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Abstract

We demonstrate that there are machine learning algorithaistin achieve success for two sepa-
rate tasks simultaneously, namely the tasks of classiicatnd bipartite ranking. This means that
advantages gained from solving one task can be carried owbetother task, such as the abil-
ity to obtain conditional density estimates, and an ordemagnitude reduction in computational
time for training the algorithm. It also means that some algms are robust to the choice of
evaluation metric used; they can theoretically performl wélen performance is measured either
by a misclassification error or by a statistic of the ROC cupreh as the area under the curve).
Specifically, we provide such an equivalence relationsleippvben a generalization of Freund et
al.'s RankBoost algorithm, called the “P-Norm Push,” ancagipular cost-sensitive classification
algorithm that generalizes AdaBoost, which we call “P-Glifisation.” We discuss and validate the
potential benefits of this equivalence relationship, andope controlled experiments to under-
stand P-Classification’s empirical performance. Thereoigstablished equivalence relationship
for logistic regression and its ranking counterpart, somduce a logistic-regression-style algo-
rithm that aims in between classification and ranking, arscddnamising experimental performance
with respect to both tasks.

Keywords: supervised classification, bipartite ranking, area untecurve, rank statistics, boost-
ing, logistic regression

1. Introduction

The success of a machine learning algorithm can be judged in many diffeags. Thus, algo-
rithms that are somehow robust to multiple performance metrics may be moraljenseful for a
wide variety of problems. Experimental evaluations of machine learningitilges tend to reflect
this by considering several different measures of success (sexaimple, the study of Caruana and
Niculescu-Mizil, 2006). For instance, classification algorithms are commodbyejd both by their
classification accuracy and the Area Under the ROC curve (AUC),teeergh these algorithms are
designed only to optimize the classification accuracy, and not the AUC.

If algorithms should be judged using multiple measures of success, it makas teeanalyze
and design algorithms that achieve success with respect to multiple performatrics. This is the
topic considered in this work, and we show that several additional &alyas, such as probabilis-
tic interpretability and computational speed, can be gained from findingaquotce relationships
between algorithms for different problems. It is true that there is no ‘tineeh” (Wolpert and
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Macready, 1997), we are not claiming that one algorithm can solve dilgres. We instead point
out that it is possible to optimize two objectives simultaneously if they have aappéng set of
optima. The objectives in this case are convexified versions of the peafare metrics for classifi-
cation and ranking. In this work, we show that a particular equivalegledionship exists between
two algorithms: a ranking algorithm called the P-Norm Push (Rudin, 2008ighnis a general-
ization of RankBoost (Freund et al., 2003) that aims to maximize a weightadiader the curve,
and a classification algorithm that we call P-Classification, which is a gérsgian of AdaBoost
(Freund and Schapire, 1997) that aims to minimize a weighted misclassificationSecifically,
we show that P-Classification not only optimizes its objective, but also optirttizegbjective of
the P-Norm Push (and vice versa, the P-Norm Push can be made to opti@lasdfication’s ob-
jective function). Thus, P-Classification and the P-Norm Push peréomally well on both of their
objectives; P-Classification can be used as a ranking algorithm, andMloenPPush can be made
into a classification algorithm. This equivalence relationship allows us to: thirobonditional
density estimates fd?(y = 1|x) for the P-Norm Push (and thus RankBoost as a special case), 2) ob-
tain solutions of the P-Norm Push an order of magnitude faster withoufisigr the quality of the
solution at all, and 3) show a relationship between the P-Norm Push’stiobjaad the “precision”
metric used in Information Retrieval. This relationship will allow us to conduetatcontrolled
experiments to better understand P-Classification’s empirical performhnsaot clear that such
an equivalence relationship holds between logistic regression and iimgasdunterpart; in fact,
our experiments indicate that no such relationship can hold.

Bipartite ranking problems are similar to but distinct from binary classificatiablpms. In
both bipartite ranking and classification problems, the learner is given anfyeset of examples
{(X1,¥1),--.,(Xm,Ym)} consisting of instances € X that are either positivey(= 1) or negative
(y= —1). The goal of bipartite ranking is to learn a real-valued ranking functiotk — R that
ranks future positive instances higher than negative ones. Bipartkigsaigorithms optimize rank
statistics, such as the AUC. There is no decision boundary, and the sodues of the examples
do not matter, instead the values of the scores relative to each other amtaimip&lassification
algorithms optimize a misclassification error, and are they are not designptinoze rank statis-
tics. The “equivalence” is where a classification (or ranking) algoritimsdo optimize not only a
misclassification error, but also a rank statistic.

The first work that suggested such equivalence relationships colddshthat of Rudin and
Schapire (2009), showing that AdaBoost is equivalent to RankBdbsty showed that AdaBoost,
which iteratively minimizes the exponential misclassification loss, also iterativelymzies Rank-
Boost's exponential ranking loss, and vice versa, that RankBoosttruithl modifications can be
made to minimize the exponential misclassification loss. The first result of ol wmvided in
Section 3, is to broaden that proof to handle more general ranking lasdedassification losses.
The more general ranking loss is that of the P-Norm Push, which ctratemon “pushing” nega-
tives away from the top of the ranked list. The more general classificatssn d@termined mainly
by the number of false positives, is minimized by P-Classification, which is intedi formally in
Section 3. Also in Section 3, we consider another simple cost-sensitiviervefsAdaBoost, and
show the forward direction of its equivalence to RankBoost; in this casegt-sensitive version of
AdaBoost minimizes RankBoost’s objective no matter what the cost paraisebeiSection 4, we
will verify the equivalence relationship empirically and provide evidencerbasuch relationship
holds for logistic regression and its ranking counterpart. In Section Sseeisk the first two main
benefits gained by this equivalence relationship described above, nabtaiging probability esti-
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mates, and computing solutions faster. In Section 6 we discuss the relatiohBhi{plassification’s
objective to the “precision” metric, and evaluate several parametersnofhgethe performance of
P-Classification. As a result, we are able to suggest improvements to lesfistpance. Section 7
introduces a new logistic-regression-style algorithm that solves a prablbatween classification
and ranking, in the hopes of performing better than AdaBoost on botitoNote that this work
does not relate directly to work on reductions (e.g., Balcan et al., 2008 ® this work, the same
set of features are used for both the classification and ranking prol@hwut any modification.
Another recent work that addresses the use of classification algoritmsal¥ing ranking problems
is that of Kotlowski et al. (2011), who show loss and regret boundhemanking performance of
classifiers. Their analysis is useful when equivalence relationshipk,as the ones we show here,
do not hold.

