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Abstract

We propose a framework MIC (Multiple Inclusion Criteriorrflearning sparse models based on
the information theoretic Minimum Description Length (MPprinciple. MIC provides an elegant
way of incorporating arbitrary sparsity patterns in thedea space by using two-part MDL coding
schemes. We present MIC based models for the problems opgdofeature selection (MIC-
GRrouP) and multi-task feature selection (MIC-DLTI). MIC-GROUP assumes that the features
are divided into groups and induces two level sparsityctielg a subset of the feature groups, and
also selecting features within each selected group. MIQ-M applies when there are multiple
related tasks that share the same set of potentially pheslitatures. It also induces two level
sparsity, selecting a subset of the features, and thentisgj@chich of the tasks each feature should
be added to. Lastly, we propose a modetANSFEAT, that can be used to transfer knowledge from
a set of previously learned tasks to a new task that is exgpégtehare similar features. All three
methods are designed for selecting a small set of predifdateres from a large pool of candidate
features. We demonstrate the effectiveness of our appmiticiexperimental results on data from
genomics and from word sense disambiguation probfems.

Keywords: feature selection, minimum description length principheilti-task learning

1. Introduction

Classical supervised learning algorithms use a set of feature-labsltpaearn mappings from
the features to the associated labels. They generally do this by considaghglassification task
(each possible label) in isolation and learning a model for that task. Learrodgls independently
for different tasks often works well, but when the labeled data is limited apdresive to obtain,
an attractive alternative is to build shared models for multiple related taskeg@gr1997; Ando

1. Preliminary versions of this work appeared in Dhillon et al. (2008920Dhillon and Ungar (2009).
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and Zhang, 2005). For example, when one is trying to predict a setadéderesponses (“tasks”),
be they multiple clinical outcomes for patients or growth rates for yeast stuaider different
conditions, it may be possible to “borrow strength” by sharing informatiawéen the models for
the different responses. Inductive transfer by building shared Imoda also be valuable when we
have a disproportionate amount of labeled data for “similar” tasks. In@welse, building separate
models for each task often gives poor predictive accuracies on tds&k have little data.

As a running example, we consider the problem of disambiguating woréséased on their
context. Here, each observation of a word (e.g., a sentence contaiaingtt “fire”) is associated
with multiple labels corresponding to each of the different possible meanengs or firing a
person, firing a gun, firing off a note, etc.). Given the high-dimensioa#lire of Word Sense
Disambiguation (WSD) data, feature selection is important for both linguistierstehding and for
effective prediction (Chen et al., 2006). Also, since the features thatseful for predicting one
sense are likely to be useful for predicting the other senses (perhtipa woefficient of different
sign.), we propose to select features that are useful in predictingrtinddple responses.

Another closely related problem is grouped feature selection; that isfaémd sparsity at the
level of groups (feature classes) (Yuan and Lin, 2006; Bach et@)4;2Dhillon et al., 2008). In
this problem the group structure is over the features rather than oveisitse tdulti-task learning
(described above) can also be thought of as a special case of thigp“gparsity” scenario in which
a group is defined by fixing a specific feature and ranging over multiples.tafke block-norm
approach to these problems uses a combinatiofy @nd ¢, norms as regularization terms and
adds each feature into the models of either none or all of the tasks (Okioziired., 2009) for the
multi-task case and selects either none or all the features from a givep greéhe case of group
sparsity. However, if the regularization constant is chosen using-gedskation, these approaches
overestimate the support (Wainwright, 2009) as they select more feahanreghe correct set of
sparse features that generated the data. Wainwright (2009), LiulargZ42008) and Nardi and
Rinaldo (2008) have showed that certain scalings of the regularizatéfficient yields more sparse
solutions, which have with high probability the same support as the modelajergethe data. Even
then there are further problems with these methods; in order to obtain vargesgolutions, one
has to use a large regularization parameter that leads to suboptimal predictiomacy because
this high penalty not only shrinks irrelevant features to zero, but aldnkshrelevant features to
zero (Zhang, 2009a). Another alternative is to threshold the obtaireftiadents (Lounici, 2008),
but this introduces another thresholding parameter which needs to be tuned

Motivated by the aforementioned reasons and by recent theoretic#tkren/y penalty based
regularization (Zhang, 2009a,b), we considgpenalty based formulations in this paper. In par-
ticular we propose to solve these two related problems, simultaneous fealesga for a set of
multiple related tasks and grouped feature selection for a single task, lyamiing schemes in-
spired by the Minimum Description Length (MDL) principle. We propose a comfraamework for
these problems which we call the Multiple Inclusion Criterion (MIC). We usena ‘part” version
of MDL (Grunwald, 2005) to define a cost function which is greedily minimibgdur methods.
Since the greedy feature selection approximateggipenalty, we achieve a high degree of sparsity
as is desired for both scientific interpretability and for accurate predictidarimains like Genomics
and Word Sense Disambiguation (WSD) which have very high dimensiotaaldare importantly,
our methods achievsvo-level sparsityln multi-task learning, each feature is added into models of
a (possibly empty) subset of the tasks and in group feature selectioassil{ly empty) subset of
the features are selected from each group (feature class).
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We also propose a similarly motivated modeRANSFEAT) (Dhillon and Ungar, 2009) for
“intra-domain” adaptation which can be used to transfer knowledge frest af already learned
tasks to a new task which is similar to the aforementioned tasks. As an exampsalerahe task
of predicting whether a word has a given sense when one already hatsnfmrdpredicting senses
for synonyms of that word. These models are likely to share many of the femtuges; that is, a
model for disambiguating one sense of “discharge” is likely to use many cttine features as one
for disambiguating the sense of “fire” which is its synonym. Unlike MIC wheeedo simultaneous
feature selection, the sharing in this case takes the form of a pxNIFEAT is most beneficial
when the word under consideration has considerably less labeled ddtbk/than the synonyms
of that word (for example) so that building a supervised learning modéh& word alone does not
yield high predictive accuracy.

The rest of the paper is organized as follows. In the next section, wiereelevant previous
work. In Section 3, we provide background on feature selection anie principle. Then in
Section 4 we develop the general framework used by our models andbgetbe MIC-MuLTI and
MIC-GRoUP models in detail. In Section 5, we show experimental results on real andesignth
data. In Section 6, we provide some model consistency results for the Mtieélsadn Section 7,
we discuss the RANSFEAT model and show its effectiveness for intra-domain adaptation on real
world data sets. We conclude in Section 8 with a brief summary.

2. Related Work

The main contribution of this paper is to propose a joint framework for théaelasks of simulta-
neous feature selection for multiple related tasks and grouped featurtaefer a single task. We
are not aware of any previous work that addresses these two protugatker, though Obozinski
et al. (2009) do mention that these two problems are related. Nonethelesshtds been much
previous work on each of these problems separately.

Jebara (2004) uses maximum-entropy discrimination to select a single stibssiures across
multiple SVM regression or classification problems that share a common setaritial features.
Several other papers work within the framework of regularized regmestaking the penalty term
to be an/; norm over features of afy norm over the coefficients for each feature (dp= /4"
penalty). Turlach et al. (2005) consider the cgse o, while Argyriou et al. (2008) and Obozinski
et al. (2009) useg = 2. Argyriou et al. (2008) show that the general subspace selectairiepn
can be formulated as an optimization problem involving the trace norm. Obdoznhak (2009)
propose BBlasso, which focuses on the case where the trace norm is not required; thteadh
use a homotopy-based approach to evaluate the entire regularizatiorffizantéy (Efron et al.,
2004). Ando and Zhang (2005) also propose a framework whichrmaégple prediction problems
to learn an underlying shared structural parameter on the input (fgapaee and they penalize the
weight vectors by, norm. The idea behiné, — /4 penalties is that wheq > 1, the cost of making
a coefficient nonzero is smaller for features that are shared acrasstass. Indeed, for either
g= 2 org = o, these algorithms tend in practice to yield nonzero coefficients for all of g ta
associated with features that get selected.

The related problem of grouped feature selection for a single task labeds addressed pre-
viously by Yuan and Lin (2006), Bach et al. (2004), Meier et al. (90@8ao et al. (2008) and is
known as “Group Lasso”. Itis an extension of Lasépgenalty) to the case of grouped structure in
data and it enforces sparsity at the level of groups, that is, an entiog gif features is selected. It
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penalizes af; /¢;) norm of the feature weights. An alternative formulation of Group Lasselled
Multiple Kernel Learning (MKL) (Bach et al., 2004; Bach, 2008); it pépes the kernel Hilbert
norm instead of the Euclidean norm.

Our approach is different from these methods in that wedggeenalty-based greedy feature
selection methods which minimize a cost function provided by MDL based caedimgmes. MDL-
based coding schemes provide much flexibility to incorporate arbitrargigpatructures in the
problem at hand. Recently, Huang et al. (2009) have also used cedtiegnes similar to the MDL
for enforcing arbitrary structured sparsity patterns over the feapaees

3. Background

We assume a setting in which we are givelabeled data samples a&«{,yi){L; € X x 9} where

X € RP (the feature vector lives in p dimensional space) and our goal is to find the parameter
vector(w € RP) of a statistical model fit to the above data. Alternatively, we can repréisemiata
and the response variables in matrix formxas., and Y. 1, respectively, and thp dimensional
weight vector aswp,1. Standard linear or logistic regression models of the fofrms w- X (or

P(YY =1|X) = Heﬁ) fail to estimate the weight vectav in the case in whichp > n as they
require inversion of a rank deficient matrix. To overcome this problegularizedversions of the
linear or logistic regressions are used which penalize some norm of thatweigors:

W = argmin{||Y — X - w]|5+A[jw]|3},
W

where||w||q represents thé, norm ofw andA is a hyperparameter.

For g = 2, the penalized regression is known Risige Regressigrwhich corresponds to a
Bayesian maximum a posteriori estimateviounder a Gaussian prior and shrinks the weight vector
but does not enforce sparsity. Thepenalty (Lasso) is equivalent to a double exponential prior on
w (Tibshirani, 1996) and enforces sparsity by driving some of the wetgldsro. Asg approaches
0, |\w||d approaches the number of non-zero values.irHence regularization wity penalty is
subset selection: Choosing a small number of the original features to iretdiea model. Once a
coefficient is in the model, all that counts is the cost of adding it in the firsieplahely penalty
has a number of advantages, including bounded worst case risk witbctde the/; penalty and
better control of False Discovery Rate (FDR) (Lin et al., 2008). Thezether problems with the
/1 penalty other than being less sparse as mentioned earlier, namely thatsts/sparot explicitly
controlled, and in order to obtain very sparse solutions, one has to uggadgularization parame-
ter that leads to suboptimal prediction accuracy because this high penadtyipshrinks irrelevant
features to zero, but also shrinks relevant features to zero (ZB80§a). However, one virtue of
the /1 penalty is computational tractability (Efron et al., 2004), in contrast tdglpenalty, which
requires subset search which is (worst case) NP-Hard (Natad#)@6). In practice, approximate
greedy algorithms like forward stepwise feature selection yield accuiigtdylsparse solutions.

In a regression model, the residual sum of squares is proportionalarpadditive constant to
the negative log-likelihood of given X (Bickel and Doksum, 2001). Thus, tlg regularization
can be rephrased as a penalized likelihood criterion as follows:

score= —2logP(Y |Wq) +F - q,
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whereq is the number of features in the mode()Y |Wiy) is the likelihood of the data given a model
containingg features andr is a free parameter that controls the amount of weight placed ofy the
norm. Various penalties have been proposed-fancluding

e F = 2, corresponding approximately to the AIC (Akaike Information Criteriofkaike,
1973),

e F =logn, giving the BIC (Bayesian Information Criterion) (Schwartz, 1978),

e F =2logp, giving to RIC (Risk Inflation Criterion—similar to a “Bonferroni correctigrfFos-
ter and George, 1994).

