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Abstract
We investigate three variants of budgeted learning, a setting in which the learner is allowed to
access a limited number of attributes from training or test examples. In the “local budget” setting,
where a constraint is imposed on the number of available attributes per training example, we design
and analyze an efficient algorithm for learning linear predictors that actively samples the attributes
of each training instance. Our analysis bounds the number ofadditional examples sufficient to
compensate for the lack of full information on the training set. This result is complemented by a
general lower bound for the easier “global budget” setting,where it is only the overall number of
accessible training attributes that is being constrained.In the third, “prediction on a budget” setting,
when the constraint is on the number of available attributesper test example, we show that there
are cases in which there exists a linear predictor with zero error but it is statistically impossible
to achieve arbitrary accuracy without full information on test examples. Finally, we run simple
experiments on a digit recognition problem that reveal thatour algorithm has a good performance
against both partial information and full information baselines.

Keywords: budgeted learning, statistical learning, linear predictors, learning with partial informa-
tion, learning theory

1. Introduction

Consider the problem of predicting whether a person has some disease based on medical tests.
In principle, we may draw a sample of the population, perform a large numberof medical tests
on each person in the sample, and use this information to train a classifier. In many situations,
however, this approach is unrealistic. First, patients participating in the experiment are generally
not willing to go through a large number of medical tests. Second, each test has some associated
cost, and we typically have a budget on the amount of money to spend for collecting the training
information. This scenario, where there is a hard constraint on the numberof training attributes the

∗. A short version of this paper has been presented in ICML 2010.
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learner has access to, is known asbudgeted learning.1 Note that the constraint on the number of
training attributes may be local (no single participant is willing to undergo many tests) or global (the
overall number of tests that can be performed is limited). In a different butrelated budgeted learning
setting, the system may be facing a restriction on the number of attributes that can be viewed at test
time. This may happen, for example, in a search engine, where a ranking ofweb pages must be
generated for each incoming user query and there is no time to evaluate a large number of attributes
to answer the query.

We may thus distinguish three basic budgeted learning settings:

• Local Budget Constraint: The learner has access to at mostk attributes of each individual
example, wherek is a parameter of the problem. The learner has the freedom to actively
choosewhichof the attributes is revealed, as long as at mostk of them will be given.

• Global Budget Constraint: The total number of training attributes the learner is allowed to
see is bounded byk. As in the local budget constraint setting, the learner has the freedom to
actively choose which of the attributes is revealed. In contrast to the localbudget constraint
setting, the learner can choose to access more thank/m attributes from specific examples
(wherem is the overall number of examples) as long as the global number of attributes is
bounded byk.

• Prediction on a budget: The learner receives the entire training set, however, at test time,
the predictor can see at mostk attributes of each instance and then must form a prediction.
The predictor is allowed to actively choose which of the attributes is revealed.

In this paper we focus on budgeted linear regression, and prove negative and positive learning
results in the three abovementioned settings. Our first result shows that, under aglobal budget
constraint, no algorithm can learn a generald-dimensional linear predictor while observing less
thanΩ(d) attributes at training time. This is complemented by the following positive result: we
show an efficient algorithm for learning under a givenlocal budget constraint of 2k attributes per
example, for anyk≥ 1. The algorithm actively picks which attributes to observe in each example
in a randomized way depending on past observed attributes, and constructs a “noisy” version ofall
attributes. Intuitively, we can still learn despite the error of this estimate because instead of receiving
the exact value of each individual example in a small set it suffices to get noisy estimations of many
examples. We show that the overall number of attributes our algorithm needsto learn a regressor is at
most a factor ofd bigger than that used by standard regression algorithms that view all the attributes
of each example. Ignoring logarithmic factors, the same gap ofd exists when the attribute bound
of our algorithm is specialized to the choice of parameters that is used to prove the abovementioned
Ω(d) lower bound under the global budget constraint.

In the prediction on a budget setting, we prove that in general it is not possible (even with an
infinite amount of training examples) to build an active classifier that uses at most two attributes of
each example at test time, and whose error will be smaller than a constant. Thisin contrast with
the local budget setting, where it is possible to learn a consistent predictorby accessing at most two
attributes of each example at training time.

1. See, for example,webdocs.cs.ualberta.ca/ ˜ greiner/BudgetedLearning/ .
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2. Related Work

The notion of budgeted learning is typically identified with the “global budget” and “prediction
on a budget” settings—see, for example, Deng et al. (2007), Kapoor and Greiner (2005a,b) and
Greiner et al. (2002) and references therein. The more restrictive “local budget” setting has been
first proposed in Ben-David and Dichterman (1998) under the name of “learning with restricted
focus of attention”. Ben-David and Dichterman (1998) considered binary classification and showed
learnability of several hypothesis classes in this model, likek-DNF and axis-aligned rectangles.
However, to the best of our knowledge, no efficient algorithm for the class of linear predictors has
been so far proposed.2

Our algorithm for the local budget setting actively chooses which attributesto observe for each
example. Similarly to the heuristics of Deng et al. (2007), we borrow ideas from the adversarial
multi-armed bandit problem (Auer et al., 2003; Cesa-Bianchi and Lugosi,2006). However, our
algorithm is guaranteed to be attribute efficient, comes with finite sample generalization bounds,
and is provably competitive with algorithms which enjoy full access to the data. Arelated but
different setting is multi-armed bandit on a global budget—see, for example,Guha and Munagala
(2007) and Madani et al. (2004). There one learns the single best arm rather than the best linear
combination of many attributes, as we do here. Similar protocols were also studied in the context
of active learning (Cohn et al., 1994; Balcan et al., 2006; Hanneke, 2007, 2009; Beygelzimer et al.,
2009), where the learner can ask for the target associated with specificexamples.

Finally, our technique is reminiscent of methods used in the compressed learning framework
(Calderbank et al., 2009; Zhou et al., 2009), where data is accessed via a small set of random linear
measurements. Unlike compressed learning, where learners are both trained and evaluated in the
compressed domain, our techniques are mainly designed for a scenario in which only the access to
training data is restricted.

We note that a recent follow-up work (Hazan and Koren, 2011) present 1-norm and 2-norm
based algorithms for our local budget setting, whose theoretical guarantees improve on those pre-
sented in this paper, and match our lower bound to within logarithmic factors.

