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Abstract

We propose an efficient and parameter-free scoring criterion, the factorized conditional
log-likelihood (̂fCLL), for learning Bayesian network classifiers. The proposed score is an ap-
proximation of the conditional log-likelihood criterion.The approximation is devised in order to
guarantee decomposability over the network structure, as well as efficient estimation of the optimal
parameters, achieving the same time and space complexity asthe traditional log-likelihood scoring
criterion. The resulting criterion has an information-theoretic interpretation based on interaction
information, which exhibits its discriminative nature. Toevaluate the performance of the proposed
criterion, we present an empirical comparison with state-of-the-art classifiers. Results on a large
suite of benchmark data sets from the UCI repository show that f̂CLL-trained classifiers achieve
at least as good accuracy as the best compared classifiers, using significantly less computational
resources.
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1. Introduction

Bayesian networks have been widely used for classification, see Friedman et al. (1997), Grossman
and Domingos (2004), Su and Zhang (2006) and references therein.However, they are often out-
performed by much simpler methods (Domingos and Pazzani, 1997; Friedman et al., 1997). One of
the likely causes for this appears to be the use of so calledgenerative learningmethods in choos-
ing the Bayesian network structure as well as its parameters. In contrast togenerative learning,
where the goal is to be able to describe (or generate) the entire data,discriminative learningfocuses
on the capacity of a model to discriminate between different classes of instances. Unfortunately,
discriminative learning of Bayesian network classifiers has turned out to be computationally much
more challenging than generative learning. This led Friedman et al. (1997)to bring up the ques-
tion: are there heuristic approaches that allow efficient discriminative learning of Bayesian network
classifiers?

During the past years different discriminative approaches have beenproposed, which tend to
decompose the problem into two tasks: (i) discriminative structure learning, and (ii) discriminative
parameter learning. Greiner and Zhou (2002) were among the first to work along these lines. They
introduced a discriminative parameter learning algorithm, called theExtended Logistic Regression
(ELR) algorithm, that uses gradient descent to maximize theconditional log-likelihood(CLL) of the
class variable given the other variables. Their algorithm can be applied to an arbitrary Bayesian net-
work structure. However, they only consideredgenerativestructure learning methods. Greiner and
Zhou (2002) demonstrated that their parameter learning method, although computationally more ex-
pensive than the usual generative approach that only involves counting relative frequencies, leads to
improved parameter estimates. More recently, Su et al. (2008) have managed to significantly reduce
the computational cost by proposing an alternative discriminative parameterlearning method, called
theDiscriminative Frequency Estimate(DFE) algorithm, that exhibits nearly the same accuracy as
the ELR algorithm but is considerably more efficient.

Full structure and parameter learning based on the ELR algorithm is a burdensome task. Em-
ploying the procedure of Greiner and Zhou (2002) would require a newgradient descent for each
candidate network at each search step, turning the method computationally infeasible. Moreover,
even in parameter learning, ELR is not guaranteed to find globally optimal CLLparameters. Roos
et al. (2005) have showed that globally optimal solutions can be guaranteed only for network struc-
tures that satisfy a certain graph-theoretic property, including for example, the naive Bayes and
tree-augmented naive Bayes (TAN) structures (see Friedman et al., 1997) as special cases. The
work by Greiner and Zhou (2002) supports this result empirically by demonstrating that their ELR
algorithm is successful when combined with (generatively learned) TAN classifiers.

For discriminative structure learning, Kontkanen et al. (1998) and Grossman and Domingos
(2004) propose to choose network structures by maximizing CLL while choosing parameters by
maximizing the parameter posterior or the (joint)log-likelihood(LL). TheBNC algorithmof Gross-
man and Domingos (2004) is actually very similar to the hill-climbing algorithm of Heckerman et al.
(1995), except that it uses CLL as the primary objective function. Grossman and Domingos (2004)
also experiment with full structure and parameter optimization for CLL. However, they found that
full optimization does not produce better results than those obtained by the much simpler approach
where parameters are chosen by maximizing LL.

The contribution of this paper is to present two criteria similar to CLL, but with much better
computational properties. The criteria can be used for efficient learningof augmented naive Bayes
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classifiers. We mostly focus on structure learning. Compared to the work ofGrossman and Domin-
gos (2004), our structure learning criteria have the advantage of beingdecomposable, a property
that enables the use of simple and very efficient search heuristics. For the sake of simplicity, we
assume a binary valued class variable when deriving our results. However, the methods are directly
applicable to multi-class classification, as demonstrated in the experimental part(Section 5).

Our first criterion is theapproximated conditional log-likelihood(aCLL). The proposed score
is the minimum variance unbiased (MVU) approximation to CLL under a class of uniform priors
on certain parameters of the joint distribution of the class variable and the other attributes. We
show that for most parameter values, the approximation error is very small. However, the aCLL
criterion still has two unfavorable properties. First, the parameters that maximize aCLL are hard to
obtain, which poses problems at the parameter learning phase, similar to thoseposed by using CLL
directly. Second, the criterion is not well-behaved in the sense that it sometimes diverges when the
parameters approach the usual relative frequency estimates (maximizing LL).

In order to solve these two shortcomings, we devise a second approximation, the factorized
conditional log-likelihood(f̂CLL). The f̂CLL approximation is uniformly bounded, and moreover,
it is maximized by the easily obtainable relative frequency parameter estimates. Thef̂CLL criterion
allows a neat interpretation as a sum of LL and another term involving theinteraction information
between a node, its parents, and the class variable; see Pearl (1988),Cover and Thomas (2006),
Bilmes (2000) and Pernkopf and Bilmes (2005).

To gauge the performance of the proposed criteria in classification tasks,we compare them
with several popular classifiers, namely,tree augmented naive Bayes(TAN), greedy hill-climbing
(GHC), C4.5,k-nearest neighbor(k-NN), support vector machine(SVM) and logistic regression
(LogR). On a large suite of benchmark data sets from the UCI repository,f̂CLL-trained classifiers
outperform, with a statistically significant margin, their generatively-trained counterparts, as well
as C4.5,k-NN and LogR classifiers. Moreover,f̂CLL-optimal classifiers are comparable with ELR
induced ones, as well as SVMs (with linear, polynomial, and radial basis function kernels). The
advantage of̂fCLL with respect to these latter classifiers is that it is computationally as efficient as
the LL scoring criterion, and considerably more efficient than ELR and SVMs.

The paper is organized as follows. In Section 2 we review some basic concepts of Bayesian net-
works and introduce our notation. In Section 3 we discuss generative and discriminative learning of
Bayesian network classifiers. In Section 4 we present our scoring criteria, followed by experimental
results in Section 5. Finally, we draw some conclusions and discuss future work in Section 6. The
proofs of the results stated throughout this paper are given in the Appendix.

2. Bayesian Networks

In this section we introduce some notation, while recalling relevant concepts and results concerning
discrete Bayesian networks.

Let X be adiscrete random variabletaking values in a countable setX ⊂R. In all what follows,
the domainX is finite. We denote ann-dimensionalrandom vectorby X = (X1, . . . ,Xn) where each
componentXi is a random variable overXi . For each variableXi , we denote the elements ofXi by
xi1, . . . ,xir i wherer i is the number of valuesXi can take. The probability thatX takes valuex is
denoted byP(x), conditional probabilitiesP(x | z) being defined correspondingly.

A Bayesian network(BN) is defined by a pairB= (G,Θ), whereG refers to the graph structure,
andΘ are the parameters. The structureG= (V,E) is adirected acyclic graph(DAG) with vertices
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(nodes)V, each corresponding to one of the random variablesXi , and edgesE representing direct
dependencies between the variables. The (possibly empty) set of nodesfrom which there is an
edge to nodeXi is called the set of theparentsof Xi , and denoted byΠXi . For each nodeXi , we
denote the number of possibleparent configurations(vectors of the parents’ values) byqi , the actual
parent configurations being ordered (arbitrarily) and denoted bywi1, . . . ,wiqi . Theparameters, Θ =
{θi jk}i∈{1,...,n}, j∈{1,...,qi},k∈{1,...,r i}, determine thelocal distributionsin the network via

PB(Xi = xik |ΠXi = wi j ) = θi jk .

The local distributions define a unique joint probability distribution overX given by

PB(X1, . . . ,Xn) =
n

∏
i=1

PB(Xi |ΠXi ).