2. Definitions

We denote the set of instances with positive label{>xas-1_;, and the set of instances with
negative labels af}i—1,. k, wherex;, % € X. Throughout most of the paper, the subscrigad

k will be used as indices over positive and negative instances, reglgctiVe assume thak,y:)
are drawn from a joint distributio® on X x {—1,1}. Our goal is to construct a scoring function
f : X — R which gives a real valued score to each instanc&inLet ¥ denote the hypothesis
space that is the class of convex combinations of fea{htgg_1. n, whereh; : X — {—1,1}. The
function f € ¥ is then defined as a linear combination of the features:

fi=1\ = Z)\jhj,
J

whereX € R" will be chosen to minimize (or approximately minimize) an objective function. We
always include a y-intercept (feature that is 1 for»dllassigned to the indek This y-intercept
term is important in the equivalence proof; in order to turn the P-Norm Rusha classification
algorithm, we need to place a decision boundary by adjusting the y-intercept.

In bipartite ranking, the goal is to rank positive instances higher than thative ones. The
quality of a ranking function is often measured by the area under the RG€ (AUC). The as-
sociated misranking loss, related te-/AUC, is the number of positive instances that are ranked
below negative instances:

I K
standard misranking logd ) = Z z Lt ()< (%] 1)
iSK=1

The ranking loss is zero when all negative instances are ranked bed@uositives instances.
In binary classification, the goal is to correctly predict the true labels sitige and negative
examples. The loss is measured by the misclassification error:

! K
standard misclassification loés) = Zn[f(xi)go] + Z Lt (%00 2)
i= K=1

Since it is difficult to minimize (1) and (2) directly, a widely used approach is tarmae a convex
upper bound on the loss. The exponential loss that is iteratively minimizeddbdéost (Freund
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and Schapire, 1997) is one such example:

RAB(A) := IZefAW + % e = RAB(N) + RAB(N). 3)
k=1

The ranking counterpart of AdaBoost is RankBoost (Freund et @32 RankBoost’s objective
function is a sum of exponentiated differences in scores, a convexdisidn of (1):

K K

KRB()\) — lzlkz e (IA(i)=fx(%)) — Zl e fax) Z A() — )\)MB()\)‘ (4)
i=1k=1 =

A generalization of RankBoost that is considered in this paper is the mNash (Rudin,
2009), which minimizes the following objective:

K /1 P
KPN(A) = Z <zie(f>\(xi)f>\(>zk))) .
k=1 \i=

By increasingp, one changes how hard the algorithm concentrates on “pushing” higingaeg-
ative examples down from the top of the list. The powercts as a soft maximum for the highest
scoring negative instance. When= 1, P-Norm Push’s objective reduces to RankBoost’s objective.

We also investigate the equivalence relationship between logistic regressibits ranking
counterpart, which we call “Logistic Regression Ranking” (LRR). Lagisegression minimizes
the objective:

KRR leog <l+ e Pl ) + Z log <l+e AR )) (5)
whereas LRR is defined with the following objective:
LRR L o (A 06)—fa (%))
RN = log (1+e A=) ) (6)
2.2, )

LRR bears a strong resemblance to the algorithm RankNet (Burges €G8),i that its objective
(6) is similar to the second term of RankNet’s objective (Equation 3 in Buegak, 2005). LRR’s
objective (6) is an upper bound on the 0-1 ranking loss in (1), using tistioloss logl+ e ?) to
upper bound the 0-1 loSs<o.

3. Equivalence Relationships

We now introduce P-Classification, which is a boosting-style algorithm that miesvd@aveighted
misclassification error. Like the P-Norm Push, it concentrates on “pgshie negative examples
down from the top of the list. Unlike the P-Norm Push, it minimizes a weighted msfitzegion
error (rather than a weighted misranking error), though we will showrtfiaimization of either
objective yields an equally good result for either problem. P-Classificatiaimizes the following
loss:

RPE(N) = if‘ B 4 ; kﬁ er P = RPC(X) + RPC(N) @
i= =1
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where fy = yjAjhj. P-Classification is a generalization of AdaBoost, in that wpea 1 (i.e.,

no emphasis on the top-scoring negatives), P-Classification’s lossag@xactly to that of Ada-
Boost's. We implemented P-Classification as coordinate descent (furagi@tent descent) on
RPC(X). Pseudocode is presented in Figure 1, using the notation of Collins e0@R)(2vherd

is the index over all examples (not just positive examples),Mnid the “game matrix” for Ada-
Boost, wheréMij = yihj(x). AdaBoost was originally shown to be a coordinate descent algorithm
by Breiman (1997), Friedman et al. (2000%atBch et al. (2001), Duffy and Helmbold (1999) and
Mason et al. (2000).

1. Input: examples{(x.,yi) }i";, where(x.y;) € X x {—1,1}, features{h;}|_,, hj : X = R,
number of iterationnax, parametep.

2. Define: Mjj :=yihj(x) for all i, j,
@ = Tygy—1y + plyy,—_q foralli.

3. Initialize: A\yj=0forj=1,...,n, dyj=1/mfori=1,....m.
4. Loop fort =1,...,tmax

(@) jt € argmax Simq 0k iM;j
(b) Perform a linesearch far;. That is, find a valuel; that minimizes:

2
m
ki M j, &M
(5 o,

(©) Arvj =AM+ 0cLj—j

(d) dey1j=hie @M fori=1,...,m

(&) Gini = 5

5. Output: A,

Figure 1: Pseudocode for the P-Classification algorithm.

There are other cost-sensitive boosting algorithms similar to P-Classific&iionet al. (2007)
introduced three “modifications” of AdaBoost's weight update schemeyrdarao make it cost
sensitive. Modifications | and Il incorporate an arbitrary constanbé item) for each example
somewhere within the update scheme, where the third modification is a blenddifiédtons |
and Il. Since Sun et al. (2007) consider the iteration scheme itself, sotheiomodifications are
not easy to interpret with respect to a global objective, particularly Mzatifin 11 (and thus III).
Although no global objective is provided explicitly, Modification | seems taespond to approx-

imate minimization of the following objective[zi ge (MG In that sense, P-Classification is

almost a special case of Modification |, where in our case, we would takeatbitraryC; to be
assigned the value gf. The step size; within Modification | is an approximate solution to a line-
search, whereas we use a numerical (exact) linesearch. The Add@m#thm of Fan et al. (1999)
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is another cost-sensitive variation of AdaBoost, however it is not &gsdowith a global objective

and in our experiments (not shown here) it tended to choose the inteegeattedly as the weak
classifier, and thus the combined classifier was also the intercept. Loadrbe (2008) also use
¢ norms within a boosting-style algorithm, but for the problem of label rankiateard of example

ranking. However, their objective is totally different than ours; for ine& it does not correspond
directly to a 0-1 misranking loss like (1).

