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Abstract
Given a finite sef of functions and a learning sample, the aim of an aggregationedure is
to have a risk as close as possible to risk of the best funatidh Up to now, optimal aggre-
gation procedures are convex combinations of every elesyeii. In this paper, we prove that
optimal aggregation procedures combining only two fumion F exist. Such algorithms are of
particular interest wheR contains many irrelevant functions that should not apped#ne aggre-
gation procedure. Since selectors are suboptimal aggwagatocedures, this proves that two is
the minimal number of elements Bfrequired for the construction of an optimal aggregation pro
cedure in every situations. Then, we perform a numericalystor the problem of selection of the
regularization parameters of the Lasso and the Elastiestéhators. We compare on simulated
examples our aggregation algorithms to aggregation witloesntial weights, to Mallow’€, and
to cross-validation selection procedures.
Keywords: aggregation, exact oracle inequality, empirical risk miziation, empirical process
theory, sparsity, Lasso, Lars

1. Introduction

Let (Q, ) be a probability space arwbe a probability measure dd x R such thatis its marginal

on Q. Assume(X,Y) andDy := (X,Y;){.; to ben+1 independent random variables distributed
according tov, and that we are given a finite det= {f4,..., fu} of real-valued functions of,
usually called aictionary, or a set ofveak learnersThis set of functions is often a set of estimators
computed on #@raining sample, which is independent of the samipje(learningsample).

We consider the problem of prediction ¥ffrom X using the functions given i and the
sampleD,. If f:Q — R, we measure its error of prediction, or risk, by the expectation of the
squared loss

R(f) =E(f(X)-Y)2
If fAdepends o, its risk is the conditional expectation
R(f) =E[(f(X) —Y)?|Dq].

The aim of the problem of aggregation is to construct a procefigcalled anaggregaté usingDy
andF with a risk which is very close to the smallest risk of/erNamely, one wants to prove théat
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satisfies an inequality of the form

R(f)grfneiQR(f)H(F,n) (1)

with a large probability or in expectation. Inequalities of the form (1) are dadact oracle inequal-
ities andr (F, n) is called theresidue A classical result (Juditsky et al., 2008) says that aggregates
with values inF cannot satisfy an inequality like (1) with a residue smaller ti#ogM) /n)/2 for
everyF. Nevertheless, it is possible to mimic the oracle ¢aacleis a element ir- achieving the
minimal risk overF) up to the residuélogM)/n (see Juditsky et al., 2008 and Lé&cand Mendel-
son, 2009, among others) using an aggredateat combines all the elements Bf In this case,
we say thatf is anoptimal aggregation proceduréThis notion of optimality is given in Tsybakov
(2003) and Lecé and Mendelson (2009), and it is the one we will refer to in this paper.

Given the set of functionB, a natural way to predict is to compute the empirical risk mini-
mization procedure (ERM), the one that minimizes the empirical risk

1 n
f):= =S (Y —f(X))?
Ra(f)i= 3 5 (%= £(X))
over F. This very basic principle is at the core of aggregation proceduresdtpession with
squared loss). An aggregate is typically represented as a convex atiobiof the elements df.
Namely,

M
fi= Z ej(Dn,F)fj,
=1

where(ej(Dn,F))'j\":l is a vector of non-negative coordinates suming to 1. Up to now, most of
the optimal aggregation procedures are based on exponential weiggtsgation with cumulated
exponential weights (ACEW), see Catoni (2001), Yang (2004), Y20660), Juditsky et al. (2008),
Juditsky et al. (2005), Audibert (2009) and aggregation with expiasdemeights (AEW), see Leung
and Barron (2006) and Dalalyan and Tsybakov (2007), among otfiesweights of the ACEW
are given by

giacew) . 1 & exp(—R(f})/T)
: - NG st exp—Re(fi)/T)

whereT is the so-calledemperaturgparameter. The weights of the AEW are given by
g(AEW)

new) . eX(-Ri(F)/T)
T M e —Ru(1)/T)

The ACEW satisfies (1) far(F,n) ~ (logM)/n, see references above, so it is optimal in the sense of
Tsybakov (2003). The AEW has been proved to be optimal in the regnas®mdel with determinis-

tic design for large temperatures in Dalalyan and Tsybakov (2007). Aitdagsmall temperatures,
AEW can be suboptimal both in expectation and with large probability (cf. &ecw Mendelson,
2010).