3. Linear Regression

We consider linear regression problems where each example is an instance-target pair,(x,y)∈Rd×
R. We refer tox as a vector of attributes. Throughout the paper we assume that‖x‖∞ ≤ 1 and
|y| ≤ B. The goal of the learner is to find a linear predictorx 7→ 〈w,x〉. In the rest of the paper,
we use the term predictor to denote the vectorw ∈ R

d. The performance of a predictorw on an
instance-target pair,(x,y) ∈ R

d×R, is measured by a loss functionℓ(〈w,x〉,y). For simplicity, we
focus on the squared loss function,ℓ(a,b) = (a−b)2, and briefly mention other loss functions in
Section 8. Following the standard framework of statistical learning (Haussler, 1992; Devroye et al.,
1996; Vapnik, 1998), we model the environment as a joint distributionD over the set of instance-
target pairs,Rd×R. The goal of the learner is to find a predictor with low risk, defined as the
expected loss

LD(w)
def
= E

(x,y)∼D

[
ℓ(〈w,x〉,y)

]
.

2. Ben-David and Dichterman (1998) do describe learnability results forsimilar classes but only under the restricted
family of product distributions.
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Since the distributionD is unknown, the learner relies on a training set ofm examples
S=

{
(x1,y1), . . . ,(xm,ym)

}
, which are assumed to be sampled i.i.d. fromD. We denote the training

loss by

LS(w)
def
=

1
m

m

∑
i=1

(〈w,xi〉−yi)
2 .

4. Impossibility Results

Our first result states that any budget learning algorithm (local or global) needs in general a budget
of Ω(d) attributes for learning ad-dimensional linear predictor.

Theorem 1 For any d≥ 4 andε∈
(
0, 1

16

)
, there exists a distributionD over{−1,+1}d×{−1,+1}

and a weight vector w⋆ ∈ R
d, with ‖w⋆‖0 = 1 and‖w⋆‖2 = ‖w⋆‖1 = 2

√
ε, such that any learning

algorithm must see at least

k≥ 1
2

⌊
d

96ε

⌋

attributes in order to learn a linear predictor w such that LD(w)−LD(w⋆)< ε.

The proof is given in the Appendix. In Section 6 we prove that under the same assumptions as those
of Theorem 1, it is possible to learn a predictor using a local budget of twoattributes per example
and using a total of̃O(d2) training examples. Thus, ignoring logarithmic factors hidden in theÕ

notation, we have a multiplicative gap ofd between the lower bound and the upper bound.
Next, we consider the prediction on a budget setting. Greiner et al. (2002) studied this setting

and showed positive results regarding (agnostic) PAC-learning ofk-activepredictors. Ak-active
predictor is restricted to use at mostk attributes per test examplex, where the choice of thei-th
attribute ofx may depend on the values of thei−1 attributes ofx that have been already observed.
Greiner et al. (2002) show that it is possible to learn ak-active predictor from training examples
whose performance is slightly worse than that of the bestk-active predictor. But, how good are the
predictions of the bestk-active predictor? We now show that even in simple cases in which there
exists a linear predictorw⋆ with LD(w⋆) = 0, the risk of the bestk-active predictor can be high.
The following theorem indeed shows that if the only constraint onw⋆ is boundedℓ2 norm, then the
risk can be as high as 1− k

d . We use the notationLD(A) to denote the expected loss of thek-active
predictorA on a test example.

Theorem 2 There exists a weight vector w⋆ ∈ R
d and a distributionD such that‖w⋆‖2 = 1 and

LD(w⋆) = 0, while any k-active predictor A must have LD(A)≥ 1− k
d .

Note that the risk of the constant prediction of zero is 1. Therefore, the theorem tells us that no
active predictor can get an improvement over the naive predictor of morethan k

d .

Proof For anyd> k letw⋆=
(
1
/√

d, . . . ,1
/√

d
)
. Letx∈{±1}d be distributed uniformly at random

andy is determined deterministically to be〈w⋆,x〉. Then,LD(w⋆) = 0 and‖w⋆‖2 = 1. Without loss
of generality, suppose thek-active predictor asks for the firstk attributes of a test example and forms
its prediction to be ˆy. Since the generation of attributes is independent, we have that the value of
xk+1, . . . ,xd does not depend neither onx1, . . . ,xk nor onŷ. Using this and the fact thatE[x j ] = 0 for

2860



EFFICIENT LEARNING WITH PARTIALLY OBSERVEDATTRIBUTES

all j we therefore obtain

E
[
(ŷ−〈w⋆,x〉)2]= E



(

ŷ−
k

∑
i=1

w⋆
i xi−

d

∑
j=k+1

w⋆
j x j

)2



= E



(

ŷ−
k

∑
i=1

w⋆
i xi

)2

+

d

∑
j=k+1

(w⋆
j )

2
E[x2

j ]

+2ŷ
d

∑
j=k+1

w⋆
j E[x j ]−2

k

∑
i=1

d

∑
j=k+1

w⋆
i w⋆

j E[xi ]E[x j ]

= E



(

ŷ−
k

∑
i=1

w⋆
i xi

)2

+∑

i>k

(w⋆
i )

2
E[x2

i ]+0

≥ 0+
d−k

d
= 1− k

d

which concludes our proof.

It is well known that a low 1-norm ofw⋆ encourages sparsity of the learned predictor, which nat-
urally helps in designing active predictors. The following theorem shows that even if we restrict
w⋆ to have‖w⋆‖1 = 1, LD(w⋆) = 0, and‖w⋆‖0 > k, we still have that the risk of the bestk-active
predictor can be non-vanishing.

Theorem 3 There exists a weight vector w⋆ ∈ R
d and a distributionD such that‖w⋆‖1 = 1,

LD(w⋆) = 0, and‖w⋆‖0 = ck (for c> 1) such that any k-active predictor A must have LD(A) ≥(
1− 1

c

)
1
ck.

For example, if in the theorem above we choosec = 2, then‖w⋆‖0 = 2k andLD(A) ≥ 1
4k. If we

choose insteadc= k+1
k , then‖w⋆‖0 = k+1 andLD(A) ≥ 1

(k+1)2 . Note that if‖w⋆‖0 ≤ k there is a
trivial way to predict on a budget ofk attributes by always querying the attributes corresponding to
the non-zero elements ofw⋆.

