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Abstract

In the efficient global optimization problem, we minimizewarknown functionf, using as few ob-
servationdsf (x) as possible. It can be considered a continuum-armed-banaditem, with noiseless
data, and simple regret. Expected-improvement algoritragperhaps the most popular methods
for solving the problem; in this paper, we provide theoi@tresults on their asymptotic behaviour.

Implementing these algorithms requires a choice of Gangsiacess prior, which determines
an associated space of functions, its reproducing-kerileéti space (RKHS). When the prior is
fixed, expected improvement is known to converge on the minirof any function in its RKHS.
We provide convergence rates for this procedure, optintafuioctions of low smoothness, and
describe a modified algorithm attaining optimal rates foosther functions.

In practice, however, priors are typically estimated setja#ly from the data. For standard
estimators, we show this procedure may never find the miniwiufn We then propose alternative
estimators, chosen to minimize the constants in the raterafergence, and show these estimators
retain the convergence rates of a fixed prior.

Keywords: convergence rates, efficient global optimization, expmkatgrovement, continuum-
armed bandit, Bayesian optimization

1. Introduction

Suppose we wish to minimize a continuous functforX — R, whereX is a compact subset &,
Observingf (x) is costly (it may require a lengthy computer simulation or physical experiment), s
we wish to use as few observations as possible. We know little about the eh&pin particular

we will be unable to make assumptions of convexity or unimodality. We therefeed aglobal
optimization algorithm, one which attempts to find a global minimum.

Many standard global optimization algorithms exist, including genetic algorithmbistatt,
and simulated annealing (Pardalos and Romeijn, 2002), but these algorithdesgned for func-
tions that are cheap to evaluate. Whieis expensive, we need afficientalgorithm, one which
will choose its observations to maximize the information gained.

We can consider this a continuum-armed-bandit problem (Srinivas eDab, 2nd references
therein), with noiseless data, and loss measured by the simple regret kRailzdg 2009). At time
n, we choose a design poirt € X, make an observation, = f(x,), and then report a poing;
where we believe () will be low. Our goal is to find a strategy for choosing theandx;, in
terms of previous observations, so as to mininfige,).

We would like to find a strategy which can guarantee convergence: fatifuns f in some
smoothness class,(x;,) should tend to miri, preferably at some fast rate. The simplest method
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would be to fix a sequence af, in advance, and sef, = argminf,,, for some approximatior,
to f. We will show that if f, converges in supremum norm at the optimal rate, thegj) also
converges at its optimal rate. However, while this strategy gives a goeost-aase bound, on
average it is clearly a poor method of optimization: the design pgjrase completely independent
of the observations,.

We may therefore ask if there are more efficient methods, with better &+eeag performance,
that nevertheless provide good guarantees of convergence. Tibeltjiin designing such a method
lies in the trade-off betweeasxplorationandexploitation If we exploit the data, observing in regions
wheref is known to be low, we will be more likely to find the optimum quickly; however, gale
we explore every region of, we may not find it at all (Macready and Wolpert, 1998).

Initial attempts at this problem include work on Lipschitz optimization (summarizedimskin
et al., 1992) and the DIRECT algorithm (Jones et al., 1993), but pethabest-known strategy is
expected improvement. It is sometimes called Bayesian optimization, and fiestraggn M@&kus
(1974) as a Bayesian decision-theoretic solution to the problem. Conterpporaputers were not
powerful enough to implement the technique in full, and it was later poputhbigeJones et al.
(1998), who provided a computationally efficient implementation. More thceénhhas also been
called a knowledge-gradient policy by Frazier et al. (2009). Manyrskbes and alterations have
been suggested by further authors; a good summary can be foundcnuBzbal. (2010).

Expected improvement performs well in experiments (Osborne, 2010, $iSjttle is known
about its theoretical properties. The behaviour of the algorithm dependsmlly on the Gaussian
process priomt chosen forf. Each prior has an associated space of functifngts reproducing-
kernel Hilbert space# contains all functionX — R as smooth as a posterior meanfofand is
the natural space in which to study questions of convergence.

