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Abstract

We investigate three variants of budgeted learning, angetti which the learner is allowed to
access a limited number of attributes from training or teatgples. In the “local budget” setting,
where a constraint is imposed on the number of availabléatérs per training example, we design
and analyze an efficient algorithm for learning linear peaatis that actively samples the attributes
of each training instance. Our analysis bounds the numbedditional examples sufficient to
compensate for the lack of full information on the trainirgg. sThis result is complemented by a
general lower bound for the easier “global budget” settimgere it is only the overall number of
accessible training attributes that is being constraihethe third, “prediction on a budget” setting,
when the constraint is on the number of available attribptrstest example, we show that there
are cases in which there exists a linear predictor with zemr dut it is statistically impossible
to achieve arbitrary accuracy without full information arst examples. Finally, we run simple
experiments on a digit recognition problem that reveal thatalgorithm has a good performance
against both partial information and full information blases.

Keywords: budgeted learning, statistical learning, linear predgttearning with partial informa-
tion, learning theory

1. Introduction

Consider the problem of predicting whether a person has some disese® dra medical tests.
In principle, we may draw a sample of the population, perform a large nuofomedical tests
on each person in the sample, and use this information to train a classifier. nin sit@ations,
however, this approach is unrealistic. First, patients participating in theimgrd are generally
not willing to go through a large number of medical tests. Second, eachagsoime associated
cost, and we typically have a budget on the amount of money to spendlfectow the training
information. This scenario, where there is a hard constraint on the nwhtraining attributes the

x. A short version of this paper has been presented in ICML 2010.
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learner has access to, is knownasigeted learning Note that the constraint on the number of
training attributes may be local (no single participant is willing to undergo mats) tesglobal (the
overall number of tests that can be performed is limited). In a differenettatied budgeted learning
setting, the system may be facing a restriction on the number of attributes tha¢ ¥gewed at test
time. This may happen, for example, in a search engine, where a rankimgbopages must be
generated for each incoming user query and there is no time to evaluate alaniper of attributes
to answer the query.

We may thus distinguish three basic budgeted learning settings:

e Local Budget Constraint: The learner has access to at misitributes of each individual
example, wheré is a parameter of the problem. The learner has the freedom to actively
choosewnhichof the attributes is revealed, as long as at nkadtthem will be given.

e Global Budget Constraint: The total number of training attributes the learner is allowed to
see is bounded blg. As in the local budget constraint setting, the learner has the freedom to
actively choose which of the attributes is revealed. In contrast to the hociget constraint
setting, the learner can choose to access more kfiemattributes from specific examples
(wherem is the overall number of examples) as long as the global number of attributes is
bounded byk.

e Prediction on a budget: The learner receives the entire training set, however, at test time,
the predictor can see at mdsattributes of each instance and then must form a prediction.
The predictor is allowed to actively choose which of the attributes is revealed

In this paper we focus on budgeted linear regression, and provéiveegad positive learning
results in the three abovementioned settings. Our first result shows tligt; aglobal budget
constraint, no algorithm can learn a genatadimensional linear predictor while observing less
thanQ(d) attributes at training time. This is complemented by the following positive result: we
show an efficient algorithm for learning under a givenal budget constraint of Rattributes per
example, for ank > 1. The algorithm actively picks which attributes to observe in each example
in a randomized way depending on past observed attributes, and atsstrmoisy” version ohll
attributes. Intuitively, we can still learn despite the error of this estimate Becgastead of receiving
the exact value of each individual example in a small set it suffices tooggt astimations of many
examples. We show that the overall number of attributes our algorithm tekedsn a regressor is at
most a factor ofl bigger than that used by standard regression algorithms that view all thetar

of each example. Ignoring logarithmic factors, the same gapefists when the attribute bound
of our algorithm is specialized to the choice of parameters that is used te fhr@abovementioned
Q(d) lower bound under the global budget constraint.

In the prediction on a budget setting, we prove that in general it is natljegeven with an
infinite amount of training examples) to build an active classifier that usesstttmo attributes of
each example at test time, and whose error will be smaller than a constantn Thistrast with
the local budget setting, where it is possible to learn a consistent preljcémcessing at most two
attributes of each example at training time.

1. See, for examplayebdocs.cs.ualberta.ca/ ~ greiner/BudgetedLearning/
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2. Related Work

The notion of budgeted learning is typically identified with the “global budget] grediction
on a budget” settings—see, for example, Deng et al. (2007), Kapabaginer (2005a,b) and
Greiner et al. (2002) and references therein. The more restrictical“tmdget” setting has been
first proposed in Ben-David and Dichterman (1998) under the name aifrileg with restricted
focus of attention”. Ben-David and Dichterman (1998) considered Yitlassification and showed
learnability of several hypothesis classes in this model, kf@éNF and axis-aligned rectangles.
However, to the best of our knowledge, no efficient algorithm for thesctd linear predictors has
been so far proposed.

Our algorithm for the local budget setting actively chooses which attritatebserve for each
example. Similarly to the heuristics of Deng et al. (2007), we borrow ideas the adversarial
multi-armed bandit problem (Auer et al., 2003; Cesa-Bianchi and Lug6§i¢). However, our
algorithm is guaranteed to be attribute efficient, comes with finite sample geaéwmlibounds,
and is provably competitive with algorithms which enjoy full access to the dataelated but
different setting is multi-armed bandit on a global budget—see, for exai@plea and Munagala
(2007) and Madani et al. (2004). There one learns the single bestather than the best linear
combination of many attributes, as we do here. Similar protocols were alsodsiodlee context
of active learning (Cohn et al., 1994; Balcan et al., 2006; Hannek¥,, ZD09; Beygelzimer et al.,
2009), where the learner can ask for the target associated with sgae@ifigples.