As discussed in next subsection, each of these penalties can alsavied thgrusing the Mini-
mum Description Length (MDL) principle under different coding schemes.

3.1 Minimum Description Length (MDL) Principle Preliminaries

MDL (Rissanen, 1978, 1999) is a principle for model selection which titsat$est model as the
one which maximally compresses a digital representation of the observed/daizan envision a
“Sender” who wants to transmit some data to a “Receiver” using as few $p®ssible. For an
illustrative example of the MDL principle, consider the case of simple lineaessgpn. Assume
that both the Sender and Receiver know ithe p data matrixX, and the Sender wants to convey
the values in the x 1 response matriX. The naive way to do this would be to send the raw values
for each of then observations o¥. However, a more efficient way to send this information would
be to describe a regression modefor Y givenX and then to send the residuais- X - W, which
have a much narrower distribution and would require fewer bits to encode.

To minimize description length, then, Sender should ch@dssuch that

W* = argmin{ D(Y|W) + D(W)}, (1)

where the first term is the description length of the residuals about the namdkthe second
term is the description length of the model itself. In other words, the first tepresents the fit
of the model to data; as the model fits better this term shrinks. The seconddpresents the
complexity of the model; it grows as the model becomes more complex.

This version of the MDL principle is known agio partMDL” (Grinwald, 2005); the exact
meaning of both these terms is described in the following sections.

In the next sections we show how to choose the two quantities in Equation tdrporating
the “structure” (characteristics) of the problem at hand. We then intedearch algorithms to
approximately find a sparse set of weigfitshat minimize Equation 1.

3.1.1 ODING THE DATA: D(Y |W)

The Kraft inequality in information theory (Cover and Thomas, 2006) impliasfor any probabil-
ity distribution { p; } over a finite or countable set, there exists a corresponding code with catlew
length[—Ig pi] (The logarithm is base 2). Moreover, these code lengths are optimal ierike of
minimizing the expected code length with respec{ pp}. Also, if the Sender and Receiver agree
on a model (e.g., linear regression), then they have a probability distribwéoritee residuals, so
they will agree to use a code for the residuals with length:
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D(Y[W) = —IgP(e|W) = —Ig P(Y W), ()

that is, the negative log-likelihood of the data given the model. We dropeszkiling on— g P(Y |W)
since we use “idealized” code lengths (Barron et al., 1998).

Consider a forward stepwise-regression setting in which we have gleslibdg — 1 features
to our model (including the intercept term), and we are deciding whether lodim@n extragt”
feature. LetY; denote the'" row of Y andwy, a linear regression model with gjfeatures, theR;

DIYIR) = —lg[[] (Yl
= -3 X
= 2|1nz{nln(2n02)+(Y_;(2'%)2 :

o2 is unknown in practice, but it can be estimated as:

s (Y= XVig )2
n
Note that this is the ML (Maximum Likelihood) estimate ff which Sender uses, as ignoring the
model-coding cost, maximizing likelihood is equivalent to minimizing description len§itbme

X W 2 .
statisticians, in practice, use the unbiased estirdate % In the experiments presented

in this paper, we estimat# without the currengt” feature in model, in order to prevent overfitting.
We can write the final expression f@(Y |W), incorporatingd? as:

..n 210x (Y — X -Wg_1)? Y —X Wy )2
@(Y\W)Zlnzlln< - + Y X 1) |
3.1.2 ODING THE MODEL: D(W)

Just asD(Y|W) depends on the model for the residuals that Sender and Receiveseclsootheir
coding scheme foW itself will reflect their prior expectationsWhen the number of featurgsis
large (say,> 1000), Sender will likely only want to transmit a few of them that are mosvagie
and hence the& will contain mostly zeros. So, the first step in codigcould be to say where
the non-zero entries are located; if only a few features enter the modetatiise done relatively
efficiently by listing the indices of the features in the $&t2, ..., p}. This requireg/lg p] bits or
approximately Ig bits.

The second step is to encode the numerical values of those coefficiesganén (1983) sug-
gested the basic approach for doing this by creating a discrete grid @wver [gossible parameter

2. Note that in the following notation the square of vector, thaZ fsmeansZ'Z.

3. By the Kraft inequality, we can interpret 2(%) as a prior over possible modeis In fact, this is done explicitly in
the Minimum Message Length (MML) principle which is a Bayesian analogd1l, which chooses the model
with maximumP(w|Y), that is, it chooses the model that minimizes
—lgP(w|Y) = —IgP(w) —IgP(Y|w) + const
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values, and use a code for integers to specify which grid point is clo&esmple way to approx-
imate the value of a particular coefficiemtis'to encode an integer version of its z-score relative to
the null-hypothesis valueg (which in our case is 0):

<ZE<JVV§)>:<SEV<VW>>’

where(x) means the closest integent@andSE represents standard error. The z-score can be coded
with the idealized universal code for the positive integers of Rissar@88j1in which the cost to
codei€1,23,...is

lg*i+b,
where Igi = Igi +1Iglgi +Iglglgi + ... so long as the terms remain positive, dng 19g2.865~
1.516 is the constant such that N
27(|g*i+b) -1
2

We require the I§ instead of a simple Ig because the number of bits Sender uses to convey the
integeri will vary, and she needs to tell the Receiver how many bits to expect. Tinéerof bits
is itself an integer than can be coded, hence the iteration of logarithms.

In fact, in practice it is unnecessary to allow our integer code to extendbitraaily large
integers. We are interested in features near the limit of detectability and veetexpr z-scores
to be roughly in the range 2 to ~ 4, since if they were much higher, the true features would be
obvious and would not require sensitive feature selection. We couldrtipsse some maximum
possible z-scorg that we might ever want to encode (say, 1000) and assume that all pfsmores
will fall below it. In this case, the constanttan be reduced to a new valag now only being large
enough that,

Z .
Zl 2(— |g* |+Cz) — l (3)
i=

In particularcigoo= 1.199. In our implementation in this paper, we avoid computing the actual
values of our z-scores and instead assume a constant 2 bits perieoeffithe reason behind
choosing 2 bits over using a more conservative penalty like BIC (Bay#ésiarmation Criterion)
(Ign) bits is that using a fewer number of bits allows us to select even thosedesathich provide
marginal benefit. This is important since our goal is to build sparse models vittr peedictive
accuracy rather than identifying the correct set of sparse featesxplain later in the section on
Model Consistency that using a liberal penalty of 2 bits to code a coeffiallws us to achieve
finite risk-inflation (Foster and George, 1994).

Combining the cost of the residuals with the cost of the model gives the folipfeimula for
the description length as a function of number of features that we include mdidel:

—lgP(Y|W) +q(lgp+2), (4)

whereq is the number of features in the model gmi$ the total number of candidate features.

The above formula represents the simplest possible coding scenariceamidl vefer to it later
in the paper asBaseline Coding Schemewvhen we propose more complex coding schemes for the
problems of simultaneous feature selection for a set of multiple related tadkgraumped feature
selection for a single task.
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4. Multiple Inclusion Criterion (MIC)

MIC is a general framework fofy penalty based greedy feature selection which minimizes a cost
function provided by the Minimum Description Length (MDL) principle. MIGoprdes an elegant
way of incorporating arbitrary sparsity patterns in the feature spacsibhg WIDL coding schemes
customized to the problem at hand. In this section, we describe how MI®e&ased to provide
statistically efficient models for the problems of simultaneous feature seleotionuitiple related
tasks and grouped feature selection for a single task. To do that, wénficluce some more
notation and follow up on the MDL introduction in Section 3.1.

For the problem of simultaneous feature selection for a set of related(taslch is addressed
using MIC-MuLTI) we assume a set @f regression or classification tasks which can potentially
share a set gp features and a total aflabeled training examples. The task is to learn a set of joint
(“shared”) models for all thé tasks. We represent the feature, response and the weight matrices
asXnxp, Ynxh andwp, respectively. Additionally, for simplicity of analysis we assume a linear
regression setting of the fofltY = w- X + € with a Gaussian noise tergy,.n. Note that the noise
on the responses)(may be correlated; for instance, if our responses consist of temperata-
surements at various locations, taken with the same thermometer, then if aquptheter drifted
high at one location, it will have been high at the other location also. Theisake the rows of to
have non-zero covariance:

& ~ %(07 E)a

whereg; is thei" row of € andX is an arbitraryh x h covariance matrix.

Similarly, for the related problem of grouped feature selection (which iseaddd using MIC-
GROUP) also, we have a total gf candidate features which are further divided idtgroups (equal
or unequal). Again, we assume the availability of a (fixed number)labeled training examples.
Just as above we can represent the feature, response and weligtesrasXn.p, Ynx1 andwp, 1
respectively.

Let Srepresent the total description length (TDL) of the MDL message that isaexed be-
tween the Sender and the Receiver. In the case of MI@-M Sis the combined message length
for all htasks and hence we select features for alhttaessks simultaneously to minimi&and in the
case of MIC-QRouPit can either be the combined message length for all the features within a given
group (feature class) (MIC-&uUR()) or the message length of a given feature (MIGa&P-SC).
Thus, when we evaluate a feature for addition into the model, we want to maxingézeduction
of TDL by adding that feature to our model. More formally, at each iteratiergreedily add those
features to our model that:

AS = AS-ASy,

Best Feature = argmaxAS},
i

whereAS > 0 is the reduction in residual-error coding cost, that is, the first term dnt hignd
side in Equation 1, due to the increase in data likelihood given this new featdeS,, > O is the

4. It can be extended to the standard classification setting by replacinguheed loss with a logistic loss, but due to
lack of closed form solutions for logistic regression and since correlagbmeen residuals is inconvenient to model
in classification settings, we refrain from analyzing them.
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increase in model cost to encode the new feature (second term in Eqlipéiadi ranges over all
the p features.

In the next subsections we describe how we codesthand Sy terms (i.e., the residual error
and model) for MIC-MULTI and MIC-GROUPIN detalil.

4.1 MIC-M uLTI

As mentioned earlier, MIC-MLT! borrows strength across multiple tasks and hence selects a joint
set of features for related tasks (Dhillon et al., 2009).

4.1.1 ODING THE MODEL

MIC-M uLTI borrows strength across responses by efficiently specifying theréeagaponse pairs
in the p x h matrix W. The naive approach would be to put each of phecoefficients in a linear
order and specify the index of the desired coefficient usifigly bits. But we can do better. If we
expect nearly all the responses to be correlated with the predictivedsatue could give all the
responses nonzero coefficients (usihds to code each of tHeresponse coefficients) and simply
specify the feature that we are talking about by using ligts, as in Section 3.1.2. From now on
we will refer to this approach asueL-MIC-M uULTI (fully dependent MIQVIULTI) coding scheme,
as it assumes that a selected feature will be added in the models of all thenasksh the same
way as BBlasso (Obozinski et al., 2009). Another limiting case is the one when we do feature
selection for all the tasks independently (the baseline “Independenth@&theme); the coding
scheme in that case takes the form given in Equation 4.

However, these assumptions are usually unrealistic; each feature ralfjeneither correlated
with almost all the responses nor with none of the responses, but is catinelated with a few of
them. A more flexible coding scheme would allow us to specify only the subsbeaksponses
to which we want to give nonzero coefficients. For instance, suppesarg considering feature
number 2609; and, of the= 20 responses, we think that only {3, 7, 14, 17} should have nonzero
coefficients with the current feature. Then, we can ugedigs to specify our feature (humber 2609)
once, and then we can list the particular responses that have nooeéficients with feature 2609,
thereby avoiding paying the cost of(lgh) four times to specify each coefficient in isolation.