In these aggregates, no coeffici@pts equal to zero, although they can be very small, depend-
ing on the value oR,(f;) andT (this makes in particular the choice Bfof importance). So, even
the worse elements &f have an influence on the aggregate. This can be a problem when otge wan
to use aggregation to construct adaptive procedures. Indeedpalitimagine large dictionaries
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containing many different types of estimators (kernel estimators, projeetitbmators, etc.) with
many different parameters (smoothing parameters, groups of variabtgs, Some of the estima-
tors are likely to be more adapted than the others, depending on the kind efsbait fits well
the data, and, there may be only few of them among a large dictionary. Aagadg that combines
only the most adapted estimators from the dictionary and that removes thednisbees is suitable
in this case. The challenge is then to find such a procedure which is stilltemabpggregate. An
improvement going in this direction has been made using a preselection stepundred Mendel-
son (2009). This preselection step allows to remove all the estimatérswihich performs badly
on a learning subsample. In this paper, we want to go a step further: weédoan aggregation
algorithm that shares the same property of optimality, but with as few nanexafficientsd; as
possible, hence the narhgper-sparse aggregaté his leads to the following question:

Question 1 What is the minimal number of non-zero coefficiédjtsuch that an aggregation pro-
ceduref =y, 6;f; is optimal?

It turns out that the answer to Question 1 is two. Indeed, if every caaftits zero, excepted for one,

the aggregate coincides with an elementofand as we mentioned before, such a procedure can
only achieve the ratglogM) /n)%/2 (unless extra properties are satisfiedfogndv). In Definition 1
below (see Section 2) we construct three procedures, where twonf(fee (6) and (7)) only have
two non-zero coefficient8;. We prove in Theorem 2 below that these procedures are optimal, since
they achieve the ratgogM)/n.

2. Definition of the Aggregates and Results

First, we need to introduce some notations and assumptions. Let us retaielja-norm of a
random variableZ is given by||Z||y, := inf{c > 0 : E[exp(|Z|/c))] < 2}. We say tha¥Z is sub-
exponential whef|Z||y, < +. We work under the following assumptions.

Assumption 1 We can write
Y = fo(X) +&,

wheree is such thatE(g|X) = 0 and E(e?|X) < ¢? a.s. for some constami; > 0. Moreover, we
assume that one of the following points holds.

e (Bounded setup) There is a constant I0 such that:

ma( Y e Supl (X)) < b @
feF

e (Sub-exponential setup) There is a constant ®such that:

max( ¢l g:,5upl £ () ~ (X)) < b ©)

Note that Assumption (3) allows for an unbounded outfuthe results given below differ a bit
depending on the considered assumption (there is an extratdog in the sub-exponential case).
To simplify the notations, we assume from now on that we havel#servations from a sample
Dan = (X, Y)2,. Let us define our aggregation procedures.
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Definition 1 (Aggregation procedures) Follow the following steps:

(O. Initialization) Choose a confidence levetx0. If (2) holds, define

logM 4+ x
(p:(gmM(x):b\/gT.

(logM +x)logn
—

If (3) holds, define

cpztnq,m(X)z(Gﬁb)\/

(1. Splitting) Split the sample B into Dy1 = (X, i) ; and D> = (Xi,Yi)iZ:”nH.

(2. Preselection)Use Dy 1 to define a random subset of:F
Fi= {f €F :Rya(f) <Rna(faa) +cmax(q| fr1 — f||n,1,(P2)}7 (4)

where|| ]2, ="t 5 £(X)% Roa(f) = n 5y (f(X) —¥)?, fox € argmin ¢ Rya(f).

(3. Aggregation) Choose¥ as one of the following sets:

F =conv(F1) = the convex hull of; (5)
F =seqF) = the segments between the functiongin (6)
F = star f,1,F1) = the segments betweép, with the elements d#, )

and return the ERM relative to f» :

f € argminR, 2(g),
gE,{}

where Ro(f) =nt 52 1 (F(X) —Y)2

These algorithms are illustrated in Figures 1 and 2. In Figure 1 we summariaggdhegation
steps in the three cases. In Figure 2 we give a simulated illustration of tredeurtésn step, and we
show the value of the weights of the AEW for a comparison. As mentionedealtios Step 3 of
the algorithm returns, wheff is given by (6) or (7), an aggregate which is a convex combination
of only two functions inF, among the ones remaining after the preselection step. The preselection
step was introduced in Leéuand Mendelson (2009), with the use of (5) only for the aggregation
step.

From the computational point of view, the procedure (7) is the most appeadim ERM in
star( f1,F) can be computed in a fast and explicit way, see Algorithm 1 below. TheTdrem
proves that each procedure given in Definition 1 are optimal.