The conditional independence properties pertaining to the joint distribution are essentially deter-
mined by the network structure. Specifically,Xi is conditionally independent of its non-descendants
given its parentsΠXi in G (Pearl, 1988).

Learning unrestricted Bayesian networks from data under typical scoring criteria is NP-hard
(Chickering et al., 2004). This result has led the Bayesian network community to search for the
largest subclass of network structures for which there is an efficient learning algorithm. First at-
tempts confined the network to tree structures and used Edmonds (1967) and Chow and Liu (1968)
optimal branching algorithms. More general classes of Bayesian networks have eluded efforts to
develop efficient learning algorithms. Indeed, Chickering (1996) showed that learning the struc-
ture of a Bayesian network is NP-hard even for networks constrained tohave in-degree at most
two. Later, Dasgupta (1999) showed that even learning an optimalpolytree(a DAG in which there
are not two different paths from one node to another) with maximum in-degree two is NP-hard.
Moreover, Meek (2001) showed that identifying the bestpath structure, that is, a total order over
the nodes, is hard. Due to these hardness results exact polynomial-time algorithms for learning
Bayesian networks have been restricted to tree structures.

Consequently, the standard methodology for addressing the problem of learning Bayesian net-
works has become heuristic score-based learning where ascoring criterionφ is considered in or-
der to quantify the capability of a Bayesian network to explain the observed data. Given data
D = {y1, . . . ,yN} and a scoring criterionφ, the task is to find a Bayesian networkB that maxi-
mizes the scoreφ(B,D). Many search algorithms have been proposed, varying both in terms of the
formulation of the search space (network structures, equivalence classes of network structures and
orderings over the network variables), and in the algorithm to search the space (greedy hill-climbing,
simulated annealing, genetic algorithms, tabu search, etc). The most common scoring criteria are
reviewed in Carvalho (2009) and Yang and Chang (2002). We refer the interested reader to newly
developed scoring criteria to the works of de Campos (2006) and Silanderet al. (2010).

Score-based learning algorithms can be extremely efficient if the employed scoring criterion is
decomposable. A scoring criterionφ is said to bedecomposableif the score can be expressed as a
sum of local scores that depends only on each node and its parents, that is, in the form

φ(B,D) =
n

∑
i=1

φi(ΠXi ,D).
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One of the most common criteria is thelog-likelihood(LL), see Heckerman et al. (1995):

LL(B | D) =
N

∑
t=1

logPB(y
1
t , . . . ,y

n
t ) =

n

∑
i=1

qi

∑
j=1

r i

∑
k=1

Ni jk logθi jk ,

which is clearly decomposable.
Themaximum likelihood(ML) parameters that maximize LL are easily obtained as theobserved

frequency estimates(OFE) given by

θ̂i jk =
Ni jk

Ni j
, (1)

whereNi jk denotes the number of instances inD whereXi = xik andΠXi = wi j , andNi j = ∑r i
k=1Ni jk .

Plugging these estimates back into the LL criterion yields

L̂L(G | D) =
n

∑
i=1

qi

∑
j=1

r i

∑
k=1

Ni jk log

(
Ni jk

Ni j

)
.

The notation withG as the argument instead ofB= (G,Θ) emphasizes that once the use of the OFE
parameters is decided upon, the criterion is a function of the network structure,G, only.

The L̂L scoring criterion tends to favor complex network structures with many edges since
adding an edge never decreases the likelihood. This phenomenon leads tooverfitting which is
usually avoided by adding a complexity penalty to the log-likelihood or by restricting the network
structure.

3. Bayesian Network Classifiers

A Bayesian network classifieris a Bayesian network overX = (X1, . . . ,Xn,C), whereC is a class
variable, and the goal is to classify instances(X1, . . . ,Xn) to different classes. The variablesX1, . . . ,Xn

are calledattributes, or features. For the sake of computational efficiency, it is common to restrict
the network structure. We focus onaugmented naive Bayes classifiers, that is, Bayesian network
classifiers where the class variable has no parents,ΠC = /0, and all attributes have at least the class
variable as a parent,C∈ΠXi for all Xi .

For convenience, we introduce a few additional notations that apply to augmented naive Bayes
models. Let the class variableC range overs distinct values, and denote them byz1, . . . ,zs. Recall
that the parents ofXi are denoted byΠXi . The parents ofXi without the class variable are denoted
by Π∗Xi

= ΠXi \ {C}. We denote the number of possible configurations of the parent setΠ∗Xi
by

q∗i ; hence,q∗i = ∏Xj∈Π∗Xi
r j . The j ’th configuration ofΠ∗Xi

is represented byw∗i j , with 1≤ j ≤ q∗i .
Similarly to the general case, local distributions are determined by the corresponding parameters

P(C= zc) = θc,

P(Xi = xik |Π∗Xi
= w∗i j ,C= zc) = θi jck.

We denote byNi jck the number of instances in the dataD whereXi = xik, Π∗Xi
= w∗i j andC= zc.

Moreover, the following short-hand notations will become useful:

Ni j∗k =
s

∑
c=1

Ni jck, Ni j∗ =
r i

∑
k=1

s

∑
c=1

Ni jck,

Ni jc =
r i

∑
k=1

Ni jck, Nc =
1
n

n

∑
i=1

q∗i

∑
j=1

r i

∑
k=1

Ni jck.
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Finally, we recall that the total number of instances in the dataD is N.
The ML estimates (1) become now

θ̂c =
Nc

N
, and θ̂i jck =

Ni jck

Ni jc
, (2)

which can again be plugged into the LL criterion:

L̂L(G | D) =
N

∑
t=1

logPB(y
1
t , . . . ,y

n
t ,ct)

=
s

∑
c=1

(
Nc log

(
Nc

N

)
+

n

∑
i=1

qi

∑
j=1

r i

∑
k=1

Ni jck log

(
Ni jck

Ni jc

))
. (3)

As mentioned in the introduction, if the goal is to discriminate between instances belonging
to different classes, it is more natural to consider theconditional log-likelihood(CLL), that is, the
probability of the class variable given the attributes, as a score:

CLL(B | D) =
N

∑
t=1

logPB(ct | y
1
t , . . . ,y

n
t ).

Friedman et al. (1997) noticed that the log-likelihood can be rewritten as

LL(B | D) = CLL(B | D)+
N

∑
t=1

logPB(y
1
t , . . . ,y

n
t ). (4)

Interestingly, the objective of generative learning is precisely to maximize thewhole sum, whereas
the goal of discriminative learning consists on maximizing only the first term in (4). Friedman et al.
(1997) attributed the underperformance of learning methods based on LLto the term CLL(B | D)
being potentially much smaller than the second term in Equation (4). Unfortunately, CLL does
not decompose over the network structure, which seriously hinders structure learning, see Bilmes
(2000); Grossman and Domingos (2004). Furthermore, there is no closed-form formula for optimal
parameter estimates maximizing CLL, and computationally more expensive techniques such as ELR
are required (Greiner and Zhou, 2002; Su et al., 2008).

4. Factorized Conditional Log-Likelihood Scoring Criterion

The above shortcomings of earlier discriminative approaches to learning Bayesian network clas-
sifiers, and the CLL criterion in particular, make it natural to explore good approximations to the
CLL that are more amenable to efficient optimization. More specifically, we nowset out to construct
approximations that aredecomposable, as discussed in Section 2.

4.1 Developing a New Scoring Criterion

For simplicity, assume that the class variable is binary,C = {0,1}. For the binary case the condi-
tional probability of the class variable can then be written as

PB(ct | y
1
t , . . . ,y

n
t ) =

PB(y1
t , . . . ,y

n
t ,ct)

PB(y1
t , . . . ,y

n
t ,ct)+PB(y1

t , . . . ,y
n
t ,1−ct)

. (5)
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For convenience, we denote the two terms in the denominator as

Ut = PB(y
1
t , . . . ,y

n
t ,ct) and

Vt = PB(y
1
t , . . . ,y

n
t ,1−ct), (6)

so that Equation (5) becomes simply

PB(ct | y
1
t , . . . ,y

n
t ) =

Ut

Ut +Vt
.

