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Abstract
We propose a framework MIC (Multiple Inclusion Criterion) for learning sparse models based on
the information theoretic Minimum Description Length (MDL) principle. MIC provides an elegant
way of incorporating arbitrary sparsity patterns in the feature space by using two-part MDL coding
schemes. We present MIC based models for the problems of grouped feature selection (MIC-
GROUP) and multi-task feature selection (MIC-MULTI ). MIC-GROUP assumes that the features
are divided into groups and induces two level sparsity, selecting a subset of the feature groups, and
also selecting features within each selected group. MIC-MULTI applies when there are multiple
related tasks that share the same set of potentially predictive features. It also induces two level
sparsity, selecting a subset of the features, and then selecting which of the tasks each feature should
be added to. Lastly, we propose a model, TRANSFEAT, that can be used to transfer knowledge from
a set of previously learned tasks to a new task that is expected to share similar features. All three
methods are designed for selecting a small set of predictivefeatures from a large pool of candidate
features. We demonstrate the effectiveness of our approachwith experimental results on data from
genomics and from word sense disambiguation problems.1

Keywords: feature selection, minimum description length principle,multi-task learning

1. Introduction

Classical supervised learning algorithms use a set of feature-label pairs to learn mappings from
the features to the associated labels. They generally do this by consideringeach classification task
(each possible label) in isolation and learning a model for that task. Learningmodels independently
for different tasks often works well, but when the labeled data is limited and expensive to obtain,
an attractive alternative is to build shared models for multiple related tasks (Caruana, 1997; Ando

1. Preliminary versions of this work appeared in Dhillon et al. (2008, 2009); Dhillon and Ungar (2009).
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and Zhang, 2005). For example, when one is trying to predict a set of related responses (“tasks”),
be they multiple clinical outcomes for patients or growth rates for yeast strainsunder different
conditions, it may be possible to “borrow strength” by sharing information between the models for
the different responses. Inductive transfer by building shared models can also be valuable when we
have a disproportionate amount of labeled data for “similar” tasks. In sucha case, building separate
models for each task often gives poor predictive accuracies on tasks which have little data.

As a running example, we consider the problem of disambiguating word senses based on their
context. Here, each observation of a word (e.g., a sentence containing the word “fire”) is associated
with multiple labels corresponding to each of the different possible meanings (e.g., for firing a
person, firing a gun, firing off a note, etc.). Given the high-dimensionalnature of Word Sense
Disambiguation (WSD) data, feature selection is important for both linguistic understanding and for
effective prediction (Chen et al., 2006). Also, since the features that are useful for predicting one
sense are likely to be useful for predicting the other senses (perhaps with a coefficient of different
sign.), we propose to select features that are useful in predicting thesemultiple responses.

Another closely related problem is grouped feature selection; that is, enforcing sparsity at the
level of groups (feature classes) (Yuan and Lin, 2006; Bach et al., 2004; Dhillon et al., 2008). In
this problem the group structure is over the features rather than over the tasks. Multi-task learning
(described above) can also be thought of as a special case of this “group sparsity” scenario in which
a group is defined by fixing a specific feature and ranging over multiple tasks. The block-norm
approach to these problems uses a combination ofℓ1 and ℓ2 norms as regularization terms and
adds each feature into the models of either none or all of the tasks (Obozinski et al., 2009) for the
multi-task case and selects either none or all the features from a given group in the case of group
sparsity. However, if the regularization constant is chosen using cross-validation, these approaches
overestimate the support (Wainwright, 2009) as they select more featuresthan the correct set of
sparse features that generated the data. Wainwright (2009), Liu and Zhang (2008) and Nardi and
Rinaldo (2008) have showed that certain scalings of the regularization coefficient yields more sparse
solutions, which have with high probability the same support as the model generating the data. Even
then there are further problems with these methods; in order to obtain very sparse solutions, one
has to use a large regularization parameter that leads to suboptimal predictionaccuracy because
this high penalty not only shrinks irrelevant features to zero, but also shrinks relevant features to
zero (Zhang, 2009a). Another alternative is to threshold the obtained coefficients (Lounici, 2008),
but this introduces another thresholding parameter which needs to be tuned.

Motivated by the aforementioned reasons and by recent theoretical results onℓ0 penalty based
regularization (Zhang, 2009a,b), we considerℓ0 penalty based formulations in this paper. In par-
ticular we propose to solve these two related problems, simultaneous feature selection for a set of
multiple related tasks and grouped feature selection for a single task, by using coding schemes in-
spired by the Minimum Description Length (MDL) principle. We propose a common framework for
these problems which we call the Multiple Inclusion Criterion (MIC). We use a “two part” version
of MDL (Grünwald, 2005) to define a cost function which is greedily minimizedby our methods.
Since the greedy feature selection approximates theℓ0 penalty, we achieve a high degree of sparsity
as is desired for both scientific interpretability and for accurate prediction indomains like Genomics
and Word Sense Disambiguation (WSD) which have very high dimensional data. More importantly,
our methods achievetwo-level sparsity. In multi-task learning, each feature is added into models of
a (possibly empty) subset of the tasks and in group feature selection, a (possibly empty) subset of
the features are selected from each group (feature class).
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We also propose a similarly motivated model (TRANSFEAT) (Dhillon and Ungar, 2009) for
“intra-domain” adaptation which can be used to transfer knowledge from aset of already learned
tasks to a new task which is similar to the aforementioned tasks. As an example, consider the task
of predicting whether a word has a given sense when one already has models for predicting senses
for synonyms of that word. These models are likely to share many of the samefeatures; that is, a
model for disambiguating one sense of “discharge” is likely to use many of thesame features as one
for disambiguating the sense of “fire” which is its synonym. Unlike MIC wherewe do simultaneous
feature selection, the sharing in this case takes the form of a prior. TRANSFEAT is most beneficial
when the word under consideration has considerably less labeled data available than the synonyms
of that word (for example) so that building a supervised learning model for that word alone does not
yield high predictive accuracy.

The rest of the paper is organized as follows. In the next section, we review relevant previous
work. In Section 3, we provide background on feature selection and theMDL principle. Then in
Section 4 we develop the general framework used by our models and describe the MIC-MULTI and
MIC-GROUP models in detail. In Section 5, we show experimental results on real and synthetic
data. In Section 6, we provide some model consistency results for the MIC models. In Section 7,
we discuss the TRANSFEAT model and show its effectiveness for intra-domain adaptation on real
world data sets. We conclude in Section 8 with a brief summary.

2. Related Work

The main contribution of this paper is to propose a joint framework for the related tasks of simulta-
neous feature selection for multiple related tasks and grouped feature selection for a single task. We
are not aware of any previous work that addresses these two problemstogether, though Obozinski
et al. (2009) do mention that these two problems are related. Nonetheless, there has been much
previous work on each of these problems separately.

Jebara (2004) uses maximum-entropy discrimination to select a single subsetof features across
multiple SVM regression or classification problems that share a common set of potential features.
Several other papers work within the framework of regularized regression, taking the penalty term
to be anℓ1 norm over features of anℓq norm over the coefficients for each feature (an “ℓ1− ℓq”
penalty). Turlach et al. (2005) consider the caseq= ∞, while Argyriou et al. (2008) and Obozinski
et al. (2009) useq = 2. Argyriou et al. (2008) show that the general subspace selection problem
can be formulated as an optimization problem involving the trace norm. Obozinski et al. (2009)
propose BBLASSO, which focuses on the case where the trace norm is not required; they instead
use a homotopy-based approach to evaluate the entire regularization path efficiently (Efron et al.,
2004). Ando and Zhang (2005) also propose a framework which usesmultiple prediction problems
to learn an underlying shared structural parameter on the input (feature) space and they penalize the
weight vectors byℓ2 norm. The idea behindℓ1− ℓq penalties is that whenq> 1, the cost of making
a coefficient nonzero is smaller for features that are shared across more tasks. Indeed, for either
q = 2 or q = ∞, these algorithms tend in practice to yield nonzero coefficients for all of the tasks
associated with features that get selected.

The related problem of grouped feature selection for a single task has also been addressed pre-
viously by Yuan and Lin (2006), Bach et al. (2004), Meier et al. (2008), Zhao et al. (2008) and is
known as “Group Lasso”. It is an extension of Lasso (ℓ1 penalty) to the case of grouped structure in
data and it enforces sparsity at the level of groups, that is, an entire group of features is selected. It
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penalizes a (ℓ1/ℓ2) norm of the feature weights. An alternative formulation of Group Lasso iscalled
Multiple Kernel Learning (MKL) (Bach et al., 2004; Bach, 2008); it penalizes the kernel Hilbert
norm instead of the Euclidean norm.

Our approach is different from these methods in that we useℓ0 penalty-based greedy feature
selection methods which minimize a cost function provided by MDL based codingschemes. MDL-
based coding schemes provide much flexibility to incorporate arbitrary sparsity structures in the
problem at hand. Recently, Huang et al. (2009) have also used codingschemes similar to the MDL
for enforcing arbitrary structured sparsity patterns over the feature space.

3. Background

We assume a setting in which we are givenn labeled data samples as {(xi ,yi)
n
i=1 ∈ X ×Y } where

X ∈ R
p (the feature vector lives in ap dimensional space) and our goal is to find the parameter

vector(w ∈ R
p) of a statistical model fit to the above data. Alternatively, we can representthe data

and the response variables in matrix form asXn×p andYn×1, respectively, and thep dimensional
weight vector aswp×1. Standard linear or logistic regression models of the formY = w ·X (or
P(Y = 1|X) = 1

1+e−w·X ) fail to estimate the weight vectorw in the case in whichp > n as they
require inversion of a rank deficient matrix. To overcome this problem,regularizedversions of the
linear or logistic regressions are used which penalize some norm of the weight vectors:

ŵ = argmin
w

{‖Y−X ·w‖2
2+λ‖w‖q

q},

where‖w‖q represents theℓq norm ofw andλ is a hyperparameter.
For q = 2, the penalized regression is known asRidge Regression, which corresponds to a

Bayesian maximum a posteriori estimate forw under a Gaussian prior and shrinks the weight vector
but does not enforce sparsity. Theℓ1 penalty (Lasso) is equivalent to a double exponential prior on
w (Tibshirani, 1996) and enforces sparsity by driving some of the weightsto zero. Asq approaches
0, ‖w‖q

q approaches the number of non-zero values inw. Hence regularization withℓ0 penalty is
subset selection: Choosing a small number of the original features to retainin the model. Once a
coefficient is in the model, all that counts is the cost of adding it in the first place. Theℓ0 penalty
has a number of advantages, including bounded worst case risk with respect to theℓ1 penalty and
better control of False Discovery Rate (FDR) (Lin et al., 2008). There are other problems with the
ℓ1 penalty other than being less sparse as mentioned earlier, namely that its sparsity is not explicitly
controlled, and in order to obtain very sparse solutions, one has to use a large regularization parame-
ter that leads to suboptimal prediction accuracy because this high penalty not only shrinks irrelevant
features to zero, but also shrinks relevant features to zero (Zhang,2009a). However, one virtue of
theℓ1 penalty is computational tractability (Efron et al., 2004), in contrast to theℓ0 penalty, which
requires subset search which is (worst case) NP-Hard (Natarajan,1995). In practice, approximate
greedy algorithms like forward stepwise feature selection yield accurate, highly sparse solutions.

In a regression model, the residual sum of squares is proportional up toan additive constant to
the negative log-likelihood ofY given X (Bickel and Doksum, 2001). Thus, theℓ0 regularization
can be rephrased as a penalized likelihood criterion as follows:

score=−2logP(Y|ŵq)+F ·q,
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whereq is the number of features in the model,P(Y|ŵq) is the likelihood of the data given a model
containingq features andF is a free parameter that controls the amount of weight placed on theℓ0

norm. Various penalties have been proposed forF , including

• F = 2, corresponding approximately to the AIC (Akaike Information Criterion) (Akaike,
1973),

• F = logn, giving the BIC (Bayesian Information Criterion) (Schwartz, 1978),

• F = 2logp, giving to RIC (Risk Inflation Criterion—similar to a “Bonferroni correction”) (Fos-
ter and George, 1994).

As discussed in next subsection, each of these penalties can also be derived by using the Mini-
mum Description Length (MDL) principle under different coding schemes.

3.1 Minimum Description Length (MDL) Principle Preliminaries

MDL (Rissanen, 1978, 1999) is a principle for model selection which treatsthe best model as the
one which maximally compresses a digital representation of the observed data. We can envision a
“Sender” who wants to transmit some data to a “Receiver” using as few bits as possible. For an
illustrative example of the MDL principle, consider the case of simple linear regression. Assume
that both the Sender and Receiver know then× p data matrixX, and the Sender wants to convey
the values in then×1 response matrixY. The naïve way to do this would be to send the raw values
for each of then observations ofY. However, a more efficient way to send this information would
be to describe a regression modelŵ for Y givenX and then to send the residualsY−X · ŵ, which
have a much narrower distribution and would require fewer bits to encode.

To minimize description length, then, Sender should chooseŵ∗ such that

ŵ∗ = argmin
ŵ

{D(Y|ŵ)+D(ŵ)}, (1)

where the first term is the description length of the residuals about the model,and the second
term is the description length of the model itself. In other words, the first termrepresents the fit
of the model to data; as the model fits better this term shrinks. The second termrepresents the
complexity of the model; it grows as the model becomes more complex.

This version of the MDL principle is known as “Two partMDL” (Grünwald, 2005); the exact
meaning of both these terms is described in the following sections.