Theorem 2 Let x> 0 be a confidence level, F be a dictionary with cardinality M ahte one of
the aggregation procedure given in Definition 1.(¥) holds, we have, witk®-probability at least
1-2e*

(1+x)logM

o (1+x)logM
R() < minR(f) + Co~————,
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f7

Figure 1: Aggregation algorithms: ERM over cdRy), segF;), or staf ﬂl, F).

where ¢ is a constant depending on b.
If (3) holds, we have, with®"-probability at leastl — 4

R(f) < mipR(f)ch(,&b(l*X) |%9M|09n.
S

Remark 3 Note that the definition of the s@i, and thusf, depends on the confidence x through
the factorg,m(X).

Remark 4 To simplify the proofs, we don’t give the explicit values of the constants. etaw
when(2) holds, one can choose-€4(1+ 9b) in (4) and c= c1(1+ b) when(3) holds (where ¢is
the absolute constant appearing in Theorem 6). Of course, this is niytidkbe the optimal choice.

Now, we give details for the computation of the star-shaped aggregate/ynthe aggregaté
given by Definition 1 wherf is (7). Indeed, i\ € [0,1], we have

Ru2(Af + (1=2)g) = ARn2(f) + (1= A)Ru2(9) ~M1-2)| f —glf2.
so the minimum oA — Ry 2(Af 4+ (1—A)g) is achieved at

}(Rn,z(g) —Ra2(f)
2\ |f-dla

An2(f,g) =0V +1)/\1,

whereaV b =max(a,b), aAb=min(a,b). So,

Aren[(i)nl] Ra2(Af+(1—A)g) = Ry2(An2(f,9) f + (1—An2(f,0))9),

which is equal to

Ri2(9) if  Ru2(f)—Ra2(9) > || — 9|3
Ru2(f) if  Rya(f) —Rn2(9) < —[|f — g3
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Figure 2: Empirical riskR,1(f), value of the threshol®, 1 (fn1) +2maxq|| fo1 — f[ln1, @) and
weights of the AEW (rescaled) fdre F, whereF is a dictionary obtained using LARS,
see Section 3 below. Only the elementsFofvith an empirical risk smaller than the
threshold are kept from the dictionary for the construction of the aggeegof Defi-
nition (1). The first and third examples correspond to a case wheregrgaie with
preselection step improves upon AEW, while in the second example, botkdues
behaves similarly.

and to ,
Ruz(f) +R2(9)  (Rua(f) —Rn2(9)* I —dlz
2 41t —gliz, 4

if [Rn2(f) —Rn2(9)] <||f— g||ﬁ’2. This leads to the next Algorithm 1 for the computationfof

3. Simulation Study

In machine learning, the choice of the tuning parameters in a proceduwrd bagenalization is a
main issue. If the procedure is able to perform variable selection (suble &ssso, see Tibshirani,
1996), then the tuning parameters determines which variables are selactethy cases, including
the Lasso, this choice is commonly done using a Malld@gsheuristic (see Efron et al., 2004) or
using theV-fold or the leave-one-out cross validations. Since aggregation guoeg are known
(see references above) to outperform selectors in terms of prediction i is tempting to use
aggregation for the choice of the tuning parameters. Unfortunately, asemgoned before, most
aggregation procedures provide non-zero weights to many non relelament in a dictionary:
this is a problem for variable selection. Indeed, if we use, for instaneeABW on a dictionary
consisting of the full path of Lasso estimators (provided by the Lars algorifee Efron et al.,
2004), then the resulting aggregate is likely to select all the variables siadeatiso with a small
regularization parameter is very close (and equal if it is zero) to ordieast-squares (which does
not perform any variables selection). So, in this context, the hypessp@gregate of Section 2 is
of particular interest. In this section, we compare the prediction error anddturacy of variable
selection of our star-shaped aggregation algorithm to Mall@y'fieuristic, leave-one-out cross-
validation and 10-fold cross-validation. In Section 3.2 we consider a daryoconsisting of the
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Algorithm 1 : Computation of the star-shaped aggregate.
Input: dictionaryF, data(Xi,Yi)J-Zznl, and a confidence leval> 0
Output: star-shaped aggregate
Split D2, into two sample®y, ; andD, »
foreachj € {1,...,M} do

ComputeR,1(fj) andRy2(fj), and use this loop to finﬁq,l € argming g Ry 1(f)
end
foreachj € {1,...,M} do
Compute|| fj — fn1ln1 and|| fj — fn1lln2
end
Construct the set of preselected elements

Fi= {f € F :Ru1(f) < Rna(fr1) +cmax(q fn1 — f!!n,l,wz)},

whereqis given in Definition 1.

foreach f € F; do
compute

Ru2(An2(fox, f)fns+ (1= An2(faa, F))T)
and keep the elemerﬁfe F, that minimizes this quantity

end
return

f = Ana( fAn,l, f5) fAn,l + (L —An2( ﬂ1,17 o) s

entire sequence of Lasso estimators and a dictionary consisting of emfirenees of the elastic-
net estimators (see Zou and Hastie, 2005) corresponding to sevgeapgdalization parameters, so
this dictionary contains the Lasso, the elastic-net, the ridge and the ortiaatysquares estimators.