A standard practice in information theory literature to code a subset ohs&w first specify
how manyk < h elements the subset contains and then which of(ED]epossibIe subsets witk
elements we are referring to Cover and Thomas (2006). In particulacheese to codé& using
Ig* k+ ¢y, bits, with ¢, as defined in Equation 3. We then neec@[]padditional bits to specify the
particular subset. We refer to this codepastially dependenMIC-M ULTI or simply RARTIAL -
MIC-M ULTI.

The total cost§,) to code the model of a feature for MICAMTI is composed of three parts as
follows:

Sy =l +4 + 0o,

where/ly is the number of bits needed to specify the sulbset the h tasks models in which to
include the featuref, is the number of bits used to describe which feature is being addeé and
the description length of the coefficients of non-zero features.

We have already described the costfigrabove; it is equal to:

h
Iy = Ig*k+ch+|g (k)
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For /g, we use a cost of 2 bits per coefficient, the motivation for which was tdestearlier
in Section 3.1.2. Fof,, which specifies the size of the code for the given feature, we ysbéitg,
which is equivalent to a uniform prior over the featureat is, each feature is equally likely to
be selected. This can be accomplished by simply keeping a linear arragtofde and coding the
indices of the features with nonzero coefficients.

Thus, we can represent the total model cost for MIOCiWI as:

Sv— (Ig*k+ ch+1g <E>) +(Igp) + (2K). )

4.1.2 ODING THE DATA

Let E be the residual errofy(- X-w) matrix, and as mentioned above, $gti = 1,2,...,n denote
theit" row of the error and leE be itsh x h covariance matrix. The model likelihood under the
Gaussian assumptibean be written as:

P(Y i) = (2i)h|2| exp<;siT 213i> , (6)

& = o[ P(Yi) ()

N %nz [”'” ((2m"1=l) + i(Yi =X Wg) T ETHY - X -wq)]

with subscripti denoting tha" row. SinceX is in fact unknown, we estimate it using maximum
likelihood (ML):

. 1 - .
S = H(Y—X~Wq_1)T (Y =X -Wq_1),

where the subscrigf stands for “full covariance”, and we usg_1 to get ML estimate, instead of
Wq to prevent overfitting, as we mentioned in Section 3.1.1.

In practice, we find that estimating all thé entries of the covariance matrix can lead to overfit-
ting. Therefore we use shrunken estimates of the By ASp + (1— )¢ for (A € [0,1]), which
tend to work well. Note that we do not need to pay an extra coding cossfionaingX as we are
using aprequentialcoding schemeX: is calculated using information that was already paid for. We
describe more technical details about our implementation in the Experimentsisectio

S as described in Equation 7 agg as Equation 5 form the quantitis3(Y |W) and D (W) in
Equation 1. Thus our objective becon®s= argmin{Sc + Su }.

w

4.1.3 MOMPARISON OFVARIOUS MIC-MuULTI CODING SCHEMES

In this section we discussed three MDL based information-theoretic agpedo multitask feature
selection, namely BLL-MIC-M uLTI, Baseline “Independent” Coding Scheme an&RAL -MIC-
MuLTI. In general, the negative log-likelihood portion leidependenmay differ from that of

5. The uniform code gives the worst-case minimax optimal code lenGitiswwald, 2005).
6. As mentioned earlier, we are considering linear regression for sitgpdicanalysis and ease of modeling the corre-
lation between residuals.
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the other two methods, becauBell and Partial can use a non-diagonal covariance estimate like
2 or 5, while Independenbnly operates on one response at a time, and thus implicitly uses
$p. However, since we generally udg, as mentioned earlier, fdfull and Partial, and sinces,
approximates the diagon&}, (for A close to 1), the real difference comes from the coding schemes.
The coding costs for these three methods are compared in Tablg 86000 featured) = 20
responses, and for various valuekgpfhe number of responses to which we add the current feature
under consideration. .L-MIC-M ULTI is only allowed to takd = 0 ork = h, so it hash nonzero
coefficients in all three rows of the table. However, if the extrak coefficients correspond to
non-predictive features, the extra reduction in residual-coding casf&h.L-MIC-M ULTI enjoys
over the other methods is likely to be small. As expected, each coding schehmaest in the
case for which it was designed; however, the MIG+MI methods are never excessively expensive,
unlike Independentor k = h.

k PARTIAL-MIC-M ULTI FuLL-MIC-MuLTI Baseline
(Independent)

1 logp+ch+logh+2 [18.4] | logp+2h [51.0] | logp+2 [13.0]

% | logp+log" (§) +cn+log(y),) +5 [39.8] | logp+2h [51.0] | flogp+5  [64.8]

h logp-+log“h+ch+2h [59.7] | logp+2h [51.0] | hlogp+2h [259.3]

Table 1: Costs in bits for each of the three schemes to code a modek with k = %, andk = h
nonzero coefficientsp > h>> 1, ¢ =Igp, {5 = 2, and forh € {5,...,1000}, cy =~ 1.
Examples of these values fpr= 2,000 andh = 20 appear in brackets; the smallest of the
costs appears in boltNote: The costs are given per feature.

4.2 MIC-GROUP

MIC-GRouP is the algorithm for grouped feature selection, when features fall gnboips or
classes(Dhillon et al., 2008; Yuan and Lin, 2006; Bach et al., 2004). For exajgs@es can
be divided into gene classes based on what pathway they occur intorele@f a word can be
grouped based on whether they are based on specific neighbouridg, warts of speech, or more
global document properties. More generically, starting from any sétaifires, one can gener-
ate new classes of features by using projections such as principle centp@nalysis (PCA) or
non-negative matrix factorization (NNMF), transformations such as lagpaare root, and inter-
actions (products of features) (Dhillon et al., 2010). The problem ofiged feature selection
(MIC-GRouUP) is very closely related to the problem of simultaneous feature selectionstetr e
related tasks (MIC-MILTI) as has also been pointed out by Obozinski et al. (2009). The multi-task
problem we described earlier can also be thought of as a groupedsSfsataction scenario in which
a group is defined by fixing a specific feature and ranging over multiple t&skr MIC based mod-
els for these two problems also follow the same intuition; in (MICHNI) the tendency is to add
a given feature into models of more and more tasksd similarly in (MIC-GRoup) the tendency
is to add more and more features from the same group as the whole ratiohiale deing grouped

7. The Ig(f)) part of the model cost is only small whéris small or it is very large, that i&~ has(f) = (,",)-
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feature selection is based on the fact that some feature groups contdingriedictive features than
others.

4.2.1 ®ODING SCHEMES FORMIC-GROUP

Since the problem of grouped feature selection is similar to the problem of siraalia fea-
ture selection for a set of related tasks, we can propose a coding sciigicte is analogous
to the coding scheme for MIC-MLTI. For example, in this case also we can code the data as

P(Yi W) = mexp(isi >~ 1g) ina similar fashion as Equation 6 whéiggeis the num

ber of features in a given group (feature class) and we will estimate tlagiance matrix, which rep-
resents covariance between different features in the same grotyr¢fekass), in a similar way as
we did for MIC-MuLTI, thatis, by Maximum Likelihood Estimation. Remember, that in this Gase
term will be the message length for all the features within a given feature d¢taa similar fashion,

the number of bits to code the model can be representgg as|lg* k+cn +1g (hSil'gg'e)} +logp+2k,

which corresponds to Equatiorf5The other mechanics of the coding scheme will also be the same
as for MIC-MuLT!I as this time we are trying to find a best subset of Kigea group (feature class)

of sizehsingleand so we do a stepwise greedy search as earlier. From now on wiorfis coding
scheme as MIC-8&ouP(l).

Although this coding scheme works very well in practice, but it turns outweaare not ex-
ploiting the full flexibility that MDL based coding offer us. So, we proposeeav coding scheme,
which is computationally more efficient than MICRGUP (), as it does not require a stepwise
search for subset selection, though the predictive accuracy of kesth ttoding schemes is compa-
rable. We call this new computationally efficient coding scheme which useicts Coding” as
MIC-GRoOUR-SC and it is explained in detail below.

Coding the data with MIGsrROUP-SC (MIC-GROUP-Switch Coding)in this new coding scheme
S is the message length for a single feature ASd represents the increase in likelihood of the
data by adding that feature to the model.

Let E be the residual errofY(- X-w) matrix as earlier, and le, i = 1,2, ...,n denote the™"
row of the error and letr be variance of the Gaussian noise. The model likelihood can be written
as:

- 1 &?
P(Yl |WQ) = T2 ex _ﬁ)’
& - —lo[[]Pli) ®)

This equation is similar to the corresponding equation for MIOt¥ except that here we only
have a single response (task). In this case also, the var@niseestimated using the Maximum
Likelihood principle.

Coding the model with MIGGROUP-SC: This is where we differ from MIC-@ouP (I) and we
use a coding scheme better suited to the group structure of the featuemtdition behind this
coding scheme is that once we have selected (at least) one featuredieem group then it should

8. For simplicity of analysis and ease of comparison with coding scheonddIC-MuULTI we are assuming that all
groups are of the same sikgnge though in reality the groups may be of unequal size and the same cattiems
still holds.
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become easier to select more features from the group. In other woedspsh of adding more
features from the same feature class should be low. The total cost of the# Imocomposed of three
parts:

Su = lc+ 4 + e,

where/lc is the number of bits used to code the index of the group of the evaluatedsfgais the
number of bits to code the index of the evaluated feature (within that partigidap) and/g is the
cost to code the coefficient of the evaluated feature.

Our coding scheme assumes a uniform prior over all the groups; thaicis,geoup is equally
likely to contain beneficial featurésSo(c is IgK whereK is the total number of groups (feature
classes) in the data. Now, if a feature gets selected from a group (fediss) from which we
had previously selected features, then we can save some bits by usitth"sseding and coding
{c using only 14 1gQ bits whereQ is the total number of groups (feature classes) included in
the model till that point of time and 1 bit is used to represent that this grogpufie class) has
previously produced beneficial features. (Think of keeping an iediéigt of lengthQ of the feature
classes that have been selected). This is where our method wins ovemetheds and we do not
need to code the same feature class over and over again if it has pidzhresficial features in the
past. Therefordc is (Note that we added 1 bit to Kj also to ensure that the group whose index
starts with 1 is not confused with the “switch”.):

1+IgK if the feature classis not inthe
model

1+1gQ if the featureclassis already in
the model

le =

To codel; we again assume a uniform prior over all the features within that partictdapg This
corresponds to Iy bits wherem is the total number of features in the feature class of which the
ith feature is a part of. This is pretty similar to RIC (Risk Inflation Criterion) stffester and
George, 1994) coding or the widely use Bonferroni penalty. Finallyotteég we use 2 bits per
coefficient, the motivation for which was described earlier. Therefiwemodel cost per feature
can be represented as:

Su = (fc)+ (Igm) +2. (9)

As mentioned earlier, this coding scheme is computationally cheaper than R&ZHE]) as it does
not require a subset search every time a feature is added to the modepamddes comparable
predictive accuracy to MIC-8ouP (I). Note that just analogous to MIC-MLTI it is possible to
come up with a new coding scheme calledLE MIC-GRoOUR() which just like its MIC-MULTI
counterpart would add all the features from a given group (featiagsinto the model. The
MIC-GRouP schemes presented here are the most general setting and are antlogxRIS AL
MIC-M uLT! for the multi response (task) scenario.

Just as with MIC-MULTI, here we optimize the objective@* = argmin{ Sz + Sv} with the S

w

andSy terms as described by Equations 8 and 9 respectively.

