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Abstract
Inverse reinforcement learning (IRL) is the problem of recovering the underlying reward function
from the behavior of an expert. Most of the existing IRL algorithms assume that the environment is
modeled as a Markov decision process (MDP), although it is desirable to handle partially observable
settings in order to handle more realistic scenarios. In this paper, we present IRL algorithms for
partially observable environments that can be modeled as a partially observable Markov decision
process (POMDP). We deal with two cases according to the representation of the given expert’s
behavior, namely the case in which the expert’s policy is explicitly given, and the case in which the
expert’s trajectories are available instead. The IRL in POMDPs poses a greater challenge than in
MDPs since it is not only ill-posed due to the nature of IRL, but also computationally intractable
due to the hardness in solving POMDPs. To overcome these obstacles, we present algorithms that
exploit some of the classical results from the POMDP literature. Experimental results on several
benchmark POMDP domains show that our work is useful for partially observable settings.

Keywords: inverse reinforcement learning, partially observable Markov decision process, inverse
optimization, linear programming, quadratically constrained programming

1. Introduction

Inverse reinforcement learning (IRL) was first proposed by Russell (1998) as follows:

Given (1) measurements of an agent’s behavior over time, in a variety of circumstances, (2) mea-
surements of the sensory inputs to the agent, (3) a model of the physical environment (includ-
ing the agent’s body).

Determine the reward function that the agent is optimizing.

The significance of IRL has emerged from the connection between reinforcement learning (RL) and
other research areas such as neurophysiology (Montague and Berns, 2002; Cohen and Ranganath,
2007), behavioral neuroscience (Lee et al., 2004; Niv, 2009) andeconomics (Erev and Roth, 1998;
Borgers and Sarin, 2000; Hopkins, 2007). In these research areas, the reward function is generally
assumed to be fixed and known, but it is often non-trivial to come up with an appropriate reward
function for each problem. Hence, a progress in IRL can have a significant impact on many research
areas.
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IRL is a natural way to examine animal and human behaviors. If the decision maker is assumed
to follow the principle of rationality (Newell, 1982), its behavior could be understood by the reward
function that the decision maker internally optimizes. In addition, we can exploitthe computed
reward function to generate an agent that imitates the decision maker’s behavior. This will be a
useful approach to build an intelligent agent. Another advantage of IRL isthat the solution of IRL
problems, that is, the reward function, is one of the most transferable representations of the agent’s
behavior. Although it is not easy to transfer the control policy of the agent to other problems that
have a similar structure with the original problem, the reward function could beapplied since it
compactly represents the agent’s objectives and preferences.

In the last decade, a number of studies on IRL have been reported. However, most of the
previous IRL algorithms (Ng and Russell, 2000; Abbeel and Ng, 2004; Ramachandran and Amir,
2007; Neu and Szepesvari, 2007; Syed and Schapire, 2008; Ziebart et al., 2008) assume that the
agent acts in an environment that can be modeled as a Markov decision process (MDP). Although
the MDP assumption provides a good starting point for developing IRL algorithms, the implication
is that the agent has access to the true global state of the environment. The assumption of an
omniscient agent is often too strong in practice. Even though the agent is assumed to be an expert
in the given environment, the agent may be (and often is) making optimal behaviors with a limited
sensory capability. Hence, to relax the strong assumption and widen the applicability of IRL to more
realistic scenarios, the IRL algorithms should be extended to partially observable environments,
which can be modeled as partially observable Markov decision processes.

A partially observable Markov decision process (POMDP) (Sondik, 1971; Monahan, 1982;
Kaelbling et al., 1998) is a general mathematical framework for single-agent planning under uncer-
tainty about the effect of actions and the true state of the environment. Recently, many approximate
techniques have been developed to compute an optimal control policy for large POMDPs. Thus,
POMDPs have increasingly received a significant amount of attention in diverse research areas such
as robot navigation (Spaan and Vlassis, 2004; Smith, 2007), dialogue management (Williams and
Young, 2007), assisted daily living (Hoey et al., 2007), cognitive radio(Zhao et al., 2007) and
network intrusion detection (Lane and Brodley, 2003). However, in order to address real-world
problems using POMDPs, first, a model of the environment and the reward function should be
obtained. The parameters for the model of an environment, such as transition probabilities and ob-
servation probabilities, can be computed relatively easily by counting the events if the true state can
be accessed, but determining the reward function is non-trivial. In practice, the reward function is
repeatedly hand-tuned by domain experts until a satisfactory policy is acquired. This usually entails
a labor intensive process. For example, when developing a spoken dialogue management system,
POMDP is a popular framework for computing the dialogue strategy, since wecan compute an opti-
mal POMDP policy that is robust to speech recognition error and maintains multiple hypotheses of
the user’s intention (Williams and Young, 2007). In this domain, transition probabilities and obser-
vation probabilities can be calculated from the dialogue corpus collected from a wizard-of-oz study.
However, there is no straightforward way to compute the reward function,which should represent
the balance among the reward of a successful dialogue, the penalty of anunsuccessful dialogue,
and the cost of information gathering. It is manually adjusted until a satisfyingdialogue policy is
obtained. Therefore, a systematic method is desired to determine the reward function.

In this paper, we describe IRL algorithms for partially observable environments extending our
previous results in Choi and Kim (2009). Specifically, we assume that the environment is modeled
as a POMDP and try to compute the reward function given that the agent follows an optimal policy.
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The algorithm is mainly motivated by the classical IRL algorithm by Ng and Russell (2000) and we
adapt the algorithm to be robust for large problems by using the methods suggested by Abbeel and
Ng (2004). We believe that some of the more recently proposed IRL algorithms (Ramachandran
and Amir, 2007; Neu and Szepesvari, 2007; Syed and Schapire, 2008; Ziebart et al., 2008) also
could be extended to handle partially observable environments. The aim of this paper is to present a
general framework for dealing with partially observable environments, thecomputational challenges
involved in doing so, and some approximation techniques for coping with the challenges. Also, we
believe that our work will prove useful for many problems that could be modeled as POMDPs.

The remainder of the paper is structured as follows: Section 2 reviews somedefinitions and
notations of MDP and POMDP. Section 3 presents an overview of the IRL algorithms by Ng and
Russell (2000) and Abbeel and Ng (2004). Section 4 gives a formal definition of IRL for par-
tially observable environments, and discusses the fundamental difficulties of IRL and the barriers
of extending IRL to partially observable environments. In Section 5, we focus on the problem of
IRL with the explicitly given expert’s policy. We present the optimality conditionsof the reward
function and the optimization problems with the computational challenges and some approximation
techniques. Section 6 deals with more practical cases where the trajectoriesof the expert’s actions
and observations are given. We present algorithms that iteratively find the reward function, compar-
ing the expert’s policy and other policies found by the algorithm. Section 7 shows the experimental
results of our algorithms in several POMDP domains. Section 8 briefly reviews related work on
IRL. Finally, Section 9 discusses some directions for future work.

2. Preliminaries

Before we present the IRL algorithms, we briefly review some definitions and notations of MDP and
POMDP to formally describe the completely observable environment and the partially observable
environment.

2.1 Markov Decision Process

A Markov decision process (MDP) provides a mathematical framework formodeling a sequential
decision making problem under uncertainty about the effect of an agent’s action in an environment
where the current state depends only on the previous state and action, namely, the Markov property.
An MDP is defined as a tuple〈S,A,T,R,γ〉:

• S is the finite set of states.

• A is the finite set of actions.

• T : S×A → Π(S) is the state transition function, whereT(s,a,s′) denotes the probability
P(s′|s,a) of reaching states′ from states by taking actiona.

• R: S×A→R is the reward function, whereR(s,a) denotes the immediate reward of executing
actiona in states, whose absolute value is bounded byRmax.

• γ ∈ [0,1) is the discount factor.

A policy in MDP is defined as a mappingπ : S→ A, whereπ(s) = a denotes that actiona is
always executed in states following the policyπ. The value function of policyπ at states is the
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expected discounted return of starting in statesand executing the policy. The value function can be
computed as:

Vπ(s) = R(s,π(s))+ γ ∑
s′∈S

T(s,π(s),s′)Vπ(s′). (1)

Given an MDP, the agent’s objective is to find an optimal policyπ∗ that maximizes the value for
all the states, which should satisfy the Bellman optimality equation:

V∗(s) = max
a

[

R(s,a)+ γ ∑
s′∈S

T(s,a,s′)V∗(s′)
]

.

It is often useful to express the above equation in terms ofQ-function: π is an optimal policy if and
only if

π(s) ∈ argmax
a∈A

Qπ(s,a),

where
Qπ(s,a) = R(s,a)+ γ ∑

s′∈S

T(s,a,s′)Vπ(s′), (2)

which is the expected discounted return of executing actiona in statesand then following the policy
π.

2.2 Partially Observable Markov Decision Process

A partially observable Markov decision process (POMDP) is a general framework for modeling
the sequential interaction between an agent and a partially observable environment where the agent
cannot completely perceive the underlying state but must infer the state based on the given noisy
observation. A POMDP is defined as a tuple〈S,A,Z,T,O,R,b0,γ〉:

• S,A,T,Randγ are defined in the same manner as in MDPs.

• Z is the finite set of observations.

• O : S×A→Π(Z) is the observation function, whereO(s,a,z) denotes the probabilityP(z|s,a)
of perceiving observationz when taking actiona and arriving in states.

• b0 is the initial state distribution, whereb0(s) denotes the probability of starting in states.

Since the true state is hidden, the agent has to act based on the history of executed actions
and perceived observations. Denoting the set of all possible histories at the t-th time step asHt =
(A×Z)t , a policy in POMDP is defined as a mapping from histories to actionsπ : Ht →A. However,
since the number of possible histories grows exponentially with the number of timesteps, many
POMDP algorithms use the concept ofbelief. Formally, the beliefb is the probability distribution
over the current states, whereb(s) denotes the probability that the state iss at the current time step,
and∆ denotes a|S|−1 dimensionalbelief simplex. The belief update for the next time step can be
computed from the belief at the current time step: Given the actiona at the current time step and
the observationzat the next time step, the updated beliefba

z for the next time step is obtained by

ba
z(s

′) = P(s′|b,a,z) =
O(s′,a,z)∑sT(s,a,s′)b(s)

P(z|b,a)
, (3)
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where the normalizing factorP(z|b,a) = ∑s′ O(s′,a,z)∑sT(s,a,s′)b(s). Hence, the belief serves as
a sufficient statistic for fully summarizing histories, and the policy can be equivalently defined as a
mappingπ : ∆ → A, whereπ(b) = a specifies actiona to be selected at the current beliefb by the
policy π. Using beliefs, we can view POMDPs as belief-state MDPs, and the value function of an
optimal policy satisfies the Bellman equation:

V∗(b) = max
a

[

∑
s

b(s)R(s,a)+ γ∑
s′,z

T(s,a,s′)O(s′,a,z)V∗(ba
z)
]

. (4)

Alternatively, a policy in POMDP can be represented as a finite state controller (FSC). An
FSC policy is defined by a directed graph〈N ,E〉, where each noden ∈ N is associated with an
actiona ∈ A and has an outgoing edgeez ∈ E per observationz∈ Z. The policy can be regarded
as π = 〈ψ,η〉 whereψ is the action strategyassociating each noden with an actionψ(n) ∈ A,
andη is theobservation strategyassociating each noden and observationz with a successor node
η(n,z) ∈N .

Given an FSC policyπ = 〈ψ,η〉, the value functionVπ is the expected discounted return of
executingπ and is defined over the joint space of FSC nodes and POMDP states. It can be computed
by solving a system of linear equations:

Vπ(n,s) = R(s,a)+ γ ∑
n′,s′

Ta,os(〈n,s〉,〈n′,s′〉)Vπ(n′,s′), (5)

where

Ta,os(〈n,s〉,〈n′,s′〉) = T(s,a,s′) ∑
z∈Z s.t.
os(z)=n′

O(s′,a,z), (6)

with a= ψ(n) andos(z) = η(n,z). The value at noden for beliefb is calculated by

Vπ(n,b) = ∑
s

b(s)Vπ(n,s), (7)

and the starting node for the initial beliefb0 is chosen byn0 = argmaxnVπ(n,b0). We can also
defineQ-function for an FSC policyπ:

Qπ(〈n,s〉,〈a,os〉) = R(s,a)+ γ ∑
n′,s′

Ta,os(〈n,s〉,〈n′,s′〉)Vπ(n′,s′),

which is the expected discounted return of choosing actiona at noden and moving to nodeos(z)
upon observationz, and then following policyπ. Also,Q-function for noden at beliefb is computed
by

Qπ(〈n,b〉,〈a,os〉) = ∑
s

b(s)Qπ(〈n,s〉,〈a,os〉).