Finally, our technigue is reminiscent of methods used in the compressethefiamework
(Calderbank et al., 2009; Zhou et al., 2009), where data is accessadmall set of random linear
measurements. Unlike compressed learning, where learners are bogal taaih evaluated in the
compressed domain, our technigues are mainly designed for a scenahi@imomly the access to
training data is restricted.

We note that a recent follow-up work (Hazan and Koren, 2011) piek@orm and 2-norm
based algorithms for our local budget setting, whose theoretical geasaimprove on those pre-
sented in this paper, and match our lower bound to within logarithmic factors.

3. Linear Regression

We consider linear regression problems where each example is an insiayetepair(x, y) € RY x

R. We refer tox as a vector of attributes. Throughout the paper we assumé|tpat< 1 and

ly| < B. The goal of the learner is to find a linear predicktor> (w,x). In the rest of the paper,
we use the term predictor to denote the veetar RY. The performance of a predictar on an
instance-target paifx,y) € RY x R, is measured by a loss functiétw,x),y). For simplicity, we
focus on the squared loss functidiia, b) = (a— b)?, and briefly mention other loss functions in
Section 8. Following the standard framework of statistical learning (Hay4€182; Devroye et al.,
1996; Vapnik, 1998), we model the environment as a joint distribufioover the set of instance-
target pairsjRY x R. The goal of the learner is to find a predictor with low risk, defined as the
expected loss

2. Ben-David and Dichterman (1998) do describe learnability resultsifoifar classes but only under the restricted
family of product distributions.
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Since the distribution? is unknown, the learner relies on a training set rof examples
S={(x1,Y1),- -, (Xm,Ym) }, which are assumed to be sampled i.i.d. frBmWe denote the training
loss by

def 1 &

= 2 (W) —y)?.

Ls(w)

4. Impossibility Results

Ouir first result states that any budget learning algorithm (local or Hlakads in general a budget
of Q(d) attributes for learning d-dimensional linear predictor.

Theorem 1 For any d>4ande € (0, ), there exists a distributio over{—1,+1}9 x {—1,+1}
and a weight vector tve RY, with |w*||o = 1 and |w*||2 = ||w*|1 = 2\/€, such that any learning
algorithm must see at least
e
— 2|96

attributes in order to learn a linear predictor w such thap (w) — Lp(W*) < €.

The proof is given in the Appendix. In Section 6 we prove that underaheesassumptions as those
of Theorem 1, it is possible to learn a predictor using a local budget oattributes per example
and using a total 05(d2) training examples. Thus, ignoring logarithmic factors hidden in@he
notation, we have a multiplicative gap d@between the lower bound and the upper bound.

Next, we consider the prediction on a budget setting. Greiner et al. Y2b0died this setting
and showed positive results regarding (agnostic) PAC-learnirigaative predictors. Ak-active
predictor is restricted to use at mdsattributes per test example where the choice of thieth
attribute ofx may depend on the values of the 1 attributes ok that have been already observed.
Greiner et al. (2002) show that it is possible to learka&ctive predictor from training examples
whose performance is slightly worse than that of the kesttive predictor. But, how good are the
predictions of the bedt-active predictor? We now show that even in simple cases in which there
exists a linear predictow* with Lo (w*) = 0, the risk of the besk-active predictor can be high.
The following theorem indeed shows that if the only constrainivbiis bounded’, norm, then the
risk can be as high as—lg. We use the notatiob,(A) to denote the expected loss of thactive
predictorA on a test example.

Theorem 2 There exists a weight vector'we RY and a distribution such that||w*||, = 1 and
Ly (w*) = 0, while any k-active predictor A must havg(A) > 1— g

Note that the risk of the constant prediction of zero is 1. Therefore, #hardim tells us that no
active predictor can get an improvement over the naive predictor of thar%.

Proof Foranyd > kletw* = (1/v/d,...,1/v/d). Letx € {+1}% be distributed uniformly at random
andy is determined deterministically to e/, x). Then,Ly(w*) = 0 and||w*||2 = 1. Without loss

of generality, suppose theactive predictor asks for the firkattributes of a test example and forms

its prediction to bey.” Since the generation of attributes is independent, we have that the value of
Xi+1, - - -, Xd does not depend neither @& ..., x nor ony. Using this and the fact thi[x;] = O for
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all j we therefore obtain

i= j=k+1
d k d
+2y Wi E[xj] -2 wiwj E[x] Efx;]
j=k+1 i=1j=k+1
K 2
—E (9— vv.*x.> + Ek(vv.*)zEMz] +0
i= i>
d—k k
> —=1—=
>0+ g g
which concludes our proof. |

It is well known that a low 1-norm ofv* encourages sparsity of the learned predictor, which nat-
urally helps in designing active predictors. The following theorem shoatséaten if we restrict

w* to have||w*||1 = 1, Lp(w*) = 0, and||w*||o > k, we still have that the risk of the belstactive
predictor can be non-vanishing.

Theorem 3 There exists a weight vectorve RY and a distributionD such that||w*||; = 1,
Lp(w*) =0, and ||w*||o = ck (for c> 1) such that any k-active predictor A must havg(B) >

(1-Da&

For example, if in the theorem above we choose 2, then|w*||o = 2k andLp(A) > 4. If we

choose instead = X1, then|jw*[|o = k+ 1 andLp(A) > (k+—11)2 Note that if||w*||o < k there is a
trivial way to predict on a budget d&fattributes by always querying the attributes corresponding to

the non-zero elements of.