Proof Let

w⋆ =
(

1
ck, . . . ,

1
ck︸ ︷︷ ︸

ck components

,0, . . . ,0
)

and, similarly to the proof of Theorem2, letx∈ {±1}d be distributed uniformly at random and let
y be determined deterministically to be〈w⋆,x〉. Then,LD(w⋆) = 0, ‖w⋆‖1 = 1, and‖w⋆‖0 = ck.
Without loss of generality, suppose thek-active predictor asks for the firstk < ck attributes of a
test example and form its prediction to be ˆy. Again similarly to the proof of Theorem2, since the
generation of attributes is independent, we have that the value ofxk+1, . . . ,xd does not depend on
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x1, . . . ,xk, and on ˆy. Therefore,

E
[
(ŷ−〈w⋆,x〉)2]= E



(

ŷ−
k

∑
i=1

w⋆
i xi

)2

+∑

i>k

(w⋆
i )

2
E[x2

i ]

≥ 0+
ck−k
(ck)2

=
c−1
c2k

=

(
1− 1

c

)
1
ck

which concludes our proof.

These negative results highlight an interesting phenomenon: in Section 6 weshow that one can
learn an arbitrarily accurate predictorw with a local budget ofk = 2. However, here we show that
even if we know the optimalw⋆, we might not be able to accurately predict a new partially observed
example unlessk is very large. Therefore, at least in the worst-case sense, learning on a budget is
much easier than predicting on a budget.

5. Local Budget Constraint: A Baseline Algorithm

In this section we describe a straightforward adaptation of Lasso (Tibshirani, 1996) to the local
budget setting. This adaptation is based on a direct nonadaptive estimate ofthe loss function. In
Section 6 we describe a more effective approach, which combines a stochastic gradient descent
algorithm called Pegasos (Shalev-Shwartz et al., 2007) with the adaptive sampling of attributes to
estimate the gradient of the loss at each step.

A popular approach for learning a linear regressor is to minimize the empiricalloss on the
training set plus a regularization term, which often takes the form of a norm of the predictorw. For
example, in ridge regression the regularization term is‖w‖22 and in Lasso the regularization term
is ‖w‖1. Instead of regularization, we can include a constraint of the form‖w‖1 ≤ B or ‖w‖2 ≤
B. Modulo an appropriate choice of the parameters, the regularization formis equivalent to the
constraint form. In the constraint form, the predictor is a solution to the following optimization
problem

min
w∈Rd

1
|S| ∑

(x,y)∈S

(
〈w,x〉−y

)2

s.t. ‖w‖p≤ B
(1)

whereS= {(x1,y1), . . . ,(xm,ym)} is a training set ofm examples,B is the regularization parameter,
andp is 1 for Lasso and 2 for ridge regression.

We start with a standard risk bound for constrained predictors.

Lemma 4 LetD be a distribution on pairs(x,y) ∈ R
d×R such that‖x‖∞ ≤ 1 and |y| ≤ B holds

with probability one. Then there exists a constant c> 0 such that

max
w:‖w‖1≤B

∣∣LS(w)−LD(w)
∣∣= cB2

√
1
m

ln
d
δ
.

holds with probability at least1−δ with respect to the random draw of the training set S of size m
fromD.
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Proof We apply the following Rademacher bound (Kakade et al., 2008)

∣∣LS(w)−LD(w)
∣∣≤ LmaxB

√
2
m

ln2d+ ℓmax

√
1

2m
ln

2
δ

that holds with probability at least 1− δ for all w ∈ R
d such that‖w‖1 ≤ B, whereLmax bounds

the Lipschitz constant for the square loss from above, andℓmax bounds the square loss from above.
The result then follows by observing that

∣∣(a−y)2− (b−y)2
∣∣≤ |a−b| |a+b−2y| . Hence,Lmax≤

maxa,b,y |a+b−2y|= 4B where botha andb are of the form〈w,x〉, and we used the fact
∣∣〈w,x〉

∣∣≤B
(recall that‖x‖∞ ≤ 1) together with the assumption|y| ≤ B. Similarly, under the same assumptions,
ℓmax= maxa,y(a−y)2 = 4B2.

This immediately leads to the following risk bound for Lasso.

Corollary 5 If ŵ is a minimizer of (1) with p= 1, then there exists a constant c> 0 such that, under
the same assumptions as Lemma 4,

LD(ŵ)≤ min
w:‖w‖1≤B

LD(w)+cB2

√
1
m

ln
d
δ

(2)

holds with probability at least1−δ over the random draw of the training set S of size m fromD.

To adapt Lasso to the partial information case, we first rewrite the squared loss as follows:
(
〈w,x〉−y

)2
= w⊤xx⊤w−2yx⊤w+y2

wherew,x are column vectors andw⊤,x⊤ are their corresponding transpose (i.e., row vectors). Next,
we estimate the matrixxx⊤ and the vectorx using the partial information we have, and then we solve
the optimization problem given in (1) with the estimated values ofxx⊤ andx. To estimate the vector
x we can pick an indexi uniformly at random from[d] = {1, . . . ,d} and define the estimation to be
a vectorv such that

vr =

{
d xr if r = i

0 else
. (3)

It is easy to verify thatv is an unbiased estimate ofx, namely,E[v] = x where expectation is with
respect to the choice of the indexi. To estimate the matrixxx⊤ we could pick two indicesi, j
independently and uniformly at random from[d], and define the estimation to be a matrix with all
zeros exceptd2xix j in the (i, j) entry. However, this yields a non-symmetric matrix which will
make our optimization problem with the estimated matrix non-convex. To overcome this obstacle,
we symmetrize the matrix by adding its transpose and dividing by 2. This sampling process can be
easily generalized to the case wherek> 1 attributes can be seen. The resulting baseline procedure3

is given in Algorithm 1.
The following theorem shows that similar to Lasso, the Baseline algorithm is competitive with

the optimal linear predictor with a bounded 1-norm.

3. We note that an even simpler approach is to arbitrarily assume that the correlation matrix is the identity matrix and
then the solution to the loss minimization problem is simply the averaged vector,w= ∑(x,y)∈Syx. In that case, we
can simply replacex by its estimated vector as defined in (3). While this naive approach can work on very simple
classification tasks, it will perform poorly on realistic data sets, in which the correlation matrix is not likely to be
identity. Indeed, in our experiments with the MNIST data set, we found out that this approach performed poorly
relatively to the algorithms proposed in this paper.
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ALGORITHM: Baseline(S,k)
INPUT: Training setSof sizem, local budgetk≥ 2 (with k even)
INITIALIZE : Ā= 0∈ R

d×d ; v̄= 0∈ R
d ; ȳ= 0

for each (x,y) ∈ S
v= 0∈ R

d ; A= 0∈ R
d×d

Choose a setC of k entries from[d], uniformly without replacement
for eachc∈C

vc = vc+
d
k

xc

Randomly splitC into two setsI ,J of sizek/2 each
for each (i, j) ∈ I ×J

Ai, j = Ai, j +2

(
d
k

)2

xix j ; A j,i = A j,i +2

(
d
k

)2

xix j

end

Ā= Ā+
A
m

; v̄= v̄+2y
v
m

; ȳ= ȳ+
y2

m
end
Let L̃S(w) = w⊤Āw+w⊤ v̄+ ȳ

OUTPUT: ŵ= argmin
w:‖w‖1≤B

L̃S(w)

Figure 1: An adaptation of Lasso to the local budget setting, where the learner can view at most
k attributes of each training example. The predictive performance of this algorithm is
analyzed in Theorem 6.