9. This is actually a pretty good assumption as mentioned earlier. The mnfode gives the worst-case minimax
optimal code lengths (Griinwald, 2005) and hence it is reasonable tib fidhe data distribution iscompletely
unknownor if nodistribution is assumed.
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4.3 Algorithms and Implementation Details

In this subsection we outline the algorithms for MICuMri and MIC-GRouP and also explain
some details of the search strategy that we used for efficient subseh seaase of MIC-MILTI.

4.3.1 ALGORITHMS

The algorithm for MIC-MULTI is as described in Algorithm 1. We provide algorithm for the most
general case, that isARTIAL MIC-M ULTI as the other two cases, thatksll andindependenare
the special cases of this scenario.

Algorithm 1 PARTIAL MIC-M ULTI
1. Include the intercept (feature number 1) intalesponse models.
2: remaining features={2,..., p}.
3: keepadding features= true.
4: while keep adding featuresdo
5. for jinremaining featuresdo
/l Find the best subset of response models to which to add fepture
for k=1tohdo
Try including featurg in the besk response models. (We greedily assume that the best
k responses are the union of the blest1 responses with the remaining response that,
if included, would most increase likelihood.)
9: ComputeASJ-( , the decrease in data residual cost, Aﬁiﬁw the resulting increase in
model-coding cost, relative to not including featyr@ any response models.
10: end for

© N 2

11: Letk; be the value ok that maximizeAS —ASY,.
12 AS =4S —ASY,.
13:  end for

14:  Let j* be the featurg that maximize€\S;, the reduction in TDL for adding featurje
15:  if ASj- > Othen

16: Add featurej* to the appropriat&;: response models.
17: remaining_features=remaining features— {j*}.

18: else

19: keepadding features= false.

20:  endif

21: end while

The algorithm for MIC-GRour-SC is described in Algorithm 2. The algorithm makes multiple
passes through data and at each iteration adds the best feature to theinstajes when no feature
provides betteASthan in the previous iteration. Since, it can be the case that it is not worittggald
single feature from a particular group (feature class) but it is still beiaéfo add multiple features
from that class. So, a clever search strategy that we found helpfulMHthRGROUP-SC was to
use a mixed forward-backward greedy stepwise strategy in which gnimges the search past the
stopping criterion given in the algorithm and then sequentially removes thestiseatures from
the now overfit model by making a “Backward” pass. In practice, wendbothis search strategy
helpful. A similar hybrid forward-backward strategy was also used Bngh2009a).
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Algorithm 2 MIC-GROUPR-SC
1: flag= True // flag for indicating when to stop
2: model={}; // initially no features in model
3: prev_max= 0; // keeps track of the value & in the previous iteration
. while {flag == True} do
for {i=1to p} do
Com puteASE; /I Increase in likelihood by adding feature ‘i’ to the model
ComputeAS,; // Number of extra bits required to code tifefeature
AS :=AS - ASy;
end for
10:  imax:= argmax{AS}; //The best feature in the current iteration
11:  current_ max:= max{AS}; //The best penalized likelihood change in the current iteration
12:  if {current_ max> prev_max then

© N Ok

13: model:= modelJ{imax}; // Add the current feature to model
14: prev_max:= current_max

15:  else

16: flag:= False

17:  endif

18: end while

Note that we do not provide algorithm for MICR&®UP(I) as it is pretty similar to MIC-MULTI
with minor notational modifications as mentioned in the previous subsection.

4.3.2 SEPWISESEARCH METHOD

Since MIC-MULTI requires subset search over the set of possible tasks in which toeoa$ahture
for addition, so a discussion of our greedy search strategy is wadtante

For each feature, we evaluate the change in TDL (Total Descriptionthptigat would result
from adding that feature to the model with the optimal number of associatexl tkadd the best
feature and then recompute the changes in TDL for the remaining fedfuéss continues until
there are no more features that would reduce TDL if added. The numhbealoations of features
for possible addition is thu®(pps), whereps is the number of features eventually added.

To select the optimal numbérof task models in which to include a given feature, we again
use a stepwise-style search. In this case, we evaluate the reduction ith@DAould result from
adding the feature to each task, add the feature to the best task, recahgregduction in TDL
for the remaining tasks, and contintle However, unlike a normal stepwise search, we continue
this process until we have added the feature tdadisk models. The reason for this is two-fold.
First, because we want to borrow strength across tasks, we needdmsedooking cases where
the correlation of a feature with any single task is insufficiently strong toamauaddition, yet the

10. Remember that TDL changes due to the increase in likelihood anddhimadl model coding cost due to the added
feature.

11. A stepwise search that re-evaluates the quality of each task at emtloiités necessary because, if we take the
covariance matrix to be non-diagonal, the values of the residuals for one task may aféelitetihood of residuals
for other tasks. If we tak& to be diagonal, as we do in Section 5, thencim) search through the tasks without
re-evaluation suffices.
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correlations with all of the tasks are. Second, the([}jgerm in RARTIAL MIC-M ULTI’s coding
cost does not increase monotonically witlso even if adding the feature to an intermediate number
of tasks does not look promising, adding it to all of them might still be worthwhileus, when
evaluating a given feature, we compute the description length of the nagti#) times. Since we
need to identify the optimak for each feature evaluation, the entire algorithm requipés’pps)
evaluations of TDL.

While not shown explicitly in Algorithm 1, we use two branch-and-boundestyptimizations
to cut this cost significantly in practice:

1. Before searching through subsets of responses to find the optibsat$ar each feature, we
make anO(p) sweep through the features to compute an upper bound on the decreBde in T
that could result from adding that feature as

(decrease in TDL if the feature is added totatesponse models- log p.

Here, the first term is an upper bound on the benefit of adding the éetiuhe optimal
number of response models (since adding a feature can only make a nidwtefi), and
the second term underestimates the model cost of adding the featurd)esgaf how many
response models would actually be used. We sort the features in degreader by this
upper bound, and when we reach features whose upper boungssitban the best actual
decrease in TDL observed so far, we terminate the search early.

2. For the stepwise search over responses, we can bound frora #iigopotential benefit of
adding the feature thresponse models as

(decrease in TDL if the feature is added tolatesponse models

— (Iog* k+cc+log (E) + 2k> ,

where the subtracted term represents the coding cost of including tiueeféak response
models. We can stop the search early when no higher vallkkehak an upper bound that
exceeds the best reduction in TDL seen so far for any feature’smessubset

5. Experimental Results

In this section we empirically show the usefulness of our MIC based moddIs [MuLTI and
GRoOUH) on a variety of real world data sets pertaining to Genomics and Computdtiogaistics
(particularly Word Sense Disambiguation) domains. Besides this we alsorskalis on synthetic
data sets to illustrate the cases when our models are most beneficial.

It is important to note that we are interested in maximizing the predictive agcumabese
experiments rather than the totally orthogonal and antagonistic objectiveraffidng the correct
set of sparse features (“sparsity pattern consistency”) at the sxp#rpredictive accuracy. We
would like to note that much sparser results can be obtained by using outsnydesing more
conservative coding schemes and also/by» penalty (BBLASSO, GROUP LASSO) models by
using thresholding techniques like Zhou (2009) and Lounici (2008).

12. We say “no higher value & rather than “the next higher value &f because (10) does not decrease monotonically
with k, due to the Iog(E) quantity.
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5.1 MIC-M uLTI

In this section, we first evaluate the MIC«MTI approach on three synthetic data sets, each of
which is designed to match the assumptions of, respectively,ARgIR. and FuLL MIC-M ULTI,

and Baseline (Independent) coding scheme (Equation 4). We then tasttieds on two biological
data sets, a Yeast Growth data set (Perlstein et al., 2007), which caofsistal-valued growth
measurements of multiple strains of yeast under different drug condiiodsa Breast Cancer data
set (van 't Veer et al., 2002), which involves predicting prognosis(E&Rrogen Receptor) status,
and three other descriptive variables from gene-expression valudgférent cell lines.

We compare the three coding schemes of Section 4.1.3 against two other malgiasthms:
ANDOZHANG (Ando and Zhang, 2005) and BBRIsso (Obozinski et al., 2009), as implemented
in the Berkeley Transfer Learning Toolkit (Rakhlin, 2007). We did rmnhpare MIC-MJULTI with
other methods from the toolkit as they all require the data to have additionetist, such aseta-
features(Lee et al., 2007; Raina et al., 2006), or expect the features to beeiney counts, such
as for the Hierarchical Dirichlet Processes algorithm. Also, none of égéented methods does
feature selection.

For ANDOZHANG we use 5-fold CV to find the best value of the parameter that Ando andgZhan
(2005) callh (the dimension of the subspa®enot to be confused with as we use it in this paper).
We tried values in the rang#, 100 as is done in Ando and Zhang (2005).

MIC-MuLTI, as presented in Section 4.1.2, is a regression algorithm, RDDEHANG and
BBLAssoare both designed for classification. Therefore, we made each oéspomses binary
0/1 values before applying MIC-MLTI with a regular regression likelihood term. Once the features
were selected, however, we used logistic regression applied to justfdaisees to obtain MIC-
MULTI’s actual model coefficients.

As noted in Section 4.1.2, MIC-MLTI's negative log-likelihood term can be computed with an
arbitraryh x h covariance matrix among theh tasks. We did not estimate all thé entries of®
as it lead to overfitting, so we instead toBkio be diagonat?

5.1.1 B/ALUATION ON SYNTHETIC DATA SETS

We created synthetic data according to three separate scenarios—Reatia] Full, andIndepen-
dent For each scenario, we generated a matrix of continuous responses as

Ynxh = Xnxp - Wpxh + Enxh,

where p = 2000 featuresh = 20 responses, amil= 100 observations. Then, to produce binary
responses, we set to 1 those response values that were greater gtpraloto the average value
for their column and set to O the rest; this produced a roughly 50-50 splitee@ 1's and O’s
because of the normality of the data. Each nonzero entmwés i.i.d.A((0,1), and entry of was
i.i.d. AL(0,0.1), with no covariance among theentries for different tasks. Each task hgid= 4
beneficial features, that is, each colummolfiad 4 nonzero entries.

The scenarios differed according to the distribution of the beneficialfesinw.

13. Informal experiments showed that estimafi@s a convex combination of the full and diagonal estimates &i,&.,
also works well but we chose to use diagoBa(i.e., £p) due to its simplicity and to show the advantage of using a
better coding scheme to code the model as by using diagoRartial and Independent methods are the same except
Su (i.e., cost of coding the model).
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¢ In the Partial scenario, the first feature was shared across all 20 responsegcthed was
shared across the first 15 responses, the third across the firssddhses, and the fourth
across the first 5 responses. Because each response hadfaredethose responses<(80)
that did not have all of the first four features had other featuresoratyddistributed among
the remaining features (5, 6, ..., 2000).

e In the Full scenario, each response shared exactly feature$, ith none of features 5
2000 being part of the model.

¢ In the Independenscenario, each response had four random features among caridatate
tures 1...,2000.

For the synthetic data, we report precision and recall to measure the aqfdéigture selection.
This can be done both at a coeffici¥hevel (Was each nonzero coefficientircorrectly identified
as nonzero, and vice versa?) and at an overall feature level¢ktrés withany nonzero coeffi-
cients, did we correctly identify them as having nonzero coefficientsripiofthe tasks, and vice
versa?). Note that Full MIC-MLTI and BBLASsSOalways make entire rows of their estimated
matrices nonzero and so tend to have larger numbers of nonzero iemeficTable 2 shows the per-
formance of each of the methods on five instances of the Partial, Full, dagéndent synthetic data
sets. On théartial data set, RRTIAL MIC-M uLTI performed the best, closely followed byBE-
LINE (INDEPENDENT); on theFull synthetic data, 6LL MIC-M ULTI and RARTIAL MIC-M ULTI
performed equally well; and on tHedependensynthetic data, thBaselinealgorithm performed
the best closely followed byARTIAL MIC-M ULTI. It is also worth noting that the best-performing
methods tended to have the best precision and recall on coefficientiaeleghe performance
trends of the three methods are in consonance with the theory of Section 4.1.3

The table shows that only in one of the three cases does non-MIC methiogete with MIC
methods. BBlassoon the Full synthetic data shows comparable performance to the MIC methods,
but even in that case it has a very low feature precision, since it addegmmare spurious features
than the MIC methods.