In the next sections we show how to choose the two quantities in Equation 1 by incorporating
the “structure” (characteristics) of the problem at hand. We then introduce search algorithms to
approximately find a sparse set of weightsŵ that minimize Equation 1.

3.1.1 CODING THE DATA : D(Y|ŵ)

The Kraft inequality in information theory (Cover and Thomas, 2006) implies that for any probabil-
ity distribution{pi} over a finite or countable set, there exists a corresponding code with codeword
length⌈− lg pi⌉ (The logarithm is base 2). Moreover, these code lengths are optimal in the sense of
minimizing the expected code length with respect to{pi}. Also, if the Sender and Receiver agree
on a model (e.g., linear regression), then they have a probability distribution over the residualsε, so
they will agree to use a code for the residuals with length:
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D(Y|ŵ) =− lgP(ε|ŵ) =− lgP(Y|ŵ), (2)

that is, the negative log-likelihood of the data given the model. We dropped the ceiling on− lgP(Y|ŵ)
since we use “idealized” code lengths (Barron et al., 1998).

Consider a forward stepwise-regression setting in which we have already addedq−1 features
to our model (including the intercept term), and we are deciding whether to include an extraqth

feature. LetYi denote theith row of Y andŵq, a linear regression model with allq features, then,2:

D(Y|ŵ) = − lg
n

∏
i=1

P(Yi |ŵq)

= −
n

∑
i=1

lg

[

1√
2πσ2

exp

(

− 1
2σ2(Yi −Xi · ŵq)

2
)]

=
1

2ln2

[

nln(2πσ2)+
(Y−X · ŵq)

2

σ2

]

,

σ2 is unknown in practice, but it can be estimated as:

σ̂2 =
(Y−X · ŵq−1)

2

n
.

Note that this is the ML (Maximum Likelihood) estimate forσ2 which Sender uses, as ignoring the
model-coding cost, maximizing likelihood is equivalent to minimizing description length. Some

statisticians, in practice, use the unbiased estimateσ̂2 =
(Y−X·ŵq−1)

2

n−q . In the experiments presented

in this paper, we estimatêσ2 without the currentqth feature in model, in order to prevent overfitting.
We can write the final expression forD(Y|ŵ), incorporatingσ̂2 as:

D(Y|ŵ) =
n

2ln2

[

ln

(

2π× (Y−X · ŵq−1)
2

n

)

+

(

Y−X · ŵq

Y−X · ŵq−1

)2
]

.

3.1.2 CODING THE MODEL: D(ŵ)

Just asD(Y|ŵ) depends on the model for the residuals that Sender and Receiver choose, so their
coding scheme for̂w itself will reflect their prior expectations.3 When the number of featuresp is
large (say,> 1000), Sender will likely only want to transmit a few of them that are most relevant,
and hence thêw will contain mostly zeros. So, the first step in codingŵ could be to say where
the non-zero entries are located; if only a few features enter the model, thiscan be done relatively
efficiently by listing the indices of the features in the set{1,2, ..., p}. This requires⌈lg p⌉ bits or
approximately lgp bits.

The second step is to encode the numerical values of those coefficients. Rissanen (1983) sug-
gested the basic approach for doing this by creating a discrete grid over some possible parameter

2. Note that in the following notation the square of vector, that is,Z2 meansZTZ.
3. By the Kraft inequality, we can interpret 2−D(ŵ) as a prior over possible modelsw. In fact, this is done explicitly in

the Minimum Message Length (MML) principle which is a Bayesian analogue of MDL, which chooses the model̂w
with maximumP(w|Y), that is, it chooses the model that minimizes
− lgP(w|Y) =− lgP(w)− lgP(Y|w)+const.
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values, and use a code for integers to specify which grid point is closest.A simple way to approx-
imate the value of a particular coefficient ˆw is to encode an integer version of its z-score relative to
the null-hypothesis valuew0 (which in our case is 0):

〈

ŵ−w0

SE(ŵ)

〉

=

〈

ŵ
SE(ŵ)

〉

,

where〈x〉 means the closest integer tox andSErepresents standard error. The z-score can be coded
with the idealized universal code for the positive integers of Rissanen (1983), in which the cost to
codei ∈ 1,2,3, ... is

lg∗ i+b,

where lg∗ i = lg i + lg lg i + lg lg lg i + . . . so long as the terms remain positive, andb ≈ lg2.865≈
1.516 is the constant such that

∞

∑
i=1

2−(lg∗ i+b) = 1.

We require the lg∗ instead of a simple lg because the number of bits Sender uses to convey the
integeri will vary, and she needs to tell the Receiver how many bits to expect. The number of bits
is itself an integer than can be coded, hence the iteration of logarithms.

In fact, in practice it is unnecessary to allow our integer code to extend to arbitrarily large
integers. We are interested in features near the limit of detectability and we expect our z-scores
to be roughly in the range∼ 2 to∼ 4, since if they were much higher, the true features would be
obvious and would not require sensitive feature selection. We could thusimpose some maximum
possible z-scoreZ that we might ever want to encode (say, 1000) and assume that all of ourz-scores
will fall below it. In this case, the constantc can be reduced to a new valuecZ, now only being large
enough that,

Z

∑
i=1

2(− lg∗ i+cZ) = 1. (3)

In particularc1000≈ 1.199. In our implementation in this paper, we avoid computing the actual
values of our z-scores and instead assume a constant 2 bits per coefficient. The reason behind
choosing 2 bits over using a more conservative penalty like BIC (BayesianInformation Criterion)
(lgn) bits is that using a fewer number of bits allows us to select even those features which provide
marginal benefit. This is important since our goal is to build sparse models with better predictive
accuracy rather than identifying the correct set of sparse features.We explain later in the section on
Model Consistency that using a liberal penalty of 2 bits to code a coefficient allows us to achieve
finite risk-inflation(Foster and George, 1994).

Combining the cost of the residuals with the cost of the model gives the following formula for
the description length as a function of number of features that we include in the model:

− lgP(Y|ŵ)+q(lg p+2), (4)

whereq is the number of features in the model andp is the total number of candidate features.
The above formula represents the simplest possible coding scenario and we will refer to it later

in the paper as “Baseline Coding Scheme” when we propose more complex coding schemes for the
problems of simultaneous feature selection for a set of multiple related tasks and grouped feature
selection for a single task.
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4. Multiple Inclusion Criterion (MIC)

MIC is a general framework forℓ0 penalty based greedy feature selection which minimizes a cost
function provided by the Minimum Description Length (MDL) principle. MIC provides an elegant
way of incorporating arbitrary sparsity patterns in the feature space by using MDL coding schemes
customized to the problem at hand. In this section, we describe how MIC canbe used to provide
statistically efficient models for the problems of simultaneous feature selection for multiple related
tasks and grouped feature selection for a single task. To do that, we firstintroduce some more
notation and follow up on the MDL introduction in Section 3.1.

For the problem of simultaneous feature selection for a set of related tasks(which is addressed
using MIC-MULTI ) we assume a set ofh regression or classification tasks which can potentially
share a set ofp features and a total ofn labeled training examples. The task is to learn a set of joint
(“shared”) models for all theh tasks. We represent the feature, response and the weight matrices
asXn×p, Yn×h andwp×h respectively. Additionally, for simplicity of analysis we assume a linear
regression setting of the form4 Y = w ·X + ε with a Gaussian noise termεn×h. Note that the noise
on the responses (ε) may be correlated; for instance, if our responses consist of temperature mea-
surements at various locations, taken with the same thermometer, then if our thermometer drifted
high at one location, it will have been high at the other location also. Thus, we take the rows ofε to
have non-zero covariance:

εi ∼Nh(0,Σ),

whereεi is theith row of ε andΣ is an arbitraryh×h covariance matrix.
Similarly, for the related problem of grouped feature selection (which is addressed using MIC-

GROUP) also, we have a total ofp candidate features which are further divided intoK groups (equal
or unequal). Again, we assume the availability of a (fixed number)n of labeled training examples.
Just as above we can represent the feature, response and weight matrices asXn×p, Yn×1 andwp×1

respectively.
Let S represent the total description length (TDL) of the MDL message that is exchanged be-

tween the Sender and the Receiver. In the case of MIC-MULTI , S is the combined message length
for all h tasks and hence we select features for all theh tasks simultaneously to minimizeSand in the
case of MIC-GROUP it can either be the combined message length for all the features within a given
group (feature class) (MIC-GROUP(I)) or the message length of a given feature (MIC-GROUP-SC).
Thus, when we evaluate a feature for addition into the model, we want to maximizethe reduction
of TDL by adding that feature to our model. More formally, at each iteration we greedily add those
features to our model that:

∆Si = ∆Si
E −∆Si

M,

Best Feature = argmax
î

{∆Si},

where∆SE ≥ 0 is the reduction in residual-error coding cost, that is, the first term on right hand
side in Equation 1, due to the increase in data likelihood given this new featureand∆SM > 0 is the

4. It can be extended to the standard classification setting by replacing the squared loss with a logistic loss, but due to
lack of closed form solutions for logistic regression and since correlationbetween residuals is inconvenient to model
in classification settings, we refrain from analyzing them.
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increase in model cost to encode the new feature (second term in Equation1) andi ranges over all
the p features.

In the next subsections we describe how we code theSE andSM terms (i.e., the residual error
and model) for MIC-MULTI and MIC-GROUP in detail.

4.1 MIC-M ULTI

As mentioned earlier, MIC-MULTI borrows strength across multiple tasks and hence selects a joint
set of features for related tasks (Dhillon et al., 2009).

4.1.1 CODING THE MODEL

MIC-M ULTI borrows strength across responses by efficiently specifying the feature-response pairs
in the p×h matrix ŵ. The naïve approach would be to put each of theph coefficients in a linear
order and specify the index of the desired coefficient using lg(mh) bits. But we can do better. If we
expect nearly all the responses to be correlated with the predictive features, we could give all the
responses nonzero coefficients (using 2h bits to code each of theh response coefficients) and simply
specify the feature that we are talking about by using lgp bits, as in Section 3.1.2. From now on
we will refer to this approach as FULL -MIC-M ULTI (fully dependent MIC-MULTI ) coding scheme,
as it assumes that a selected feature will be added in the models of all the tasks, in much the same
way as BBLASSO (Obozinski et al., 2009). Another limiting case is the one when we do feature
selection for all the tasks independently (the baseline “Independent” Coding Scheme); the coding
scheme in that case takes the form given in Equation 4.

However, these assumptions are usually unrealistic; each feature is generally neither correlated
with almost all the responses nor with none of the responses, but is rathercorrelated with a few of
them. A more flexible coding scheme would allow us to specify only the subset ofthe responses
to which we want to give nonzero coefficients. For instance, suppose we are considering feature
number 2609; and, of theh= 20 responses, we think that only {3, 7, 14, 17} should have nonzero
coefficients with the current feature. Then, we can use lgp bits to specify our feature (number 2609)
once, and then we can list the particular responses that have nonzero coefficients with feature 2609,
thereby avoiding paying the cost of lg(mh) four times to specify each coefficient in isolation.

A standard practice in information theory literature to code a subset of sizeh is to first specify
how manyk ≤ h elements the subset contains and then which of the

(h
k

)

possible subsets withk
elements we are referring to Cover and Thomas (2006). In particular, wechoose to codek using
lg∗ k+ ch bits, with ch as defined in Equation 3. We then need lg

(h
k

)

additional bits to specify the
particular subset. We refer to this code aspartially dependentMIC-M ULTI or simply PARTIAL -
MIC-M ULTI .

The total cost (Si
M) to code the model of a feature for MIC-MULTI is composed of three parts as

follows:
Si

M = ℓH + ℓI + ℓθ,

whereℓH is the number of bits needed to specify the subsetk of the h tasks models in which to
include the feature;ℓI is the number of bits used to describe which feature is being added andℓθ is
the description length of the coefficients of non-zero features.

We have already described the cost forℓH above; it is equal to:

ℓH = lg∗ k+ch+ lg

(

h
k

)

.
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For ℓθ, we use a cost of 2 bits per coefficient, the motivation for which was described earlier
in Section 3.1.2. ForℓI , which specifies the size of the code for the given feature, we use lgp bits,
which is equivalent to a uniform prior over the features,5 that is, each feature is equally likely to
be selected. This can be accomplished by simply keeping a linear array of features and coding the
indices of the features with nonzero coefficients.

Thus, we can represent the total model cost for MIC-MULTI as:

SM =

(

lg∗ k+ch+ lg

(

h
k

))

+(lg p)+(2k) . (5)

4.1.2 CODING THE DATA

Let E be the residual error (Y - X·w) matrix, and as mentioned above, letεi , i = 1,2, . . . ,n denote
the ith row of the error and letΣ be itsh×h covariance matrix. The model likelihood under the
Gaussian assumption6 can be written as:

P(Yi |ŵq) =
1

√

(2π)h|Σ|
exp

(

1
2

εT
i Σ

−1εi

)

, (6)

SE = − lg
n

∏
i=1

P(Yi |ŵq) (7)

=
1

2ln2

[

nln
(

(2π)h|Σ|
)

+
n

∑
i=1

(Yi −Xi · ŵq)
T
Σ

−1(Yi −Xi · ŵq)

]

with subscripti denoting theith row. SinceΣ is in fact unknown, we estimate it using maximum
likelihood (ML):

Σ̂F =
1
n
(Y−X · ŵq−1)

T (Y−X · ŵq−1) ,

where the subscriptF stands for “full covariance”, and we use ˆwq−1 to get ML estimate, instead of
ŵq to prevent overfitting, as we mentioned in Section 3.1.1.

