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Abstract

We propose an efficient and parameter-free scoring criterithe factorized conditional
log-likelihood (fCLL), for learning Bayesian network classifiers. The pre@d score is an ap-
proximation of the conditional log-likelihood criteriorhe approximation is devised in order to
guarantee decomposability over the network structure glsaw efficient estimation of the optimal
parameters, achieving the same time and space complextyg amditional log-likelihood scoring
criterion. The resulting criterion has an informationdhetic interpretation based on interaction
information, which exhibits its discriminative nature. &ealuate the performance of the proposed
criterion, we present an empirical comparison with stdtdie-art classifiers. Results on a large
suite of benchmark data sets from the UCI repository showfal-trained classifiers achieve
at least as good accuracy as the best compared classifigng,significantly less computational
resources.
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1. Introduction

Bayesian networks have been widely used for classification, see Friegtnah (1997), Grossman
and Domingos (2004), Su and Zhang (2006) and references thétewever, they are often out-
performed by much simpler methods (Domingos and Pazzani, 1997; Friedman®97). One of

the likely causes for this appears to be the use of so cgheérative learningnethods in choos-
ing the Bayesian network structure as well as its parameters. In contrgehévative learning,
where the goal is to be able to describe (or generate) the entireddataminative learningocuses

on the capacity of a model to discriminate between different classes of testatunfortunately,
discriminative learning of Bayesian network classifiers has turned o tmimputationally much
more challenging than generative learning. This led Friedman et al. (19%f)ng up the ques-
tion: are there heuristic approaches that allow efficient discriminativeiteaof Bayesian network
classifiers?

During the past years different discriminative approaches have fiie@osed, which tend to
decompose the problem into two tasks: (i) discriminative structure learmalg(jia discriminative
parameter learning. Greiner and Zhou (2002) were among the first toakmrg these lines. They
introduced a discriminative parameter learning algorithm, calledEttended Logistic Regression
(ELR) algorithm, that uses gradient descent to maximizetmelitional log-likelihood CLL) of the
class variable given the other variables. Their algorithm can be appliedaiddrary Bayesian net-
work structure. However, they only considegeherativestructure learning methods. Greiner and
Zhou (2002) demonstrated that their parameter learning method, althounglutadionally more ex-
pensive than the usual generative approach that only involves cguatative frequencies, leads to
improved parameter estimates. More recently, Su et al. (2008) have naaoaggnificantly reduce
the computational cost by proposing an alternative discriminative paraleateing method, called
the Discriminative Frequency Estima{®FE) algorithm, that exhibits nearly the same accuracy as
the ELR algorithm but is considerably more efficient.

Full structure and parameter learning based on the ELR algorithm is ansome task. Em-
ploying the procedure of Greiner and Zhou (2002) would require agremient descent for each
candidate network at each search step, turning the method computationedlgiiode. Moreover,
even in parameter learning, ELR is not guaranteed to find globally optimalg@kameters. Roos
et al. (2005) have showed that globally optimal solutions can be guadamtéefor network struc-
tures that satisfy a certain graph-theoretic property, including for ebarttpe naive Bayes and
tree-augmented naive Bayes (TAN) structures (see Friedman et al) 49%pecial cases. The
work by Greiner and Zhou (2002) supports this result empirically by detnating that their ELR
algorithm is successful when combined with (generatively learned) TiAd&iiers.

For discriminative structure learning, Kontkanen et al. (1998) and sBtas and Domingos
(2004) propose to choose network structures by maximizing CLL while sshggarameters by
maximizing the parameter posterior or the (joiog-likelihood(LL). The BNC algorithmof Gross-
man and Domingos (2004) is actually very similar to the hill-climbing algorithm of idelan et al.
(1995), except that it uses CLL as the primary objective function. €snas and Domingos (2004)
also experiment with full structure and parameter optimization for CLL. Hewdtey found that
full optimization does not produce better results than those obtained by tHesimgler approach
where parameters are chosen by maximizing LL.

The contribution of this paper is to present two criteria similar to CLL, but with moetter
computational properties. The criteria can be used for efficient leagiiaggmented naive Bayes
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classifiers. We mostly focus on structure learning. Compared to the w@kossman and Domin-
gos (2004), our structure learning criteria have the advantage of deitgmposablea property
that enables the use of simple and very efficient search heuristics. d-eakie of simplicity, we
assume a binary valued class variable when deriving our results. ldowles methods are directly
applicable to multi-class classification, as demonstrated in the experimenté¢beetibn 5).

Ouir first criterion is theapproximated conditional log-likelihoohCLL). The proposed score
is the minimum variance unbiased (MVU) approximation to CLL under a classifdrn priors
on certain parameters of the joint distribution of the class variable and the aitnéutes. We
show that for most parameter values, the approximation error is very smalever, the aCLL
criterion still has two unfavorable properties. First, the parameters thatmzaxaCLL are hard to
obtain, which poses problems at the parameter learning phase, similar tptseseby using CLL
directly. Second, the criterion is not well-behaved in the sense that it sonsatireges when the
parameters approach the usual relative frequency estimates (maximizing LL

In order to solve these two shortcomings, we devise a second approximidactorized
conditional Iog-IikeIihooc(fCLL). The fCLL approximation is uniformly bounded, and moreover,
it is maximized by the easily obtainable relative frequency parameter estim&eCIIL criterion
allows a neat interpretation as a sum of LL and another term involvingitBeaction information
between a node, its parents, and the class variable; see Pearl (C®88),and Thomas (2006),
Bilmes (2000) and Pernkopf and Bilmes (2005).

To gauge the performance of the proposed criteria in classification tagkspmpare them
with several popular classifiers, nameige augmented naive Bay€BAN), greedy hill-climbing
(GHC), C4.5k-nearest neighbok-NN), support vector machin€SVM) andlogistic regression
(LogR). On a large suite of benchmark data sets from the UCI reposi@iry.-trained classifiers
outperform, with a statistically significant margin, their generatively-trairmthterparts, as well
as C4.5k-NN and LogR classifiers. Moreovd€LL-optimal classifiers are comparable with ELR
induced ones, as well as SVMs (with linear, polynomial, and radial basidifun kernels). The
advantage ofCLL with respect to these latter classifiers is that it is computationally as effiae
the LL scoring criterion, and considerably more efficient than ELR and§V

The paper is organized as follows. In Section 2 we review some basiegisnaf Bayesian net-
works and introduce our notation. In Section 3 we discuss generativeisecriminative learning of
Bayesian network classifiers. In Section 4 we present our scoringariielowed by experimental
results in Section 5. Finally, we draw some conclusions and discuss futukeinvSection 6. The
proofs of the results stated throughout this paper are given in the Appen

2. Bayesian Networks

In this section we introduce some notation, while recalling relevant concegteaults concerning
discrete Bayesian networks.

Let X be adiscrete random variableaking values in a countable s&tC R. In all what follows,
the domainx is finite. We denote an-dimensionalandom vectoby X = (Xy,...,X,) where each
component; is a random variable oveX;. For each variable;, we denote the elements &f by
Xi1,-..,%r; Wherer; is the number of valueX; can take. The probability that takes valuex is
denoted byP(x), conditional probabilitie®(x | z) being defined correspondingly.

