed a grid search over regularizstiemgth (80 to 180 with a
step of 20), for both the PR-S (symmetric constraint) and PR-AS (asymmeitritraint) formula-
tions. A first observation based on Table 3 is that PR-S generally pesfoetter than the PR-AS.
Furthermore, PR-S seems less sensitive to the particular regularizatiogtstr€omparing PR-S
to EM, PR-S is always better, independent of the partiomjavith improvements ranging from 8%
to 16%. The PR-AS constraints are also always better than EM for eacH cowodiguration and for
all different parameter configurations. Note that the optimal pararmedepends on the particular
model configurationMs-Vc).

6.2.1 INSTABILITY WITH RESPECT TOO

We can give a little more insight as to why we see some instability in the results wibate®
the regularization strength. Figure 7 shows the accuracies on the Engligiisdroken down by
POS tag category. The plot shows that sharp changes in overalbagare in fact caused by even
sharper changes in the attachment accuracies of the tag categorieshdiili not be surprising,
given that whether using EM or PR, the objective has many local maxima véfhdgleys between
them. The problem continues to be very underspecified, and withoutikgdie “true” sparsity
pattern of a language, we can ultimately only achieve limited parsing accuracy.
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Model | EM || PR
DMV

o 80 100 | 120| 140, 160 180
2-1 45.8 PR-S| 60.5 60.962.0| 61.4| 61.4, 61.6
PR-AS| 53.8/ 54.3 55.3 543 546 546
VYA E-DMV

2-1 45.1 PR-S| 60.7 599 61,3 616 62.1 60.2
PR-AS| 51.6| 54.5 55.062.4|54.7| 545
2-2 54.4 PR-S| 62.4| 57.1| 57.8| 57.6 57.1 58.8
PR-AS| 56.0) 56.2 56.6 57.0 572 590
3-3 55.3 PR-S| 59.3 60.8 600 62,5645 64.1
PR-AS| 59.3] 60.0 60.3 60.f 558 579
4-4 55.1 PR-S| 594 612 61,6 63.%4.3| 63.6
PR-AS| 59,5/ 59.5 61.4 57.f 582 582

Table 3: Directed attachment accuracy results on the test corpus. Potgeats the best parameter
setting for the DMV model and for each of the E-DMV models. The first colaomtains
the V-V used. Columns represent differemfor both constraints PR-S on the left and
PR-AS on the right.
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Figure 7: The accuracy overall and for different POS tag types in tigtigh corpus as a function
of /1 /(. as we vary the constraint strength. EM Ha#/,, of 431.17.

6.2.2 LEARNING CURVES

The top half of Figure 8 shows how accuracy and the various objedlues change on a held-out
development corpus for the DMV. (In all experiments, we held out thell@8tsentences of each
training corpus for development; the numbers in Table 2 correspond tethised training set size.
As we will discuss below they were unfortunately not reliable for pickingdangprameters.) First
considering EM, we see that its accuracy is very stable after 20 iteratismsaximum value is at
80 iterations, but this is only marginally different from the value at 20 iteratidts corresponding
negative dev log likelihoood hits a minimum around 15 iterations, which corefaitdy well with
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accuracy, but then negative dev log likelihood steadily increases aifiefSi, while dev likelihood
would select a reasonable stopping pointin this case, it can hardly bte ggiderally correlate well
with accuracy. Next, considering SDP, we see its accuracy is mostly stgfter 25 iterations, yet
its negative dev log likelihood continues to steadily decrease long past iteB&tidr hus, the value
of the objective on the dev set for SDP does not provide a way to sefgicistopping point, nor
does it correlate particularly well with accuracy. Finally, considering W& see slightly noisier
accuracy curves that take a little longer to reach their maximums: around ited&ifor PR-S and
iteration 40 for PR-AS. The PR dev objective value curves matches travioelof the accuracy
curve fairly well and would select a good iteration for stopping. In summfarythe DMV, dev
likelihood would not be a bad proxy for selecting stopping points for EMRRd

However, the correlation is not as good when using the extended modielseuearning curves
are shown in the bottom half of Figure 8. For example, both PR-S and PBxp&ience large
jumps in accuracy that are not reflected in the likelihood curves. Thusgimetimainder of this
work we do not attempt to select a stopping point based on dev likelihobdatter simply run all
experiments for 100 iterations.

We also tried selecting a stopping point based on constituent contexts, tadthwa Reichart
and Rappoport (2009). Our hypothesis was that entropy of the distribover contexts for each
constituent should be small when parsing accuracy was high. Howmraparing entropy of the
gold trees to entropy of the trees produced by EM, this was only true @rtdalf of the languages
we tested on, and not strongly so for most of these. Also we note thatuwel oo correlation
between the PR objective on the development set and the best settingfPt tomstraint strength,
which does make it hard to pick this strength parameter in an unsupervitied.se

6.3 Comparison with Previous Work

Most results from previous work are not directly comparable due tordifiees in initialization,
decoding method, or the incorporation of some degree of supervisiarthiSsoeason, we present
the majority of the comparisons in Appendix B, where we also note implementatfereti€es that
we were able to determine. Here, we highlight the most salient accuracyensiiiao the methods
we mentioned in Section 5.