In practice, we find that estimating all theh2 entries of the covariance matrix can lead to overfit-
ting. Therefore we use shrunken estimates of the formΣ̂λ = λΣ̂D+(1−λ)Σ̂F for (λ ∈ [0,1]), which
tend to work well. Note that we do not need to pay an extra coding cost for estimatingΣ as we are
using aprequentialcoding scheme;Σ is calculated using information that was already paid for. We
describe more technical details about our implementation in the Experiments section.

SE as described in Equation 7 andSM as Equation 5 form the quantitiesD(Y|ŵ) andD(ŵ) in
Equation 1. Thus our objective becomesŵ∗ = argmin

ŵ
{SE +SM}.

4.1.3 COMPARISON OFVARIOUS MIC-M ULTI CODING SCHEMES

In this section we discussed three MDL based information-theoretic approaches to multitask feature
selection, namely FULL -MIC-M ULTI , Baseline “Independent” Coding Scheme and PARTIAL -MIC-
MULTI . In general, the negative log-likelihood portion ofIndependentmay differ from that of

5. The uniform code gives the worst-case minimax optimal code lengths (Grünwald, 2005).
6. As mentioned earlier, we are considering linear regression for simplicity of analysis and ease of modeling the corre-

lation between residuals.
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the other two methods, becauseFull andPartial can use a non-diagonal covariance estimate like
Σ̂F or Σ̂λ, while Independentonly operates on one response at a time, and thus implicitly uses
Σ̂D. However, since we generally usêΣλ, as mentioned earlier, forFull andPartial, and sincêΣλ
approximates the diagonalΣ̂D (for λ close to 1), the real difference comes from the coding schemes.

The coding costs for these three methods are compared in Table 1 forp= 2000 features,h= 20
responses, and for various values ofk, the number of responses to which we add the current feature
under consideration. FULL -MIC-M ULTI is only allowed to takek= 0 or k= h, so it hash nonzero
coefficients in all three rows of the table. However, if the extrah− k coefficients correspond to
non-predictive features, the extra reduction in residual-coding cost that FULL -MIC-M ULTI enjoys
over the other methods is likely to be small. As expected, each coding scheme is cheapest in the
case for which it was designed; however, the MIC-MULTI methods are never excessively expensive,
unlike Independentfor k= h.

k PARTIAL -MIC-M ULTI FULL -MIC-M ULTI Baseline
(Independent)

1 logp+ch+ logh+2 [18.4] logp+2h [51.0] logp+2 [13.0]
h
4 logp+ log∗

(

h
4

)

+ch+ log
( h

h/4

)

+ h
2 [39.8] logp+2h [51.0] h

4 logp+ h
2 [64.8]

h logp+ log∗h+ch+2h [59.7] logp+2h [51.0] hlogp+2h [259.3]

Table 1: Costs in bits for each of the three schemes to code a model withk = 1, k = h
4, andk = h

nonzero coefficients.p ≫ h ≫ 1, ℓI = lg p, ℓθ̂ = 2, and forh ∈ {5, . . . ,1000}, ch ≈ 1.
Examples of these values forp= 2,000 andh= 20 appear in brackets; the smallest of the
costs appears in bold.Note: The costs are given per feature.

4.2 MIC-G ROUP

MIC-GROUP is the algorithm for grouped feature selection, when features fall intogroups or
classes(Dhillon et al., 2008; Yuan and Lin, 2006; Bach et al., 2004). For example, genes can
be divided into gene classes based on what pathway they occur in or features of a word can be
grouped based on whether they are based on specific neighbouring words, parts of speech, or more
global document properties. More generically, starting from any set offeatures, one can gener-
ate new classes of features by using projections such as principle components analysis (PCA) or
non-negative matrix factorization (NNMF), transformations such as log orsquare root, and inter-
actions (products of features) (Dhillon et al., 2010). The problem of grouped feature selection
(MIC-GROUP) is very closely related to the problem of simultaneous feature selection for aset of
related tasks (MIC-MULTI ) as has also been pointed out by Obozinski et al. (2009). The multi-task
problem we described earlier can also be thought of as a grouped feature selection scenario in which
a group is defined by fixing a specific feature and ranging over multiple tasks. Our MIC based mod-
els for these two problems also follow the same intuition; in (MIC-MULTI ) the tendency is to add
a given feature into models of more and more tasks7 and similarly in (MIC-GROUP) the tendency
is to add more and more features from the same group as the whole rationale behind doing grouped

7. The lg
(h

k

)

part of the model cost is only small whenk is small or it is very large, that is,k≈ h as
(h

k

)

=
( h

h−k

)

.
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feature selection is based on the fact that some feature groups contain highly predictive features than
others.

4.2.1 CODING SCHEMES FORMIC-GROUP

Since the problem of grouped feature selection is similar to the problem of simultaneous fea-
ture selection for a set of related tasks, we can propose a coding schemewhich is analogous
to the coding scheme for MIC-MULTI . For example, in this case also we can code the data as
P(Yi |ŵq) = 1

√

(2π)hsingle|Σ|
exp

(

1
2εT

i Σ
−1εi

)

in a similar fashion as Equation 6 wherehsingle is the num-

ber of features in a given group (feature class) and we will estimate the covariance matrix, which rep-
resents covariance between different features in the same group (feature class), in a similar way as
we did for MIC-MULTI , that is, by Maximum Likelihood Estimation. Remember, that in this caseSE

term will be the message length for all the features within a given feature class. In a similar fashion,

the number of bits to code the model can be represented asSM =
[

lg∗ k+ch+ lg
(hsingle

k

)

]

+ logp+2k,

which corresponds to Equation 5.8 The other mechanics of the coding scheme will also be the same
as for MIC-MULTI as this time we are trying to find a best subset of sizek in a group (feature class)
of sizehsingleand so we do a stepwise greedy search as earlier. From now on we refer to this coding
scheme as MIC-GROUP(I).

Although this coding scheme works very well in practice, but it turns out that we are not ex-
ploiting the full flexibility that MDL based coding offer us. So, we propose anew coding scheme,
which is computationally more efficient than MIC-GROUP (I), as it does not require a stepwise
search for subset selection, though the predictive accuracy of both these coding schemes is compa-
rable. We call this new computationally efficient coding scheme which uses “Switch Coding” as
MIC-GROUP-SC and it is explained in detail below.

Coding the data with MIC-GROUP-SC (MIC-GROUP-Switch Coding):In this new coding scheme
SE is the message length for a single feature and∆SE represents the increase in likelihood of the
data by adding that feature to the model.

Let E be the residual error (Y - X·w) matrix as earlier, and letεi , i = 1,2, . . . ,n denote theith

row of the error and letσ be variance of the Gaussian noise. The model likelihood can be written
as:

P(Yi |ŵq) =
1√

2πσ2
exp(− ε2

i

2σ2),

SE = − lg
n

∏
i=1

P(Yi |ŵq). (8)

This equation is similar to the corresponding equation for MIC-MULTI except that here we only
have a single response (task). In this case also, the varianceσ2 is estimated using the Maximum
Likelihood principle.

Coding the model with MIC-GROUP-SC:This is where we differ from MIC-GROUP (I) and we
use a coding scheme better suited to the group structure of the features. The intuition behind this
coding scheme is that once we have selected (at least) one feature from agiven group then it should

8. For simplicity of analysis and ease of comparison with coding schemes for MIC-MULTI we are assuming that all
groups are of the same sizehsingle, though in reality the groups may be of unequal size and the same coding scheme
still holds.
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become easier to select more features from the group. In other words, the cost of adding more
features from the same feature class should be low. The total cost of the model is composed of three
parts:

Si
M = ℓC+ ℓI + ℓθ,

whereℓC is the number of bits used to code the index of the group of the evaluated feature,ℓI is the
number of bits to code the index of the evaluated feature (within that particulargroup) andℓθ is the
cost to code the coefficient of the evaluated feature.

Our coding scheme assumes a uniform prior over all the groups; that is, each group is equally
likely to contain beneficial features.9 SoℓC is lgK whereK is the total number of groups (feature
classes) in the data. Now, if a feature gets selected from a group (featureclass) from which we
had previously selected features, then we can save some bits by using “switch” coding and coding
ℓC using only 1+ lgQ bits whereQ is the total number of groups (feature classes) included in
the model till that point of time and 1 bit is used to represent that this group (feature class) has
previously produced beneficial features. (Think of keeping an indexed list of lengthQ of the feature
classes that have been selected). This is where our method wins over other methods and we do not
need to code the same feature class over and over again if it has produced beneficial features in the
past. ThereforeℓC is (Note that we added 1 bit to lgK also to ensure that the group whose index
starts with 1 is not confused with the “switch”.):

ℓC =















1+ lgK i f the f eature class is not in the
model

1+ lgQ i f the f eature class is already in
the model.

To codeℓI we again assume a uniform prior over all the features within that particular group. This
corresponds to lgmi bits wheremi is the total number of features in the feature class of which the
ith feature is a part of. This is pretty similar to RIC (Risk Inflation Criterion) style (Foster and
George, 1994) coding or the widely use Bonferroni penalty. Finally, to codeℓθ we use 2 bits per
coefficient, the motivation for which was described earlier. Therefore,the model cost per feature
can be represented as:

Si
M = (ℓC)+(lgmi)+2. (9)

As mentioned earlier, this coding scheme is computationally cheaper than MIC-GROUP(I) as it does
not require a subset search every time a feature is added to the model andit provides comparable
predictive accuracy to MIC-GROUP (I). Note that just analogous to MIC-MULTI it is possible to
come up with a new coding scheme called FULL MIC-GROUP(I) which just like its MIC-MULTI

counterpart would add all the features from a given group (feature class) into the model. The
MIC-GROUP schemes presented here are the most general setting and are analogousto PARTIAL

MIC-M ULTI for the multi response (task) scenario.
Just as with MIC-MULTI , here we optimize the objectivêw∗ = argmin

ŵ
{SE +SM} with theSE

andSM terms as described by Equations 8 and 9 respectively.

9. This is actually a pretty good assumption as mentioned earlier. The uniform code gives the worst-case minimax
optimal code lengths (Grünwald, 2005) and hence it is reasonable to useit if the data distribution iscompletely
unknownor if nodistribution is assumed.

537



DHILLON , FOSTER ANDUNGAR

4.3 Algorithms and Implementation Details

In this subsection we outline the algorithms for MIC-MULTI and MIC-GROUP and also explain
some details of the search strategy that we used for efficient subset search in case of MIC-MULTI .

4.3.1 ALGORITHMS

The algorithm for MIC-MULTI is as described in Algorithm 1. We provide algorithm for the most
general case, that is, PARTIAL MIC-M ULTI as the other two cases, that is,Full andIndependentare
the special cases of this scenario.

Algorithm 1 PARTIAL MIC-M ULTI

1: Include the intercept (feature number 1) in allh response models.
2: remaining_ f eatures= {2, . . . , p}.
3: keep_adding_ f eatures= true.
4: while keep_adding_ f eaturesdo
5: for j in remaining_ f eaturesdo
6: // Find the best subset of response models to which to add featurej.
7: for k= 1 toh do
8: Try including featurej in the bestk response models. (We greedily assume that the best

k responses are the union of the bestk−1 responses with the remaining response that,
if included, would most increase likelihood.)

9: Compute∆Sk
jE , the decrease in data residual cost, and∆Sk

jM , the resulting increase in
model-coding cost, relative to not including featurej in any response models.

10: end for
11: Let k j be the value ofk that maximizes∆Sk

jE −∆Sk
jM .

12: ∆Sj := ∆S
k j
jE −∆S

k j
jM .

13: end for
14: Let j∗ be the featurej that maximizes∆Sj , the reduction in TDL for adding featurej.
15: if ∆Sj∗ > 0 then
16: Add featurej∗ to the appropriatek j∗ response models.
17: remaining_ f eatures= remaining_ f eatures−{ j∗}.
18: else
19: keep_adding_ f eatures= false.
20: end if
21: end while

The algorithm for MIC-GROUP-SC is described in Algorithm 2. The algorithm makes multiple
passes through data and at each iteration adds the best feature to the model. It stops when no feature
provides better∆Sthan in the previous iteration. Since, it can be the case that it is not worth adding a
single feature from a particular group (feature class) but it is still beneficial to add multiple features
from that class. So, a clever search strategy that we found helpful withMIC-GROUP-SC was to
use a mixed forward-backward greedy stepwise strategy in which one continues the search past the
stopping criterion given in the algorithm and then sequentially removes the “worst” features from
the now overfit model by making a “Backward” pass. In practice, we found this search strategy
helpful. A similar hybrid forward-backward strategy was also used by Zhang (2009a).
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Algorithm 2 MIC-GROUP-SC
1: f lag= True; // flag for indicating when to stop
2: model= {}; // initially no features in model
3: prev_max= 0; // keeps track of the value of∆SE in the previous iteration
4: while {flag == True} do
5: for {i = 1 to p} do
6: Compute∆Si

E; // Increase in likelihood by adding feature ‘i’ to the model
7: Compute∆Si

M; // Number of extra bits required to code theith feature
8: ∆Si := ∆Si

E −∆Si
M;

9: end for
10: imax := argmaxi{∆Si}; //The best feature in the current iteration
11: current_max:= maxi{∆Si}; //The best penalized likelihood change in the current iteration
12: if { current_max> prev_max} then
13: model:= model

⋃{imax}; // Add the current feature to model
14: prev_max:= current_max;
15: else
16: f lag := False;
17: end if
18: end while

Note that we do not provide algorithm for MIC-GROUP(I) as it is pretty similar to MIC-MULTI

with minor notational modifications as mentioned in the previous subsection.