We stress that bothUt andVt depend onB, but for the sake of readability we omitB in the notation.
Observe that while(y1

t , . . . ,y
n
t ,ct) is thet ’th sample in the data setD, the vector(y1

t , . . . ,y
n
t ,1−ct),

which we call thedual sampleof (y1
t , . . . ,y

n
t ,ct), may or may not occur inD.

The log-likelihood (LL), and the conditional log-likelihood (CLL) now take the form

LL(B | D) =
N

∑
t=1

logUt , and

CLL(B | D) =
N

∑
t=1

logUt − log(Ut +Vt).

Recall that our goal is to derive a decomposable scoring criterion. Unfortunately, even though logUt

decomposes, log(Ut +Vt) does not.
Now, let us consider approximating the log-ratio

f (Ut ,Vt) = log

(
Ut

Ut +Vt

)
,

by functions of the form
f̂ (Ut ,Vt) = α logUt +β logVt + γ,

whereα, β, andγ are real numbers to be chosen so as to minimize the approximation error. Sincethe
accuracy of the approximation obviously depends on the values ofUt andVt as well as the constants
α, β, andγ, we need to make some assumptions aboutUt andVt in order to determine suitable values
of α, β andγ. We explicate one possible set of assumptions, which will be seen to lead to a good
approximation for a very wide range ofUt andVt . We emphasize that the role of the assumptions is
to aid in arriving at good choices of the constantsα, β, andγ, after which we can dispense with the
assumptions—they need not, in particular, hold true exactly.

Start by noticing thatRt = 1− (Ut +Vt) is the probability of observing neither thet ’th sam-
ple nor its dual, and hence, the triplet(Ut ,Vt ,Rt) are the parameters of a trinomial distribution. We
assume, for the time being, that no knowledge about the values of the parameters(Ut ,Vt ,Rt) is avail-
able. Therefore, it is natural to assume that(Ut ,Vt ,Rt) follows the uniform Dirichlet distribution,
Dirichlet(1,1,1), which implies that

(Ut ,Vt)∼ Uniform(∆2), (7)

where∆2 = {(x,y) : x+y≤ 1 andx,y≥ 0} is the 2-simplex set. However, with a brief reflection on
the matter, we can see that such an assumption is actually rather unrealistic. Firstly, by inspecting
the total number of possible observed samples, we expect,Rt to be relatively large (close to 1).
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In fact, Ut andVt are expected to become exponentially small as the number of attributes grows.
Therefore, it is reasonable to assume that

Ut ,Vt ≤ p<
1
2
< Rt

for some 0< p< 1
2. Combining this constraint with the uniformity assumption, Equation (7), yields

the following assumption, which we will use as a basis for our further analysis.

Assumption 1 There exists a small positivep< 1
2 such that

(Ut ,Vt)∼ Uniform(∆2)|Ut ,Vt≤p = Uniform([0, p]× [0, p]).

Assumption 1 implies thatUt andVt are uniform i.i.d. random variables over[0, p] for some
(possibly unknown) positive real numberp< 1

2. (See Appendix B for an alternative justification for
Assumption 1.) As we show below, we do not need to know the actual value ofp. Consequently,
the envisaged approximation will be robust to the choice ofp.

We obtain the best fitting approximation̂f by the least squares method.

Theorem 1 Under Assumption 1, the values ofα, β andγ that minimize themean square error
(MSE) of f̂ w.r.t. f are given by

α =
π2+6

24
, (8)

β =
π2−18

24
, and (9)

γ =
π2

12ln2
−

(
2+

(π2−6) logp
12

)
, (10)

where log is the binary logarithm and ln is the natural logarithm.

We show that the mean difference betweenf̂ and f is zero for all values ofp, that is, f̂ is
unbiased.1 Moreover, we show that̂f is the approximation with the lowest variance among unbiased
ones.

Theorem 2 The approximationf̂ with α, β, γ defined as in Theorem 1 is theminimum variance
unbiased(MVU) approximation off .

Next, we derive the standard error of the approximationf̂ in the square[0, p]× [0, p], which,
curiously, does not depend onp. To this end, consider

µ= E[ f (Ut ,Vt)] =
1

2ln(2)
−2

which is a negative value; as it should sincef ranges over(−∞,0].

1. Herein we apply the nomenclature of estimation theory in the context of approximation. Thus, an approximation
is unbiasedif E[ f̂ (Ut ,Vt)− f (Ut ,Vt)] = 0 for all p. Moreover, an approximation is(uniformly) minimum variance
unbiasedif the valueE[( f̂ (Ut ,Vt)− f (Ut ,Vt))

2] is the lowest for all unbiased approximations and values ofp.
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Theorem 3 The approximation̂f with α, β, andγ defined as in Theorem 1 hasstandard errorgiven
by

σ =

√
36+36π2−π4

288ln2(2)
−2≈ 0.352

andrelative standard errorσ/|µ| ≈ 0.275.

Figure 1 illustrates the functionf as well as its approximation̂f for (Ut ,Vt) ∈ [0, p]× [0, p] with
p = 0.05. The approximation error,f − f̂ is shown in Figure 2. While the properties established
in Theorems 1–3 are useful, we find it even more important that, as seen in Figure 2, the error is
close to zero except when eitherUt or Vt approaches zero. Moreover, we point out that the choice
of p= 0.05 used in the figure is not important: having chosen another value would have produced
identical graphs except in the scale of theUt andVt . In particular, the scale and numerical values on
the vertical axis (i.e., in Figure 2, the error) would have been precisely thesame.

Using the approximation in Theorem 1 to approximate CLL yields

CLL(B | D) ≈
N

∑
t=1

α logUt +β logVt + γ

=
N

∑
t=1

(α+β) logUt −β log

(
Ut

Vt

)
+ γ

= (α+β)LL(B | D)−β
N

∑
t=1

log

(
Ut

Vt

)
+Nγ, (11)

where constantsα, β andγ are given by Equations (8), (9) and (10), respectively. Since we want to
maximize CLL(B | D), we can drop the constantNγ in the approximation, as maxima are invariant
under monotone transformations, and so we can just maximize the following formula, which we
call theapproximate conditional log-likelihood(aCLL):

aCLL(B | D) = (α+β)LL(B | D)−β
N

∑
t=1

log

(
Ut

Vt

)

= (α+β)LL(B | D)−β
n

∑
i=1

q∗i

∑
j=1

r i

∑
k=1

1

∑
c=0

Ni jck log

(
θi jck

θi j (1−c)k

)

−β
1

∑
c=0

Nc log

(
θc

θ(1−c)

)
. (12)

The fact thatNγ can be removed from the maximization in (11) is most fortunate, as we eliminate
the dependency onp. An immediate consequence of this fact is that we do not need to know the
actual value ofp in order to employ the criterion.

We are now in the position of having constructed adecomposableapproximation of the condi-
tional log-likelihood score that was shown to be very accurate for a wide range of parametersUt

andVt . Due to the dependency of these parameters onΘ, that is, the parameters of the Bayesian
networkB (recall Equation (6)), the score still requires that a suitable set of parameters is chosen.
Finding the parameters maximizing the approximation is, however, difficult; apparently as difficult
as finding parameters maximizing the CLL directly. Therefore, whatever computational advantage
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Figure 1: Comparison betweenf (Ut ,Vt) = log
(

Ut
Ut+Vt

)
(left), and f̂ (Ut ,Vt) = α logUt +β logVt + γ

(right). Both functions diverge (to−∞) asUt → 0. The latter diverges (to+∞) also when
Vt → 0. For the interpretation of different colors, see Figure 2 below.
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Figure 2: Approximation error: the difference between the exact value and the approximation given
in Theorem 1. Notice that the error is symmetric in the two arguments, and diverges as
Ut → 0 orVt → 0. For points where neither argument is close to zero, the error is small
(close to zero).
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is gained by decomposability, it would seem to be dwarfed by the expensiveparameter optimization
phase.