The best result reported thus far without additional lexical or multilingufairimation is that
of Headden Il et al. (2009). With a non-sparsifying Dirichlet priodamnlearned (as opposed to
constantj\, they report an accuracy of 65(85.7)% for an an E-DMV of complexitys = 2,V =
2. (The+£5.7 is a result of their use of a random pools initialization strategy.) We are aht#hteve
64.5% accuracy with PR. We hypothesize that if PR were tested with randots initialization
and a learned, it would be able to make even further gains in accuracy. As noted in Ajpp&n
the learning of the smoothing parameter performed by Headden Il e08I9)drobably increases
accuracy by about 5.5%. Similarly, Table 6 shows that random pools initializgends to perform
much better than the deterministic K&M initialization we use.

Other learning methods such as those discussed in Section 5 achieve sligktatzuracies.
We note that it is difficult however to make a complete comparison to them, as pleegite only
on the DMV model, not on any extended versions. Further, there aerefiifes in the decoding
method used. For example, the maximum accuracy achieved using shastid lmgrmal (SLN)
priors with is 61.3% (Cohen and Smith, 2009). This is on the DMV model, wheie i&imum
accuracy is a comparable 62%. But the SLN work uses MBR decodingtates its performance
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Figure 8: Directed accuracy and the objective values on held-outagewent data as a function
of the training iteration for the DMV (top) and E-DMV (bottom) with the best paeter
settings.

is better than that of the Viterbi that we use. So, comparisons should bewétkea grain of salt.
Comparing to contrastive estimation and annealing methods, accuraciesthes below those of
PR. With the DMV model and K&M initialization: CE is 48.7%, SDA is 46.7%, and SA i554
For a more extensive comparison to experimental results from related semldppendix B.

6.4 Results on Other Languages

A grammar induction algorithm is more interesting if it works on a variety of laggeaOtherwise,
the algorithm might just encode a lot of language-specific information. Irs#dgon, we compare
several models and learning methods on twelve different languages tba&ggeneralization ca-
pabilities. We do not want to assume that a user would have parsed &dénpeach language, so
we do not include a supervised search over model parameters forglbges as part of the evalu-
ation process. Consequently, we use the following setup: for each niadét, DMV and the four
E-DMV complexities we experimented with in the previous sections, pick thedwoediguration
found for English according to its accuracy on thelO test set, and use it across the other eleven
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Figure 9: Difference in accuracy between the sparsity inducing trainirtbade and EM training
for the DMV model across the 12 languages. Avg: Average improvemantEeM. W:
Number of languages better than EM.

languages. This might not select the ideal parameters for any particatardge, but provides a
more realistic test setting: a user has available a labeled corpus in onedangud would like to
induce grammars for other languages of interest.

For the PR approach, since the ideal strength is related to corpus sizey twe different
approaches. The first is to use exactly the same strength with other l&sgaagised for En-
glish. The second approach is to scale the strength by the number of iokeash corpus. In
this case, the strengtloy, for a particular language was found by the following formuts: =
Oen* [tOKkengy|/[tokeng|, whereog,, is the best strength for Englisitokeng,| is the number of
tokens of the English corpus, aftdkens| is the number of tokens in languageThis scaling is an
approximation that attempts to require a similar amount of sparsity for eachdgegu

For a table of exact accuracy numbers, we refer the reader to Tabl&ppendix C. In this
section we provide some figures illustrating the most salient aspects of thts fesm this table.
Figure 9 illustrates the differences between the EM training and the diffsparsity inducing
training methods for the DMV. The zero line in Figure 9 corresponds toopednce equal to
EM. We see that the sparsifying methods tend to improve over EM most of the Tingeaverage
improvements are shown in the key of Figure 9. Figure 10 shows a similar cizmpaf the PR
methods with respect to a SDP learning baseline. We see in Figure 10 thab&keighan SDP for
most languages. Figure 11 compares the differences of each trainingchvaeghinst EM training
using the E-DMV model with the best setting found for English. Both PR-SRIR&AS perform
better than EM in most cases. The average improvement is even biggaR{8rtFan under the
DMV, but PR-AS does not make such large gains. This is probably due tellection of a simpler
model for PR-AS Vs-Vc= 2-1). While this simpler model performed better than the more complex
ones for English, this does not generalize to all languages.

Figure 12 compares the different sparsity approaches. On the lefompase PR-S versus
PR-AS without scaling on the DMV. PR-AS beats PR-S in 6 out of 12 caséshe two methods
tie in one case (Czech). Over all 12 languages, the average diffebetween PR-AS and PR-S
is only 3.2% on the DMV. We note that the difference is bigger for the E-DM\de®, but this
is possibly due to the selection of a simpler mod&h\{; = 2-1) for PR-AS. On the right side of
the same figure, we compare PR-AS without scaling versus PR-AS with gcaline unscaled
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Figure 11: Difference in accuracy between the sparsity inducing tramatgods and EM training
for the E-DMV model with the different training method across the 12 langs.agvg:
Average improvement over EM. W: Number of languages better than EM.

version tends to perform better. In general, scaling that increasesmiséraint strength seems to
be advantageous, the exception being for Dutch (NI). Increasedy#iréends to correlate with
increased runtime though, so there is a tradeoff to be made there.

