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Abstract

Inverse reinforcement learning (IRL) is the problem of nearing the underlying reward function
from the behavior of an expert. Most of the existing IRL algons assume that the environment is
modeled as a Markov decision process (MDP), although itsgalele to handle partially observable
settings in order to handle more realistic scenarios. Is pliper, we present IRL algorithms for
partially observable environments that can be modeled astelty observable Markov decision
process (POMDP). We deal with two cases according to theeseptation of the given expert's
behavior, namely the case in which the expert’s policy idiekly given, and the case in which the
expert’s trajectories are available instead. The IRL in I poses a greater challenge than in
MDPs since it is not only ill-posed due to the nature of IRLt dlso computationally intractable
due to the hardness in solving POMDPs. To overcome thesaaést we present algorithms that
exploit some of the classical results from the POMDP literait Experimental results on several
benchmark POMDP domains show that our work is useful foriglriobservable settings.

Keywords: inverse reinforcement learning, partially observable hdardecision process, inverse
optimization, linear programming, quadratically consteal programming

1. Introduction

Inverse reinforcement learning (IRL) was first proposed by RLEK298) as follows:

Given (1) measurements of an agent’s behavior over time, in a variety of circucestaf2) mea-
surements of the sensory inputs to the agent, (3) a model of the physigalenent (includ-
ing the agent’s body).

Determine the reward function that the agent is optimizing.

The significance of IRL has emerged from the connection between reémi@nt learning (RL) and
other research areas such as neurophysiology (Montague ansl B662; Cohen and Ranganath,
2007), behavioral neuroscience (Lee et al., 2004; Niv, 2009kandomics (Erev and Roth, 1998;
Borgers and Sarin, 2000; Hopkins, 2007). In these research, dheareward function is generally
assumed to be fixed and known, but it is often non-trivial to come up withparogariate reward
function for each problem. Hence, a progress in IRL can have a sigmifitpact on many research
areas.
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IRL is a natural way to examine animal and human behaviors. If the decisikernssassumed
to follow the principle of rationality (Newell, 1982), its behavior could be ustieod by the reward
function that the decision maker internally optimizes. In addition, we can expeitomputed
reward function to generate an agent that imitates the decision makergidrehghis will be a
useful approach to build an intelligent agent. Another advantage of Iftlaighe solution of IRL
problems, that is, the reward function, is one of the most transferabiesegiations of the agent’s
behavior. Although it is not easy to transfer the control policy of the tigeather problems that
have a similar structure with the original problem, the reward function couldpipdied since it
compactly represents the agent’s objectives and preferences.

In the last decade, a number of studies on IRL have been reported evidgumost of the
previous IRL algorithms (Ng and Russell, 2000; Abbeel and Ng, 20@mathandran and Amir,
2007; Neu and Szepesvari, 2007; Syed and Schapire, 2008; Zettadr, 2008) assume that the
agent acts in an environment that can be modeled as a Markov decismaspidDP). Although
the MDP assumption provides a good starting point for developing IRL igthgas, the implication
is that the agent has access to the true global state of the environment.ssitmpéon of an
omniscient agent is often too strong in practice. Even though the agestisiad to be an expert
in the given environment, the agent may be (and often is) making optimal ioehiaith a limited
sensory capability. Hence, to relax the strong assumption and widen tieaagjty of IRL to more
realistic scenarios, the IRL algorithms should be extended to partially atidgerenvironments,
which can be modeled as partially observable Markov decision processes

A partially observable Markov decision process (POMDP) (Sondik,11®%fonahan, 1982;
Kaelbling et al., 1998) is a general mathematical framework for singletgdgming under uncer-
tainty about the effect of actions and the true state of the environmentnfReceany approximate
techniques have been developed to compute an optimal control policy der PRDMDPs. Thus,
POMDPs have increasingly received a significant amount of attentiomensdi research areas such
as robot navigation (Spaan and Vlassis, 2004; Smith, 2007), dialoguageraent (Williams and
Young, 2007), assisted daily living (Hoey et al., 2007), cognitive rddizao et al., 2007) and
network intrusion detection (Lane and Brodley, 2003). However, ireotd address real-world
problems using POMDPs, first, a model of the environment and the rewaddidn should be
obtained. The parameters for the model of an environment, such as tnapsdlzabilities and ob-
servation probabilities, can be computed relatively easily by counting tmseif¢he true state can
be accessed, but determining the reward function is non-trivial. Irtipeathe reward function is
repeatedly hand-tuned by domain experts until a satisfactory policy isradqhis usually entails
a labor intensive process. For example, when developing a spokenuaiognagement system,
POMDP is a popular framework for computing the dialogue strategy, sincaaweompute an opti-
mal POMDP policy that is robust to speech recognition error and maintains fadiiipotheses of
the user’s intention (Williams and Young, 2007). In this domain, transition fniét@s and obser-
vation probabilities can be calculated from the dialogue corpus collecteddmizard-of-0z study.
However, there is no straightforward way to compute the reward funaiibich should represent
the balance among the reward of a successful dialogue, the penaltyunisancessful dialogue,
and the cost of information gathering. It is manually adjusted until a satisflisggue policy is
obtained. Therefore, a systematic method is desired to determine the remetior.

In this paper, we describe IRL algorithms for partially observable enmearis extending our
previous results in Choi and Kim (2009). Specifically, we assume thattfisoement is modeled
as a POMDP and try to compute the reward function given that the agem$cadio optimal policy.
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The algorithm is mainly motivated by the classical IRL algorithm by Ng and RIU&890) and we
adapt the algorithm to be robust for large problems by using the methodestad by Abbeel and
Ng (2004). We believe that some of the more recently proposed IRL algwifRamachandran
and Amir, 2007; Neu and Szepesvari, 2007; Syed and Schapire; Z@art et al., 2008) also
could be extended to handle partially observable environments. The aiis paiper is to present a
general framework for dealing with partially observable environmentsdheutational challenges
involved in doing so, and some approximation techniques for coping with #ikeohes. Also, we
believe that our work will prove useful for many problems that could beetetias POMDPs.

The remainder of the paper is structured as follows: Section 2 reviews defimiions and
notations of MDP and POMDP. Section 3 presents an overview of the IRiritdghs by Ng and
Russell (2000) and Abbeel and Ng (2004). Section 4 gives a forefiition of IRL for par-
tially observable environments, and discusses the fundamental difficuitiBs @and the barriers
of extending IRL to partially observable environments. In Section 5, wasfan the problem of
IRL with the explicitly given expert’s policy. We present the optimality conditiofishe reward
function and the optimization problems with the computational challenges and gppmox@Enation
techniques. Section 6 deals with more practical cases where the trajeofdhiesexpert’s actions
and observations are given. We present algorithms that iteratively gmeward function, compar-
ing the expert’s policy and other policies found by the algorithm. Section Wskiwe experimental
results of our algorithms in several POMDP domains. Section 8 briefly revielated work on
IRL. Finally, Section 9 discusses some directions for future work.

2. Preliminaries

Before we present the IRL algorithms, we briefly review some definitiodsatations of MDP and
POMDP to formally describe the completely observable environment and thellgaobservable
environment.

2.1 Markov Decision Process

A Markov decision process (MDP) provides a mathematical frameworknfmteling a sequential
decision making problem under uncertainty about the effect of an agaettbn in an environment
where the current state depends only on the previous state and actiaiythie Markov property.
An MDP is defined as a tupkS, A, T,R y):

e Sis the finite set of states.

Ais the finite set of actions.

T : Sx A—TI(S) is the state transition function, whefgs, a,s') denotes the probability
P(s|s,a) of reaching statg from states by taking actiore.

e R:SxA— Risthereward function, whei(s, a) denotes the immediate reward of executing
actiona in states, whose absolute value is boundedRysy.

e y€ [0,1) is the discount factor.

A policy in MDP is defined as a mapping: S— A, whereri(s) = a denotes that actioa is
always executed in statefollowing the policytt. The value function of policyt at states is the
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expected discounted return of starting in std@d executing the policy. The value function can be
computed as:

VT(s) = R(s,1(s)) +ysz T(s,1(s),s)V'(S). (1)
s

Given an MDP, the agent’s objective is to find an optimal potityhat maximizes the value for
all the states, which should satisfy the Bellman optimality equation:

V*(s) = méax{R(s, a) +y§z T(s, a,s’)V*(s’)] :
s

It is often useful to express the above equation in tern@-aiinction: 1tis an optimal policy if and
only if
T(s) € argmaxQ'(s,a),
acA
where
Qs.a)=R(sa)+y Y T(sas)Vs), 2)
seS

which is the expected discounted return of executing actiorstates and then following the policy
U

2.2 Partially Observable Markov Decision Process

A patrtially observable Markov decision process (POMDP) is a geneaaddwork for modeling

the sequential interaction between an agent and a partially observabtenement where the agent
cannot completely perceive the underlying state but must infer the statd bashe given noisy
observation. A POMDP is defined as a tupiA, Z, T,O,R bg, y):

e S A T,Randyare defined in the same manner as in MDPs.
e Zis the finite set of observations.

e O:SxA—T1(Z)isthe observation function, whe@s, a, z) denotes the probability(z|s, a)
of perceiving observationwhen taking actiora and arriving in state.

e by is the initial state distribution, whei®(s) denotes the probability of starting in state

Since the true state is hidden, the agent has to act based on the histogcofegkactions
and perceived observations. Denoting the set of all possible histarikstath time step a$l; =
(Ax 2), a policy in POMDP is defined as a mapping from histories to actiong — A. However,
since the number of possible histories grows exponentially with the number oktaps, many
POMDP algorithms use the conceptlidlief Formally, the belieb is the probability distribution
over the current states, whegs) denotes the probability that the statesit the current time step,
andA denotes dS — 1 dimensionabelief simplex The belief update for the next time step can be
computed from the belief at the current time step: Given the aetianthe current time step and
the observatioz at the next time step, the updated beb&for the next time step is obtained by

0O(s,a,2) 5sT(s,a,5)b(s)
P(z]b,a) ’
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where the normalizing factd?(z|b,a) = S5 O(s,a,2) 3sT(s,a,5)b(s). Hence, the belief serves as
a sufficient statistic for fully summarizing histories, and the policy can bevatgntly defined as a
mappingrt: A — A, whereti(b) = a specifies actiom to be selected at the current beleby the
policy Tt Using beliefs, we can view POMDPs as belief-state MDPs, and the vatg&da of an
optimal policy satisfies the Bellman equation:

V*(b) = mgx[ > b(s)R(s,a) + yg T(s,a,5)0(s,a, z)V*(b"g‘)} : (4)

Alternatively, a policy in POMDP can be represented as a finite state cont(BBC). An
FSC policy is defined by a directed graffh’, £), where each node € A is associated with an
actiona € A and has an outgoing edgg € ‘E per observatiorz € Z. The policy can be regarded
asTt= (Y,n) wherey is the action strategyassociating each nodewith an actiony(n) € A,
andn is theobservation strateggssociating each nodeand observatioz with a successor node
n(n,z) € A..