Furthermore, trying to use the OFE parameters in aCLL may lead to problems since the ap-
proximation is undefined at points where eitherUt or Vt is zero. To better see why this is the case,
substitute the OFE parameters, Equation (2), into the aCLL criterion, Equation(12), to obtain

âCLL(G | D) = (α+β) L̂L(G | D)−β
n

∑
i=1

q∗i

∑
j=1

r i

∑
k=1

1

∑
c=0

Ni jck log

(
Ni jckNi j (1−c)

Ni jcNi j (1−c)k

)

−β
1

∑
c=0

Nc log

(
Nc

N1−c

)
. (13)

The problems are associated with the denominator in the second term. In LL andCLL cri-
teria, similar expressions where the denominator may be zero are always eliminated by the OFE
parameters since they are always multiplied by zero, see, for example, Equation (3), whereNi jc = 0
impliesNi jck = 0. However, there is no guarantee thatNi j (1−c)k is non-zero even if the factors in the
numerator are non-zero, and hence the division by zero may lead to actual indeterminacies.

Next, we set out to resolve these issues by presenting a well-behaved approximation that enables
easy optimization of both structure (via decomposability), as well as parameters.

4.2 Achieving a Well-Behaved Approximation

In this section, we address the singularities of aCLL under OFE by constructing an approximation
that is well-behaved.

Recall aCLL in Equation (12). Given a fixed network structure, the parameters that maximize
the first term,(α+β)LL(B | D), are given by OFE. However, as observed above, the second term
may actually be unbounded due to the appearance ofθi j (1−c)k in the denominator. In order to obtain a
well-behaved score, we must therefore make a further modification to the second term. Our strategy
is to ensure that the resulting score isuniformly boundedandmaximized by OFE parameters. The
intuition behind this is that we can thus guarantee not only that the score is well-behaved, but also
that parameter learning is achieved in a simple and efficient way by using the OFE parameters—
solving both of the aforementioned issues with the aCLL score. As it turns out, we can satisfy our
goal while still retaining the discriminative nature of the score.

The following result is of importance in what follows.

Theorem 4 Consider a Bayesian networkB whose structure is given by a fixed directed acyclic
graph,G. Let f (B | D) be a score defined by

f (B | D) =
n

∑
i=1

q∗i

∑
j=1

r i

∑
k=1

1

∑
c=0

Ni jck


λ log


 θi jck

Ni jc

Ni j∗
θi jck +

Ni j (1−c)

Ni j∗
θi j (1−c)k




 , (14)

whereλ is an arbitrary positive real value. Then, the parametersΘ that maximizef (B |D) are given
by the observed frequency estimates (OFE) obtained fromG.

The theorem implies that by replacing the second term in (12) by (a non-negative multiple of)
f (B |D) in Equation (14), we get a criterion where both the first and the second term are maximized
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by the OFE parameters. We will now proceed to determine a suitable value for the parameterλ
appearing in Equation (14).

To clarify the analysis, we introduce the following short-hand notations:

A1 = Ni jcθi jck, A2 = Ni jc ,

B1 = Ni j (1−c)θi j (1−c)k, B2 = Ni j (1−c).
(15)

With simple algebra, we can rewrite the logarithm in the second term of Equation (12) using the
above notations as

log

(
Ni jcθi jck

Ni j (1−c)θi j (1−c)k

)
− log

(
Ni jc

Ni j (1−c)

)
= log

(
A1

B1

)
− log

(
A2

B2

)
. (16)

Similarly, the logarithm in (14) becomes

λ log

(
Ni jcθi jck

Ni jcθi jck +Ni j (1−c)θi j (1−c)k

)
+ρ−λ log

(
Ni jc

Ni jc +Ni j (1−c)

)
−ρ

= λ log

(
A1

A1+B1

)
+ρ−λ log

(
A2

A2+B2

)
−ρ, (17)

where we usedNi j∗ = Ni jc +Ni j (1−c); we have introduced the constantρ that was added and sub-
tracted without changing the value of the expression for a reason that willbecome clear shortly. By
comparing Equations (16) and (17), it can be seen that the latter is obtainedfrom the former by
replacing expressions of the form log(A

B) by expressions of the formλ log( A
A+B)+ρ.

We can simplify the two-variable approximation to a single variable one by takingW = A
A+B. In

this case we have thatA
B = W

1−W , and so we propose to apply once again the least squares method to
approximate the function

g(W) = log

(
W

1−W

)

by
ĝ(W) = λ logW+ρ.

The role of the constantρ is simply to translate the approximate function to better match the target
g(W).

As in the previous approximation, here too it is necessary to make assumptionsabout the values
of A andB (and thusW), in order to find suitable values for the parametersλ andρ. Again, we stress
that the sole purpose of the assumption is to guide in the choice of the parameters.

As bothA1, A2, B1, andB2 in Equation (15) are all non-negative, the ratioWi =
Ai

Ai+Bi
is al-

ways between zero and one, for bothi ∈ {1,2}, and hence it is natural to make the straightforward
assumption thatW1 andW2 are uniformly distributed along the unit interval. This gives us the
following assumption.

Assumption 2 We assume that

Ni jcθi jck

Ni jcθi jck +Ni j (1−c)θi j (1−c)k
∼ Uniform(0,1), and

Ni jc

Ni jc +Ni j (1−c)
∼ Uniform(0,1).
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Figure 3: Plot ofg(w) = log
(

w
1−w

)
andĝ(w) = λ logw+ρ.

Herein, it is worthwhile noticing that although the previous assumption was meant to hold for
general parameters, in practice, we know in this case that OFE will be used. Hence, Assumption 2
reduces to

Ni jck

Ni j∗k
∼ Uniform(0,1), and

Ni jc

Ni j∗
∼ Uniform(0,1).

Under this assumption, the mean squared error of the approximation can be minimized analyti-
cally, yielding the following solution.

Theorem 5 Under Assumption 2, the values ofλ andρ that minimize the mean square error (MSE)
of ĝ w.r.t. g are given by

λ =
π2

6
, and (18)

ρ =
π2

6ln2
. (19)

Theorem 6 The approximation ˆg with λ andρ defined as in Theorem 5 is the minimum variance
unbiased (MVU) approximation ofg.

In order to get an idea of the accuracy of the approximation ˆg, consider the graph of log
(

w
1−w

)

andλ logw+ρ in Figure 3. It may appear problematic that the approximation gets worse asw tends
to one. However this is actually unavoidable since that is precisely whereâCLL diverges, and our
goal is to obtain a criterion that is uniformly bounded.

To wrap up, we first rewrite the logarithm of the second term in Equation (12) using for-
mula (16), and then apply the above approximation to both terms to get

log

(
θi jck

θi j (1−c)k

)
≈ λ log

(
Ni jcθi jck

Ni jcθi jck +Ni j (1−c)θi j (1−c)k

)
+ρ−λ log

(
Ni jc

Ni j∗

)
−ρ, (20)

whereρ cancels out. A similar analysis can be applied to rewrite the logarithm of the third term in
Equation (12) leading to

log

(
θc

θ(1−c)

)
= log

(
θc

1−θc

)
≈ λ logθc+ρ. (21)
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Plugging the approximations of Equations (20) and (21) into Equation (12) gives us finally the
factorized conditional log-likelihood(fCLL) score:

fCLL(B | D) = (α+β)LL(B | D)

−βλ
n

∑
i=1

q∗i

∑
j=1

r i

∑
k=1

1

∑
c=0

Ni jck

(
log

(
Ni jcθi jck

Ni jcθi jck−Ni j (1−c)θi j (1−c)k

)
− log

(
Ni jc

Ni j∗

))

−βλ
1

∑
c=0

Nc logθc−βNρ.

(22)

Observe that the third term of Equation (22) is such that

−βλ
1

∑
c=0

Nc logθc =−βλN
1

∑
c=0

Nc

N
logθc, (23)

and, sinceβ < 0, by Gibbs inequality (see Lemma 8 in the Appendix at page 2204) the parameters
that maximize Equation (23) are given by the OFE, that is,θ̂c =

Nc
N . Therefore, by Theorem 4, given

a fixed structure, the maximizing parameters of fCLL are easily obtained as OFE. Moreover, the
fCLL score is clearly decomposable.

As a final step, we plug in the OFE parameters, Equation (2), into the fCLL criterion, Equa-
tion (22), to obtain

f̂CLL(G | D) = (α+β) L̂L(B | D)−βλ
n

∑
i=1

q∗i

∑
j=1

r i

∑
k=1

1

∑
c=0

Ni jck

(
log

(
Ni jck

Ni j∗k

)
− log

(
Ni jc

Ni j∗

))

−βλ
1

∑
c=0

Nc log

(
Nc

N

)
−βNρ, (24)

where we also use the OFE parameters in the log-likelihoodL̂L. Observe that we can drop the last
two terms in Equation (24) as they become constants for a given data set.