Figure 13 compares the sparsity achieved by EM, SDP, and the PR methtus DMV. We
can see that the PR methods indeed achieve much greater sparsity thandgkataSDP is only
slightly more sparse than EM. If we also compared to supervised model initiafizanost of the
PR instances would have greater sparsity than the supervised, andESDéhwould be much
less sparse than the supervised. So, it seems that over-sparsifyitogvin@us to achieve better
accuracy than under-sparsifying. Although also not shown in the pthgerve similar sparsity
patterns on the test data as well.
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Figure 13: Comparing DMV grammar ambiguities on the training data by computingvidrage
number of parent tags per child tafj (¢ divided by number of child tags) and normal-
izing it by the theoretical maximum for each language. Grammar ambiguities ffom le
to right within each group of bars are those resulting from: EM, SDP with 0.25,
PR-S witho = 120, and PR-AS witlo = 120. Higher values imply less sparsity.

7. Analysis

Our accuracy numbers validate that PR is useful. In this section we attemgtyaahow and why
it is useful, to validate our original claim that sparsity in parent-child typesdagptienomenon we
are capturing.

One common EM error that PR fixes in many languages is the directionality ofcine- n
determiner relation. Figure 14 shows an example of a Spanish sentence RResignificantly
outperforms standard EM because of this fixed relation. As is evidendbis icase, EM frequently
assigns a determiner as the parent of a noun, instead of the reversend2Rot to make this er-
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Una papelera es un objeto civilizado

nc Vs d nc aq
1.00
%(\ 100
/—\ -

Una papelera es un objeto civilizado
nc Vs d nc aq

Una papelera es un objeto civilizado
d nc VS d nc aq

Figure 14: Posterior edge probabilities for an example sentence fronptresh test corpusiop
is Gold,middle is EM, andbottom is PR.

ror. One explanation for this improvement is that it is a result of the factibans can sometimes
appear without determiners. For example, consider the sentence “Lieyzotentenderlos” (trans-
lation: “It takes time to understand (them)”) with tags “main-verb common-noun-wexb”. In
this situation EM must assign the noun to a parent that is not a determinernthastp when PR
sees that sometimes nouns can appear without determiners but that teéepipaation does not
occur, it shifts the model parameters to make nouns the parent of detesinisteiad of the reverse,
since then it does not have to pay the cost of assigning a parent with tagdw cover each noun
that does not come with a determiner.

Table 4 contrasts the most frequent types of errors EM, SDP, and PR onaseveral test sets
where PR does well. The “acc” column is accuracy and the “errs” colurtireisbsolute number
of errors of the key type. Accuracy for the key “parent POS truthggue child POS” is computed
as a function of the true relation. So, if the keypig pg — ¢, then accuracy is:

# of py — cin Viterbi parses

A= S of pt — cin gold parses’

In the following subsections we provide some analysis of the results frdue %a

7.1 English Corrections

Considering English first, there are several notable differences eetiafel and PR errors. Similar
to the example for Spanish, the direction of the noun-determiner relationrecoed by PR. This is
reflected by the VB/DT— NN key, the NN/VBZ— DT key, the NN/IN— DT key, the IN/DT—
NN key, the NN/VBD— DT key, the NN/VBP— DT key, and the NN/VB— DT key, which for
EM and SDP have accuracy 0. PR corrects these errors.