Vazquez and Bect (2010) show that whers a fixed Gaussian process prior of finite smooth-
ness, expected improvement converges on the minimum off any*, and almost surely fof
drawn fromtt. Grunewalder et al. (2010) bound the convergence rate of a commatiyiinfea-
sible version of expected improvement: for prioref smoothness, they show convergence at a
rateO*(n~(""\09)/d) on f drawn fromr. We begin by bounding the convergence rate of the feasible
algorithm, and show convergence at a rat¢n—(""1/d) on all f € #. We go on to show that a
modification of expected improvement converges at the near-optimaDréate¥/9).

For practitioners, however, these results are somewhat misleading.idaltgpplications, the
prior is not held fixed, but depends on parameters estimated sequentiall{hfe data. This process
ensures the choice of observations is invariant under translation ahdgsof f, and is believed
to be more efficient (Jones et al., 1998, 82). It has a profoundtedfeconvergence, however:
Locatelli (1997, §3.2) shows that, for a Brownian motion prior with estimatedmaters, expected
improvement may not converge at all.

We extend this result to more general settings, showing that for standarsd with estimated
parameters, there exist smooth functidnsn which expected improvement does not converge. We
then propose alternative estimates of the prior parameters, chosen to miniencn#tants in the
convergence rate. We show that these estimators give an automatic chpmemeters, while
retaining the convergence rates of a fixed prior.

Table 1 summarizes the notation used in this paper. Wef s® — R is a bump function if
f is infinitely differentiable and of compact support, ahdR® — C is Hermitian if f (x) = f(—Xx).
We use the Landau notatidn= O(g) to denote limsuff /g| < «, andf = o(g) to denotef /g — 0.

If g=0O(f), we sayf = Q(g), and if bothf = O(g) and f = Q(g), we sayf = ©(g). If further
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f/g— 1, we sayf ~ g. Finally, if f andg are random, an®#(sugf/g| <M) — 1 asM — o, we
sayf = Op(0).

In Section 2, we briefly describe the expected-improvement algorithm, etad dur assump-
tions on the priors used. We state our main results in Section 3, and discusstrop8dor further
work in Section 4. Finally, we give proofs in Appendix A.

2. Expected Improvement

Suppose we wish to minimize an unknown functibnchoosing design points, and estimated
minimax; as in the introduction. If we pick a prior distributianfor f, representing our beliefs
about the unknown function, we can describe this problem in terms ofidledi®ory. Let( Q, 7, P)

be a probability space, equipped with a random pro¢dssving lawTtt A strategyu is a collection

of random variable$x,), (X;) taking values inX. Setz, = f(X,), and define the filtratior¥, :

= 0(X,z :1 < n). The strategy is valid if x, is conditionally independent of given #,_1, and
likewise x;, given 7,. (Note that we allow random strategies, provided they do not depend on
unknown information about.)

When taking probabilities and expectations we will wifgandEL, denoting the dependence
on both the priont and strategy. The average-case performance at some future Nngethen
given by the expected loss,

Exlf () —minf],

and our goal, givem, is to choose the strategyto minimize this quantity.

2.1 Bayesian Optimization

ForN > 1 this problem is very computationally intensive (Osborne, 2010, 86.3)véwan solve
a simplified version of it. First, we restrict the choicexjfto the previous design poins, ..., X,.
(In practice this is reasonable, as choosing;anwe have not observed can be unreliable.) Secondly,
rather than finding an optimal strategy for the problem, we derive the myoptegyr. the strategy
which is optimal if we always assume we will stop after the next observatibis. strategy is sub-
optimal (Ginsbourger et al., 2008, 83.1), but performs well, and greitiglgies the calculations
involved.