5.1.2 B/ALUATION ON REAL DATA SETS

This section compares the performance of MIGAMI methods with ADOZHANG and BBLASSO

on a Yeast and a Breast Cancer data set. These are typical biolagfi@aeds in that only a handful
of features are predictive from thousands of potential features. iFpiecisely the case in which
MIC-MuLT! outperforms other methods. MICAMTI not only gives better accuracy, but does so
by choosing fewer features than BB&sds /1 — ¢»-based approach.

Yeast Data SetOur Yeast data set comes from Perlstein et al. (2007). It consistabéakied
growth measurements of 104 strains of yeast (L04 observations) under 313 drug conditions. In
order to make computations faster, we hierarchically clustered these BdRions into 20 groups
using correlation as the similarity measure. Taking the average of the vaksshmtluster produced
h = 20 real-valued responses (tasks), which we then binarized into twaocatggvalues at least as
big as the average for that response (set to 1) and values below tlag@yset to 0).The features
consisted of 526 markers (binary values indicating major or minor allele) &9 éranscript levels
in rich media for a total op = 6715 features.

14. A coefficient is defined as the addition of a given feature to a singke faar example if a feature was added to
models of 10 tasks, then 1 feature and 10 coefficients were selected.
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Method Test Error Coefficient Feature

puto Precision/Recall Precision/Recall

Partial Synthetic Data Set
TRUE MODEL 0.07+0.00 100+0.00/200+0.00 100+ 0.00/200+0.00
PARTIAL MIC-M ULTI 0.10+ 0.00 0.84+0.02/077+0.02 099+ 0.01/054+0.05
FuLL MIC-M uLTI 0.17+0.01 026+0.01/071+0.03 097+0.02/0.32+0.03
BASELINE (INDEPENDENT) 0.124+0.01 08440.02/056+0.02 072+0.05/062+0.04
BBLASSO 0.19+0.01 004+0.00/081+0.02 020+0.03/054+0.01
ANDOZHANG 0.50+0.02 NA NA

Full Synthetic Data Set
TRUE MODEL 0.07+0.00 100+0.00/200+0.00 100+ 0.00/200+0.00
PARTIAL MIC-M ULTI 0.08+ 0.00 0.98+0.01/1.00+0.00 080+ 0.00/1L00+0.00
FuLL MIC-MuLTI 0.08+ 0.00 0.80+0.00/100+0.00 080+ 0.00/200+0.00
BASELINE (INDEPENDENT) 0.11+0.01 086+0.02/063+0.02 036+ 0.06/100+0.00
BBLASSO 0.09+0.00 033+0.03/200+0.00 033+0.17/200+0.00
ANDOZHANG 0.45+0.02 NA NA
Independent Synthetic Data Set

TRUE MODEL 0.07+0.00 100+0.00/200+0.00 100+ 0.00/200+0.00
PARTIAL MIC-M ULTI 0.17+0.01 095+0.01/044+0.02 100+ 0.00/044+0.02
FuLL MIC-MuLTI 0.36+0.01 006+0.01/015+0.02 100+ 0.00/0.14+0.02
BASELINE (INDEPENDENT) 0.134+0.01 0.844+0.02/058+0.02 083+0.02/058+0.03
BBLASSO 0.35+0.01 002+0.00/043+0.02 030+0.05/042+0.06
ANDOZHANG 0.494+0.00 NA NA

Table 2: Test-set accuracy, precision, and recall of MIOt™ and other methods on 5 instances
of various synthetic data sets generated as described in Section 5.1dar8tarrors are
reported over each task; that is, with 5 data sets and 20 tasks per dateesggndard
errors represent the sample standard deviation of 100 values dividedL80. Note:
ANDOZHANG's NA values are due to the fact that it does not explicitly select features.

Figure 1 (a) shows classification test errors from 5-fold CV on this dstas can be seen from
the table, RRTIAL MIC-MuULTI performs better than BBASSO or ANDOZHANG. BASELINE
and FuLL MIC-M uLTI perform slightly worse thanARTIAL MIC-M ULTI, underscoring the point
that it is preferable to use a more general MIC coding scheme compared toNHC-M uLT! or
BASELINE. The latter methods have strong underlying assumptions, which canraytsaberrectly
capture sharing across tasks.

Breast Cancer Data SetOur second data set pertains to Breast Cancer, and contains data from
five of the seven data sets used in van 't Veer et al. (2002). It confdifi& observations for
22,268 RMA-normalized gene-expression values. We considered fieeiatsd responses (tasks);
two were binary—prognosis (“good” or “poor”) and ER (Estrogerc&#or) status (“positive” or
“negative”)—and three were not—age (in years), tumor size (in mm), aadeg(1, 2, or 3). We
binarized the three non-binary responses into two categories: Respalngs at least as high as

the average, and values below the average. Finally we scaled the ddt@avseton = 100 and
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Figure 1: Accuracy and number of features selected on five folds ofo€the Yeast and Breast
Cancer data setdlote: 1). Remember that we are interested in better predictive accuracy
and not in identifying the correct set of sparse features; we can get sparser models
if instead our objective is choosing the correct set of sparse fea)eANDOZHANG'S
average number of features selected are not present in the graptoas ot explicitly
select features. 3). These are true cross-validation accuraciasogoarameters have
been tuned on them.
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Figure 2: Number of coefficients selected on five folds of CV for the Yaad Breast Cancer data
sets.Note: 1). ANDOZHANG's average number of coefficients selected are not present in
the graph as it does not explicitly select features.

p = 5000 (the 5000 features with the highest variance), to save computatésuairces. Figure

1 (a) shows classification test errors from 5-fold CV on this data set. k& from the table,
PARTIAL MIC-M ULTI and BBLASsOare the best methods here. But as was the case with other data
sets, BBlassoputs in more features, which is undesirable in domains (like biology and meyicine
where simpler and hence more interpretable model are sought.
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The number of features and coefficients selected by all the methodsoave shFigures. 1 (b)
and 2 respectively.

5.2 MIC-GROUP

In this section we demonstrate the results of the MIReBP scheme on synthetic and real world
data sets. For our experiments we use both the MK (1) and MIC-GRoUR-SC (as de-
scribed in Algorithm 2) methods and compare againssB.INE Feature Selection (which in this
case is equivalent to a RIC penalized regression and has a codingessirailar to Equation 4,
Lasso (Tibshirani, 1996), Elastic Nets (Zou and Hastie, 2005) andpdrasso/ Multiple Kernel
Learning (Yuan and Lin, 2006; Jacob et al., 2009; Bach et al., 2004).

For Group Lasso/Multiple Kernel Learnidgwe used a set of 13 candidate kernels, consisting
of 10 Gaussian Kernels (with bandwidttis= 0.5— 20) and 3 polynomial kernels (with degree 1-3)
for each feature class as is done by Rakotomamonjy et al. (2008). Imththe kernels which
have non zero weights are the ones that correspond to the selected fdasses. Since GL/MKL
minimizes a mixedl1 — 2 norm so, it zeros out some groups (feature classes). However it is
possible to estimate the exact support by thresholding (cross-validagedstimated weights, as
has been done by Zhou (2009) and Lounici (2008), and enfoamsigpwithin the groups also but
as mentioned earlier our main goal is better predictive accuracy and mbifydey the correct set
of sparse features. The Group Lasso (Yuan and Lin, 2006; Ja@dh 2009) and Multiple Kernel
Learning are equivalent, as has been mentioned in Bach (2008),dfeeved used th&impleMKL
toolbox (Rakotomamonjy et al., 2008) implementation for our experiments. Fsoland Elastic
Nets we used their standard LARS (Least Angle Regression) implementéfifron et al., 2004).
When running Lasso and Elastic Nets, we pre-screened the data s&tpaodly the best 1,000
features (based on their p-values), as otherwise LARS is prohibitii@ly {The authors of the
code we used do similar screening, for similar reasons.) For all ouriexgatis on Elastic Nets
(Zou and Hastie, 2005) we chose the valua pfthe weight on thé, penalty term), as 1.

We demonstrate the effectiveness of MIG@UP on synthetic data sets and on real data sets
pertaining to Word Sense Disambiguation (WSD) (Chen and Palmer, 2008)aoTES Data
Set Hovy et al., 2006) and gene expression data (Mootha et al., 2003).

5.2.1 B/ALUATION ON SYNTHETIC DATA SETS

The main hypothesis is that MICK&UP methods are beneficial when some groups have multi-
ple predictive features, while others lack them. MI&®&uPis particularly effective when there
are small groups which contain highly predictive features and big grooipiining no predictive
features.

In order to validate our hypothesis, we test MIGRQUP on two synthetic data sets. For both
the data sets, 1000 features were generated independently from alMstribution A(0, 1), and
the response vector of 100 observatidhgvas computed as the linear combination of a set of 7
beneficial features and Gaussian additive naig®,1.7%). The first data set (Set 1) had 4 groups
(feature classes) of unequal sizes and 7 beneficial features,veltlici lie in a small feature class
of size 12. The second synthetic data set (Set 2) was generated spefledbthe other extreme

15. There is a similar relation between MICGRGUP and GL/MKL as it is between MIC-MLTI and BBLASSsO. Both
BBLAssoand GL/MKL are/; /¢, penalty based methods and try to solve the same sparsity problem asrtie cor
sponding MIC method.
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case, in which all the classes are of same size, and had 100 featuss ckessh of size 100. Again
all 7 beneficial features were in a single feature class.

Avg. Features Selected 10-Fold
Method Correct Spurious CV Error
Setl Set?2 Setl Set?2 Setl Set?2

MIC-GRoURSC 6.8£0.1 56+0.0 0.1£0.0 0.3£0.1 0.09+0.02 0.27+£ 0.01
MIC-GrRouP(l) 6.7£0.0 54+0.1 0.1£0.1 0.2+0.1 0.114+0.02 0.28+ 0.02
LASSO 52+10 43+12 22+10 1.84+0.1 0.22+0.03 0.41+0.02
ELASTICNETS 6.4+0.2 49+£0.7 3311 21+1.3 0.20£0.03 0.43+0.02
BASELINE(RIC) 4.44+1.4 3.2+22 0.2+0.1 0.0+0.0 0.27+0.05 0.61+ 0.04

Table 3: The number of correct and spurious Features Selected &uottlOV Test Errors averaged
over 10 runs. Set 1). Unequal class sizes, Set 2). Uniform class siz

As can be seen from the results in Table 3, in both cases the MiGu8 methods outperform
other competing methods.

5.2.2 B/ALUATION ON REAL DATA SETS

In order to benchmark the real world performance of our MI€eGP, we chose two data sets per-
taining to two diverse applications of feature selection methods, namely Caiopatd.inguistics
and Gene Expression Analysis. More information regarding the data arekgrerimental results
are given below.

Word Sense Disambiguation (WSD) Data SétaVSD data set (QTONOTESHovy et al., 2006)
consisting of 172 ambiguous verbs and a rich set of contextual fegfDhes and Palmer, 2005)
was chosen for evaluation. It consists of hundreds of observatfor@un-noun collocation, noun-
adjective-preposition-verb (syntactic relations in a sentence) andmmuwmcombinations (in a sen-
tence or document).