4.3 Information-Theoretical Interpretation

Before we present empirical results illustrating the behavior of the proposed scoring criteria, we
point out that thêfCLL criterion has an interesting information-theoretic interpretation based on
interaction information. We will first rewrite LL in terms of conditional mutual information, and
then, similarly, rewrite the second term off̂CLL in Equation (24) in terms of interaction information.

As Friedman et al. (1997) point out, the local contribution of thei’th variable to LL(B | D)
(recall Equation (3)) is given by

N
q∗i

∑
j=1

1

∑
c=0

r i

∑
k=1

Ni jck

N
log

(
Ni jck

Ni jc

)
= −NHP̂D

(Xi |Π∗Xi
,C)

= −NHP̂D
(Xi |C)+NIP̂D

(Xi ; Π∗Xi
|C), (25)

whereHP̂D
(Xi | . . .) denotes theconditional entropy, andIP̂D

(Xi ; Π∗Xi
| C) denotes theconditional

mutual information, see Cover and Thomas (2006). The subscriptP̂D indicates that the information

2194



FACTORIZED CONDITIONAL LOG-L IKELIHOOD

theoretic quantities are evaluated under the joint distributionP̂D of (~X,C) induced by the OFE
parameters.

Since the first term on the right-hand side of (25) does not depend onΠ∗Xi
, finding the parents

of Xi that maximize LL(B |D) is equivalent to choosing the parents that maximize the second term,
NIP̂D

(Xi ; Π∗Xi
|C), which measures the information thatΠ∗Xi

provides aboutXi when the value ofC
is known.

Let us now turn to the second term of thef̂CLL score in Equation (24). The contribution of the
i’th variable in it can also be expressed in information theoretic terms as follows:

−βλN
(
HP̂D

(C | Xi ,Π∗Xi
)−HP̂D

(C |Π∗Xi
)
)
= βλNIP̂D

(C; Xi |Π∗Xi
)

= βλN
(
IP̂D

(C; Xi ; Π∗Xi
)+ IP̂D

(C; Xi))
)
,

(26)

whereIP̂D
(C; XI ; Π∗Xi

) denotes theinteraction information(McGill, 1954), or the“co-information”
(Bell, 2003); for a review on the history and use of interaction information inmachine learning and
statistics, see Jakulin (2005).

SinceIP̂D
(Xi ; C) on the last line of Equation (26) does not depend onΠ∗Xi

, finding the parents of
Xi that maximize the sum amounts to maximizing the interaction information. This is intuitive, since
the interaction information measures the increase—or the decrease, as it can also be negative—of
the mutual information betweenXi andC when the parent setΠ∗Xi

is included in the model.
All said, thef̂CLL criterion can be written as

f̂CLL(G | D) =
n

∑
i=1

[
(α+β)NIP̂D

(Xi ; Π∗Xi
|C)−βλNIP̂D

(C; Xi ; Π∗Xi
)
]
+const, (27)

whereconstis a constant independent of the network structure and can thus be omitted.To get a
concrete idea of the trade-off between the first two terms, the numerical values of the constants can
be evaluated to obtain

f̂CLL(G | D)≈
n

∑
i=1

[
0.322NIP̂D

(Xi ; Π∗Xi
|C)+0.557NIP̂D

(C; Xi ; Π∗Xi
)
]
+const. (28)

Normalizing the weights shows that the first term that corresponds to the behavior of the LL crite-
rion, Equation (25), has proportional weight of approximately 36.7 percent, while the second term
that giveŝfCLL criterion its discriminative nature has the weight 63.3 percent.2

In addition to the insight provided by the information-theoretic interpretation off̂CLL, it also
provides a practically most useful corollary: thef̂CLL criterion is score equivalent. A scoring
criterion is said to bescore equivalentif it assigns the same score to all network structures encoding
the same independence assumptions, see Verma and Pearl (1990), Chickering (2002), Yang and
Chang (2002) and de Campos (2006).

Theorem 7 Thef̂CLL criterion is score equivalent for augmented naive Bayes classifiers.

The practical utility of the above result is due to the fact that it enables the use of powerful
algorithms, such as the tree-learning method by Chow and Liu (1968), in learning TAN classifiers.

2. The particular linear combination of the two terms in Equation (28) brings out the question what would happen in only
one of the terms was retained, or equivalently, if one of the weights was set to zero. As mentioned above, the first term
corresponds to the LL criterion, and hence, setting the weight of the second term to zero would reduce the criterion to
LL. We also experimented with a criterion where only the second term is retained but this was observed to yield poor
results; for details, see the additional material athttp://kdbio.inesc-id.pt/ ˜ asmc/software/fCLL.html .
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4.4 Beyond Binary Classification and TAN

AlthoughâCLL andf̂CLL scoring criteria were devised having in mind binary classification tasks,
their application in multi-class problems is straightforward.3 For the case of̂fCLL, the expression
(24) does not involve the dual samples. Hence, it can be trivially adaptedfor non-binary classifica-
tion tasks. On the other hand, the scoreâCLL in Equation (13) does depend on the dual samples. To
adapt it for multi-class problems, we consideredNi j (1−c)k = Ni j∗k−Ni jck andNi j (1−c) = Ni j −Ni jc .

Finally, we point out that despite being derived under the augmented naive Bayes model, the
f̂CLL score can be readily applied to models where the class variable isnot a parent of some of the
attributes. Hence, we can use it as a criterion for learning more general structures. The empirical
results below demonstrate that this indeed leads to good classifiers.

5. Experimental Results

We implemented thêfCLL scoring criterion on top of the Weka open-source software (Hall et al.,
2009). Unfortunately, the Weka implementation of the TAN classifier assumes that the learning
criterion is score equivalent, which rules out the use of ourâCLL criterion. Non-score-equivalent
criteria require the Edmonds’ maximum branchings algorithm that builds a maximaldirectedspan-
ning tree (see Edmonds 1967, or Lawler 1976) instead of an undirected one obtained by the Chow-
Liu algorithm (Chow and Liu, 1968). Edmonds’ algorithm had already beenimplemented by some
of the authors (see Carvalho et al., 2007) using Mathematica 7.0 and the Combinatorica package
(Pemmaraju and Skiena, 2003). Hence, theâCLL criterion was implemented in this environment.
All source code and the data sets used in the experiments, can be found atfCLL web page.4

We evaluated the performance ofâCLL andf̂CLL scoring criteria in classification tasks compar-
ing them with state-of-the-art classifiers. We performed our evaluation onthe same 25 benchmark
data sets used by Friedman et al. (1997). These include 23 data sets fromthe UCI repository of
Newman et al. (1998) and two artificial data sets,corral andmofn, designed by Kohavi and John
(1997) to evaluate methods for feature subset selection. A description ofthe data sets is presented
in Table 1. All continuous-valued attributes were discretized using the supervised entropy-based
method by Fayyad and Irani (1993). For this task we used the Weka package.5 Instances with
missing values were removed from the data sets.

The classifiers used in the experiments were:
GHC2: Greedy hill climber classifier with up to 2 parents.
TAN: Tree augmented naive Bayes classifier.
C4.5: C4.5 classifier.
k-NN: k-nearest neighbor classifier, withk= 1,3,5.
SVM: Support vector machine with linear kernel.
SVM2: Support vector machine with polynomial kernel of degree 2.

3. As suggested by an anonymous referee, the techniques used in Section 4.1 for deriving thêaCLL criterion can be
generalized to the multi-class case as well as to other distributions in addition to the uniform one in a straightforward
manner by applying results from regression theory. We plan to explore such generalizations of both theâCLL and
f̂CLL criteria in future work.

4. fCLL web page is athttp://kdbio.inesc-id.pt/ ˜ asmc/software/fCLL.html .
5. Discretization was done usingweka.filters.supervised.attribute.Discretize , with default parameters.