Remark 5 Note that since an aggregation algorithm is “generic”, in the sense thatittmaapplied
to any dictionary, one could consider larger dictionaries, containing mastances of different type
of estimators, for several choices of the tuning parameters, like theti&kddmsso (see Zou, 2006)
among many other instances of the Lasso. We believe that the concliisieraumerical study
proposed here would be the same as for a much larger dictionary. thdeteus recall that here,
the focus is on the comparison of selection and aggregation proceduréisef@hoice of tuning
parameters, and not on the comparison of the procedures inside thendity themselves.

3.1 Examples of Models

We simulaten independent copies of the linear regression model
Y =B "X+e¢,

where3 € RP. Several settings are considered, see Models 1-6 below, includingespad non-
sparse vectorB and several signal-to-noise ratios. Models 1-4 are from Tibshir@8ig)L
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Model 1 (A few effects). We set = (3,1.5,0,0,2,0,0,0), sop =8, and we leh to be 20 and 60.
The vectoiX = (X1,...,X%) is a centered normal vector with covariance matrix Q0yX!) =
pli~Il, with p = 1/2. The noise; is N(0,0?) with ¢ equal to 1 or 3.

Model 2 (Every effects). This example is the same as Model 1, but vtk (2,2,2,2,2,2,2,2).
Model 3 (A single effect). This example is the same as Model 1, but vta: (5,0,0,0,0,0,0,0).

Model 4 (A larger model). We set = (0%, 210,010, 210) wherex) stands for the vector of dimen-
siony with each coordinate equal 10 so p = 40. We letn to be 100 and 200. We consider
covariates)(,-J =Z;+Z wherez ; andZ; are independeri(0,1) variables. This induces
pairwise correlation equal ta®among the covariates. The noisés N(0,¢?) with o equal
tol5o0r7.

Model 5 (Sparse vector in high dimension).We setp = (2.5°,1.5°,0.5°,0'8%), sop = 200. We
let nto be 50 and 100. The first 15 covariatés, ..., X*®) and the remaining 185 covariates
(X16,... X290 are independent. Each of these are Gaussian vectors with the samarczvar
matrix as in Model 1 wittp = 0.5. The noise i?N(0,0?) with o equal to 3 and 5.

Model 6 (Sparse vector in high dimension, stronger correlation).This example is the same as
Model 5, but withp = 0.95.

3.2 Procedures

We consider a dictionary consisting of the entire sequence of Lasso estraatba dictionary with
several sequences of elastic-net estimators, corresponding to adgmeters in the set of values
{0,0.01,0.1,1,5,10,20,50,100} (these dictionaries are computed with ttee s andenet routines

from R).! For each dictionary, we compute the prediction ermr(sﬁ— B)|2 (whereX is the matrix
with rows X;,..., X/ and|- |2 is the 3-norm of 200 replications (this makes the results stable

~

enough), wher@ is one of the following:
° E(Ofac'@ = the element of the dictionary with smallest prediction error
e B = the Lasso estimator selected by Mallo@sheuristic
o B(10-Fold) _ the element of the dictionary selected by 10-fold cross-validation
° E('-OO) = the element of the dictionary selected by leave-one-out cross-validation

° E(AEW) = The aggregate with exponential weights applied to the dictionary, with temperatu
parameter equal toc#, see for instance Dalalyan and Tsybakov (2007)

. ﬁ<5ta9 = the star-shaped aggregate applied to the dictionary.

For the AEW and the star-shaped aggregate, the splits are chosematraith size[n/2] for
training andn — [n/2] for learning. For both aggregates we use jackknife: we compute the mean
of 100 aggregates obtained with several splits chosen at random. Thes thalfinal aggregates less

1. R can be found atww. r - pr oj ect . or g.
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dependent on the split. As a matter of fact, we observed in our numeridistinat Star-shaped
aggregation with the preselection step and without it (see Definition 1) mevikbse estimators.
So, in order to improve the computational burden, the numerical results 8fdhashaped aggregate
reproduced here are the ones obtained without the preselection step.