The data set had a total of 172 verbs with-4@5 feature classes (groups). The number of
observations for the various verbs varied from 100 to 3500 and the number of feapivaried
from 1000 to 11500.

As with MIC-MuLTI we used MIC-@QRouPto do feature selection and once we had selected
the features we used logistic regression for the final classification pnoblée classification test
accuracies averaged over all the 172 verbs are shown in Figure 3.

Note that these accuracies are for the binary prediction problem atprepthe most frequent
sense. On the entire set of 172 verbs, MI@da Pmethods are significantly (5 % significance level
(Paired t-Test)) better than the competing methods offIB®verbs and have the same accuracy as
the best method on 4 occasions. It is also worth noting that MEK&X@>-SC was~ 7 times faster
than MIC-GRouP () as we had hypothesized earlier, as for each selected featuresitadagset
search within that feature’s group (feature class) to find the optimal nuoffeatures to select
from the group.

Gene Set Enrichment Analysis (GSEA) Data Séte second real data sets that we used for our
experiments were gene expression data sets from GSEA (Mootha et(d), Zhere are multiple
gene expression data sets and multiple criteria on which the genes canupedjnoto classes. For
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WSD Classification Errors

0.15 .
-
0.1
Il VIC-Group-SC
I MIC-Group (1)
0.05 [CGL/MKL
: [JLasso
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Il Baseline(RIC)

0
Averaged over 172 verbs from ONTONOTES data

Figure 3: 10 Fold CV classification test accuracies averaged overeb2.\Wote: 1). These are
true cross-validation accuracies and no parameters have been tutieshon

example, different ways of generated gene classes include C1: Pak{Biene Sets, C2: Curated
Gene Sets, C3: Motif Gene Sets, C4: Computational Gene Sets, C5: GCs€ksne

For our experiments, we used gene classes from the C1 and C2 colleclibesgene sets
in collection C1 consists of genes belonging to the entire human chromosorteddinto each
cytogenetic band that has at least one gene. Collection C2 containegegefi®m various sources
such as online pathway databases and knowledge of domain experts.

The data sets that we used and their specifications are as shown in Talheugh the goal
of GSEA is not building classification models but identifying the groups okeggnene families)
which are over-represented when they are filtered by a certain selpatioadure; however we are
interested in using the transcriptional profiles and the associated groopusérfor classifying the
phenotype, that is, ALL (Acute Lymphoblastic Leukemia) or AML (Acute Nbje Leukemia) in
case of leukemia; DMT (Diabetes Mellitus Type I) or NGT (Normal Glucoseremce) in case of
diabetes; and determining whether the transcriptional profiles are froni\al&) or a F (Female)
for the gender data sets.

Data Set # Observations (n) # Features (p) # Classes (K)
LEUKEMIA (C1) 48 (24 ALL & 24 AML) 10056 182
GENDER1 (Cl) 32(17F&15M) 15056 212
DIABETES(C2) 34 (17 NGT & 17 DMT) 15056 318
GENDERZ2 (C2) 32(17F&15M) 15056 318

Table 4: GSEA Data Sets.

The results for these GSEA data sets are as shown in the Figure 4.

For these data sets also MICRGUP methods beat the competing methods. Here also MIC-
GRouPris significantly (5% significance level, Paired t-test) better than the competingpdseth
is interesting to note that MIC-@uUP methods sometimes selected substantially fewer features,
but still gave better performance than other methods which goes onto sabadtting all or many
features from a single group contributes to a redundant signal aoigeffieature selection “within”
a group (feature class) is warranted.
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GSEA Datasets Classification Errors Average Number of Features Selected
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Figure 4: 10-fold CV classification test accuracies and the averageerwhbeatures selected by
various methods on the GSEA data sdtmte: 1). Remember that we are interested in
better predictive accuracy and not in identifying the correct set afsgpfeatures; we
can get much sparser models if instead our objective is choosing thetcsgtef sparse
features. 2). These are true cross-validation accuracies and amgtars have been
tuned on them.

6. MIC Model Consistency

In this section we show that our MIC methods based on two part MDL and wétimtbdel coding
costs as described in Section 4 are consistent. By “consistent” we medrthieatata is distributed
by one of the probabilistic sources in the set of candidate model classesitidDL based estima-
tors considerq/), then given enough data, MIC will output the true distribution generatiagléta.
The proof of consistency is similar to the proof of classical two part MDhsistency as given in
Barron and Cover (1991) and the recent improvement to that proohbp@ (2004) by using ideas
from KL-complexity. To extend these proofs to the case of MIC, we recthie concepts dfiniver-
sal CodesKL-Distinguishability Probabilistic Sourcesnd theNo-Hypercompression Inequality
from information theory. (Refer to Appendix)

We first define some common notation that will be useful throughout this secissume we
haven data samples (observation§)c X, X, € X, ..., X, € X and that they are distributed accord-
ing to some distributiorPrr,e. Further IetP,S,l”,)C be an arbitrary distribution o (the distribution
estimated by our MIC based model). Also, as shorthand we denfe; IgQ(X;) as—IgQ(X")
throughout this section and™ denotes the marginal distribution on the firsbutcomes that is
induced by the probabilistic sour&e

6.1 Consistency Results

As mentioned earlier, two part MDL has been proved to be consistent medyvaf settings (Barron
and Cover, 1991; Zhang, 2004; Grunwald, 2007). Here we prasifdéar proofs for the case of
our MIC based models.
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Let M be a countably infinite set of probabilistic sources andJ&e some code length function
corresponding to a code over elementsMf We assume that the true underlying probabilistic
source belongs to the set of sources that our models consider, tRatisc M ; Zhang (2004)
and Barron and Cover (1991) also make this assumption. AlsBy|letbe the probabilistic source
corresponding to the two part MDL model selected by MIC ﬁ’f)ﬂi be the marginal distribution
induced by this probabilistic source on the finstutcomes.

Theorem 1 Let M® = {Q € M |KL(Prruel|Q) > 8. Also, letln(Prrue) < o, then

Prrue(Pi € MP) — 0as n— w. (10)

The theorem states that the probability that MIC selects a probabilistic sougplain the data that
is KL-distinguishable from the true underlying distributid-{,e) approaches 0 as the number of
observations increase. In other words, with overwhelming probabiitye is KL-indistinguishable
from P,\(,lnl)C asn approaches infinity.
Proof

Let 4, be the distribution corresponding to the code for hypotheses with ledgtissich that
for all Q € M, P,(Q) = 2~(Q. This follows from Kraft's Inequality (Griinwald, 2005YM is
countable, saM® must also be countable; therefore we can order the elemeri§’iaccording
to increasing description length(Q) (decreasing?,(Q)) asQ1,Qo,.... Fix someb (0 < 6 < 1)
and defineﬂ\/[ﬁN(e) as the subset aM® consisting of the firsN distributions in?, whereN is

the smallest number such tl‘@ﬁl P1(Qj) > 6. Now, we defineM,\?(e) = Ma\MfﬁN(e), that is,
M,\?(e)ﬂm = {Qn+1,Qns2, ...} It can be easily seen that,

+1:00

00

Po( M0y 1:00) = Q) <1-8 (11)
j=N+

Now, for anyM’ C M,
Prrue [Pé/ﬂ)c S M/] =
Prrue | for some Ze M" : £n(Priye) + £n(X"|Prrue) > €n(Z) + (n(X"|Z)]

< z I:’True[fn(PTrue) ‘f‘fn(xn‘PTrue) > gn(z) +£n(Xn|Z)] : (12)
ZeMm'’

The above inequality is obtained by applying the Union Bound.
Now, by re-arranging Equation 12 and noting that the error term in twoqualing can be
replaced by a log term as in Equation 2,

n(Z) = Prrue[— 19(Prue(X")) = =19(Z(X")) + £n(Z) = £n(Prrue)] - (13)

The/,(Z) term corresponds to the number of bits required to code the model ardgzg X")
term corresponds to the data likelihood term in the two part MDL coding scheme
From Equations 12, 13 and 10, it follows that:

Prrue [PISAnI)C € MG] = Prrue [Pé/ﬂ)c € Mlé;N(g)} + Prrue [PIE/InI)C € Ml\?(ﬁHl:oo
< z On(Z) + z On(2). (14)

3 3
ZEMy ) ZEMg) 100
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Since, eaclZ M:SN(G) is KL-Distinguishable fromPrye and we havegn(Z) < e ™ (Stein’s
Lemma Cover and Thomas, 2006) for Zlle M. HencezZGMf_N(e) On(Z) is a sum of a finite
number of Z's, each of which is exponentially small, so we haVﬁJJmZzEMfN(e) on(Z) =0.

Now, we consider the second term in Equation 14. First assume that #i&eN&(8) > N(8) +
1 such that the sourceM,\?(e)H:N,(e) have description length€,) smaller than the description

length ofPrrye and the sourceﬂf[,\?,(e)ﬂm have description lengths greater thg(Prye). Also, we
havel,(Prrue) = O(logn), given all the coding schemes we have designed using MIC models. Now,
by Kraft's Inequality it follows that

2—£n(zl) <1

) <
Z'EM6) 10 (0)
Z szlogn <1

3
Z'eMye) 18 (o)

— > nk<1
d
Z'eMye) 1 (0)

Therefore, there are at most a polynomial numifesf elements irﬂ\/[[\?w) with shorter descrip-

+1:00
tion lengths tharPrr,e. Hence, as earlief ;s gn(Z') is a sum of a finite number of (2)s,
N(8)+1:N/(8)
each of which is exponentially small, so we haveqimg ¥ 5/, an(Z') = 0.
N(8)+1:N/(6)

Now, we bound the remaining terms by applying the no-hypercompressiquadlity to each
term inZZeMﬁ,lem gn(Z) with K = gn(z) - gn(PTrue)y

On(Z) = Prrue[— Ig(PTrue(Xn)) > — Ig(Z(Xn)) +n(Z) — ln(Prrue)] < 2~ (@) +n(Pre) (15)

From Equations 11 and 15, we get

z gl"l(z) S z Z*én(z)ﬁLén(PTrue) S (1 _ e) . ZZn(PTrue) .

§ 3
ZEMy (0) 100 ZEM (0) 110

The above holds for every @ 6 < 1, so for everye > 0 we can choos8 = 1 — g - 2~ ‘n(Prrue)
giving ¥ ;o On(Z) < ¢ for all largen. Combining this with Equation 14 we find that for all

N/ (8)+ 110
e>0
. n
lim PrruelP € MO <&

A corollary of the above theorem is that the MIC coding schemes as deddritsection 4 are
not an arbitrary procedure. There can be many valid codes, but nveataweak MDL by using
arbitrary codes to give the answers that we would like it to give.
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Another important theoretical property that is attractive for sparseiteggaaigorithms isspar-
sistencywhich is shorthand for “sparsity pattern consistency”. In other words

P [suppw'™®) = supgw}')] — 1as n— o,

wheresupgw) = {w: w; # 0}, wT""®is the true sparse weight vector anlf'C is the weight vector
estimated by MIC based methods. Sparsistency implies that the learning algsritiomsistently
able to identify the correct set of sparse features in the asymptotic limit.

Lasso and Group Lasso have been proved tegmsistentunder irrepresentable conditions
that depend on the sign of the true weight vectel'¢®) (Zhao and Yu, 2006; Wainwright, 2009;
Meinshausen and Bihimann, 2006; Bach, 2008). Tropp (2004¢drhat forward greedy feature
selection also selects features consistently when the linear model hasraaansstochastic noise;
Zhang (2009b) improved this result to include non-zero mean sub-@augschastic noise. How-
ever, due to the complexity of the forward greedy feature selection thsisgacy condition in this
case depends only on the feature (design) matrinnlike Lasso and Group Lasso.