In this setting, givent,, if we are to stop at time& we should choosg;, := x;:, whereiy, ==
argmin,__nz. (Inthe case of ties, we may pick any minimiziijg We then suffer a losg —min f,
wherez, '= z:. \Were we to observe a1 before stopping, the expected loss would be

En[Z,1 —minf | 7],

so the myopic strategy should choogg: to minimize this quantity. Equivalently, it should maxi-
mize the expected improvement over the current loss,

Eln(n1;T) = Exlz, — Zoa | Fol = ER[(Z—2041) " | Fl, 1)

wherex™ = max(x,0).

So far, we have merely replaced one optimization problem with another. \owfer suitable
priors, El, can be evaluated cheaply, and thus maximized by standard techniquesxpEuted-
improvement algorithm is then given by choosig1 to maximize (1).
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Section 1
f unknown functionX — R to be minimized
X compact subset @ to minimize over
d number of dimensions to minimize over
Xn points inX at whichf is observed
Zn observationg, = f(xn) of f
XH estimated minimum of, givenz, ..., z,
Section 2.1
T prior distribution for f
u strategy for choosingy, x;,
TFn filtration 7n = 0(X,Zz 11 < n)
z best observatios, = mini—1__ nz
El, expected improvement giveR,
Section 2.2
W, 02 global mean and variance of Gaussian-process prior
K underlying correlation kernel far
Kag correlation kernel fortwith length-scale$
v, a smoothness parameterskof
i, fn, 2, R2 quantities describing posterior distribution bgiven 7,
Section 2.3
El(m) expected improvement strategy with fixed prior
a2, 6, estimates of prior parametens, 0
Cn rate of decay 06?2
o-, gY bounds orb,
El(T) expected improvement strategy with estimated prior
Section 3.1
Hy(S) reproducing-kernel Hilbert space §§ on S
H3(D) Sobolev Hilbert space of ordsion D
Section 3.2
Ln loss suffered over an RKHS ball aftessteps
Section 3.3
El(T) expected improvement strategy with robust estimated prior
Section 3.4
El(-,¢) e-greedy expected improvement strategies

Table 1: Notation
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2.2 Gaussian Process Models

We still need to choose a priorfor f. Typically, we modelf as a stationary Gaussian process: we
consider the value§(x) to be jointly Gaussian, with mean and covariance

En[f(x)] =  Cova[f(x), f(y)] = 0°Ke(x—Y). ()

K€ R is the global mean of; we place a flat prior op, reflecting our uncertainty over the location
of f.

o > 0 is the global scale of variation ¢ andKg : RY — R its correlation kernel, governing the
local properties off. In the following, we will consider kernels

Ke(tlw"vtd) = K(tl/elv"'7td/ed)7 (3)

for an underlying kerneK with K(0) = 1. (Note that we can always satisfy this condition by
suitably scaling< ando.) The6; > 0 are the length-scales of the process: two valygsandf (y)
will be highly correlated if eack; —y; is small compared witl®;. For now, we will assume the
parameters and6 are fixed in advance.

For (2) and (3) to define a consistent Gaussian proéess,st be a symmetric positive-definite
function. We will also make the following assumptions.

Assumption 1. K is continuous and integrable.

K thus has Fourier transform
R(E) = / e XK (x)dx
R

and by Bochner’s theorerf is non-negative and integrable.
Assumption 2. K is isotropic and radially non-increasing.

In other wordsK (x) = k(||x||) for a non-increasing functiok: [0,) — [0,); as a consequence,
K is isotropic.

Assumption 3. As x— oo, either:

(i) K(x)=0(||x]|2~9) for somev > 0; or

(i) K(x)=0(||x]|"?~%) forall v > 0 (we will then say that = o).
Note the conditiorv > 0 is required foiK to be integrable.