4.3.2 STEPWISESEARCH METHOD

Since MIC-MULTI requires subset search over the set of possible tasks in which to consider a feature
for addition, so a discussion of our greedy search strategy is warranted.

For each feature, we evaluate the change in TDL (Total Description Length) that would result
from adding that feature to the model with the optimal number of associated tasks. We add the best
feature and then recompute the changes in TDL for the remaining features.10 This continues until
there are no more features that would reduce TDL if added. The number of evaluations of features
for possible addition is thusO(pps), whereps is the number of features eventually added.

To select the optimal numberk of task models in which to include a given feature, we again
use a stepwise-style search. In this case, we evaluate the reduction in TDLthat would result from
adding the feature to each task, add the feature to the best task, recomputethe reduction in TDL
for the remaining tasks, and continue.11 However, unlike a normal stepwise search, we continue
this process until we have added the feature to allh task models. The reason for this is two-fold.
First, because we want to borrow strength across tasks, we need to avoid overlooking cases where
the correlation of a feature with any single task is insufficiently strong to warrant addition, yet the

10. Remember that TDL changes due to the increase in likelihood and the additional model coding cost due to the added
feature.

11. A stepwise search that re-evaluates the quality of each task at each iteration is necessary because, if we take the
covariance matrixΣ to be non-diagonal, the values of the residuals for one task may affect the likelihood of residuals
for other tasks. If we takeΣ to be diagonal, as we do in Section 5, then anO(h) search through the tasks without
re-evaluation suffices.
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correlations with all of the tasks are. Second, the log
(h

k

)

term in PARTIAL MIC-M ULTI ’s coding
cost does not increase monotonically withk, so even if adding the feature to an intermediate number
of tasks does not look promising, adding it to all of them might still be worthwhile. Thus, when
evaluating a given feature, we compute the description length of the modelO(h2) times. Since we
need to identify the optimalk for each feature evaluation, the entire algorithm requiresO(h2pps)
evaluations of TDL.

While not shown explicitly in Algorithm 1, we use two branch-and-bound-style optimizations
to cut this cost significantly in practice:

1. Before searching through subsets of responses to find the optimal subset for each feature, we
make anO(p) sweep through the features to compute an upper bound on the decrease in TDL
that could result from adding that feature as

(decrease in TDL if the feature is added to allh response models)− logp.

Here, the first term is an upper bound on the benefit of adding the feature to the optimal
number of response models (since adding a feature can only make a model fit better), and
the second term underestimates the model cost of adding the feature, regardless of how many
response models would actually be used. We sort the features in decreasing order by this
upper bound, and when we reach features whose upper bounds areless than the best actual
decrease in TDL observed so far, we terminate the search early.

2. For the stepwise search over responses, we can bound from above the potential benefit of
adding the feature tok response models as

(decrease in TDL if the feature is added to allh response models)

−
(

log∗ k+ck+ log

(

h
k

)

+2k

)

,

where the subtracted term represents the coding cost of including the feature in k response
models. We can stop the search early when no higher value ofk has an upper bound that
exceeds the best reduction in TDL seen so far for any feature’s response subset.12

5. Experimental Results

In this section we empirically show the usefulness of our MIC based models (MIC [M ULTI and
GROUP]) on a variety of real world data sets pertaining to Genomics and Computational Linguistics
(particularly Word Sense Disambiguation) domains. Besides this we also showresults on synthetic
data sets to illustrate the cases when our models are most beneficial.

It is important to note that we are interested in maximizing the predictive accuracy in these
experiments rather than the totally orthogonal and antagonistic objective of identifying the correct
set of sparse features (“sparsity pattern consistency”) at the expense of predictive accuracy. We
would like to note that much sparser results can be obtained by using our models by using more
conservative coding schemes and also byℓ1/ℓ2 penalty (BBLASSO, GROUP LASSO) models by
using thresholding techniques like Zhou (2009) and Lounici (2008).

12. We say “no higher value ofk” rather than “the next higher value ofk” because (10) does not decrease monotonically
with k, due to the log

(h
k

)

quantity.
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5.1 MIC-M ULTI

In this section, we first evaluate the MIC-MULTI approach on three synthetic data sets, each of
which is designed to match the assumptions of, respectively, the PARTIAL and FULL MIC-M ULTI ,
and Baseline (Independent) coding scheme (Equation 4). We then test themethods on two biological
data sets, a Yeast Growth data set (Perlstein et al., 2007), which consistsof real-valued growth
measurements of multiple strains of yeast under different drug conditions,and a Breast Cancer data
set (van ’t Veer et al., 2002), which involves predicting prognosis, ER(Estrogen Receptor) status,
and three other descriptive variables from gene-expression values for different cell lines.

We compare the three coding schemes of Section 4.1.3 against two other multitaskalgorithms:
ANDOZHANG (Ando and Zhang, 2005) and BBLASSO (Obozinski et al., 2009), as implemented
in the Berkeley Transfer Learning Toolkit (Rakhlin, 2007). We did not compare MIC-MULTI with
other methods from the toolkit as they all require the data to have additional structure, such asmeta-
features(Lee et al., 2007; Raina et al., 2006), or expect the features to be frequency counts, such
as for the Hierarchical Dirichlet Processes algorithm. Also, none of the neglected methods does
feature selection.

For ANDOZHANG we use 5-fold CV to find the best value of the parameter that Ando and Zhang
(2005) callh (the dimension of the subspaceΘ, not to be confused withh as we use it in this paper).
We tried values in the range[1,100] as is done in Ando and Zhang (2005).

MIC-M ULTI , as presented in Section 4.1.2, is a regression algorithm, but ANDOZHANG and
BBLASSO are both designed for classification. Therefore, we made each of our responses binary
0/1 values before applying MIC-MULTI with a regular regression likelihood term. Once the features
were selected, however, we used logistic regression applied to just thosefeatures to obtain MIC-
MULTI ’s actual model coefficients.

As noted in Section 4.1.2, MIC-MULTI ’s negative log-likelihood term can be computed with an
arbitraryh×h covariance matrixΣ among theh tasks. We did not estimate all theh2 entries ofΣ
as it lead to overfitting, so we instead tookΣ to be diagonal.13

5.1.1 EVALUATION ON SYNTHETIC DATA SETS

We created synthetic data according to three separate scenarios—calledPartial, Full, andIndepen-
dent. For each scenario, we generated a matrix of continuous responses as

Yn×h = Xn×p ·wp×h+ εn×h,

wherep = 2000 features,h = 20 responses, andn = 100 observations. Then, to produce binary
responses, we set to 1 those response values that were greater than or equal to the average value
for their column and set to 0 the rest; this produced a roughly 50-50 split between 1’s and 0’s
because of the normality of the data. Each nonzero entry ofw was i.i.d.N (0,1), and entry ofε was
i.i.d. N (0,0.1), with no covariance among theε entries for different tasks. Each task hadp∗ = 4
beneficial features, that is, each column ofw had 4 nonzero entries.

The scenarios differed according to the distribution of the beneficial features inw.

13. Informal experiments showed that estimatingΣ as a convex combination of the full and diagonal estimates (i.e.,Σ̂λ)
also works well but we chose to use diagonalΣ (i.e., Σ̂D) due to its simplicity and to show the advantage of using a
better coding scheme to code the model as by using diagonalΣ Partial and Independent methods are the same except
SM (i.e., cost of coding the model).
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• In the Partial scenario, the first feature was shared across all 20 responses, thesecond was
shared across the first 15 responses, the third across the first 10 responses, and the fourth
across the first 5 responses. Because each response had four features, those responses (6−20)
that did not have all of the first four features had other features randomly distributed among
the remaining features (5, 6, . . . , 2000).

• In theFull scenario, each response shared exactly features 1−4, with none of features 5−
2000 being part of the model.

• In the Independentscenario, each response had four random features among candidatefea-
tures 1, . . . ,2000.

For the synthetic data, we report precision and recall to measure the qualityof feature selection.
This can be done both at a coefficient14 level (Was each nonzero coefficient inw correctly identified
as nonzero, and vice versa?) and at an overall feature level (For features withanynonzero coeffi-
cients, did we correctly identify them as having nonzero coefficients for any of the tasks, and vice
versa?). Note that Full MIC-MULTI and BBLASSO always make entire rows of their estimatedw
matrices nonzero and so tend to have larger numbers of nonzero coefficients. Table 2 shows the per-
formance of each of the methods on five instances of the Partial, Full, and Independent synthetic data
sets. On thePartial data set, PARTIAL MIC-M ULTI performed the best, closely followed by BASE-
LINE (INDEPENDENT); on theFull synthetic data, FULL MIC-M ULTI and PARTIAL MIC-M ULTI

performed equally well; and on theIndependentsynthetic data, theBaselinealgorithm performed
the best closely followed by PARTIAL MIC-M ULTI . It is also worth noting that the best-performing
methods tended to have the best precision and recall on coefficient selection. The performance
trends of the three methods are in consonance with the theory of Section 4.1.3.

The table shows that only in one of the three cases does non-MIC methods compete with MIC
methods. BBLASSOon the Full synthetic data shows comparable performance to the MIC methods,
but even in that case it has a very low feature precision, since it added many more spurious features
than the MIC methods.

5.1.2 EVALUATION ON REAL DATA SETS

This section compares the performance of MIC-MULTI methods with ANDOZHANG and BBLASSO

on a Yeast and a Breast Cancer data set. These are typical biological data sets in that only a handful
of features are predictive from thousands of potential features. Thisis precisely the case in which
MIC-M ULTI outperforms other methods. MIC-MULTI not only gives better accuracy, but does so
by choosing fewer features than BBLASSO’s ℓ1− ℓ2-based approach.
Yeast Data Set:Our Yeast data set comes from Perlstein et al. (2007). It consists of real-valued
growth measurements of 104 strains of yeast (n= 104 observations) under 313 drug conditions. In
order to make computations faster, we hierarchically clustered these 313 conditions into 20 groups
using correlation as the similarity measure. Taking the average of the values ineach cluster produced
h= 20 real-valued responses (tasks), which we then binarized into two categories: values at least as
big as the average for that response (set to 1) and values below the average (set to 0).The features
consisted of 526 markers (binary values indicating major or minor allele) and 6,189 transcript levels
in rich media for a total ofp= 6715 features.

14. A coefficient is defined as the addition of a given feature to a single task. For example if a feature was added to
models of 10 tasks, then 1 feature and 10 coefficients were selected.
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Method Test Error Coefficient Feature
µ±σ Precision/Recall Precision/Recall
Partial Synthetic Data Set

TRUE MODEL 0.07±0.00 1.00±0.00/1.00±0.00 1.00±0.00/1.00±0.00
PARTIAL MIC-M ULTI 0.10± 0.00 0.84±0.02/0.77±0.02 0.99±0.01/0.54±0.05
FULL MIC-M ULTI 0.17±0.01 0.26±0.01/0.71±0.03 0.97±0.02/0.32±0.03
BASELINE (INDEPENDENT) 0.12±0.01 0.84±0.02/0.56±0.02 0.72±0.05/0.62±0.04
BBLASSO 0.19±0.01 0.04±0.00/0.81±0.02 0.20±0.03/0.54±0.01
ANDOZHANG 0.50±0.02 NA NA

Full Synthetic Data Set
TRUE MODEL 0.07±0.00 1.00±0.00/1.00±0.00 1.00±0.00/1.00±0.00
PARTIAL MIC-M ULTI 0.08± 0.00 0.98±0.01/1.00±0.00 0.80±0.00/1.00±0.00
FULL MIC-M ULTI 0.08± 0.00 0.80±0.00/1.00±0.00 0.80±0.00/1.00±0.00
BASELINE (INDEPENDENT) 0.11±0.01 0.86±0.02/0.63±0.02 0.36±0.06/1.00±0.00
BBLASSO 0.09±0.00 0.33±0.03/1.00±0.00 0.33±0.17/1.00±0.00
ANDOZHANG 0.45±0.02 NA NA

Independent Synthetic Data Set
TRUE MODEL 0.07±0.00 1.00±0.00/1.00±0.00 1.00±0.00/1.00±0.00
PARTIAL MIC-M ULTI 0.17±0.01 0.95±0.01/0.44±0.02 1.00±0.00/0.44±0.02
FULL MIC-M ULTI 0.36±0.01 0.06±0.01/0.15±0.02 1.00±0.00/0.14±0.02
BASELINE (INDEPENDENT) 0.13± 0.01 0.84±0.02/0.58±0.02 0.83±0.02/0.58±0.03
BBLASSO 0.35±0.01 0.02±0.00/0.43±0.02 0.30±0.05/0.42±0.06
ANDOZHANG 0.49±0.00 NA NA

Table 2: Test-set accuracy, precision, and recall of MIC-MULTI and other methods on 5 instances
of various synthetic data sets generated as described in Section 5.1.1. Standard errors are
reported over each task; that is, with 5 data sets and 20 tasks per data set,the standard
errors represent the sample standard deviation of 100 values divided by

√
100. Note:

ANDOZHANG’s NA values are due to the fact that it does not explicitly select features.