Proof Let
* 1 1
W :( a(,...,a( ,0,...,0)
N——

ck components

and, similarly to the proof of Theorem2, lete {+1}¢ be distributed uniformly at random and let
y be determined deterministically to Be,x). Then,Ly(w*) =0, ||w*]|1 = 1, and||w*||o = ck.
Without loss of generality, suppose theactive predictor asks for the firkt< ck attributes of a
test example and form its prediction to e Again similarly to the proof of Theorem2, since the
generation of attributes is independent, we have that the valhe @f...,xq does not depend on
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X1,.-.,Xk, and ony” Therefore,

which concludes our proof. |

These negative results highlight an interesting phenomenon: in Sectionsbawethat one can
learn an arbitrarily accurate predicterwith a local budget ok = 2. However, here we show that
even if we know the optimak*, we might not be able to accurately predict a new partially observed
example unlesk is very large. Therefore, at least in the worst-case sense, leamiadodget is
much easier than predicting on a budget.

5. Local Budget Constraint: A Baseline Algorithm

In this section we describe a straightforward adaptation of Lasso (Tamshit996) to the local
budget setting. This adaptation is based on a direct nonadaptive estintagelo$s function. In
Section 6 we describe a more effective approach, which combines astiocgradient descent
algorithm called Pegasos (Shalev-Shwartz et al., 2007) with the adaptiygling of attributes to
estimate the gradient of the loss at each step.

A popular approach for learning a linear regressor is to minimize the empiassalon the
training set plus a regularization term, which often takes the form of a nbthegredictomw. For
example, in ridge regression the regularization terrvi#§3 and in Lasso the regularization term
is ||w||1. Instead of regularization, we can include a constraint of the foniy < B or ||w||2 <
B. Modulo an appropriate choice of the parameters, the regularizationifoequivalent to the
constraint form. In the constraint form, the predictor is a solution to the faligwptimization
problem

min 1 ({w,x) —y)2
werd  [§] (&g ’ 1)
st [w|p,<B

whereS= {(x1,¥1),---,(Xm,Ym) } IS & training set ofn examplesB is the regularization parameter,
andpis 1 for Lasso and 2 for ridge regression.
We start with a standard risk bound for constrained predictors.

Lemma 4 Let D be a distribution on pairgx,y) € RY x R such that|x||» < 1 and|y| < B holds
with probability one. Then there exists a constant 6 such that

1 d
max |L —L =cB%/=In<.
w:uwulxss‘ s(W) @(W)’ m o

holds with probability at least — d with respect to the random draw of the training set S of size m
from D.
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Proof We apply the following Rademacher bound (Kakade et al., 2008)

/2 /1 2
_ < = ~ InZ

that holds with probability at least-1d for all w € RY such that||w||1 < B, whereLmnax bounds
the Lipschitz constant for the square loss from above /aadbounds the square loss from above.
The result then follows by observing théa—y)?— (b—y)?| < |a—b||a+b—2y| . HenceLmax <
MadXa by |a+b— 2y| = 4B where botta andb are of the formw, x), and we used the fagtw,x)| <B
(recall that||x||. < 1) together with the assumptidy] < B. Similarly, under the same assumptions,
Cmax = MaXay(a—Yy)? = 4B2, [

This immediately leads to the following risk bound for Lasso.

Corollary 5 If wis a minimizer of (1) with p= 1, then there exists a constant-d such that, under
the same assumptions as Lemma 4,

/1. d
< mi 2 [+, 9
Ly (W) < w:mh?gBLD(W) +cB mIn 5 2

holds with probability at least — d over the random draw of the training set S of size m ftbm

To adapt Lasso to the partial information case, we first rewrite the stjl@se as follows:
((w,%) —y)* = wxx"w—2yx" w-+y?

wherew, x are column vectors and’ ,x" are their corresponding transpose (i.e., row vectors). Next,
we estimate the matrixx' and the vectox using the partial information we have, and then we solve
the optimization problem given in (1) with the estimated valueskofandx. To estimate the vector

x we can pick an indekuniformly at random fromd] = {1,...,d} and define the estimation to be

a vectorv such that
d ifr=i
v =49% . 3)
0 else

It is easy to verify thav is an unbiased estimate ®f namely,E[v] = x where expectation is with
respect to the choice of the indéx To estimate the matrixx” we could pick two indices, j
independently and uniformly at random frddj, and define the estimation to be a matrix with all
Zeros excepdzxixj in the (i, j) entry. However, this yields a non-symmetric matrix which will
make our optimization problem with the estimated matrix non-convex. To overcamelistacle,
we symmetrize the matrix by adding its transpose and dividing by 2. This sampbtinggs can be
easily generalized to the case whkre 1 attributes can be seen. The resulting baseline procédure
is given in Algorithm 1.

The following theorem shows that similar to Lasso, the Baseline algorithm isetitime with
the optimal linear predictor with a bounded 1-norm.