Assumption 4. K is C¥, for k the largest integer less thalv, and at the origin, K has k-th order
Taylor approximation Psatisfying

1K) = )| = O (IIXIP(— logl|x}) )
as x— 0, for somea > 0.
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Whena = 0, this is just the condition tha be 2-Holder at the origin; whem > 0, we instead
require this condition up to a log factor.

The ratev controls the smoothness of functions from the prior: almost sufédigs continuous
derivatives of any ordet < v (Adler and Taylor, 2007, §1.4.2). Popular kernels include theekfat
class,

<= 2 (Vo) (VauIxl) . ve )

wherek, is a modified Bessel function of the second kind, and the Gaussian kernel,
K®(x) == e~ 2IX,

obtained in the limitv — 0 (Rasmussen and Williams, 2006, 84.2). Between them, these kernels

cover the full range of smoothnessi@ < . Both kernels satisfy Assumptions 14 for thgiven;

o = 0 except for the Marn kernel withv € N, wherea = % (Abramowitz and Stegun, 1965, §9.6).
Having chosen our prior distribution, we may now derive its posterior. Yk fi

f(X) | 21,20~ N (fn(x,6),0%(x;0)),

where
o 1viz
”“(e)'_’jfifiii’ 4)
fa(x;0) =P+ V'V z— 1), (5)
and
_ 1-1Tv-1y)2

forz=(z)L,,V = (Ke(x —Xj))i'j_1, andv = (Ke(x—X;))L; (Santner et al., 2003, §4.1.3). Equiv-
alently, these expressions are the best linear unbiased predidtof)@nd its variance, as given in
Jones et al. (1998, 8§82). We will also need the reduced sum of squares

R3(8) = (z—Pn1) 'V H(z— ). (7)

2.3 Expected Improvement Strategies

Under our assumptions ag we may now derive an analytic form for (1), as in Jones et al. (1998,
84.1). We obtain A
Eln(X11;7) = P (7 — fa(Xn11;8),05(Xn41;8)) , (8)

where
_ Jy®(y/s) +sb(y/s), s>0,
Py:s) = {max(y, 0), s=0,

and® and¢ are the standard normal distribution and density functions respectively.

For a priorrtas above, expected improvement chooggs to maximize (8), but this does not
fully define the strategy. Firstly, we must describe how the strategy btegksvhen more than one
x € X maximizesEl,. In general, this will not affect the behaviour of the algorithm, so we allow
any choice ok,, 1 maximizing (8).

(9)
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Secondly, we must say how to choose as the above expressions are undefined wherO.
In fact, Jones et al. (1998, 84.2) find that expected improvement canreéable given few data
points, and recommend that several initial design points be chosen in @mamnsi-uniform ar-
rangement. We will therefore assume that until some fixed #mgointsxs,...,xx are instead
chosen by some (potentially random) method independefit e thus obtain the following strat-

egy.
Definition 1. An EI(m) strategy chooses:
() initial design points x, ..., Xk independently of f; and
(i) further design points x.1 (n > k) from the maximizers of8).

So far, we have not considered the choice of parametenrsd8. While these can be fixed in
advance, doing so requires us to specify characteristic scales ofkhewimfunctionf, and causes
expected improvement to behave differently on a rescaling of the samggofuné/e would prefer
an algorithm which could adapt automatically to the scalé.of

A natural approach is to take maximum likelihood estimates of the parametesspasmended
by Jones et al. (1998, §2). Givéh the MLE 62 = R2(8)/n; for full generality, we will allow
any choiced? = ¢,R2(8), wherec, = o(1/logn). Estimates oB, however, must be obtained by
numerical optimization. A® can vary widely in scale, this optimization is best performed over
log®; as the likelihood surface is typically multimodal, this requires the use of a gtgdtihizer.
We must therefore place (implicit or explicit) bounds on the allowed valuesgdf. I8Ve have thus
described the following strategy.

Definition 2. Let T, be a sequence of priors, with parametérs R satisfying:
(i) 62 = c,R2(8,) for constants g> 0, ¢, = o(1/logn); and
(i) 8- <8, <8V for constantd", 8Y € RY.