Since our MIC based methods are based on forward greedy featectice® that is, they use
the MDL principle to provide a cost function which is greedily minimized by a fandvsearch,
they should besparsistent However, for/y penalized regression, tigparsistencycondition also
depends on the information theoretic penalty in that the penalty must incréhse (the number
of observations) (Wu and Zhou, 2010). For our MIC based methodgdmalty is a combination
of RIC, AIC (to code the coefficients) and other coding schemes whidrpocate the structure
of the problem at hand. The penalties for the MIC based methods asfmése this paper do
not have the required dependencemrso they are not sparsistent. However, we could modify
our coding schemes slightly by using the BIC penaltyn(lits) to code the coefficients instead of
AIC to ensure sparsistency of MIC. However, we prefer that our ntstlaoe not sparsistent as in
that case we achieve competitive performance with the true underlying ntlogiels, we get finite
risk-inflation of about 2Igp (Foster and George, 1994) whereas if we chose sparsistency tii@n Ml
would have infinite risk-inflation. Thus, given the choice betwbketter model-fiand sparsistency,
we chose the former. However, if sparsistency is more important thaicivedaccuracy, making
a small change in the coding schemes would guarantee it.

7. A Model for “Intra Domain” Adaptation: T RANSFEAT

In the previous sections we proposed MIC based methods for the refatelémps of simultaneous
feature selection for a set of multiple related tasks (MICiVl) and grouped feature selection for
single task (MIC-GoupP). The focus of those methods was joint feature selection, but in many ap-
plications it is the case that some of the tasks have less data available thataskieand building
supervised learning models from the limited amount of data does not givepleglictive accura-
cies. So, it becomes desirable to “borrow strength” for the tasks with fessigt of data from
the tasks with lots of data. In other words, we want to have “intra domairgtatan or Transfer
Learning (Ando and Zhang, 2005; Raina et al., 2006).

In this section, we propose a method callegkNSFEAT which addresses the above problem by
transferring information between similar tasks by using a feature releyaiare We demonstrate
the effectiveness of RANSFEAT for the problem of Word Sense Disambiguation (WSD), and show
that in this domain RANSFEAT significantly improves accuracy on tasks with less datRANS-
FEAT, could, of course, be applied to wide variety of domains, but is particulesdjul for WSD
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as state-of-the-art WSD systems, including the ones that use featuwtoselare strongly limited

by the paucity of labeled data. For example, the training set of tes8vAL-2 English lexical
sample task has only 10 labeled examples per sense (Florian and Yarowsky, 2002). Such limited
data makes it difficult to build high accuracy models using standard supdngarning techniques
and suggests the use of transfer learning to improve performance.

As mentioned above, RANSFEAT learns a feature relevance prior from “similar” tasks, and
gives supervised learning accuracies which are comparable to or thettestate-of-the-art WSD
systems. Learning this prior for feature relevance of a test task makes fibetures that have been
selected in the models of other “similar” tasks become more likely to be seleatediSFEAT does
this by using a MDL-based approach similar to the MIC methods presentsd.abo
Task SettingWe are given a set of target words each having arp feature matrix X p), where
n is the total number of observations (instances) prisl the total number of features. We have a
n x h response matrixY(n.) of theh sense labels for each of theobservations. The WSD task is
to assign a sense to each test instance. Note that this is a multi-class probleaveveesingle task,
which is to predict the correct sense of the word and we hawassible choices (the word senses)
for that task. So, we approach it differently from the multi-task problenfG¥uLTI), where we
predicted all tasks jointly.

Overview of TRANSFEAT: TRANSFEAT builds upon MIC-GRoupPand it has several steps:

e Break theY .y matrix intoh, nx 1 matrices, that is, out of one multiclagsgjasses) problem
we makeh binary class problems. The prediction problem now becomes “Is this venses
1 or not?”, etc. The main reason for doing this is that not all senses obatlsrare similar to
all senses of some other word. Thus, transfer learning only makes aelesel of individual
word sensesather than at the level of whole words.

e Make separate feature matrices for thiegeediction problems, because the original feature
matrix X p contained features which would be useful for the multiclass problem ofdtwWh
is the exact sense of the word?”, rather than for the binary problemis ¢ifii's sense 1 or
not?” and so on. We do this is by characterizing each binary problem Isg fleatures from
the originalp features which are positively correlated with that particular word s&h$his

.....

of these matrices need not have the same number of features.

e Next, cluster the different word senses by using “foreground-gpacind” clustering that puts
all singleton points into a “background cluster” which we then ignore

e Learn separate MIC-R0UP-SC models for each word sense. (Remember that as mentioned
in the Section about MIC-&oupr, WSD is one problem which exhibits group structure and
therefore we use it as a base model on which we buRdNSFEAT.)

e For each word sense in a cluster, usaNSFEAT to learn a feature relevance prior from the
remaining word senses in that cluster that have more observations thargttenmard sense,
on the features of that word sense. As we explain later, this featur@aneleyrior allows us
to learn better MIC-@our-SC models by relaxing theniform prior assumption that each

16. In general, features with positive coefficients are associated witlivkie sense and those with negative coefficients
with other senses of that word.

552



MDL PENALIZATION FOR GROUP AND MULTI-TASK SPARSEL EARNING

group (feature class) and then each feature within that group is equally tikbe selected,
that MIC-GRoOUP-SC makes.

e Given these better MIC-€oupP models for all the word senses, we solve the actuabhss
WSD problem by choosing the sense whose model gave the highesasdiie most likely
sense for that word.

We learn the feature relevance prior only from distributionally similar wsadsesin contrast
to Ando (2006) who share knowledge across “all” the senses of “all'wbeds. Our approach
makes sense as it is difficult to find words which are similar in all their sef®gever, one can
often find words which have one or a few similar senses. For exampleseorse of “fire” (as in
“fire someone”) should share features with one sense of “dismiss” (aksimiss someone”), but
other senses of “fire” (as in “fire the gun”) do not. Similarly, other measiof“dismiss” (as in
“dismiss an idea”) should not share features with “fire”. Similarly, the wdkdl”, “capture” and
“arrest,” share one similar sense. This justifies our choice of breaking dhe problem down to
the level of individual word senses.

Thus, knowledge can only be fruitfully transferred between the stemesks of different words,
even though the models being learned are for disambiguating differesgsena single word. To
address this problem, we cluster similar word senses of different wandsthen use the models
learned for all the word senses in the cluster with more data (observatiamshih held out word
sense (called “training word senses”) to put a feature relevanceqrishat features will be more
predictive for the held out test word sense. We hold out each worskserthe cluster once and
learn a prior from the remaining word senses in that cluster. For exampleawuse the models
for discriminating the senses of the words “kill” and the senses of “captir@ut a prior on what
features should be included in a model to disambiguate senses of the distiaiytsimilar word
“arrest”, which has considerably less data than the other two words@@oTES data set), hence
enabling us to learn high accuracy models for “arrest”. If at least ensesof the word “arrest”,
that we are trying to model is similar to the other word senses (for “kill” anghtlza”), some of
the same features should be beneficial for all of them.

7.1 TRANSFEAT Formulation

We now describe RANSFEAT in detail and show how it can be used to learn better feature selection
models by relaxing the overly simplistic assumption of the model coding schemi€ahethods
of uniform prior by learning a feature relevance prior.
We define a binary random variablee {1,0} that denotes the event of th& feature being in
or not being in the model for the test word sense, and model it as beimgafernoulli distribution
parameterized b;:
p(fil6) = 6" (1—6)* . (16)

Given the data for thé" feature for all the training word senses, we can write:= { fi1,..., fiv,..., fit }.
The model likelihood (under the i.i.d assumption) can be written as:

t t
P 161) = [ p(fiu[6) = []8™(1 &) ™,
| VEL V| VI vl:!l |
and the posteriors can be calculated by putting a prior over the pararessts
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P(8i|Dr,) = p(D|6i) x p(Bila, b),

wherea andb are the hyperparameters of the Beta Prior (the conjugate of the Berristritbdtion).
The predictive distribution o; is:

1
p(fi =1|Dx,) :/0 p(fi = 1/8;) p(6i| Dy, )d6;.

Substituting from 16 in the above equation we get:
1
p(fi = 1Dy) = | 8ip(81|1)d8, = E[8[D;

Using the standard results for the mean and the posterior of a Beta distrituatiobtain:

P = 24 = e a7)
wherek is the number of times that th# feature is selected arids the complement df, that is,
the number of times thi" feature is not selected in the training data.

As can be seen from Equation 17, the probability that a feature is selectduefheld out test
word sense is a “smoothed” average of the number of times it was selectesl imottels for the
senses of other words that are similar to it.

Using similar reasoning, we can extend the above concept to the greapsré classes) so that
the probability that a group (feature class) is selected is also a “smoothedige of the number of
times it was selected in the models for the senses of other words that are sintilar to

In light of the above reasoning, the modified model cost for MI€e®P for coding theit"
feature when previously no features have been selected frofjitifigature class which contains
that feature can be written as follows:

Sv=—19p(Gj = 1|Dg;) —lg p(fi = 1|Dy) +2,

and for the case when some features have already been selecteddrpféfature class, we
can write a modified coding cost as follows:

Sy =min[—Igp(Gj = 1|Dg,),1+19(Q)] —lg p(fi = 1|Dy,) +2,

where the first term represents the probability of selecting at least aerdefrom thejt"
feature class, the second term represents the probability of selectiit§ thature, and the third
term which is used to code the coefficient values remains the same as’éadae that in the case
when we have previously selected features from a given feature tlagaost efficient way to code
the feature class is to use the minimum of ttrARSFEAT cost and the actual “switch” coding cost
as described in Section 4.2. ThurANSFEAT replaces the implicit uniform prior of MIC-&oupP
with a coding scheme which is more informed by the prior learned from similas task

The detailed algorithm for RANSFEAT is given in Algorithm 3.

17. The negative sign is due to the duality between Bayesian and InfomiEtieoretic interpretation as mentioned
earlier.
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Algorithm 3 TRANSFEAT
1. Break the multiclass problem intobinary prediction problems.
Make the feature matrices for each of these problems, thatiis; . p.
Cluster the different word senses by “foreground-backgrouhdtering.
total_clusters={1,...,c}
word_senses= s, // Number of word senses K" cluster.
for i in total_clustersdo
for t in word_sensesdo
Learn separate MIC-&UP-SC models for all the word senses. // Uniform prior assump-
tion
9: end for
10: end for
11: for i intotal_clustersdo
12:  for t in word sensesdo

13: Learn TRANSFEAT model on all word senses in the cluster which have more data (obser-
vations) than thé!" word sense.

14: Use the revised model cos$g output by TRANSFEAT to learn better MIC-@oupP-SC
model fort'" word sense.

15: // The uniform prior assumption of MIC-@UP-SC has been relaxed.

16: end for

17: end for

18: Disambiguate the word as a whole by choosing the correct senselfipossible senses) as the
one whose model gave the highest score.

7.1.1 (HOICE OFHYPERPARAMETERS

The hyperparameteessandb in Equation 17 control the “smoothing” of our probability estimates,
that is, how strongly we want the evidence obtained from similar word seosaffect the model
that we learn for the test word sense.

In all our experiments we set= 1 and choosé so that in the limiting case of no transfer,
that is, k=1 = 0 in Equation 17) the coding scheme will reduce to the baseline feature selectio
described in (Equation 4). Thus, we chobse p— 1 wherep s the total number of features/feature
classes (depending on what we are coding) in the test word sense.

7.2 Experimental Results

In this section we first describe our data and similarity metric that we usedenedport the results
of applying TRANSFEAT to the EENSEVAL-2 and ONTONOTES data sets.