We will now show that the P-Norm Push is equivalent to P-Classificationnmegahat mini-
mizers of P-Classification’s objective are also minimizers of the P-Norm'®abfective, and that
there is a trivial transformation of the P-Norm Push’s output that will minimizeld@ssification’s
objective. This trivial transformation simply puts a decision boundary initte place. This proof
will generalize the result of Rudin and Schapire (2009), but with a simpleoffstrategy; since
there are pathological cases where minimizers of the objectives occuatinifinity, the result of
Rudin and Schapire (2009) used a Bregman distance technique to iretergieese points at infin-
ity. Our proof does not handle the cases at infinity, but does handlenirch simpler way, all other
cases. These points at infinity occur because the objeckV&sand ® PN are not strictly convex
(though they are convex). For AdaBoost, there is work showing thahthinization problem can
be essentially split into two subproblems, one which handles examples nehacik®mn boundary
and is strictly convex, and the other which handles examples that becomeeipfiar away from
the boundary (Mukherjee et al., 2011).

The forward direction of the equivalence relationship is as follows:

Theorem 1 (P-Classification minimizes P-Norm Push’s objective)
If AP€ ¢ argmin, ® P¢(X\) (assuming minimizers exist), thaR® ¢ argmin, R PN(X).

The corresponding proof within Rudin and Schapire (2009) usednfaim steps, which we follow
also in our proof: 1) characterizing the conditions to be at a minimizer of tissi@ization objective
function, 2) using those conditions to develop a “skew” condition on thesetas3) characterizing
the conditions to be at a minimizer of the ranking objective function and 4) piggdpe skew
condition into the equations arising from step 3, and simplifying to show that a migiroizthe
classification objective is also a minimizer of the ranking objective.

Proof Step 1 is to characterize the conditions to be at a minimizer of the classificatiolefiise
APC to be a minimizer off P€ (assuming minimizers exist). A&”C we have: forallj =1,...,n

OR"E(N)

0= |
OAj  Ix=xPc

= Zepm (o +Ze ZIATE00 (i ()

z vEh; (%) + Zlq. (8

wherev, := efarc ) andg; := e fapc(i),
Step 2 is to develop a skew condition on the classes. Wherj thenh;(x;) = 1 for all i, and
hj (%) = 1 for all k. Using this, we can derive the skew condition:

> = PRPCE(APC) — RPC(APC).  (skew condition) (9)

T
ek
;M—

2910
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Step 3 is to characterize the conditions to be at a minimizer of the ranking losswEisimplify
the derivatives:

M & 'e(_fA(Xi)_fA(gk)) i Ie—(fA(Xi)—fA()zk))[ (hj(x) — hj(%))]
o _Zpi; i; —(Nj(%) — Nj(Xk

| p-1

— fa (%) p —fx(x) e i) _ _fA (%
= p)e e hij (X hj(

Ber(gene) (wage - nooe )

- (%) e fx (%) = (%)

= p e X h'()"(k)e’\xkp e

(o) e,

K o
— Z efx(X)p Zlhj(xi)efA(Xa)] . (10)

To be at a minimizer, the derivatives above must all be zero. Continuingpatstehen\ = APC,
we have:

ORPN(N) I N )
%’A_vc = p<i;qi> Lzlhj(xk)vki;qi—zvk_ h,-(xi)qi],

Using the skew condition (9), and then (8),

ORN(N)

o\ ‘A:APC B p(;‘*>pl (_2‘*) [Zh KOV, zih (x,)qi]
) <2q> aR;AC, SN (11)

This means thaAP® is a minimizer of the P-Norm Push’s objective. [ |

The backwards direction of the equivalence relationship is as follows:

Theorem 2 (The P-Norm Push can be trivially altered to minimize P-Classification’s ¢ibjeg
Let j index the constant featurefx) =1 Vx. TakeAPN € argmin, R "N(X) (assuming minimizers
exist). Create a “corrected’A\PN.cO" as follows:

)\PN,corr — )\PN + b- ej_7
where

1 i e fapn(X)
= n —.
p+1 zkef,\PN(Xk)p

(12)

Then APN-O™ ¢ argmin, R PE(X).

Rudin and Schapire (2009) have a very simple proof for the reversetidin, but this technique
could not easily be applied here. We have instead used the following prdlfe: first, we
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show that the corrected vectaN-co" satisfies the skew condition; then by deriving an expres-
sion similar to (11), we show that if the corrected P-Norm Push’s devesitire zero, then so are
P-Classification’s derivatives at the corrected P-Norm Push’s snolutio

Proof We will first show that the skew condition is satisfied for corrected veaf®rc". The
condition we need to prove is:

K
chorr Z (V)P (skew condition) (13)
k=1

Wherevﬁorr — ef)\PN,corr(ik) andqicorr = f)\PN,corr(Xi)_
From (12), we have:

The left side of (13) thus reduces as follows:

|
Zlqcorr — Z fPN (% —e b Zl fPN (%
i

5y ehenp eRWXk ML
— e PN (
T [sle hes 2& ’
E fxPN (%) o
— e APN(Xi e APN Xk ) (14)

Now consider the right side:

x

K
Z (Vﬁorr>p _ efaPn () pgbp

k=1 1

,\_
Il

_P_

PN (% [Z APN(X‘)] Pl
el =

Sk afxPn (%)p

I
M =

=
[l

1

= (%) G fxpn (%)
— e IaPNXi elaPn(R)p
[i; ] [kzl

Expression (14) is equal to expression (15), so the skew conditio)rhllds. According to (10),
at\ = )\PN,corr,

1
p+1

(15)

aR"N(N)

OAj ‘)\ APNcorr =P (Z qcorr> [Z hi (%) (VEO™P S gFor
—Z (vgomP corr] '

Incorporating (13),

aKPN (N CO” 0” ) corr
Y A=APNoor Z hj (%) ()P = by O6)ar® |
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which includes the derivatives & °C:

p
w =p g (WC()\)‘
a)\J A=)\PN.corr - IZ I a)\J A=\PN.corr | ©

By our assumption that\PNco™ exists, 5;qf°" is positive and finite.  Thus, whenever
ORN(N)
(”\j A=M\PNcorr

=0 for all j we have

OR"C(N)

a)\j ‘)\:}\PNAcorr

We need only thaf%j()‘) N 0, Vj. Thisis not difficult to show, since the correction
b never influences the value &N, that is, g P"N(X\) = R PN(xc0™). [ |

As an alternative to P-Classification, we consider a simple weighted versfda®@oost. The
objective for this algorithm, which we call “Cost-Sensitive AdaBoost,” isedghted combination
of R*B andRAB. The objective is:

[ K
REAN) 1= 5 e M0 40 5 e R28() + CRAN)
i= K=1

Cost-Sensitive AdaBoost can be implemented by using AdaBoost's ystaieischeme, where
the only change from AdaBoost is the initial weight vectdy:is set so that the negatives are each
weightedC times as much as the positives.