Theorem 6 LetD be a distribution on pairs(x,y) ∈ R
d×R such that‖x‖∞ ≤ 1 and |y| ≤ B with

probability one. Letŵ be the output of Baseline(S,k), where|S| = m. Then there exists a constant
c> 0 such that

LD(ŵ)≤ min
w:‖w‖1≤B

LD(w)+c

(
d B
k

)2
√

1
m

ln
d
δ

holds with probability of at least1− δ over the random draw of the training set S fromD and the
algorithm’s own randomization.

The above theorem tells us that for a sufficiently large training set we can find a very good predictor.
Put another way, a large number of examples can compensate for the lack of full information on each
individual example. In particular, to overcome the extra factor(d/k)2 in the bound, which does not
appear in the full information bound given in (2), we need to increasem by a factor of(d/k)4. In
the next subsection, we describe a better, adaptive procedure for thepartial information case.

In view of proving Theorem 6, we first show that samplingk elements without replacements
and then averaging the result has the same expectation as sampling just once.

2864



EFFICIENT LEARNING WITH PARTIALLY OBSERVEDATTRIBUTES

Lemma 7 Let C be a set of n elements and let f: C→ R be an arbitrary function. LetCk = {C′ ⊂
C : |C′|= k} and let U be the uniform distribution overCk. Then

E
C′∼U

[
1
k ∑

c′∈C′
f (c′)

]
=

1
n ∑

c∈C

f (c) .

Proof We have

E
C′∼U(

[
1
k ∑

c′∈C′
f (c′)

]
=

1(n
k

) ∑
C′∈Ck

1
k ∑

c′∈C′
f (c′)

=
1

k
(n

k

) ∑
c∈C

f (c)
∣∣{C′ ∈ Ck : c′ ∈C′}

∣∣

=

(n−1
k−1

)

k
(n

k

) ∑
c∈C

f (c)

=
1
n ∑

c∈C

f (c)

and this concludes the proof.

We now show that the estimation matrix constructed by the Baseline algorithm is likelyto be close
to the true correlation matrix over the training set.

Lemma 8 Let At be the matrix constructed at iteration t of the Baseline algorithm and note that
Ā= 1

m ∑m
t=1At . Let X= 1

m ∑m
t=1xt x⊤t . Then, with probability of at least1− δ over the algorithm’s

own randomness we have that

∣∣Ār,s−Xr,s
∣∣≤
(

d
k

)2
√

8
m

ln

(
2d2

δ

)
r,s= 1, . . . ,d.

Proof Based on Lemma 7, it is easy to verify thatE[At ] = x⊤t xt . Additionally, since we sample

without replacements, each element ofAt is in
[
−2
(

d
k

)2
,2
(

d
k

)2
]

because we assume‖xt‖∞ ≤ 1.

Therefore, we can apply Hoeffding’s inequality on each element ofĀ and obtain that

P

[∣∣Ār,s−Xr,s
∣∣> ε

]
≤ 2exp

(
−mε2

8

(
k
d

)4
)

.

Combining the above with the union bound we obtain that

P

[
∃(r,s) :

∣∣Ār,s−Xr,s
∣∣> ε

]
≤ 2d2exp

(
−mε2

8

(
k
d

)4
)

.

Setting the right-hand side of the above toδ and rearranging terms concludes the proof.

Next, we show that the estimate of the linear part of the objective function is also likely to be
accurate.
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Lemma 9 Let vt be the vector constructed at iteration t of the Baseline algorithm and note that
v̄= 1

m ∑m
t=12yt vt . Let x̄= 1

m ∑m
t=12yt xt . Then, with probability at least1− δ over the algorithm’s

own randomness we have that

‖v̄− x̄‖∞ ≤
dB
k

√
8
m

ln

(
2d
δ

)
.

Proof Based on Lemma 7, it is easy to verify thatE[2yt vt ] = 2yt xt . Additionally, since we sample
k elements without replacement, each element ofvt is in

[
−d

k ,
d
k

]
(because we assume‖xt‖∞ ≤ 1)

and thus each element of 2ytvt is in
[
−2dB

k , 2dB
k

]
(because we assume that|yt | ≤ B). Therefore, we

can apply Hoeffding’s inequality on each element of ¯v and obtain that

P

[∣∣v̄r − x̄r
∣∣> ε

]
≤ 2exp

(
−mε2

8

(
k

dB

)2
)

.

Combining the above with the union bound we obtain that

P

[
∃(r,s) :

∣∣Ār,s−Xr,s
∣∣> ε

]
≤ 2dexp

(
−mε2

8

(
k

dB

)2
)

.

Setting the right-hand side of the above toδ and rearranging terms concludes proof.

Next, we show that the estimated training loss

L̃S(w) = w⊤Āw+w⊤ v̄+ ȳ

computed by the Baseline algorithm is close to the true training loss.

Lemma 10 With probability greater than1− δ over the Baseline algorithm’s own randomization,
for all w such that‖w‖1≤ B,

∣∣L̃S(w)−LS(w)
∣∣≤
(

Bd
k

)2
√

32
m

ln

(
2d2

δ

)
.

Proof Using twice Ḧolder’s inequality and Lemma 8 we get

∣∣w⊤(Ā−X)w
∣∣≤ ‖w‖1

∥∥(Ā−X)w
∥∥

∞ ≤ ‖w‖
2
1 max

r,s=1,...,d

∣∣(Ā−X)r,s
∣∣

≤
(

Bd
k

)2
√

8
m

ln

(
2d2

δ

)
. (4)

Similarly, using Ḧolder’s inequality and Lemma 9 we also get

∣∣w⊤(v̄− x̄)
∣∣≤ B2d

k

√
8
m

ln

(
2d
δ

)
. (5)

2866



EFFICIENT LEARNING WITH PARTIALLY OBSERVEDATTRIBUTES

Using the triangle inequality, (4)–(5), and the union bound we finally obtain
∣∣L̃S(w)−LS(w)

∣∣=
∣∣∣w⊤Āw+w⊤ v̄+ ȳ−w⊤Xw−w⊤ x̄− ȳ

∣∣∣

≤
∣∣w⊤(Ā−X)w

∣∣+
∣∣w⊤(v̄− x̄)

∣∣

≤
(

Bd
k

)2
√

8
m

ln

(
2d2

δ

)
+

B2d
k

√
8
m

ln

(
2d
δ

)

which upon slight simplifications concludes the proof.