Figure 1 (a) shows classification test errors from 5-fold CV on this data set. As can be seen from
the table, PARTIAL MIC-M ULTI performs better than BBLASSO or ANDOZHANG. BASELINE

and FULL MIC-M ULTI perform slightly worse than PARTIAL MIC-M ULTI , underscoring the point
that it is preferable to use a more general MIC coding scheme compared to FULL MIC-M ULTI or
BASELINE. The latter methods have strong underlying assumptions, which cannot always correctly
capture sharing across tasks.

Breast Cancer Data Set:Our second data set pertains to Breast Cancer, and contains data from
five of the seven data sets used in van ’t Veer et al. (2002). It contains1171 observations for
22,268 RMA-normalized gene-expression values. We considered five associated responses (tasks);
two were binary—prognosis (“good” or “poor”) and ER (Estrogen Receptor) status (“positive” or
“negative”)—and three were not—age (in years), tumor size (in mm), and grade (1, 2, or 3). We
binarized the three non-binary responses into two categories: Response values at least as high as
the average, and values below the average. Finally we scaled the data setdown ton = 100 and
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Figure 1: Accuracy and number of features selected on five folds of CVfor the Yeast and Breast
Cancer data sets.Note:1). Remember that we are interested in better predictive accuracy
and not in identifying the correct set of sparse features; we can get much sparser models
if instead our objective is choosing the correct set of sparse features. 2). ANDOZHANG’s
average number of features selected are not present in the graph as itdoes not explicitly
select features. 3). These are true cross-validation accuracies andno parameters have
been tuned on them.
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Figure 2: Number of coefficients selected on five folds of CV for the Yeast and Breast Cancer data
sets.Note:1). ANDOZHANG’s average number of coefficients selected are not present in
the graph as it does not explicitly select features.

p = 5000 (the 5000 features with the highest variance), to save computationalresources. Figure
1 (a) shows classification test errors from 5-fold CV on this data set. As isclear from the table,
PARTIAL MIC-M ULTI and BBLASSOare the best methods here. But as was the case with other data
sets, BBLASSOputs in more features, which is undesirable in domains (like biology and medicine)
where simpler and hence more interpretable model are sought.
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The number of features and coefficients selected by all the methods are shown in Figures. 1 (b)
and 2 respectively.

5.2 MIC-G ROUP

In this section we demonstrate the results of the MIC-GROUP scheme on synthetic and real world
data sets. For our experiments we use both the MIC-GROUP (I) and MIC-GROUP-SC (as de-
scribed in Algorithm 2) methods and compare against BASELINE Feature Selection (which in this
case is equivalent to a RIC penalized regression and has a coding scheme similar to Equation 4,
Lasso (Tibshirani, 1996), Elastic Nets (Zou and Hastie, 2005) and Group Lasso/ Multiple Kernel
Learning (Yuan and Lin, 2006; Jacob et al., 2009; Bach et al., 2004).

For Group Lasso/Multiple Kernel Learning,15 we used a set of 13 candidate kernels, consisting
of 10 Gaussian Kernels (with bandwidthsσ = 0.5−20) and 3 polynomial kernels (with degree 1-3)
for each feature class as is done by Rakotomamonjy et al. (2008). In the end the kernels which
have non zero weights are the ones that correspond to the selected feature classes. Since GL/MKL
minimizes a mixedℓ1 − ℓ2 norm so, it zeros out some groups (feature classes). However it is
possible to estimate the exact support by thresholding (cross-validated) the estimated weights, as
has been done by Zhou (2009) and Lounici (2008), and enforce sparsity within the groups also but
as mentioned earlier our main goal is better predictive accuracy and not identifying the correct set
of sparse features. The Group Lasso (Yuan and Lin, 2006; Jacob et al., 2009) and Multiple Kernel
Learning are equivalent, as has been mentioned in Bach (2008), therefore we used theSimpleMKL
toolbox (Rakotomamonjy et al., 2008) implementation for our experiments. For Lasso and Elastic
Nets we used their standard LARS (Least Angle Regression) implementations(Efron et al., 2004).
When running Lasso and Elastic Nets, we pre-screened the data sets andkept only the best∼ 1,000
features (based on their p-values), as otherwise LARS is prohibitively slow. (The authors of the
code we used do similar screening, for similar reasons.) For all our experiments on Elastic Nets
(Zou and Hastie, 2005) we chose the value ofλ2 (the weight on theℓ2 penalty term), as 10−6.

We demonstrate the effectiveness of MIC-GROUP on synthetic data sets and on real data sets
pertaining to Word Sense Disambiguation (WSD) (Chen and Palmer, 2005) (ONTONOTES Data
Set Hovy et al., 2006) and gene expression data (Mootha et al., 2003).

5.2.1 EVALUATION ON SYNTHETIC DATA SETS

The main hypothesis is that MIC-GROUP methods are beneficial when some groups have multi-
ple predictive features, while others lack them. MIC-GROUP is particularly effective when there
are small groups which contain highly predictive features and big groupscontaining no predictive
features.

In order to validate our hypothesis, we test MIC-GROUP on two synthetic data sets. For both
the data sets, 1000 features were generated independently from a Normal DistributionN (0,1), and
the response vector of 100 observationsY was computed as the linear combination of a set of 7
beneficial features and Gaussian additive noiseN (0,1.72). The first data set (Set 1) had 4 groups
(feature classes) of unequal sizes and 7 beneficial features, all ofwhich lie in a small feature class
of size 12. The second synthetic data set (Set 2) was generated so as toreflect the other extreme

15. There is a similar relation between MIC-GROUP and GL/MKL as it is between MIC-MULTI and BBLASSO. Both
BBLASSO and GL/MKL areℓ1/ℓ2 penalty based methods and try to solve the same sparsity problem as the corre-
sponding MIC method.
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case, in which all the classes are of same size, and had 100 feature classes, each of size 100. Again
all 7 beneficial features were in a single feature class.

Avg. Features Selected 10-Fold
Method Correct Spurious CV Error

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2
MIC-GROUP-SC 6.8± 0.1 5.6± 0.0 0.1± 0.0 0.3± 0.1 0.09± 0.02 0.27± 0.01
MIC-GROUP (I) 6.7± 0.0 5.4± 0.1 0.1± 0.1 0.2± 0.1 0.11± 0.02 0.28± 0.02
LASSO 5.2± 1.0 4.3± 1.2 2.2± 1.0 1.8± 0.1 0.22± 0.03 0.41± 0.02
ELASTIC NETS 6.4± 0.2 4.9± 0.7 3.3± 1.1 2.1± 1.3 0.20± 0.03 0.43± 0.02
BASELINE (RIC) 4.4± 1.4 3.2± 2.2 0.2± 0.1 0.0± 0.0 0.27± 0.05 0.61± 0.04

Table 3: The number of correct and spurious Features Selected and 10Fold CV Test Errors averaged
over 10 runs. Set 1). Unequal class sizes, Set 2). Uniform class sizes.

As can be seen from the results in Table 3, in both cases the MIC-GROUPmethods outperform
other competing methods.

5.2.2 EVALUATION ON REAL DATA SETS

In order to benchmark the real world performance of our MIC-GROUP, we chose two data sets per-
taining to two diverse applications of feature selection methods, namely Computational Linguistics
and Gene Expression Analysis. More information regarding the data and the experimental results
are given below.
Word Sense Disambiguation (WSD) Data Sets:A WSD data set (ONTONOTES Hovy et al., 2006)
consisting of 172 ambiguous verbs and a rich set of contextual features(Chen and Palmer, 2005)
was chosen for evaluation. It consists of hundreds of observations of noun-noun collocation, noun-
adjective-preposition-verb (syntactic relations in a sentence) and noun-noun combinations (in a sen-
tence or document).

The data set had a total of 172 verbs with 40− 45 feature classes (groups). The number of
observationsn for the various verbs varied from 100 to 3500 and the number of features p varied
from 1000 to 11500.

As with MIC-MULTI we used MIC-GROUP to do feature selection and once we had selected
the features we used logistic regression for the final classification problem. The classification test
accuracies averaged over all the 172 verbs are shown in Figure 3.

Note that these accuracies are for the binary prediction problem of predicting the most frequent
sense. On the entire set of 172 verbs, MIC-GROUPmethods are significantly (5 % significance level
(Paired t-Test)) better than the competing methods on 160/172 verbs and have the same accuracy as
the best method on 4 occasions. It is also worth noting that MIC-GROUP-SC was∼ 7 times faster
than MIC-GROUP (I) as we had hypothesized earlier, as for each selected feature it does a subset
search within that feature’s group (feature class) to find the optimal number of features to select
from the group.
Gene Set Enrichment Analysis (GSEA) Data Sets:The second real data sets that we used for our
experiments were gene expression data sets from GSEA (Mootha et al., 2003). There are multiple
gene expression data sets and multiple criteria on which the genes can be grouped into classes. For
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Figure 3: 10 Fold CV classification test accuracies averaged over 172 verbs. Note: 1). These are
true cross-validation accuracies and no parameters have been tuned onthem.

example, different ways of generated gene classes include C1: Positional Gene Sets, C2: Curated
Gene Sets, C3: Motif Gene Sets, C4: Computational Gene Sets, C5: GO GeneSets.

For our experiments, we used gene classes from the C1 and C2 collections. The gene sets
in collection C1 consists of genes belonging to the entire human chromosome, divided into each
cytogenetic band that has at least one gene. Collection C2 contained genesets from various sources
such as online pathway databases and knowledge of domain experts.

The data sets that we used and their specifications are as shown in Table 4.Though the goal
of GSEA is not building classification models but identifying the groups of genes (gene families)
which are over-represented when they are filtered by a certain selectionprocedure; however we are
interested in using the transcriptional profiles and the associated group structure for classifying the
phenotype, that is, ALL (Acute Lymphoblastic Leukemia) or AML (Acute Myeloid Leukemia) in
case of leukemia; DMT (Diabetes Mellitus Type I) or NGT (Normal Glucose Tolerance) in case of
diabetes; and determining whether the transcriptional profiles are from a M(Male) or a F (Female)
for the gender data sets.

Data Set # Observations (n) # Features (p) # Classes (K)
LEUKEMIA (C1) 48 (24 ALL & 24 AML) 10056 182
GENDER 1 (C1) 32 (17 F & 15 M) 15056 212
DIABETES (C2) 34 (17 NGT & 17 DMT) 15056 318
GENDER 2 (C2) 32 (17 F & 15 M) 15056 318

Table 4: GSEA Data Sets.

The results for these GSEA data sets are as shown in the Figure 4.
For these data sets also MIC-GROUP methods beat the competing methods. Here also MIC-

GROUP is significantly (5% significance level, Paired t-test) better than the competing methods. It
is interesting to note that MIC-GROUP methods sometimes selected substantially fewer features,
but still gave better performance than other methods which goes onto show that adding all or many
features from a single group contributes to a redundant signal and efficient feature selection “within”
a group (feature class) is warranted.
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Figure 4: 10-fold CV classification test accuracies and the average number of features selected by
various methods on the GSEA data sets.Note: 1). Remember that we are interested in
better predictive accuracy and not in identifying the correct set of sparse features; we
can get much sparser models if instead our objective is choosing the correct set of sparse
features. 2). These are true cross-validation accuracies and no parameters have been
tuned on them.

6. MIC Model Consistency

In this section we show that our MIC methods based on two part MDL and with the model coding
costs as described in Section 4 are consistent. By “consistent” we mean thatif the data is distributed
by one of the probabilistic sources in the set of candidate model classes that our MDL based estima-
tors consider (M ), then given enough data, MIC will output the true distribution generating the data.
The proof of consistency is similar to the proof of classical two part MDL consistency as given in
Barron and Cover (1991) and the recent improvement to that proof by Zhang (2004) by using ideas
from KL-complexity. To extend these proofs to the case of MIC, we require the concepts ofUniver-
sal Codes, KL-Distinguishability, Probabilistic Sourcesand theNo-Hypercompression Inequality
from information theory. (Refer to Appendix)

We first define some common notation that will be useful throughout this section. Assume we
haven data samples (observations)X1 ∈ X ,X2 ∈ X , . . . ,Xn ∈ X and that they are distributed accord-
ing to some distributionPTrue. Further letP(n)

MIC be an arbitrary distribution onX (the distribution
estimated by our MIC based model). Also, as shorthand we denote−∑n

i=1 lgQ(Xi) as− lgQ(Xn)
throughout this section andP(n) denotes the marginal distribution on the firstn outcomes that is
induced by the probabilistic sourceP.

6.1 Consistency Results

As mentioned earlier, two part MDL has been proved to be consistent in a variety of settings (Barron
and Cover, 1991; Zhang, 2004; Grünwald, 2007). Here we providesimilar proofs for the case of
our MIC based models.
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LetM be a countably infinite set of probabilistic sources and letℓn be some code length function
corresponding to a code over elements ofM . We assume that the true underlying probabilistic
source belongs to the set of sources that our models consider, that is,PTrue ∈ M ; Zhang (2004)
and Barron and Cover (1991) also make this assumption. Also, letPMIC be the probabilistic source
corresponding to the two part MDL model selected by MIC andP(n)

MIC be the marginal distribution
induced by this probabilistic source on the firstn outcomes.