No matter whaC is, we prove that Cost-Sensitive AdaBoost minimizes RankBoost's obgectiv
This indicates that Cost-Sensitive AdaBoost is not fundamentally diffénan AdaBoost itself. To
show this, we prove the forward direction of the equivalence relatiortstiween Cost-Sensitive
AdaBoost (for anyC) and RankBoost. We did not get this type of result earlier for P-Claa#ifia,
because P-Classification produces different solutions than AdaBarxdtthe P-Norm Push pro-
duces different solutions than RankBoost). Here is the forward direcfiche equivalence rela-
tionship:

Theorem 3 (Cost-Sensitive AdaBoost minimizes RankBoost’s objective.)
If ACSAc argmin, R “SA\) (assuming minimizers exist), thaiSAc argmin, R RB(X).

The proof follows the same four steps outlined for the proof of Theorem 1
Proof DefineA®SAto be a minimizer off “SA(assuming minimizers exist). A“SAwe have:

| ORCSAN) RPN | IR
O_a)\j’}\—ACSA - a)\] +C 6)\1
| K
= T a(hx)+C Y uhi(®) (16)
i= k=1

whereyy ;= efxcsa®) andg; ;= e "xcsA). The next step is to develop a skew condition on the
classes. Whefis j thenh;(x;) = 1 for alli, andh; (%) = 1 for all k. Using this, the skew condition
can be derived as follows:
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K
0= c Vi — Zlq =CRAB(ACSA — RAB(XCSA . (skew condition)

We now characterize the conditions to be at a minimizer of the ranking lossluye¢he skew
condition into the derivatives from RankBoost’s objective, which isigive(4):

RB K
‘ma)\j()‘) — Zhj( szlql Vk hJ(')Qi
K

I
- z h Vk Ck;\/k [kzl\/k] i;hj(Xi)qi

To be at a minimizer, the derivative must be zero. Whea A“SA from (16) we have:

oty 6 Jemsy
OAj A=ACSA z K OAj A=XCSA

k=1

This means thaA®SAis a minimizer of RankBoost’s objective, regardless of the valu@. ol

4. Verification of Theoretical Results

The previous section presented theoretical results; in this section andfwiltvéng sections we
demonstrate that these results can have direct implications for empiricitprathe equivalence
of P-Classification and P-Norm Push can be observed easily in expésirbeth in the special case
p =1 (AdaBoost and RankBoost are equivalent, Section 4.2) as wellrdkdm generalizations
whenp > 1 (in Section 4.3). We further investigated whether a similar equivalengepyoholds
for logistic regression and Logistic Regression Ranking (“LRR,” defiimeSection 2). We present
empirical evidence in Section 4.4 suggesting that such an equivalentengtép does not hold
between these two algorithms. Both algorithms have been implemented as ctmodiisaent on
their objectives. Coordinate descent was first suggested for logigtiesgon by Friedman et al.
(2000).

4.1 Data Sets

For the experimental evaluation, we used the Letter Recognition, MAGI&st¥end Banana data
sets obtained from the UCI repository (Frank and Asuncion, 201@ .LEtter Recognition data set
consists of various statistics computed from black-and-white rectangxé&displays, which each
represent one of the 26 capital-letters of the English alphabet. The Igdask is to determine
which letter an image represents. The MAGIC data set contains data frovhajoe Atmospheric
Gammal magingCherenkov Telescope project. The goal is to discriminate the statistical sigaatu
of Monte Carlo simulated “gamma” particles from simulated “hadron” particlese yleast data
set is a collection of protein sequences and the goal is to predict celluddiziatton sites of each
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Data Set | # Training examples # Test examples # Features
Letter Recognition 1000 4000 15
MAGIC 1000 4000 11
Yeast 500 984 9
Banana 1000 4000 5

Table 1: Sizes of training/test sets used in the experiments. The numbeaturiete column repre-
sents the total number of features for the data sets, including the intercept.

protein. Banana is an artificial data set with a banana-shaped distribfitiso casses, represented
by two features.

For MAGIC, Letter Recognition, and Yeast data sets, the weight of esaturieh;(x;) was
quantized into -1 or +1 based on thresholding on nfgéx ). The MAGIC data set was not further
pre-processed beyond this, and “hadrons” were used as the paitss. For the Letter Recognition
data set, we transformed the data set to two distinct categories, where thé\legresents the
positive class and the remaining letters collectively form the negative clEss. transformation
created a highly imbalanced data set and presented a challenge in otimexyal setup for the
RankBoost algorithm, which, in its original implementation uses an analyticaiolior the line
search fora; at each iteration. In particular, the analytical solution requires that tletidrain
the expression foa; (Equation 2 in Freund et al., 2003) is neither zero nor infinity. To ensure
this, each featur; in the training set must have at least one positive example wherel and
a negative example whehg = —1, and similarly, the training set should also contain at least one
positive example wherkj = —1 and a negative example where= 1. Our random sampling of
the training sets for the Letter Recognition data set did not often satisfy thgreenent on the
positive examples forx2bar’ and “x-egé features; we thus removed these two features. Note that
we could not use RankBoost in its original form, since our feature$-afel}-valued rather than
{0,1}-valued. We simply rederived Equation 2 in Freund et al. (2003) to accalatadhis. For
the Yeast data set, from the 10 different classes of localization sitess@e QYT (cytosolic or
cytoskeletal) as the positive class and combined the remaining 9 classesagdtiee class. We
used the 8 numerical features of the Yeast data set and omitted the catkigatiere. We increased
the number of features of the Banana data set by mapping the originaldtwods{x;, X} to a new
four-dimensional feature spage,,x;,%,, %, } by thresholding the original feature values at values
of —4 and—2. Namely, we used the mapping:

' +1 iin>—2 and "o +1 |fX|>—4
'] -1 otherwise ] =1 otherwise

fori = 1,2. The experimental results reported in this section are averaged ovandém and
distinct train/test splits. The size of train/test splits for each data set andithieem of features are
presented in Table 1.