With an FSC policyπ, we can sort the reachable beliefs into nodes, such thatBn denotes the set
of beliefs that are reachable from the initial beliefb0 and the starting noden0 when the current node
is n. Note that|Bn| ≥ 1 for every noden.
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3. IRL in Completely Observable Markovian Environments

The MDP framework provides a good starting point for developing IRL algorithms in completely
observable Markovian environments and most of the previous IRL algorithms address the problems
in the MDP framework. In this section, we overview the IRL algorithms proposed by Ng and Russell
(2000) and Abbeel and Ng (2004) as background to our work.

The IRL problem in completely observable Markovian environments is denoted with IRL for
MDP\R, which is formally stated as follows: Given an MDP\R 〈S,A,T,γ〉 and an expert’s policy
πE, find the reward functionR that makesπE an optimal policy for the given MDP. The problem
can be categorized into two cases: The first case is when an expert’s policy is explicitly given and
the second case is when an expert’s policy is implicitly given by its trajectories.

3.1 IRL for MDP\R from Policies

Let us assume that an expert’s policyπE is explicitly given. Ng and Russell (2000) present a nec-
essary and sufficient condition for the reward functionR of an MDP to guarantee the optimality of
πE:

QπE(s,πE(s))≥ QπE(s,a), ∀s∈ S,∀a∈ A, (8)

which states that deviating from the expert’s policy should not yield a highervalue. From the
condition, they suggest the following:

Theorem 1 [Ng and Russell, 2000] Let an MDP\R 〈S,A,T,γ〉 be given. Then the policyπ is opti-
mal if and only if the reward function R satisfies

Rπ −Ra+ γ(Tπ −Ta)(I − γTπ)−1Rπ � 0, ∀a∈ A, (9)

where the matrix notations and the matrix operator are defined as follows:

• Tπ is a |S|× |S| matrix with(s,s′) element being T(s,π(s),s′).

• Ta is a |S|× |S| matrix with(s,s′) element being T(s,a,s′).

• Rπ is a |S| vector with s-th element being R(s,π(s)).

• Ra is a |S| vector with s-th element being R(s,a).

• Vπ is a |S| vector with s-th element being Vπ(s).

• X �Y ⇔ X(i)≥Y(i), for all i, if the length of X is the same as that of Y .

Proof Equation (1) can be rewritten asVπ = Rπ + γTπVπ. Thus,

Vπ = (I − γTπ)−1Rπ. (10)

By the definition of an optimal policy and Equation (2),π is optimal if and only if

π(s) ∈ argmax
a∈A

Qπ(s,a), ∀s∈ S

= argmax
a∈A

(R(s,a)+ γ∑
s′

T(s,a,s′)Vπ(s′)), ∀s∈ S

⇔ R(s,π(s))+ γ∑
s′

T(s,π(s),s′)Vπ(s′)

≥ R(s,a)+ γ∑
s′

T(s,a,s′)Vπ(s′), ∀s∈ S,∀a∈ A.
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maximizeR ∑
s

∑
a∈A\πE(s)

[

QπE(s,πE(s))−QπE(s,a)
]

−λ‖R‖1

subject to RπE −Ra+ γ(TπE −Ta)(I − γTπE)−1RπE � 0, ∀a∈ A

|R(s,a)| ≤ Rmax, ∀s∈ S,∀a∈ A

Table 1: Optimization problem of IRL for MDP\R from the expert’s policy.

By rephrasing with the matrix notations and substituting with Equation (10),

Rπ + γTπVπ � Ra+ γTaVπ, ∀a∈ A

⇔ Rπ + γTπ(I − γTπ)−1Rπ � Ra+ γTa(I − γTπ)−1Rπ, ∀a∈ A

⇔ Rπ −Ra+ γ(Tπ −Ta)(I − γTπ)−1Rπ � 0, ∀a∈ A.

Equation (9) bounds the feasible space of the reward functions that guarantee the optimality of
the expert’s policy, and there exist infinitely many reward functions that satisfy Equation (9). As a
degenerate case,R= 0 is always a solution. Thus, given the expert’s policyπE, which is assumed to
be optimal, the reward function is found by solving the optimization problem in Table 1, whereλ is
an adjustable weight for the penalty of having too many non-zero entries in the reward function. The
objective is to maximize the sum of the margins1 between the expert’s policy and all other policies
that deviate a single step from the expert’s policy, in the hope that the expert’s policy is optimal
while favoring sparseness in the reward function.

3.2 IRL for MDP\R from Sampled Trajectories

In some cases, we have to assume that the expert’s policy is not explicitly given but instead the
trajectories of the expert’s policy in the state and action spaces are available.2 Them-th trajectory
of the expert’s policy is defined as theH-step state and action sequences{sm

0 ,s
m
1 , · · · ,s

m
H−1} and

{am
0 ,a

m
1 , · · · ,a

m
H−1}.

In order to address problems with large state spaces, Ng and Russell (2000) use a linear approx-
imation for the reward function, and we also assume that the reward functionis linearly parameter-
ized as

R(s,a) = α1φ1(s,a)+α2φ2(s,a)+ · · ·+αdφd(s,a) = αTφ(s,a), (11)

where known basis functionsφ : S×A→ [0,1]d and the weight vectorα = [α1,α2, · · · ,αd]
T ∈ R

d.
We also assume without loss of generality thatα ∈ [−1,1]d.

1. We found it more successful to use the sum-of-margins approachthan the minimum-of-margins approach in the
original paper, since the latter may fail when there are multiple optimal policies.

2. Although only the trajectories of states and actions are available, the transition functionT is assumed to be known in
MDP\R.
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Algorithm 1 IRL for MDP\R from the sampled trajectories using LP.
Input: MDP\R 〈S,A,T,γ〉, basis functionsφ, M trajectories
1: Choose a random initial policyπ1 and setΠ = {π1}.
2: for k= 1 toMaxIter do
3: Find α̂ by solving the linear program:

maximizêα ∑
π∈Π

p
(

V̂πE(s0)−V̂π(s0)
)

subject to |α̂i | ≤ 1 i = 1,2, · · · ,d

4: Compute an optimal policyπk+1 for the MDP withR̂= α̂Tφ.
5: if V̂πE(s0)−Vπk+1(s0)≤ ε then
6: return R̂
7: else
8: Π = Π∪{πk+1}
9: end if

10: end for
11: return R̂
Output: the reward function̂R

Then, from the givenM trajectories, the value ofπE for the starting states0 is estimated by the
average empirical return for an estimated reward functionR̂= α̂Tφ:

V̂πE(s0) =
1
M

M

∑
m=1

H−1

∑
t=0

γtR̂(sm
t ,a

m
t ) =

1
M

α̂T
M

∑
m=1

H−1

∑
t=0

γtφ(sm
t ,a

m
t ).

The algorithm is presented in Algorithm 1. It starts with the set of policiesΠ initialized by
a base caserandom policyπ1. Ideally, the true reward functionR should yieldVπE(s0) ≥ Vπ(s0)
for ∀π ∈ Π since the expert’s policyπE is assumed to be an optimal policy with respect toR.
The values of other policies with a candidate reward functionR̂ are either estimated by sampling
trajectories or are exactly computed by solving the Bellman equation, Equation (1). The algorithm
iteratively tries to find a better reward functionR̂, given the set of policiesΠ found by the algorithm
Π = {π1, . . . ,πk} up to iterationk, by solving the optimization problem in line 3, wherep(x) is a
function that favorsx > 0.3 The algorithm then computes a new policyπk+1 that maximizes the
value function under the new reward function, and addsπk+1 to Π. The algorithm continues until it
has found a satisfactory reward function.

The above algorithm was extended for the apprenticeship learning in the MDP framework by
Abbeel and Ng (2004). The goal of apprenticeship learning is to learn apolicy from an expert’s
demonstrations without a reward function, so it does not compute the exactreward function that the
expert is optimizing but rather the policy whose performance is close to that of the expert’s policy
on the unknown reward function. This is worth reviewing, as we adapt thisalgorithm to address the
IRL problems in partially observable environments.

We assume that there are some known basis functionsφ and the reward function is linearly
parameterized with the weight vectorα as in Equation (11). Also, assume‖α‖1 ≤ 1 to boundRmax

by 1. The value of a policyπ can be written using the feature expectationµ(π) for the reward

3. Ng and Russell (2000) chosep(x) = x if x≥ 0, andp(x) = 2x if x< 0 in order to favorx> 0 but more penalizex< 0.
The coefficient of 2 was heuristically chosen.
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Algorithm 2 Apprenticeship learning using QCP.
Input: MDP\R 〈S,A,T,γ〉, basis functionsφ, M trajectories
1: Choose a random initial weightα and setΠ = /0.
2: repeat
3: Compute an optimal policyπ for the MDP withR= αTφ.
4: Π = Π∪{π}
5: Solve the following optimization problem:

maximizet,α t

subject to αTµE ≥ αTµ(π)+ t, ∀π ∈ Π
‖α‖2 ≤ 1

6: until t ≤ ε
Output: the reward functionR

Algorithm 3 Apprenticeship learning using the projection method.
Input: MDP\R 〈S,A,T,γ〉, basis functionsφ, M trajectories
1: Choose a random initial policyπ0.
2: Setµ̄0 = µ0 andi = 1.
3: repeat
4: Setα = µE − µ̄i−1.
5: Compute an optimal policyπi for the MDP withR= αTφ
6: Compute an orthogonal projection ofµE onto the line through ¯µi−1 andµi .

µ̄i = µ̄i−1+
(µi − µ̄i−1)

T(µE − µ̄i−1)

(µi − µ̄i−1)
T(µi − µ̄i−1)

(µi − µ̄i−1)

7: Sett = ‖µE − µ̄i‖2, andi = i +1.
8: until t ≤ ε

Output: the reward functionR
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functionR= αTφ as follows :

Vπ(s0) = E

[ ∞

∑
t=0

γtR(st ,π(st))|s0

]

= E

[ ∞

∑
t=0

γtαTφ(st ,π(st))|s0

]

= αT
E

[ ∞

∑
t=0

γtφ(st ,π(st))|s0

]

= αTµ(π),

whereµ(π) = E[∑∞
t=0 γtφ(st ,π(st))|s0]. Since the expert’s policy is not explicitly given, the feature

expectation of the expert’s policy cannot be exactly computed. Thus, we empirically estimate the
expert’s feature expectationµE = µ(πE) from the given expert’sM trajectories of the visited states
{sm

0 ,s
m
1 , · · · ,s

m
H−1} and the executed actions{am

0 ,a
m
1 , · · · ,a

m
H−1} by

µ̂E =
1
M

M

∑
m=1

H−1

∑
t=0

γtφ(sm
t ,a

m
t ).

Abbeel and Ng (2004) propose apprenticeship learning algorithms for finding a policy whose
value is similar to that of the expert’s policy based on the idea that the difference of the values
between the obtained policyπ and the expert’s policyπE is bounded by the difference between their
feature expectations. Formally, this is written as follows:

|VπE(s0)−Vπ(s0)|= |αTµ(πE)−αTµ(π)|
≤ ‖α‖2‖µE −µ(π)‖2

≤ ‖µE −µ(π)‖2 (12)

since‖α‖1 is assumed to be bounded by 1. The algorithm is presented in Algorithm 2. Theopti-
mization problem in line 5 can be considered as the IRL step that tries to find the reward function
that the expert is optimizing. It is similar to the optimization problem in Algorithm 1, except that,
the optimization problem cannot be modeled as a linear programming (LP) problem but rather as a
quadratically constrained programming (QCP) problem because ofL2 norm constraint onα. Algo-
rithm 3 is an approximation algorithm using the projection method instead of QCP, whereµi denotes
µ(πi) for all i. Both algorithms terminate whent ≤ ε. It is proved that both algorithms take a finite
number of iterations to terminate (Abbeel and Ng, 2004).