Theorem 1 LetM δ = {Q∈M |KL(PTrue||Q)≥ δ}. Also, letℓn(PTrue)< ∞, then

PTrue(P
(n)
MIC ∈M δ)→ 0 as n→ ∞. (10)

The theorem states that the probability that MIC selects a probabilistic sourceto explain the data that
is KL-distinguishable from the true underlying distribution (PTrue) approaches 0 as the number of
observations increase. In other words, with overwhelming probability,PTrue is KL-indistinguishable
from P(n)

MIC asn approaches infinity.
Proof

Let Pn be the distribution corresponding to the code for hypotheses with lengthsℓn, such that
for all Q ∈ M , Pn(Q) = 2−ℓn(Q). This follows from Kraft’s Inequality (Grünwald, 2005).M is
countable, soM δ must also be countable; therefore we can order the elements inM δ according
to increasing description lengthℓn(Q) (decreasingPn(Q)) asQ1,Q2, . . .. Fix someθ (0 < θ < 1)
and defineM δ

1:N(θ) as the subset ofM δ consisting of the firstN distributions inM δ, whereN is

the smallest number such that∑N
j=1Pn(Q j)≥ θ. Now, we defineM δ

N(θ)+1:∞ =M δ\M δ
1:N(θ), that is,

M δ
N(θ)+1:∞ = {QN+1,QN+2, . . .}. It can be easily seen that,

Pn(M
δ
N(θ)+1:∞) =

∞

∑
j=N+1

Pn(Q j)≤ 1−θ. (11)

Now, for anyM ′ ⊆M δ,

PTrue

[

P(n)
MIC ∈M ′

]

=

PTrue
[

f or some Z∈M ′ : ℓn(PTrue)+ ℓn(X
n|PTrue)≥ ℓn(Z)+ ℓn(X

n|Z)
]

≤ ∑
Z∈M ′

PTrue[ℓn(PTrue)+ ℓn(X
n|PTrue)≥ ℓn(Z)+ ℓn(X

n|Z)] . (12)

The above inequality is obtained by applying the Union Bound.
Now, by re-arranging Equation 12 and noting that the error term in two-part coding can be

replaced by a log term as in Equation 2,

gn(Z) = PTrue[− lg(PTrue(X
n))≥− lg(Z(Xn))+ ℓn(Z)− ℓn(PTrue)] . (13)

Theℓn(Z) term corresponds to the number of bits required to code the model and the− lgZ(Xn)
term corresponds to the data likelihood term in the two part MDL coding scheme.

From Equations 12, 13 and 10, it follows that:

PTrue

[

P(n)
MIC ∈M δ

]

= PTrue

[

P(n)
MIC ∈M δ

1:N(θ)

]

+PTrue

[

P(n)
MIC ∈M δ

N(θ)+1:∞

]

≤ ∑
Z∈M δ

1:N(θ)

gn(Z)+ ∑
Z∈M δ

N(θ)+1:∞

gn(Z). (14)
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Since, eachZ ∈M δ
1:N(θ) is KL-Distinguishable fromPTrue and we havegn(Z) ≤ e−nδ (Stein’s

Lemma Cover and Thomas, 2006) for allZ ∈ M δ. Hence∑Z∈M δ
1:N(θ)

gn(Z) is a sum of a finite

number of Z’s, each of which is exponentially small, so we have limn→∞ ∑Z∈M δ
1:N(θ)

gn(Z) = 0.

Now, we consider the second term in Equation 14. First assume that there existsN′(θ)≥N(θ)+
1 such that the sourcesM δ

N(θ)+1:N′(θ) have description lengths(ℓn) smaller than the description

length ofPTrue and the sourcesM δ
N′(θ)+1:∞ have description lengths greater thanℓn(PTrue). Also, we

haveℓn(PTrue) = O(logn), given all the coding schemes we have designed using MIC models. Now,
by Kraft’s Inequality it follows that

∑
Z′∈M δ

N(θ)+1:N′(θ)

2−ℓn(Z′) ≤ 1

=⇒ ∑
Z′∈M δ

N(θ)+1:N′(θ)

2−k logn ≤ 1

=⇒ ∑
Z′∈M δ

N(θ)+1:N′(θ)

n−k ≤ 1.

Therefore, there are at most a polynomial numbernk of elements inM δ
N(θ)+1:∞ with shorter descrip-

tion lengths thanPTrue. Hence, as earlier∑Z′∈M δ
N(θ)+1:N′(θ)

gn(Z′) is a sum of a finite number of (Z)s,

each of which is exponentially small, so we have limn→∞ ∑Z′∈M δ
N(θ)+1:N′(θ)

gn(Z′) = 0 .

Now, we bound the remaining terms by applying the no-hypercompression inequality to each
term in∑Z∈M δ

N′(θ)+1:∞
gn(Z) with K = ℓn(Z)− ℓn(PTrue),

gn(Z) = PTrue[− lg(PTrue(X
n))≥− lg(Z(Xn))+ ℓn(Z)− ℓn(PTrue)]≤ 2−ℓn(Z)+ℓn(PTrue). (15)

From Equations 11 and 15, we get

∑
Z∈M δ

N′(θ)+1:∞

gn(Z)≤ ∑
Z∈M δ

N′(θ)+1:∞

2−ℓn(Z)+ℓn(PTrue) ≤ (1−θ) ·2ℓn(PTrue).

The above holds for every 0< θ < 1, so for everyε > 0 we can chooseθ = 1− ε ·2−ℓn(PTrue)

giving ∑Z∈M δ
N′(θ)+1:∞

gn(Z) ≤ ε for all largen. Combining this with Equation 14 we find that for all

ε > 0

lim
n→∞

PTrue[P
(n)
MIC ∈M δ]< ε.

A corollary of the above theorem is that the MIC coding schemes as described in Section 4 are
not an arbitrary procedure. There can be many valid codes, but we can not tweak MDL by using
arbitrary codes to give the answers that we would like it to give.
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Another important theoretical property that is attractive for sparse learning algorithms isspar-
sistency, which is shorthand for “sparsity pattern consistency”. In other words:

P
[

supp(wTrue) = supp(wMIC
n )

]

→ 1 as n→ ∞,

wheresupp(w) = {w : w j 6= 0}, wTrue is the true sparse weight vector andwMIC is the weight vector
estimated by MIC based methods. Sparsistency implies that the learning algorithmis consistently
able to identify the correct set of sparse features in the asymptotic limit.

Lasso and Group Lasso have been proved to besparsistentunder irrepresentable conditions
that depend on the sign of the true weight vector (wTrue) (Zhao and Yu, 2006; Wainwright, 2009;
Meinshausen and Bühlmann, 2006; Bach, 2008). Tropp (2004) proved that forward greedy feature
selection also selects features consistently when the linear model has a zero-mean stochastic noise;
Zhang (2009b) improved this result to include non-zero mean sub-Gaussian stochastic noise. How-
ever, due to the complexity of the forward greedy feature selection the sparsistency condition in this
case depends only on the feature (design) matrixX, unlike Lasso and Group Lasso.

Since our MIC based methods are based on forward greedy feature selection, that is, they use
the MDL principle to provide a cost function which is greedily minimized by a forward search,
they should besparsistent. However, forℓ0 penalized regression, thesparsistencycondition also
depends on the information theoretic penalty in that the penalty must increase with n (the number
of observations) (Wu and Zhou, 2010). For our MIC based methods thispenalty is a combination
of RIC, AIC (to code the coefficients) and other coding schemes which incorporate the structure
of the problem at hand. The penalties for the MIC based methods as presented in this paper do
not have the required dependence onn, so they are not sparsistent. However, we could modify
our coding schemes slightly by using the BIC penalty (lgn bits) to code the coefficients instead of
AIC to ensure sparsistency of MIC. However, we prefer that our methods are not sparsistent as in
that case we achieve competitive performance with the true underlying model,that is, we get finite
risk-inflationof about 2 lgp (Foster and George, 1994) whereas if we chose sparsistency then MIC
would have infinite risk-inflation. Thus, given the choice betweenbetter model-fitand sparsistency,
we chose the former. However, if sparsistency is more important than predictive accuracy, making
a small change in the coding schemes would guarantee it.

7. A Model for “Intra Domain” Adaptation: T RANSFEAT

In the previous sections we proposed MIC based methods for the related problems of simultaneous
feature selection for a set of multiple related tasks (MIC-MULTI ) and grouped feature selection for
single task (MIC-GROUP). The focus of those methods was joint feature selection, but in many ap-
plications it is the case that some of the tasks have less data available than othertasks and building
supervised learning models from the limited amount of data does not give highpredictive accura-
cies. So, it becomes desirable to “borrow strength” for the tasks with less amount of data from
the tasks with lots of data. In other words, we want to have “intra domain” adaptation or Transfer
Learning (Ando and Zhang, 2005; Raina et al., 2006).

In this section, we propose a method called TRANSFEAT which addresses the above problem by
transferring information between similar tasks by using a feature relevanceprior. We demonstrate
the effectiveness of TRANSFEAT for the problem of Word Sense Disambiguation (WSD), and show
that in this domain TRANSFEAT significantly improves accuracy on tasks with less data. TRANS-
FEAT, could, of course, be applied to wide variety of domains, but is particularlyuseful for WSD
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as state-of-the-art WSD systems, including the ones that use feature selection, are strongly limited
by the paucity of labeled data. For example, the training set of the SENSEVAL-2 English lexical
sample task has only∼ 10 labeled examples per sense (Florian and Yarowsky, 2002). Such limited
data makes it difficult to build high accuracy models using standard supervised learning techniques
and suggests the use of transfer learning to improve performance.

As mentioned above, TRANSFEAT learns a feature relevance prior from “similar” tasks, and
gives supervised learning accuracies which are comparable to or betterthan state-of-the-art WSD
systems. Learning this prior for feature relevance of a test task makes those features that have been
selected in the models of other “similar” tasks become more likely to be selected. TRANSFEAT does
this by using a MDL-based approach similar to the MIC methods presented above.
Task Setting:We are given a set of target words each having ann× p feature matrix (Xn×p), where
n is the total number of observations (instances) andp is the total number of features. We have a
n×h response matrix (Yn×h) of theh sense labels for each of then observations. The WSD task is
to assign a sense to each test instance. Note that this is a multi-class problem; wehave a single task,
which is to predict the correct sense of the word and we haveh possible choices (the word senses)
for that task. So, we approach it differently from the multi-task problem (MIC-MULTI ), where we
predicted all tasks jointly.
Overview ofTRANSFEAT: TRANSFEAT builds upon MIC-GROUPand it has several steps:

• Break theYn×h matrix intoh, n×1 matrices, that is, out of one multiclass (h classes) problem
we makeh binary class problems. The prediction problem now becomes “Is this word sense
1 or not?”, etc. The main reason for doing this is that not all senses of all words are similar to
all senses of some other word. Thus, transfer learning only makes sense at level of individual
wordsensesrather than at the level of whole words.

• Make separate feature matrices for theseh prediction problems, because the original feature
matrix Xn×p contained features which would be useful for the multiclass problem of “What
is the exact sense of the word?”, rather than for the binary problems of “Is this sense 1 or
not?” and so on. We do this is by characterizing each binary problem by those features from
the originalp features which are positively correlated with that particular word sense.16 This
givesh feature matricesX{i=1,...,h} drawn from the originaln× p feature matrix, where each
of these matrices need not have the same number of features.

• Next, cluster the different word senses by using “foreground-background” clustering that puts
all singleton points into a “background cluster” which we then ignore

• Learn separate MIC-GROUP-SC models for each word sense. (Remember that as mentioned
in the Section about MIC-GROUP, WSD is one problem which exhibits group structure and
therefore we use it as a base model on which we build TRANSFEAT.)

• For each word sense in a cluster, use TRANSFEAT to learn a feature relevance prior from the
remaining word senses in that cluster that have more observations than the target word sense,
on the features of that word sense. As we explain later, this feature relevance prior allows us
to learn better MIC-GROUP-SC models by relaxing theuniform prior assumption that each

16. In general, features with positive coefficients are associated with thegiven sense and those with negative coefficients
with other senses of that word.
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group (feature class) and then each feature within that group is equally likely to be selected,
that MIC-GROUP-SC makes.

• Given these better MIC-GROUP models for all the word senses, we solve the actualh class
WSD problem by choosing the sense whose model gave the highest scoreas the most likely
sense for that word.

We learn the feature relevance prior only from distributionally similar wordsenses; in contrast
to Ando (2006) who share knowledge across “all” the senses of “all” thewords. Our approach
makes sense as it is difficult to find words which are similar in all their senses;however, one can
often find words which have one or a few similar senses. For example, onesense of “fire” (as in
“fire someone”) should share features with one sense of “dismiss” (as in“dismiss someone”), but
other senses of “fire” (as in “fire the gun”) do not. Similarly, other meanings of “dismiss” (as in
“dismiss an idea”) should not share features with “fire”. Similarly, the words “kill”, “capture” and
“arrest,” share one similar sense. This justifies our choice of breaking down the problem down to
the level of individual word senses.

Thus, knowledge can only be fruitfully transferred between the sharedsenses of different words,
even though the models being learned are for disambiguating different senses of a single word. To
address this problem, we cluster similar word senses of different words,and then use the models
learned for all the word senses in the cluster with more data (observations) than the held out word
sense (called “training word senses”) to put a feature relevance prioron what features will be more
predictive for the held out test word sense. We hold out each word sense in the cluster once and
learn a prior from the remaining word senses in that cluster. For example, we can use the models
for discriminating the senses of the words “kill” and the senses of “capture”, to put a prior on what
features should be included in a model to disambiguate senses of the distributionally similar word
“arrest”, which has considerably less data than the other two words (ONTONOTESdata set), hence
enabling us to learn high accuracy models for “arrest”. If at least one sense of the word “arrest”,
that we are trying to model is similar to the other word senses (for “kill” and “capture”), some of
the same features should be beneficial for all of them.