We are now ready to prove Theorem 6.

Proof (of Theorem 6)Lemma 4 states that with probability greater than 1−δ over the random draw
of a training setSof mexamples, for allw such that‖w‖1≤ B, we have that

∣∣LS(w)−LD(w)
∣∣= c′B2

√
1
m

ln
d
δ

for somec′ > 0. Combining the above with Lemma 10, we obtain that for somec> 0, with proba-
bility at least 1−δ over both the random draw of the training set and the algorithm’s own random-
ization,

∣∣LD(w)− L̃S(w)
∣∣≤
∣∣LD(w)−LS(w)

∣∣+
∣∣LS(w)− L̃S(w)

∣∣≤ c

(
dB
k

)2
√

1
m

ln
d
δ

for all w such that‖w‖1 ≤ B. The proof of Theorem 6 follows since the Baseline algorithm mini-
mizesL̃S(w).

6. Gradient-Based Attribute Efficient Regression

In this section, by avoiding the estimation of the matrixxx⊤, we significantly decrease the number
of additional examples sufficient for learning withk attributes per training example. To do so, we do
not try to estimate the loss function but rather to estimate thegradient∇ℓ(w) = 2

(
〈w,x〉−y

)
x, with

respect tow, of the squared loss functionℓ(w) =
(
〈w,x〉−y

)2
. Each vectorw defines a probability

distributionP over [d] by letting P(i) = |wi |
/
‖w‖1. We can estimate the gradient using an even

numberk≥ 2 of attributes as follows. First, we randomly pick a subseti1, . . . , ik/2 from [d] according
to the uniform distribution over thek/2-subsets in[d]. Based on this, we estimate the vectorx via

v=
2
k

d
k/2

∑
s=1

xis eis (6)

whereej is the j-th element of the canonical basis ofR
d. Second, we randomly pickj1, . . . , jk/2

from [d] without replacement according to the distribution defined byw. Based on this, we estimate
the term〈w,x〉 by

ŷ=
2
k
‖w‖1

k/2

∑
s=1

sgn
(
w js

)
x js ejs . (7)

This allows us to obtain an unbiased estimate of the gradient, as stated by the following simple
result.
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Lemma 11 Fix any w,x∈ R
d and y∈ R and letℓ(w) =

(
〈w,x〉− y

)
be the square loss. Then the

estimate
∇̃ℓ(w) = 2

(
ŷ−y

)
v (8)

satisfiesE ∇̃ℓ(w) = 2
(
〈w,x〉−y

)
x= ∇ℓ(w).

Proof SinceE[d xj ej ] = x for a random j ∈ [d], Lemma 7 immediately implies thatE[v] = x.
Moreover, it is easy to see thatE

[
‖w‖1sgn(wi)xi ei

]
= 〈w,x〉 when i is drawn with probability

P(i) = |wi |
/
‖w‖1. HenceE[ŷ] = 〈w,x〉. The proof is concluded by noting thati1, . . . , ik/2 are drawn

independently fromj1, . . . , jk/2.

The advantage of the above approach over the loss based approach we took before is that the mag-
nitude of each element of the gradient estimate is order ofd‖w‖1. This is in contrast to what we had
for the loss based approach, where the magnitude of each element of the matrix A was order ofd2.
In many situations, the 1-norm of a good predictor is significantly smaller thand and in these cases
the gradient based estimate is better than the loss based estimate. However, while in the previous
approach our estimation did not depend on a specificw, now the estimation depends onw. We
therefore need an iterative learning method in which at each iteration we usethe gradient of the loss
function on an individual example. Luckily, the stochastic gradient descent approach conveniently
fits our needs.

Concretely, below we describe a variant of the Pegasos algorithm (Shalev-Shwartz et al., 2007)
for learning linear regressors. Pegasos tries to minimize the regularized risk

min
w

λ
2
‖w‖22 + E

(x,y)∼D

[(
〈w,x〉−y

)2
]
. (9)

Of course, the distributionD is unknown, and therefore we cannot hope to solve the above problem
exactly. Instead, Pegasos finds a sequence of weight vectors that (on average) converge to the
solution of (9). We start with the all zeros vectorw= 0∈ R

d. Then, at each iteration Pegasos picks
the next example in the training set (which is equivalent to sampling a fresh example according to
D) and calculates the gradient of the regularized loss

g(w) =
λ
2
‖w‖22+

(
〈w,x〉−y

)2

for this example with respect to the current weight vectorw. This gradient is simply∇g(w) =
λw+∇ℓ(w), where∇ℓ(w) = 2

(
〈w,x〉− y

)
x. Finally, Pegasos updates the predictor according to

the gradient descent rulew← w− 1
λ t ∇g(w) wheret is the current iteration number. This can be

rewritten asw←
(
1− 1

t

)
w− 1

λ t ∇ℓ(w).
To apply Pegasos in the partial information case we could simply replace the gradient vector

∇ℓ(w) with its estimation given in (8). However, our analysis shows that it is desirable to maintain
an estimation vector̃∇ℓ(w) with small magnitude. Since the magnitude of∇̃ℓ(w) = 2

(
ŷ− y

)
v is

order ofd‖w‖1, we would like to ensure that‖w‖1 is always smaller than some thresholdB. We
achieve this goal by adding an additional projection step at the end of eachPegasos’s iteration.
Formally, the update is performed in two steps as follows

w←
(

1− 1
t

)
w− 1

λ t
2
(
ŷ−y

)
v (10)

w← argmin
u:‖u‖1≤B

‖u−w‖2 (11)
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ALGORITHM: AER(S,k)
INPUT: Training setSof sizem, local budgetk≥ 2 (with k even)
PARAMETER: λ > 0
INITIALIZATION : w= 0∈ R

d ; w̄= w ; t = 1

for each (x,y) ∈ S
v= 0∈ R

d ; ŷ= 0
ChooseC uniformly at random from all subsets of[d] of size k

2
for each j ∈C

v j = v j +
2
k

d xj

end
for r = 1, . . . ,k/2

samplei from [d] based onP(i) =
|wi |
‖w‖1

(if w= 0 setP(i) = 1/d)

ŷ= ŷ+
2
k

sgn(wi)‖w‖1xi

end

w=

(
1− 1

t

)
w− 2

λt
(ŷ−y)v

w= argmin
u:‖u‖1≤B

‖u−w‖2

w̄= w̄+
w
m

; t = t +1

end

OUTPUT: w̄

Figure 2: An adaptation of the Pegasos algorithm to the local budget setting.Theorem 12 provides
a performance guarantee for this algorithm.

wherev and ŷ are respectively defined by (6) and (7). The projection step (11) canbe performed
efficiently in timeO(d) using the technique described in Duchi et al. (2008). A pseudo-code of the
resultingAttributeEfficient Regression algorithm is given in Figure 2.