A second correction PR makes is reflected in the VBAO/B key. One explanation for the
reason PR is able to correctly identify VBs as the parents of other VBs thsteaistakenly making
TO the parent of VBs is that “VB CC VB” is a frequently occurring sequer-or example, “build
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EM SDP PR
key acc  errs key acc errs key acc  errs
sp/d— nc 0.0 7 sp/d- nc 0.0 7 vmKroot> — vm 0.0 5
nc/sp—d 0.0 6 nc/sp— d 0.0 6 <root>/vm — vm 0.0 4
vm/d — nc 0.0 5 vmKroot> — vm 0.0 6 <root>/vm — vs 0.0 3
vs/d— nc 0.0 4 nc/ivm- d 0.0 6 rg/vm— rg 0.0 2
vm/<root> — vm 0.0 4 vm/d— nc 0.0 5 ag/ag- cc 0.0 2
nc/vm—d 0.0 4 <root>/vm — vm 0.0 4 nc/cc— aq 0.0 2
ag/<root> — cc 0.0 3 vs/d— nc 0.0 4 vskroot> — vm 0.0 2
<root>/vm — vm 0.0 3 vm/p— 0.0 3 ag/nec— aq 0.0 2
es vm/p—rn 0.0 3 nc/vs— d 0.0 3 vm/vm— sp 75.0 2
ncivs—d 0.0 3 nckroot> — d 0.0 3 vsivm— cs 0.0 2
vm/nc— sp 0.0 3 vm/nc— sp 0.0 3 vm/nc— sp 0.0 2
vm/cs— vs 0.0 2 <root>/rg — vm 0.0 2 ag/cc— aq 0.0 1
vm/d — p 0.0 2 nc/p— d 0.0 2 nc/vs— aq 0.0 1
nc/ag— d 0.0 2 <root>/d — nc 0.0 2 <root>/aq— nc 0.0 1
<root>/vm — vs 0.0 2 ag/ce— aq 0.0 2 vm/vm-— cc 50.0 1
<root>/R -V 0.0 65 NV — R 0.0 53 NV— R 0.0 56
N/<root> — R 0.0 37 VIR— N 0.0 47 V/IR— N 0.0 46
V/<root> —+ R 0.0 29 <root>/C — V 0.0 26 TN—=V 0.0 26
VIR - R 0.0 24 VIR— R 0.0 25 VIR— R 0.0 25
N/M — N 0.0 20 TN—=V 0.0 23 VIV—=T 424 19
VIV =T 40.6 19 N/M— N 0.0 20 N/N— N 734 17
<root>/C — V 0.0 18 VIV—=T 424 19 VIV— N 84.8 14
Vi/<root> — C 0.0 17 VKroot> — C 0.0 17 VIV— C 30.0 14
bg TNV =N 0.0 17 Nkroot> — C 0.0 15 TV—N 0.0 13
N/<root> — C 0.0 16 R/N— N 0.0 14 <root>/V — T 0.0 11
VIR — N 0.0 16 TV— N 0.0 13 N/V— V 0.0 10
<root>/T =V 0.0 15 VIN— N 0.0 11 TN— P 0.0 10
NV — R 0.0 15 N/R— N 0.0 10 N/N— M 66.7 10
T/<root> — V 0.0 12 VIV— N 87.3 10 VIN— N 0.0 10
R/N— N 0.0 12 NNV — V 0.0 10 <root>/V — V 0.0 9
n/prp— art 0.0 39 n/prp— art 0.0 37 prp/v-fin= n 0.0 32
viart— n 0.0 31 v/art—> n 0.0 32 n/prp— art 0.0 27
prp/art— n 0.0 24 prp/art> n 0.0 27 vin— prp 0.0 22
n/v-fin — prp 0.0 18 n/v-fin— art 0.0 21 n/n— prp 0.0 20
n/v-fin — art 0.0 17 viv-fin— prp 72.5 11 v/prp— n 0.0 18
v/pron-det— n 0.0 12 n/v-fin— prp 0.0 10 prp/v-fin— prop 0.0 11
viv-fin — prp 69.4 11 prop/prp+ art 0.0 8 prp/prp— n 0.0 11
viprp— v 0.0 11 v/v-fin— adv 68.0 8 viv-fin— adv 64.0 9
pt prp/pron-det— n 0.0 10 prp/art> prop 0.0 7 prop/prp- art 0.0 8
v/prp — prp 0.0 9 viprp— v 0.0 7 viv-fin—n 81.0 8
prop/prp— art 0.0 8 viprp— n 0.0 7 v/prop— prp 0.0 8
n/v-fin — pron 0.0 8 <root>/conj-c—v 0.0 5 n/prop— prp 0.0 8
n/prp— pron 0.0 8 vkroot> — v 0.0 5 viv-fin— prp 58.8 7
n/<root> — prp 0.0 8 v/art— prop 0.0 5 viprp— v 0.0 7
prp/art— prop 0.0 7 n&root> — prp 0.0 5 <root>/prp—n 0.0 6
VB/DT — NN 0.0 129 VB/DT— NN 0.0 133 NN/NNP— NN 542 76
NN/NNP — NN 60.1 65 NN/NNP— NN 547 78 IN/NN— NN 0.0 37
NN/VBZ — DT 0.0 52 NN/IN— DT 0.0 56 MDkroot> — VB 0.0 25
NN/IN — DT 0.0 47 NN/VBZ— DT 0.0 52 | <root>/VB —-MD 0.0 25
IN/DT — NN 0.0 46 IN/DT— NN 0.0 46 IN/NNS— NN 0.0 24
NN/VBD — DT 0.0 41 NN/VBD— DT 0.0 35 VB/NN— IN 0.0 21
VB/TO — VB 0.0 19 VB/TO— VB 0.0 19 NN/NN— DT 865 21
NN/VBP — DT 0.0 19 NN/VBP— DT 0.0 18 VB/DT— IN 0.0 20
en | <root>/CD— NN 0.0 14 NN/NN— JJ 78.9 16 IN/VBD— NN 0.0 18
NN/NN — JJ 81.1 14 VB/IN— JJ 0.0 12 NN/NN- JJ 79.2 16
NN/VB — DT 0.0 14 VB/PRP$- NN 0.0 12 IN/VBZ — NN 0.0 15
NN/CD — CD 0.0 13 <root>/CD — NN 0.0 12 IN/VBP— NN 0.0 13
VB/PRP$— NN 0.0 12 NN/VB— DT 0.0 12 VB/VB— RB 18.8 13
VB/DT — RB 0.0 11 NNkroot> —-CD 0.0 11 NNkroot> — NN 0.0 11
VB/<root> - VB 0.0 10 VB/NNS— RB 0.0 11 VB/NNS— NN 0.0 11
Table 4: Top 15 mistakes by parent POS truth/guesshild POS for English and the three lan-

guages where PR makes the greatest gains over EM with the E-DMV.
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and hold” and “panic and bail” are two instances of the “VB CC VB” patteamf the test corpus.
Presented with such scenarios, where there is no TO present to begheqia/B, PR chooses the
first VB as the parent of the second. It maintains this preference foing ke first VB a parent of
the second when encountered with “VB TO VB” sequences, such asl ‘tosliminate”, because it
would have to pay an additional penalty to make TO the parent of the seddnbhthis manner,
PR corrects the VB/TG~ VB key error of EM and SDP.