A Bayesian networkBN) is defined by a paiB = (G, ©), whereG refers to the graph structure,
and© are the parameters. The struct@e- (V,E) is adirected acyclic grapi{DAG) with vertices
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(nodes)V, each corresponding to one of the random varialfleand edge& representing direct
dependencies between the variables. The (possibly empty) set of fiodesvhich there is an
edge to node is called the set of thparentsof X;, and denoted byly. For each node, we
denote the number of possilgarent configurationgvectors of the parents’ values) by the actual
parent configurations being ordered (arbitrarily) and denotegify. ., wig,. Theparameters® =
{Bijk tie(w...n}, je{1,...q ) ke{1,...r;}» determine théocal distributionsin the network via

Ps(Xi = Xik | Mx, = Wij) = Bijk-

The local distributions define a unique joint probability distribution oXegiven by
n
Pe(X1,..., %) = rlPB(Xi [ M)
=

The conditional independence properties pertaining to the joint distributeessentially deter-
mined by the network structure. Specificaly,is conditionally independent of its non-descendants
given its parent$lx in G (Pearl, 1988).

Learning unrestricted Bayesian networks from data under typicaingcoriteria is NP-hard
(Chickering et al., 2004). This result has led the Bayesian network coityrtonsearch for the
largest subclass of network structures for which there is an efficiantileg algorithm. First at-
tempts confined the network to tree structures and used Edmonds (196Zhaw and Liu (1968)
optimal branching algorithms. More general classes of Bayesian netvarle eluded efforts to
develop efficient learning algorithms. Indeed, Chickering (1996) sldothiat learning the struc-
ture of a Bayesian network is NP-hard even for networks constrainbdve in-degree at most
two. Later, Dasgupta (1999) showed that even learning an opgiotgiree(a DAG in which there
are not two different paths from one node to another) with maximum inegetyvo is NP-hard.
Moreover, Meek (2001) showed that identifying the beath structure that is, a total order over
the nodes, is hard. Due to these hardness results exact polynomial-timghalgdfor learning
Bayesian networks have been restricted to tree structures.

Consequently, the standard methodology for addressing the proble@roinig Bayesian net-
works has become heuristic score-based learning wheoering criterion@ is considered in or-
der to quantify the capability of a Bayesian network to explain the obseratal dGiven data
D = {y1,...,yn} and a scoring criterionp, the task is to find a Bayesian netwoBkthat maxi-
mizes the score(B,D). Many search algorithms have been proposed, varying both in terms of the
formulation of the search space (network structures, equivalenceesla$ network structures and
orderings over the network variables), and in the algorithm to searcp#ue ¢greedy hill-climbing,
simulated annealing, genetic algorithms, tabu search, etc). The most comaonimgy sciteria are
reviewed in Carvalho (2009) and Yang and Chang (2002). We redeinterested reader to newly
developed scoring criteria to the works of de Campos (2006) and Silehder(2010).

Score-based learning algorithms can be extremely efficient if the emplopedg criterion is
decomposable. A scoring criterignis said to bedecomposablé the score can be expressed as a
sum of local scores that depends only on each node and its parents, thaéhe form

9(B,D) - __icnmx,m.
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One of the most common criteria is tlog-likelihood(LL), see Heckerman et al. (1995):

n d r

L(B|D) leogPB ):i;%kzll\lijkk)geijka

which is clearly decomposable.
Themaximum likelihoodML) parameters that maximize LL are easily obtained a®tiserved
frequency estimatg©FE) given by

Bijk = 7 (1)

whereN;jx denotes the number of instance€invhereX; = xix andlMy, = wij, andN;; = ZE:l Nijk -
Plugging these estimates back into the LL criterion yields

— i N
LL(G|D) Zl N,Jklog< ':J").
j=1k=1

The notation withG as the argument instead Bf= (G, ©) emphasizes that once the use of the OFE
parameters is decided upon, the criterion is a function of the network steuGionly.

The LL scoring criterion tends to favor complex network structures with manyesdince
adding an edge never decreases the likelihood. This phenomenon leadsrfitting which is
usually avoided by adding a complexity penalty to the log-likelihood or by réistgithe network
structure.

3. Bayesian Network Classifiers

A Bayesian network classifiés a Bayesian network ovet = (Xg,...,X,,C), whereC is a class
variable, and the goal is to classify instan¢¥s ..., X,) to different classes. The variablés ..., X,

are calledattributes or features For the sake of computational efficiency, it is common to restrict
the network structure. We focus @ugmented naive Bayes classifieifsat is, Bayesian network
classifiers where the class variable has no paré€hiss 0, and all attributes have at least the class
variable as a parerng, < Ny, for all X;.

For convenience, we introduce a few additional notations that apply inenigd naive Bayes
models. Let the class variaberange ovess distinct values, and denote them by.. ., z;. Recall
that the parents of; are denoted bYlyx. The parents oX; without the class variable are denoted
by My = Mx \ {C}. We denote the number of possible configurations of the parerﬂl;@dby
g, henceg = HXJG"'& rj. The j'th configuration off15 is represented bw;, with 1 < j < qf.
Similarly to the general case, local distributions are determlned by the por@ing parameters

P(C:ZC) :eC7
P(Xi = Xik | My =wWj,C = Z) = Bjjek-

We denote byNijck the number of instances in the d&@avhereX; = xi, My = vv,*J andC = z.
Moreover, the following short-hand notations will become useful:

S I S
Nijk = Nijok,  Nije = > > Nijex;
c=1 k=1lc=
I 1 n o r

N — Niick, N. = = N
ijc kzl ijck c ni;glkzl ijck
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Finally, we recall that the total number of instances in the 8aimN.
The ML estimates (1) become now

5 Ne a  Nijek

(2)

which can again be plugged into the LL criterion:

/\ N
LL(G|D) = zllogPB(ytl,--.,yt”,ct)
t=

5(we() 53 amen(Re)) o

As mentioned in the introduction, if the goal is to discriminate between instandesgley
to different classes, it is more natural to considerdbeditional log-likelihoodCLL), that is, the
probability of the class variable given the attributes, as a score:

CLL(B|D ZIngB ClYE oY)

Friedman et al. (1997) noticed that the log-likelihood can be rewritten as

N
LL(BID)=CLL(B|D) + 3 10gPs(E--..¥) (4)
t=

Interestingly, the objective of generative learning is precisely to maximizestiode sum, whereas
the goal of discriminative learning consists on maximizing only the first term)irfdedman et al.
(1997) attributed the underperformance of learning methods based tmthie term CLLB | D)
being potentially much smaller than the second term in Equation (4). Unfortyn&iel does
not decompose over the network structure, which seriously hindexdigtedearning, see Bilmes
(2000); Grossman and Domingos (2004). Furthermore, there is nalelosa formula for optimal
parameter estimates maximizing CLL, and computationally more expensive teebsigeh as ELR
are required (Greiner and Zhou, 2002; Su et al., 2008).

4. Factorized Conditional Log-Likelihood Scoring Criterion

The above shortcomings of earlier discriminative approaches to learr@apgsian network clas-
sifiers, and the CLL criterion in particular, make it natural to explore gquu@imations to the
CLL that are more amenable to efficient optimization. More specifically, wesatwut to construct
approximations that amecomposableas discussed in Section 2.