An EI(T7) strategy satisfies Definition 1, replacimgwith T, in (8).

3. Convergence Rates

To discuss convergence, we must first choose a smoothness clabg fanknown functionf.
Each kerneKg is associated with a space of functiagtg(X), its reproducing-kernel Hilbert space
(RKHS) or native space#y(X) contains all functionsX — R as smooth as a posterior mean of
f, and is the natural space to study convergence of expected-impravalgenthms, allowing a
tractable analysis of their asymptotic behaviour.

3.1 Reproducing-Kernel Hilbert Spaces

Given a symmetric positive-definite kerr€lon RY, setky(t) = K(t —x). ForSC RY, let £(S) be
the space of functionS — R spanned by thé&, for x € S. FurnishZ(S) with the inner product
defined by

(kx, ky) == K(x—y).
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The completion of£(S) under this inner product is the reproducing-kernel Hilbert spa¢s) of K
onS. The member$ € #(S) are abstract objects, but we can identify them with functibbnS— R
through the reproducing property,

Fx) = (f, ko),

which holds for allf € £(S). See Aronszajn (1950), Berlinet and Thomas-Agnan (2004), Weddla
(2005) and van der Vaart and van Zanten (2008).

We will find it convenient also to use an alternative characterizatiofi! (). We begin by
describingH (RY) in terms of Fourier transforms. Létdenote the Fourier transform of a function
f € L2. The following result is stated in Parzen (1963, §2), and proved in &Bedd2005, §10.2);
we give a short proof in Appendix A.

Lemma 1. #(RY) is the space of real continuouscfL?(RY) whose norm

Ty 2
I11Eesy = [ T
is finite, takingd/0 = 0.
We may now describgf(S) in terms of # (RY).
Lemma 2 (Aronszajn, 1950, §1.5)#(S) is the space of functions = g|s for some ge # (RY),

with norm

1509 = gf?ingH}[(]Rd)a

and there is a unique g minimizing this expression.
These spaces are in fact closely related to the Sobolev Hilbert spdtestidnal analysis. Say
a domairD C RY is Lipschitz if its boundary is locally the graph of a Lipschitz function (se¢aFar

2007, 812, for a precise definition). For such a doniajthe Sobolev Hilbert spadds(D) is the
space of functions : D — R, given by the restriction of song: R — R, whose norm

2 g [ JBEF
11550 = g'.i‘ff/ At e

is finite. Thus, for the kerne{ with Fourier transfornK (§) = (1+ ||€||?)¥/2, this is just the RKHS
H (D). More generally, iK satisfies our assumptions with< o, these spaces are equivalent in the
sense of normed spaces: they contain the same functions, and haved|npyns||, satisfying

ClIflly < Il <ClIflly,
for constants & C < C'.
Lemma 3. Let Hg(S) denote the RKHS ofgn S, and DC RY be a Lipschitz domain.
(i) If v < oo, #Hy(D) is equivalent to the Sobolev Hilbert spac&4/2(D).

(i) If v =0, Hp(D) is continuously embedded ir°fD) for all s.

Thus ifv < 0, andX is, say, a product of intervaﬁ?zl[ai,bi], the RKHS#Hg(X) is equivalent
to the Sobolev Hilbert spade’*9/2(1%; (a;, b)), identifying each function in that space with its
unique continuous extension xa

2886



CONVERGENCERATES OFEFFICIENT GLOBAL OPTIMIZATION

3.2 Fixed Parameters

We are now ready to state our main results. Xet RY be compact with non-empty interior. For
afunctionf : X — R, letP{ andEY{ denote probability and expectation when minimizing the fixed
function f with strategyu. (Note that whilef is fixed,u may be random, so its performance is still
probabilistic in nature.) We define the loss suffered over theRalh #y(X) aftern steps by a
strategyy,

Ln(u, Ho(X),R) == sup EF[f(x;)—minf].

fllsg00<R

We will say thatu converges on the optimum at ratg if
Ln(u, Hg(X),R) = O(rp)

for all R> 0. Note that we do not allow to vary withR; the strategy must achieve this rate without
prior knowledge of| f | ;-

We begin by showing that the minimax rate of convergenee 9.