This discretization improved the accuracy of all classifiers used in the experiments, including those that do not
necessarily require discretization, that is, C4.5k-NN, SVM, and LogR.
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Data Set Features Classes Train Test

1 australian 15 2 690 CV-5
2 breast 10 2 683 CV-5
3 chess 37 2 2130 1066
4 cleve 14 2 296 CV-5
5 corral 7 2 128 CV-5
6 crx 16 2 653 CV-5
7 diabetes 9 2 768 CV-5
8 flare 11 2 1066 CV-5
9 german 21 2 1000 CV-5
10 glass 10 7 214 CV-5
11 glass2 10 2 163 CV-5
12 heart 14 2 270 CV-5
13 hepatitis 20 2 80 CV-5
14 iris 5 3 150 CV-5
15 letter 17 26 15000 5000
16 lymphography 19 4 148 CV-5
17 mofn-3-7-10 11 2 300 1024
18 pima 9 2 768 CV-5
19 satimage 37 6 4435 2000
20 segment 20 7 1540 770
21 shuttle-small 10 7 3866 1934
22 soybean-large 36 19 562 CV-5
23 vehicle 19 4 846 CV-5
24 vote 17 2 435 CV-5
25 waveform-21 22 3 300 4700

Table 1: Description of data sets used in the experiments.

SVMG: Support vector machine with Gaussian (RBF) kernel.
LogR: Logistic regression.

Bayesian network-based classifiers (GHC2 and TAN) were included in different flavors, dif-
fering in the scoring criterion used for structure learning (LL,âCLL, f̂CLL) and the parameter
estimator (OFE, ELR). Each variant along with the implementation used in the experiments is de-
scribed in Table 2. Default parameters were used in all cases unless explicitly stated. Excluding
TAN classifiers obtained with the ELR method, we improved the performance ofBayesian network
classifiers by smoothing parameter estimates according to a Dirichlet prior (see Heckerman et al.,
1995). The smoothing parameter was set to 0.5, the default in Weka. The same strategy was used
for TAN classifiers implemented in Mathematica. For discriminative parameter learning with ELR,
parameters were initialized to the OFE values. The gradient descent parameter optimization was
terminated usingcross tuningas suggested in Greiner et al. (2005).

Three different kernels were applied in SVM classifiers: (i) a linear kernel of the formK(xi ,x j)=
xT

i x j ; (ii) a polynomial kernel of the formK(xi ,x j) = (xT
i x j)

2; and (iii) a Gaussian (radial basis
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Classifier Struct. Param. Implementation

GHC2 LL OFE HillClimber (P=2) implementation from Weka
GHC2 f̂CLL OFE HillClimber (P=2) implementation from Weka

TAN LL OFE TAN implementation from Weka
TAN LL ELR TAN implementation from Greiner and Zhou (2002)
TAN âCLL OFE TAN implementation from Carvalho et al. (2007)
TAN f̂CLL OFE TAN implementation from Weka

C4.5 J48 implementation from Weka
1-NN IBk (K=1) implementation from Weka
3-NN IBk (K=3) implementation from Weka
5-NN IBk (K=5) implementation from Weka
SVM SMOimplementation from Weka
SVM2 SMOwith PolyKernel (E=2) implementation from Weka
SVMG SMOwith RBFKernel implementation from Weka
LogR Logistic implementation from Weka

Table 2: Classifiers used in the experiments.

function) kernel of the formK(xi ,x j) = exp(−γ||xi − x j ||
2). Following established practice (see

Hsu et al., 2003), we used a grid-search on the penalty parameterC and the RBF kernel parameter
γ, using cross-validation. For linear and polynomial kernels we selectedC from [10−1,1,10,102]
by using 5-fold cross-validation on the training set. For the RBF kernel weselectedC andγ from
[10−1,1,10,102] and[10−3,10−2,10−1,1,10], respectively, by using 5-fold cross-validation on the
training set.

The accuracy of each classifier is defined as the percentage of successful predictions on the
test sets in each data set. As suggested by Friedman et al. (1997), accuracy was measured via the
holdout method for larger training sets, and via stratified five-fold cross-validation for smaller ones,
using the methods described by Kohavi (1995). Throughout the experiments, we used the same
cross-validation folds for every classifier. Scatter plots of the accuracies of the proposed methods
against the others are depicted in Figure 4 and Figure 5. Points above the diagonal line represent
cases where the method shown in the vertical axis performs better than the one on the horizontal
axis. Crosses over the points depict the standard deviation. The standard deviation is computed
according to the binomial formula

√
acc× (1−acc)/m, whereacc is the classifier accuracy and,

for the cross-validation tests,m is the size of the data set. For the case of holdout tests,m is the
size of the test set. Tables with the accuracies and standard deviations canbe found at the fCLL
webpage.

We compare the performance of the classifiers using Wilcoxon signed-rank tests, using the same
procedure as Grossman and Domingos (2004). This test is applicable when paired classification ac-
curacy differences, along the data sets, are independent and non-normally distributed. Alternatively,
a pairedt-test could be used, but as the Wilcoxon signed-rank test is more conservative than the
paired t-test, we apply the former. Results are depicted in Table 3 and Table 4. Each entry of Ta-
ble 3 and Table 4 gives theZ-score andp-value of the significance test for the corresponding pairs
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Figure 4: Scatter plots of the accuracy of Bayesian network-based classifiers.

of classifiers. The arrow points towards the learning algorithm that yields superior classification
performance. A double arrow is used if the difference is significant withp-value smaller than 0.05.

Over all, TAN-̂fCLL-OFE and GHC-̂fCLL-OFE performed the best (Tables 3–4). They outper-
formed C4.5, the nearest neighbor classifiers, and logistic regression,as well as the generatively-
trained Bayesian network classifiers, TAN-LL-OFE and GHC-LL-OFE,all differences being sta-
tistically significant at thep < 0.05 level. On the other hand, TAN-âCLL-OFE did not stand out
compared to most of the other methods. Moreover, TAN-f̂CLL-OFE and GHC-̂fCLL-OFE classi-
fiers fared sightly better than TAN-LL-ELR and the SVM classifiers, although the difference was
not statistically significant. In these cases, the only practically relevant factor is computational
efficiency.

To roughly characterize the computational complexity of learning the variousclassifiers, we
measured the total time required by each classifier to process all the 25 data sets.6 Most of the
methods only took a few seconds (∼ 1− 3 seconds), except for TAN-âCLL-OFE which took a
few minutes (∼ 2− 3 minutes), SVM with linear kernel which took some minutes (∼ 17− 18
minutes), TAN-LL-ELR and SVM with polynomial kernel which took a few hours (∼ 1−2 hours)
and, finally, logistic regression and SVM with RBF kernel which took several hours (∼ 18− 32
hours). In the case of TAN-âCLL-OFE, the slightly increased computation time was likely caused
by the Mathematica package, which is not intended for numerical computation.In theory, the
computational complexity of TAN-âCLL-OFE is of the same order as TAN-LL-OFE or TAN-f̂CLL-

6. Reporting the total time instead of the individual times for each data set willemphasize the significance of the larger
data sets. However, the individual times were in accordance with the general conclusion drawn from the total time.
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Figure 5: The accuracy of the proposed methods vs. state-of-the-artclassifiers.
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Classifier GHC2 TAN GHC2 TAN TAN
Struct. f̂CLL âCLL LL LL LL
Param. OFE OFE OFE OFE ELR

TAN 0.37 1.44 2.13 2.13 0.31
f̂CLL 0.36 0.07 0.02 0.02 0.38
OFE ← ← ⇐ ⇐ ←

GHC2 1.49 2.26 2.21 0.06
f̂CLL 0.07 0.01 0.01 0.48
OFE ← ⇐ ⇐ ←

TAN 0.04 -0.34 -1.31
âCLL 0.48 0.37 0.10
OFE ← ↑ ↑

Table 3: Comparison of the Bayesian network classifiers against each other, using the Wilcoxon
signed-rank test. Each cell of the array gives theZ-score (top) and the correspondingp-
value (middle). Arrow points towards the better method, double arrow indicates statistical
significance at levelp< 0.05.