A third correction PR makes is reflected in theoot>/CD — NN key. This correction is similar
to the noun-determiner correction: CD and NN often co-occur, but wHilelthost never appears
without NN, NN frequently appears without CD. Thus, if PR chose CDaasmt of NN, it would
have to pay an additional penalty to select another parent for NN in sErstevhere no CDs exist.
Thus, PR is able to recognize that CD is not usually a good parent forAghin, EM and SDP
have 0 accuracy for this key.

There are a couple of errors common to EM, SDP, and PR. These pomckto the NN/NN—
JJ key and the NN/NNP-> NN key. These are notoriously difficult relations to get right, especially
for an unlexicalized model that also has no notion of the surface lengtbtatibns. We predict that
combining PR with a model such as the lexicalized DMV of Headden Ill et @09, or applying
the structural annealing technique of Smith and Eisner (2006), coultlygreduce these types of
errors. These changes could also help reduce some of the other noasRfR makes, such as the
ones corresponding to the keys NN/NMNDT and VB/VB — RB.

Even after all these improvements, there would likely persist at least oreofyipnglish error
that would be hard to fix: the domination of modals by verbs. By conventiomatleaominate
verbs in English dependency parses. This is a relatively arbitraryehaécthere are linguistically
sound arguments to be made for either dominating the other. In fact, in someeathtdr languages
we work with the annotation convention is the reverse of what it is in Englistus;Tfor now we
merely note that the keys MRfoot> — VB and <root>/VB — MD account for a large portion
of the English errors with PR.

7.2 Bulgarian Corrections

Moving beyond English, we consider Bulgarian. We might expect quakiigtifferent results for
Bulgarian for two reasons. First, the language is not in the same family disEn§econd, the
Bulgarian corpus employs far fewer POS tags.

One large correction PR makes with respect to EM and SDP corresponaskieytih/M — N.
The tag M stands for “numeral” in the Bulgarian corpus, so this correctiomitas to the English
correction involving the tag CD. Another substantial correction PR makesresttect to EM and
SDP corresponds to the keyroot>/C — V. The tag C stands for “conjunction” in the Bulgarian
corpus, so this correction means the model is realizing verbs should useagntence roots rather
than children of conjunctions. Following the same reasoning about PR ¢hased before, we note
that sentences with verbs but no conjunctions are very common, so if 838 €has the parent of
V, it would have to pay a penalty to give V a different parent in such see® The same reasoning
explains why PR doesn’t see thedfbot> — C errors or the NLroot> — C errors that EM and
SDP do.

Although PR is able to make great improvements for Bulgarian parsing, it igycle@pled
by the small number of POS tags. EM, SDP, and PR all make substantia eraeciding which
verb to use as the parent of a particle (see key VW), and many of the main remaining errors
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for PR are caused by similar symmetries (see keys N/W, V/IV.— N, VIV — C, N/N — M,
and<root>/V — V). As mentioned in the analysis of English, lexicalization or incorporation of a
notion of surface length of relations might help alleviate these problems.

Corrections PR makes in the other languages can be analyzed using thigsamireasoning
as we have applied to analysis of English and Bulgarian. We thus leave niensigr interpretation
of Table 4 to the reader.

8. Conclusion

In this paper we presented a new method for unsupervised learningefdency parsers. In con-
trast with previous approaches that impose a sparsity bias on the maaelgiars using sparsifying
Dirichlet distributions, we impose a sparsity bias on the model posteriors.o/ge thy using the
posterior regularization (PR) framework (Graca et al., 2007) with caimésr that favor posterior
distributions that have a small number of unique parent-child relations. Gg@ge two such con-
straints: a symmetric constraint similar in spirit to the sparsity constraint applieartepf-speech
(POS) induction by Graca et al. (2009), and an asymmetric version oéthe sonstraint that more
directly tries to minimize the number of different parent-child types instead f&rdiit parent-child
occurrences. On English our approach consistently outperforms tidastbEM algorithm and the
approach of training in a Bayesian setting where a sparsifying Dirichiletigrused. Moreover, we
perform an extensive comparison with previous published work and gtad our learning approach
achieves state-of-the-art results. We compare our approach omlitibmal languages, which as far
as we know is the most extensive comparison made for a dependeney. pélesreport significant
improvements over the competing learning approaches. The new appnyarcives over EM by
an average of 6.5% and beats EM by at least 1% on 9 out of 12 languia@éso improves over
the Bayesian learning approach by an average of 5% with gains of maré%éor for 9 out of 12
languages.

One significant problem we encountered was picking the differentipeteas for the model in
an unsupervised way, for which we found no good principled solutiarwbeked for all languages.
The PR objective on held-out development sets does not seem to bebéerpliaxy for the model
quality. Similarly, additional unsupervised measures for parse quality, atethby the work of Re-
ichart and Rappoport (2009) on counting constituent contexts, weediable. Even in the absence
of a good unsupervised measure of model quality, a better method fofetnémg the regulariza-
tion strength parameter from one language to another is also neededediharization strength
is strongly dependent on the corpus, both on the number of parent-chikl geing constrained
as well as on the number of tokens for each parent and child. Ouriegres approximated this
dependence by scaling the best English regularization strength by theenoftokens in other
corpora, but this is not ideal.