7.1 TRANSFEAT Formulation

We now describe TRANSFEAT in detail and show how it can be used to learn better feature selection
models by relaxing the overly simplistic assumption of the model coding schemes ofMIC methods
of uniform priorby learning a feature relevance prior.

We define a binary random variablefi ∈ {1,0} that denotes the event of theith feature being in
or not being in the model for the test word sense, and model it as being from a Bernoulli distribution
parameterized byθi :

p( fi |θi) = θ fi
i (1−θi)

1− fi . (16)

Given the data for theith feature for all the training word senses, we can write:D fi = { fi1, ..., fiv, ..., fit}.
The model likelihood (under the i.i.d assumption) can be written as:

p(D fi |θi) =
t

∏
v=1

p( fiv|θi) =
t

∏
v=1

θ fiv(1−θi)
1− fiv ,

and the posteriors can be calculated by putting a prior over the parametersθi as:
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p(θi |D fi ) = p(D fi |θi)× p(θi |a,b),

wherea andb are the hyperparameters of the Beta Prior (the conjugate of the Bernoulli distribution).
The predictive distribution ofθi is:

p( fi = 1|D fi ) =
∫ 1

0
p( fi = 1|θi)p(θi |D fi )dθi .

Substituting from 16 in the above equation we get:

p( fi = 1|D fi ) =
∫ 1

0
θi p(θi |D fi )dθi = E[θi |D fi ].

Using the standard results for the mean and the posterior of a Beta distributionwe obtain:

p( fi = 1|D fi ) =
k+a

k+ l +a+b
, (17)

wherek is the number of times that theith feature is selected andl is the complement ofk, that is,
the number of times theith feature is not selected in the training data.

As can be seen from Equation 17, the probability that a feature is selected for the held out test
word sense is a “smoothed” average of the number of times it was selected in the models for the
senses of other words that are similar to it.

Using similar reasoning, we can extend the above concept to the groups (feature classes) so that
the probability that a group (feature class) is selected is also a “smoothed” average of the number of
times it was selected in the models for the senses of other words that are similar toit.

In light of the above reasoning, the modified model cost for MIC-GROUP for coding theith

feature when previously no features have been selected from thej th feature class which contains
that feature can be written as follows:

Si
M =− lg p(G j = 1|DG j )− lg p( fi = 1|D fi )+2,

and for the case when some features have already been selected from the j th feature class, we
can write a modified coding cost as follows:

Si
M = min

[

− lg p(G j = 1|DG j ),1+ lg(Q)
]

− lg p( fi = 1|D fi )+2,

where the first term represents the probability of selecting at least one feature from thej th

feature class, the second term represents the probability of selecting theith feature, and the third
term which is used to code the coefficient values remains the same as earlier.17 Note that in the case
when we have previously selected features from a given feature class, the most efficient way to code
the feature class is to use the minimum of the TRANSFEAT cost and the actual “switch” coding cost
as described in Section 4.2. Thus TRANSFEAT replaces the implicit uniform prior of MIC-GROUP

with a coding scheme which is more informed by the prior learned from similar tasks.
The detailed algorithm for TRANSFEAT is given in Algorithm 3.

17. The negative sign is due to the duality between Bayesian and Information Theoretic interpretation as mentioned
earlier.
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Algorithm 3 TRANSFEAT

1: Break the multiclass problem intoh binary prediction problems.
2: Make the feature matrices for each of these problems, that is,X{i=1,...,h}.
3: Cluster the different word senses by “foreground-background” clustering.
4: total_clusters= {1, . . . ,c}
5: word_sensesk = sk // Number of word senses inkth cluster.
6: for i in total_clustersdo
7: for t in word_sensesi do
8: Learn separate MIC-GROUP-SC models for all the word senses. // Uniform prior assump-

tion
9: end for

10: end for
11: for i in total_clustersdo
12: for t in word_sensesi do
13: Learn TRANSFEAT model on all word senses in the cluster which have more data (obser-

vations) than thetth word sense.
14: Use the revised model costsSM output by TRANSFEAT to learn better MIC-GROUP -SC

model fortth word sense.
15: // The uniform prior assumption of MIC-GROUP-SC has been relaxed.
16: end for
17: end for
18: Disambiguate the word as a whole by choosing the correct sense (fromh possible senses) as the

one whose model gave the highest score.

7.1.1 CHOICE OFHYPERPARAMETERS

The hyperparametersa andb in Equation 17 control the “smoothing” of our probability estimates,
that is, how strongly we want the evidence obtained from similar word senses to affect the model
that we learn for the test word sense.

In all our experiments we seta = 1 and chooseb so that in the limiting case of no transfer,
that is, (k = l = 0 in Equation 17) the coding scheme will reduce to the baseline feature selection
described in (Equation 4). Thus, we chooseb= p−1 wherep is the total number of features/feature
classes (depending on what we are coding) in the test word sense.

7.2 Experimental Results

In this section we first describe our data and similarity metric that we used; we then report the results
of applying TRANSFEAT to the SENSEVAL-2 and ONTONOTESdata sets.

7.2.1 SIMILARITY METRIC

Finding a good similarity metric between different word senses is perhaps one of the biggest chal-
lenges that we faced. It is also the part of this section that is specific to the problem of word sense
disambiguation. There are many ways in which word senses can be judged as similar, including
having similar “meanings” or similar syntactic usages. Human annotated lexiconssuch as Levin
classes (Levin, 1993), hypernyms or synonyms according to WORDNET (Miller, 1990; Lin, 1999),
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or VERBNET classes (Kipper et al., 2000; Schuler, 2006) capture different aspects of this similarity,
as does INFOMAP(http://infomap.stanford.edu) (Raina et al., 2006), which gives distribu-
tional similarity score for words in the corpus. We choose instead to define asimilarity metric
based, as described below on combinations of many different aspects ofthe lexical and syntactic
context of the word.

One might think of doing K-means clustering of the word senses based on their features, but
this works poorly, as it assigns all the word senses to some cluster, while in reality, there are in
practice many word senses that are not sufficiently similar to any other wordsense, either seman-
tically or syntactically and hence many word senses occur in “singleton” clusters. K-means and
perhaps surprisingly, hierarchical agglomerative clustering, even after extensive use of different ‘K’
or thresholds, failed to give reasonable clusters.

We thus need a clustering method that gives tight clusters of word senses,and does not attempt
to cluster those word senses which are not similar to any other word sense inthe corpus. We do this
using a “foreground-background” clustering algorithm as proposedby Kandylas et al. (2007). This
algorithm gives highly cohesive clusters of word senses (theforeground) and puts all the remaining
word senses in thebackground. The parameters that it takes as input are the % of data points
to put in background(i.e., what would be the singleton clusters) and a similarity threshold which
impacts the number offoregroundclusters. We experimented with putting 20% and 33% data points
in background and adjusted the similarity threshold to give us 50−100 foregroundclusters. The
results reported below have 20% background and 50−100foregroundclusters.

7.2.2 DESCRIPTION OFDATA

We used the SENSEVAL-2 English lexical sample data, which contains a total of 73 different words
(29 nouns, 29 verbs, and 15 adjectives) and the ONTONOTES verb data (the same one used for
experiments of MIC-GROUP), containing 172 verbs. The main difference between these two data
sets is that SENSEVAL-2 data contains “fine grained” senses of the words and as a result tends to
have more senses per word than the “coarse grained” verb senses in ONTONOTES. (See Table 5.)

Data Set #words #train avg #senses
per word

SENSEVAL-2 73 8611 10.7
(nouns+verbs+adj.)

ONTONOTES 172 See Note 3.7
(only verbs) (in caption)

Table 5: Data Statistics of SENSEVAL-2 and ONTONOTESdata sets.Note: In our experiments we
used the standard test-train splits for SENSEVAL-2; ONTONOTES data does not have any
standard splits so we report 10-Fold cross validation test-accuracies

7.2.3 RESULTS

We cluster the word senses based on all the features, that is, semantic+syntactic similarity features.
We experimented clustering using only syntactic and only semantic features but we got the best
results using the combined feature set.
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Figure 5: 10-fold CV (micro-averaged) test accuracies of various methods for ONTONOTES and
SENSEVAL-2 (English Lexical Sample) data sets.Note: 1.) These are true cross-
validation accuracies and no parameters have been tuned on them. 2.) The final accu-
racies reported are averaged over the entire 172 verbs. 3). We usedthe standard test-train
splits for SENSEVAL-2 as mentioned on the data website and as used in previous studies

All results reported are micro-averaged18 accuracies. In order to ensure fairness of compari-
son we compute the predicted sense for each observation by selecting the word sense model (from
among the different senses for that word) with the highest score for that observation sense. As in
earlier experiments we use TRANSFEAT only to select features and later we use logistic regres-
sion for classification. This “one vs all” approach to prediction in multi-class problems is widely
used, although higher accuracy can sometimes be obtained by more complex pairwise comparison
methods.

We use two versions of TRANSFEAT, as can be seen in Figure 5. The first version is exactly
the same as mentioned in Algorithm 3, while the second version, TRANSFEAT w. Baseline, builds
upon baseline feature selection (Equation 4) instead of MIC-GROUP-SC. We compare TRANS-
FEAT methods against baseline feature selection (Equation 4), SVM with a polynomial kernel,
Ando[CoNLL’06] (Ando, 2006), computed with the standard implementation of the algorithm from
the Berkeley Transfer Learning Toolkit (Rakhlin, 2007), and a simple most frequent sense baseline.
For SVM we used the standard libSVM package (Chang and Lin, 2001). Weused a polynomial
kernel, as it gave better performance on held out data than other kernelsincluding linear and RBF.
We tuned the cost parameter ‘c’ and the degree of polynomial ‘d’ parameters of the polynomial
kernel using a separate cross validation.

18. Our precision and recall are always the same as we assign exactly one sense to each instance. Hence the accuracy
that we report is the same as the F-measure or ‘micro-averaged’ recall as is reported in many WSD studies.
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7.2.4 ANALYSIS OF ONTONOTESRESULTS

The results for the different settings for the ONTONOTESdata set averaged over the entire 172 verbs
are shown in Figure 5 (a). The TRANSFEAT models are significantly better (5% significance level
using a paired t-test) than all the competing methods except Ando[CoNLL’06].

Some examples will help to emphasize the point that we made earlier that transferhelps the
most in cases in which the target word sense has much less data than the wordsenses from which
knowledge is being transferred. “kill” had roughly 6 times more data than all other word senses in
its cluster (i.e., “arrest”, “capture”, “strengthen”, etc.) In this case, TRANSFEAT gave 3.2−8.7%
higher accuracies than competing methods on these three words. Both versions of TRANSFEAT do
much better than Ando[CoNLL’06] on these select words even though onaverage over all 172 verbs
the difference is slender. Similarly, for the case of word “do” which had roughly 10 times more data
than the other word senses in its cluster (e.g.,“die” and “save”), TRANSFEAT gave 4.1−6.2% higher
accuracies than other methods. Transfer makes the biggest differencewhen the target words have
much less data than the word senses they are generalizing from, but even incases where the words
have comparable amounts of data we still get a 1.5−2.5% increase in accuracy.

However, as one might expect, transfer learning can sometimes hurt performance; there can be
so-called “negative-transfer” (Caruana, 1997). This was the casefor 8 verbs out of the 172.

7.2.5 ANALYSIS OF SENSEVAL-2 RESULTS

The results for SENSEVAL-2 data set are shown in Figure 5(b). Here also TRANSFEAT does signif-
icantly better (5% significance level using a paired t-test) than the baseline feature selection method
and most of the other state-of-the-art algorithms. It is worth noting that a high degree of engineer-
ing goes into the state-of-the-art SENSEVAL-2 systems. This is in contrast to TRANSFEAT, which
uses information theoretic feature selection and thus has no free parameters to tune. The TRANS-
FEAT results are comparable to those reported in Ando (2006), which is the state-of-the-art system
on SENSEVAL-2. Since Ando (2006), only mentions the overall accuracy and not the accuracy on
individual words, we cannot tell whether this slender difference is statistically significant.

For words that had considerably fewer observations than other wordsin their cluster, TRANS-
FEAT again gave major benefits. For example, “begin” had∼ 8 times more data (on average per
sense) than the other word senses in its cluster (i.e., “work” and “develop”). In this case, TRANS-
FEAT gave 6.1− 7.1% improvement in accuracy over the baseline feature selection. Similarly,
“leave” had∼ 2 times more data than “turn” and “strike”, and in this case TRANSFEAT gave
5.1−6.2% improvement in accuracy over the baseline. These improvements are considerably larger
than the average improvement over all the words as reported in Figure 5(b).

For this data set there was negative transfer on 5 out of 73 words.

8. Conclusion

In this paper we presented a framework for learning sparse models based on the information theo-
retic Minimum Description Length (MDL) principle. We presented two models based on the MIC
(Multiple Inclusion Criterion) which greedily select features using the MDL principle in the single
and multi task settings respectively. Both the methods, MIC-MULTI and MIC-GROUP, induce two
level sparsity; MIC-GROUP does feature selection at the level of groups and also at the level of
features within each group and MIC-MULTI allows each selected feature to be added to the models
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of some or all of the tasks. We showed how we can use MDL to specifycustomizedcoding schemes
in scenarios where the problem has complex structure. We also discussedthe conditions under
which the MDL based methods are consistent andsparsistentand also showed that the MDL coding
schemes are not arbitrary and have a corresponding Bayesian interpretation. Lastly, we proposed
a model, TRANSFEAT which can be used to transfer a feature relevance prior to tasks which have
less data available. We evaluated all three methods on a variety of domains including genomics (for
both yeast and beast cancer) and natural language processing (Word Sense Disambiguation). Our
methods are consistently at least as accurate as state-of-the-art methods, while producing models
that are more sparse. Such sparseness is particularly important for applications such as genomics
and computational linguistics, where interpretable models are valued.