Classifier C4.5 1-NN 3-NN 5-NN SVM SVM2 SVMG LogR

TAN 3.00 2.25 2.16 2.07 0.43 0.61 0.21 1.80
f̂CLL <0.01 0.01 0.02 0.02 0.33 0.27 0.42 0.04
OFE ⇐ ⇐ ⇐ ⇐ ← ← ← ⇐

GHC2 3.00 2.35 2.20 2.19 0.39 0.74 0.11 1.65
f̂CLL <0.01 <0.01 0.01 0.01 0.35 0.23 0.45 0.05
OFE ⇐ ⇐ ⇐ ⇐ ← ← ← ⇐

TAN 2.26 1.34 1.17 1.31 -0.40 -0.29 -0.55 1.37
âCLL 0.01 0.09 0.12 0.09 0.35 0.38 0.29 0.09
OFE ⇐ ← ← ← ↑ ↑ ↑ ←

Table 4: Comparison of the Bayesian network classifiers against other classifiers. Conventions
identical to those in Table 3.

OFE:O(n2 logn) in the number of features and linear in the number of instances, see Friedmanet al.
(1997).

Concerning TAN-LL-ELR, the difference is caused by the discriminative parameter learning
method (ELR), which is computationally expensive. In our experiments, TAN-LL-ELR was 3 order
of magnitude slower than TAN-f̂CLL-OFE. Su and Zhang (2006) report a difference of 6 orders of
magnitude, but different data sets were used in their experiments. Likewise, the high computational
cost of SVMs was expected. Selection of the regularization parameter using cross-tuning further
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increases the cost. In our experiments, SVMs were clearly slower thanf̂CLL-based classifiers.
Furthermore, in terms of memory, SVMs with polynomial and RBF kernels, as well as logistic
regression, required that the available memory was increased to 1 GB of memory, whereas all other
classifiers coped with the default 128 MB.

6. Conclusions and Future Work

We proposed a new decomposable scoring criterion for classification tasks. The new score, called
factorized conditional log-likelihood,̂fCLL, is based on an approximation of conditional
log-likelihood. The new criterion is decomposable, score-equivalent, and allows efficient estima-
tion of both structure and parameters. The computational complexity of the proposed method is
of the same order as the traditional log-likelihood criterion. Moreover, the criterion is specifically
designed for discriminative learning.

The merits of the new scoring criterion were evaluated and compared to thoseof common state-
of-the-art classifiers, on a large suite of benchmark data sets from the UCI repository. Optimal
f̂CLL-scored tree-augmented naive Bayes (TAN) classifiers, as wellas somewhat more general
structures (referred to above as GHC2), performed better than generatively-trained Bayesian net-
work classifiers, as well as C4.5, nearest neighbor, and logistic regression classifiers, with statistical
significance. Moreover,̂fCLL-optimized classifiers performed better, although the difference is not
statistically significant, than those where the Bayesian network parameters were optimized using an
earlier discriminative criterion (ELR), as well as support vector machines(with linear, polynomial
and RBF kernels). In comparison to the latter methods, our method is considerably more efficient
in terms of computational cost, taking 2 to 3 orders of magnitude less time for the data sets in our
experiments.

Directions for future work include: studying in detail the asymptotic behaviorof f̂CLL for TAN
and more general models; combining our intermediate approximation, aCLL, withdiscriminative
parameter estimation (ELR); extending aCLL andf̂CLL to mixture models; and applications in data
clustering.
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Appendix A. Detailed Proofs

Proof (Theorem 1)We have that

Sp(α,β,γ) =

p∫

0

p∫

0

1
p2

(
log

(
x

x+y

)
− (α log(x)+β log(y)+ γ)

)2

dydx

=
1

12ln(2)2(−π2(−1+α+β)

+6(2+4α2+4β2−4ln(2)−2γ ln(2)+4ln(2)2+8γ ln(2)2+2γ2 ln2(2)

+β(5−4(2+ γ) ln(2))+α(1+4β−4(2+ γ) ln(2)))

−12(α+β)(1+2α+2β−4ln(2)−2γ ln(2)) ln(p)+12(α+β)2 ln2(p)).

Moreover,∇.Sp = 0 iff

α =
π2+6

24
,

β =
π2−18

24
,

γ =
π2

12ln(2)
−

(
2+

(π2−6) log(p)
12

)
,

which coincides exactly with (8), (9) and (10), respectively. Now to show that (8), (9) and (10)
define a global minimum, takeδ = (α log(p)+β log(p)+ γ) and notice that

Sp(α,β,γ) =

p∫

0

p∫

0

1
p2

(
log

(
x

x+y

)
− (α log(x)+β log(y)+ γ)

)2

dydx

=

1∫

0

1∫

0

1
p2

(
log

(
px

px+ py

)
− (α log(px)+β log(py)+ γ)

)2

p2dydx

=

1∫

0

1∫

0

(
log

(
x

x+y

)
− (α log(x)+β log(y)+(α log(p)+β log(p)+ γ))

)2

dydx

=

1∫

0

1∫

0

(
log

(
x

x+y

)
− (α log(x)+β log(y)+δ)

)2

dydx

= S1(α,β,δ).

So,Sp has a minimum at (8), (9) and (10) iffS1 has a minimum at (8), (9) and

δ =
π2

12ln(2)
−2.

The Hessian ofS1 is 


4
ln2(2)

2
ln2(2)

− 2
ln(2)

2
ln2(2)

4
ln2(2)

− 2
ln(2)

− 2
ln(2) −

2
ln(2) 2



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and its eigenvalues are

rcle1 =
3+ ln2(2)+

√
9+2ln2(2)+ ln(2)4

ln2(2)
,

e2 =
2

ln2(2)
,

e3 =
3+ ln2(2)−

√
9+2ln2(2)+ ln(2)4

ln2(2)
,

which are all positive. Thus,S1 has a local minimum in(α,β,δ) and, consequently,Sp has a local
minimum in(α,β,γ). Since∇.Sp has only one zero,(α,β,γ) is a global minimum ofSp. �

Proof (Theorem 2)We have that

p∫

0

p∫

0

1
p2

(
log

(
x

x+y

)
− (α log(x)+β log(y)+ γ)

)
dydx= 0

for α,β andγ defined as in (8), (9) and (10). Since the MSE coincides with the variancefor any
unbiased estimator, the proposed approximation is the one with minimum variance. �

Proof (Theorem 3)We have that

√√√√√
p∫

0

p∫

0

1
p2

(
log

(
x

x+y

)
− (α log(x)+β log(y)+ γ)

)2

dydx=

√
36+36π2−π4

288ln2(2)
−2

for α,β andγ defined as in (8), (9) and (10), which concludes the proof. �

For the proof of Theorem 4, we recall Gibb’s inequality.

Lemma 8 (Gibb’s inequality) Let P(x) andQ(x) be two probability distributions over the same
domain, then

∑
x

P(x) log(Q(x))≤∑
x

P(x) log(P(x)).

Proof (Theorem 4)We now take advantage of Gibb’s inequality to show that the parameters that
maximize thef (B | D) are those given by the OFE. Observe that

f (B | D) = λ
n

∑
i=1

q∗i

∑
j=1

r i

∑
k=1

1

∑
c=0

Ni jck log

(
Ni jcθi jck

Ni jcθi jck +Ni j (1−c)θi j (1−c)k

)
− log

(
Ni jc

Ni j∗

)

= K+λ
n

∑
i=1

q∗i

∑
j=1

r i

∑
k=1

Ni j∗k

1

∑
c=0

Ni jck

Ni j∗k
log

(
Ni jcθi jck

Ni jcθi jck +Ni j (1−c)θi j (1−c)k

)
, (29)
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whereK is a constant that does not depend on the parametersθi jck, and therefore, can be ignored.
Moreover, if we take the OFE for the parameters, we have

θ̂i jck =
Ni jkc

Ni jc
and θ̂i j (1−c)k =

Ni jk(1−c)

Ni j (1−c)
.

By plugging the OFE estimates in (29) we obtain

f̂ (G | D) = K+λ
n

∑
i=1

q∗i

∑
j=1

r i

∑
k=1

Ni j∗c

1

∑
c=0

Ni jck

Ni j∗k
log


 Ni jc

Ni jck

Ni jc

Ni jc
Ni jck

Ni jc
+Ni j (1−c)

Ni j (1−c)k

Ni j (1−c)




= K+λ
n

∑
i=1

qi

∑
j=1

r i

∑
k=1

Ni j∗k

1

∑
c=0

Ni jck

Ni j∗k
log

(
Ni jck

Ni j∗k

)
.