With respect to model initialization, the K&M initialization is highly biased to the simple DMV
model, and both RandomP initialization and the initialization approaches propgsgpitkovsky
et al. (2010) can significantly boost the performance of the model. Itdimeiworth initializing our
models with the techniques proposed by Spitkovsky et al. (2010), sing@tbduce better results,
are deterministic, and reduce the number of parameters that need to beRotieding the spirit
of those approaches approaches, we also suggest that somessuigtede had by initializing the
simple DMV training it, and then using its learned parameters to initialize more compldglso
(E-DMV models with larger valence values).
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Regarding the sparsity constraints, we note that the versions we aredgsingt take into
account some possibly important information, such as the directionality ofdipe. eMoreover,
the same strength is currently used for the root probabilities and for tleatpanild probabilities.
Also, we could extend the constraints to work directly on word types ratherdgh POS tags, since
there is a lot of information lost by discarding the particular words. FormtgtaHeadden 11l et al.
(2009) achieve significant improvements by conditioning the edge probabditi¢che parent word
together with the parent POS. Additionally, we could explore other consraiencourage locality
by preferring short dependency edges as suggested by the SAWdnkith (2006).

Finally, we would like in the future to move to fully unsupervised learning ofrgrear. That is,
we would like to use POS tags induced in an unsupervised manner, instassuofiing gold POS
tags, and see how robust our method is under these conditions. Reckes show that the quality
of the DMV model degrades significantly when the induced POS tags adg(dsadden Il et al.,
2008). It would be interesting to see if our model is more robust to the qudlihegrovided tags.
Further, it would be even more interesting to see how our method perfornesaipplied it to aid in
the more complex task of joint induction of POS tags and dependency parses
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Appendix A. Choosing the SDP Hyperparameter

We tried four different values fam: {0.01,0.1,0.25,1}. (Note that the value 1 actually results in a
non-sparsifying prior; this setting is not as good as the sparsifyingalale  shows.)

Table 5 shows the directed accuracy for both the DMV and the E-DMV madetsed using
EM and SDP. We see in Table 5 that the extended model generally outperfioe DMV, for both
EM and SDP. However, we also see that SDP does not always helpll f@lences tried for the
E-DMV except(Vs, V) = (2,1), the EM models perform better. This contrasts with the findings
of Headden Il et al. (2009), potentially due to the simplified smoothing thatwpéemented, and
a difference in the stopping criterion—we ran our model for 100 iteratiwh#e Headden Il et al.
(2009) ran until likelihood on a held-out development set convergernparing the performance
of the training methods, we see that for the DMV model, SDP training perfoettsriand the best
hyperparameter setting isAb which is the same best parameter found by Cohen et al. (2008). The
performance of our implementation of the SDP is slightly lower than the onetegpiorthat paper,
probably due to different stopping criteria during training.

Appendix B. Extended Comparison to Related Results

In this appendix we present a more extensive comparison between thenparces of different
models described in the literature for unsupervised dependency paf&bte 6 presents the ac-
curacy values reported in various previous papers and the valuapgosaches tried in this paper.
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SDPa =

EM 1 |025 0.1| 0.01
DMV || 45.8 || 42.2| 46.4| 45.2| 45.4
2-1 451| 42.00 46.0 459 4409
2-2 || 54.4| 42.0| 43.3] 52,5 51.5
3-3 55.3| 42.8| 47.1 535 52
4-4 55.1| 429 47.1 53.6 51

Table 5: Directed attachment accuracy results on the test corpus (fi@nses of lengthst 10,
no punctuation). The second column gives EM results, and the other colararSDP
results for different settings of the hyperparameter The second row is for the basic
DMV model, and the other rows are E-DMV models represented by their ciate /s
V). Note that the 2-1 model is just the DMV plus smoothing of the child probabilities
with A = 0.33. Bold represents the best parameter setting both for the DMV model and
the E-DMV model.

We would like to stress that the setup is not identical for all experiments. Bamoe, normally the
stopping criteria for training is different. While we train all our models for t8fations, most other
works use some kind of convergence criteria to stop training. Moretinee are likely differences
regarding other implementation details. The point of this section is mostly to highlighthany
different variations of the DMV training and modeling that have been triederptst. Table 6 is
meant as a resource for comparing some of the best accuracies teatithods have achieved. It
is hard to draw any sweeping conclusions from these numbers, butpeslnat this summary of re-
lated work helps future work by suggesting reasonable choices for indtiiaiiz, model complexity,
smoothing, and other modeling decisions.

We start by comparing the effects of different initialization proceduredee(entries 1-6 in
Table 6.) Although orthogonal to the learning procedure used, thesgatiffes are significant to
keep in mind when comparing to previous work. We compare the results onMhé Birst we
compare to work by Headden Il et al. (2009) using random pools initiédiza A random pool
consists of a set dB randomly initialized models trained for a small number of iterations. From
theseB models, the one that assigns highest likelihood to held-out developmerns géted and
trained until convergenceM such pools are used to credefinal models, whose mean accuracy
and standard deviation are reported. We will refer to this initialization methdfaaslomP; it
performs significantly better than K&M.