4. IRL in Partially Observable Environments

We denote the problem of IRL in partially observable environments as IRL for POMDP\R and
the objective is to determine the reward function that the expert is optimizing. Formally, IRL for
POMDP\R is defined as follows: Given a POMDP\R 〈S,A,Z,T,O,b0,γ〉 and an expert’s policy
πE, find the reward functionR that makesπE an optimal policy for the given POMDP. Hence, the
reward function found by IRL for POMDP\R should guarantee the optimality of the expert’s policy
for the given POMDP.

IRL for POMDP\R mainly suffers from two sources: First, IRL is fundamentally ill-posed, and
second, computational intractability arises in IRL for POMDP\R in contrast with IRL for MDP\R.
We describe these challenges below.

An IRL problem is an ill-posed problem, which is a mathematical problem that is not well-
posed. The three conditions of a well-posed problem are existence, uniqueness, and stability of the
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solution (Hadamard, 1902). IRL violates the condition of the uniqueness. An IRL problem may
have an infinite number of solutions since there may be an infinite number of reward functions that
guarantee the optimality of the given expert’s policy. A degenerate one is thesolution of every
IRL problem sinceR= 0 yields every policy optimal. Also, given an optimal policy for a reward
function, we can find some other reward function that yields the same optimal policy without any
modification to the environment by the technique of reward shaping (Ng et al.,1999).

As suggested by Ng and Russell (2000), we can guarantee the optimality ofthe expert’s policy
by comparing the value of the expert’s policy with that of all possible policies.However, there are
an infinite number of policies in a finite POMDP, since a policy in a POMDP is defined as a mapping
from a continuous belief space to a finite state space or represented by anFSC policy that might
have an infinite number of nodes. In contrast, there are a finite number of policies in a finite MDP,
since a policy in an MDP is defined as a mapping from a finite state space to a finiteaction space.
In addition, in order to compare two policies in a POMDP, the values of those policies should be
compared for all beliefs, because the value function is defined on a beliefspace. This intractability
of IRL for POMDP\R originates from the same cause as the difficulty of solving a POMDP. The
optimal policy of a POMDP is the solution of a belief-state MDP using the conceptof belief. It is
then difficult to solve an MDP with a continuous state space, since a policy andits value function
are respectively defined as a mapping from the continuous state space to the finite action space and
the real numbers.

In the following sections, we address the problem of IRL for POMDP\R, considering two cases
as in the approaches to IRL for MDP\R. The first case is when the expert’s policy is explicitly
represented in the form of an FSC. The second case is when the expert’s policy is implicitly given
by the trajectories of the expert’s executed actions and the corresponding observations. Although
the second case has more wide applicability than the first case, the first case can be applied to
some practical problems. For example, when building dialogue management systems, we may
already have a dialogue policy engineered by human experts, but we still do not know the reward
function that produces the expert’s policy. We propose several methods for the problems of IRL for
POMDP\R in these two cases. For the first case, we formulate the problem with constraints for the
reward functions that guarantee the optimality of the expert’s policy. To address the intractability
of IRL for POMDP\R, we derive conditions involving a small number of policies and exploiting
the result of the classical POMDP research. For the second case, we propose iterative algorithms
of IRL for POMDP\R. The motivation for this approach is from Ng and Russell (2000). We also
extend the algorithms proposed by Abbeel and Ng (2004) to partially observable environments.

5. IRL for POMDP\R from FSC Policies

In this section, we present IRL algorithms for POMDP\R when the expert’s policy is explicitly
given. We assume that the expert’s policy is represented in the form of anFSC, since the FSC is one
of the most natural ways to specify a policy in POMDPs.

We propose three conditions for the reward function to guarantee the optimality of the expert’s
policy based on comparingQ-functions and using the generalized Howard’s policy improvement
theorem (Howard, 1960) and the witness theorem (Kaelbling et al., 1998).We then complete the
optimization problems to determine a desired reward function.
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5.1 Q-function Based Approach

We could derive a simple and naive condition for the optimality of the expert’s policy by comparing
the value of the expert’s policy with those of all other policies. Given an expert’s policyπE defined
by a directed graph〈N ,E〉,

VπE(n,b)≥Vπ′
(n′,b), ∀b∈ ∆n,∀n′ ∈N ′, (13)

for all nodesn∈N and all other policiesπ′ defined by a directed graph〈N ′,E ′〉, where∆n denotes
the set of all the beliefs where noden is optimal. SinceVπE andVπ′

are linear in terms of the reward
function R by Equations (5) and (7), the above inequality yields the set of linear constraints that
defines the feasible region of the reward functions that guarantees the expert’s policy to be optimal.

However, enumerating all the constraints is clearly infeasible because we have to take into
account all other policiesπ′ including those with an infinite number of nodes, as well as all the
infinitely many beliefs in∆n. In other words, Equation (13) yields infinitely many linear constraints.
Hence, we propose a simple heuristic for choosing a finite subset of constraints that hopefully yields
a tight specification of the feasible region for the true reward function. First, among the infinitely
many policies, we only consider polices that areslightly modified from the expert’s policy since
they aresimilar to the expert’s policy yet must be suboptimal. We select as the similar policies
those deviate one step from the expert’s action and observation strategies, analogous to Equation (8).
For each noden∈ N , there are|A||N ||Z| ways to deviate from the expert’s action and observation
strategies, hence we consider a total of|N ||A||N ||Z| policies that deviate one step from the experts’
policy. Second, instead of considering all possible beliefs in∆n, we only consider the finitely
sampled beliefs reachable by the expert’s policy. The motivation for using the sampled beliefs comes
from the fact that only the set of beliefs reachable under the optimal policyis important for solving
POMDPs, and it is also widely used in most of the recent approximate POMDP solvers (Spaan
and Vlassis, 2005; Smith and Simmons, 2005; Pineau et al., 2006; Ji et al., 2007; Kurniawati et al.,
2008).

The above heuristic yields the following finite set of linear constraints: Given an expert’s policy
πE = 〈ψ,η〉,

QπE(〈n,b〉,〈ψ(n),η(n, ·)〉)≥ QπE(〈n,b〉,〈a,os〉), ∀b∈ Bn,∀a∈ A,∀os∈N Z, (14)

for every noden in πE, whereBn ⊆ ∆n denotes the set of sampled beliefs that are visited at node
n when following the expert’s policyπE from the initial beliefb0. The above condition states that
any policy that deviates one step from the expert’s action and observationstrategies should not have
a higher value than the expert’s policy does. Note that the condition is a necessary though not
a sufficient one, since we do not use the set of all other policies but usethe set of|N ||A||N ||Z|

policies that have the same (or possibly fewer) number of nodes as the expert’s policy, nor do we
use the set of all beliefs in∆n but use the set of sampled beliefs.

We use a simple example illustrating the approach. Consider a POMDP with two actions and
two observations, and the expert’s policyπE is the FSC represented by solid lines in Figure 1. The
nodes are labeled with actions (a0 anda1) and the edges are labeled with observations (z0 andz1). In
order to find the region of the reward functions that yieldsπE as optimal, we build one-step deviating
policies as mentioned above. The policiesπ′

0,π′
1, · · · ,π′

7 in the figure are the one-step deviating
policies for noden0 of πE. Note thatπ′

i visits noden′i instead of the original noden0 and then exactly
follows πE. We then enumerate the constraints in Equation (14), comparing the value ofπE to that
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Figure 1: Set of the policies that deviate one step from noden0 of the expert’s policy.

of each one-step deviating policy. Specifically, the value at noden0 of πE is constrained to be not
less than the value at noden′i of π′

i , since deviating from the expert’s policy should be suboptimal. To
build the complete set of constraints in Equation (14), we additionally generateone-step deviating
policies for noden1 of πE in a similar manner. We thus have|N ||A||N ||Z| = 2×2×22 = 16 policies
that deviate one step fromπE.

5.2 Dynamic Programming (DP) Update Based Approach

A more systematic approach to defining the set of policies to be compared with theexpert’s policy
is to use the set of FSC policies that arise during the DP update of the expert’s policy. Given
the expert’s policyπE, the DP update generates|A||N ||Z| new nodes for all possible action and
observation strategies, and these nodes can potentially be a new starting node. The expert’s policy
should be optimal if the value is not improved for any belief by the dynamic programming update.
This idea comes from the generalized Howard’s policy improvement theorem(Howard, 1960):

Theorem 2 [Hansen, 1998] If an FSC policy is not optimal, the DP update transforms it into an
FSC policy with a value function that is as good or better for every belief state and better for some
belief state.

The complete proof of the generalized policy improvement theorem can be found in Hansen
(1998) but we give the full proof of the theorem for the convenience of the readers. First, we should
prove the following lemma.

Lemma 1 Given an FSC policyπ = 〈ψ,η〉 and a node nnew, which is not included inπ, the value
function of node nnew∈Nnew with the action strategy of selecting action a and observation strategy
os is computed by

Vnew(nnew,s) = R(s,a)+ γ ∑
n′,s′

Ta,os(〈nnew,s〉,〈n
′,s′〉)Vπ(n′,s′), (15)

where Vπ is calculated from Equation (5) and Ta,os is defined in Equation (6). For some node n in
π, if Vnew(nnew,s) ≥Vπ(n,s), for ∀s∈ S, the value of the original policyπ will not be greater than
that of the policy transformed by discarding node n and redirecting all the incoming edges of node
n to node nnew.

Proof We build a new policyπk that follows the original policyπ, but executes the action and
observation strategies ofnnew for the firstk times that noden is visited. The lemma is proved by the
induction on the number of timesk.
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For the base stepk= 1, the new policyπ1 executes the action and observation strategies ofnnew

only for the first time that noden is visited, and followsπ for the rest of the time steps. Then, for
any belief stateb,

Vπ1(n,b) = ∑
s

b(s)Vπ1(n,s) = ∑
s

b(s)Vnew(nnew,s)

≥ ∑
s

b(s)Vπ(n,s) =Vπ(n,b)

sinceVπ1(n,s) =Vnew(nnew,s) for all s∈ Sby the construction.
For the inductive step, we abuse notation to denoteRπk(st ,at) as the reward at thet-th time step

by following the policyπk and starting from beliefb and noden. Then, for any belief stateb,

Vπ′
k(n,b) = E

[ ∞

∑
t=0

γtRπk(st ,at)
∣

∣b
]

= E

[Tk−1

∑
t=0

γtRπk(st ,at)+
∞

∑
t=Tk

γtRπk(st ,at)
∣

∣b
]

= E

[Tk−1

∑
t=0

γtRπk(st ,at)
∣

∣b
]

+E

[ ∞

∑
t=Tk

γtRπk(st ,at)
∣

∣b
]

= E

[Tk−1

∑
t=0

γtRπk−1(st ,at)
∣

∣b
]

+ γTkE
[

Vπk(n,bTk)|b
]

≥ E

[Tk−1

∑
t=0

γtRπk−1(st ,at)
∣

∣b
]

+ γTkE
[

Vπ(n,bTk)|b
]

=Vπk−1(n,b)

whereTk represents thek-th time that noden is visited. The first equality holds by the definition of
the value function. The fourth equality holds by the construction ofπk−1 andπk and the definition of
the value function. The fifth inequality holds byVπk(n,bTk) =Vnew(nnew,bTk)≥Vπ(n,bTk), sinceπk

executes the action and observation strategies ofnnewatbTk and executes those ofn for the rest of the
time. Hence, by induction, it follows that the value of the transformed policy cannot be decreased
by replacingn with nnew.

Using the above lemma, we can prove Theorem 2.