4.1 Developing a New Scoring Criterion

For simplicity, assume that the class variable is bin@ry; {0,1}. For the binary case the condi-
tional probability of the class variable can then be written as

y{“l) _ (yt ) ’yn Ct) (5)

1
PB(Ct|yt"“’ (yt7 ayn Ct)+PB(yt7 >ytnvl_ct).
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For convenience, we denote the two terms in the denominator as

U = Psyi....ya)  and
\/t = PB(ytl)'”aytn)l_Ct)) (6)
so that Equation (5) becomes simply
U
1 t
PB(Ct|yt77y{]) Ut_’_\/t

We stress that botl; andV; depend orB, but for the sake of readability we onfdtin the notation.
Observe that whilgy},. ..y, ¢) is thet’th sample in the data sé, the vector(yt, ...y, 1—c),
which we call thedual sampleof (yi,...,y!,¢), may or may not occur iD.

The log-likelihood (LL), and the conditional log-likelihood (CLL) now taketform

LL(B|D)

N
logUt, and
%
N
CLL(B|D) = leogUt—Iog(Uﬁ—Vt).
t=

Recall that our goal is to derive a decomposable scoring criterion.rtumfately, even though |dg
decomposes, ldt); +V;) does not.
Now, let us consider approximating the log-ratio

U
f(Up,\t) = log (Ut +tvt> ,

by functions of the form

f(Ur, W) = alogU; + Blog\Vt +Y,
whered, 3, andy are real numbers to be chosen so as to minimize the approximation errortt&ince
accuracy of the approximation obviously depends on the valugsaidV; as well as the constants
a, B, andy, we need to make some assumptions ablpaindV; in order to determine suitable values
of a, B andy. We explicate one possible set of assumptions, which will be seen to leadotuda g
approximation for a very wide range 0f andV;. We emphasize that the role of the assumptions is
to aid in arriving at good choices of the constami$, andy, after which we can dispense with the
assumptions—they need not, in particular, hold true exactly.

Start by noticing thaR = 1 — (U + W) is the probability of observing neither thiéh sam-
ple nor its dual, and hence, the triplét, i, R;) are the parameters of a trinomial distribution. We
assume, for the time being, that no knowledge about the values of the parsfde \;, R) is avail-
able. Therefore, it is natural to assume tfat \;, R;) follows the uniform Dirichlet distribution,
Dirichlet(1,1,1), which implies that

(Ut,t) ~ Uniform(A?), (7)

whereA? = {(x,y) : x+y < 1 andx,y > 0} is the 2-simplex set. However, with a brief reflection on
the matter, we can see that such an assumption is actually rather unrealistily, Byrinspecting
the total number of possible observed samples, we expedt be relatively large (close to 1).
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In fact, Uy andV; are expected to become exponentially small as the number of attributes grows.
Therefore, it is reasonable to assume that

1
UM =p<3;<R

forsome O< p< % Combining this constraint with the uniformity assumption, Equation (7), yields
the following assumption, which we will use as a basis for our further aisalys

Assumption 1 There exists a small positiye< % such that
(Ut, Vt) ~ Uniform(A?)[y, vi<p = Uniform([0, p] x [0, p]).

Assumption 1 implies thdtk and\; are uniform i.i.d. random variables ovi, p| for some
(possibly unknown) positive real numbgk % (See Appendix B for an alternative justification for
Assumption 1.) As we show below, we do not need to know the actual valpe @bnsequently,
the envisaged approximation will be robust to the choicp.of

We obtain the best fitting approximati(frby the least squares method.

Theorem 1 Under Assumption 1, the values af 3 andy that minimize themean square error
(MSE) of f w.r.t. f are given by

™®+6
a = Ton (8)
™—18
B = —, > and ©)
T (T —6)logp
Vo= 12In2_<2+ 12 ) (10)

where log is the binary logarithm and In is the natural logarithm.

We show that the mean difference betweleand f is zero for all values o, that is, f is
unbiased Moreover, we show thait is the approximation with the lowest variance among unbiased
ones.

Theorem 2 The approximatiorf with a, B, y defined as in Theorem 1 is tmeinimum variance
unbiasedMVU) approximation off.

Next, we derive the standard error of the approximatian the squard0, p] x [0, p], which,
curiously, does not depend @n To this end, consider

1

2In(2) -2

u=E[f(U,W)] =

which is a negative value; as it should sinceanges ovef—e, 0.

1. Herein we apply the nomenclature of estimation theory in the contextpsbgimation. Thus, an approximation
is unbiasedf E[f(U;,\t) — f(U, )] = 0 for all p. Moreover, an approximation {&niformly) minimum variance
unbiasedf the valueE[( f (U, k) — f(Ut,W))?] is the lowest for all unbiased approximations and valugs. of
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Theorem 3 The approximatiorf with a, B, andy defined as in Theorem 1 hagandard errorgiven
by

2
_ \/36+36" T 50352

288Irt(2)

andrelative standard erroo/ || ~ 0.275

Figure 1 illustrates the functioh as well as its approximatiof for (Us,\t) € [0, p] x [0, p] with
p = 0.05. The approximation errof, — f is shown in Figure 2. While the properties established
in Theorems 1-3 are useful, we find it even more important that, as seenire &gthe error is
close to zero except when eithéy or V; approaches zero. Moreover, we point out that the choice
of p=0.05 used in the figure is not important: having chosen another value woutddnaduced
identical graphs except in the scale of theandV;. In particular, the scale and numerical values on
the vertical axis (i.e., in Figure 2, the error) would have been preciselyatime.

Using the approximation in Theorem 1 to approximate CLL yields

N
Zla logU; + BlogVt +Y

t=

— i(aJrB)logUt B|09< > Y

t=

CLL(B|D)

Q

= (a+PB)LL(B|D)— ZIog( >+Ny, (11)

where constants, 3 andy are given by Equations (8), (9) and (10), respectively. Since ws tga
maximize CLL(B | D), we can drop the constaNlty in the approximation, as maxima are invariant
under monotone transformations, and so we can just maximize the followinw@r which we
call theapproximate conditional log-likelihoo@hCLL):

aCLL(B|D) = (a+B)LL(B|D) BZIOQ<UI>
_ (G+B)LL(B|D)_B'iqzilkrziliONijCKlog<e'je(ilek)k)
I=1j=1k=1c= Hitme

1
- N c ).
BCZON 0g < 9(1_c>> (12)

The fact thatNy can be removed from the maximization in (11) is most fortunate, as we eliminate
the dependency op. An immediate consequence of this fact is that we do not need to know the
actual value o in order to employ the criterion.

We are now in the position of having constructedewomposablapproximation of the condi-
tional log-likelihood score that was shown to be very accurate for a véidge of parametets;
andV;. Due to the dependency of these parameter®gpthat is, the parameters of the Bayesian
networkB (recall Equation (6)), the score still requires that a suitable set ofrpteas is chosen.
Finding the parameters maximizing the approximation is, however, difficult;rappp as difficult
as finding parameters maximizing the CLL directly. Therefore, whatever gtatipnal advantage
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Figure 1: Comparison betwediiU;,\;) = log (U}J’:Vt> (left), and f (U, \t) = alogU; + BlogV, +y
(right). Both functions diverge (te-«) asU; — 0. The latter diverges (te-c) also when
V; — 0. For the interpretation of different colors, see Figure 2 below.

v 0.01 0.01 U,
t
0.00 0.00

-3

Figure 2: Approximation error: the difference between the exact valdetee approximation given
in Theorem 1. Notice that the error is symmetric in the two arguments, andjdveas

Ui — 0 or\t — 0. For points where neither argument is close to zero, the error is small
(close to zero).
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is gained by decomposability, it would seem to be dwarfed by the expgrasigeneter optimization
phase.