3. We note that an even simpler approach is to arbitrarily assume thatrtleéation matrix is the identity matrix and
then the solution to the loss minimization problem is simply the averaged vectery xy)esyx In that case, we
can simply replace by its estimated vector as defined in (3). While this naive approach canamovery simple
classification tasks, it will perform poorly on realistic data sets, in which treetation matrix is not likely to be
identity. Indeed, in our experiments with the MNIST data set, we found aitthis approach performed poorly
relatively to the algorithms proposed in this paper.
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ALGORITHM: Baseling¢S k)
INPUT: Training setSof sizem, local budgek > 2 (with k even)
INITIALIZE: A=0cR¥d : y=0eR? ; y=0

for each (x,y) € S
v=0eR?; A=0e R
Choose a set of k entries from[d], uniformly without replacement
foreachceC
d
Ve = Ve + K Xc
Randomly splitC into two setd,J of sizek/2 each
foreach(i,j) el xJ

d\? d\ 2
Aij _Ai,j+2(k> XiXj Aj,i—Aj,i—i—Z(k) XiXj
end
— — A — % _
A:A—Fa ; V:V—|—2yHq LY =Yy+
end _
LetLs(w) =w'Aw+w' v+y

OUTPUT: W= argmin Lg(w)
w:||wl|1<B

Figure 1: An adaptation of Lasso to the local budget setting, where theeleaan view at most
k attributes of each training example. The predictive performance of thisithlgois
analyzed in Theorem 6.

Theorem 6 Let D be a distribution on pairgx,y) € RY x R such that||x||» < 1 and|y| < B with
probability one. Letv be the output of Baseline(S,k), whé8e= m. Then there exists a constant
¢ > O such that

X . dB\* /1 d
< == ZIn=
Ly (W) —W:va?<BLD(W)+C< ” ) mIn 5

holds with probability of at least — d over the random draw of the training set S fratnand the
algorithm’s own randomization.

The above theorem tells us that for a sufficiently large training set wemda frery good predictor.
Put another way, a large number of examples can compensate for théflaltkndormation on each
individual example. In particular, to overcome the extra fa¢tk)? in the bound, which does not
appear in the full information bound given in (2), we need to increasy a factor of(d/k)*. In
the next subsection, we describe a better, adaptive procedure foautied information case.

In view of proving Theorem 6, we first show that samplinglements without replacements
and then averaging the result has the same expectation as sampling just once
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Lemma 7 Let C be a set of n elements and letG — R be an arbitrary function. Leti = {C' C
C: |C'| =k} and let U be the uniform distribution ovek. Then

Efis o] - iz

Proof We have

|l

1 1
E |Z il
C~U( [ k c';:' ] ( c’ea

6 ;f o|{C' e G:deC}
f(c

Z
:ﬁcgcf(c)

and this concludes the proof. [ |

C’GC’

x

We now show that the estimation matrix constructed by the Baseline algorithm istiikieéy/close
to the true correlation matrix over the training set.

Lemma 8 Let A be the matrix constructed at iteration t of the Baseline algorithm and note that
= %ztm:lA{. Let X= %Z{let ' . Then, with probability of at least — & over the algorithm’s
own randomness we have that

— d\? 2d2
‘Ar,s_xr,s‘ < <k> *l ( 5 ) rs=1,....d.

Proof Based on Lemma 7, it is easy to verify tH&is] = x x. Additionally, since we sample

without replacements, each elementAfis in [—2(%)2,2(%)2} because we assunie|l < 1.

Therefore, we can apply Hoeffding's inequality on each elemeAtarid obtain that

2| A s > ¢ <2exp<—mgsz ((‘;)4) .

Combining the above with the union bound we obtain that

— 2 4
o] a5 (5))

Setting the right-hand side of the abovedtand rearranging terms concludes the proof. |

Next, we show that the estimate of the linear part of the objective function gsliglly to be
accurate.
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Lemma 9 Let  be the vector constructed at iteration t of the Baseline algorithm and note that
V=13M 2yiv. Letx= 1 5™, 2y x. Then, with probability at least — & over the algorithm’s
own randomness we have that

_ dB /8, [2d
V=X < 5 mln<6>.

Proof Based on Lemma 7, itis easy to verify tfigRy: | = 2y; .. Additionally, since we sample
k elements without replacement, each elemeni d in [, 9] (because we assunje||. < 1)
and thus each element ofi; is in [ 228, 28] (because we assume thwg < B). Therefore, we
can apply Hoeffding’s inequality on each elementaind obtain that

P[|vr-%|>¢| < Zexp<—w§2 (dkB>2> .

Combining the above with the union bound we obtain that

]P’[E(r,s) : ]A_\r’S—Xr,s{ > s} < 2dexp<—rr§2 (de3> 2) )

Setting the right-hand side of the abovedtand rearranging terms concludes proof. |

Next, we show that the estimated training loss
Cs(w) =w Aw+w' V+y
computed by the Baseline algorithm is close to the true training loss.

Lemma 10 With probability greater tharl — d over the Baseline algorithm’s own randomization,
for all w such that|w||; < B,

|Cs(w) — Ls(w)| < <E:(d)2 32, <2?> :

m
Proof Using twice Hlder’s inequality and Lemma 8 we get

W (A= Xw] < [wls [|(A=X)w],, < [} max |(A=X).s]

J
Bd\* |8 (202
<(5%) yan (%) X

Similarly, using Hlder’s inequality and Lemma 9 we also get

_ B’d /8 [2d
‘WT(V—)_()‘ST m|n<6>' (5)
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Using the triangle inequality, (4)—(5), and the union bound we finally obtain
|Es(w) — Ls(w)| = ‘WTA_\W—I—WTV—F y—w' Xw—w' i—)?‘

< W' (A= X)w| + |w' (V—%)|

which upon slight simplifications concludes the proof. [ |

We are now ready to prove Theorem 6.