Proof (of Theorem 2) The policy iteration algorithm (Hansen, 1998) transforms the policy by
replacing the nodes with new nodes generated by the DP update using the following rules: (1) If
there is an old node whose action and observation strategies are the same asthose of a new node,
the old node is unchanged. (2) If the value at an old node is less than the value at a new node, for
any state, the old node is discarded and all the incoming edges of the old nodeare redirected to the
new node. (3) The rest of new nodes are added to the original policy.

Since the value is not decreased by leaving the policy unchanged or adding a node to the policy,
the first and the third transformation rules cannot decrease the value. Also, by the above lemma,
the second transformation rule cannot decrease the value. Thus, the value of the transformed policy
using the DP update does not decrease.
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Figure 2: Set of the newly generated nodes by the DP update.

Also, if every node generated by the DP update is a duplicate of a node in theoriginal policy, the
optimality equation, Equation (4) is satisfied and the original policy is optimal. Thus, if the policy
is not optimal, the DP update must generate some non-duplicate nodes that change the policy and
improve the values for some belief state.

We should proceed with caution however in the sense that the DP update does not generate all
the necessary nodes to guarantee the optimality of the expert’s policy for every belief: The nodes in
the expert’s policy are only those reachable from the starting noden0, which yields the maximum
value at the initial beliefb0. Nodes that yield the maximum value at some other beliefs (i.e., useful)
but are not reachable fromn0 are not present in the expert’s policy. To guarantee the optimality of the
expert’s policy for every belief, we need to generate those non-existent but useful nodes. However,
since there is no way to recover them, we only use nodes in the expert’s policy and consider only
the reachable beliefs by the expert’s policy.

Let Nnew be the set of nodes newly generated when transforming the expert’s policy by the DP
update, then|Nnew| = |A||N ||Z|. The value function of nodennew∈ Nnew is computed by Equa-
tion (15). The value function of policyπE should satisfy

VπE(n,b)≥Vnew(nnew,b), ∀b∈ Bn,∀nnew∈Nnew (16)

for every noden∈N if the expert’s policyπE is optimal. Note thatVnew as well asVπE are linear
in terms of the reward functionR.

To illustrate the approach, we reuse the example in Section 5.1. Figure 2 showsπE in solid lines
and the setNnewof nodes generated by the DP update in dashed lines. We have|A||N ||Z| = 2×22 =
8 nodes generated by the DP update, thusNnew= {n′0,n

′
1, · · · ,n

′
7} is the complete set of nodes with

all possible action and observation strategies. We then enumerate the constraints in Equation (16),
making the value at each node ofπE no less than the values at the nodes inNnew. Since the number
of the newly generated nodes by the DP update is smaller than that of the policies generated by the
Q-function based approach in Section 5.1, the computational complexity is significantly reduced.

5.3 Witness Theorem Based Approach

A more computationally efficient way to generate the setNnew of new nodes is to use the witness
theorem (Kaelbling et al., 1998). We will exploit the witness theorem to find a set of useful nodes
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that yield the feasible region for the true reward function as the witness algorithm incrementally
generates new policy trees that improve the current policy trees. Here, we say that a node is useful
if it has greater value than any other nodes at some beliefs. Formally speaking, given an FSC policy
π, we define a setB(n,U) of beliefs where the value function of noden dominates those of all other
nodes in the setU :

B(n,U) = {b|Vnew(n,b)>Vnew(n′,b), for ∀n′ ∈U\{n},∀b∈ ∆}

whereVnew(n,b) = ∑sb(s)Vnew(n,s) andVnew(n,s) is computed by Equation (15). Noden is useful
if B(n,U) 6= /0, andU is a set of useful nodes ifB(n,U) 6= /0 for all n∈U . We re-state the witness
theorem in terms of FSC policies as the following:

Theorem 3 [Kaelbling et al., 1998] An FSC policyπ is given as a directed graph〈N ,E〉. Let
Ũa be a nonempty set of useful nodes with the action strategy of choosing actiona, and Ua be the
complete set of useful nodes with the action strategy of choosing action a. Then,Ũa 6=Ua if and only
if there is some nodẽn∈ Ũa, observation z∗, and node n′ ∈N for which there is a belief b such that

Vnew(nnew,b)≥Vπ(n,b)

for all n∈ Ũa, where nnew is a node that agrees with̃n in its action and all its successor nodes except
for observation z∗, for whichη(nnew,z∗) = n′.

Proof The if direction of the statement is satisfied becauseb is a witness point for the existence of
a useful node missing from̃Ua.

Theonly if direction can be rephrased as: IfŨa 6=Ua then there is a node ˜n∈ Ũa, a belief state
b, and a new nodennew that has a larger value than any other nodesn∈ Ũa atb.

Choose some noden∗ ∈Ua−Ũa. Sincen∗ is useful, there must be a beliefbsuch thatVnew(n∗,b)>
Vnew(n′,b) for all noden′ ∈ Ũa. Let ñ= argmaxn′′∈Ũa

Vnew(n′′,b). Then, by the construction,

Vnew(n∗,b)>Vnew(ñ,b). (17)

Note that actiona is always executed atn∗ andñ, since we consider only the nodes with the action
strategy of choosing actiona in the theorem.

Assume that for every observationz,

∑
s

b(s)∑
s′

T(s,a,s′)O(s′,a,z)Vπ(η(n∗,z),s′)

≤ ∑
s

b(s)∑
s′

T(s,a,s′)O(s′,a,z)Vπ(η(ñ,z),s′).

Then

Vnew(n∗,b) = ∑
s

b(s)
[

R(s,a)+ γ∑
s′

T(s,a,s′)∑
z

O(s′,a,z)Vπ(η(n∗,z),s′)
]

≤ ∑
s

b(s)
[

R(s,a)+ γ∑
s′

T(s,a,s′)∑
z

O(s′,a,z)Vπ(η(ñ,z),s′)
]

=Vnew(ñ,b)

706



IRL IN PARTIALLY OBSERVABLE ENVIRONMENTS

Figure 3: Set of the newly generated nodes by the witness theorem.

which contradicts (17). Thus, there must be some observationz∗ such that

∑
s

b(s)∑
s′

T(s,a,s′)O(s′,a,z∗)Vπ(η(n∗,z∗),s′)

> ∑
s

b(s)∑
s′

T(s,a,s′)O(s′,a,z∗)Vπ(η(ñ,z∗),s′).

Now, if ñ andn∗ differ in only one successor node, then the proof is complete withn∗, which can
serve as thennew in the theorem. Ifn andn∗ differ in more than one successor node, we will identify
another node that can act asnnew. Definennew to be identical to ˜n except for observationz∗, for
which η(nnew,z∗) = η(n∗,z∗). From this, it follows that

Vnew(nnew,b) = ∑
s

b(s)
[

R(s,a)+ γ∑
s′

T(s,a,s′)∑
z

O(s′,a,z)Vπ(η(nnew,z),s
′)
]

> ∑
s

b(s)
[

R(s,a)+ γ∑
s′

T(s,a,s′)∑
z

O(s′,a,z)Vπ(η(ñ,z),s′)
]

=Vnew(ñ,b)≥Vnew(n,b)

for all n ∈ Ũa. Therefore, the nodes ˜n andnnew, the observationz∗, n′ = η(n∗,z∗), and the belief
stateb satisfy the conditions of the theorem.

The witness theorem tells us that if a policyπ is optimal, then the value ofnnew generated by
changing the successor node of each single observation should not increase for any possible beliefs.
This leads us to a smaller set of inequality constraints compared to Equation (16), by definingNnew

in a different way.
LetNa = {n∈N |ψ(n) = a} andA−N = {a∈A|Na = /0}. For each actiona /∈A−N , we generate

new nodes by the witness theorem: For each node ˜n∈Na, z∗ ∈ Z, andn′ ∈N , we makennew such
thatψ(nnew) = ψ(ñ) = a andη(nnew,z) = η(ñ,z) for all z∈ Z except forz∗, for whichη(nnew,z∗) =
n′. The maximum number of newly generated nodes by the witness theorem is∑a |Na||N ||Z| ≤
|N |2|Z|. Then, for each actiona∈ A−N , we use the DP update to generate|A−N ||N ||Z| additional
nodes. The number of newly generated nodes|Nnew| is no more than|N |2|Z|+ |A−N ||N ||Z|. Note
that this number is often much less than|A||N ||Z|, the number of newly generated nodes by DP
update, since the number of actions|A−N | that is not executed at all by the expert’s policy is typically
much fewer than|A|.

We again reuse the example in Section 5.1 to illustrate the approach. We build the set Nnew

of new nodes using the witness theorem. The left panel of Figure 3 showsthe construction of
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maximizeR ∑
n∈N

∑
b∈Bn

∑
a∈A\ψ(n)

os∈N Z\η(n,·)

[

Vπ(〈n,b〉)−Qπ(〈n,b〉,〈a,os〉)
]

−λ‖R‖1

subject to Qπ(〈n,b〉,〈ψ(n),η(n, ·)〉)≥ Qπ(〈n,b〉,〈a,os〉),

∀b∈ Bn,∀a∈ A,∀os∈N Z,∀n∈N

|R(s,a)| ≤ Rmax, ∀s,∀a

Table 2: Optimization problem usingQ-function based optimality constraint.

maximizeR ∑
n∈N

∑
b∈Bn

∑
nnew∈Nnew

[

Vπ(n,b)−Vnew(nnew,b)
]

−λ‖R‖1

subject to Vπ(n,b)≥Vnew(nnew,b), ∀b∈ Bn,∀nnew∈Nnew,∀n∈N

|R(s,a)| ≤ Rmax, ∀s,∀a

Table 3: Optimization problem using the DP update or the witness theorem basedoptimality con-
straint.

new noden′0 from noden0 such thatψ(n′0) = ψ(n0) = a0 andη(n′0,z1) = η(n0,z1). The original
observation strategy ofn0 for z0 transits ton1 (shown in dotted line), and it is changed ton0 (shown
in dashed line). The right panel in the figure presents the complete setNnew of generated nodes
using the witness theorem (shown in dashed lines). Nodesn′0 andn′1 are generated from noden0,
whereas nodesn′2 andn′3 are from noden1. Note thatA−N = /0 sinceπE executes all actions in the
model. We thus have a total of 4 generated nodes, which is smaller than those generated by either
theQ-function based or the DP update based approach.

5.4 Optimization Problem

In the previous sections, we suggested three constraints for the rewardfunction that stem from the
optimality of the expert’s policy, but infinitely many reward functions can satisfy the constraints
in Equations (14) and (16). We thus present constrained optimization problems with objective
functions that encode our preference on the learned reward function. As in Ng and Russell (2000),
we prefer a reward function that maximizes the sum of the margins between theexpert’s policy
and other policies. At the same time, we want the reward function as sparse as possible, which
can be accomplished by adjusting the penalty weight on theL1-norm of the reward function. If we
useQ-function based optimality constraint, that is, Equation (14), the value of the expert’s policy
is compared with those of all other policies that deviate from the expert’s action and observation
strategies, given in Table 2. When using the DP update or the witness theorem based optimality
constraint, that is, Equation (16), the policies other than the expert’s policyare captured in newly
generated nodesnnew, hence the optimization problem now becomes the one given in Table 3. Since
all the inequalities and the objective functions in the optimization problems are linear in terms
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of the reward function, the desired reward function can be found efficiently by solving the linear
programming problems.

When usingQ-function or the DP update based approach, the number of policies compared with
the expert’s is exponential to the number of observations, and hence the number of constraints in
the optimization problems increases exponentially. This may become intractable even for a small
size expert’s policy. We can address this limitation using the witness theorem based approach, since
it is sufficient to consider as few as|N |2|Z| nodes if the expert’s policy executes all actions, which
is common in many POMDP benchmark problems.

6. IRL for POMDP\R from Sampled Trajectories

In some cases, the expert’s policy may not be explicitly given, but the records of the expert’s
trajectories may be available instead.4 Here, we assume that the set ofH-step belief trajecto-
ries is given. Them-th trajectory is denoted by{bm

0 ,b
m
1 , . . . ,b

m
H−1}, wherebm

0 = b0 for all m∈
{1,2, · · · ,M}. If the trajectories of the perceived observations{zm

0 ,z
m
1 , . . . ,z

m
H−1} and the executed

actions{am
0 ,a

m
1 , . . . ,a

m
H−1} following the expert’s policy are available instead, we can reconstruct

the belief trajectories by using the belief update in Equation (3).