According to Gibb’s inequality, this is the maximum value thatf (B | D) can attain, and therefore,
the parameters that maximizef (B | D) are those given by the OFE. �

Proof (Theorem 5)We have that

S(λ,ρ) =
1∫

0

(
log

(
x

1−x

)
− (λ log(x)+ρ)

)2

dx=
6λ2+π2+3ρ2 ln2(2)−λ

(
π2+6ρ ln(2)

)

3ln2(2)
.

Moreover∇.S= 0 iff
λ = π2

6 ,

ρ = π2

6ln(2) ,

which coincides with (18) and (19), respectively. The Hessian ofS is
(

4
ln2(2)

− 2
ln(2) ,

− 2
ln(2) 2

)

with eigenvalues

2+ ln2(2)±
√

4+ ln4(2)

ln2(2)

which are both positive. Hence, there is only one minimum, and(λ,ρ) is the global minimum. �

Proof (Theorem 6)We have that

1∫

0

(
log

(
x

1−x

)
− (λ log(x)+ρ)

)
dx= 0

for λ andρ defined as in Equations (18) and (19). Since the MSE coincides with the variance for
any unbiased estimator, the proposed approximation is the one with minimum variance. �

Proof (Theorem 7)By Theorem 2 in Chickering (1995), it is enough to show that for graphsG1

andG2 differing only on reversing one covered edge, we have thatf̂CLL(G1 | D) = f̂CLL(G2 | D).
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Assume thatX→Y occurs inG1 andY→ X occurs inG2 and thatX→Y is covered, that is,
ΠG1

Y = ΠG1
X ∪{X}. Since we are only dealing with augment naive Bayes classifiers,X andY are

different fromC and so we also haveΠ∗G1
Y = Π∗G1

X ∪{X}. Moreover, takeG0 to be the graphG1

without the edgeX→Y (which is the same as graphG2 without the edgeY→ X). Then, we have
thatΠ∗G0

X = Π∗G0
Y = Π∗G0 and, moreover, the following equalities hold:

Π∗G1
X = Π∗G0; Π∗G2

Y = Π∗G0;

Π∗G1
Y = Π∗G0∪{X}; Π∗G2

X = Π∗G0∪{Y}.

Sincef̂CLL is a local scoring criterion,̂fCLL(G1 | D) can be computed from̂fCLL(G0 | D) taking
only into account the difference in the contribution of nodeY. In this case, by Equation (27), it
follows that

f̂CLL(G1 | D) = f̂CLL(G0 | D)− ((α+β)NIP̂D
(Y;Π∗G0 |C)−βλNIP̂D

(Y;Π∗G0;C))

+((α+β)NIP̂D
(Y;Π∗G1

Y |C)−βλNIP̂D
(Y;Π∗G1

Y ;C))

= f̂CLL(G0 | D)+(α+β)N(IP̂D
(Y;Π∗G0∪{X} |C)− IP̂D

(Y;Π∗G0 |C))

−βλN(IP̂D
(Y;Π∗G0∪{X};C)− IP̂D

(Y;Π∗G0;C))

and, similarly, that

f̂CLL(G2 | D) = f̂CLL(G0 | D)+(α+β)N(IP̂D
(X;Π∗G0∪{Y} |C)− IP̂D

(X;Π∗G0 |C))+

−βλN(IP̂D
(X;Π∗G0∪{Y};C)− IP̂D

(X;Π∗G0;C)).

To show that̂fCLL(G1 | D) = f̂CLL(G2 | D) it suffices to prove that

IP̂D
(Y;Π∗G0∪{X} |C)− IP̂D

(Y;Π∗G0 |C) = IP̂D
(X;Π∗G0∪{Y} |C)− IP̂D

(X;Π∗G0 |C) (30)

and that

IP̂D
(Y;Π∗G0∪{X};C)− IP̂D

(Y;Π∗G0;C) = IP̂D
(X;Π∗G0∪{Y};C))− IP̂D

(X;Π∗G0;C). (31)

We start by showing (30). In this case, by definition of conditional mutual, we have that

IP̂D
(Y;Π∗G0∪{X} |C)− IP̂D

(Y;Π∗G0 |C) =

= HP̂D
(Y |C)+HP̂D

(Π∗G0∪{X} |C)−HP̂D
(Π∗G0∪{X,Y} |C)−HP̂D

(Y |C)+

−HP̂D
(Π∗G0 |C)+HP̂D

(Π∗G0∪{Y} |C)

=−HP̂D
(Π∗G0 |C)+HP̂D

(Π∗G0∪{X} |C)+HP̂D
(Π∗G0∪{Y} |C)−HP̂D

(Π∗G0∪{X,Y} |C)

= IP̂D
(X;Π∗G0∪{Y} |C)− IP̂D

(X;Π∗G0 |C).

Finally, each term in (31) is, by definition, given by

IP̂D
(Y;Π∗G0∪{X};C) = IP̂D

(Y;Π∗G0∪{X} |C)− IP̂D
(Y;Π∗G0∪{X})

︸ ︷︷ ︸
E1

IP̂D
(Y;Π∗G0;C) = IP̂D

(Y;Π∗G0 |C)− IP̂D
(Y;Π∗G0)

︸ ︷︷ ︸
E2

IP̂D
(X;Π∗G0∪{Y};C) = IP̂D

(X;Π∗G0∪{Y} |C)− IP̂D
(X;Π∗G0∪{Y})

︸ ︷︷ ︸
E3

IP̂D
(X;Π∗G0;C) = IP̂D

(X;Π∗G0 |C)− IP̂D
(X;Π∗G0

︸ ︷︷ ︸
E4

).
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Since by definition of mutual information we have that

IP̂D
(Y;Π∗G0∪{X})− IP̂D

(Y;Π∗G0) =

= HP̂D
(Y)+HP̂D

(Π∗G0∪{X})−HP̂D
(Π∗G0∪{X,Y})−HP̂D

(Y)−HP̂D
(Π∗G0)+

+HP̂D
(Π∗G0∪{Y})

=−HP̂D
(Π∗G0)+HP̂D

(Π∗G0∪{X})+HP̂D
(Π∗G0∪{Y})−xHP̂D

(Π∗G0∪{X,Y})

= IP̂D
(X;Π∗G0∪{Y})− IP̂D

(X;Π∗G0),

we know thatE1−E2 = E3−E4. Thus, to prove the identity (31) it remains to show that

IP̂D
(Y;Π∗G0∪{X} |C)− IP̂D

(Y;Π∗G0 |C) = IP̂D
(X;Π∗G0∪{Y} |C)− IP̂D

(X;Π∗G0 |C),

which was already shown (in Equation (30)). This concludes the proof. �

Appendix B. Alternative Justification for Assumption 1

Observe that in the case at hand, we have some information aboutUt andVt , namely the number of
times, sayNUt andNVt , respectively, thatUt andVt occur in the data setD. Moreover, we also have
the number of times, sayNRt = N− (NUt +NVt ), thatRt is found inD. Given these observations, the
posterior distribution of(Ut ,Vt) under a uniform prior is

(Ut ,Vt)∼ Dirichlet(NUt +1,NVt +1,NRt +1). (32)

Furthermore, we know thatNUt andNVt are, in general, a couple (or more) orders of magnitude
smaller thanNRt . Due to this fact, most of all probability mass of (32) is found in the square
[0, p]× [0, p] for some smallp.

Take as an example the (typical) case whereNUt = 1, NVt = 0, N = 500 and

p= E[Ut ]+
√

Var[Ut ]≈ E[Vt ]+
√

Var[Vt ],

and compare the cumulative distribution of Uniform([0, p]× [0, p]) with the cumulative distribution
of Dirichlet(NUt +1,NVt +1,NRt +1). (We provide more details in the supplementary material web-
page.) WheneverNRt is much larger thanNUt andNVt , the cumulative distribution Dirichlet(NUt +
1,NVt +1,NRt +1) is close to that of the uniform distribution Uniform([0, p]× [0, p]) for some small
p, and hence, we obtain approximately Assumption 1.

Concerning independence, and by assuming that the distribution of(Ut ,Vt) is given by Equa-
tion (32), it results from the neutrality property of the Dirichlet distribution that

Vt ⊥⊥
Ut

1−Vt
.

SinceVt is very small we have

Vt ⊥⊥
Ut

1−Vt
≈Ut .

Therefore, it is reasonable to assume thatUt andVt are (approximately) independent.
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