Theorem 1. If v < oo, then for anyd € R4, R> 0,
inf Ln(u, #6(X),R) = o(n~v/9),
and this rate can be achieved by a strategy u not depending on R.

The upper bound is provided by a naive strategy as in the introductiofix\aegquasi-uniform
sequence, in advance, and take, to minimize a radial basis function interpolant of the data. As
remarked previously, however, this naive strategy is not very satgsfifimpractice it will be outper-
formed by any good strategy varying with the data. We may thus ask whetlrersophisticated
strategies, with better practical performance, can still provide goodwase bounds.

One such strategy is ttel (1) strategy of Definition 1. We can show this strategy converges at
least at rate(""1/9, up to log factors.

Theorem 2. Letttbe a prior with length-scale8 ]R{‘_{. For any R> 0,

o(nV/9(logn)?), v <1,
Ln(EN(TD), Ho(X),R) = -
(BN, #6(X).R) {O(n‘l/d), v>1
Forv < 1, these rates are near-optimal. Far 1, we are faced with a more difficult problem;
we discuss this in more detail in Section 3.4.

3.3 Estimated Parameters

First, we consider the effect of the prior parametersEd(rr). While the previous result gives a
convergence rate for any fixed choice of parameters, the constardtinatie will depend on the
parameters chosen; to choose well, we must somehow estimate these parf&orattdre data. The
El(f1) strategy, given by Definition 2, uses maximum likelihood estimates for this parpe can
show, however, that this may cause the strategy to never converge.
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Figure 1: A counterexample from Theorem 3

Theorem 3. Supposey < . Given8 € RY, R> 0, € > 0, there exists fc Hg(X) satisfying
[ ]l 4x) < R, and for some fixed > 0,

pE® (iqf F(x5) —minf > 5) >1-e

The counterexamples constructed in the proof of the theorem may be ltliiicainimize, but
they are not badly-behaved (Figure 1). A good optimization strategyidgHteuable to minimize
such functions, and we must ask why expected improvement fails.

We can understand the issue by considering the constant in Theoreefi2e D

T(X) = xP(X) + d(%).
From the proof of Theorem 2, the dominant term in the convergence aatedmstant

C(R+ G)TT((—RFi’;yc)r)’ (10)

for C > 0 not depending oR or a. In Appendix A, we will prove the following result.

Corollary 1. R,(8) is non-decreasing in n, and bounded above| BY . x)-

Hence for fixed, the estimaté? = R2(8) /n < R2/n, and thusR/&, > n/2. Inserting this choice
into (10) gives a constant growing exponentiallynirdestroying our convergence rate.

To resolve the issue, we will instead try to picko minimize (10). The termR+ g is increasing
in 0, and the term(R/0)/t1(—R/0) is decreasing iw; we may balance the terms by takiog= R.
The constant is then proportionalRwhich we may minimize by takinB= || f{|,; x,. In practice,
we will not know || f{|, «, in advance, so we must estimate it from the data; from Corollary 1, a
convenient estimate i3,(8).

Suppose, then, that we make some bounded estBpafe, and se62 = R2(6,,). As Theorem 3
holds for anyG? of faster than logarithmic decay, such a choice is necessary to enswergence.
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(We may also choosgto minimize (10); we might then picB, minimizing ﬁn(e) |‘|id:1 ei‘“/d, but

our assumptions o8y, are weak enough that we need not consider this further.)