Given an FSC policyt= (y,n), the value functiorV/™ is the expected discounted return of
executingtand is defined over the joint space of FSC nodes and POMDP states bk camputed
by solving a system of linear equations:

VT(n,s) = R(s,a) +VZ T2%((n,s), (n', )V, ), (5)
n.,s
where
T2%((n,s),(n',d)) =T(sa¥s) ; 0(d,a,2), (6)
ze/ St
os(z2)=n

with a = (n) andos(z) = n(n,z). The value at node for beliefb is calculated by
VT(n,b) = 3 b(sVT(n.s), Y
S

and the starting node for the initial belib§ is chosen byng = argmaxV™(n,bp). We can also
defineQ-function for an FSC policyt

Q"((n,s), (a,09) =R(s,a) +v ZgTa’os(m s), (", $)VT(n',s),

which is the expected discounted return of choosing aaiahnoden and moving to nodes(z)
upon observatior, and then following policyt Also, Q-function for noden at beliefb is computed

by
Q"({n,b), (a,09)) = 3 b(s)Q"((n,s), (a,09).

With an FSC policyrt, we can sort the reachable beliefs into nodes, suctBhdénotes the set
of beliefs that are reachable from the initial beldgfand the starting nod&) when the current node
is n. Note thatBy| > 1 for every noden.
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3. IRL in Completely Observable Markovian Environments

The MDP framework provides a good starting point for developing IRlowtlgms in completely
observable Markovian environments and most of the previous IRL algwsitdddress the problems
in the MDP framework. In this section, we overview the IRL algorithms prepds/ Ng and Russell
(2000) and Abbeel and Ng (2004) as background to our work.

The IRL problem in completely observable Markovian environments is ddneith IRL for
MDP\R, which is formally stated as follows: Given an MBR (S A T,y) and an expert’s policy
T, find the reward functioR that makest an optimal policy for the given MDP. The problem
can be categorized into two cases: The first case is when an expdidisipa@xplicitly given and
the second case is when an expert’s policy is implicitly given by its trajectories.

3.1 IRL for MDP\R from Policies

Let us assume that an expert’s polimy is explicitly given. Ng and Russell (2000) present a nec-
essary and sufficient condition for the reward functi®af an MDP to guarantee the optimality of
TE:

Q™ (s, me(s)) > Q®(s,a), VseSVacA, (8)
which states that deviating from the expert’'s policy should not yield a highkre. From the
condition, they suggest the following:

Theorem 1 [Ng and Russell, 2000] Let an MDP\R (S A, T,y) be given. Then the poliayis opti-
mal if and only if the reward function R satisfies

RT—R+y(TT =T (1 —yTH)R" =0, VacA 9)
where the matrix notations and the matrix operator are defined as follows:
TTisalg x

S matrix with (s,s) element being T5,11(s), S ).

T2is a|g x |§ matrix with(s,s') element being Ts,a,5).

Ris a|S| vector with s-th element being R11(s)).

R?is a S vector with s-th element being a).

V™Tis a|g vector with s-th element beind's).

X =Y < X(i) >Y(i), for all i, if the length of X is the same as that of Y.
Proof Equation (1) can be rewritten &' = R"+yT™™, Thus,
V= (1 —yTH IR, (10)

By the definition of an optimal policy and Equation (2)is optimal if and only if

T(s) € argmaxQ(s,a), VseS

acA
= argmaxR(s,a) +y§T(s, a,d)V'(s)), VseS
acA

& R(s () +yH T(s,1(s),S)VT(S)
g

> R(s,a)+y§T(s,a,s’)V"(s’), Vse SVaeA
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maximize Y Y [QE(sTe(s) - Q%(s:8)| ~ ARl
S acA\TEe(S)

subjectto R® —RP+y(TE—T3)(1—yT®)IR€ =0, vacA
IR(s,a)| <Rnax VseSVacA

Table 1: Optimization problem of IRL for MD{R from the expert’s policy.

By rephrasing with the matrix notations and substituting with Equation (10),

RT+yTVT = R+yTAVT vVacA
S RUYTT(1 —yTH) IR = R4+yT3(1 —yT") R, vacA
SR—R+y(TT-T¥H (1 —yTH R'=0, VacA

Equation (9) bounds the feasible space of the reward functions theatrgaa the optimality of
the expert’s policy, and there exist infinitely many reward functions thafgdquation (9). As a
degenerate casB,= 0 is always a solution. Thus, given the expert’s poligy which is assumed to
be optimal, the reward function is found by solving the optimization problem iteThhwhere\ is
an adjustable weight for the penalty of having too many non-zero entries iewrard function. The
objective is to maximize the sum of the mardimetween the expert's policy and all other policies
that deviate a single step from the expert’s policy, in the hope that thetisxpelicy is optimal
while favoring sparseness in the reward function.

3.2 IRL for MDP\R from Sampled Trajectories

In some cases, we have to assume that the expert’s policy is not explicily bt instead the
trajectories of the expert’s policy in the state and action spaces are avAil®hkm-th trajectory
of the expert’s policy is defined as thé-step state and action sequengs$, sy, ---,s}_;} and
{a8]> aT’ T >a1r-r|1—1}'

In order to address problems with large state spaces, Ng and Rus£6€l) (2@ a linear approx-
imation for the reward function, and we also assume that the reward funstioearly parameter-
ized as

R(s,a) = a1y (s,a) + 02@p(s,a) + - - + ag@(s,a) = o' @(s,a), (11)

where known basis functiong: Sx A — [0,1]9 and the weight vectan = [a1,05,---,0q]T € RY.
We also assume without loss of generality that [—1,1]9.

1. We found it more successful to use the sum-of-margins apprib@chthe minimum-of-margins approach in the
original paper, since the latter may fail when there are multiple optimal pslicie

2. Although only the trajectories of states and actions are available, théitmarfignctionT is assumed to be known in
MDP\R.
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Algorithm 1 IRL for MDP\R from the sampled trajectories using LP.

Input: MDP\R (S A T,Y), basis functiong, M trajectories
1: Choose a random initial policgy and sefl = {m }.
2: for k=1 toMaxlterdo
3:  Find& by solving the linear program:

maximizey Z] p (V™ (s0) = V(o))

subjectto |Gj|<1 i=1,2---,d

4:  Compute an optimal policyi1 for the MDP withR=G" ¢.
5. if VE(sp) —V+1(s0) < € then
6: return R
7.  dse
8: Mn=nu {Tl—k+]_}
9:  endif
10: end for
11: return R

Output: the reward functioik

Then, from the giveM trajectories, the value aig for the starting statey is estimated by the
average empirical return for an estimated reward fundiiend ' ¢:

R 1 MHl
V™ (s0) %VRé‘“a{

m:lt

%\/cp#“at

m=1t

The algorithm is presented in Algorithm 1. It starts with the set of poli€lesitialized by
abase caseandom policyry. Ideally, the true reward functioR should yieldV™(sy) > V(sp)
for Vit € M since the expert’s policy is assumed to be an optimal policy with respectRo
The values of other policies with a candidate reward funcRaare either estimated by sampling
trajectories or are exactly computed by solving the Bellman equation, Equéjiofe algorithm
iteratively tries to find a better reward functi®agiven the set of policieBl found by the algorithm
N = {m,..., T} up to iterationk, by solving the optimization problem in line 3, whepéx) is a
function that favorsx > 0.3 The algorithm then computes a new polimy, ; that maximizes the
value function under the new reward function, and axds to N. The algorithm continues until it
has found a satisfactory reward function.

The above algorithm was extended for the apprenticeship learning in the fkéitnework by
Abbeel and Ng (2004). The goal of apprenticeship learning is to leg@wliey from an expert’s
demonstrations without a reward function, so it does not compute therexeatd function that the
expert is optimizing but rather the policy whose performance is close to thia¢ @xpert’s policy
on the unknown reward function. This is worth reviewing, as we adapatgaithm to address the
IRL problems in partially observable environments.

We assume that there are some known basis functjosusd the reward function is linearly
parameterized with the weight vectmras in Equation (11). Also, assurie||1 < 1 to boundRmyax
by 1. The value of a policyt can be written using the feature expectatjgm) for the reward

3. Ng and Russell (2000) chogéx) = xif x> 0, andp(x) = 2xif x < 0 in order to favox > 0 but more penalize < 0.
The coefficient of 2 was heuristically chosen.
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Algorithm 2 Apprenticeship learning using QCP.

Input: MDP\R (S A T,y), basis functiong, M trajectories
1: Choose a random initial weightand sefl1 = 0.

2: repeat

3:  Compute an optimal policyt for the MDP withR=a .
4 MNM=nNu{m

5:  Solve the following optimization problem:

maximizeq t
subjectto o'pe > a'p(m) +t, Ve
lafz<1

6: untilt <e
Output: the reward functiorR

Algorithm 3 Apprenticeship learning using the projection method.

Input: MDP\R (S A, T,y), basis functiong, M trajectories
1. Choose a random initial policyp.

2. Setyy = | andi = 1.

3: repeat

4:  Seto =g —[_1.

5. Compute an optimal policy; for the MDP withR=a' ¢

6: Compute an orthogonal projection g onto the line througlp;,_; andy.
= = (W —Hi2) (M —Ho1) =
Hb Ty R

7. Sett = ||yg — W]l2, andi =i+ 1.

8: untilt<e

Output: the reward functiorR
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functionR=a' @as follows :
V() =E| 3 VR.M(E)) 50| =E| 3 Voo nis))ls
—a"E[ 3 vols.m(s)is] —aum,

wherep(T) = E[Y 2oV o(s, T(s))|S0]- Since the expert’s policy is not explicitly given, the feature
expectation of the expert’s policy cannot be exactly computed. Thusmpéieally estimate the
expert’s feature expectatiqr = p(1) from the given expert'd/ trajectories of the visited states

{sg,s1,---,S_1} and the executed actiogag,ay,--- ,a_;} by

1 M H-1

p‘E =1 V‘P(#TL atm)
W2, &

Abbeel and Ng (2004) propose apprenticeship learning algorithmsniding§ a policy whose
value is similar to that of the expert's policy based on the idea that the differehthe values
between the obtained poligyand the expert’s policye is bounded by the difference between their
feature expectations. Formally, this is written as follows:

VT (s0) =V (s0)| = o p(Te) — " p(TD)|
< lafl2]/Hg — 1(TD)[|2
< [l — W(m]|2 (12)

sincel|a||1 is assumed to be bounded by 1. The algorithm is presented in Algorithm 2opkhe
mization problem in line 5 can be considered as the IRL step that tries to findwlaed function
that the expert is optimizing. It is similar to the optimization problem in Algorithm 1epk¢that,
the optimization problem cannot be modeled as a linear programming (LP) prololerather as a
guadratically constrained programming (QCP) problem becaukgmdrm constraint om. Algo-
rithm 3 is an approximation algorithm using the projection method instead of Q@fPew denotes
p(tg) for all i. Both algorithms terminate wherx €. It is proved that both algorithms take a finite
number of iterations to terminate (Abbeel and Ng, 2004).

4. IRL in Partially Observable Environments

We denote the problem of IRL in partially observable environments as IRIP@VIDP\R and
the objective is to determine the reward function that the expert is optimizingndHy, IRL for
POMDP\R is defined as follows: Given a POMDBR (SA,Z, T,0,bp,y) and an expert's policy
T, find the reward functiomR that makest an optimal policy for the given POMDP. Hence, the
reward function found by IRL for POMD{R should guarantee the optimality of the expert’s policy
for the given POMDP.