Furthermore, trying to use the OFE parameters in aCLL may lead to problenestemap-
proximation is undefined at points where eithlgror \; is zero. To better see why this is the case,
substitute the OFE parameters, Equation (2), into the aCLL criterion, Equagsto obtain

I](l ck

-B Z;NCIOQ<N1 C> (13)

The problems are associated with the denominator in the second term. In LCldndri-
teria, similar expressions where the denominator may be zero are alwaysaddichlny the OFE
parameters since they are always multiplied by zero, see, for examplati@v(B), whereN;jc = 0
impliesNijck = 0. However, there is no guarantee thgt; ) is non-zero even if the factors in the
numerator are non-zero, and hence the division by zero may lead t¢ iadei@rminacies.

Next, we set out to resolve these issues by presenting a well-behgwediapation that enables
easy optimization of both structure (via decomposability), as well as paraneter

n g
ACLL(G | D) = (a +B)LL(G| D) le Z)Nljck|09< ijekNij (1 c))
J=1k=1c=

4.2 Achieving a Well-Behaved Approximation

In this section, we address the singularities of aCLL under OFE by catisiguan approximation
that is well-behaved.

Recall aCLL in Equation (12). Given a fixed network structure, thermpatars that maximize
the first term,(a + B)LL(B | D), are given by OFE. However, as observed above, the second term
may actually be unbounded due to the appearan@gef )« in the denominator. In order to obtain a
well-behaved score, we must therefore make a further modification todhadgerm. Our strategy
is to ensure that the resulting scorasigformly boundecindmaximized by OFE parametershe
intuition behind this is that we can thus guarantee not only that the score ibeleied, but also
that parameter learning is achieved in a simple and efficient way by usingREep@ameters—
solving both of the aforementioned issues with the aCLL score. As it turhswveucan satisfy our
goal while still retaining the discriminative nature of the score.

The following result is of importance in what follows.

Theorem 4 Consider a Bayesian netwoBxwhose structure is given by a fixed directed acyclic
graph,G. Let f(B| D) be a score defined by

n 9 r 1

e..
f(B|D):§lzlkz Nijek [ Alog ok
] =1c=

Ni
”C e|Jc + N l*C)elj(l ok

: (14)

whereh is an arbitrary positive real value. Then, the parame®ettsat maximizef (B | D) are given
by the observed frequency estimates (OFE) obtained éom

The theorem implies that by replacing the second term in (12) by (a naatimegnultiple of)
f(B| D) in Equation (14), we get a criterion where both the first and the secamditer maximized
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by the OFE parameters. We will now proceed to determine a suitable valueefpatameteh
appearing in Equation (14).
To clarify the analysis, we introduce the following short-hand notations:

A1 = NijcBijex, A2 = Nijc,

(15)
B1 = Nij1-¢)6ij(1-c)k B2 = Nij1¢)-

With simple algebra, we can rewrite the logarithm in the second term of Equadniging the
above notations as

Iog<N”°e”Ck )—Iog( Nije > Iog< > Iog<A2> (16)
Nij(1—0)8ij(1—c)k Nij(1—c) B1 B2

Similarly, the logarithm in (14) becomes
Nijc Bijek > < Nijc )
Alo +p—Alog| —— | —
J <Nijceijck +Nij1-¢)8ij (1o P J Nijc +Nij1¢) P

Ar Ao
=Alo —Alo — 17
g( AT B>+p 9<A2+Bz) o (17)

where we usedN;j. = Nijc + Njj1_¢); We have introduced the constgmthat was added and sub-
tracted without changing the value of the expression for a reason thdtesiime clear shortly. By
comparing Equations (16) and (17), it can be seen that the latter is obfaomedhe former by
replacing expressions of the form I(@) by expressions of the formlog(ﬁ) +p.

We can simplify the two variable approximation to a single variable one by tMliﬁgMB In
this case we have th@t and so we propose to apply once again the least squares method to

approximate the function
(W) —log (

d(W) = AlogW +p.

The role of the constamt is simply to translate the approximate function to better match the target
g(W).

As in the previous approximation, here too it is necessary to make assunmgdbiaunsthe values
of AandB (and thudV), in order to find suitable values for the parameieandp. Again, we stress
that the sole purpose of the assumption is to guide in the choice of the parameter

As both Az, Ay, B1, andB, in Equation (15) are all non-negative, the rafib= A+ is al-
ways between zero and one, for both {1,2}, and hence it is natural to make the stralghtforward
assumption that\Vy andW, are uniformly distributed along the unit interval. This gives us the
following assumption.

1W’

by

Assumption 2 We assume that

i Fjck ~ Uniform(0,1), and
NijcBijek + Nij(1-0)8ij(1—c)k
Nijc .
——=—=—  ~ Uniform(0,1).
Nijc +Nij(1—c) ©.1)
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_at

Figure 3: Plot ofg(w) = log (1%;) andg{w) = Alogw+-p.

Herein, it is worthwhile noticing that although the previous assumption wastri@aold for
general parameters, in practice, we know in this case that OFE will be Hesdte, Assumption 2
reduces to

N_Uclk( ~ Uniform(0, 1), andﬁ ~ Uniform(0, 1).
ij* 1]

Under this assumption, the mean squared error of the approximation canibgzadanalyti-

cally, yielding the following solution.

Theorem 5 Under Assumption 2, the values ®andp that minimize the mean square error (MSE)
of §w.r.t. g are given by

A= Tg, and (18)

™
P = &z (19)
Theorem 6 The approximatiorg With A andp defined as in Theorem 5 is the minimum variance
unbiased (MVU) approximation .

In order to get an idea of the accuracy of the approximagicroisider the graph of Ic(g__lw)
andAlogw+ p in Figure 3. It may appear problematic that the approximation gets worséeasls
to one. However this is actually unavoidable since that is precisely vé@le diverges, and our
goal is to obtain a criterion that is uniformly bounded.

To wrap up, we first rewrite the logarithm of the second term in Equatiof ($ihg for-
mula (16), and then apply the above approximation to both terms to get

Bijck ) < Nijc Bijck ) <Ni jc)
lo ~Alo +p—Alog| — | —p, 20
J <eij(1—c)k J Nijc Bijek + Nij (1) Bij (1-c)k P J Nij P (20)

wherep cancels out. A similar analysis can be applied to rewrite the logarithm of the thindite
Equation (12) leading to

ec ) ( ec >
lo =lo ~ AlogB. -+ p. 21
g<e(l_c) g 1_ec g C p ( )
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Plugging the approximations of Equations (20) and (21) into Equation (&% gs finally the
factorized conditional log-likelihoo(fCLL) score:

fCLL(B|D) = (a+B)LL(B|D)

B qz rz C N (Iog( N B > —log (N”C»
2, aé&as - NijeBijek — Nij(1-0)8ij (1- 0 Nij. (22)

1
—BAY Nclog6: — BNp.
C; C C

Observe that the third term of Equation (22) is such that

1
—BA ZJNCIog(i)C = —BAN & log6c, (23)

c=

and, since3 < 0, by Gibbs inequality (see Lemma 8 in the Appendix at page 2204) the paramete
that maximize Equation (23) are given by the OFE, thﬂd& . Therefore, by Theorem 4, given
a fixed structure, the maximizing parameters of fCLL are easny obtained &s Kdéreover, the
fCLL score is clearly decomposable.