We need to explain how variable selection is performed basddstar-shaped aggregates com-
ing from J random splits (here we takke= 100). A Star-shaped aggregaftA@.l corresponding to a
split j, can be written as

U XD FD + (1= AD) £

other

wherefAészM is the ERM inF corresponding to the spljtand fAét’r)]erls the other vertex of the segment
where the empirical risk is minimized (recall that the aggregate minimizes the erpisicaver
the set of segments st FgM, F)). For each split, we estimate the significance of each covariate

using

A=Ay 4+ (@-A01y,

BERM#O Botheﬁéo,

wherel,.o = (1\,1750, 1\,#0) The vectorii)) does a simple average of the contributions of the

supports ofBERM and Bothe,, weighted by)\< ). To take into consideration each split, we simply
compute the mean of the significances of each split:

Ti=

J
il
2

The vectomcontains the final significances of each covariate. This proceduresisiclspirit to the
stability selection procedure described in Meinshausen dimdhigann (2010), since each aggregate
is related to a subsample. Finally, the selected covariates are the one in

S= {ke{l,...,p}:ﬁ(zf},

wheret is a random threshold given by

whereg=min(s,,/0.7p), B= p/10 ands = 1 . ZJ 1SE 1Trf< is the average sparsity (number of non-
zero coefficients) for each splits. This choice of threshold follows theraents from Meinshausen
and Bihlmann (2010), together with some empirical tuning.

For each of the Models 1-6, the boxplots of the 200 prediction errorsiaea (0 Figures 3
and 4. Note that in a high dimensional settifgg> n), we don’t reproduce th€,’s prediction
errors, since in this case thar s package does not give it correctly. For the elastic-net dictionary,
the boxplot of the predictions errors are given for Models 1-4 in Figur&he results concerning
variables selection for the Lars and the Elastic-Net dictionaries are miviables 1 and 2. In these
tables we reproduce the number of selected variables by each precaddrthe number of noise
variables (the selected variables which are not active in the true model).
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3.3 Conclusion

In most cases, the Star-Shaped aggregate improves upon the AEW arwhttidered selection
procedures both in terms of prediction error and variable selection. fbp@ged variable selection
algorithm based on star-shaped aggregation and stability selection tereledbssnaller models
than theC, and cross-validation methods (see Table 1, Models 1-4) leading to lessvamiables.

In particular, in high-dimensional casgs £ n), it is much more stable regarding the sample size
and noise level, and provides better results most of the time (see Table &|dV8). In terms

of prediction error, the Star-Shaped always improve the AEW, and isrilette theC, and cross-
validations in most cases. We can say that, roughlyGh@nd the cross-validations are better
than the Star-Shaped aggregate only for non-sparse vectors (siseesttlection procedures tend
to select larger models), in particular wheis small ando is large. We can conclude by saying
that, in the worst cases, the Star-shaped algorithm has prediction aatibsepeerformances which
are comparable to cross-validations @hdheuristic, but, on the other hand, it can improve them a
lot (in particular for sparse vectors). One can think of the Star-Shaggregation algorithm as an
alternative to cross-validation a).
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Appendix A. Proofs

We will use the following notations. IfF € argming ¢ R(f), we will consider the excess loss

L = Le(H(X,Y) = (Y = £(X))? = (Y = f7(X))?,

and use the notations

1 n
Pt Z:ELf(X,Y), PnLf = H ZlLf(X|,Y|)
i=

A.1 Proof of Theorem 2

Let us prove the resuli in thp; case, the other case is similar. Kix- 0 and let¥ be either (5), (6)
or (7). Setd := diam(Fy,L»(1)). Consider the second half of the samplg, = (X, Y;)?,,1. By
Corollary 8 (see Appendix A.2 below), with probability at least 4exp—x) (relative toDy, 5), we

have for everyf € F

2n
\ii;ﬁ(fﬂmﬁ) ~E(£5(1)(X,Y)|Pas) | < c(0c + b) max(de,bg?),

whereLz (f)(X,Y) = (f(X) - Y)2 (f (X) —Y)? s the excess loss function relativeq 7 €
argmiry_; R(f) and where ¢ = V/((logM +x)logn)/n. By definiton of f, we have
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Figure 3: First line: prediction errors for Model 1, with= 20, o0 = 3 (left) andn=60,0 =1
(right) ; Second line : prediction errors for Model 2, with= 20,0 = 3 (left) andn = 60,
o =1 (right) ; thrid line: prediction errors for Model 3, with= 20, o = 3 (left) and
n=60,0 =1 (right)
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Figure 4: First line: prediction errors for Model 4, with= 100,0 = 15 (left) andn = 200,6 =7
(right) ; Second line: Prediction errors for Model 5, with= 50,0 = 3 (left) andn = 100,
o = 1.5 (right) ; Third line: Prediction errors for Model 6, with= 50,0 = 1.5 (left) and
n=100,0 = 1.5 (right)
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Model 1 Model 2
n=20,0=3 n=60,0=1 n=20,0=3 n=60,0=1