If we believe our Gaussian-process model, this estimdates certainly unusual. We should,
however, take care before placing too much faith in the model. The functiBigure 1 is a rea-
sonable function to optimize, but as a Gaussian process it is highly atypiead dhe intervals on
which the function is constant, an event which in our model occurs withagimibty zero. If we
want our algorithm to succeed on more general classes of functionwjlineeed to choose our
parameter estimates appropriately.

To obtain good rates, we must add a further condition to our stratemy=f-- = z,, Eln(-; )
is identically zero, and all choices gf., are equally valid. To ensure we fully explofewe will
therefore require that when our strategy is applied to a constant funiion= c, it produces a
sequence, dense inX. (This can be achieved, for example, by choosing uniformly at random
from X whenz; = --- = z,.) We have thus described the following strategy.

Definition 3. An EI(T1) strategy satisfies Definition 2, except:
(i) we instead seb2 = R2(8,,); and

(i) we require the choice ofyx 1 maximizing8) to be such that, if f is constant, the design points
are almost surely dense in X.

We cannot now prove a convergence result uniform over balf%iiX), as the rate of conver-
gence depends on the rafyR,, which is unbounded. (Indeed, any estimator| 6f| 5, ) must
sometimes perform poorlyf can appear from the data to have arbitrarily small norm, while in
fact having a spike somewhere we have not yet observed.) We careyén provide the same
convergence rates as in Theorem 2, in a slightly weaker sense.

Theorem 4. For any f e Hgu (X), underp'f'(ﬁ),

Op(n™/d(logn)®), v <1,
Op(n~Y/dy, v> 1

f(x;,) —min f :{

3.4 Near-Optimal Rates

So far, our rates have been near-optimal onlyvet 1. To obtain good rates for > 1, standard
results on the performance of Gaussian-process interpolation (Natcetval., 2003, 86) then
require the design pointg to be quasi-uniform in a region of interest. It is unclear whether this
occurs naturally under expected improvement, but there are many waygsweodify the algorithm

to ensure it.

Perhaps the simplest, and most well-known, issareedy strategy (Sutton and Barto, 1998,
§2.2). In such a strategy, at each step with probabilityelwe make a decision to maximize some
greedy criterion; with probabilitg we make a decision completely at random. This random choice
ensures that the short-term nature of the greedy criterion does nghadew our long-term goal.

The parameteg controls the trade-off between global and local search: a good cob&eill
be small enough to not interfere with the expected-improvement algorithmartyg enough to
prevent it from getting stuck in a local minimum. Sutton and Barto (1998, 82r&ider the values
€ = 0.1 ande = 0.01, but in practical worle should of course be calibrated to a typical problem set.

We therefore define the following strategies.
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Definition 4. Let- denoter, ftor T For0< € < 1, an EI(-,€) strategy:
() chooses initial design pointg x - - ,X¢ independently of f;
(i) with probability 1 — €, chooses design poingx (n > k) asin EI(-); or
(i) with probability €, chooses x1 (n > k) uniformly at random from X.
We can show that these strategies achieve near-optimal rates of camseifgr allv < co.

Theorem 5. Let EI( -, €) be one of the strategies in Definition 4vlk o, then for any R> 0,

La(EI(-,£), He (X),R) = O((n/logn) ~*/%(logn)®),
while if v = o0, the statement holds for all < oo,

Note that unlike a typicad-greedy algorithm, we do not rely on random choice to obtain global
convergence: as above, thé(1) andE| (1) strategies are already globally convergent. Instead, we
use random choice simply to improve upon the worst-case rate. Note alsbahasult does not in
general hold wher = 1; to obtain good rates, we must combine global search with inferencé abou
f.

4. Conclusions

We have shown that expected improvement can converge near-optimalynaive implementation
may not converge at all. We thus echo Diaconis and Freedman (1986}ing<gteat, for infinite-
dimensional problems, Bayesian methods are not always guaranteed tioefinght answer; such
guarantees can only be provided by considering the problem at hand.