As a final step, we plug in the OFE parameters, Equation (2), into the fCitdrion, Equa-
tion (22), to obtain

fCLL(G|D) = (a+PB)LL(B|D miqilknlc N‘J**("’g( ft) 'g@lj))

—BA C;Nclog (hf) —BNp, (24)

where we also use the OFE parameters in the Iog-IikeIihB\DcDbserve that we can drop the last
two terms in Equation (24) as they become constants for a given data set.

4.3 Information-Theoretical Interpretation

Before we present empirical results illustrating the behavior of the peapssoring criteria, we
point out that thefCLL criterion has an interesting information-theoretic interpretation based o
interaction information We will first rewrite LL in terms of conditional mutual information, and
then, similarly, rewrite the second termf6fLL in Equation (24) in terms of interaction information.

As Friedman et al. (1997) point out, the local contribution of itltfe variable to LL(B | D)
(recall Equation (3)) is given by

N N
N |]ck < IJCk> = —NHs (X |M%,C
jilzi)EE NUc HD( | X )

= —NHg (X [ C)+Nlg (X; 1% [ C), (25)

whereHg (X | ...) denotes theonditional entropyandlg (Xi; My | C) denotes theonditional
mutual informationsee Cover and Thomas (2006). The subsétpindicates that the information
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theoretic quantities are evaluated under the joint distribufigrof (X,C) induced by the OFE
parameters.

Since the first term on the right-hand side of (25) does not deper#iorfinding the parents
of X; that maximize LIB | D) is equivalent to choosing the parents that maximize the second term,
Nig, (X ; 1% | C), which measures the information tHag, provides abouk; when the value of
is known.

Let us now turn to the second term of #@LL score in Equation (24). The contribution of the
i'th variable in it can also be expressed in information theoretic terms as follows

—BAN (Hg, (C | X, M%) —Hg, (C | M%) = BANIg, (C; X | M)
= BAN (15, (C; X35 M%) +15,(C5 X)) ,
wherelg (C; X ; M5 ) denotes thénteraction informationMcGill, 1954), or the‘co-information”
(Bell, 2003); for a review on the history and use of interaction informatianachine learning and
statistics, see Jakulin (2005).
Sincelg, (X ; C) on the last line of Equation (26) does not dependig finding the parents of
X; that maximize the sum amounts to maximizing the interaction information. This is intuitiee, s
the interaction information measures the increase—or the decrease, aalscde negative—of
the mutual information betweeX) andC when the parent séty is included in the model.
All said, thefCLL criterion can be written as

n

fCLL(G|D) = Z [(a+B)NIg, (%; M | C) — BANIg, (C; Xi; M )] +const (27)

(26)

whereconstis a constant independent of the network structure and can thus be onfibtggt a
concrete idea of the trade-off between the first two terms, the numericaisvaf the constants can
be evaluated to obtain
n
fCLL(G| D) ~ Zl [0.322N 15 (X;; % | C) +0.557Nlg, (C; X ; My, )] +const (28)
=
Normalizing the weights shows that the first term that corresponds to tlaibelof the LL crite-
rion, Equation (25), has proportional weight of approximately7 3@ rcent, while the second term
that givestLL criterion its discriminative nature has the weight Bpercent
In addition to the insight provided by the information-theoretic interpretatiofCbt., it also
provides a practically most useful corollary: tHeLL criterion is score equivalent. A scoring
criterion is said to becore equivalenf it assigns the same score to all network structures encoding
the same independence assumptions, see Verma and Pearl (1990§ri@bi¢R002), Yang and
Chang (2002) and de Campos (2006).

Theorem 7 ThefCLL criterion is score equivalent for augmented naive Bayes classifie

The practical utility of the above result is due to the fact that it enables thefupowerful
algorithms, such as the tree-learning method by Chow and Liu (1968), imrgafAN classifiers.

2. The particular linear combination of the two terms in Equation (28) bringthe question what would happen in only
one of the terms was retained, or equivalently, if one of the weights wéssero. As mentioned above, the first term
corresponds to the LL criterion, and hence, setting the weight of theddéeom to zero would reduce the criterion to
LL. We also experimented with a criterion where only the second term is eetdint this was observed to yield poor
results; for details, see the additional materiditt//kdbio.inesc-id.pt/ ~asmc/software/fCLL.html
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4.4 Beyond Binary Classification and TAN

AlthoughaCLL andfCLL scoring criteria were devised having in mind binary classification tasks
their application in multi-class problems is straightforwarBor the case ofCLL, the expression
(24) does not involve the dual samples. Hence, it can be trivially adémtewn-binary classifica-
tion tasks. On the other hand, the sca@l_L in Equation (13) does depend on the dual samples. To
adapt it for multi-class problems, we consideMgd; ¢k = Nijk — Nijck andNij1—c) = Nij — Nijc.

Finally, we point out that despite being derived under the augmented Bayes model, the
fCLL score can be readily applied to models where the class variahte &sparent of some of the
attributes. Hence, we can use it as a criterion for learning more generetuses. The empirical
results below demonstrate that this indeed leads to good classifiers.

5. Experimental Results

We implemented théCLL scoring criterion on top of the Weka open-source software (Hadll.e
2009). Unfortunately, the Weka implementation of the TAN classifier assuna¢shtd learning
criterion is score equivalent, which rules out the use of@QLL criterion. Non-score-equivalent
criteria require the Edmonds’ maximum branchings algorithm that builds a madireatedspan-
ning tree (see Edmonds 1967, or Lawler 1976) instead of an undirecéedained by the Chow-
Liu algorithm (Chow and Liu, 1968). Edmonds’ algorithm had already begemented by some
of the authors (see Carvalho et al., 2007) using Mathematica 7.0 and ther@tonica package
(Pemmaraju and Skiena, 2003). Hence,ak& L criterion was implemented in this environment.
All source code and the data sets used in the experiments, can be fd@hd aveb page?

We evaluated the performanceaELL andfCLL scoring criteria in classification tasks compar-
ing them with state-of-the-art classifiers. We performed our evaluatidhesame 25 benchmark
data sets used by Friedman et al. (1997). These include 23 data seth&diT| repository of
Newman et al. (1998) and two artificial data setstral andmofn designed by Kohavi and John
(1997) to evaluate methods for feature subset selection. A descriptibe dhta sets is presented
in Table 1. All continuous-valued attributes were discretized using thenggpd entropy-based
method by Fayyad and Irani (1993). For this task we used the Wekagetkinstances with
missing values were removed from the data sets.

The classifiers used in the experiments were:

GHC2: Greedy hill climber classifier with up to 2 parents.

TAN: Tree augmented naive Bayes classifier.

C4.5: C4.5 classifier.

k-NN: k-nearest neighbor classifier, wikh=1,3,5.

SVM: Support vector machine with linear kernel.