Proof (of Theorem 6)Lemma 4 states that with probability greater thandover the random draw
of a training set of mexamples, for allv such that|w||; < B, we have that

E In g
m o

for somec’ > 0. Combining the above with Lemma 10, we obtain that for son€0, with proba-
bility at least 1— & over both the random draw of the training set and the algorithm’s own rando

ization,

|Ls(w) — Lp(w)| = ¢'B?

- - dB\* /1 d
ILp(w) — Ls(w)| < [Lp(W) — Ls(w)| + [Ls(w) — Ls(w)| < ¢ " aIn 3
for all w such that|w]|1 < B. The proof of Theorem 6 follows since the Baseline algorithm mini-
mizesLs(w). [ |

6. Gradient-Based Attribute Efficient Regression

In this section, by avoiding the estimation of the matoiX , we significantly decrease the number
of additional examples sufficient for learning wkiattributes per training example. To do so, we do
not try to estimate the loss function but rather to estimategytadientd¢(w) = 2((w,X) — y)X, with

respect tow, of the squared loss functidifw) = ((w, X) — y)2. Each vectow defines a probability
distribution P over [d] by letting P(i) = |wi|/[w]|2. We can estimate the gradient using an even
numberk > 2 of attributes as follows. First, we randomly pick a sulbget . , iy, from [d] according

to the uniform distribution over thie/2-subsets ifd]. Based on this, we estimate the vectatia

o k2
v=-d x.&, (6)
42,

wheree; is the j-th element of the canonical basis®f. Second, we randomly pick, - -, jk/2
from [d] without replacement according to the distribution definesvbiased on this, we estimate
the term(w, x) by

y: R”Wnlszlsgr(sz)xjsejs . (7)

This allows us to obtain an unbiased estimate of the gradient, as stated by thénfglkmple
result.
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Lemma 11 Fix any wx € R9 and ye R and let/(w) = ({w,x) —y) be the square loss. Then the
estimate

06(w) = 2(9 - y)v 8
satisfiest [6(w) = 2((w,x) —y)x = 0E(w).

Proof SinceE[dx;ej] = x for a randomj € [d], Lemma 7 immediately implies tha[v] = x.
Moreover, it is easy to see thal]|w||1sgn(wi)xe] = (w,x) wheni is drawn with probability
P(i) = [wi] /[|w]|1. HenceE[y] = (w,x). The proof is concluded by noting thiat.. ., iy, are drawn
independently fronjy, ..., ji 2. |

The advantage of the above approach over the loss based app@aobkwefore is that the mag-
nitude of each element of the gradient estimate is orddt|ef|;. This is in contrast to what we had
for the loss based approach, where the magnitude of each element ofttheAnsias order ofd?.
In many situations, the 1-norm of a good predictor is significantly smallerdreard in these cases
the gradient based estimate is better than the loss based estimate. Howéeen thie previous
approach our estimation did not depend on a spegifinow the estimation depends an We
therefore need an iterative learning method in which at each iteration whaigeadient of the loss
function on an individual example. Luckily, the stochastic gradient desg@proach conveniently
fits our needs.

Concretely, below we describe a variant of the Pegasos algorithm ySBhleartz et al., 2007)
for learning linear regressors. Pegasos tries to minimize the regulariked ris

SB[ (wX) )7 (©)

Of course, the distributio® is unknown, and therefore we cannot hope to solve the above problem
exactly. Instead, Pegasos finds a sequence of weight vectors thavéoage) converge to the
solution of (9). We start with the all zeros vector= 0 € RY. Then, at each iteration Pegasos picks
the next example in the training set (which is equivalent to sampling a freshgg according to
D) and calculates the gradient of the regularized loss
ow) = 5w+ (wx) ~y)”

for this example with respect to the current weight veator This gradient is simplyJg(w) =
Aw+ 0¢(w), whereO¢(w) = 2((w,X) —y)x. Finally, Pegasos updates the predictor according to
the gradient descent rule < w— A—lth(w) wheret is the current iteration number. This can be
rewritten asw «+ (1—§)w— 5= 0¢(w).

To apply Pegasos in the partial information case we could simply replace dbdegt vector
[¢(w) with its estimation given in (8). However, our analysis shows that it is ddeitabmaintain
an estimation vectot¢(w) with small magnitude. Since the magnitudelef(w) = 2(y—y)vis
order ofd ||wl||1, we would like to ensure thaiw||; is always smaller than some thresh&d We
achieve this goal by adding an additional projection step at the end of Regdsos’s iteration.
Formally, the update is performed in two steps as follows

A 2
min = ||w E
ing iz + E

)~ D

1 1.
W <1_t> w— ﬂ2(y—y)v (10)
W <— argmin|ju—w||2 (11)

u:ljull1<B
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ALGORITHM: AER(S k)

INPUT: Training setSof sizem, local budgek > 2 (with k even)
PARAMETER: A >0

INITIALIZATION : W=0€R? ; w=w ; t=1

foreach(x,y) € S
v=0ecRd ; ¢=0
ChooseC uniformly at random from all subsets {if] of size
foreachjeC

k
2

Vi =Vj+ E d Xj
end
forr=1,...,k/2
sample from [d] based orP(i) = ”|\\:VV;|| (if w=0setP(i) =1/d)
1

a2
y =Y+ sgriw) w1
end
1 2.
w= (1—t>w—)\t(y—y)v
w = argmin|ju—w||,
u:lula<B
— W
W=w+— ; t=t+1
m
end

OUTPUT: W

Figure 2: An adaptation of the Pegasos algorithm to the local budget séfttiegrem 12 provides
a performance guarantee for this algorithm.

wherev andy are respectively defined by (6) and (7). The projection step (11pegrerformed
efficiently in time O(d) using the technique described in Duchi et al. (2008). A pseudo-datie o
resultingAttribute Efficient Regression algorithm is given in Figure 2.