IRL for POMDP\R mainly suffers from two sources: First, IRL is fundamentally ill-posed, an
second, computational intractability arises in IRL for POMPBHnN contrast with IRL for MDRR.
We describe these challenges below.

An IRL problem is an ill-posed problem, which is a mathematical problem thattisvet-
posed. The three conditions of a well-posed problem are existencelameiss, and stability of the
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solution (Hadamard, 1902). IRL violates the condition of the uniquenesslRA problem may
have an infinite number of solutions since there may be an infinite number afddéunctions that
guarantee the optimality of the given expert’'s policy. A degenerate one isothéon of every
IRL problem sinceR = 0 yields every policy optimal. Also, given an optimal policy for a reward
function, we can find some other reward function that yields the same optotiey pvithout any
modification to the environment by the technique of reward shaping (Ng é08i9).

As suggested by Ng and Russell (2000), we can guarantee the optimdliy eXpert's policy
by comparing the value of the expert’s policy with that of all possible polidiesyever, there are
an infinite number of policies in a finite POMDP, since a policy in a POMDP is deéfisex mapping
from a continuous belief space to a finite state space or representedH8Capolicy that might
have an infinite number of nodes. In contrast, there are a finite numbelicieg in a finite MDP,
since a policy in an MDP is defined as a mapping from a finite state space to afitide space.
In addition, in order to compare two policies in a POMDP, the values of thosgigmshould be
compared for all beliefs, because the value function is defined on a bpée€. This intractability
of IRL for POMDP\R originates from the same cause as the difficulty of solving a POMDP. The
optimal policy of a POMDP is the solution of a belief-state MDP using the corufemelief. It is
then difficult to solve an MDP with a continuous state space, since a policitsavalue function
are respectively defined as a mapping from the continuous state spaeditotéhaction space and
the real numbers.

In the following sections, we address the problem of IRL for POMRRconsidering two cases
as in the approaches to IRL for MDR. The first case is when the expert’s policy is explicitly
represented in the form of an FSC. The second case is when the sxmidy is implicitly given
by the trajectories of the expert’s executed actions and the corresgooiolservations. Although
the second case has more wide applicability than the first case, the fiestaade applied to
some practical problems. For example, when building dialogue managenstemsy we may
already have a dialogue policy engineered by human experts, but weostidtcknow the reward
function that produces the expert’s policy. We propose several metbhothe problems of IRL for
POMDP\R in these two cases. For the first case, we formulate the problem with @iotsfor the
reward functions that guarantee the optimality of the expert's policy. Toeaddhe intractability
of IRL for POMDP\R, we derive conditions involving a small number of policies and exploiting
the result of the classical POMDP research. For the second casepp@sp iterative algorithms
of IRL for POMDP\R. The motivation for this approach is from Ng and Russell (2000). We als
extend the algorithms proposed by Abbeel and Ng (2004) to partially vddsderenvironments.

5. IRL for POMDP\R from FSC Policies

In this section, we present IRL algorithms for POMI®Pwhen the expert’s policy is explicitly
given. We assume that the expert’s policy is represented in the formFg@nsince the FSC is one
of the most natural ways to specify a policy in POMDPs.

We propose three conditions for the reward function to guarantee the diptinfahe expert's
policy based on comparin@-functions and using the generalized Howard's policy improvement
theorem (Howard, 1960) and the witness theorem (Kaelbling et al., 1998)then complete the
optimization problems to determine a desired reward function.
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5.1 Q-function Based Approach

We could derive a simple and naive condition for the optimality of the expestisypby comparing
the value of the expert’s policy with those of all other policies. Given arrgpolicy T defined
by a directed grapk\/, ),

VT€(n,b) >V™(r,b), VbeA,vn e, (13)

for all nodesn € Al and all other policiest defined by a directed gragh\’, £'), whereA, denotes
the set of all the beliefs where nodés optimal. Sinc&/ ™ andV™ are linear in terms of the reward
function R by Equations (5) and (7), the above inequality yields the set of lineartreants that
defines the feasible region of the reward functions that guaranteesgbd’® policy to be optimal.

However, enumerating all the constraints is clearly infeasible becauseaveetb take into
account all other policie® including those with an infinite number of nodes, as well as all the
infinitely many beliefs im\,. In other words, Equation (13) yields infinitely many linear constraints.
Hence, we propose a simple heuristic for choosing a finite subset dfamns that hopefully yields
a tight specification of the feasible region for the true reward functiorst,Famong the infinitely
many policies, we only consider polices that alightly modified from the expert’s policy since
they aresimilar to the expert’s policy yet must be suboptimal. We select as the similar policies
those deviate one step from the expert’s action and observation strategikxjous to Equation (8).
For each node € A, there argA||A(|?l ways to deviate from the expert’s action and observation
strategies, hence we consider a totalagi |A| (| %! policies that deviate one step from the experts’
policy. Second, instead of considering all possible belief&inwe only consider the finitely
sampled beliefs reachable by the expert’s policy. The motivation for usérggtmpled beliefs comes
from the fact that only the set of beliefs reachable under the optimal gslioyportant for solving
POMDPs, and it is also widely used in most of the recent approximate POMDErs (Spaan
and Vlassis, 2005; Smith and Simmons, 2005; Pineau et al., 2006; Ji etGd;,Rrniawati et al.,
2008).

The above heuristic yields the following finite set of linear constraints: iGareexpert’s policy

T = (Y,n),
Q™ ((n,b), (Y(n),n(n,-))) > Q((n,b), (a,09), Vbe B, VacA Yose \?, (14)

for every noden in T, whereB, C A, denotes the set of sampled beliefs that are visited at node
n when following the expert’s policye from the initial beliefbg. The above condition states that
any policy that deviates one step from the expert’s action and obsergatatagies should not have

a higher value than the expert’s policy does. Note that the condition is &sagethough not

a sufficient one, since we do not use the set of all other policies buthasset of|A||A||A(|?!
policies that have the same (or possibly fewer) number of nodes as tea’'sxmlicy, nor do we

use the set of all beliefs iy, but use the set of sampled beliefs.

We use a simple example illustrating the approach. Consider a POMDP with twosaatid
two observations, and the expert’s polimy is the FSC represented by solid lines in Figure 1. The
nodes are labeled with actioreg@nda;) and the edges are labeled with observatiaaafidz;). In
order to find the region of the reward functions that yigigdss optimal, we build one-step deviating
policies as mentioned above. The policsTy,--- , 10, in the figure are the one-step deviating
policies for nodeng of 1. Note thatr visits noden instead of the original nod® and then exactly
follows 1. We then enumerate the constraints in Equation (14), comparing the valge@that
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Figure 1: Set of the policies that deviate one step from mpd# the expert’s policy.

of each one-step deviating policy. Specifically, the value at mgd# T is constrained to be not
less than the value at nodgof ¢, since deviating from the expert’s policy should be suboptimal. To
build the complete set of constraints in Equation (14), we additionally genematstep deviating
policies for noden; of T in a similar manner. We thus hai@&(||A||A|?l = 2 x 2 x 22 = 16 policies
that deviate one step fromg.

5.2 Dynamic Programming (DP) Update Based Approach

A more systematic approach to defining the set of policies to be compared withpbd's policy

is to use the set of FSC policies that arise during the DP update of the expelity. Given
the expert’s policyrg, the DP update generaté||A(|/?! new nodes for all possible action and
observation strategies, and these nodes can potentially be a new stadinglihe expert’s policy
should be optimal if the value is not improved for any belief by the dynamicraroming update.
This idea comes from the generalized Howard'’s policy improvement the@iemard, 1960):

Theorem 2 [Hansen, 1998] If an FSC policy is not optimal, the DP update transforms it into an
FSC policy with a value function that is as good or better for every belief statdatier for some
belief state.

The complete proof of the generalized policy improvement theorem canupel fio Hansen
(1998) but we give the full proof of the theorem for the convenieridth@readers. First, we should
prove the following lemma.

Lemmal Given an FSC policyt= (,n) and a node Rew Which is not included in, the value
function of node gy € Agpew With the action strategy of selecting action a and observation strategy
os is computed by

V¥ Nnew s) = R(s, a) +VZ T2%((Mnew 3), (', 5))VT(N',s), (15)

where V'is calculated from Equation (5) and®P* is defined in Equation (6). For some node n in
1L if V™®(nhew S) > VT(n, s), for Vs € S, the value of the original policy will not be greater than
that of the policy transformed by discarding node n and redirecting all theriting edges of node
n to node Rew

Proof We build a new policyr that follows the original policyrt, but executes the action and
observation strategies ofewfor the firstk times that noda is visited. The lemma is proved by the
induction on the number of timés
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For the base step= 1, the new policyy executes the action and observation strategiegof
only for the first time that noda is visited, and followst for the rest of the time steps. Then, for
any belief statd,

V™ (n,b) = Zb sV (n,s) Zb (S)V™™Nnew, S)
> Zb s)V(n,s) =V(n,b)
S
sinceV™(n,s) = V"™"(n,ew S) for all s € Sby the construction.

For the inductive step, we abuse notation to defdtés, a; ) as the reward at thieth time step
by following the policyT and starting from belieh and noden. Then, for any belief statie,

VT(n,b) =E_t;vtRW<st,at>\b}
~Tk—1

=E Zj YR%(s, ) +t§kVR“*(st,at)|b}

L&

T-1 . . .
ZE_;]V‘R (a,at)!bhEL_Zkv‘R (St,at)’b}

T—1
=E[ 3 ¥RY1(5.0 /0] +VFEV (b, o)

~Tk—1

>E Za VR (5,2 b] +YHEV(n, by ]
| 2

=V™1(nb)

whereT represents thk-th time that node is visited. The first equality holds by the definition of
the value function. The fourth equality holds by the constructiom.of andr and the definition of
the value function. The fifth inequality holds BY%(n, by, ) = V"®(npew, by, ) > V™(n, by ), sincery
executes the action and observation strategiesefatby, and executes those ofor the rest of the

time. Hence, by induction, it follows that the value of the transformed polioypotbe decreased
by replacingn with npew |

Using the above lemma, we can prove Theorem 2.

Proof (of Theorem 2) The policy iteration algorithm (Hansen, 1998) transforms the policy by
replacing the nodes with new nodes generated by the DP update usindlaiagnip rules: (1) If
there is an old node whose action and observation strategies are the stoseasf a new node,
the old node is unchanged. (2) If the value at an old node is less thanltieeataa new node, for
any state, the old node is discarded and all the incoming edges of the oldueodlirected to the
new node. (3) The rest of new nodes are added to the original policy.

Since the value is not decreased by leaving the policy unchanged ogadode to the policy,
the first and the third transformation rules cannot decrease the value, bAithe above lemma,
the second transformation rule cannot decrease the value. Thusluaef/the transformed policy
using the DP update does not decrease.
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Figure 2: Set of the newly generated nodes by the DP update.