Selected Noise Selected Noise Selected Noise Selected Noise

Truth 3 0 3 0 8 0 8 0

10-fold  3.870 1.410 5.260 2.260 7.190 0 8 0

Loo 3.965 1.465 5.065 2.055 7.235 0 8 0

Cp 4.165 1.645 4,710 1.710 7.085 0 8 0

Star 2.860 0.675 4355 1.355 6.250 0 8 0
Model 3 Model 4

n=20,0=3 n=60,0=1 n=100,0=15 n=200,0=7

Selected Noise Selected Noise Selected Noise Selected Noise

Truth 1 0 1 0 20 0 20 0

10-fold  2.365 1.365 2980 1980 21.610 6.955 28.405 8.415

Loo 2.440 1.440 2645 1645 22295 7.305 28.480 8.495

Cp 2.965 1.965 2650 1650 23.860 8.175 29.715 9.720

Star 1.655 0.655 1.855 0.855 18.065 4.910 27.850 7.855
Model 5 Model 6

Nn=100,0=15 n=200,0=05 n=100,0=15 n=200,0=0.5

Selected Noise Selected Noise Selected Noise Selected Noise
Truth 15 0 15 0 15 0 15 0
10-fold 47.375 32550 14.035 0 39.150 25.830 7.560 0
Loo 44,030 29.215 10.455 0 24.370 10.990 2.425 0
Star 15.690 1.245 17.780 2.780 13.175 0.055 15.145 0.150

Table 1: Accuracy of variable prediction in Models 1 to 6 (Lars dictionary)

i 1 Lz( f)(X,¥) <0, so, on this event (relative @, )

~ . 2n N
R(T) <RI+ E(L(NPw) 5 5 £5(DXY)
i=n+

< R(f7) + ¢(0 + b) max(dg, be?)
= R(f7) + (c(0: + b) maxde,be?) — (R(FF) ~R(1")))
= R(f7)+B,

and it remains to show that

(1+x)logMlogn

B<cpgo, n

When¥ is given by (5) or (6), the geometrical configuration is the same as ind.aed Mendelson
(2009), so we skip the proof.
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Figure 5: Prediction errors for Models 1 to 4 using the elastic-net dictjofugper left: Model 1
with o = 3,n = 20, upper right: Model 2 witlo = 3,n = 20, bottom left: Model 3 with
o0 = 3,n= 20 and bottom right: Model 4 with = 100,0 = 15).

Model 1 Model 2 Model 3 Model 4
n=20,0=3 n=20,0=3 n=20,0=3 n=100,0 =15

Selected Noise Selected Noise Selected Noise Selected Noise

Truth 3 0 8 0 1 0 20 0

10-fold 5.040 2.155  7.450 0 3.045 2.045 25.575 9.475
Loo 4940 2.065 7.460 0 2980 1980 25535 9.660
Cp 4490 1.660 7.335 0 2.760 1.760 24.345 8.470
Star 4355 1475 7.485 0 2.080 1.080 24.090 8.755

Table 2: Accuracy of variable prediction in Models 1 to 4 (Elastic-Net dietigh
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Let us turn out to the situation whepe is given by (7). Recall thafml is the ERM orf; using
Dn 1. Considerf, such that| fn1 — f1”|_2(u) =maX g | fa1—f HLZ(H), and note that

102 — fullizgy < d < 2| fog— fallizgy-

The mid-pointf, := (ﬂ\,1+ f1)/2 belongs to stérf]l,lfl). Using the parallelogram identity, we
have for anyu,v € La(v):

2
Ev<u+v)2 < Ey (U?) + Ey(v?) B ||U*VH|_2(V),
2 2 4
where for evenh € L(v), Ey(h) = Eh(X,Y). In particular, foru(X,Y) = fAm —Y andv(X,Y) =
f1(X) =Y, the mid-point isiu(X,Y) +v(X,Y))/2 = fo(X) —Y. Hence,

R(f2) =E<f2<x>_y>2:E(W+ho<>_Y)z

2
1. ¢ 2, 1 2 1 2
< EE(fn,l(X) -Y) + QE(fl(X) -Y) - ZH fn1— fallC,
1~ 1 d?
<= = _ =
> ZR( fn,l) + ZR( fl) 167

where the expectations are taken conditioned>gn. By Lemma 10 (see Appendix A.2 below),
sincefn1, f1 € F1, we have

SR(Fa) + 3R(H) < R(F%) (0% + b) max(gd, be?),

and thus, sincé, ¢ ?
R(f%) < R(f2) < R(fF) + c(0¢ + b) max(gd, bg?) — cd?.

Therefore,

B = o(0x -+ b)max(de. be?) — (R(fF) — R(f7))
< ¢(0¢ 4+ b) max(gd, bg?) — cd?.