4.2 Equivalence of AdaBoost and RankBoost

Although AdaBoost and RankBoost perform (asymptotically) equally vitel, not immediately
clear whether this equivalence would be able to be observed if the algastsimpped before the
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Figure 2: Verifying the forward direction of the equivalence relationgbipAdaBoost and Rank-
Boost

regime of convergence is reached. We present empirical evidencpporsthe forward direction
of the theoretical equivalence relationship foe 1, on both the training and test splits, for all data
sets described above.

In Figure 2,{\, }; and{\:}: denote sequences of coefficients produced by RankBoost and Ada-
Boost respectively; the subscriptandc stand forranking andclassification. The figure illustrates
both the convergence of AdaBoost and the convergence of RaskBuith respect to RankBoost’s
objectiveRRB. The x-axis denotes the number of iterations. The illustration supports tiverco
gence of AdaBoost to a minimizer of RankBoost’s objective. Becausesafi#ly that RankBoost is
designed® RB(\;) converges more rapidly (in terms of the number of iterations), RER\.).

4.3 Equivalence of P-Classification and P-Norm Push

In the same experimental setting, we now validate the equivalence of Hficksm and P-Norm
Push. In Figure 3{\, }; and{\:}: denote sequences of coefficients produced by the P-Norm Push
and P-Classification respectively. Convergence is illustrated for botritdms with respect to

the P-Norm Push’s objectii@®™N. The x-axis again denotes the number of iterations. The figure
illustrates that P-Classification can effectively be used to minimize the P-Nasiw's?objective.
Comparing with thep = 1 results in Figure 2, the convergence behavior on the training sets are
similar, whereas there are small differences in convergence behavibedest sets. One impor-
tant distinction between training and testing phases is that the ranking losglieetkto decrease
monotonically on the training set, but not on the test set. As discussed in ideRtidin (2009),
generalization is more difficult ag grows, so we expect a larger difference between training and
test behavior for Figure 3.
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The next experiment verifies the backwards direction of the equivaleslationship. We
demonstrate that a sequence of correctisdminimizing P-Norm Push’s objective also minimizes
P-Classification’s objective. At each iteration of the P-Norm Push, wepcbeb as defined in (12)
and update\, accordingly. The sequences ®f°° values for{\:}c and the corrected\, }, are
shown in Figure 4.

4.4 Equivalence Does Not Seem To Hold For Logistic Regression and Listic Regression
Ranking

We implemented a coordinate descent algorithm for minimizing LRR’s objecthifan (6), where
pseudocode is given in Figure 5. Note that the pseudocode for minimizimgfitogegression’s
objective function would be similar, with the only change being that the definitidhe matrixM
is the same as in Figure 1.

Figure 6 provides evidence that no such equivalence relationship toolttsgistic regression
and Logistic Regression Ranking. For this experim@ht,}, and{A;}. denote sequences of coef-
ficients produced by LRR and logistic regression respectively. Cgawee is illustrated for both
algorithms with respect to LRR’s objective. Even after many more iteratiomsttieearlier ex-
periments, and after LRR’s objective function values have plateaudtiddwo algorithms, these
values are not close together.

109 etter Recognition — Train ,x10°  MAGIC - Train 2424 10 __ Banana - Train x10" __ Yeast — Train

2.5pr

-=-RPN(),)

1,03}k =RPN(A)

. H H
24f 3|

. 192 e
"

@ \
] N S

Loss
Loss

5 B B B
2,2 N B S
I

50 100 150 o % 10 .20 3 24 10 15 2 5% 10 .20 30
Iterations Iterations Iterations Iterations
o 510 Letter Recognition — Test 45x10°  MAGIC - Test 31p210°°  Banana - Test _x10 __ Yeast - Test

0 50 100 150 200 25 o 1t 0 10 30 40

] 10 20 5 - 10 20
Iterations Iterations Iterations Iterations

Figure 3: Verifying the forward direction of the equivalence theoremPClassification and the
P-Norm Push (p=4)
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5. Benefits of the Equivalence Relationship

Four major benefits of the equivalence relationship are (i) theoretical atiotiy using an algo-
rithm that optimizes classification and ranking objectives simultaneously (iijrgpthe ability to
estimate conditional probabilities from a ranking algorithm, (iii) much faster rurstifoe rank-
ing tasks, by passing to a classification algorithm and using the equivaiglatenship, and (iv)
building a relationship between the P-Norm Push and the “precision” ppeafoce metric through
P-Classification’s objective (discussed in Section 6). We have alréadyssed theoretical motiva-
tion, and we will now discuss the other two benefits.

5.1 Estimating Probabilities

The main result in this section is that the scoring funcfig(x) can be used to obtain estimates of the
conditional probabilityP(y = 1|x). This result relies on properties of the loss functions, including
smoothness, and the equivalence relationship of Theorem 2. Note thadrttiéional probability
estimates for AdaBoost are known not to be very accurate asymptoticallyrip cases (e.g., see
Mease et al., 2007), even though AdaBoost generally provides modhlbigh classification and
ranking accuracy (e.g., see Caruana and Niculescu-Mizil, 2006).thier avords, even in cases
where the probability estimates are not accurate, the relative orderirrglumdlglity estimates (the
ranking) can be accurate.
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g i i "'RPCW‘ --RPO(),)
osfls —RPC(\,) =R\
. BB i e S
mgo« " X
g [\ 4
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Figure 4: Verifying the backward direction of the equivalence for Ps€lfecation and P-Norm Push
(p=4). Ar are corrected witlp that is defined in (12).
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1. Input: Examples{(x;,yi)}X;, wherex € X, yi € {—1,1}, features{h;}]_;, hj : X — R,
number of iterationgmax.

2. Define: Mi j := hj(x;) —h;(X) for all i,k, j, where the first index is over all positive-negative
pairs indexed byk, forik =1,...,IK.

3. Initialize: Ayj=0forj=1,...,n, dyx=1/IKforik=1,... IK.

4. Loop for t =1,...,tmax

(@) ji € argmax ¥k ot ikMik |
(b) Perform a linesearch far;. That is, find a value; that minimizes:

2
IK Mo 1
ikzl ik, jt 1—}—6[(21 Mik‘h)\t)+aikMik>h]

(©) Atrrj =AM+ ol

K= ——+—~fori=1...,1,k=1...,K
(d) d[+l,|k 1+e(ZjMik.j}‘t+l,j) ori ) IAR) ) )

(€) dhiaik = zj‘gj;j,k

5. Output: A,

Figure 5: Pseudocode for the Logistic Regression Ranking algorithm.