Note that the right-hand side of (10)vs— A—lth for the function

f(w) = 3 wl5+ 29— y)(v,w) . (12)

This observation is used in the proof of the following result, providing eocgwnce guarantees for
AER.

Theorem 12 Let D be a distribution on pairgx,y) € RY x R such that|x|| < 1 and|y| < B with
probability one. Let S be a training set of size m andwebe the output of AES K) run with
A =12d/log(m)/(mK). Then, there exists a constant-c such that

. 1
< m
Lp(W) < w:thgBLD(W) +cdB? i
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holds with probability at least — & over both the choice of the training set and the algorithm’s own
randomization.

Proof Letw,¥t,w, W be the values of,y, v, w, respectively, at each iteratibnf the AER algorithm.
Moreover, letT; = 2({(wW, %) — Yt )% andJ; = 2(% — i )vi. From the convexity of the squared loss,
and taking expectation with respect to the algorithm’s own randomization, we that for any
vectorw* such thatjw*||1 <B,

E [tzml«wt, ] ti <k :t_i(Dt,wt —W*)]
=FE _t_i(ﬁt,wt —W*)]

=FE m2“— ME—W |
_t; (Ve — Vo) (e, We W>]

For the first equality we used Lemma 11, which states that, conditioneg, d’ﬂ{ﬁt] =
We now deterministically bound the random quantity inside the above expecaatioiows

m m

3 20—yt —w) = 3 (G320 -y )
21<”W 13+ 2(%t — yt) (v, W >)+m w13

_th W) — th +m HW 13

wheref; (w) = ||w]|3+2(%t — yt) (v, W) is theA-strongly convex function defined in (12). Recalling
that the right-hand side in the AER update (10) is equalite- A—ltht(wt), we can apply the fol-
lowing logarithmic regret bound fox-strongly convex functions (Hazan et al., 2006; Kakade and
Shalev-Shwartz, 2008)

Zlft W) Zlft (max||th(Wt)H )Inm

which remains valid also in the presence of the projection steps (11). Similatthe tanalysis of
Pegasos, and using our assumptiongxfi. and|y;|, the norm of the gradient f; (W) is bounded
as follows

" 2
10wt < M|+ 2]5% — yi| I} < Al +4Bd\/;.

In addition, it is easy to verify (e.g., using an iductive argument) that

1 2
W || < )\4Bd\/;,
2
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This gives the bound
128dB)?

m
. A2
- W) <« 22T w2
t;2<yt Ye) (v, We — W) < —— —— Inm-+mz [[w’|3
Choosing\ = 16d+/log(m)/(km) and noting that| - || < || - ||1 we get that

m
m
2(% — yi) (e, W — W) < 16dBZN .
t; k

The resulting bound is then

t§(<v\’t,xt>—YI)2] §t§(<W*,Xt>_yt)2+ 16dBZ\/TITn.

E

To conclude the proof, we apply the online-to-batch conversion of-Besachi et al. (2004, Corol-
lary 2) to the probability space that includes both the algorithm’s own randtionizand the prod-
uct distribution from which the training set is drawn. Singev, %) — yt)2 < 4B? for all w such
that ||w||1 < B (recall our assumptions o andy;), and using the convexity of the square loss, we

obtain that
Lo(W) < inf L (w)+16d82,/i|nm+482,/3|n}
P = w: |w]|<B b km m o
holds with probability at least 4 & with respect to all random events. |

Note that for small values d€ (which is the reasonable regime here) the bound for AER is much
better than the bound for Baseline: ignoring logarithmic factors, insteadarratic dependence
ond, we have only linear dependencean

It is interesting to compare the bound for AER to the Lasso bound (2) fdiuthmformation
case. As it can be seen, to achieve the same level of risk, AER neexteraofd? /k more examples
than the full information Lassb.Since each AER example uses oRlgttributes while each Lasso
example uses al attributes, the ratio between the total numbeatifibutesAER needs and the
number of attributes Lasso needs to achieve the same e®@d s Intuitively, when havingl times
total number of attributes, we can fully compensate for the partial informatimiogol.

However, in some situations even this extréactor is not needed. Indeed, suppose we know
that the vectow*, which minimizes the risk, is dense. That is, it satisfjes||; ~ v/d ||w*|]2 < B.
In this case, by settiny = d*2,/log(m) /(km), and using the tighter bourjav*||, < B/+/d instead
of [|w*||2 < ||w*||1 < Biin the proof of Theorem 12, we get a final bound of the form

d m
< a 2/ —In—.
Lp(w) < Lp(W')+cB K In 3

Therefore, the number of examples AER needs in order to achieve theesaomas Lasso is only

a factord/k more than the number of examples Lasso uses. But, this implies that both AER and
Lasso needs the same numbeatifibutesin order to achieve the same level of error! Crucially, the
above holds only ifv* is dense. Whew* is sparse we haviw*||1 ~ ||w*||2 and then AER needs
more attributes than Lasso.

4. \We note that whed = k we still do not recover the full information bound. However, it is possiblenprove the
analysis and replace the factbfv/k with a factord (max [|x|2) /k.
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HEEREE
IEEERDE

Figure 3: In the upper row six examples from the training set (of digitand 5) are shown. In the lower
row we show the same six examples, where only four randomiypsd pixels from each original
image are displayed.