Also, if every node generated by the DP update is a duplicate of a nodeandi@al policy, the
optimality equation, Equation (4) is satisfied and the original policy is optimal. ,Tihtie policy
is not optimal, the DP update must generate some non-duplicate nodes thge ¢ha policy and
improve the values for some belief state. |

We should proceed with caution however in the sense that the DP updateatogenerate all
the necessary nodes to guarantee the optimality of the expert’s policyeior leelief: The nodes in
the expert’s policy are only those reachable from the starting ngdehich yields the maximum
value at the initial belieby. Nodes that yield the maximum value at some other beliefs (i.e., useful)
but are not reachable frong are not present in the expert’s policy. To guarantee the optimality of the
expert’s policy for every belief, we need to generate those non-ekisteiseful nodes. However,
since there is no way to recover them, we only use nodes in the expert’y paticconsider only
the reachable beliefs by the expert’s policy.

Let Agew be the set of nodes newly generated when transforming the expert’s pyltbe DP
update, thenApew = |A||A(|Z. The value function of nod@new € Agew is computed by Equa-
tion (15). The value function of policse should satisfy

VT (n,b) > V"™ npew,b), Vb € Bp, VNnew € Npew (16)

for every noden € A if the expert’s policyre is optimal. Note thaV/"¢" as well as/™ are linear
in terms of the reward functioR.

To illustrate the approach, we reuse the example in Section 5.1. Figure 2 saawsolid lines
and the sef\(ew Of Nodes generated by the DP update in dashed lines. WA % = 2 x 22 =
8 nodes generated by the DP update, thisy= {ny, Ny, - - - ,n;} is the complete set of nodes with
all possible action and observation strategies. We then enumerate theictastr Equation (16),
making the value at each nodemf no less than the values at the node8\ja.. Since the number
of the newly generated nodes by the DP update is smaller than that of the pgkcierated by the
Q-function based approach in Section 5.1, the computational complexity is sagrilfi reduced.

5.3 Witnhess Theorem Based Approach

A more computationally efficient way to generate the &gs,, of new nodes is to use the witness
theorem (Kaelbling et al., 1998). We will exploit the witness theorem to finet @fsuseful nodes
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that yield the feasible region for the true reward function as the witnessitalgoincrementally
generates new policy trees that improve the current policy trees. Hergayvthat a node is useful
if it has greater value than any other nodes at some beliefs. Formallyisgpegiken an FSC policy
1, we define a séB(n,U) of beliefs where the value function of nodelominates those of all other
nodes in the sdf:

B(n,U) = {b|V"*(n,b) > V"™ b), for Vn' € U\ {n},Vb € A}
whereV"®(n,b) = 5 sb(s)V"(n,s) andV"®(n,s) is computed by Equation (15). Nodes useful
if B(n,U) # 0, andU is a set of useful nodes B(n,U) # 0 for all n € U. We re-state the witness

theorem in terms of FSC policies as the following:

Theorem 3 [Kaelbling et al., 1998] An FSC policym is given as a directed grapti\/, E). Let
Ua be a nonempty set of useful nodes with the action strategy of choosing actiod U be the
complete set of useful nodes with the action strategy of choosing actidren,Up, # U, if and only
if there is some nod@ e U,, observation Z and node he A for which there is a belief b such that

V" npew b) > V™(n,b)

forallne Oa, where Rewis a node that agrees within its action and all its successor nodes except
for observation z for whichn(npew, z°) = V'

Proof Theif direction of the statement is satisfied becansea witness point for the existence of
a useful node missing frotds.

Theonly if direction can be rephrased asiif =# U, then there is a node € U,, a belief state
b, and a new nodeyew that has a larger value than any other noded], atb.

Choose some node € U, —U,. Sincen* is useful, there must be a beleguch thav"¥(n*, b) >
veW b) for all noden’ € U,. LetA= argmax,.j, V"(n’,b). Then, by the construction,

V"®(n*, b) > V"Y(fA, b). (17)

Note that actiora is always executed & andri, since we consider only the nodes with the action
strategy of choosing actiamin the theorem.
Assume that for every observatian

> b(s)y T(s.as)0(s,azVT(n(n",2),s)
S g
<> b(s) ZT(S, a,5)0(s,a,2vV"(n(f,2),s).
Then
V™(n*,b) =% b(s)[Rs.a) +y) T(s,as)y O(s,a,zVT(n(n",2),s)]
S g z
< z b(s) [R(s,a) +y§ T(s,ay) z O(s,a,2V™(n(A,2),s)]

— VneW(ﬁ7 b)
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Figure 3: Set of the newly generated nodes by the witness theorem.

which contradicts (17). Thus, there must be some observztisach that
> b(s) ZT(S,a,d)O(d,a,z*)V”(n(n*,Z*),d)
> Y b(s)$ T(s,a5)0(s,a,2 )V (n(A,2),9).
s s

Now, if i andn* differ in only one successor node, then the proof is complete mithvhich can
serve as thenewin the theorem. Ih andn* differ in more than one successor node, we will identify
another node that can act ag,. Definenyey to be identical ton"except for observatioa®, for
whichn(npew, z°) = n(n*,z"). From this, it follows that

V™(Nnews b) = 3 b(s) [R(s,a)+ yg T(s,as) 3 O(s,a,2V(N(New 2), s)]

z

> Z b(s) [R(s,a) +y§ T(s,a,8) O(s,a,2V"(n(fi2),s)]

Z

=V"¥(f,b) > V™*(n,b)

forallne Ua. Therefore, the nodes and n,ey the observatiorz®, n' = n(n*,z*), and the belief
stateb satisfy the conditions of the theorem. |

The witness theorem tells us that if a polmys optimal, then the value af,ey generated by
changing the successor node of each single observation should reasador any possible beliefs.
This leads us to a smaller set of inequality constraints compared to EquatiobyI&finingAGew
in a different way.

LetAa = {ne A|@(n) =a} andA_, = {ac A|A; = 0}. Foreach actioa ¢ A_,, we generate
new nodes by the witness theorem: For each moden;, z* € Z, andn’ € A, we maken,ey such
that(nnew) = Y(A) = aandn(nnew, 2) = N(A,z) for all ze Z except forz*, for whichn (Npew, Z°) =
n’. The maximum number of newly generated nodes by the witness theorgmAg||A||Z] <
|A(|?|Z]. Then, for each actioac A_,, we use the DP update to generbﬁgNHNUZ‘ additional
nodes. The number of newly generated nddgs. is no more than\(|?|Z| + |A_,||A(|/!. Note
that this number is often much less thii|A(|I%!, the number of newly generated nodes by DP
update, since the number of actidAs ,| that is not executed at all by the expert’s policy is typically
much fewer thanA|.

We again reuse the example in Section 5.1 to illustrate the approach. We builet thg.s
of new nodes using the witness theorem. The left panel of Figure 3 sti@msonstruction of
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maximizee ¥ Y Y [V“((n,b))—Q“((n,b>,(a,os>)]—}\HRHl
neAbEBn  acA\Y(n)
oseA*\n(n,)

subjectto  Q"((n,b), (W(n),n(n,-))) > Q"((n,b), (a,09)),
Vb € By, Va e A Vose A2, Vne N
IR(s,a)| < Rmax, Vs, Va

Table 2: Optimization problem usin@-function based optimality constraint.

maximizex % [V"(n, b) —V"™"(npew b) | — A[|R||1
nen beBn NnewE Apew
subjectto  V™(n,b) > V"™"(nhew,b), Vb € B, VNnew € Ajews VN € N

IR(s,a)| < Rmax  Vs,Va

Table 3: Optimization problem using the DP update or the witness theorem tatelity con-
straint.

new noden; from nodeng such thatp(ng) = Y(ng) = ag andn(ny,z1) = n(no,z). The original
observation strategy @t for zy transits ton; (shown in dotted line), and it is changedrig(shown
in dashed line). The right panel in the figure presents the complet&gs@tof generated nodes
using the witness theorem (shown in dashed lines). Noglesdn; are generated from nodwg,
whereas nodes, andn are from noden;. Note thatA_,, = 0 sincete executes all actions in the
model. We thus have a total of 4 generated nodes, which is smaller than #o=migd by either
the Q-function based or the DP update based approach.

5.4 Optimization Problem

In the previous sections, we suggested three constraints for the rewaatobn that stem from the
optimality of the expert’s policy, but infinitely many reward functions can satisé constraints
in Equations (14) and (16). We thus present constrained optimizatiorlepmsbwith objective
functions that encode our preference on the learned reward funétgim Ng and Russell (2000),
we prefer a reward function that maximizes the sum of the margins betweaxpleet's policy
and other policies. At the same time, we want the reward function as spapessible, which
can be accomplished by adjusting the penalty weight or.theorm of the reward function. If we
useQ-function based optimality constraint, that is, Equation (14), the value ofxperes policy
is compared with those of all other policies that deviate from the expert’snaatid observation
strategies, given in Table 2. When using the DP update or the witnessrhdased optimality
constraint, that is, Equation (16), the policies other than the expert’'s palecgaptured in newly
generated nodes,e, hence the optimization problem now becomes the one given in Table 3. Since
all the inequalities and the objective functions in the optimization problems are liméarms
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of the reward function, the desired reward function can be foundesifig by solving the linear
programming problems.

When usingQ-function or the DP update based approach, the number of policies cedywih
the expert’s is exponential to the number of observations, and henceittigen of constraints in
the optimization problems increases exponentially. This may become intractabldéoz\a small
size expert’s policy. We can address this limitation using the witness theorsad bpproach, since
it is sufficient to consider as few 4&(|?|Z| nodes if the expert’s policy executes all actions, which
is common in many POMDP benchmark problems.

6. IRL for POMDP\R from Sampled Trajectories

In some cases, the expert's policy may not be explicitly given, but therdsoaf the expert's
trajectories may be available instehdHere, we assume that the setldfstep belief trajecto-
ries is given. Themth trajectory is denoted bybg',bY",... b} _;}, wherebf = bg for all me
{1,2,--- ,M}. If the trajectories of the perceived observatidag, z",...,Z}_;} and the executed
actions{ag,af,....a}_,} following the expert's policy are available instead, we can reconstruct
the belief trajectories by using the belief update in Equation (3).

In order to obtain an IRL algorithm for POMDR from the sampled belief trajectories, we
linearly parameterize the reward function using the known basis funafioSs< A — [0,1]¢ and
the weight vecton € [—1,1]9 as in Equation (11)R(s,a) = a’ @(s,a). This assumption is useful
for the problems with large state spaces, because with some prior knovelbdgethe problems,
we can represent the reward function compactly using the basis functt@nsxample, in robot
navigation problems, the basis function can be chosen to capture theeteattine state space, such
as which locations are considered dangerous. In the worst casensharch prior knowledge is
available, the basis functions may be designed for each pair of state taond sthat the number
of basis functions i$S| x |A|. The objective of IRL is then to determine the (unknown) paranteter
of the reward functiolR=a' .

In this section, we propose three trajectory-based IRL algorithms for PBR. The algo-
rithms share the same framework that iteratively repeats estimating the parafmtterreward
function using an IRL algorithm and computing an optimal policy for the estima&teend function
using a POMDP solver. The first algorithm finds the reward function thaimiaes the margin
between the values of the expert’s policy and other policies for the samglietstusing LP. This is
a simple extension to Ng and Russell (2000). The second algorithm contpateswvard function
that maximizes the margin between the feature expectations of the expertisgpadiother policies
using QCP. The last algorithm approximates the second using the projectibodn&he second
and third algorithms are extended from the methods originally suggestediBrévivironments by
Abbeel and Ng (2004).