Theorem 4 Probability estimates for P-Classification and for the P-Norm Push algorithitin (W
corrected trivially as in Theorem 2) can be obtained from the scoring fundiiéx) as follows:

1

Ply=1X = e mhwam

Proof This proof (in some sense) generalizes results from the analysis ofoddaBnd logistic
regression (see Friedman et al., 2000; Schapire and Freund, 20ddneral classification objective
function can be regarded as an estimate for the expected loss:

Rirve( T) := Exy~p[l (Y, f(X))],

where expectation is over randomly selected examples from the true distilitid his quantity
can be split into two terms, as follows:

Exy~n[l(y: f(x))] = Ex [Eyll (¥ f () X)]]
= Ex[P(y = 1I(L, f(x)) + (1= P(y = 1[x))I (=1, f (x))].

At eachx, differentiating the inside with respect f@x) and setting the derivative to O at the point
f(x) = f*(x), we obtain:

0="P(y=1x)I"(1, f*(x)) + (1= P(y = 1x))I' (-1, f*(x)),
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Ply=1x) = —— . 17)
I q
—1"(=1,f*(x)

P-Classification’s objective is an empirical sum over the training instaatesrthan an expectation
over the true distribution:

| K
1. .
Q{PC()\) =5 e ) § Zefa®&p,
2° 7 2

Thus, estimates of the conditional probabilitiy = 1|x) can be obtained using (17) where:
(1, f(x) = e f andl(—1, f(x)) = ;ef(x)p7

and instead of *(x), which cannot be calculated, we usgx). To do this, we first find derivatives:

(Lf)) =™ = 1'(1fx)=—e®

I(—l,f(x))::ef(xm = I'(~1,f(x)=el™Pr

Substituting into (17), we obtain estimated conditional probabilities as follows:

) 1 1 !
PI=10= 14 1L g e BT T e hdie
T (—1,fx(x)) —efalop

This expression was obtained for P-Classification, and extends to the@rR-Rush (withA cor-
rected) by the equivalence relationship of Theorem 2. |

Note that forp = 1, Theorem 4 yields conditional probabilities for RankBoost.
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Letter Recognition

|

Algorithm Objective| # of Iterations(for .05%) Time (sec.)
AdaBoost RRB 123.4+21.6 0.1+0.0
RankBoost RRB 50.2+:10.4 1.14+0.3
= | P-Classification RPN 132.5+23.9 0.6+0.1
= | PNormPush RPN 43.3+7.0 3.3+0.6
X | Logistic Regression R 'RR N/A N/A
LRR RLRR 50.0:11.9 8.0+3.0
AdaBoost RRE 112.3t285| 0.1+0.0
RankBoost RRB 43.7+9.3 10.7+2.7
= | P-Classification RPN 136.5+36.4 1.3+0.3
= | PNormPush RPN 44.0+8.8| 29.3£6.5
& | Logistic Regression R'RR N/A N/A
LRR RLRR 43.8+11.4| 65.8+18.2
AdaBoost RRB 108.9-18.8| 0.1+0.0
RankBoost RRB 43.2£7.5| 29.2+7.8
= | P-Classification RPN 138.3+29.4 17403
= | PNormPush RPN 41.9+6.2 | 72.0+12.5
< | Logistic Regression R RR N/A N/A
LRR RLRR 44.4+8.3 | 218.3+40.6

Table 2: Comparison of runtime performances over varying training ses.sip = 4 for P-
Classification and P-Norm Push.

5.2 Runtime Performances

Faster runtime is a major practical benefit of the equivalence relationshwpgin Section 3. As

we have shown in Sections 4.2 and 4.3, when comparing how ranking atgsréthd classification
algorithms approach the minimizers of the misranking error, the ranking algwritnd to converge
more rapidly in terms of the number of iterations. Convergence with fewetidgasa however,
does not translate intiasterconvergence. Each iteration of either algorithm requires a search for
the optimal weak hypothesis For the P-Norm Push, each comparison requires quadratic space
(involving a vector multiplication of sizé x K). In contrast, P-Classification’s comparisons are
linear in the number of examples (involving a vector multiplication of $izeK). For RankBoost,
note that a more efficient implementation is possible for bipartite ranking (s#®%8.2 of Freund

et al., 2003), though a more efficient implementation has not previously éogdored in general

for the P-Norm Push; in fact, the equivalence relationship allows us tB«@@ssification instead,
making it somewhat redundant to derive one.

Table 2 presents the number of iterations and the amount of time required teeaetinof
the algorithms (AdaBoost, RankBoost, P-Classification for p=4, P-Naush For p=4, logistic
regression, and Logistic Regression Ranking) in an experiment, using8agBiz macbook pro
with 4 GB ram. We used the RankBoost algorithm with the “second method dimpatinga
given by Freund et al. (2003), since it is the special case corrdsppio the P-Norm Push with
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p = 1. The results are presented for the Letter Recognition data set, whichlgsghst data set in
our experimental corpus. To assess the scalability of the algorithms, veeaged 10 training sets
each of sizes 1000 examples, 3000 examples, and 5000 examples (3fatoilad) sets). For each
algorithm, we report the mean and variance (over 10 training sets) of thberwf iterations and
the time elapsed (in seconds) for the ranking loss to be within 0.05% of the &jecrpinimum

ranking loss. The asymptotic value was obtained using 200 iterations of ftesponding ranking
algorithm (for AdaBoost and RankBoost, we used RankBoost; folaBg@ication and the P-Norm
Push, we used the P-Norm Push; and for logistic regression and LBRs&d LRR). Note that
logistic regression may never converge to within 0.05% of the ranking ldainel by LRR (there
is no established equivalence relationship), so “N/A” has been placed taltke when this occurs.

Comparing the runtime performances of classification and ranking algorithiiabla 2, Ada-
Boost and P-Classification yield dramatic improvement over their rankingtetparts. Despite
the fact that they require more than double the number of iterations to obtagatie quality of
solution, it only takes them a fraction of the time. Further, AdaBoost andaBs@ication appear
to scale better with the sample size. Going from 1K to 5K, AdaBoost’s run timghipwoubles,
on average from 0.08 to 0.14 seconds, whereas RankBoost take®7otmes longer (29.19/1.08
~ 27). Similarly, P-Classification’s run time on the 5K data set is slightly more thare tthie run
time on the 1K data set, as opposed to approximately 22 times longer (72/2B2Z) for P-Norm
Push on the 5K data set. Thus, the equivalence relationship betwedficadtiea and ranking al-
gorithms enables us to pass the efficiency of classification algorithms to thkingecounterparts,
which leads to significant speed improvement for ranking tasks.