Note that the right-hand side of (10) isw− 1
λt ∇ f for the function

f (w) = λ
2‖w‖

2
2+2(ŷ−y)〈v,w〉 . (12)

This observation is used in the proof of the following result, providing convergence guarantees for
AER.

Theorem 12 LetD be a distribution on pairs(x,y) ∈ R
d×R such that‖x‖∞ ≤ 1 and |y| ≤ B with

probability one. Let S be a training set of size m and letw̄ be the output of AER(S,k) run with
λ = 12d

√
log(m)/(mk). Then, there exists a constant c> 0 such that

LD(w̄)≤ min
w:‖w‖1≤B

LD(w)+cdB2

√
1

km
ln

m
δ
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holds with probability at least1−δ over both the choice of the training set and the algorithm’s own
randomization.

Proof Letyt , ŷt ,vt ,wt be the values ofy, ŷ,v,w, respectively, at each iterationt of the AER algorithm.
Moreover, let∇t = 2(〈wt ,xt〉−yt)xt and∇̃t = 2(ŷt −yt)vt . From the convexity of the squared loss,
and taking expectation with respect to the algorithm’s own randomization, we have that for any
vectorw⋆ such that‖w⋆‖1≤ B,

E

[
m

∑
t=1

(
〈wt ,xt〉−yt

)2

]
−

m

∑
t=1

(
〈w⋆,xt〉−yt

)2≤ E

[
m

∑
t=1

〈∇t ,wt −w⋆〉
]

= E

[
m

∑
t=1

〈∇̃t ,wt −w⋆〉
]

= E

[
m

∑
t=1

2(ŷt −yt)〈vt ,wt −w⋆〉
]
.

For the first equality we used Lemma 11, which states that, conditioned onwt , E
[
∇̃t
]
= ∇t .

We now deterministically bound the random quantity inside the above expectationas follows

m

∑
t=1

2(ŷt −yt)〈vt ,wt −w⋆〉=
m

∑
t=1

(
λ
2
‖wt‖22+2(ŷt −yt)〈vt ,wt〉

)

−
m

∑
t=1

(
λ
2
‖w⋆‖22+2(ŷt−yt)〈vt ,w

⋆〉
)
+m

λ
2
‖w⋆‖22

=
m

∑
t=1

ft(wt)−
m

∑
t=1

ft(w
⋆)+m

λ
2
‖w⋆‖22

whereft(w) = λ
2‖w‖22+2(ŷt−yt)〈vt ,w〉 is theλ-strongly convex function defined in (12). Recalling

that the right-hand side in the AER update (10) is equal towt − 1
λt ∇ ft(wt), we can apply the fol-

lowing logarithmic regret bound forλ-strongly convex functions (Hazan et al., 2006; Kakade and
Shalev-Shwartz, 2008)

m

∑
t=1

ft(wt)−
m

∑
t=1

ft(w
⋆)≤ 1

λ

(
max

t
‖∇ ft(wt)‖2

)
lnm

which remains valid also in the presence of the projection steps (11). Similarly tothe analysis of
Pegasos, and using our assumptions on‖xt‖∞ and|yt |, the norm of the gradient∇ ft(wt) is bounded
as follows

∥∥∇ ft(wt)
∥∥≤ λ‖wt‖+2

∣∣ŷt −yt
∣∣‖vt‖ ≤ λ‖wt‖+4Bd

√
2
k
.

In addition, it is easy to verify (e.g., using an iductive argument) that

‖wt‖ ≤
1
λ

4Bd

√
2
k
,

which yields
∥∥∇ ft(wt)

∥∥≤ 8Bd

√
2
k
.
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This gives the bound

m

∑
t=1

2(ŷt −yt)〈vt ,wt −w⋆〉 ≤ 128(dB)2

λk
lnm+m

λ
2
‖w⋆‖22 .

Choosingλ = 16d
√

log(m)/(km) and noting that‖ · ‖2≤ ‖ · ‖1 we get that

m

∑
t=1

2(ŷt −yt)〈vt ,wt −w⋆〉 ≤ 16dB2

√
m
k

lnm .

The resulting bound is then

E

[
m

∑
t=1

(
〈wt ,xt〉−yt

)2

]
≤

m

∑
t=1

(
〈w⋆,xt〉−yt

)2
+16dB2

√
m
k

lnm .

To conclude the proof, we apply the online-to-batch conversion of Cesa-Bianchi et al. (2004, Corol-
lary 2) to the probability space that includes both the algorithm’s own randomization and the prod-
uct distribution from which the training set is drawn. Since

(
〈w,xt〉− yt

)2 ≤ 4B2 for all w such
that‖w‖1 ≤ B (recall our assumptions onxt andyt), and using the convexity of the square loss, we
obtain that

LD(w̄)≤ inf
w:‖w‖≤B

LD(w)+16dB2

√
1

km
lnm+4B2

√
2
m

ln
1
δ

holds with probability at least 1−δ with respect to all random events.

Note that for small values ofk (which is the reasonable regime here) the bound for AER is much
better than the bound for Baseline: ignoring logarithmic factors, instead of quadratic dependence
ond, we have only linear dependence ond.

It is interesting to compare the bound for AER to the Lasso bound (2) for thefull information
case. As it can be seen, to achieve the same level of risk, AER needs a factor ofd2/k more examples
than the full information Lasso.4 Since each AER example uses onlyk attributes while each Lasso
example uses alld attributes, the ratio between the total number ofattributesAER needs and the
number of attributes Lasso needs to achieve the same error isO(d). Intuitively, when havingd times
total number of attributes, we can fully compensate for the partial information protocol.