In order to obtain an IRL algorithm for POMDP\R from the sampled belief trajectories, we
linearly parameterize the reward function using the known basis functionsφ : S×A → [0,1]d and
the weight vectorα ∈ [−1,1]d as in Equation (11):R(s,a) = αTφ(s,a). This assumption is useful
for the problems with large state spaces, because with some prior knowledgeabout the problems,
we can represent the reward function compactly using the basis functions. For example, in robot
navigation problems, the basis function can be chosen to capture the features of the state space, such
as which locations are considered dangerous. In the worst case whenno such prior knowledge is
available, the basis functions may be designed for each pair of state and action so that the number
of basis functions is|S|× |A|. The objective of IRL is then to determine the (unknown) parameterα
of the reward functionR= αTφ.

In this section, we propose three trajectory-based IRL algorithms for POMDP\R. The algo-
rithms share the same framework that iteratively repeats estimating the parameterof the reward
function using an IRL algorithm and computing an optimal policy for the estimated reward function
using a POMDP solver. The first algorithm finds the reward function that maximizes the margin
between the values of the expert’s policy and other policies for the sampled beliefs using LP. This is
a simple extension to Ng and Russell (2000). The second algorithm computesthe reward function
that maximizes the margin between the feature expectations of the expert’s policy and other policies
using QCP. The last algorithm approximates the second using the projection method. The second
and third algorithms are extended from the methods originally suggested for MDP environments by
Abbeel and Ng (2004).

4. As in the IRL for MDP\R from sampled trajectories, we assume that the transition and observationfunctions are
known in POMDP\R.

709



CHOI AND K IM

Algorithm 4 IRL for POMDP\R from the sampled trajectories using the MMV method.
Input: POMDP\R 〈S,A,Z,T,O,b0,γ〉, basis functionsφ, M trajectories
1: Choose a setBπE of all the unique beliefs in the trajectories.
2: Choose a random initial policyπ1 and setΠ = {π1}.
3: for k= 1 toMaxIter do
4: Find α̂ by solving the linear program:

maximizêα ∑
π∈Π

∑
b∈BπE

p
(

V̂πE(b)−Vπ(b)
)

−λ‖α̂Tφ‖1

subject to |α̂i | ≤ 1, i = 1,2, · · · ,d

5: Compute an optimal policyπk+1 for the POMDP withR̂= α̂T
k φ.

6: if |V̂πE(b)−Vπk+1(b)| ≤ ε, ∀b∈ BπE then
7: return R̂= α̂T

k φ
8: else
9: Π = Π∪{πk+1}

10: end if
11: end for
12: K = argmink:πk∈Π maxb∈BπE |V̂πE(b)−Vπk(b)|

13: return R̂= α̂T
Kφ

Output: the reward function̂R

6.1 Max-Margin between Values (MMV) Method

We first evaluate the values of the expert’s policy and other policies for theweight vectorα of a
reward function in order to compare their values. The reward for beliefb is then calculated by

R(b,a) = ∑
s∈S

b(s)R(s,a) = ∑
s∈S

b(s)αTφ(s,a) = αTφ(b,a),

whereφ(b,a) =∑s∈Sb(s)φ(s,a). We also computêVπE(bm
0 ) to be the empirical return of the expert’s

m-th trajectory by

V̂πE(bm
0 ) =

H−1

∑
t=0

γtR(bm
t ,a

m
t ) =

H−1

∑
t=0

γtαTφ(bm
t ,a

m
t ).

Noting thatbm
0 = b0 for all m, the expert’s average empirical return atb0 is given by

V̂πE(b0) =
1
M

M

∑
m=1

V̂πE(bm
0 ) = αT 1

M

M

∑
m=1

H−1

∑
t=0

γtφ(bm
t ,a

m
t ), (18)

which is linear in terms ofα. In a similar manner, we can compute the average empirical return of
the expert’s trajectories at other beliefsb j by

V̂πE(b j) =
1

M j

M

∑
m=1

V̂πE(b j) = αT 1
M j

M

∑
m=1

H−1

∑
t=Hm

j

γt−Hm
j φ(bm

t ,a
m
t ), (19)

whereHm
j is the first time thatb j is found in them-th trajectory andM j is the number of trajectories

that containb j .
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Given the above definitions, the rest of the derivation is fairly straightforward, and leads to a
similar algorithm to that of Ng and Russell (2000). The algorithm is shown in Algorithm 4. It
iteratively tries to find a reward function parameterized byα that maximizes the sum of the margins
between the valuêVπE of the expert’s policy and the valueVπ of each FSC policyπ ∈ Π found so
far by the algorithm at all the unique beliefsb∈ BπE in the trajectories. We could consider the initial
belief b0 alone, similar to Ng and Russell (2000) considering the initial states0 alone. However,
we found it more effective in our experiments to include additional beliefs, since they often provide
better guidance in the search of the reward function by tightening the feasible region. In order to
consider the additional beliefs, we should be able to compute the valueVπ of the intermediate policy
π at beliefb∈ BπE , but it is not well defined.b may be unreachable underπ and it is not known that
we will visit b at which node ofπ. In our work, we use an upperbound approximation given as

Vπ(b)≈ max
n

Vπ(n,b), (20)

whereVπ(n,b) is computed by Equation (7).
The IRL step in line 4 finds the reward function that guarantees the optimality ofthe expert’s

policy. In the optimization problem, we constrain the value of the expert’s policyto be greater
than that of other policies in order to ensure that the expert’s policy is optimal,and maximize the
sum of the margins between the expert’s policy and other policies using a monotonically increasing
function p.5 In addition, we prefer the sparse reward function and the sparsity of thelearned reward
function can be achieved by tuning the penalty weightλ. Note that we can solve the IRL step in
Algorithm 4 using LP since all the variables such asV̂πE andVπ are linear functions in terms ofα
from Equations (18), (19), and (20).

Whenπk+1 matchesπE, the differences in the value functions for all beliefs will vanish. Hence,
the algorithm terminates when all the differences in the values are below the thresholdε, or the
iteration number has reached the maximum number of stepsMaxIter to terminate the algorithm in
a finite number of iterations.

6.2 Max-Margin Between Feature Expectations (MMFE) Method

We can re-write the value of a FSC policyπ in POMDPs using the feature expectationµ(π), pro-
posed by Abbeel and Ng (2004) as follows:

Vπ(b0) = E

[ ∞

∑
t=0

γtR(bt ,at)|π,b0

]

= E

[ ∞

∑
t=0

γtαTφ(bt ,at)|π,b0

]

= αT
E

[ ∞

∑
t=0

γtφ(bt ,at)|π,b0

]

= αTµ(π),

whereµ(π) = E[∑∞
t=0 γtφ(bt ,at)|π,b0], and it is assumed that‖α‖1 ≤ 1 to boundRmax by 1. In order

to compute the feature expectationµ(π) exactly, we define the occupancy distributionoccπ(s,n)
of the policyπ that represents the relative frequency of visiting states at noden when following
the policyπ = 〈ψ,η〉 and starting from beliefb0 and noden0. It can be calculated by solving the

5. We simply choosep(x) = x if x> 0 andp(x) = 2x if x< 0 as in Ng and Russell (2000). This gives more penalty to
violating the optimality of the expert’s policy.
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Algorithm 5 IRL for POMDP\R from the sampled trajectories using the MMFE method.
Input: POMDP\R 〈S,A,Z,T,O,b0,γ〉, basis functionsφ, M trajectories
1: Choose a random initial weightα0.
2: Π = /0, Ω = /0, andt = ∞.
3: for k= 1 toMaxIter do
4: Compute an optimal policyπk−1 for the POMDP withR= αT

k−1φ.
5: Π = Π∪{πk−1} andΩ = Ω∪{αk−1}.
6: if t ≤ ε then
7: break
8: end if
9: Solve the following optimization problem:

maximizet,αk t

subject to αT
k µE ≥ αT

k µ(π)+ t, ∀π ∈ Π
‖αk‖2 ≤ 1

10: end for
11: K = argmink:πk∈Π ‖µE −µ(πk)‖2

12: return R= αT
Kφ

Output: the reward functionR

following system of linear equations:

occπ(s′,n′) = b0(s
′,n′)δn′,n0+

γ ∑
s,z,n

occπ(s,n)T(s,ψ(n),s′)O(s′,ψ(n),z)δn′,η(n,z), ∀s′ ∈ S,∀n′ ∈N ,

whereδx,y denotes the Kronecker delta function, defined asδx,y = 1 if x= y andδx,y = 0 otherwise.
With the occupancy distribution, the value of the policyπ can be computed by

Vπ(b0) = ∑
s,n

occπ(s,n)R(s,ψ(n)) = ∑
s,n

occπ(s,n)αTφ(s,ψ(n)) = αTµ(π),

whereµ(π) = ∑s,noccπ(s,n)φ(s,ψ(n)). However, the feature expectation of the expert’s policyπE

cannot be exactly computed, because we only have the set of trajectorieson the belief space, which
are recovered from the given trajectories of the actions and the observations, instead of the explicit
FSC form of the expert’s policy. Hence, we estimate the expert’s feature expectationµ(πE) = µE
empirically by

µ̂E =
1
M

M

∑
m=1

H−1

∑
t=0

γtφ(bm
t ,a

m
t ).

From these definitions, we can derive the following inequalities, which are similar to Equa-
tion (12),

|VπE(b0)−Vπ(b0)|= |αTµE −αTµ(π)|
≤ ‖α‖2‖µE −µ(π)‖2

≤ ‖µE −µ(π)‖2. (21)
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Algorithm 6 IRL for POMDP\R from the sampled trajectories using the PRJ method.
Input: POMDP\R 〈S,A,Z,T,O,b0,γ〉, basis functionsφ, M trajectories
1: Choose a random initial weightα0.
2: Compute an optimal policyπ0 for the POMDPR= αT

0 φ.
3: Π = {π0}, Ω = {α0}, µ̄0 = µ0 andt = ∞.
4: for k= 1 toMaxIter do
5: αk = µE − µ̄k−1.
6: Compute an optimal policyπk for the POMDPR= αT

k φ.
7: Π = Π∪{πk} andΩ = Ω∪{αk}.
8: if t ≤ ε then
9: break

10: end if
11: Compute an orthogonal projection ofµE onto the line through ¯µk−1 andµk

µ̄k = µ̄k−1+
(µk− µ̄k−1)

T(µE − µ̄k−1)

(µk− µ̄k−1)
T(µk− µ̄k−1)

(µk− µ̄k−1)

12: t = ‖µE − µ̄k‖2

13: end for
14: K = argmink:πk∈Π ‖µE −µk‖2.
15: return R= αT

Kφ
Output: the reward functionR

The last inequality holds since we assume‖α‖1 ≤ 1. The above inequalities state that the difference
between the expert’s policyπE and any policyπ is bounded by the difference between their feature
expectations, which is the same result as in Abbeel and Ng (2004). Basedon Equation (21), we can
easily extend Algorithm 2 to address the IRL problem for POMDP\R from the sampled trajectories.
The algorithm is presented in Algorithm 5. While we can solve Algorithm 4 using LP, the algorithm
requires a QCP solver, since the optimization problem in line 9 has a 2-norm constraint onα. Note
that it is proved that the algorithm will terminate in a finite number of iterations in Abbeel and Ng
(2004).

Abbeel and Ng (2004) construct a policy by mixing the policies found by thealgorithm in
order to find the policy that is as good as the given expert’s policy. They choose the weight of the
policies by computing the convex combination of feature expectations that minimizes the distance
to the expert’s feature expectation. However, this method cannot be adapted to our IRL algorithm,
because there is no way to recover the reward function that provides thecomputed mixed policy.
Thus, we return the reward function that yields the closest feature expectation to that of the expert’s
policy among the intermediate reward functions found by the algorithm. By Equation (21), the value
of the policy that generates the closest feature expectation is assured to be similar to the value of the
expert’s policy and we hope that the reward function that yields the closest feature expectation will
be similar to the reward function that the expert is optimizing.