4. As in the IRL for MDRR from sampled trajectories, we assume that the transition and obseriatiions are
known in POMDRR.
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Algorithm 4 IRL for POMDP\R from the sampled trajectories using the MMV method.

Input: POMDP\R (S A,Z,T,0,by,Y), basis functiong, M trajectories
1. Choose a seéB™ of all the unique beliefs in the trajectories.
2: Choose a random initial policgs and sefl = {m }.
3: for k=1 toMaxlIterdo
4:  Find & by solving the linear program:

maximize, ;b %@ D(VT[E(b) —V"(b)) —A|&T 2

subjectto |Gi| <1, i=12---,d

5:  Compute an optimal policyi. 1 for the POMDP withR = G/ ¢.
6. if VE(b)— v”k+1( )| <&, Vb€ B™ then
7: return R= ak(p
8: dse
9: Mn=nu {le_;,.]_}
10: endif
11: end for

12: K = argmin.y, e Maxpegre V7€ (b) — V7 (b)|
13: return R=ayo X
Output: the reward functiorr

6.1 Max-Margin between Values(MMV) Method

We first evaluate the values of the expert’s policy and other policies fow#ight vectora of a
reward function in order to compare their values. The reward for beliethen calculated by

R(b,a) = %b(s)R(s, a) = Zb(s)aT(p(s, a) =o' @(b,a),

whereg(b,a) = 5 ¢ sb(S)@(s, a). We also computeé™ (b]') to be the empirical return of the expert’s
mth trajectory by

it m .m i T m .m
:tZDVtR(bt’at):tZOyta (p(bt 7a{)

Noting thath' = by for all m, the expert’s average empirical returrbgtis given by

M M H—1y[
(bM =aT = m am. 18
n; 0) n;t; o, &) (18)

which is linear in terms ofi. In a similar manner, we can compute the average empirical return of
the expert’s trajectories at other beligfsby

<
I

. i % b _— i _ vt*Hjm(p(btm a{m) (19)
J M o J Mj Hjm ) )

1t=

T

whereHjm is the first time thab; is found in them-th trajectory andVl; is the number of trajectories
that contairb;.
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Given the above definitions, the rest of the derivation is fairly straigivdiod, and leads to a
similar algorithm to that of Ng and Russell (2000). The algorithm is shown irovtdgm 4. It
iteratively tries to find a reward function parameterizeditpat maximizes the sum of the margins
between the valug™ of the expert’s policy and the valig™ of each FSC policyt € N found so
far by the algorithm at all the unique belidis B™ in the trajectories. We could consider the initial
belief by alone, similar to Ng and Russell (2000) considering the initial stadone. However,
we found it more effective in our experiments to include additional beligiseghey often provide
better guidance in the search of the reward function by tightening the feasiion. In order to
consider the additional beliefs, we should be able to compute the W&8loEthe intermediate policy
Ttat beliefb € B™, but it is not well definedb may be unreachable undeand it is not known that
we will visit b at which node oft. In our work, we use an upperbound approximation given as

VT(b) ~ mr?xV"(n, b), (20)

whereV™(n,b) is computed by Equation (7).

The IRL step in line 4 finds the reward function that guarantees the optimalttyeagxpert’s
policy. In the optimization problem, we constrain the value of the expert’s padidye greater
than that of other policies in order to ensure that the expert’s policy is optandlmaximize the
sum of the margins between the expert’s policy and other policies using aomizally increasing
functionp.® In addition, we prefer the sparse reward function and the sparsity téaheed reward
function can be achieved by tuning the penalty weilghfNote that we can solve the IRL step in
Algorithm 4 using LP since all the variables suchvds andV™ are linear functions in terms of
from Equations (18), (19), and (20).

WhenTi . 1 matchest, the differences in the value functions for all beliefs will vanish. Hence,
the algorithm terminates when all the differences in the values are below #htide, or the
iteration number has reached the maximum number of $fklspdter to terminate the algorithm in
a finite number of iterations.

6.2 Max-Margin Between Feature Expectations (MMFE) Method

We can re-write the value of a FSC polioyin POMDPs using the feature expectatiafm), pro-
posed by Abbeel and Ng (2004) as follows:

V7(bo) = E[ 5 YR(bya0lmbo] =E[ 5 v ol a) ity
=a"E[ 5 o(b. )] = aum,

wherep(m) = E[S 1oV o(bx, & )|t bo], and it is assumed thitr||; < 1 to boundRmaxby 1. In order
to compute the feature expectatip(rt) exactly, we define the occupancy distributiooc™(s, n)
of the policy Tt that represents the relative frequency of visiting staé¢ noden when following
the policytt= (,n) and starting from belieiy and noden. It can be calculated by solving the

5. We simply choos@(x) = x if x> 0 andp(x) = 2xif x < 0 as in Ng and Russell (2000). This gives more penalty to
violating the optimality of the expert’s policy.
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Algorithm 5 IRL for POMDP\R from the sampled trajectories using the MMFE method.
Input: POMDP\R (S A,Z,T,0,by,Y), basis functiong, M trajectories

1. Choose a random initial weigldy.

2: M =0, Q=0, andt = oo,

3: for k=1 toMaxlterdo

4:  Compute an optimal policy_; for the POMDP withR = ak 1.
5 N=NuU{m-1} andQ =Qu{ak_1}.
6: ift<ethen
7: break
8: endif
9:  Solve the following optimization problem:
maximizeq, t
subjectto  ofpe > ofu(T) +t, Ve n
lokl2<1
10: end for

11: K = argmine, cn [[Me — H(TW) 2
12: return R=a}@
Output: the reward functiorR

following system of linear equations:

occ(s,n") = bo(s, )8y n,+
YT 0cd¥(snT(s,W(n),8)O(S, W), 28y nny. V8 € SN € A

SZn

whered, y denotes the Kronecker delta function, defined,gs= 1 if x =y anddyy = 0 otherwise.
With the occupancy distribution, the value of the politgan be computed by

— 3 oc(s mR(s, () = T ocd(s,n)a” o(s, y(n)) = a (),

wherep(m) = ys,0cC(s,n)@(s,P(n)). However, the feature expectation of the expert’s patigy
cannot be exactly computed, because we only have the set of trajectoties belief space, which
are recovered from the given trajectories of the actions and the alisery, instead of the explicit
FSC form of the expert’s policy. Hence, we estimate the expert’s feakpeceationy(Te) = P

empirically by
M H-1

Zjv‘cp (b", af"

m:lt

From these definitions, we can derive the following inequalities, which iangas to Equa-
tion (12),

[V (bo) — V™ (bo)| = |a" pg — T ()|
< llallzllve — 2
< llbe — WM |l2. (21)
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Algorithm 6 IRL for POMDP\R from the sampled trajectories using the PRJ method.
Input: POMDP\R (S A,Z,T,0,by,Y), basis functiong, M trajectories

1. Choose a random initial weigldy.

2: Compute an optimal policyi for the POMDPR = o ¢.

3: M= {m}, Q= {ao}, Uy = Hg andt = co.

4. for k=1 toMaxlterdo

51 Ok =Hg — Mk_1-
6: Compute an optimal policyy for the POMDPR = O(I(p.
7. N=Nu{rg}andQ = Qu{a}.
8: ift<ethen
9: break
10:  endif
11:  Compute an orthogonal projectionaf onto the line througlw,_; andpy
= _ = (M= i) " (Mg — P n) =
M B o R )T (o) e

12 t= e — 2

13: end for

14: K= argmincnkel'l (e — Kl [2-
15: return R=o0} @

Output: the reward functioiR

The last inequality holds since we assujioel; < 1. The above inequalities state that the difference
between the expert’s poliag and any policyrtis bounded by the difference between their feature
expectations, which is the same result as in Abbeel and Ng (2004). Badeguation (21), we can
easily extend Algorithm 2 to address the IRL problem for POMRRom the sampled trajectories.
The algorithm is presented in Algorithm 5. While we can solve Algorithm 4 usidghe algorithm
requires a QCP solver, since the optimization problem in line 9 has a 2-narsiraimt ona. Note
that it is proved that the algorithm will terminate in a finite number of iterations ine&bbnd Ng
(2004).

Abbeel and Ng (2004) construct a policy by mixing the policies found byatgerithm in
order to find the policy that is as good as the given expert’s policy. Thegse the weight of the
policies by computing the convex combination of feature expectations that misithieedistance
to the expert’s feature expectation. However, this method cannot bé&eddapour IRL algorithm,
because there is no way to recover the reward function that providestheuted mixed policy.
Thus, we return the reward function that yields the closest featuretatjpa to that of the expert’s
policy among the intermediate reward functions found by the algorithm. Bytiequ@1), the value
of the policy that generates the closest feature expectation is assuedimilar to the value of the
expert's policy and we hope that the reward function that yields the ¢ltesgsire expectation will
be similar to the reward function that the expert is optimizing.

6.3 Projection (PRJ) Method

In the previous section, we described the IRL algorithm for PONB®Rom the sampled tra-
jectories using QCP. We can now address the problem using a simpler mashallbeel and Ng
(2004) proposed. The IRL step in Algorithm 5 can be considered fdimfgnthe unit vectogy, or-
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thogonal to the maximum margin hyperplane that classifies feature expestatiotwo sets: One
set consists of the expert’s feature expectation and the other settsarislse feature expectations
of the policies found by the algorithm. The unit vecggrcan then be approximately computed by
projecting the expert’s feature expectation on the line between the feapeetations of the most
recent policy and the previously projected point. The algorithm is showrgorhm 6. In the
algorithm,; denotesu(tg) for all i andp denotes the point where the expert’s feature expectation is
projected. Similar to Algorithm 5, the algorithm returns the reward functionytiedds the closest
feature expectation to that of the expert’s policy among the intermediatedéweations found by

the algorithm.

7. Experimental Results

In this section, we present the results from the experiments on some PO&f2Rrbark domains -
Tiger, 1d Maze 5x5 Grid World, Heaven/Hell andRock Sampleroblems. The characteristics of
each problem is presented in Table 4 and brief explanations are gil@n be

The Tiger and1d Mazeproblems are classic POMDP benchmark problems (Cassandra et al.,
1994). In theTiger problem, an agent is standing in front of two doors. There is a rewdrtthde
one of the doors and a tiger behind the other. If the agent opens themitbdhe tiger, it gets a
large penalty (-100). Otherwise, it receives the reward (+10). Geatanitially does not know the
location of the tiger. It can infer the location of the tiger by listening for thensloaf the tiger with
a small cost (-1) and the correct information is given with some probabili8b{0 In theld Maze
problem, there are 4 states as presented in the first panel of Figure #hifichstate from the left is
the goal state. An agent is initially set to the non-goal states with equallghitiea and can move
left or right. The agent observes whether it is at the goal state or noenWte agent reaches the
goal state, it is randomly moved to a non-goal state after executing any.action

The 5x 5 Grid World problem is inspired by a problem in Ng and Russell (2000), where the
states are located as shown in the second panel of Figure 4. An agenbea west, east, north or
south, and their effects are assumed to be deterministic. The agent atadg$rom the north-west
corner of the grid and the goal is at the south-east corner. After thit agaches the goal state,
the agent restarts from the start state by executing any action in the gealldta current position
cannot be observed directly but the presence of the adjacent walleqgaerceived without noise.
Hence, there are nine observations, eight of them correspondinghtopeissible configurations of
the nearby walls when on the border (N, S, W, E, NW, NE, SW, and 3#)pae corresponding to
no wall observation when not on the border (Null).