SVM2: Support vector machine with polynomial kernel of degree 2.

3. As suggested by an anonymous referee, the techniques usedion3et for deriving theaCLL criterion can be
generalized to the multi-class case as well as to other distributions in additiamuaiform one in a straightforward
manner by applying results from regression theory. We plan to explmte generalizations of both tiCLL and
fCLL criteria in future work.

4. fCLL web page is altittp:/kdbio.inesc-id.pt/ ~ asmc/software/fCLL.html

5. Discretization was done usingeka.filters.supervised.attribute.Discretize , with default parameters.
This discretization improved the accuracy of all classifiers used in theriexents, including those that do not
necessarily require discretization, that is, CkSN, SVM, and LogR
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Data Set Features Classes Train Test
1 australian 15 2 690 CV-5
2  breast 10 2 683 CV-5
3 chess 37 2 2130 1066
4  cleve 14 2 296 CV-5
5 corral 7 2 128 CV-5
6 crx 16 2 653 CV-5
7  diabetes 9 2 768 CV-5
8 flare 11 2 1066 CV-5
9 german 21 2 1000 CV-5
10 glass 10 7 214 CV-5
11 glass2 10 2 163 CV-5
12 heart 14 2 270 CV-5
13 hepatitis 20 2 80 CV-5
14 iris 5 3 150 CV-5
15 letter 17 26 15000 5000
16 lymphography 19 4 148 CV-5
17 mofn-3-7-10 11 2 300 1024
18 pima 9 2 768 CV-5
19 satimage 37 6 4435 2000
20 segment 20 7 1540 770
21 shuttle-small 10 7 3866 1934
22 soybean-large 36 19 562 CV-5
23 vehicle 19 4 846 CV-5
24 vote 17 2 435 CV-5
25 waveform-21 22 3 300 4700

Table 1: Description of data sets used in the experiments.

SVMG: Support vector machine with Gaussian (RBF) kernel.
LogR: Logistic regression.

Bayesian network-based classifiers (GHC2 and TAN) were includedfaraht flavors, dif-
fering in the scoring criterion used for structure learning (BIGLL, fCLL) and the parameter
estimator (OFE, ELR). Each variant along with the implementation used in theimegues is de-
scribed in Table 2. Default parameters were used in all cases unldgstigxgtated. Excluding
TAN classifiers obtained with the ELR method, we improved the performanBaydsian network
classifiers by smoothing parameter estimates according to a Dirichlet proHgsskerman et al.,
1995). The smoothing parameter was set to 0.5, the default in Weka. meesseategy was used
for TAN classifiers implemented in Mathematica. For discriminative parametevihggwith ELR,
parameters were initialized to the OFE values. The gradient descent paraypgmization was
terminated usingross tuningas suggested in Greiner et al. (2005).

Three different kernels were applied in SVM classifiers: (i) a lineanéssf the formK (x;, ;) =
xTxj; (ii) a polynomial kernel of the fornK(x;,x;) = (x{ ;)% and (iii) a Gaussian (radial basis

2197



CARVALHO, ROOS, OLIVEIRA AND MYLLYM AKI

Classifier Struct. Param. Implementation

GHC2 LL OFE HillClimber  (P=2) implementation from Weka
GHC2 fcLL OFE HillClimber  (P=2) implementation from Weka
TAN LL OFE TANimplementation from Weka

TAN LL ELR TANimplementation from Greiner and Zhou (2002)
TAN aCLL OFE TANimplementation from Carvalho et al. (2007)
TAN fcLL OFE TANimplementation from Weka

C4.5 J48 implementation from Weka

1-NN IBk (K=1) implementation from Weka

3-NN IBk (K=3) implementation from Weka

5-NN IBk (K=5) implementation from Weka

SVM SMGmplementation from Weka

SVM2 SMOwith PolyKernel  (E=2) implementation from Weka
SVMG SMOwith RBFKernel implementation from Weka
LogR Logistic  implementation from Weka

Table 2: Classifiers used in the experiments.

function) kernel of the fornK(xi,x;) = exp(—y||xi — Xj||?). Following established practice (see
Hsu et al., 2003), we used a grid-search on the penalty para®etat the RBF kernel parameter
y, using cross-validation. For linear and polynomial kernels we selé@tiedm [101,1, 10, 107]

by using 5-fold cross-validation on the training set. For the RBF kernedelectedC andy from
[1071,1,10,10?] and[1073,1072,10°1,1,10], respectively, by using 5-fold cross-validation on the
training set.

The accuracy of each classifier is defined as the percentage ofssfidgaredictions on the
test sets in each data set. As suggested by Friedman et al. (1997 a@csas measured via the
holdout method for larger training sets, and via stratified five-fold cvadigiation for smaller ones,
using the methods described by Kohavi (1995). Throughout the iexpets, we used the same
cross-validation folds for every classifier. Scatter plots of the acmgad the proposed methods
against the others are depicted in Figure 4 and Figure 5. Points aboviagomal line represent
cases where the method shown in the vertical axis performs better thangloa dhe horizontal
axis. Crosses over the points depict the standard deviation. The staelaation is computed
according to the binomial formulg/accx (1—acc)/m, whereaccis the classifier accuracy and,
for the cross-validation tests) is the size of the data set. For the case of holdout tests,the
size of the test set. Tables with the accuracies and standard deviatiohe é@md at the fCLL
webpage.

We compare the performance of the classifiers using Wilcoxon sign&dests, using the same
procedure as Grossman and Domingos (2004). This test is applicabtepaiied classification ac-
curacy differences, along the data sets, are independent andnoally distributed. Alternatively,
a pairedt-test could be used, but as the Wilcoxon signed-rank test is more gatigerthan the
paired t-test, we apply the former. Results are depicted in Table 3 and TaBkech entry of Ta-
ble 3 and Table 4 gives th&score ando-value of the significance test for the corresponding pairs
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Figure 4: Scatter plots of the accuracy of Bayesian network-basesifides

of classifiers. The arrow points towards the learning algorithm that yielgsrsor classification
performance. A double arrow is used if the difference is significant patialue smaller than 0.05.

Over all, TANfCLL-OFE and GHCICLL-OFE performed the best (Tables 3—4). They outper-
formed C4.5, the nearest neighbor classifiers, and logistic regressiomell as the generatively-
trained Bayesian network classifiers, TAN-LL-OFE and GHC-LL-OREdifferences being sta-
tistically significant at thep < 0.05 level. On the other hand, TABRELL-OFE did not stand out
compared to most of the other methods. Moreover, TENE -OFE and GHCECLL-OFE classi-
fiers fared sightly better than TAN-LL-ELR and the SVM classifiers, altfiothe difference was
not statistically significant. In these cases, the only practically relevaturfés computational
efficiency.