However, in some situations even this extrad factor is not needed. Indeed, suppose we know
that the vectorw⋆, which minimizes the risk, is dense. That is, it satisfies‖w⋆‖1 ≈

√
d‖w⋆‖2 ≤ B.

In this case, by settingλ = d3/2
√

log(m)/(km), and using the tighter bound‖w⋆‖2≤ B
/√

d instead
of ‖w⋆‖2≤ ‖w⋆‖1≤ B in the proof of Theorem 12, we get a final bound of the form

LD(w̄)≤ LD(w
⋆)+cB2

√
d

km
ln

m
δ
.

Therefore, the number of examples AER needs in order to achieve the sameerror as Lasso is only
a factord/k more than the number of examples Lasso uses. But, this implies that both AER and
Lasso needs the same number ofattributesin order to achieve the same level of error! Crucially, the
above holds only ifw⋆ is dense. Whenw⋆ is sparse we have‖w⋆‖1 ≈ ‖w⋆‖2 and then AER needs
more attributes than Lasso.

4. We note that whend = k we still do not recover the full information bound. However, it is possibleto improve the
analysis and replace the factord/

√
k with a factord

(
maxt ‖xt‖2

)/
k.
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Figure 3: In the upper row six examples from the training set (of digits3 and 5) are shown. In the lower
row we show the same six examples, where only four randomly sampled pixels from each original
image are displayed.

7. Experiments

We performed some experiments to test the behavior of our algorithm on the well-known MNIST
digit recognition data set (Le Cun et al., 1998), which contains 70,000 images (28×28 pixels each)
of the digits 0−9. The advantages of this data set for our purposes is that it is not a smallscale
data set, has a reasonable dimensionality-to-data-size ratio, and the setting is clearly interpretable
graphically. While this data set is designed for classification (e.g., recognizing the digit in the
image), we can still apply our algorithms on it by regressing to the label.

First, to demonstrate the hardness of our settings, we provide in Figure 3 below some examples
of images from the data set, in the full information setting and the partial information setting. The
upper row contains six images from the data set, as available to a full information algorithm. A
partial information algorithm, however, will have a much more limited access to these images. In
particular, if the algorithm may only choosek = 4 pixels from each image, the same six images as
available to it might look like the bottom row of Figure 3.

We began by looking at a data set composed of “3” vs. “5”, where all the“3” digits were labeled
as−1 and all the “5” digits were labeled as+1. We ran four different algorithms on this data set: the
simple Baseline algorithm, AER, as well as ridge regression and Lasso for comparison (for Lasso,
we solved (1) withp= 1). Both ridge regression and Lasso were run in the full information setting:
Namely, they enjoyed full access to all attributes of all examples in the training set. The Baseline
algorithm and AER, however, were given access to only four attributes from each training example.

We randomly split the data set into a training set and a test set (with the test setbeing 10% of the
original data set). For each algorithm, parameter tuning was performed using 10-fold cross valida-
tion. Then, we ran the algorithm on increasingly long prefixes of the trainingset, and measured the
average regression error(〈w,x〉−y)2 on the test set. The results (averaged over runs on 10 random
train-test splits) are presented in Figure 4. In the upper plot, we see how the test regression error
improves with the number of examples. The Baseline algorithm is highly unstable at the beginning,
probably due to the ill-conditioning of the estimated covariance matrix, although iteventually stabi-
lizes (to prevent a graphical mess at the left hand side of the figure, we removed the error bars from
the corresponding plot). Its performance is worse than AER, completely in line with our earlier
theoretical analysis.
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The bottom plot of Figure 4 is similar, only that now theX-axis represents the accumulative
number of attributes seen by each algorithm rather than the number of examples. For the partial-
information algorithm, the graph ends at approximately 49,000 attributes, whichis the total number
of attributes accessed by the algorithm after running over all training examples, seeingk= 4 pixels
from each example. However, for the full-information algorithms 49,000 attributes are already
seen after just 62 examples. When we compare the algorithms in this way, we see that our AER
algorithm achieves excellent performance for a given attribute budget, significantly better than the
other 1-norm-based algorithms (Baseline and Lasso). Moreover, AER iseven comparable to the
full information 2-norm-based ridge regression algorithm, which performsbest on this data set.
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Figure 4: Test regression error for each one of the four algorithms (ridge regression, Lasso, AER, and Base-
line), over increasing prefixes of the training set for “3” vs. “5”. The results are averaged over 10
runs.
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Finally, we tested the algorithms over 45 data sets generated from MNIST, one for each possible
pair of digits. For each data set and each of 10 random train-test splits, we performed parameter
tuning for each algorithm separately, and checked the average squared error on the test set. The
median test errors over all data sets are presented in the table below.

Test Error
Full Information Ridge 0.110

Lasso 0.222
Partial Information AER 0.320

Baseline 0.812

As can be seen, the AER algorithm manages to achieve good performance, not much worse
than the full information Lasso algorithm. The Baseline algorithm, however, achieves a substan-
tially worse performance, in line with our theoretical analysis above. We alsocalculated the test
classification error of AER, that is, sign(〈w,x〉) 6= y, and found out that AER, which can see only
4 pixels per image, usually performs only a little worse than the full information algorithms (ridge
regression and Lasso), which enjoy full access to all 784 pixels in eachimage. In particular, the
median test classification errors of AER, Lasso, and Ridge are 3.5%, 1.1%, and 1.3% respectively.

8. Discussion and Extensions

In this paper we have investigated three budgeted learning settings with different constraints on the
way instance attributes may be accessed: a local constraint on each training example (local budget),
a global constraint on the set of all training examples (global budget), and a constraint on each test
example (prediction on a budget). In the local budget setting, we have introduced a simple and
efficient algorithm, AER, that learns by accessing a pre-specified number of attributes from each
training example. The AER algorithm comes with formal guarantees, is provably competitive with
algorithms which enjoy full access to the data, and performs well in simple experiments. This result
is complemented by a general lower bound for the global budget setting which is a factord smaller
than the upper bound achieved by our algorithm. We note that this gap has been recently closed
by Hazan and Koren (2011), which in our local budget setting, show 1-norm and 2-norm-based
algorithms for learning linear predictors using onlyÕ(d) attributes, thus matching our lower bound
to within logarithmic factors.

Whereas AER is based on Pegasos, our adaptive sampling approach easily extends to other
gradient-based algorithms. For example, generalized additive algorithms such asp-norm Percep-
trons and Winnow—see, for example, Cesa-Bianchi and Lugosi (2006).