The other initializations compared in Table 6 are from recent work by Spikgoet al. (2010).
These initialization methods aim to gradually increase the complexity of a model,assuirad by
the size of the search space, which for the DMV model is exponential tarsemlength. The Baby
Steps (BS) method starts by training the model on sentences of length 1, ehgarameters of this
model are used to initialize a training run over sentences of length 2, amd 3tve second method,
Less is More (LsM), uses information from the BS method to pick a sentengéhl¢hat includes
enough sentences to train a model with good predictive power, but leavé&nger sentences that
do not add much information. A hybrid method Leapfrog (LP) combines thestadtbm the two
previous approaches. All of these methods also seem to improve ove&Maritialization.
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We note that there are some differences in the setup of the various initializxjp@niments:
the model initialized with RandomP described in Headden lll et al. (2009)irettaising a Dirich-
let prior with a hyperparameter of 1 (non-sparsifying DP), while all thesothodels are trained
using EM. Additionally, the models from Spitkovsky et al. (2010) use a laageount of data.
Nonetheless, it seems likely that if we combined some of these initializations witPRouatethod,
we would see even better performance than with the K&M setup that we usenfplicity in our
current experiments.

The next comparison we make is between the smoothing approach desorideddden Il
et al. (2009) and the simpler implementation done in this work. Again, althoughaiining meth-
ods and the initialization differs we see that the smoothing performed by ldedtdt al. (2009)
probably increases the accuracy of that model by around 5.5% owenplementation of smooth-
ing (compare entry 2 to entry 7 and entry 1 to entry 8).

Entries 9 to 20 compare different training approaches for the basic By 9 corresponds
to training the model with SDP with the best hyperparameter setting. Entriesd1Dlacorrespond
to training with PR under the two types of sparsity constraints. Entries 12 Zuudelthe logistic
normal prior (Cohen et al., 2008) and we report the results from therpeging Viterbi decoding.
Entries 14, 15, 16, and 17 correspond to the different shared logwstinat priors (Cohen and
Smith, 2009). These values are for MBR decoding since the authors depwot values for Viterbi
decoding. This gives some advantage to these entries, since accortia@tiahors MBR decoding
always outperforms Viterbi decoding. Finally, entries 18, 19, and pfesent the best value for the
three learning approaches contrastive estimation (CE), skewed deteicranisealing (SDA), and
structural annealing (SA) proposed by Smith (2006). For these entdagport the best values
found using supervised selection of training parameters (severabvakre tried, and the one that
produced the highest accuracy on the test data was selected). Qutf dfiase methods, the models
trained using PR with the sparsity inducing constraints achieve the beksrésel symmetric prior
being the best. The results are similar to the best shared logistic normal préor te@sted on
sentences of length up to ten, but when tested on longer sentences ttaneR inodels perform
significantly better then all other approaches.

The last block of results, entries 21 to 27, shows how a variety of leametgods compare on
E-DMVs. Entries 21 to 24 compare our implementation of the three differemtitepapproaches,
EM, SDP, and PR with both types of constraints. Model selection in thess éasupervised,
based on accuracy for the 10 test data. PR significantly outperforms the other two approaches.
In particular the PR-S constraints perform the best with an averaged6fihprovement over EM
and SDP on sentences of leng#isl0, and an even bigger improvement for longer sentences. In
entries 25 to 27 we also compare with the original extended model of McCl@8K8) and with
the smoothed extended model proposed by Headden Ill et al. (200®.bdst model is the E-
DMV with smoothing on the child probability as described by Headden 11l ef28109). It beats
the E-DMV trained with PR-S by a small amount. This difference is much smallertkigagains
from using the random initialization and the better smoothing distribution. Thuselieve that
training the same model with random initialization, better child probability smoothimdytlee PR
constraints would in fact produce the best results. We leave this as fubuke