7.2.1 SMILARITY METRIC

Finding a good similarity metric between different word senses is perhapefdhe biggest chal-
lenges that we faced. It is also the part of this section that is specific todbéem of word sense
disambiguation. There are many ways in which word senses can be jusiggaikar, including
having similar “meanings” or similar syntactic usages. Human annotated lexétmhsas Levin
classes (Levin, 1993), hypernyms or synonyms accordingd®BNEeT (Miller, 1990; Lin, 1999),
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or VERBNET classes (Kipper et al., 2000; Schuler, 2006) capture differenttspgthis similarity,
as does NFoMAP(ht t p: //i nf omap. st anf ord. edu) (Raina et al., 2006), which gives distribu-
tional similarity score for words in the corpus. We choose instead to defsimitarity metric
based, as described below on combinations of many different aspetis keixical and syntactic
context of the word.

One might think of doing K-means clustering of the word senses based origaeires, but
this works poorly, as it assigns all the word senses to some cluster, whigalityr there are in
practice many word senses that are not sufficiently similar to any other semsk, either seman-
tically or syntactically and hence many word senses occur in “singleton” chuskemeans and
perhaps surprisingly, hierarchical agglomerative clustering, eveneaftensive use of different ‘K’
or thresholds, failed to give reasonable clusters.

We thus need a clustering method that gives tight clusters of word semskdpes not attempt
to cluster those word senses which are not similar to any other word sethgedorpus. We do this
using a “foreground-background” clustering algorithm as propbsedandylas et al. (2007). This
algorithm gives highly cohesive clusters of word sensesf@iteground and puts all the remaining
word senses in theackground The parameters that it takes as input are the % of data points
to put inbackground(i.e., what would be the singleton clusters) and a similarity threshold which
impacts the number dbregroundclusters. We experimented with putting 20% and 33% data points
in background and adjusted the similarity threshold to give us %00 foregroundclusters. The
results reported below have 20% background and 500foregroundclusters.

7.2.2 DESCRIPTION OFDATA

We used the BNSEVAL-2 English lexical sample data, which contains a total of 73 different words
(29 nouns, 29 verbs, and 15 adjectives) and tnr@NOTES verb data (the same one used for
experiments of MIC-@0uUP), containing 172 verbs. The main difference between these two data
sets is that BNSEVAL-2 data contains “fine grained” senses of the words and as a resudttend
have more senses per word than the “coarse grained” verb sensesaNOTES. (See Table 5.)

Data Set #words #train avg #senses
per word
SENSEVAL-2 73 8611 10.7
(nouns+verbs+ad;.
ONTONOTES 172 See Note 3.7
(only verbs) (in caption

Table 5;: Data Statistics ofEBISEVAL-2 and ONTONOTES data setsNote: In our experiments we
used the standard test-train splits f@NSEVAL-2; ONTONOTES data does not have any
standard splits so we report 10-Fold cross validation test-accuracies

7.2.3 RESULTS

We cluster the word senses based on all the features, that is, semamictisysimilarity features.
We experimented clustering using only syntactic and only semantic featuregebgot the best
results using the combined feature set.
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TRANSFEAT Classification Errors (Microaveraged) o 4TRANSFEAT Classification Errors (Microaveraged)
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(@) (b)

Figure 5: 10-fold CV (micro-averaged) test accuracies of various adstfor ONTONOTES and
SENSEVAL-2 (English Lexical Sample) data set®Note: 1.) These are true cross-
validation accuracies and no parameters have been tuned on them. 2 nhallecéu-
racies reported are averaged over the entire 172 verbs. 3). Weéhesstdndard test-train
splits for SENSEVAL-2 as mentioned on the data website and as used inysetalies

All results reported are micro-averag€dccuracies. In order to ensure fairness of compari-
son we compute the predicted sense for each observation by selectingrtheaasse model (from
among the different senses for that word) with the highest score foobsrvation sense. As in
earlier experiments we useRRNSFEAT only to select features and later we use logistic regres-
sion for classification. This “one vs all” approach to prediction in multi-clasblems is widely
used, although higher accuracy can sometimes be obtained by more comiplasg comparison
methods.

We use two versions of RANSFEAT, as can be seen in Figure 5. The first version is exactly
the same as mentioned in Algorithm 3, while the second versinaANBEFEAT w. Baseline, builds
upon baseline feature selection (Equation 4) instead of MKO@SC. We compare RANS-
FEAT methods against baseline feature selection (Equation 4), SVM with a polyinkenizel,
Ando[CoNLL'06] (Ando, 2006), computed with the standard implementatidh@algorithm from
the Berkeley Transfer Learning Toolkit (Rakhlin, 2007), and a simple fneguent sense baseline.
For SVM we used the standard libSVM package (Chang and Lin, 2001)us&é a polynomial
kernel, as it gave better performance on held out data than other kardelding linear and RBF.
We tuned the cost parameter ‘c’ and the degree of polynomial ‘d’ parasnetehe polynomial
kernel using a separate cross validation.

18. Our precision and recall are always the same as we assign exaethense to each instance. Hence the accuracy
that we report is the same as the F-measure or ‘micro-averaged’ asds reported in many WSD studies.
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7.2.4 ANALYSIS OF ONTONOTESRESULTS

The results for the different settings for thet@NoTESdata set averaged over the entire 172 verbs
are shown in Figure 5 (a). TheRRNSFEAT models are significantly better (5% significance level
using a paired t-test) than all the competing methods except Ando[CoNLL'06

Some examples will help to emphasize the point that we made earlier that treakierthe
most in cases in which the target word sense has much less data than theewsed from which
knowledge is being transferred. “kill” had roughly 6 times more data thartladiravord senses in
its cluster (i.e., “arrest”, “capture”, “strengthen”, etc.) In this casrRANSFEAT gave 32— 8.7%
higher accuracies than competing methods on these three words. Batms@&sSTRANSFEAT do
much better than Ando[CoNLL'06] on these select words even thouglverage over all 172 verbs
the difference is slender. Similarly, for the case of word “do” which fmdyhly 10 times more data
than the other word senses iniits cluster (e.g.,"die” and “saved ANISFEAT gave 41— 6.2% higher
accuracies than other methods. Transfer makes the biggest differbecethe target words have
much less data than the word senses they are generalizing from, but @zseswhere the words
have comparable amounts of data we still getsa-12.5% increase in accuracy.

However, as one might expect, transfer learning can sometimes huwtrparfce; there can be
so-called “negative-transfer” (Caruana, 1997). This was thefoageverbs out of the 172.

7.2.5 ANALYSIS OF SENSEVAL-2 RESULTS

The results for BNSEVAL-2 data set are shown in Figure 5(b). Here algafsSFEAT does signif-
icantly better (5% significance level using a paired t-test) than the basedinedeselection method
and most of the other state-of-the-art algorithms. It is worth noting thatladégree of engineer-
ing goes into the state-of-the-arE@SEVAL-2 systems. This is in contrast taRANSFEAT, which
uses information theoretic feature selection and thus has no free pammoetiiene. The RANS-
FEAT results are comparable to those reported in Ando (2006), which is theottite-art system
on SENSEVAL-2. Since Ando (2006), only mentions the overall accuracy and notdt@acy on
individual words, we cannot tell whether this slender difference is sitatily significant.

For words that had considerably fewer observations than other woteir cluster, RANS-
FEAT again gave major benefits. For example, “begin” had times more data (on average per
sense) than the other word senses in its cluster (i.e., “work” and “deyelopthis case, RANS-
FEAT gave 61 — 7.1% improvement in accuracy over the baseline feature selection. Similarly,
“leave” had~ 2 times more data than “turn” and “strike”, and in this casealSFEAT gave
5.1—6.2% improvement in accuracy over the baseline. These improvements aidaraily larger
than the average improvement over all the words as reported in Figyte 5(b

For this data set there was negative transfer on 5 out of 73 words.

8. Conclusion

In this paper we presented a framework for learning sparse modeld baske information theo-
retic Minimum Description Length (MDL) principle. We presented two model&tam the MIC
(Multiple Inclusion Criterion) which greedily select features using the MDibgple in the single

and multi task settings respectively. Both the methods, MIGeM and MIC-GRoup, induce two
level sparsity; MIC-@&oup does feature selection at the level of groups and also at the level of
features within each group and MICMT!I allows each selected feature to be added to the models
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of some or all of the tasks. We showed how we can use MDL to spegfffomizedoding schemes

in scenarios where the problem has complex structure. We also disdhgsednditions under
which the MDL based methods are consistent gpatsistenaind also showed that the MDL coding
schemes are not arbitrary and have a corresponding Bayesian étdgiqor. Lastly, we proposed

a model, RANSFEAT which can be used to transfer a feature relevance prior to tasks whieh ha
less data available. We evaluated all three methods on a variety of domairtngaenomics (for
both yeast and beast cancer) and natural language processim $éfse Disambiguation). Our
methods are consistently at least as accurate as state-of-the-art methibelproducing models
that are more sparse. Such sparseness is particularly important fmatipps such as genomics
and computational linguistics, where interpretable models are valued.

Appendix A.

No Hypercompression Inequality:

VK > O’ I:]True[_ Ig PTrue(Xn) > — Ig I:)Model(xn) + K] < 27K‘

This inequality states that the probability of a code compressing the data bytimaoié bits,
than the code correspondingReg e is exponentially small ifk, whereK is any positive number.
The proof follows by using Markov’s inequality and can be found in Gvéild (2007).
KL-Distinguishability: If the actual data was generated by the distribuBgge then the distribution
Pvodel IS said to beKL distinguishabldrom Pr e if its relative entropy (KL Divergence) frofByodel
is greater tha®. In other word4Ryqqgel lies outside & ball of Prye in a relative entropy sense. More
formally,

V& > 0, KL(Prruel|Pviodel) > .

Universal Coding SchemesGoing back to the standard MDL setting which envisions a Sender
and Receiver, assume that the Sender and Receiver have a sedidbte coding schemesfor X"
available. Both of them know that one of these available codes will giveitiieest compression
for the sequenck" € X". In other words:

Loptimal(X") = argmin{Li(X")} VL; € L.
|

However, they must decide on a code before the sender observesubhkdatax" and they do
not know which is the best code. In the Bayesian terminology, this probleimikar to finding the
classifier which has the Optimal Bayes Risk—that is, the classifier with the mininogsilge risk
among all the candidate classifiers. One thing that the Sender can do isiog e dataX"), he
encodes the data usihgtima as described above. However, this is not feasible as the Receiver doe
not know what code the Sender used and so he would not be able tedbeomessage. Therefore
itis not possible to find the best code that compresses the data and scticggpaople useniversal
codeswhich compress the data almost as wellLagtima. This corresponds to a classifier whose
risk is close to Bayes Risk. It has been shown that the two part MDL dbdég/e used in this paper
to describe MIC based methods are universal codes (Grinwald; @06wald, 2007; Rissanen,
1999). Moreover the “uniform prior” code and the “combinatorial code used in coding the
model for MIC-MuLTI and MIC-GRouPare also universal codes and minimax optimal (Griinwald,
2007).
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Probabilistic Sources: Consider a sample spageand letx* := (J,., X" denote the set of all
possible samples of each length. Also, defiffe= {x°} wherex? is a special sequence which is
called empty sample. Finally* = X+ JX°. Now, a probabilistic source with outcomesinis a
functionP : X* — [0, ) such that for alh > 0, allx" € X" we have:

e 3,cxP(X",2) = P(x") (compatibility condition)
e PX0)=1

The two conditions say that the “event” that détd z) arrives is identical to the event thétarrives
first and data arrives afterward. Intuitively, probabilistic sources can be thou§hsgrobability
distributions over infinite sequences, but defining them as probability ditiis overx® requires
measure theory and the interested user can find the details in any adpaoleelility book.
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