7. Experiments

We performed some experiments to test the behavior of our algorithm on thknsemn MNIST
digit recognition data set (Le Cun et al., 1998), which contains 70,000 @8 28 pixels each)
of the digits 0— 9. The advantages of this data set for our purposes is that it is not a srahl
data set, has a reasonable dimensionality-to-data-size ratio, and the setteéaglisinterpretable
graphically. While this data set is designed for classification (e.g., redagnilze digit in the
image), we can still apply our algorithms on it by regressing to the label.

First, to demonstrate the hardness of our settings, we provide in Figutev@ é@me examples
of images from the data set, in the full information setting and the partial informaétiing. The
upper row contains six images from the data set, as available to a full informelgorithm. A
partial information algorithm, however, will have a much more limited access te ihesges. In
particular, if the algorithm may only chooge= 4 pixels from each image, the same six images as
available to it might look like the bottom row of Figure 3.

We began by looking at a data set composed of “3” vs. “5”, where ali3hdigits were labeled
as—1 and all the “5” digits were labeled asl. We ran four different algorithms on this data set: the
simple Baseline algorithm, AER, as well as ridge regression and Lassorfgrarison (for Lasso,
we solved (1) withp = 1). Both ridge regression and Lasso were run in the full information setting
Namely, they enjoyed full access to all attributes of all examples in the traieingiee Baseline
algorithm and AER, however, were given access to only four attribubes €ach training example.

We randomly split the data set into a training set and a test set (with the tbsirsgtl0% of the
original data set). For each algorithm, parameter tuning was performegl L&ifold cross valida-
tion. Then, we ran the algorithm on increasingly long prefixes of the trasgtgand measured the
average regression errgw, x) — y)? on the test set. The results (averaged over runs on 10 random
train-test splits) are presented in Figure 4. In the upper plot, we see leoigghregression error
improves with the number of examples. The Baseline algorithm is highly unstabie lbeginning,
probably due to the ill-conditioning of the estimated covariance matrix, althowykettually stabi-
lizes (to prevent a graphical mess at the left hand side of the figureemeved the error bars from
the corresponding plot). Its performance is worse than AER, completelye@nwith our earlier
theoretical analysis.
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The bottom plot of Figure 4 is similar, only that now tiXeaxis represents the accumulative
number of attributes seen by each algorithm rather than the number of esarfplethe partial-
information algorithm, the graph ends at approximately 49,000 attributes, veticé total number
of attributes accessed by the algorithm after running over all training deangeeind = 4 pixels
from each example. However, for the full-information algorithms 49,000 atgthare already
seen after just 62 examples. When we compare the algorithms in this wayewkeateur AER
algorithm achieves excellent performance for a given attribute budgetfisantly better than the
other 1-norm-based algorithms (Baseline and Lasso). Moreover, AEReis comparable to the
full information 2-norm-based ridge regression algorithm, which perfdress on this data set.
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Figure 4: Test regression error for each one of the four algorithnalgiregression, Lasso, AER, and Base-
line), over increasing prefixes of the training set for “3” {&". The results are averaged over 10
runs.
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Finally, we tested the algorithms over 45 data sets generated from MNI8Tooeach possible
pair of digits. For each data set and each of 10 random train-test spditperformed parameter
tuning for each algorithm separately, and checked the average dgeraoe on the test set. The
median test errors over all data sets are presented in the table below.

Test Error
Full Information Ridge 0.110
Lasso 0.222
Partial Information| AER 0.320
Baseline 0.812

As can be seen, the AER algorithm manages to achieve good performanceuch worse
than the full information Lasso algorithm. The Baseline algorithm, howevéigeges a substan-
tially worse performance, in line with our theoretical analysis above. Weckmlated the test
classification error of AER, that is, sigfw,x)) # y, and found out that AER, which can see only
4 pixels per image, usually performs only a little worse than the full informatioorékgns (ridge
regression and Lasso), which enjoy full access to all 784 pixels in iea@pe. In particular, the
median test classification errors of AER, Lasso, and Ridge .&f#,3L.1%, and 13% respectively.

8. Discussion and Extensions

In this paper we have investigated three budgeted learning settings wittedift®nstraints on the
way instance attributes may be accessed: a local constraint on eachytexiample (local budget),
a global constraint on the set of all training examples (global budget)aaonstraint on each test
example (prediction on a budget). In the local budget setting, we havalimed a simple and
efficient algorithm, AER, that learns by accessing a pre-specified nuafilatributes from each
training example. The AER algorithm comes with formal guarantees, is gsowampetitive with
algorithms which enjoy full access to the data, and performs well in simpleiexpas. This result
is complemented by a general lower bound for the global budget settindpighécfactord smaller
than the upper bound achieved by our algorithm. We note that this gap basdmently closed
by Hazan and Koren (2011), which in our local budget setting, shawrit and 2-norm-based
algorithms for learning linear predictors using oﬁ&d) attributes, thus matching our lower bound
to within logarithmic factors.

Whereas AER is based on Pegasos, our adaptive sampling appraighegtends to other
gradient-based algorithms. For example, generalized additive algorittehsasp-norm Percep-
trons and Winnow—see, for example, Cesa-Bianchi and Lugosi {2006

In contrast to the local/global budget settings, where we can learn efficley accessing few
attributes of each training example, we showed that accessing a limited nuhateiboites at test
time is a significantly harder setting. Indeed, we proved that is not possibléltban active linear
predictor that uses two attributes of each test example and whose errpaliersthan a certain
constant, even when there exists a linear predictor achieving zercertbe same data source.