6.3 Projection (PRJ) Method

In the previous section, we described the IRL algorithm for POMDP\R from the sampled tra-
jectories using QCP. We can now address the problem using a simpler method,as Abbeel and Ng
(2004) proposed. The IRL step in Algorithm 5 can be considered for finding the unit vectorµk or-
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thogonal to the maximum margin hyperplane that classifies feature expectations into two sets: One
set consists of the expert’s feature expectation and the other set consists of the feature expectations
of the policies found by the algorithm. The unit vectorµk can then be approximately computed by
projecting the expert’s feature expectation on the line between the feature expectations of the most
recent policy and the previously projected point. The algorithm is shown in Algorithm 6. In the
algorithm,µi denotesµ(πi) for all i andµ̄ denotes the point where the expert’s feature expectation is
projected. Similar to Algorithm 5, the algorithm returns the reward function thatyields the closest
feature expectation to that of the expert’s policy among the intermediate reward functions found by
the algorithm.

7. Experimental Results

In this section, we present the results from the experiments on some POMDP benchmark domains -
Tiger, 1d Maze, 5×5 Grid World, Heaven/Hell, andRock Sampleproblems. The characteristics of
each problem is presented in Table 4 and brief explanations are given below.

The Tiger and1d Mazeproblems are classic POMDP benchmark problems (Cassandra et al.,
1994). In theTiger problem, an agent is standing in front of two doors. There is a reward behind
one of the doors and a tiger behind the other. If the agent opens the doorwith the tiger, it gets a
large penalty (-100). Otherwise, it receives the reward (+10). The agent initially does not know the
location of the tiger. It can infer the location of the tiger by listening for the sound of the tiger with
a small cost (-1) and the correct information is given with some probability (0.85). In the1d Maze
problem, there are 4 states as presented in the first panel of Figure 4. The third state from the left is
the goal state. An agent is initially set to the non-goal states with equal probabilities and can move
left or right. The agent observes whether it is at the goal state or not. When the agent reaches the
goal state, it is randomly moved to a non-goal state after executing any action.

The 5×5 Grid World problem is inspired by a problem in Ng and Russell (2000), where the
states are located as shown in the second panel of Figure 4. An agent can move west, east, north or
south, and their effects are assumed to be deterministic. The agent alwaysstarts from the north-west
corner of the grid and the goal is at the south-east corner. After the agent reaches the goal state,
the agent restarts from the start state by executing any action in the goal state. The current position
cannot be observed directly but the presence of the adjacent walls canbe perceived without noise.
Hence, there are nine observations, eight of them corresponding to eight possible configurations of
the nearby walls when on the border (N, S, W, E, NW, NE, SW, and SE), and one corresponding to
no wall observation when not on the border (Null).

The Heaven/Hellproblem (Geffner and Bonet, 1998) is a navigation problem over the states
depicted in the third panel of Figure 4. The goal state is either position 4 or 6.One of these is
heaven and the other is hell. When the agent reaches heaven, it receives a reward (+1). When it
reaches hell, it receives a penalty (-1). It starts at position 0, and does not know the position of
heaven. However, it can get the information about the position of heavenafter visiting the priest at
position 9. The agent always perceives its current position without anynoise. After reaching heaven
or hell, it is moved at the initial position.

The Rock Sampleproblem (Smith and Simmons, 2004) models a rover that moves around an
area and samples rocks. The locations of the rover and the rocks are known (the rocks are marked
with stars in the fourth panel of Figure 4), but the value of the rocks are unknown. If it samples a
good rock, it receives a reward (+10), but if it samples a bad rock, itreceives a penalty (-10). When
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Problem |S| |A| |Z| γ |N | |∪n∈N Bn|

Tiger 2 3 2 0.75 5 5
1d Maze 4 2 2 0.75 3 4

5×5 Grid World 25 4 9 0.90 2 13
Heaven/Hell 20 4 11 0.99 18 19

Rock Sample[4,3] 129 8 2 0.95 16 22

Table 4: Characteristics of the problem domains used in the experiments.γ: The discount factor.
|N |: The number of nodes in the optimal policy.| ∪n∈N Bn|: The total number of beliefs
reachable by the optimal policy.
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Figure 4: Maps for the1d Maze, 5×5 Grid World, Heaven/Hell, andRock Sample[4,3] problems.

the rover tries to sample at the location without any rocks, it receives a large penalty (-100). The
rover can observe the value of the rocks with a noisy long range sensor. In addition, it gets a reward
(+1) if it reaches the right side of the map. When it reaches other sides ofthe map, it gets a large
penalty (-100). The rover is immediately moved to the start position when it traverses outside of the
map. TheRock Sampleproblem is instantiated asRock Sample[n,k], which describes that the size
of the map isn×n and the number of the rocks on the map isk, and our experiment was performed
onRock Sample[4,3].

To evaluate the performance of the IRL algorithms, we could naively compare the true reward
functions in the original problems to the reward functions found by the algorithms. However, it
is not only difficult but also meaningless to simply compare the numerical valuesof the reward
functions, since the reward function represents the relative importance of executing an action in a
state. Completely different behaviors may be derived from two reward functions that have a small
difference, and an identical optimal policy may be induced by two reward functions that have a
large difference. For example, three reward functions in theTiger problem are presented in Table 5,
whereR∗ is the true reward function andR1 andR2 are two reward functions chosen for explaining
the phenomenon. When the distances are measured byL2 norm,

Dist(R,R∗) = ‖R∗−R‖2 =
√

∑
s∈S,a∈A

(R∗(s,a)−R(s,a))2,

the reward functionR2 is more similar toR∗ than the reward functionR1. However, as shown in
Figure 5, the optimal policies forR∗ andR1 are exactly the same while the optimal policy forR2
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Listen Success Failure Dist(R,R∗) Vπ(b0;R∗)

R∗ -1 10 -100 0 1.93
R1 -1 5.68 -100 6.10 1.93
R2 3.05 10 -100 5.73 1.02

Table 5: Three reward functions in theTiger problem.R∗ is the true reward function.Listen: The
negative cost of listening.Success: The reward of opening the correct door.Failure: The
negative penalty of choosing the door with the tiger.Dist(R,R∗): The distance from the
true reward functions.Vπ(b0;R∗): The value of the optimal policy for each reward function
measured on the true reward function.

Figure 5: Optimal policies for the reward functions in Table 5. The nodes are labeled with actions
(Listen, OL: Open-left, OR: Open-right). The edges are labeled with observations (TL:
Tiger-left, TR: Tiger-right).Left: The optimal policy forR∗ andR1. Right: The optimal
policy for R2.

is different from that forR∗. If we still want to directly evaluate the computed reward function
using a distance measure, we could apply the policy-invariant reward transformation on the true
reward function and compute the minimum distance, but it is non-trivial to do sosince there is an
infinite number of transformations to choose from including the positive lineartransformation and
the potential-based shaping (Ng et al., 1999). Therefore, we compare the value functions of the
optimal policies induced from the true and learned reward functions insteadof directly measuring
the distance between the reward functions.

The performance of the algorithms are evaluated by the differences in the values of the expert’s
policy and the optimal policy for the learned reward function. In the evaluations, the value of each
policy is measured on the true reward functionR∗ and the learned reward functionRL, and we define
the valueVπ(b0;R) of a policyπ at the initial beliefb0 measured on a reward functionRas

Vπ(b0;R) = ∑
s∈S

b0(s)V
π(n0,s;R),

wheren0 is the starting node of a policyπ andVπ(n0,s;R) is computed by Equation (5) using the
reward functionR.
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Problem D(R∗) D(RL)
|Nnew| Time

Q-IRL D-IRL W-IRL Q-IRL D-IRL W-IRL

Tiger 0 0 375 75 39 0.07 0.04 0.03
1d Maze 0 0 54 18 12 0.02 0.02 0.02

5×5 Grid World 0 0 4096 2048 1044 78.06 3.00 1.54
Heaven/Hell 0 0 4.63×1015 2.57×1014 3260 n.a. n.a. 6.20

Rock Sample[4,3] 13.42 0 32768 2048 634 77.99 19.20 3.77

n.a. = not applicable

Table 6: Results of IRL for POMDP\R from FSC policies. Q-IRL, D-IRL, and W-IRL re-
spectively denote theQ-function based approach, the DP update based approach, and
the witness theorem based approach.D(R∗) = |VπE(b0;R∗)−VπL(b0;R∗)|. D(RL) =
|VπE(b0;RL)−VπL(b0;RL)|. |Nnew| denotes the number of newly generated policies. The
average computation times are reported in seconds

Our algorithm requires a POMDP solver for computing the expert’s policy and the intermediate
optimal policies of the learned rewards. Since we assume the policy is in the form of an FSC, we use
PBPI (Ji et al., 2007), which finds an optimal FSC policy approximately on thereachable beliefs.
Optimization problems formulated in LP and QCP are solved using ILOG CPLEX.

The experiments are organized into two cases according to the representation of the expert’s
policy. In the first case, the expert’s policy is explicitly given in the form ofa FSC, and in the
second case, the trajectories of the expert’s executed actions and the corresponding observations are
given instead.

7.1 Experiments on IRL from FSC Policies

The first set of experiments concerns the case in which the expert’s policy is explicitly given using
the FSC representation. We experimented with all three approaches in Section 5: TheQ-function
based approach, the DP update based approach, and the witness theorem based approach. As in the
case of IRL for MDP\R, we were able to control the sparseness in the reward function by tuning
the penalty weightλ. With a suitable value forλ, all three approaches yielded the same reward
function.6

A summary of the experiments is given in Table 6. Since theHeaven/Hellproblem has a larger
number of observations than other problems and theQ-function and the DP update based approaches
generate exponentially many new policies with respect to the number of observations, the optimiza-
tion problems of theQ-function and the DP update based approaches were not able to handle the
Heaven/Hellproblem. Hence, theHeaven/Hellproblem could only be solved by the witness theo-
rem based approach. Also, the witness theorem based approach was able to solve the other problems
more efficiently than theQ-function based approach and the DP update based approach.

6. With any value ofλ, the reward functions computed by all the proposed optimization problemsshould guarantee the
optimality of the expert’s policy, except for the degenerated caseR= 0 due to an overly large value ofλ. However,
we observed that the optimality of our solutions is often subject to numericalerrors in the optimization, which is an
interesting issue for future studies.
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Figure 6: Comparison of the true and learned reward functions and the expert’s policy in the1d
Mazeproblem. Black bars: The true reward function.White bars: The learned reward
function.

In Table 6,D(R∗) = |VπE(b0;R∗)−VπL(b0;R∗)| is the difference between the values of the
expert’s policyπE and the optimal policyπL for the learned reward, which are measured on the
true reward functionR∗. D(RL) = |VπE(b0;RL)−VπL(b0;RL)| is the difference between the values
measured on the learned reward functionRL. The differences measured on the true reward function
in theTiger, 1d Maze, 5×5 Grid World, andHeaven/Hellare zero, meaning that the learned reward
function generated a policy whose performance is the same as that of the expert’s policy. However,
our algorithms failed to find the reward that generates a policy that is optimal onthe true reward
in the Rock Sample[4,3]. Nevertheless, we can say that the learned reward functionRL satisfies
the optimality of the expert’s policyπE since the policyπL is an optimal policy on the learned
reward functionRL and|VπE(b0;RL)−VπL(b0;RL)|= 0. Thus, the reason for our algorithms’ failure
in the Rock Sample[4,3] might be that the objective functions in the optimization problems are
not well formulated to choose an appropriate reward function that yields a policy similar to the
expert’s, among the infinitely many reward functions in the space specified by the constraints of the
optimization problems.

We further discuss the details of the results from each problem below. Thelearned reward
functions are compared to the true reward functions for theTiger, 1d Maze, 5×5 Grid World, and
Heaven/Hellproblems, but the reward function in theRock Sample[4,3] problem is omitted since it
has too many elements to present.