Finally we would like to note that Table 6 doesn’t report results for the iEati@at use extra
information. Namely, Headden Il et al. (2009) reports the best resilighed so far, 68, for
the test set with sentences of length4 0, when using lexical information. Also, Cohen and Smith
(2009) reports accuracies of 62480, and 422 for sentences of lengtks 10, sentences of lengths
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Init Training Model Directed Undirected
<10 [<20] all | <10] <20 all
Model Initialization
1 | K&M EM DMV 45.8 40.2 | 35.9| 63.4| 58.00 54.2
2 | RandomP| DP DMV 55.748.0)
3 | BS Ad-Hoc @15 DMV 55.5 443 39.2
4 | BS Ad-Hoc @45 DMV 55.1 44.4  39.4
5 | LsM Ad-Hoc @15 DMV 56.2 48.2| 44.1
6 | LP Hybrid @45 DMV 57.1 48.7| 45.0
Smoothing effects
7 | RandomP| DP DMV 61.2 &1.2)
(A learned)
8 | K&M EM DMV 45.1 38.7| 34.00 62.77 56.9 527
(A=0.33)
DMV
9 | K&M SDP 0.25* DMV 46.4 40.9| 36.5 64.0 586 548
10 | K&M PR-S 120 * DMV 62.0 53.8| 48.9 69.8 624 58p2
11 | K&M PR-AS 120 * DMV 55.3 494 444 67.1 60.7 564
12 | K&M LN | DMV 56.6 433 | 374
13 | K&M LN families DMV 59.3 45.1| 39.0
14 | K&M SLN Tie V DMV 60.2 46.2 | 40.0
15| K&M SLN Tie N DMV 60.2 46.7 | 40.9
16 | K&M SLNTieV&N | DMV 61.3 474 | 41.4
17 | K&M SLN Tie A DMV 59.9 458 | 40.9
18 | K&M CE* DMV 48.7 64.9
19 | K&M SDA * DMV 46.7 64.3
20 | K&M SA* DMV 51.5 67.9
E-DMV
21 | K&M EM E-DMV(3,3) 55.3 46.4| 42.6/ 69.0 619 583
(A=0.33)*
22 | K&M SDPO0O.1* E-DMV(4,4) 53.6 43.8| 39.6) 67.5 59.0 549
(A=033)*
23 | K&M PR-S 160 * E-DMV(3,3) 64.5 54.6 | 49.5| 69.9 | 60.9| 56.0
(A=0.33)*
24 | K&M PR-AS 140 * E-DMV(2,1) 62.2 53.2| 485 70.8 | 61.9| 57.8
(A=0.33)*
25 | K&M EM E-DMV(2,2) 56.5 69.7
26 | RandomP| DP E-DMV(2,2)] 53.3{(.1)
27 | RandomP| DP E-DMV(2,2)| 65.0 &5.7)
(A learned)

Table 6: Comparison with previous published results. Results for entri#s53,and 6 are taken
from Spitkovsky et al. (2010), entries 2, 7, 26, and 27 are taken fieadden Il et al.
(2009), entry 25 is taken from McClosky (2008), entries 12 and 13aken from Co-
hen et al. (2008), entries 14, 15, 16, and 17 are taken from Cole8mith (2009) and
entries 18, 19, and 20 are taken from Smith (2006). A star (*) in the traicohgmn in-
dicates supervised selection of training parameters (PR regularizatiogtbtr&DP prior
hyperparameter, etc.); a star in the model column indicates supervisetiosetéenodel
complexity.
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By Cz De Dk En Es Jp N Pt Se Si Tf Av

A

DMV Model
EM 37.8 29.6 35.747.2 45.8 40.3 52.8 37.1 35.7 39.4 42.3 44.8 40.9
SDP 0.25 39.3 30.0 38.6 43.1 46.4 475 57.8 35.1 38.7 40.2 4838 | 42.4
PR-S 120 53.3 31.1 39.4 40.562.0 63.8 63.6 30.7 46.8 41.7 39.1 51.6| 47.0
PR-AS 120 51.2 31.1 39.9 42.4 55.3 60.2 6138.5 47.539.4 48.9 53.5| 47.4
PR-S s120 51.2 32.8 40.0 38.62.0 65.261.5 30.9 429 415 42.6 504 466
PR-AS s120 51.133.5 40.4 42.8 55.365.2 61.4 30.2 425 37.8 45.0 502 46(3
Extended Model
EM-(3,3) 41.7 48.9 40.146.4 55.3 44.3 48.547.5 35.9 48.6 47.5 46.2| 45.9
SDP-(4,4) 0.1 476 485 42.0 44.4 53.6 48.9 57.6 45.2 48.3 Bh.6 48.9| 47.4

PR-S-(3,3) 160 | 58.3 53.2 46.7 45.9 64.5 57.9 57.7 33.554.0 45.0 50.9 56.4| 52.0
PR-AS-(2,1) 140 | 53.2 32.3 39.9 424 61.2 61.5 59.6 30.7 47181 $0.4 54.2| 47.9
PR-S-(3,3) s160 54.155.5 46.0 43.064.5 69.7 59.2 33.1 47.0 444 482 56.1 51}7
PR-AS-(2,1)s140 51.0 33.0 40.5 43.8 61.2 669.7 29.9 424 37.7 47.0 51.8 470

Scaled Strengths
Englishc =120 88 451 249 35 120 8 140 138 47 75 10 57 118
Englishc = 140 103 526 290 41 140 9 163 161 55 88 11 67 138
Englishc = 160 118 602 332 47 160 11 187 185 62 100 13 6 158

Table 7: Attachment accuracy results. For each method we tested botrsto@®béV and the E-
DMV. The parameters used where the best parameters found for Erggisthe extended
model the child-valency and stop-valency used are indicated in pareatEd4: The EM
algorithm. SDP. Sparsifying Dirichlet priorPR-S Our method using the symmetric ver-
sion of the constraints with strength parametePR-S-s The same method but strength
parameter scaled proportional to the number of tokens in the train setdiodazyuage.
PR-AS / PR-AS-s Our method with the asymmetric constraints, without and with scaling
of the strength parameteas: The scaled weights for each corpus for the different values of
the strength parameter used for English. Bold indicates the best methaatfolearning
and model type.

< 20, and all sentences, respectively, when using multilingual informatias.ré&sult for sentences
of length< 10 is equal to our best result, but is inferior to our results on longerseste Thus, we

think that PR is a very promising technique for use with other data sets, \dmgyer sentences are
common.

Appendix C. Multilingual Results in Table Form

Table 7 shows the performance for all models and training procedurteefaa2 different languages.
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