An obvious direction for future research is how to deal with loss functidinsr than the squared
loss. In related work (Cesa-Bianchi et al., 2010), we developed aitpeh which allows us to
deal with arbitrary analytic loss functions. However, in the setting of thiepapose techniques
would lead to sample complexity bounds which are exponentidl fnother interesting extension
we are considering is connecting our results to the field of privacyepres learning (Dwork,
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2008), where the goal is to exploit the attribute efficiency property inrdoderevent acquisition of
information about individual data instances.
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Appendix A. Proof of Theorem 1

The outline of the proof is as follows. We define a specific distribution suahahly one “good”
feature is slightly correlated with the label. We then show that if some algorithmslealinear
predictor with an extra risk of at most then it must know the value of the good feature. Next, we
construct a variant of a multi-armed bandit problem out of our distributiwhshow that a good
learner can yield a good prediction strategy. Finally, we adapt a lowardbfmr the multi-armed
bandit problem given in Auer e('g al. (2003), to conclude that the nukbéattributes viewed by a

good learner must satisky= Q($).

A.1 The Distribution

We generate a joint distribution ov&? x R as follows. Choose somgc [d]. First, we generate
Y1,Y2,... € {1} i.i.d. according th’gyt =1] =P[yy = —1] = . Givenj andy;, % € {+1} is
generated according ﬁ@[xu = yt] = 3+ 1{i = j}p wherep > 0 is chosen later. Denote {y;
the distribution mentioned above assuming the “good” featuje Adso denote byP, the uniform
distribution over{+1}9*1. Analogously, we denote big; andIE, expectations w.r.fPj andPy,.

A.2 A Good Regressor “Knows”

We now show that if we have a good linear regressor than we can knovaline of j. It is easy to
see that the optimal linear predictor under the distribultgris w* = 2p €/, and the risk ofv* is

L, (W) = Ej [(W,%) =¥)?] = (34 P) (1-2p)*+ (3 — p) (1+2p)* = 1+ 4p* —8p* = 1—4p®.
The risk of an arbitrary weight vector underp; is

Lp; (W) = E;j[((w,X) —y)]Z:;WiZHE,- [(wjx; —y)?] :_;vviz+w/12+1—4pwj .
1#£] 17]

Suppose thdtp, (W) —Lp, (W*) < €. This implies that:
1. Foralli # j we havew? < €, or equivalently)w;| < v/&.
2. 1+wF —4pw; — (1—4p?) < e and thugw; — 2p| < /€ which givesjw;| > 2p— V/&.

By choosingp = /¢, the above implies that we can identify the valugj dfom anyw whose risk
is strictly smaller tharp, (W*) + €.
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A.3 Constructing A Variant Of A Multi-Armed Bandit Problem

We now construct a variant of the multi-armed bandit problem out of theilalisbn IP;. Each
coordinate € {1,...,d} is an arm and the reward of pullingt timet is 1{xn; = yn..} € {0,1},
whereN; ; denotes the random number of times arnas been pulled in the firsplays. Hence the
expected reward of pullingis % +1{i = j}p. Atthe end of each rounidthe player observes,,
andyy;,.

A.4 A Good Learner Yields A Bandit Strategy

Suppose that we have a learner that, for aayl,...,d, can learn a linear predictor withp, (w) —
Lp, (W*) < € usingk attributes. Since we have shown that obge(w) —Lp, (W*) < € we know the
value of j, we can construct a strategy for the multi-armed bandit problem in a straigiaifd way.
Simply use the firstn examples to learav and from then on always pull the armn The expected
reward of this strategy under afy; afterT > k plays is at least

;+(T—k)(;+p>—-|2-+('r—k)p- (13)

A.5 An Upper Bound On the Reward Of Any Bandit Strategy

Recall that under distributiol?; the expected reward for pulling arhis %+ pl{l =j}. Hence,
the total expected reward of a player that runsTorounds is upper bounded @T + pE;[N;],
whereN; = N; 1 is the overall number of pulls of arfn Moreover, at the end of each rounthe
player observess; andys, wheres= N; . This allows the player to compute the value of the reward
for the current play. For ang, note thatys is observed whenever some arns pulled for thes-th
time. However, sinc@®; [x s =Ys| = Pj[X.s=Ys|Ys| for alli (includingi = j), the knowledge of
ys does not provide any information about the distribution of rewards foriai herefore, without
loss of generality, we can assume that at each play the bandit strategyesbenly the obtained
binary reward. This implies that our bandit construction is identical to theused in the proof of
Theorem 5.1 in Auer et al. (2003). In particular, for any bandit styatiegre exists some arijrsuch
that the expected reward of the strategy under distribdfipis at most

;+p<;+T\/—;|n(l—4p2)> §;+p<;+T 6dTp2> (14)

where we used the inequalityln(1—q) < %q for g € [0,1/4]. Note thatq = 4p? = 4¢ € [0,1/4]
whene < 1/16.

A.6 Concluding The Proof

Take a learning algorithm that finds argood predictor using attributes. Since the reward of the
strategy based on this learning algorithm cannot exceed the upper givemdin (14), from (13)
we obtain that

T T T 6T
_ — < — _ ~ p2
2—l—(T k)p_2+p<d+T dp)
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which solved fork gives

Since we assumg > 4, choosingl = [d (96p2)J, and recallingo2 = ¢, gives
k>,I,::} Afi, .
-2 2|96
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