To roughly characterize the computational complexity of learning the vadlassifiers, we
measured the total time required by each classifier to process all the 25etkftaMost of the
methods only took a few seconds (L — 3 seconds), except for TARCLL-OFE which took a
few minutes & 2 — 3 minutes), SVM with linear kernel which took some minutes {7 — 18
minutes), TAN-LL-ELR and SVM with polynomial kernel which took a few mei~ 1 — 2 hours)
and, finally, logistic regression and SVM with RBF kernel which took s@vieours ¢ 18— 32
hours). In the case of TAMCLL-OFE, the slightly increased computation time was likely caused
by the Mathematica package, which is not intended for numerical computaltiotheory, the
computational complexity of TANXCLL-OFE is of the same order as TAN-LL-OFE or TARGLL-

6. Reporting the total time instead of the individual times for each data se¢mfihasize the significance of the larger
data sets. However, the individual times were in accordance with theajeoaclusion drawn from the total time.
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Figure 5: The accuracy of the proposed methods vs. state-of-to&asstfiers.
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Classifier GHC2 TAN GHC2 TAN TAN
Struct.  fCLL aCLL LL LL LL
Param. OFE OFE OFE OFE ELR

TAN 0.37 144 213 213 031
fCLL 036 0.07 0.02 0.02 0.38

OFE < < = = <
GHC2 1.49 226 221 0.06
fCLL 0.07 0.01 0.01 048
OFE « = = .
TAN 0.04 -034 -131
acCLL 0.48 037 0.10
OFE « 1 1

Table 3: Comparison of the Bayesian network classifiers against eaeh o#ing the Wilcoxon
signed-rank test. Each cell of the array gives Zhscore (top) and the correspondipg

value (middle). Arrow points towards the better method, double arrow indististical
significance at levep < 0.05.

Classifier C4.5 1-NN 3-NN 5-NN SVM SVM2 SVMG LogR

:FAN 3.00 2.25 216 2.07 043 0.61 0.21 1.80
fCLL <0.01 0.01 0.02 0.02 0.33 0.27 0.42 0.04
OFE “= = = “= — — — =

GHC2 3.00 235 220 219 039 0.74 0.11 1.65
fCLL <0.01 <0.01 001 001 035 0.23 0.45 0.05
OFE = = = = — — — =

TAN 2.26 134 117 131 -040 -029 -055 1.37
acCLL 0.01 009 012 009 035 0.38 0.29 0.09
OFE = — — — T T T —

Table 4. Comparison of the Bayesian network classifiers against ottexifides. Conventions
identical to those in Table 3.

OFE:O(r?logn) in the number of features and linear in the number of instances, see Frietlalan
(1997).

Concerning TAN-LL-ELR, the difference is caused by the discriminati@eameter learning
method (ELR), which is computationally expensive. In our experiments,-LANELR was 3 order
of magnitude slower than TAKELL-OFE. Su and Zhang (2006) report a difference of 6 ordérs o
magnitude, but different data sets were used in their experiments. Likatheéskeigh computational
cost of SVMs was expected. Selection of the regularization parametey cisias-tuning further
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increases the cost. In our experiments, SVMs were clearly slowerf@ianbased classifiers.
Furthermore, in terms of memory, SVMs with polynomial and RBF kernels, disasdogistic
regression, required that the available memory was increased to 1 GB ofrmevhereas all other
classifiers coped with the default 128 MB.

6. Conclusions and Future Work

We proposed a new decomposable scoring criterion for classificatios t&ikke new score, called
factorized conditional Iog-IikeIihood,fCLL, is based on an approximation of conditional
log-likelihood. The new criterion is decomposable, score-equivaledtaliows efficient estima-
tion of both structure and parameters. The computational complexity of tip@ged method is
of the same order as the traditional log-likelihood criterion. Moreover, titerion is specifically
designed for discriminative learning.

The merits of the new scoring criterion were evaluated and compared todho@@mon state-
of-the-art classifiers, on a large suite of benchmark data sets fromGhedgository. Optimal
fCLL-scored tree-augmented naive Bayes (TAN) classifiers, as ageomewhat more general
structures (referred to above as GHC2), performed better thanajees-trained Bayesian net-
work classifiers, as well as C4.5, nearest neighbor, and logisticssgreclassifiers, with statistical
significance. MoreovefCLL—optimized classifiers performed better, although the differencetis no
statistically significant, than those where the Bayesian network parametersptanized using an
earlier discriminative criterion (ELR), as well as support vector machiwés linear, polynomial
and RBF kernels). In comparison to the latter methods, our method is catsigerore efficient
in terms of computational cost, taking 2 to 3 orders of magnitude less time for theeks in our
experiments.

Directions for future work include: studying in detail the asymptotic behasfiéELL for TAN
and more general models; combining our intermediate approximation, aCLL disitiminative
parameter estimation (ELR); extending aCLL dGdlL to mixture models; and applications in data
clustering.
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Appendix A. Detailed Proofs
Proof (Theorem 1) We have that

Sepn = [ ] 2 (1oa( ;) - loutn + Bloay) +)) o
00
1

= W(—T[z(—l+0( +B)

+6(24 4a? + 4B — 4In(2) — 2yIn(2) +4In(2)2 4 8yIn(2)? + 2% In?(2)
+B(5-4(2+Y)In(2)) +a(1+4B—4(2+y)In(2)))
—12(a+B)(1+ 20+ 2B — 4In(2) — 2yIn(2)) In(p) + 12(a + B)?In?(p)).

Moreover,[1.S, = 0 iff

_ T+6
@ = o
™®-—18
B = Ta
T (12— 6)log(p)
Y = 12|n(2)<2+ 12 >

which coincides exactly with (8), (9) and (10), respectively. Now towsltizat (8), (9) and (10)
define a global minimum, tak®= (alog(p) + Blog(p) +Y) and notice that

Sapy = [ [ 5 tog(( ) ~(aogin + Blogiy <)) o

2
(108 (55, )~ (atoatpx -+ Blogipy) +v) ) pele

11
i
11

- 0/0/<Iog <x+xy> — (alog(x) + Blog(y) + (a |09(D)+B|09(I0)+V))>2dydx
11
i

= Si(a,B,9)
S0,S;, has a minimum at (8), (9) and (10) & has a minimum at (8), (9) and
0= da —
12In(2)
The Hessian 0§, is
4 2 __2_
In22(2) Inzzgz) @
"y oy
In(2) In(2
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and its eigenvalues are

341n%(2) +1/9+ 2In%(2) + In(2)*
rcle;, = ,

In?(2)
2
2 7 e
341n%(2) — /94 2I2(2) + In(2)*
" = In2(2) ’

which are all positive. Thuss, has a local minimum irfa, 3,8) and, consequentlys, has a local
minimum in(a, B,y). Sincel.S, has only one zerqa, B,y) is a global minimum of,. O

Proof (Theorem 2)We have that

O/F’ O/p ;2 ('09 <X:y> — (alog(x) +Blog(y) +v)> dydx =0

for a,3 andy defined as in (8), (9) and (10). Since the MSE coincides with the varifomany
unbiased estimator, the proposed approximation is the one with minimum variance. O

Proof (Theorem 3)We have that

p p ?
. y 36+ 36 — 1
0/0/p2 (Iog (X+Y) — (alog(x) + Blog(y) +V)) dyax = \/288Ir12(2) -

for a, 3 andy defined as in (8), (9) and (10), which concludes the proof. O

For the proof of Theorem 4, we recall Gibb’s inequality.