The Heaven/Hellproblem (Geffner and Bonet, 1998) is a navigation problem over thesstate
depicted in the third panel of Figure 4. The goal state is either position 4 @n& of these is
heaven and the other is hell. When the agent reaches heaven, iesagigward (+1). When it
reaches hell, it receives a penalty (-1). It starts at position 0, ansl mioeknow the position of
heaven. However, it can get the information about the position of heaftenvisiting the priest at
position 9. The agent always perceives its current position withouhaisg. After reaching heaven
or hell, it is moved at the initial position.

The Rock Sampl@roblem (Smith and Simmons, 2004) models a rover that moves around an
area and samples rocks. The locations of the rover and the rocksawa Kiine rocks are marked
with stars in the fourth panel of Figure 4), but the value of the rocks akeawn. If it samples a
good rock, it receives a reward (+10), but if it samples a bad rockcéives a penalty (-10). When
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Problem 1S A 12y AN [Unea Bal
Tiger 2 3 2 075 5 5
1d Maze 4 2 2 0.75 3 4
5x5GridWorld 25 4 9 0.90 2 13
Heaven/Hell 20 4 11 099 18 19
Rock Sampld,3] 129 8 2 095 16 22

Table 4. Characteristics of the problem domains used in the experimentfie discount factor.
|A(]: The number of nodes in the optimal polidyJ,c 4 Bn|: The total number of beliefs
reachable by the optimal policy.

1d Maze 5x5 Grid World Heaven/Hell Rock Sample[4,3]
0 T P 3 0 i P ] 3 @ B P 5 B
G S X
5 6 8 9 i
S
(L (AR T 0 Exit
s x
5 16 17 [18 [19 B 2]
X
PO pT P2 P23 14
G

Figure 4: Maps for thdd Maze 5 x 5 Grid World, Heaven/HellandRock Sampld,3] problems.

the rover tries to sample at the location without any rocks, it receives a pmgalty (-100). The
rover can observe the value of the rocks with a noisy long range sénsatdition, it gets a reward
(+1) if it reaches the right side of the map. When it reaches other sidix® ohap, it gets a large
penalty (-100). The rover is immediately moved to the start position when irs@veutside of the
map. TheRock Sampl@roblem is instantiated @&ock Sampl@, k]|, which describes that the size
of the map i x nand the number of the rocks on the mag,iand our experiment was performed
onRock Sampld,3].

To evaluate the performance of the IRL algorithms, we could naively cosrtpartrue reward
functions in the original problems to the reward functions found by the @fgos. However, it
is not only difficult but also meaningless to simply compare the numerical valutdse reward
functions, since the reward function represents the relative importdreoeouting an action in a
state. Completely different behaviors may be derived from two rewarctifans that have a small
difference, and an identical optimal policy may be induced by two rewandtions that have a
large difference. For example, three reward functions inftger problem are presented in Table 5,
whereR* is the true reward function arigh andR; are two reward functions chosen for explaining
the phenomenon. When the distances are measurkegdigrm,

Dist(R,R*):HR*—R|2:\/; (R*(s,a) —R(s,a))2,
seSacA

the reward functiorR, is more similar toR* than the reward functioR;. However, as shown in
Figure 5, the optimal policies fdR* andR; are exactly the same while the optimal policy &
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Listen Success Failure Di®RR*) V™ (by;RY)

R* -1 10 -100 0 1.93
Ry -1 5.68 -100 6.10 1.93
R, 3.05 10 -100 5.73 1.02

Table 5: Three reward functions in tAger problem.R* is the true reward functiori.isten The
negative cost of listeningsuccessThe reward of opening the correct doéailure: The
negative penalty of choosing the door with the tigBist(R,R*): The distance from the
true reward functions/™(bp; R*): The value of the optimal policy for each reward function
measured on the true reward function.

Figure 5: Optimal policies for the reward functions in Table 5. The nodes$adeled with actions
(Listen, OL: Open-left, OR: Open-right). The edges are labeled witkerohtions (TL:
Tiger-left, TR: Tiger-right).Left The optimal policy forR* andR;. Right The optimal
policy for Ry.

is different from that forR*. If we still want to directly evaluate the computed reward function
using a distance measure, we could apply the policy-invariant rewarsfaramtion on the true
reward function and compute the minimum distance, but it is non-trivial to dree there is an
infinite number of transformations to choose from including the positive litraasformation and
the potential-based shaping (Ng et al., 1999). Therefore, we companaline functions of the
optimal policies induced from the true and learned reward functions instedidectly measuring
the distance between the reward functions.

The performance of the algorithms are evaluated by the differences imlines\of the expert’s
policy and the optimal policy for the learned reward function. In the evalosgtithe value of each
policy is measured on the true reward functi®rand the learned reward functié, and we define
the valuev™(bg; R) of a policyt at the initial beliefop measured on a reward functi®as

Vn(bo; R) = Zbo(S)Vn(no,S; R),

se

whereng is the starting node of a policg andV™(ng, s; R) is computed by Equation (5) using the
reward functiorR.
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Problem  D(R') D(R) [Abew Time
Q-IRL D-IRL  W-IRL Q-IRL D-IRL W-IRL
Tiger 0 0 375 75 39 0.07 0.04 0.03
1d Maze 0 0 54 18 12 0.02 0.02 0.02
5x 5 Grid World 0 0 4096 2048 1044 78.06 3.00 1.54
Heaven/Hell 0 0 463x 10 2.57x 104 3260 na. na. 6.20
Rock Sampld,3] 13.42 0 32768 2048 634 77.99 19.20 3.77

n.a. = not applicable

Table 6: Results of IRL for POMDfR from FSC policies. Q-IRL, D-IRL, and W-IRL re-
spectively denote th€-function based approach, the DP update based approach, and
the witness theorem based approadd(R*) = |[V™(bp; R*) — V™ (bg; R*)|. D(R.) =
IV (bo; R.) —V™ (bo; RL)|- |Abewl denotes the number of newly generated policies. The
average computation times are reported in seconds

Our algorithm requires a POMDP solver for computing the expert’s policytla@ intermediate
optimal policies of the learned rewards. Since we assume the policy is in thefan FSC, we use
PBPI (Ji et al., 2007), which finds an optimal FSC policy approximately omghehable beliefs.
Optimization problems formulated in LP and QCP are solved using ILOG CPLEX.

The experiments are organized into two cases according to the reptiesenfahe expert’s
policy. In the first case, the expert’s policy is explicitly given in the formaoFSC, and in the
second case, the trajectories of the expert's executed actions andrésponding observations are
given instead.

7.1 Experimentson IRL from FSC Policies

The first set of experiments concerns the case in which the expert'y mbksplicitly given using

the FSC representation. We experimented with all three approaches innSeclibe Q-function
based approach, the DP update based approach, and the withnesatbased approach. As in the
case of IRL for MDRR, we were able to control the sparseness in the reward function by tuning
the penalty weighh. With a suitable value foh, all three approaches yielded the same reward
function®

A summary of the experiments is given in Table 6. SinceHkaven/Helproblem has a larger
number of observations than other problems and}tfienction and the DP update based approaches
generate exponentially many new policies with respect to the number ofvakises, the optimiza-
tion problems of theQ-function and the DP update based approaches were not able to hasmdle th
Heaven/Hellproblem. Hence, theleaven/Hellproblem could only be solved by the witness theo-
rem based approach. Also, the witness theorem based approadhlevessolve the other problems
more efficiently than th€@-function based approach and the DP update based approach.

6. With any value of\, the reward functions computed by all the proposed optimization protdbmdd guarantee the
optimality of the expert’s policy, except for the degenerated &sed due to an overly large value af However,
we observed that the optimality of our solutions is often subject to numerioals in the optimization, which is an
interesting issue for future studies.
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Reward

Left Middle Goal Right Left Middle Goal Right
Move left Move right Goal /Nothing
Figure 6: Comparison of the true and learned reward functions and pestisxpolicy in theld
Mazeproblem. Black bars The true reward functionWhite bars The learned reward
function.

In Table 6,D(R*) = |[V™(bo; R") — V™ (bp; R*)| is the difference between the values of the
expert’s policyre and the optimal policy. for the learned reward, which are measured on the
true reward functiolR*. D(R.) = [V (bg; R.) — V™ (bo; R.)| is the difference between the values
measured on the learned reward functi®pn The differences measured on the true reward function
in theTiger, 1d Maze 5 x 5 Grid World, andHeaven/Hellre zero, meaning that the learned reward
function generated a policy whose performance is the same as that opém'®policy. However,
our algorithms failed to find the reward that generates a policy that is optiméeotrue reward
in the Rock Sampld,3]. Nevertheless, we can say that the learned reward funBlicgatisfies
the optimality of the expert’s policye since the policyry is an optimal policy on the learned
reward functiorR_ and|V™ (bg; R_) — V™ (bp; R.)| = 0. Thus, the reason for our algorithms’ failure
in the Rock Sampld,3] might be that the objective functions in the optimization problems are
not well formulated to choose an appropriate reward function that yieldslieypsimilar to the
expert’s, among the infinitely many reward functions in the space specifidelronstraints of the
optimization problems.

We further discuss the details of the results from each problem below.|eBineed reward
functions are compared to the true reward functions fofTiger, 1d Maze 5 x 5 Grid World, and
Heaven/Helproblems, but the reward function in tReck Sampld,3] problem is omitted since it
has too many elements to present.

In the Tiger problem, the true and learned reward functions are respectivelyseyisz af*
andR; in Table 5. The true reward function is not sparse. Every action is @asedavith a non-
zero reward. Since our methods favor sparse reward functions, ifieome degree of difference
between the true and the learned reward functions, most notably for the disten, where our
methods assign a zero reward instead of -1 as in the true reward. Howewvean apply the policy-
invariant reward transformation (Ng et al., 1999) on the learned refnaation so that listen action
yields -1 reward. R; is the transformed learned reward function. It is close to the true reward
function and produces the optimal policy whose value is equal to the valthe @fxpert’s policy
when measured on the true reward function.

For theld Mazeproblem, the learned reward function is compared to the true reward fanctio
in the left panel of Figure 6 and the expert’s policy is presented in the pghel of Figure 6. The
expert's policy has three nodes: Nodg(the starting node) chooses to move right, and changes
to noden; upon observindNothingor to nodeny upon observingsoal, noden; chooses to move
right and always changes to nodg nodeng chooses to move left, and changes to noglepon
observingNothingor to itself upon observingoal. Following the expert’s policy, moving left is
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Reward
o
(4,

0
s13 s17 s18 s24 s13 s17 s18 s24 s13 s17 s18 s24 s13 s17 s18 s24 N/S/W/E/NW/

Move north Move south Move west Move east NE/SW/SE/Null

Figure 7: Comparison of the true and the learned reward functions arekpieet's policy in the
5 x 5 Grid World problems. Black bars The true reward.White bars The learned
reward.
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Figure 8: Learned reward function in thieaven/Hellproblem.Black arrow +1 reward for mov-
ing in the direction of the arrow in each staank grid Zero reward for all actions in
each state.

always executed after perceiving the goal state. This causes théhatyoto assign the positive
reward to moving left in the goal state as the true one, but the zero rewanahMag right in the goal
state unlike the true one. Consequently, the algorithms find the reward funictibexplains the
behavior of the expert’s policy, and the optimal policy from the POMDP witipeet to the learned
reward function is the same as the expert’s policy.