In contrast to the local/global budget settings, where we can learn efficiently by accessing few
attributes of each training example, we showed that accessing a limited number of attributes at test
time is a significantly harder setting. Indeed, we proved that is not possible tobuild an active linear
predictor that uses two attributes of each test example and whose error is smaller than a certain
constant, even when there exists a linear predictor achieving zero erroron the same data source.

An obvious direction for future research is how to deal with loss functionsother than the squared
loss. In related work (Cesa-Bianchi et al., 2010), we developed a technique which allows us to
deal with arbitrary analytic loss functions. However, in the setting of this paper, those techniques
would lead to sample complexity bounds which are exponential ind. Another interesting extension
we are considering is connecting our results to the field of privacy-preserving learning (Dwork,
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2008), where the goal is to exploit the attribute efficiency property in order to prevent acquisition of
information about individual data instances.
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Appendix A. Proof of Theorem 1

The outline of the proof is as follows. We define a specific distribution such that only one “good”
feature is slightly correlated with the label. We then show that if some algorithm learns a linear
predictor with an extra risk of at mostε, then it must know the value of the good feature. Next, we
construct a variant of a multi-armed bandit problem out of our distribution and show that a good
learner can yield a good prediction strategy. Finally, we adapt a lower bound for the multi-armed
bandit problem given in Auer et al. (2003), to conclude that the numberk of attributes viewed by a
good learner must satisfyk= Ω

(
d
ε
)
.

A.1 The Distribution

We generate a joint distribution overRd×R as follows. Choose somej ∈ [d]. First, we generate
y1,y2, . . . ∈ {±1} i.i.d. according toP

[
yt = 1

]
= P

[
yt = −1

]
= 1

2. Given j andyt , xt ∈ {±1} is
generated according toP

[
xt,i = yt

]
= 1

2 +1{i = j}p wherep > 0 is chosen later. Denote byP j

the distribution mentioned above assuming the “good” feature isj. Also denote byPu the uniform
distribution over{±1}d+1. Analogously, we denote byE j andEu expectations w.r.t.P j andPu.

A.2 A Good Regressor “Knows” j

We now show that if we have a good linear regressor than we can know thevalue of j. It is easy to
see that the optimal linear predictor under the distributionP j is w⋆ = 2pej , and the risk ofw⋆ is

LP j (w
⋆) =E j

[
(〈w⋆,x〉−y)2]=

(
1
2 + p

)
(1−2p)2+

(
1
2− p

)
(1+2p)2 = 1+4p2−8p2 = 1−4p2 .

The risk of an arbitrary weight vectorw underPj is

LP j (w) = E j
[
(〈w,x〉−y)

]2
= ∑

i 6= j

w2
i +E j

[
(w jx j −y)2]= ∑

i 6= j

w2
i +w2

j +1−4pwj .

Suppose thatLP j (w)−LP j (w
⋆)< ε. This implies that:

1. For alli 6= j we havew2
i < ε, or equivalently,|wi |<

√
ε.

2. 1+w2
j −4pwj − (1−4p2)< ε and thus|w j −2p|<

√
ε which gives|w j |> 2p−

√
ε.

By choosingp=
√

ε, the above implies that we can identify the value ofj from anyw whose risk
is strictly smaller thanLP j (w

⋆)+ ε.
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A.3 Constructing A Variant Of A Multi-Armed Bandit Problem

We now construct a variant of the multi-armed bandit problem out of the distribution P j . Each
coordinatei ∈ {1, . . . ,d} is an arm and the reward of pullingi at timet is 1{xNi,t ,i = yNi,t} ∈ {0,1},
whereNi,t denotes the random number of times armi has been pulled in the firstt plays. Hence the
expected reward of pullingi is 1

2 +1{i = j}p. At the end of each roundt the player observesxNi,t ,i

andyNi,t .

A.4 A Good Learner Yields A Bandit Strategy

Suppose that we have a learner that, for anyj = 1, . . . ,d, can learn a linear predictor withLP j (w)−
LP j (w

⋆)< ε usingk attributes. Since we have shown that onceLP j (w)−LP j (w
⋆)< ε we know the

value of j, we can construct a strategy for the multi-armed bandit problem in a straightforward way.
Simply use the firstm examples to learnw and from then on always pull the armj. The expected
reward of this strategy under anyP j afterT ≥ k plays is at least

k
2
+(T−k)

(
1
2
+ p

)
=

T
2
+(T−k)p . (13)

A.5 An Upper Bound On the Reward Of Any Bandit Strategy

Recall that under distributionP j the expected reward for pulling armI is 1
2 + p1{I = j}. Hence,

the total expected reward of a player that runs forT rounds is upper bounded by12T + pE j [Nj ],
whereNj = Nj,T is the overall number of pulls of armj. Moreover, at the end of each roundt the
player observesxs,i andys, wheres= Ni,t . This allows the player to compute the value of the reward
for the current play. For anys, note thatys is observed whenever some armi is pulled for thes-th
time. However, sinceP j

[
xi,s = ys

]
= P j

[
xi,s = ys | ys

]
for all i (including i = j), the knowledge of

ys does not provide any information about the distribution of rewards for arm i. Therefore, without
loss of generality, we can assume that at each play the bandit strategy observes only the obtained
binary reward. This implies that our bandit construction is identical to the oneused in the proof of
Theorem 5.1 in Auer et al. (2003). In particular, for any bandit strategy there exists some armj such
that the expected reward of the strategy under distributionP j is at most

T
2
+ p

(
T
d
+T

√
−T

d
ln(1−4p2)

)
≤ T

2
+ p

(
T
d
+T

√
6T
d

p2

)
(14)

where we used the inequality− ln(1−q) ≤ 3
2q for q∈ [0,1/4]. Note thatq= 4p2 = 4ε ∈ [0,1/4]

whenε≤ 1/16.

A.6 Concluding The Proof

Take a learning algorithm that finds anε-good predictor usingk attributes. Since the reward of the
strategy based on this learning algorithm cannot exceed the upper boundgiven in (14), from (13)
we obtain that

T
2
+(T−k)p≤ T

2
+ p

(
T
d
+T

√
6T
d

p2

)
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which solved fork gives

k≥ T

(
1− 1

d
−
√

6T
d

p2

)
.

Since we assumed≥ 4, choosingT =
⌊
d
/
(96p2)

⌋
, and recallingp2 = ε, gives

k≥ T
2
=

1
2

⌊
d

96ε

⌋
.
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