Lemma 8 (Gibb’s inequality) Let P(x) andQ(x) be two probability distributions over the same
domain, then

Z P(x)log(Q <ZP )log(P

X

Proof (Theorem 4) We now take advantage of Gibb’s inequality to show that the parameters that
maximize thef (B | D) are those given by the OFE. Observe that

n 9

Ni'ceijck N|Jc
f(BID) = A N; klog< ‘ —log
®1P) Zu 1k—1cZ) e Nijeijok + Nij 1) 8ij (1-o)k Nij-

n a9 N N0 K
— K4+A N--*k ick Iog( e e >, (29)
Zx lek; T &N NijeBijek +Nij(1-¢)8ij 1)k
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whereK is a constant that does not depend on the param@jgrsand therefore, can be ignored.

Moreover, if we take the OFE for the parameters, we have

Nijkc A Nijk(1—c)
and 6i1_ck = .

ijc TR N1

Bijck =

By plugging the OFE estimates in (29) we obtain

* N
n g 1 N Ni' 7|_]_Ck
£ k IC Nije
fGID) = K43 5 2 Niw "= Jog - e
i= jZlkZ]. c= Nij*k Nijc ’\l\ll%rck + Nij (1-¢) %

n g fr 1 Niick Niick
K—i—)\Z Nij <k e |Og< ] )
= J;k; Eo Nij Nij

According to Gibb’s inequality, this is the maximum value tfiéB | D) can attain, and therefore,
the parameters that maximiZ¢B | D) are those given by the OFE. O

Proof (Theorem 5)We have that

1

X 2 BN+ TP+ 3p%In%(2) — A (TP +6pIn(2))
)= | (108 (15) ~ (og +p)) " ex= 53 ‘

Moreoverd.S= 0 iff

with eigenvalues
2+1n%(2) £ 4/4+1n*(2)
In?(2)
which are both positive. Hence, there is only one minimum, @ngd) is the global minimum. O
Proof (Theorem 6) We have that

1

/(Iog <1ix> — (Alog(x) +p)> dx=0

0

for A andp defined as in Equations (18) and (19). Since the MSE coincides with trenearfor
any unbiased estimator, the proposed approximation is the one with minimumoearian O

Proof (Theorem 7) By Theorem 2 in Chickering (1995), it is enough to show that for graphs
andG; differing only on reversing one covered edge, we havefldat (G; | D) = fCLL (G2 | D).
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Assume thaX — Y occurs inG; andY — X occurs inG; and thatX — Y is covered, that is,
I'I\((31 = I‘IGl U{X}. Since we are only dealing with augment naive Bayes classiffeendY are
different fromC and so we also havlé*Gl = I'I"Gl U{X}. Moreover, take>q to be the graplts;
without the edgeX — Y (which is the same as grajip without the edgér — X). Then, we have
thatl'l*GO I‘I*GO M*CGo and, moreover, the following equalities hold:

I—I *G]_ I—I *GO I—I*Gz I—I *GO
I'I*Gl M*®u{X}; M3 =N u{y}.

SincefCLL is a local scoring criterionfCLL (G; | D) can be computed frof€LL (Go | D) taking
only into account the difference in the contribution of nodleIn this case, by Equation (27), it
follows that

fCLL(G1|D) = TCLL(Go|D)—((a+PB)Nlg, (Y;M°|C)—PBANIg (Y;M1°%;C))
+((a+PB)NIg, (Y; 3% | C) — BANIg (Y;115%4:C))

fCLL(Go | D) + (a+PB)N(I, (Y;:M* U {X} | C) —lg (Y;M** | C))
—BAN(Ig, (Y;TT*® U {X};C) — g (Y;11*;C))

and, similarly, that
fCLL(G2|D) = fCLL(Go|D)+ (a+PB)N(lg (X;M*®U{Y}|C)—lg (X;M*®|C))+
—BAN(Ig, (X; M ® U{Y};C) — g (X; 7%, C)).
To show thafCLL (G; | D) = fCLL (G; | D) it suffices to prove that
lg, (YT U{X} | C) =g, (Y% | C) = 15, (X, TT* P U{Y} [C) — g (X;*™ |C)  (30)
and that
g, (Y; T U{X}C) — g (Y;T17%0;C) = I, (X; M U{Y};C)) — I, (X;TT%;C). (31)
We start by showing (30). In this case, by definition of conditional mutualhave that
g, (Y;TT* U {X} |C) =g (Y;11"% | C) =
=Hp, (Y | C) +Hg (M U{X} | C) —Hg (M*®U{X,Y} |C)—Hg (Y |C)+
—Hp, (M| C) +Hg (M U{Y}|C)
= —Hp, ("% | C) + Hg (M*® U{X} | C)+Hg (M U{Y}|C)—Hg (M U{X,Y}|C)
=g, (X;M*U{Y} |C) — g (X;MT*% | C).
Finally, each term in (31) is, by definition, given by

g, (V; TP U{XEC) = g (Y U{X}[C) =g, (Y; 1" U{X})
B (GI®I0) = Ig (ViM'®[C) =g (;®)
=3
lp, ;R ULYEC) = 1o (G U{Y}HC) =g (X;M* S U{Y})
B OGTI®I0) = 1 0GM® [C)— g OGMI®).
=
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Since by definition of mutual information we have that

lg, (Y U{X}) — 15 (Y;17°C0) =

=Hg, (Y) +Hg, (M U{X}) — Hg, (MU {X,Y}) — Ha (Y) — Hg, (M) +
+Hp, (M U{Y})

= —Hp, (M"%) +Ha (M U{X}) +Hg, (M U{Y}) —xHg, (M U{X,Y})

=lp, (X; M ULY}) — 15, (X;11°%0),

we know thate; — E, = Es — E4. Thus, to prove the identity (31) it remains to show that
lg, (YT U{X} | C) — 1, (Y; 7% | C) = I (X; " U{Y} |C) — g (X; 17 | C),

which was already shown (in Equation (30)). This concludes the proof. O

Appendix B. Alternative Justification for Assumption 1

Observe that in the case at hand, we have some information dpantlV;, namely the number of
times, sayNy, andNy,, respectively, that; and\t occur in the data sé&2. Moreover, we also have
the number of times, sdyr, = N — (Ny, + Ny, ), thatR; is found inD. Given these observations, the
posterior distribution ofUt, ;) under a uniform prior is

(Ut,Mt) ~ Dirichlet(Ny, +1,Ny, +1,Nr +1). (32)

Furthermore, we know thaty, andN,, are, in general, a couple (or more) orders of magnitude
smaller thanNg . Due to this fact, most of all probability mass of (32) is found in the square
[0, p] x [0, p] for some smalp.

Take as an example the (typical) case whdgse= 1, Ny, = 0, N =500 and

p=E[U]+ +/Var|U] ~ E[M]+ +/VarV],

and compare the cumulative distribution of Unif@ffh p] x [0, p|) with the cumulative distribution
of Dirichlet(Ny, + 1, Ny, +1,Ngr +1). (We provide more details in the supplementary material web-
page.) WheneveXg, is much larger thatNy, andNy;, the cumulative distribution Dirichlé&iy, +
1Ny, +1,NR +1) is close to that of the uniform distribution Unifofi0, p] x [0, p]) for some smalll
p, and hence, we obtain approximately Assumption 1.

Concerning independence, and by assuming that the distributiQt o) is given by Equa-
tion (32), it results from the neutrality property of the Dirichlet distribution that

U

V; L .
t 1V,

SinceV; is very small we have
Ut

1-\V
Therefore, it is reasonable to assume thaandV; are (approximately) independent.

Vp LL

%Ut.
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