In the 5x 5 Grid World problem, the expert’s policy is simple as depicted in the right panel
of Figure 7: The agent alternates moving south and east from the staihgvibe states in the
diagonal positions (i.e{So,Ss,Ss,S11, S12, S17, S18, 23, S24} and {So, 81,6, 7,812,513, S18,S19, S24}).
The learned reward function is presented with the true reward functior iletihpanel of Figure 7.
Our methods assign a small positive reward for moving south in states 138aartiimoving east
in states 17 and 18. Also, the reward for moving south and east in state &dideed to+1 for
reaching the goal. The learned reward function closely reflects thesioelwd the given expert’
policy. Again, even though the learned reward function is differenbftioe true one, it yields the
same optimal policy.

Finally, in theHeaven/Hellproblem, the true reward function sl for states 4 and 16 being
heaven, and-1 for states 6 and 14 being hell. The learned reward is presented in Bigunere
the agent gets a1 reward when moving in the direction of the arrow in each state. The learned
reward function exactly describes the behavior of the expert, whidhvigiss the priest in states 9
and 19 starting from states 0 and 10 to acquire the position of heaven anohtives to heaven in
states 4 and 16. As shown in Table 6, the learned reward function iHeeen/Hellproblem also
yields the policy whose value is equal to that of the expert’s policy.
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7.2 Experimentson IRL from Sampled Trajectories

The second set of experiments involves the case when the expert'sarigieare given. We exper-
imented on the same set of five problems with all three approaches in Sectioa Biax-margin
between values (MMV), the max-margin between feature expectations @JMIRd the projection
(PRJ) methods.

In this section, the reward function is assumed to be linearly parameterizetheitfasis func-
tions and we prepare four sets of basis functions to examine the eftéetcifioice of basis functions
on the performance of the algorithms:

e Compact The set of basis functions that captures the necessary pairs ofatdtastions to
present the structure of the true reward function. Eet {Fy,Fy,---,Fy} be a partition of
Sx Asuch thatv/(s,a) € K have the same reward val&és, a). Thecompactbasis functions
for the partitionF is defined such that thieth basis functionp(s,a) = 1 if (s,a) € K and
@(s,a) = 0 otherwise.

e Non-compact The set of basis functions that includes all the compact basis functiwmhs a
some extra redundant basis functions. Each basis fungtinassociated with some set of
state-action pairs as above.

e State-wise The set of basis functions that consists of the indicator functions fdr state.
Thei-th basis function is defined &s(s) = 8¢ (s) if i-th state iss.”

e State-action-wiseThe set of basis functions consists of the indicator functions for eaich p
of state and action. Thieth basis function is defined &s(s,a) = (¢ «)(s,a) if i-th pair of
state and action i, &).

For small problems, such as thger, 1d Maze and 5x 5 Grid World problems, we exper-
imented withstate-action-wisédbasis functions. For the two larger problems, three sets of basis
functions are selected. For tieaven/Hellproblem, the first set consists of tkempactset of
basis functions. Table 7 shows the Bebf pairs of states and actions for each basis function. The
second set consists of tis¢ate-wisebasis functions and the third set consists of $tete-action-
wisebasis functions. For thRock Sampld,3] problem, the first set consists of thempactset of
basis functions. The left side of Table 8 shows thesef pairs of states and actions for each basis
function. The second set consists of tlm-compacset of basis functions including the redundant
functions that present the rover’s using its senggg)( moving on the mapq 1), sampling at some
locations without rocksdh >—15), and sampling at the rest of the locatioggg]. The right side of
Table 8 presents the set of the pairs of states and actions faptheompacbasis functions. The
third set consists of thetate-action-wiséasis functions.

For each experiment, we sampled 2000 belief trajectories. Each trajectoupdsited after a
large finite numbeH of time steps. If we truncate the trajectories aftigr= log, (€(1 —Y)/Rmax)
time steps, the error in estimating the value would be no greatercthtaible 9 shows the number
of time steps for each problem.

As in the previous section, we comparé-(bp; R*) at each iteration, which is the value of
the policyty from the learned reward functid_ evaluated on the true reward functiéf. The
results are shown in Figure 9. All the algorithms found the reward functianginerate the policy

7. Here, we use the Kronecker delta function, thadisj) = 1 if i = j, andd;(j) = 0if i # j.
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F States Actions
Fo Y1 *
F1 S16 *
F S5 *
Fs S14 *
Fa  S\{s4,%,514,S16} *

Table 7: Sets of state-action pairs for twnpactet of basis functions in tHéeaven/Helproblem.
The states, ands;g represent heaven and the statgands;4 represent hell.

F States Actions F States Actions

Fo x=0 Move west  Fp, -+ ,Fg Same as in theompactset

F1 x=3 Move east Fio * Use the sensor
F y=0 Move south F11 * Move

Fs y=3 Move north Fi2 (xy) =Lg Sample

Fs (x,y) =Lo,ro=true  Sample Fis (xy) =L} Sample

Fs (xy)=Lo,ro= false Sample Fia xy) =L, Sample

Fe (X,y)=Ljy,rp=true Sample Fis (x,y) =1L5 Sample

F (x,y) =Ly,r; = false Sample Fie (XY ¢ {Li,vi,Lj,Vj} Sample

Fs (x,y)=La,rpo=true Sample Fi7 The remaining state-action pairs

Fo (xy) =Lo,rp=false Sample
Fio (xy) ¢ {Lj,vi} Sample
Fi11  The remaining state-action pairs

Table 8: Sets of state-action pairs for tb@mpact(Leff) and non-compacset of basis functions
(Righy) in the Rock Sampld,3] problem.(x,y) denotes the location of the rové, is the
location ofi-th rock. L{ is a randomly chosen location without rocks.is the Boolean
variable for representing whether thth rock is good or not.

close to the expert’s policy in small problems, that is, Tiger, 1d Maze and 5x 5 Grid World
problems. They also converged to the optimal value in a few iterations wheg tie compact
set of basis functions in the two larger problems, that is,Heaven/Helland Rock Sampld,3]
problems. However, more iterations were required to converge when sgteof basis functions
were used. This is due to the fact that a larger number of basis functiduses a larger search
space. In thédeaven/Hellproblem, the MMV method converged to a sub-optimal solution using
the state-wisebasis functions although the true reward function can be represerdgetyensing
the state-wisébasis functions. The MMV method had no such issues when usingfdbeaction-
wise basis functions. In th&kock Sampld,3] problem, the MMV method also converged to a
sub-optimal solution using thetate-action-wiséasis functions with 1024 basis functions, most
of them being redundant since there are only 12 basis functions iootigactset. Hence, the
MMV method is sensitive to the selection of basis functions, whereas the MMBEPRJ methods
robustly yield optimal solutions. Our reasoning on this phenomenon is givémeirnd of this
subsection. Meanwhile, the value of the learned policies tends to oscillate lregirening of the
learning phase, particularly in thEger and Rock Sampld,3] problems, since our methods are
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Problem # of steps V™ (bp; R)
Tiger 20 1.93
1d Maze 20 1.02
5 x 5 Grid World 50 0.70
Heaven/Hell 300 8.64
Rock Sampld,3] 200 21.11

Table 9: Configuration for each problem and the value of the expetisyponeasured on the true
reward function.

Problem o g V™ (b0 R') Time
MMV MMFE PRJ MMV MMFE PRJ
Tiger SA 6 1.79 193 193 10.04 (72.27) 7.04 (41.56) 3.97 (96.33)
1d Maze SA 8 1.02 102 1.02 0.88 (75.07) 5.18 (10.83) 0.71 (82.13)
5x5Grid World SA 100 0.70 0.70 0.70 24.10(95.11) 20.07 (96.88) 21.49 @8.1

Heaven/Hell C 5 849 864 864 18.54 (63.02) 11.80 (79.75) 8.99 (88.66)

S 20 5.70 8.64 8.64 375.03(96.48)  332.97(98.51)  937.59%99.

SA 80 8.47 8.64 8.64 443.57 (98.31) 727.87 (99.30) 826.368)9

Rock Samp[@,3] C 11 20.84 20.05 20.38 8461.65 (99.16) 8530.18 (52.08)399.61 (59.86)
NC 17 20.83 20.62 20.16 21438.83(89.88) 10968.81 (25.0580&79 (79.41)
SA 1024 -26.42 17.83 19.05 31228.85(72.45) 13486.41 (78.26351.59 (80.57)

Table 10: Results of IRL for POMDR from sampled trajectories. The sets of the basis functions
are denoted by @€pbmpac}, NC(hon-compadgt S(state-wisg and SAétate-action-wise
The average computation time for each trial is reported in seconds andriteersiin

the parentheses next to the computation time are the percentages of the tinteyttien
POMDP solver.

not guaranteed to improve monotonically and are hence prone to yieldingnpeonediate reward

functions. However, these poor intermediate reward functions will &ffdyg restrict the region of
the reward functions for the final result.

We summariz&/™ (bp; R*) returned at the end of the algorithms and the computation time for
each trials with the computation time for solving intermediate POMDPs in Table 10ot&éd in the
above, in most of the experiments, the algorithms eventually found the poliogemterformance
is the same as the expert’s, which means the algorithms found the rewatidriuthat successfully
recovers the expert’s policy. The computation time increased when thefdiasis functions and
the size of the problems were increased. Whestag-action-wiséasis functions were applied for
theRock Sampld,3] problem, it took about 8 hours on average for the MMV method to eaye:
However, the larger portion of the computation time was spent for solvingneidiate POMDPs.
The average percentage of the time spent for solving intermediate POM&E"E3183%.

The third set of experiments was conducted for examining the performédrhbe algorithms
as the number of sampled belief trajectories varied. We experimented with thé¢ MMFE, and
PRJ methods in th&iger problem. Each trajectory was truncated after 20 time steps. Figure 10
presents the results where the value of policy is measuréd™ipo; R*). The MMFE method
required fewer number of trajectories to attain the policy that performs tidbe expert’s than the
MMV and PRJ methods required. The performance of the PRJ method wastbsewhen given
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few sampled trajectories, but it improved fast as the number of trajectooesased. However, the
MMV method needed many trajectories to find the near-optimal solution.

We conclude this subsection with our reasoning on why the MMFE and PRa&dsetypically
outperform the MMV method. The MMFE and PRJ methods directly use theaeliftes in fea-
ture expectations (line 11 in Algorithm 5 and line 14 in Algorithm 6), whereasvth®/ method
uses the differences in values obtained fromleéght vectorsand feature expectations (line 12
in Algorithm 4). Using the differences in values can be problematic bedais®ften possible
that a weight vector very different from the true one can yield a veryisiifference in values.
Hence, it is preferable to directly use the differences in feature exaasince it still bounds the
differences in values without depending on the weight vectors.