Finally, if d > cg, p@thenf3 <0, otherwise < ccg,bcpz. It concludes the proof of Theorem 2. [

A.2 Tools from Empirical Process Theory and Technical Results

The following Theorem is a Talagrand’s type concentration inequality Tagrand, 1996) for a
class of unbounded functions.

Theorem 6 (Theorem 4, Adamczak, 2008 Assume that XX1, ..., X, are independent random vari-
ables and F is a countable set of functions such H&tX) = 0,Vf € F and || supicg f(X) ||y, <

+co0. Define ]
ﬁ_;fw\
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and
0% = supEf(X)? and b:= || _max ?UIPH(Xi)\le.
- €

feF IRAL

Then, for anyn € (0,1) andd > 0, there is c= ¢, 5 such that for any x> 0:

P[Zz(l+n)EZ+o 2(1+3)

:

+cb()—;)] < 4e*

- cb(%)] <4e%.

SIX| 51X

P[zg (1-N)EZ -0, /2(1+5)

;

Now we state some technical Lemmas, used in the proof of Theorem 2. &samplgz)! ,,
we set the random empirical meastg=n"15" , &;. For any functionf define(P —P,)(f) :=
n-1s", f(z)—Ef(Z)and for a class of functiorfs, define||P — Py||r := sup < [(P—Pa)(f)]. In
all what follows, we denote by an absolute positive constant, that can vary from place to place. Its
dependence on the parameters of the setting is specified in place.

Lemma 7 Define

d(F) :=diam(F,L2(n)), o%(F)=supE[f(X)?], C=conuF),
feF

and L¢(C) = {(Y — f(X))?— (Y = f€(X))?: f € C}, where ¥ € argmin,_-R(g). If (2) holds, we
have

E[sup% ifz(xi)} < cmax(oZ(F), bzlng) and

logM logM
E[Pa =Pl (o) < by =2 max(bq / T,ol(F)).

If (3) holds, we have

2
7b IogM>’ and

E[sup} ifz(xi)] < Cmax(Gz(F)

fep N

logMlogn logMlogn
B[Py — Pl o) < cby/ —22 290 - g max(b\/ig - d d(F)).

Proof First, consider the case (3). Define

1 n
2 —sup- S f(X)2,
fer N&

and note thatx (r?) < Ex||P — Py||g2 + 0(F)?, whereF := {f?: f € F}. Using the Gi®-Zinn
symmetrization argument, see @iand Zinn (1984), we have

c n
]EXHP— PnHF2 < HEXEQ[Sup i;gi fz(xi)

feF
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where(g;) are i.i.d. standard normal. The process> Zp ¢ = zi”:lgifz(xi) is Gaussian, with
intrinsic distance

n

Eg|Z2.t —Zov|* = Zl(f(mz — /(%)?)2 < dne!(f, )% x 4nr?,
i=

whered o (f, f') =max_1_ n|f(X)— f'(X)|. Using (3) we have.(f, f') <2bforanyf, f’' eF,
so using Dudley’s entropy integral, we have

c [ logM
Eg[[P—Pnllg2 < ﬁ/o logN(F, dne,t)dt < cr -
logM logM
ExHP—PnH,:zgcb\/TEx[r] Scb\/T\/Im,

2
Ex(r?) < cmax(b Icr)]gl\/l +0(F)2>.

So, we get

which entails that

Let us turn to the part of the Lemma concernitP — Py|| ... Recall thatC = cony(F ) and write
for short£¢(X,Y) = Lo(F)(X,Y) = (Y — f(X))2 = (Y — fC(X))2 for eachf € C, where we recall
that f€ ¢ argmin,. ~R(g). Using the same argument as before we have

E[[P=Pullo0) £ E(XYEQ[ fouY)H

Consider the Gaussian process C — Z; := Y., giLf(Xi,Yi) indexed byC. For everyf, f’ € C,
the intrinsic distance ofZ; )¢ satisfies

n

EolZi ~Zp[° = § (Le(X.¥) — Lo (X, Y))?

<qqu4m>Vmwx;mm—wmf

i=
= max [2Y— 10X) — /(%) 2 x Egl2} — Z

wherez} := 3, agi(f(X)— f€(X)). Therefore, by Slepian’s Lemma, we have for evety Y ;:

Eg[supzf} <. max sup 12 — (X)) — /(%) ng[supZ}},
fec i=L..nf frec fec

and since for every = y¥ ; a;f; € C, wherea; >0,vj=1,....Mandya; =1,Z{ =", a;Zy,,
we have

o[ supei] < s

Moreover, we have, using Dudley’s entropy integral argument,

1 An(F) /lo M
fIEg[supi / VN(F || ]|n,t)dt < c g
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whereF’ .= {f — f¢: f € F} andAn(F’) := diam(F’, || - |n) and
n
r'2:= sup} f(X)2.
fer NS