6. Experiments on Prediction Performance

When evaluating the prediction performance of the P-Classification algoritlar;hosepreci-

sion as our performance metric, motivated by a specific relationship betweeisipreand P-
Classification’s objective that we derive in this section. In Information iRt (IR) contexts,
precision is defined as the number of relevant instances retrieved sgliaafea query, divided by
the total number of instances retrieved. Similarly, in a classification task tbsjomeis defined as

TP

Precision=
eCIsIon= T Fp

where TP (true positives) are the number of instances correctly labeleel@nging to the positive

class and FP (false positives) are the number of instances incorreatlgda#is belonging to the

positive class. In a classification task, 100% precision means that egtande labeled as belong-
ing to the positive class does indeed belong to the positive class, whéteaeision means that
all positive instances are misclassified.

In order to derive the relationship between precision and P-Classifiatibjective, consider
P-Classification’s objective:

1 o
RPC A) = e_fA(xi)—i-* efA(Xk)p. 18
(A) ;_ 02, (18)
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There is a potential for the second term to be much larger than the first teemp> 1, so we
consider:

RPE(N) > ; 3 e (19)

1 1
ZBZ@%WWEW:?WZMNMN' (20)

Transitioning from (19) to (20) uses the fact te&t%) > e/ whenfy (%) >y, Vy. Letlt, -y, Kty oy
denote the number of positive and negative instances that score highahthcutoff thresholg,
respectively. Then,

Zﬁmmm = Ky

1 a I_f >y
= (pr+K5>ﬂ(1—E>wiRrw>
AZ AZ

= (Ity>y+Kty>y) (1 Precision@fx =y)). (21)

Note thatl_szer K_fAZV is simply the number of all instances with scores greater thatugging
(21) into (20) yields

1 N ya ..
RPC()\) Z Beyp (I f)\2y+ Kf)\Zy) (1_ PreC|S|0n@fA = y))

which indicates that minimizing P-Classification’s objective may yield solutionstibae high
precision. Through the equivalence of the P-Norm Push and P-Ctasisifi, a similar relationship
with precision also exists for the P-Norm Push.

6.1 Effect ofp:

In this section, we explore the prediction performance of the P-Classificatjorithm with respect
to p, for various levels ofy, wherey is the cutoff threshold for calculating precision. We have three
hypotheses that we want to investigate, regarding the relationship beprsehprecision.

Hypothesis 1: The presence of exponent p in the second term in (@RBleerP-Classification
to achieve improved prediction performance.

The first term of (18) can be much smaller than the second term, due mainly poethence
of p in the exponent. This means that the bound in (19) becomes tighter with trenpeesfp.
This may indicate that the exponeptcan influence the algorithm’s performance with respect to
precision. The empirical analysis that we present later in this section inxestithe influence and
impact of the exponert on precision accuracy.

Hypothesis 2: Increasing p in P-Classification’s objective yields imprgrediction perfor-
mance.

As pincreases, the bound in (19) becomes tighter and the largest te®a¥§ icorrespond to the
highest scoring negative examples. MinimiziRg® thus “pushes” these negative examples down
the ranked list, potentially leading to higher values of precision.

Hypothesis 3: P-Classification can achieve better performance than datB

P-Classification is a generalized version of AdaBoost. We hypothesiz@agipaincreases, it
will be possible to obtain better prediction performance.
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We are able to make the hypotheses above since we have chosen ptedigdne performance
metric. Another metric for evaluating the performance of a ranking functiardall, which is
defined as the number of true positives divided by the total number ofyesitamples. A perfect
recall of 100% indicates that all positive examples are above the cutefhbld. Therefore, if
our goal was to optimize recall instead of precision, we would want to pugxpenentp on the
first term of R PC rather than the second term, since it will create the effect of pushing #itvgo
examples from bottom to top of the list. As the goal is to concentrate on thectoarkings at the
top of the list, we particularly aim at achieving higher precision, rather tigimeh recall. In many
IR systems, including web search, what matters most is how many relewaiti@) results there
are on the first page or the first few pages—this is reflected directlydmigion. Recall does not
accurately represent the performance at the top of the list, since itroenbe performance across
all of the positives; this would require us to go much farther down the list thagaisonable to
consider for these applications, in order to span all of the positive example

We will now describe the experimental setup. We chose training sets as $olfowMAGIC,
1000 randomly chosen examples, for Yeast, 500 randomly chosen exarfppld3anana, 1000
randomly chosen examples and for Letter Recognition, 1200 examples Witho2@ives and 1000
positives to achieve an imbalance ratio of 1:5. Increasing the number ibivpaxamples in the
training set of Letter Recognition enabled us to keep thedé attribute, but discard only the
“x2bar” attribute, due to RankBoost’s requirement discussed in Section 4.1lIEa@ta sets except
Yeast, we randomly selected 4000 examples as the test set. For Yeadeatedsthe remaining 983
examples as the test set. The experiments were conducted for threeluasiffoldsy, to consider
the top 50%, 25% and 10% of the list. The algorithms were run until they hacgmged (hundreds
of iterations).

Table 3 presents the precision results on the test sets from all four dstdrserder to inves-
tigate the hypotheses above, we redefine Cost-Sensitive AdaBoastatgoathm that minimizes
the following objective:

| 1 K 5
AB(X) = Zle*Yi ) L c= Z e Yefa (%) (22)
is P&

In order to test the first hypothesis, we @ix= 1. WhenC = 1, (22) resembles P-Classification’s
objective in (7), the only difference is thatis missing in the exponent. Whé&h=1 andp=1,
(22) reduces to AdaBoost’s objective (3). In that case, P-Clagsiiitand AdaBoost give the same
performance trivially. As shown in Table 3, for fixed valuespfwherep > 1, our experiments
indicate that P-Classification yields higher precision than Cost-Sensitie®déabkt, which agrees
with our first hypothesis. To see this, compare element-wise the “AdaB@®& (C=1,p > 1)
in the table with the corresponding “P-Classification” rows; this is 36 compsishat all show
P-Classification giving higher precision than AdaBoost. This was a dedrexperiment in which
the treatment was the presence of the expompen©Our results indicate that the presence of the
exponentp can be highly effective in achieving higher precision values.