In theTiger problem, the true and learned reward functions are respectively represented asR∗

andR1 in Table 5. The true reward function is not sparse. Every action is associated with a non-
zero reward. Since our methods favor sparse reward functions, there is some degree of difference
between the true and the learned reward functions, most notably for the listen action, where our
methods assign a zero reward instead of -1 as in the true reward. However, we can apply the policy-
invariant reward transformation (Ng et al., 1999) on the learned rewardfunction so that listen action
yields -1 reward. R1 is the transformed learned reward function. It is close to the true reward
function and produces the optimal policy whose value is equal to the value ofthe expert’s policy
when measured on the true reward function.

For the1d Mazeproblem, the learned reward function is compared to the true reward function
in the left panel of Figure 6 and the expert’s policy is presented in the rightpanel of Figure 6. The
expert’s policy has three nodes: Noden2 (the starting node) chooses to move right, and changes
to noden1 upon observingNothingor to noden0 upon observingGoal; noden1 chooses to move
right and always changes to noden0; noden0 chooses to move left, and changes to noden2 upon
observingNothingor to itself upon observingGoal. Following the expert’s policy, moving left is
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Figure 7: Comparison of the true and the learned reward functions and theexpert’s policy in the
5× 5 Grid World problems. Black bars: The true reward.White bars: The learned
reward.
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Figure 8: Learned reward function in theHeaven/Hellproblem.Black arrow: +1 reward for mov-
ing in the direction of the arrow in each state.Blank grid: Zero reward for all actions in
each state.

always executed after perceiving the goal state. This causes the algorithms to assign the positive
reward to moving left in the goal state as the true one, but the zero reward tomoving right in the goal
state unlike the true one. Consequently, the algorithms find the reward function that explains the
behavior of the expert’s policy, and the optimal policy from the POMDP with respect to the learned
reward function is the same as the expert’s policy.

In the 5× 5 Grid World problem, the expert’s policy is simple as depicted in the right panel
of Figure 7: The agent alternates moving south and east from the start, visiting the states in the
diagonal positions (i.e.,{s0,s5,s6,s11,s12,s17,s18,s23,s24} and{s0,s1,s6,s7,s12,s13, s18,s19,s24}).
The learned reward function is presented with the true reward function in the left panel of Figure 7.
Our methods assign a small positive reward for moving south in states 13 and 18 and moving east
in states 17 and 18. Also, the reward for moving south and east in state 24 is assigned to+1 for
reaching the goal. The learned reward function closely reflects the behavior of the given expert’
policy. Again, even though the learned reward function is different from the true one, it yields the
same optimal policy.

Finally, in theHeaven/Hellproblem, the true reward function is+1 for states 4 and 16 being
heaven, and−1 for states 6 and 14 being hell. The learned reward is presented in Figure8 where
the agent gets a+1 reward when moving in the direction of the arrow in each state. The learned
reward function exactly describes the behavior of the expert, which first visits the priest in states 9
and 19 starting from states 0 and 10 to acquire the position of heaven and then moves to heaven in
states 4 and 16. As shown in Table 6, the learned reward function in theHeaven/Hellproblem also
yields the policy whose value is equal to that of the expert’s policy.
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7.2 Experiments on IRL from Sampled Trajectories

The second set of experiments involves the case when the expert’s trajectories are given. We exper-
imented on the same set of five problems with all three approaches in Section 6:the max-margin
between values (MMV), the max-margin between feature expectations (MMFE), and the projection
(PRJ) methods.

In this section, the reward function is assumed to be linearly parameterized withthe basis func-
tions and we prepare four sets of basis functions to examine the effect ofthe choice of basis functions
on the performance of the algorithms:

• Compact: The set of basis functions that captures the necessary pairs of statesand actions to
present the structure of the true reward function. LetF = {F0,F1, · · · ,FN} be a partition of
S×A such that∀(s,a) ∈ Fi have the same reward valueR(s,a). Thecompactbasis functions
for the partitionF is defined such that thei-th basis functionφi(s,a) = 1 if (s,a) ∈ Fi and
φi(s,a) = 0 otherwise.

• Non-compact: The set of basis functions that includes all the compact basis functions and
some extra redundant basis functions. Each basis functionφi is associated with some set of
state-action pairs as above.

• State-wise: The set of basis functions that consists of the indicator functions for each state.
The i-th basis function is defined asφi(s) = δs′(s) if i-th state iss′.7

• State-action-wise: The set of basis functions consists of the indicator functions for each pair
of state and action. Thei-th basis function is defined asφi(s,a) = δ(s′,a′)(s,a) if i-th pair of
state and action is(s′,a′).

For small problems, such as theTiger, 1d Maze, and 5× 5 Grid World problems, we exper-
imented withstate-action-wisebasis functions. For the two larger problems, three sets of basis
functions are selected. For theHeaven/Hellproblem, the first set consists of thecompactset of
basis functions. Table 7 shows the setFi of pairs of states and actions for each basis function. The
second set consists of thestate-wisebasis functions and the third set consists of thestate-action-
wisebasis functions. For theRock Sample[4,3] problem, the first set consists of thecompactset of
basis functions. The left side of Table 8 shows the setFi of pairs of states and actions for each basis
function. The second set consists of thenon-compactset of basis functions including the redundant
functions that present the rover’s using its sensor (φ10), moving on the map (φ11), sampling at some
locations without rocks (φ12–φ15), and sampling at the rest of the locations (φ16). The right side of
Table 8 presents the set of the pairs of states and actions for thenon-compactbasis functions. The
third set consists of thestate-action-wisebasis functions.

For each experiment, we sampled 2000 belief trajectories. Each trajectory istruncated after a
large finite numberH of time steps. If we truncate the trajectories afterHε = logγ(ε(1− γ)/Rmax)
time steps, the error in estimating the value would be no greater thanε. Table 9 shows the number
of time steps for each problem.

As in the previous section, we compareVπL(b0;R∗) at each iteration, which is the value of
the policyπL from the learned reward functionRL evaluated on the true reward functionR∗. The
results are shown in Figure 9. All the algorithms found the reward function that generate the policy

7. Here, we use the Kronecker delta function, that is,δi( j) = 1 if i = j, andδi( j) = 0 if i 6= j.
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Fi States Actions

F0 s4 ∗
F1 s16 ∗
F2 s6 ∗
F3 s14 ∗
F4 S\{s4,s6,s14,s16} ∗

Table 7: Sets of state-action pairs for thecompactset of basis functions in theHeaven/Hellproblem.
The statess4 ands16 represent heaven and the statess6 ands14 represent hell.

Fi States Actions

F0 x=0 Move west
F1 x=3 Move east
F2 y=0 Move south
F3 y=3 Move north
F4 〈x,y〉= L0, r0 = true Sample
F5 〈x,y〉= L0, r0 = f alse Sample
F6 〈x,y〉= L1, r1 = true Sample
F7 〈x,y〉= L1, r1 = f alse Sample
F8 〈x,y〉= L2, r2 = true Sample
F9 〈x,y〉= L2, r2 = f alse Sample
F10 〈x,y〉 /∈ {Li ,∀i} Sample
F11 The remaining state-action pairs

Fi States Actions

F0, · · · ,F9 Same as in thecompactset
F10 ∗ Use the sensor
F11 ∗ Move
F12 〈x,y〉= L′

0 Sample
F13 〈x,y〉= L′

1 Sample
F14 〈x,y〉= L′

2 Sample
F15 〈x,y〉= L′

3 Sample
F16 〈x,y〉 /∈ {Li ,∀i,L′

j ,∀ j} Sample
F17 The remaining state-action pairs

Table 8: Sets of state-action pairs for thecompact(Left) andnon-compactset of basis functions
(Right) in theRock Sample[4,3] problem.〈x,y〉 denotes the location of the rover.Li is the
location of i-th rock. L′

i is a randomly chosen location without rocks.r i is the Boolean
variable for representing whether thei-th rock is good or not.

close to the expert’s policy in small problems, that is, theTiger, 1d Maze, and 5× 5 Grid World
problems. They also converged to the optimal value in a few iterations when using thecompact
set of basis functions in the two larger problems, that is, theHeaven/HellandRock Sample[4,3]
problems. However, more iterations were required to converge when other sets of basis functions
were used. This is due to the fact that a larger number of basis functions induces a larger search
space. In theHeaven/Hellproblem, the MMV method converged to a sub-optimal solution using
the state-wisebasis functions although the true reward function can be represented exactly using
thestate-wisebasis functions. The MMV method had no such issues when using thestate-action-
wise basis functions. In theRock Sample[4,3] problem, the MMV method also converged to a
sub-optimal solution using thestate-action-wisebasis functions with 1024 basis functions, most
of them being redundant since there are only 12 basis functions in thecompactset. Hence, the
MMV method is sensitive to the selection of basis functions, whereas the MMFEand PRJ methods
robustly yield optimal solutions. Our reasoning on this phenomenon is given inthe end of this
subsection. Meanwhile, the value of the learned policies tends to oscillate in thebeginning of the
learning phase, particularly in theTiger and Rock Sample[4,3] problems, since our methods are
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Problem # of steps VπE(b0;R∗)

Tiger 20 1.93
1d Maze 20 1.02

5×5 Grid World 50 0.70
Heaven/Hell 300 8.64

Rock Sample[4,3] 200 21.11

Table 9: Configuration for each problem and the value of the expert’s policy measured on the true
reward function.

Problem φ |φ| VπL (b0;R∗) Time

MMV MMFE PRJ MMV MMFE PRJ

Tiger SA 6 1.79 1.93 1.93 10.04 (72.27) 7.04 (41.56) 3.97 (96.33)
1d Maze SA 8 1.02 1.02 1.02 0.88 (75.07) 5.18 (10.83) 0.71 (82.13)

5×5 Grid World SA 100 0.70 0.70 0.70 24.10 (95.11) 20.07 (96.88) 21.49 (98.16)
Heaven/Hell C 5 8.49 8.64 8.64 18.54 (63.02) 11.80 (79.75) 8.99 (88.66)

S 20 5.70 8.64 8.64 375.03 (96.48) 332.97 (98.51) 937.59 (99.75)
SA 80 8.47 8.64 8.64 443.57 (98.31) 727.87 (99.30) 826.37 (99.68)

Rock Sample[4,3] C 11 20.84 20.05 20.38 8461.65 (99.16) 8530.18 (52.03)10399.61 (59.86)
NC 17 20.83 20.62 20.16 21438.83 (89.88) 10968.81 (25.05) 27808.79 (79.41)
SA 1024 -26.42 17.83 19.05 31228.85 (72.45) 13486.41 (78.25) 16351.59 (80.57)

Table 10: Results of IRL for POMDP\R from sampled trajectories. The sets of the basis functions
are denoted by C(compact), NC(non-compact), S(state-wise), and SA(state-action-wise).
The average computation time for each trial is reported in seconds and the numbers in
the parentheses next to the computation time are the percentages of the time takenby the
POMDP solver.

not guaranteed to improve monotonically and are hence prone to yielding poor intermediate reward
functions. However, these poor intermediate reward functions will effectively restrict the region of
the reward functions for the final result.

We summarizeVπL(b0;R∗) returned at the end of the algorithms and the computation time for
each trials with the computation time for solving intermediate POMDPs in Table 10. As noted in the
above, in most of the experiments, the algorithms eventually found the policy whose performance
is the same as the expert’s, which means the algorithms found the reward function that successfully
recovers the expert’s policy. The computation time increased when the size of basis functions and
the size of the problems were increased. When thestate-action-wisebasis functions were applied for
theRock Sample[4,3] problem, it took about 8 hours on average for the MMV method to converge.
However, the larger portion of the computation time was spent for solving intermediate POMDPs.
The average percentage of the time spent for solving intermediate POMDPs was 78.83%.

The third set of experiments was conducted for examining the performance of the algorithms
as the number of sampled belief trajectories varied. We experimented with the MMV, MMFE, and
PRJ methods in theTiger problem. Each trajectory was truncated after 20 time steps. Figure 10
presents the results where the value of policy is measured byVπL(b0;R∗). The MMFE method
required fewer number of trajectories to attain the policy that performs closeto the expert’s than the
MMV and PRJ methods required. The performance of the PRJ method was theworst when given
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few sampled trajectories, but it improved fast as the number of trajectories increased. However, the
MMV method needed many trajectories to find the near-optimal solution.