Appendix A.

No Hypercompression Inequality:

∀K > 0,PTrue[− lgPTrue(X
n)≥− lgPModel(X

n)+K]≤ 2−K .

This inequality states that the probability of a code compressing the data by morethanK bits,
than the code corresponding toPTrue is exponentially small inK, whereK is any positive number.

The proof follows by using Markov’s inequality and can be found in Grünwald (2007).
KL-Distinguishability:If the actual data was generated by the distributionPTrue then the distribution
PModel is said to beKL distinguishablefrom PTrue if its relative entropy (KL Divergence) fromPModel

is greater thanδ. In other wordsPModel lies outside aδ ball of PTrue in a relative entropy sense. More
formally,

∀δ > 0,KL(PTrue||PModel)≥ δ.

Universal Coding Schemes:Going back to the standard MDL setting which envisions a Sender
and Receiver, assume that the Sender and Receiver have a set of candidate coding schemesL for X n

available. Both of them know that one of these available codes will give the highest compression
for the sequenceXn ∈ X n. In other words:

LOptimal(X
n) = argmin

i
{Li(X

n)} ∀Li ∈ L .

However, they must decide on a code before the sender observes the actual dataXn and they do
not know which is the best code. In the Bayesian terminology, this problem issimilar to finding the
classifier which has the Optimal Bayes Risk—that is, the classifier with the minimum possible risk
among all the candidate classifiers. One thing that the Sender can do is on seeing the data (Xn), he
encodes the data usingLOptimal as described above. However, this is not feasible as the Receiver does
not know what code the Sender used and so he would not be able to decode the message. Therefore
it is not possible to find the best code that compresses the data and so in practice people useuniversal
codeswhich compress the data almost as well asLOptimal. This corresponds to a classifier whose
risk is close to Bayes Risk. It has been shown that the two part MDL codesthat we used in this paper
to describe MIC based methods are universal codes (Grünwald, 2005; Grünwald, 2007; Rissanen,
1999). Moreover the “uniform prior” code and the “combinatorial code” we used in coding the
model for MIC-MULTI and MIC-GROUPare also universal codes and minimax optimal (Grünwald,
2007).
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Probabilistic Sources: Consider a sample spaceX and letX+ :=
⋃

n≥1X
n denote the set of all

possible samples of each length. Also, defineX 0 = {x0} wherex0 is a special sequence which is
called empty sample. FinallyX ∗ = X+⋃

X 0. Now, a probabilistic source with outcomes inX is a
functionP : X ∗ −→ [0,∞) such that for alln≥ 0, all xn ∈ X n we have:

• ∑z∈X P(xn,z) = P(xn) (compatibility condition)

• P(x0) = 1

The two conditions say that the “event” that data(xn,z) arrives is identical to the event thatxn arrives
first and dataz arrives afterward. Intuitively, probabilistic sources can be thought of as probability
distributions over infinite sequences, but defining them as probability distributions overX∞ requires
measure theory and the interested user can find the details in any advancedprobability book.

References

H. Akaike. Information theory and the extension of the maximum likelihood principle. In 2nd
International Symposium on Information Theory, Budapest, pages 261–281, 1973.

R. Ando. Applying alternating structure optimization to word sense disambiguation. In (CoNLL-X),
2006.

R. Ando and T. Zhang. A framework for learning predictive structuresfrom multiple tasks and
unlabeled data.Journal of Machine Learning Research, 6:1817–1853, 2005.

A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning,
73(3):243–272, 2008. ISSN 0885-6125.

F. Bach. Consistency of the group lasso and multiple kernel learning.Journal of Machine Learning
Research, 9:1179–1225, 2008.

F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the
smo algorithm. InICML, 2004.

A. R. Barron and T. M. Cover. Minimum complexity density estimation.IEEE Transactions on
Information Theory, 37(4):1034–1054, 1991.

A. R. Barron, J. Rissanen, and B. Yu. The minimum description length principle in coding and
modeling.IEEE Transactions on Information Theory, 44(6):2743–, 1998.

P. Bickel and K. Doksum.Mathematical Statistics.Prentice Hall, 2001.

R. Caruana. Multitask learning. InMachine Learning, pages 41–75, 1997.

C. C Chang and C.J. Lin.LIBSVM: a library for support vector machines, 2001. URLhttp:
//www.csie.ntu.edu.tw/~cjlin/libsvm.

J. Chen and M. Palmer. Towards robust high performance word sensedisambiguation of english
verbs using rich linguistic features. InIJCNLP, pages 933–944, 2005.

560



MDL PENALIZATION FOR GROUP AND MULTI -TASK SPARSELEARNING

J. Chen, A. I. Schein, L. H. Ungar, and M. Palmer. An empirical study ofthe behavior of active
learning for word sense disambiguation. InHLT-NAACL, 2006.

T. M. Cover and J. A. Thomas.Elements of information theory. Wiley-Interscience, New York, NY,
USA, 2006.

P. S. Dhillon and L. H. Ungar. Transfer Learning, Feature Selection and Word Sense Disambigua-
tion. In Annual Meeting of the Association of Computational Linguistics, (ACL), August 2009.

P. S. Dhillon, D. P. Foster, and L. H. Ungar. Efficient Feature Selectionin the Presence of Multiple
Feature Classes. InInternational Conference on Data Mining (ICDM), pages 779–784, 2008.

P. S. Dhillon, B. Tomasik, D. P. Foster, and L. Ungar. Multi-Task FeatureSelection Using The
Multiple Inclusion Criterion (MIC). InEuropean Conference on Machine Learning (ECML)-
PKDD, Lecture Notes in Computer Science. Springer, September 2009.

P. S. Dhillon, D. P. Foster, and L. Ungar. Feature selection using multiple streams. InProceedings
of the International Conference on Artificial Intelligence and Statistics, volume 13, 2010.

B. Efron, T. Hastie, L. Johnstone, and R. Tibshirani. Least angle regression.Annals of Statistics,
32:407–499, 2004.

R. Florian and D. Yarowsky. Modeling consensus: classifier combinationfor word sense disam-
biguation. InEMNLP ’02, pages 25–32, 2002.

D. P. Foster and E. I. George. The risk inflation criterion for multiple regression. The Annals of
Statistics, 22(4):1947–1975, 1994. ISSN 00905364.

P. D. Grünwald. A tutorial introduction to the minimum description length principle.In Advances
in Minimum Description Length: Theory and Applications. MIT Press, 2005.

P. D. Grünwald.The Minimum Description Length Principle (Adaptive Computation and Machine
Learning). The MIT Press, 2007. ISBN 0262072815.

E. H. Hovy, M. P. Marcus, M. Palmer, L. A. Ramshaw, and R. M. Weischedel. Ontonotes: The 90%
solution. InHLT-NAACL, 2006.

J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. In ICML ’09, 2009.

L. Jacob, G. Obozinski, and J-P. Vert. Group lasso with overlap and graph lasso. InICML ’09,
2009.

T. Jebara. Multi-task feature and kernel selection for SVMs. InProceedings of the Twenty-first
International Conference on Machine Learning. ACM New York, NY, USA, 2004.

V. Kandylas, S. P. Upham, and L. H. Ungar. Finding cohesive clustersfor analyzing knowledge
communities. InICDM, pages 203–212, 2007.

K. Kipper, H. T. Dang, and M. Palmer. Class-based construction of a verb lexicon. InAAAI/IAAI,
pages 691–696, 2000.

561



DHILLON , FOSTER ANDUNGAR

S.-I. Lee, V. Chatalbashev, D. Vickrey, and D. Koller. Learning a meta-level prior for feature rele-
vance from multiple related tasks. InICML ’07, pages 489–496, 2007. ISBN 978-1-59593-793-3.

B. Levin. English Verb Classes and Alternations. University of Chicago Press, 1993.

D. Lin. Review of WordNet: an electronic lexical database by Christiane Fellbaum. The MIT Press
1998.Comput. Linguist., 25(2):292–296, 1999. ISSN 0891-2017.

D. Lin, E. Pitler, D. P. Foster, and L. H. Ungar. In defense ofℓ0. In Workshop on Feature Selec-
tion,(ICML 2008), 2008.

H. Liu and J. Zhang. On theℓ1-ℓq regularized regression. Technical report, Carnegie Mellon
University, 2008.

K. Lounici. Sup-norm convergence rate and sign concentration property of lasso and dantzig esti-
mators.Electronic Journal of Statistics, 2:90–102, 2008.

L. Meier, S. van de Geer, and P. Bühlmann. The group lasso for logistic regression.Journal of the
Royal Statistical Society. Series B, 70(1):53–71, 2008.

N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection with the lasso.
Annals of Statistics, 34:1436–1462, 2006.

G. Miller. WordNet: An on-line lexical database.Special Issue: International Journal of Lexicog-
raphy, 4(3), 1990.

V. K. Mootha, C. M. Lindgren, K.-F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, P. Puigserver,
E. Carlsson, M. Ridderstrale, E. Laurila, N. Houstis, M. J. Daly, N. Patterson, J. P. Mesirov, T. R.
Golub, P. Tamayo, B. Spiegelman, E. S. Lander, J. N. Hirschhorn, D. Altshuler, and L. C. Groop.
PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated
in human diabetes.Nature Genetics, 34:267 – 73, 2003. Datasets available at:http://www.
broad.mit.edu/gsea/datasets.jsp.

Y. Nardi and A. Rinaldo. On the asymptotic properties of the group lasso estimator for linear
models.Electronic Journal of Statistics, 2:605–633, 2008.

B. K. Natarajan. Sparse approximate solutions to linear systems.SIAM Journal on Computing, 24:
227, 1995.

G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection for
multiple classification problems.Statistics and Computing, 2009.

E. O. Perlstein, D. M. Ruderfer, D. C. Roberts, S. L. Schreiber, andL. Kruglyak. Genetic basis of
individual differences in the response to small-molecule drugs in yeast.Nat Genet, 39, 2007.

R. Raina, A. Y. Ng, and D. Koller. Constructing informative priors using transfer learning. InICML
’06, pages 713–720, New York, NY, USA, 2006. ACM. ISBN 1-59593-383-2.

A. Rakhlin. Transfer learning toolkit, 2007. Software available at:http://multitask.cs.
berkeley.edu.

562



MDL PENALIZATION FOR GROUP AND MULTI -TASK SPARSELEARNING

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL.JMLR, 9:2491–2521, 2008.

J. Rissanen. Modeling by shortest data description.Automatica, 14:465–471, 1978.

J. Rissanen. A universal prior for integers and estimation by minimum description length. Annals
of Statistics, 11(2):416–431, 1983.

J. Rissanen. Hypothesis selection and testing by the mdl principle.The Computer Journal, 42:
260–269, 1999.

K. K. Schuler. Verbnet: A broad coverage, comprehensive verb lexicon. InPh.D. Thesis, Computer
and Information Sciences, University of Pennsylvania, June 2006.

G.: Schwartz. Estimating the dimensions of a model.The Annals of Statistics, 6(2):461–464, 1978.

R. Tibshirani. Regression shrinkage and selection via the lasso.Journal of the Royal Statistical
Society, Series B, 58:267–288, 1996.

J. A. Tropp. Greed is good: Algorithmic results for sparse approximation.IEEE Trans. Inform.
Theory, 50:2231–2242, 2004.

B.A. Turlach, W.N. Venables, and S.J. Wright. Simultaneous variable selection. Technometrics, 47
(3):349–363, 2005.

L. J. van ’t Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. Hart, M. Mao, H. L. Peterse, K. van der
Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven, C. Roberts, P. S. Linsley,
R. Bernards, and S. H. Friend. Gene expression profiling predicts clinical outcome of breast
cancer.Nature, 415(6871):530–536, January 2002. ISSN 0028-0836.

M. J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery usingℓ1-
constrained quadratic programming (lasso).IEEE Trans. Inf. Theor., 55(5):2183–2202, 2009.
ISSN 0018-9448.

Z. Wu and H. H. Zhou. Model selection and sharp asymptotic minimaxity.Under Submission, -(-):
–, 2010. ISSN -.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, February 2006.
ISSN 1369-7412.

T. Zhang. On the convergence of mdl density estimation. InCOLT, pages 315–330, 2004.

T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,Advances in Neural Information
Processing Systems 21, pages 1921–1928. Curran Associates, Inc., 2009a.

T. Zhang. On the consistency of feature selection using greedy least squares regression.Journal of
Machine Learning Research (JMLR), 10:555–568, 2009b. ISSN 1532-4435.

P. Zhao and B. Yu. On model selection consistency of lasso.Journal of Machine Learning Research
(JMLR), 7:2541–2563, 2006. ISSN 1532-4435.

563



DHILLON , FOSTER ANDUNGAR

P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute
penalties.Annals of Statistics, 2008.

S. Zhou. Thresholding procedures for high dimensional variable selection and statistical estimation.
In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,Advances in
Neural Information Processing Systems 22, pages 2304–2312. 2009.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net.Journal Of The Royal
Statistical Society Series B, 67(2):301–320, 2005.

564