In order to test the second hypothesis, we investigated the impact of simggep in
P-Classification’s objective. We considered four valuep dbr each of three cutoff thresholds.
Table 3 shows that increasiq@min P-Classification’s objective leads to higher precision values. To
see this, consider the P-Classification rows in Table 3. Within each columre délthe, perfor-
mance improves agincreases. With increasing P-Classification focuses more on pushing down
the high-scored negative instances from top of the list, yielding highergioe.
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53.25+4.22
53.26+4.22
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56.4745.38
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88.75+9.45

92.86+2.86

98.55+1.02

56.34:6.26

56.34:6.26

58.12+6.20

LR

75.5A0.39

89.16+0.60

90.35+2.49

53.23+4.24

53.23+4.24

56.5A5.15

LRcs

_#pos
C_#neg

88.75+9.45

92.86+2.86

90.35+2.49

55.88+6.09

55.88+6.09

57.59£6.57

Evaluating the third hypothesis, Table 3 shows that P-Classificatiop fotl yields superior

Table 3: Precision values at the top 50%, 25% and 10% of the ranked list.

precision than AdaBoost in all comparisons (36 of them in total, from 4 data 3y levels and 3
values ofp > 1).

6.2 Effect of ParameterC

Our next set of experiments focus on the behavior that we observeshSensitive AdaBoost’s
results, which is that increasinghas a detrimental effect on precision, whereas in P-Classification,

increasingp leads to higher precision. Given that the only difference betwEnand R4B is the

presence of the exponepin R PC, the behavior that we observe can be explained by the hypothesis
that the exponenp in P-Classification is the dominant factor in determining the misclassification
penalty on the negative examples, overwhelming the effect o%ﬂlaxetor.

This leaves room for the possibility that altering theactor could lead to improved perfor-
mance. We tested this possibility as follows: first, we varied the coeffi€ent Cost-Sensitive
AdaBoost’s objective in (22); second, we introduced the s@nrgo P-Classification’s objective,
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and thus defined a Cost-Sensitive P-Classification algorithm that minimizeslliwing loss:

| 1K 5
PC _ —fa(X) = fx(%)p
(A)fEe A 4C e .
S is péZ;

In the experiments, we heuristically set= %ﬁg in order to reduce, and possibly eliminate, the

detrimental effect of the term. Our data sets share characteristics similar to many other real world
data sets in that the number of positive examples is less than the number ti¥enegamples;
thereforeC > 1 for all four data sets. Thégiog ratios averaged over 10 splits for each data set
are 354/646, 200/1000, 400/600 and 155/345 for MAGIC, Letter Rdtiog, Banana and Yeast,
respectively. The last row in Table 3 for Cost-Sensitive AdaBoost, asal the last row for P-
Classification, contains performance results vith- %ﬁ. As seen, for a fixeg (p = 4 in this
case), using this new value f@rdramatically improves precision for P-Classification in most cases
(10 out of 12 comparisons) and for AdaBoost in some cases (5 o@& ofrhparisons). To see this,

compare thep = 4,C = 1 row with thep=4,C = #e9 row for each algorithm. Usin@ > 1 is

. . . . . #pos . . .
equivalent to giving higher misclassification penalty to the negative exanvpiésh can resultin a

stronger downward push on these examples, raising precision.

6.3 Comparison of P-Classification With Logistic Regression

Table 3 also presents results for logistic regression, both using its orfgimaiilation (5) as well

as its cost-sensitive variant; the objective for cost-sensitive logistiesemgm is formulated by mul-
tiplying the second term of logistic regression’s objective in (5) with thefaoentC. In compar-

ing P-Classification=4) with logistic regression, P-Classification performed worse than logistic
regression in only one comparison out of 12y(Rvels and 4 data sets). Considering their cost-
sensitive variants witlC = Z”T‘;gs, P-Classification and logistic regression generally outperformed
their original (non-cost-sensitive) formulations (10 out of 12 compasdor P-Classification vs.
Cost-Sensitive P-Classification wift=4, and 11 out of 12 comparisons for logistic regression vs
cost-sensitive logistic regression). Furthermore, Cost-Sensitive $ifidation performed worse

than cost-sensitive logistic regression in only 2 out of 12 comparisons.

7. A Hybrid Approach for Logistic Regression

As we discussed in Section 4.4, logistic regression and LRR do not seethiltit ¢he equivalence
property that we have established for boosting-style algorithms. Coastyguneither logistic re-
gression or LRR may have the benefit of low classification loss and ratd&sgsimultaneously.
This limitation can be mitigated to some degree, through combining the benefits didagis
gression and LRR into a single hybrid algorithm that aims to solve both classifiGand ranking
problems simultaneously. We define the hybrid loss function as:

RLR—}-LRR: KLR_’_ BRLRR

wheref3 denotes a non-negative regularization fadfot 0 reduces the hybrid loss to that of logistic
regression, whereas increas[htilts the balance towards LRR. The trade-off between classification
and ranking accuracy is shown explicitly in Figure 7, which presents thel@ssification loss and
0-1 ranking loss of this hybrid approach at variqsettings. For comparison, we have included
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Figure 7: Effect of3 on the misclassification error and misranking error rates for MAGIC data se

the baseline performance of AdaBoost, logistic regression and LRRhiSgrarticular experiment,
logistic regression was able to achieve a better misclassification result treBoast (see Figure
7(a)), but at the expense of a very large misranking error (seed-ifb)). Asp increases, Figure
7(b) shows that the misranking error decreases almost to the level &obdts, whereas Figure
7(a) shows that the classification error increases to be higher thanocdde® The value off
should be chosen based on the desired performance criteria for thicspeplication, determining
the balance between desired classification vs ranking accuracy.

8. Conclusion

We showed an equivalence relationship between two algorithms for twaetiffeasks, based on
a relationship between the minimizers of their objective functions. This dguiva relationship
provides an explanation for why these algorithms perform well with regpeuaultiple evaluation
metrics, it allows us to compute conditional probability estimates for rankingitigws, and per-
mits the solution of ranking problems an order of magnitude faster. The twadthlgs studied in
this work are generalizations of well-known algorithms AdaBoost and Baogt. We showed that
our new classification algorithm is related to a performance metric usedrfhincg and studied
empirically how aspects of our new classification algorithm influence rant@mfprmance. This
allowed us to suggest improvements to the algorithm in order to boost perfoemiginally, we pre-
sented a new algorithm inspired by logistic regression that solves a task stmamewhere between
classification and ranking, with the goal of providing solutions to both probleThis suggests
many avenues for future work. For instance, it may be possible to direttliereither the objec-
tive of P-Classification or the P-Norm Push to other performance metaesalso the discussion
in Rudin, 2009). It may also be interesting to vary the derivation of P-@ieeaison to include an
exponent on both terms in order to handle, for instance, both precisibreaall.
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