We conclude this subsection with our reasoning on why the MMFE and PRJ methods typically
outperform the MMV method. The MMFE and PRJ methods directly use the differences in fea-
ture expectations (line 11 in Algorithm 5 and line 14 in Algorithm 6), whereas theMMV method
uses the differences in values obtained from theweight vectorsand feature expectations (line 12
in Algorithm 4). Using the differences in values can be problematic becauseit is often possible
that a weight vector very different from the true one can yield a very small difference in values.
Hence, it is preferable to directly use the differences in feature expectations since it still bounds the
differences in values without depending on the weight vectors.

8. Related Work

In control theory, recovering a reward function from demonstrations has received significant atten-
tion, and has been referred to as the inverse optimal control (IOC) problem. It was first proposed
and studied for linear systems by Kalman (1964). IRL is closely related to IOC, but the focus is on
the problem of inverse optimality within the framework of RL. As already mentioned in the intro-
duction, Russell (1998) proposed IRL as an important problem in machinelearning, suggesting that
it will be useful in many research areas such as studies on animal and human behaviors since the
reward function reflects the objective and the preference of the decision maker. IRL is also useful
for reinforcement learning since similar but different domains often share the same reward function
structure albeit different dynamics. In this case, transferring the reward function learned from one
domain to another domain may be useful.

Besides the task ofreward learning, IRL has gained interest inapprenticeship learning, where
the task is to find the policy with possibly better performance than the one demonstrated by an
expert. Apprenticeship learning is useful when explicitly specifying the reward function is difficult
but the expert’s behaviors are available instead. Apprenticeship learning is a promising approach
in robotics since it provides a framework for a robot to imitate the demonstratorwithout a full
specification of which states are good or bad, and to what degree.

Since Russell (1998), a number of algorithms for IRL and apprenticeshiplearning have been
proposed in the last decade. Most of the algorithms assume a completely observable setting, where
the agent has capability to access the true global state of the environment often modeled as an
MDP. In this section, we briefly review some of these previous works on theIRL and apprenticeship
learning problem.

One of the first approaches to IRL in the MDP setting was proposed by Ng and Russell (2000),
which we have covered in Section 3. They presented a sufficient and necessary condition on the
reward functions which guarantees the optimality of the expert’s policy, andprovided some heuris-
tics to choose a reward function since the degenerate reward functions also satisfy the optimality
condition. The IRL problem was formulated as LP with the constraints corresponding to the op-
timality condition and the objective function corresponding to the heuristics. The algorithm was
shown to produce reasonably good solutions in the experiments on some benchmark problems. We
have extended this algorithm to the partially observable setting in Section 5 and Section 6.1.

Abbeel and Ng (2004) presented an apprenticeship learning algorithm based on IRL, which we
have described in Section 3.2. One of the important aspects of the algorithm was to compare the
feature expectations between the expert’s and the learned policies ratherthan the estimated values.
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Figure 9: The value of the policies produced by the learned reward function at each iteration by the
algorithms of IRL for POMDP\R from sampled trajectories. The value is measured on
the true reward function for each problem. The optimal value is denoted byOpt. in the
legend.
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Figure 10: The value of the policies produced by the learned reward function by the algorithms of
IRL for POMDP\R from varying number of sampled trajectories. Averages over 100
trials are presented with 95% confidence intervals. The x-axis represents the number of
sampled trajectories on a log 10 scale.
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The algorithm comes with a theoretical guarantee that the learned policy is similarto the expert’s
policy when evaluated on the true reward function. The algorithm was shown to successfully learn
different driving styles in a simulated car driving task. This work was further extended using a
number of different approaches. We have extended this algorithm to the partially observable setting
in Section 6.2 and Section 6.3.

The structured max-margin optimization technique (Taskar et al., 2005) was applied to appren-
ticeship learning by Ratliff et al. (2006). They formulated a QP problem to find the weight vector of
the reward basis functions that maximizes the margin between the expert’s policy and all other poli-
cies. They also provided the maximum margin planning (MMP) algorithm based on the subgradient
method, which is faster than the QP method. The MMP was shown to solve problems of practical
sizes, such as route planning for outdoor mobile robots, where the QP method was not applicable.

Neu and Szepesvari (2007) proposed an algorithm for apprenticeship learning that unifies the
direct and indirect methods: The direct method, using supervised learning methods, finds the policy
that minimizes loss functions that penalize deviating from the expert’s policy. The indirect method
finds the policy using the learned reward function from IRL. Since the lossfunctions are defined
on the policy space, the algorithm uses natural gradients to map the gradientsin the policy space to
those in the weight vector space of reward functions.

Whereas most of the apprenticeship learning algorithms focus on approximating the perfor-
mance of the expert’s policy, Syed and Schapire (2008) proposed a method called multiplicative
weights for apprenticeship learning (MWAL), which tries to improve on the expert’s policy. This
was achieved in a game-theoretic framework using a two person zero-sumgame, where the learner
selects a policy that maximizes its performance relative to the expert’s and the environment adver-
sarially selects a reward function that minimizes the performance of the learned policy. The game
was solved using the multiplicative weights algorithm (Freund and Schapire, 1999) for finding ap-
proximately optimal strategies in zero-sum games.

One of the difficulties in apprenticeship learning is that most proposed algorithms involve solv-
ing MDPs in each iteration. Syed et al. (2008) addressed this issue by identifying the optimization
performed in the MWAL algorithm, and formulating it into an LP problem. They showed that
this direct optimization approach using an off-the-shelf LP solver significantly improves the perfor-
mance in terms of running time over the MWAL algorithm.

As mentioned in Section 4, IRL is an ill-posed problem since the solution of IRL isnot unique.
To address the non-uniqueness in the solution, the above approaches adopt some heuristics, for
example, maximizing the margin between the expert’s policy and other policies. Wecould also
handle the uncertainty in the reward function using probabilistic frameworks. Ramachandran and
Amir (2007) suggested a Bayesian framework for IRL and apprenticeship learning. The external
knowledge about the reward function is formulated in the prior, and the posterior is computed by
updating the prior using the expert’s behavior data as evidence. Ziebartet al. (2008) proposed an
apprenticeship learning algorithm adopting the maximum entropy principle for choosing the learned
policy constrained to match feature expectations of the expert’s behavior.

Recently, Neu and Szepesvari (2009) provided a unified framework for interpreting a number
of incremental IRL algorithms listed above, and discussed the similarities and differences among
the algorithms by defining the distance function and the update step employed in each algorithm.
Each algorithm was characterized by the distance function that measures the difference between
the expert’s behavior data and the policy from the learned reward function, and the update step that
computes new parameter values for the reward function.
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The question of whether the IRL and the apprenticeship learning algorithms listed above can
be extended to the partially observable setting in an efficient way remains as an important open
problem.

9. Conclusion

The objective of IRL is to find the reward function that the domain expert is optimizing from the
given data of her or his behavior and the model of the environment. IRL willbe useful in various
areas connected with reinforcement learning such as animal and human behavior studies, econo-
metrics, and intelligent agents. However, the applicability of IRL has been limitedsince most of the
previous approaches employed the assumption of an omniscient agent using the MDP framework.

We presented an IRL framework for dealing with partially observable environments in order to
relax the assumption of an omniscient agent in the previous IRL algorithms. First, we derived the
constraints of the reward function to guarantee the optimality of the expert’s policy and built opti-
mization problems to solve IRL for POMDP\R when the expert’s policy is explicitly given. The
results from the classical POMDP research, such as the generalized Howard’s policy improvement
theorem (Howard, 1960) and the witness theorem (Kaelbling et al., 1998), were exploited to re-
duce the computational complexity of the algorithms. Second, we proposed iterative algorithms of
IRL for POMDP\R from the expert’s trajectories. We proposed an algorithm that uses max-margin
between values via LP, and then, in order to address larger problems robustly, we adapted the al-
gorithms for apprenticeship learning in the MDP framework to IRL for POMDP\R. Experimental
results on several POMDP benchmark domains showed that, in most cases,our algorithms robustly
find solutions close to the true reward function, generating policies that acquire values close to that
of the expert’s policy.

We demonstrated that the classical IRL algorithm on MDP\R could be extended to POMDP\R,
and we believe that more recent IRL techniques as well as some of the IRL-based apprenticeship
learning techniques could be similarly extended by following our line of thought. However, there
are a number of interesting issues that should be addressed in future studies.

9.1 Finding the Optimality Condition

The proposed conditions in Section 5 are not sufficient conditions of the reward function to guar-
antee the optimality of the expert’s policy. The condition based on the comparison of Q-functions
in Equation (14) should be evaluated for every possible policy that may have an infinite number
of nodes. The condition using the DP update and the witness theorem in Equation (16) should be
evaluated for some useful nodes that the expert’s policy may not have due to their unreachability
from the starting node. Also, Equations (14) and (16) should be extended to assess the value for all
beliefs. Thus, it is crucial to find a sufficient condition that can be efficiently computed in order to
restrict the feasible region of the reward functions tightly so that the optimization problems can find
the reward function that guarantees the optimality of the given expert’s policy.

9.2 Building an Effective Heuristic

Although the constraints for the reward function are not sufficient conditions, we empirically showed
that |VπE(b0;RL)−VπL(b0;RL)|= 0, which implies that the value of the expert’s policyπE is equal
to that of the optimal policyπL produced by the learned rewardRL when the value is evaluated on
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the learned reward. In other words, the expert’s policy is another optimalpolicy for the learned re-
ward and the learned reward still satisfies the optimality condition of the expert’s policy. However,
the optimal policy for the learned reward does not achieve the same value asthe expert’s policy
when the value is evaluated on the true reward. The reason for the algorithms’ failure to find the
appropriate reward function may lie in the shortcomings of the heuristic for theobjective functions.
In this paper, we use the heuristic originally proposed by Ng and Russell (2000). It prefers the
reward function that maximizes the sum of the differences between the valueof the expert’s policy
and the other policies while forcing the reward function to be as sparse as possible. Unfortunately,
this heuristic failed in some cases in our experiments. Hence, a more effective heuristic should
be devised to find the reward function that provides similar behavior to the expert’s policy. This
can be addressed by adapting more recent IRL approaches such as the Bayesian IRL (Ramachan-
dran and Amir, 2007) and the maximum entropy IRL (Ziebart et al., 2008) to partially observable
environments. The Bayesian IRL prefers the reward function inducing the high probability of exe-
cuting actions in the given behavior data, and the maximum entropy IRL prefers the reward function
maximizing the entropy of the distribution over behaviors while matching the feature expectations.

9.3 Scalability

The algorithms we presented are categorized into two sets: The first is for the cases when the
expert’s policy is explicitly given in the FSC representations and the secondis for the cases when
the trajectories of the expert’s executed actions and the corresponding observations are given. For
the first set of the algorithms, the computational complexity is reduced based on the generalized
Howard’s policy improvement theorem (Howard, 1960) and the witness theorem (Kaelbling et al.,
1998). The algorithms still suffer from a huge number of constraints in the optimization problem.
The question is then whether it is possible to select a more compact set of constraints that define the
valid region of the reward function while guaranteeing the optimality of the expert’s policy, which is
again related to finding the sufficient condition. For the second set of the algorithms, the scalability
is more affected by the efficiency of the POMDP solver than by the number ofconstraints in the
optimization problem. Although PBPI (Ji et al., 2007), the POMDP solver usedin this paper, is
known to be one of the fastest POMDP solvers which return FSC policies, itwas observed in the
experiments that the algorithms spent more than 95% of the time to solve the intermediate POMDP
problems. Computing an optimal policy in the intermediate POMDP problem takes a much longer
time than solving a usual POMDP problem, since an optimal policy of the intermediatePOMDP
problem is often complex due to the complex reward structure. The limitation couldbe handled
by modifying the algorithms to address the IRL problems with other POMDP solvers, such as
HSVI (Smith and Simmons, 2005), Perseus (Spaan and Vlassis, 2005), PBVI (Pineau et al., 2006),
and SARSOP (Kurniawati et al., 2008), which generate the policy definedas a mapping from beliefs
to actions.
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