8. Related Work

In control theory, recovering a reward function from demonstrati@ssrbceived significant atten-
tion, and has been referred to as the inverse optimal control (IOC)egonolt was first proposed
and studied for linear systems by Kalman (1964). IRL is closely related to bDGhe focus is on
the problem of inverse optimality within the framework of RL. As already mentidnehe intro-
duction, Russell (1998) proposed IRL as an important problem in matdanging, suggesting that
it will be useful in many research areas such as studies on animal andthghaviors since the
reward function reflects the objective and the preference of the decisaéer. IRL is also useful
for reinforcement learning since similar but different domains oftenestier same reward function
structure albeit different dynamics. In this case, transferring thercefuaction learned from one
domain to another domain may be useful.

Besides the task aeward learning IRL has gained interest iapprenticeship learningvhere
the task is to find the policy with possibly better performance than the one daatedsby an
expert. Apprenticeship learning is useful when explicitly specifying theard function is difficult
but the expert’s behaviors are available instead. Apprenticeship lgamapromising approach
in robotics since it provides a framework for a robot to imitate the demonstwatbout a full
specification of which states are good or bad, and to what degree.

Since Russell (1998), a number of algorithms for IRL and apprenticdshiping have been
proposed in the last decade. Most of the algorithms assume a completelyalitbssetting, where
the agent has capability to access the true global state of the environnemtnoddeled as an
MDP. In this section, we briefly review some of these previous works ofRhend apprenticeship
learning problem.

One of the first approaches to IRL in the MDP setting was proposed byhtlgrassell (2000),
which we have covered in Section 3. They presented a sufficient aiessery condition on the
reward functions which guarantees the optimality of the expert’s policypamdded some heuris-
tics to choose a reward function since the degenerate reward funcliansatisfy the optimality
condition. The IRL problem was formulated as LP with the constraints quurekng to the op-
timality condition and the objective function corresponding to the heuristicg algorithm was
shown to produce reasonably good solutions in the experiments on soctermk problems. We
have extended this algorithm to the partially observable setting in Section Scatidr56.1.

Abbeel and Ng (2004) presented an apprenticeship learning algordkedlon IRL, which we
have described in Section 3.2. One of the important aspects of the algordbrtoveompare the
feature expectations between the expert’'s and the learned policiestretheéhe estimated values.
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Figure 9: The value of the policies produced by the learned rewardidurat each iteration by the
algorithms of IRL for POMDRR from sampled trajectories. The value is measured on
the true reward function for each problem. The optimal value is denoté&dpbyin the
legend.
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Figure 10: The value of the policies produced by the learned rewadtifumby the algorithms of
IRL for POMDP\R from varying number of sampled trajectories. Averages over 100
trials are presented with 95% confidence intervals. The x-axis refisabemumber of
sampled trajectories on a log 10 scale.
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The algorithm comes with a theoretical guarantee that the learned policy is dionfteg expert’s
policy when evaluated on the true reward function. The algorithm wasrshmauccessfully learn
different driving styles in a simulated car driving task. This work waghier extended using a
number of different approaches. We have extended this algorithm tattially observable setting
in Section 6.2 and Section 6.3.

The structured max-margin optimization technique (Taskar et al., 2005)ppéied to appren-
ticeship learning by Ratliff et al. (2006). They formulated a QP problem tbtfie weight vector of
the reward basis functions that maximizes the margin between the expertisqadi@ll other poli-
cies. They also provided the maximum margin planning (MMP) algorithm bas#uessubgradient
method, which is faster than the QP method. The MMP was shown to solve mioblepractical
sizes, such as route planning for outdoor mobile robots, where the QPdnedsmot applicable.

Neu and Szepesvari (2007) proposed an algorithm for apprenpclesiining that unifies the
direct and indirect methods: The direct method, using supervised lgarmethods, finds the policy
that minimizes loss functions that penalize deviating from the expert’s poltoy.ifdirect method
finds the policy using the learned reward function from IRL. Since thefiosstions are defined
on the policy space, the algorithm uses natural gradients to map the gradigr@policy space to
those in the weight vector space of reward functions.

Whereas most of the apprenticeship learning algorithms focus on apptomgnthae perfor-
mance of the expert’s policy, Syed and Schapire (2008) proposed adnesied multiplicative
weights for apprenticeship learning (MWAL), which tries to improve on thgeets policy. This
was achieved in a game-theoretic framework using a two person zergaum where the learner
selects a policy that maximizes its performance relative to the expert's anduinersment adver-
sarially selects a reward function that minimizes the performance of the tepotiey. The game
was solved using the multiplicative weights algorithm (Freund and Schapie®) for finding ap-
proximately optimal strategies in zero-sum games.

One of the difficulties in apprenticeship learning is that most proposedithligarinvolve solv-
ing MDPs in each iteration. Syed et al. (2008) addressed this issue Wifydenthe optimization
performed in the MWAL algorithm, and formulating it into an LP problem. Theyvwadb that
this direct optimization approach using an off-the-shelf LP solver significzémproves the perfor-
mance in terms of running time over the MWAL algorithm.

As mentioned in Section 4, IRL is an ill-posed problem since the solution of IRbtisinique.
To address the non-uniqueness in the solution, the above approatdpssame heuristics, for
example, maximizing the margin between the expert’s policy and other policiescoWd also
handle the uncertainty in the reward function using probabilistic framewdrsnachandran and
Amir (2007) suggested a Bayesian framework for IRL and apprenigédsarning. The external
knowledge about the reward function is formulated in the prior, and theposis computed by
updating the prior using the expert’'s behavior data as evidence. Zgbart(2008) proposed an
apprenticeship learning algorithm adopting the maximum entropy principléémsing the learned
policy constrained to match feature expectations of the expert’s behavior.

Recently, Neu and Szepesvari (2009) provided a unified frameveorktierpreting a number
of incremental IRL algorithms listed above, and discussed the similarities dedetifes among
the algorithms by defining the distance function and the update step employachirakgorithm.
Each algorithm was characterized by the distance function that measardgfénence between
the expert’s behavior data and the policy from the learned reward fumetim the update step that
computes new parameter values for the reward function.
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The question of whether the IRL and the apprenticeship learning algorithted ibove can
be extended to the partially observable setting in an efficient way remains iagartant open
problem.

9. Conclusion

The objective of IRL is to find the reward function that the domain experptsmzing from the
given data of her or his behavior and the model of the environment. IRLb@iliseful in various
areas connected with reinforcement learning such as animal and hummavidsestudies, econo-
metrics, and intelligent agents. However, the applicability of IRL has been lirsiteg most of the
previous approaches employed the assumption of an omniscient agenthesMDP framework.

We presented an IRL framework for dealing with partially observable enments in order to
relax the assumption of an omniscient agent in the previous IRL algorithns, Wi derived the
constraints of the reward function to guarantee the optimality of the expelity@nd built opti-
mization problems to solve IRL for POMDR when the expert’s policy is explicitly given. The
results from the classical POMDP research, such as the generalineatd¥®policy improvement
theorem (Howard, 1960) and the witness theorem (Kaelbling et al., 19@8¢ exploited to re-
duce the computational complexity of the algorithms. Second, we proposativigegilgorithms of
IRL for POMDP\R from the expert’s trajectories. We proposed an algorithm that usesmaegin
between values via LP, and then, in order to address larger problennstlyphbve adapted the al-
gorithms for apprenticeship learning in the MDP framework to IRL for POMRPExperimental
results on several POMDP benchmark domains showed that, in most@asakgorithms robustly
find solutions close to the true reward function, generating policies thatraceplues close to that
of the expert’s policy.

We demonstrated that the classical IRL algorithm on MRRould be extended to POMDR,
and we believe that more recent IRL techniques as well as some of thbd&id apprenticeship
learning techniques could be similarly extended by following our line of thobugbwever, there
are a number of interesting issues that should be addressed in futuiesstud

9.1 Finding the Optimality Condition

The proposed conditions in Section 5 are not sufficient conditions ofetlvard function to guar-
antee the optimality of the expert’s policy. The condition based on the compari€@-functions
in Equation (14) should be evaluated for every possible policy that mag &aunfinite number
of nodes. The condition using the DP update and the witness theorem itideq(iz) should be
evaluated for some useful nodes that the expert’s policy may not havéodbeir unreachability
from the starting node. Also, Equations (14) and (16) should be exdendessess the value for all
beliefs. Thus, it is crucial to find a sufficient condition that can be efittyjecomputed in order to
restrict the feasible region of the reward functions tightly so that the optimizptmblems can find
the reward function that guarantees the optimality of the given expert'sypolic

9.2 Building an Effective Heuristic

Although the constraints for the reward function are not sufficient itimmg, we empirically showed
that V™ (bp; R_) — V™ (bo; R.)| = 0, which implies that the value of the expert’s poligy is equal
to that of the optimal policyy produced by the learned rewaRd when the value is evaluated on
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the learned reward. In other words, the expert’s policy is another opgialialy for the learned re-
ward and the learned reward still satisfies the optimality condition of the exmerticy. However,
the optimal policy for the learned reward does not achieve the same vathe agpert’s policy
when the value is evaluated on the true reward. The reason for the ahgerithilure to find the
appropriate reward function may lie in the shortcomings of the heuristic fatifeetive functions.
In this paper, we use the heuristic originally proposed by Ng and Rug¥ID§. It prefers the
reward function that maximizes the sum of the differences between the ofalue expert’s policy
and the other policies while forcing the reward function to be as sparsesatbfe. Unfortunately,
this heuristic failed in some cases in our experiments. Hence, a more efféeliristic should
be devised to find the reward function that provides similar behavior to therex policy. This
can be addressed by adapting more recent IRL approaches suehBeytsian IRL (Ramachan-
dran and Amir, 2007) and the maximum entropy IRL (Ziebart et al., 2008attglly observable
environments. The Bayesian IRL prefers the reward function induceditsh probability of exe-
cuting actions in the given behavior data, and the maximum entropy IRLrpriereward function
maximizing the entropy of the distribution over behaviors while matching the featyrectations.

9.3 Scalability

The algorithms we presented are categorized into two sets: The first isefarades when the
expert's policy is explicitly given in the FSC representations and the sdediod the cases when
the trajectories of the expert’'s executed actions and the corresporisegvations are given. For
the first set of the algorithms, the computational complexity is reduced bast#tkaeneralized
Howard’s policy improvement theorem (Howard, 1960) and the witnessehe (Kaelbling et al.,
1998). The algorithms still suffer from a huge number of constraints in pien@ation problem.
The question is then whether it is possible to select a more compact sestifaiots that define the
valid region of the reward function while guaranteeing the optimality of thergsgmlicy, which is
again related to finding the sufficient condition. For the second set ofgbatAms, the scalability
is more affected by the efficiency of the POMDP solver than by the humbeoraftraints in the
optimization problem. Although PBPI (Ji et al., 2007), the POMDP solver us¢his paper, is
known to be one of the fastest POMDP solvers which return FSC policiessitobserved in the
experiments that the algorithms spent more than 95% of the time to solve the intaeniRAMDP
problems. Computing an optimal policy in the intermediate POMDP problem takestalonger
time than solving a usual POMDP problem, since an optimal policy of the interme?i@i¢DP
problem is often complex due to the complex reward structure. The limitation ceutthndled
by modifying the algorithms to address the IRL problems with other POMDP splgeich as
HSVI (Smith and Simmons, 2005), Perseus (Spaan and Vlassis, 2008)(PiBeau et al., 2006),
and SARSOP (Kurniawati et al., 2008), which generate the policy deis@dnapping from beliefs
to actions.
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