Hence, we proved that

logM
E[P—Pullce(c) < C\/?\/E[i—r?é).(np% =100 = OO ] E(r2)

Using Pisier’s inequality forp; random variables and the fact tHatU?) < 4(|U||y, for any ;-
random variablé&J, together with (3), we obtain that

E[,max sup |2Yi—f(Xi)—f’(Xi)\2] < chPlog(n). (8)
1=1..n¢t trec

lognlogM
E[[P—Puallzo0) S €4/ — 0V E(r2),

and the conclusion follows from the first part of the Lemma, siod€') < d(F). The case (2) is
easier and follows from the fact that the left hand side of (8) is smallerdhan [ |

So, we finally obtain

Lemma 7 combined with Theorem 6 leads to the following corollary.

Corollary 8 Letd(F)=diam(F,L2(l)), C:=convF)andL(X,Y) = (Y — f(X))2— (Y- f¢(X))?
forany fe C.
If (3) holds, we have, with probability larger thdn— 4e*, that for every fe C:

‘iim(ﬂ) —IELNX,Y)\

§C(O'g—i—b)\/(IOgM_;X)IOgnmaX<b\/(|0gM—;X)logn,d(F)).

If (2) holds, we have, with probability larger thdn— 2e~*, that for every fe C:

‘iiiLf(xiaYi)_ELf x.Y)| < cb\/wma)((b\/w’dm)

Proof Applying Theorem 6 to

Z:=sup
feCc

1 n

. Lf(xvY)_ELf(X7Y> ’
n i; ' ’
we obtain that, with a probability larger than-4e*:

z< c(EZ+0(C)\/§+ bn(C)§)7

n
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where
a(C)? = supE[L¢(X,Y)?], and
fec
bn(C) = || max sup|Lt(X,Y) —E[Lf(X,Y)”Hw .
i=1...nfcc 1
Since

Li(X,Y) = 2e(FE(X) = (X)) + (F9(X) = £(X))(2fo(X) = F(X) = F(X)), 9)
we have using Assumptions 1 and (3):
E[L(X,Y)? < (402 +20%) | — £€]1% .

meaning that
0(C)? < (402 +2b%)d(F).

SinceE(|Z]) < [|Z||y,, we haveb,(C) < 2log(n+ 1) suprc~ | Lt (X,Y)||y,- Moreover, using again
(9), we obtain that

bn(C) < 16log(n+1)b?.
Putting all this together, and using Lemma 7, we arrive at

ZSC<08+b)\/(logM+nx)lognmax(b\/(logM+nx)logn7d(F))’

with probability larger than 1 4e* for anyx > 0. In the bounded case (2) the proof is easier, and
one can use the original Talagrand’s concentration inequality. |

Lemma 9 Let L¢(X,Y) = (Y — f(X))?— (Y — fF(X))2 forany fe F.
If (3) holds, we have with probability larger thain— 4%, that for every fe F:

’iihm,m—m(x,v)(

- c(os+b)\/(|0gM +x)logn max(b\/(logM +X) Iognj ™ fFH)
n n
Also, with probability at least — 4%, we have for every,fj € F:
IIf—glz—1If—gl?|
< cb\/(logM +x)logn max(b\/(logM Jr:x) Iogn’ |f— 9||>.

n
If (2) holds, we have, with probability larger thdn— 2e™*, that for every fe F:

12 logM + x logM + x F
= VA < o 7 o~ _
‘niz L5 0%,Y)) ELf(x,Y)‘_cb,/ - max(b | ”),

and with probability at leasl — 2e7*, that for every fge F:

logM + x logM + X
£ = gl2—11f — gl < oby [ ZE T ma(by /222 1~ g])).
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Proof [Proof of Lemma 9] The proof uses exactly the same arguments as thanohae/ and
Corollary 8, and thus is omitted. [ |

Lemma 10 Let F; be given by(4) and recall that f e argmin_-R(f) and let dF;) =

diam(Fy, Lo(p)). -
If (3) holds, we have with probability at leagt— 4exp—x) that f© € F;, and any function
f € F, satisfies

R(f) < R(fF)+C(GS+b)\/(|Og'VH'nX)Iogn maX(b%W,d(ﬁl)).

If (2) holds, we have with probability at leadt— 2exp(—x) that f© € F;, and any function

f € F; satisfies
R(f) < R(fF)+cb,/m$‘max(b,/m$‘,d(ﬁl)).

Proof The proof follows the lines of the proof of Lemma 4.4 in Lécand Mendelson (2009),
together with Lemma 9, so we don’t reproduce it here. |
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