We might ask, however, if our framework can also be improved. Ourrupmpends on conver-
gence were established using naive algorithms, which in practice would prefficient. If a so-
phisticated algorithm fails where a naive one succeeds, then the sopbistidgorithm is certainly
at fault; we might, however, prefer methods of evaluation which do nagiden naive algorithms
so successful.

Vazquez and Bect (2010) and Grunewalder et al. (2010) considera Bayesian formulation
of the problem, where the unknown functidnis distributed according to the prior, but this
approach can prove restrictive: as we saw in Section 3.3, placing too rattichrf the prior may
exclude functions of interest. Further, Grunewalder et al. find the sawessire present also within
the Bayesian framework.

A more interesting approach is given by the continuum-armed-bandit pnof8enivas et al.,
2010, and references therein). Here the goal is to minimize the cumulagnet,re

Ry = _i(f(xi)—minf),

in general observing the functidnunder noise. Algorithms controlling the cumulative regret at rate
rn also solve the optimization problem, at rat¢n (Bubeck et al., 2009, §3). The naive algorithms
above, however, have poor cumulative regret. We might, then, cortbieleumulative regret to be

a better measure of performance, but this approach too has limitations., Firsttyimulative regret
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is necessarily increasing, so cannot establish rates of optimization fasterth (This is not an
issue under noise, where typicatly= Q(n'/?), see Kleinberg and Slivkins, 2010.) Secondly, if our
goal is optimization, then minimizing the regret, a cost we do not incur, may ocboe problem
at hand.

Bubeck et al. (2010) study this problem with the additional assumptiorf thas finitely many
minima, and is, say, quadratic in a neighbourhood of each. This assumptyosuffiae in practice,
and allows the authors to obtain impressive rates of convergence. Honizgiion, however, a
further weakness is that these rates hold only once the algorithm has &obasin of attraction;
they thus measure local, rather than global, performance. It may be thargence rates alone are
not sufficient to capture the performance of a global optimization algorithohflze time taken to
find a basin of attraction is more relevant. In any case, the choice of aom@jgie framework to
measure performance in global optimization merits further study.

Finally, we should also ask how to choose the smoothness paravng@tethe equivalent pa-
rameter in similar algorithms). Van der Vaart and van Zanten (2009) shaB#yasian Gaussian-
process models can, in some contexts, automatically adapt to the smootharssm&hown func-
tion f. Their technique requires, however, that the estimated Iength-s@;alestend to 0, posing
both practical and theoretical challenges. The question of how bestitaiog functions of un-
known smoothness remains open.
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Appendix A. Proofs

We now prove the results in Section 3.

A.1 Reproducing-Kernel Hilbert Spaces

Proof of Lemma 1LetV be thg space of functions described, &de the closed real subspace of
Hermitian functions in_Z(Rd,K‘lA). We will show f — f is an isomorphisnV — W, so we may
equivalently work withW. Given f € W, by Cauchy-Schwarz and Bochner’s theorem,

and ag|K., < K|,
JITZ< IR, [1T2/R <,

sof e LINL2. fis thus the Fourier transform of a real continudus L2, satisfying the Fourier
inversion formula everywhere.
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f s f is hence an isomorphisih— W. It remains to show that = #(R%). W is complete, so
V is. Further,£(RY) c V, and by Fourier inversion eadhe V satisfies the reproducing property,

f(X)_/elei<xa,E>f\(E)dE_/f(;)(kg)(a)dz_ (f,ky),

so H(RY) is a closed subspace Wt Given f ¢ #(RY)*, f(x) = (f, k) =0 for all x, so f = 0.
ThusV = A (RY). O

Proof of Lemma 3By Lemma 1, the norm ortg(RY) is

> [IfEP
'”Wm‘/RW3®

andKg has Fourier transform

= o K(&1/01,...,&q/00)
Rl = M. 6

If v < o, by assumptior (&) :E(HEH), for a finite non-increasing functid%satisfyingE(HEH) =
O([[&]| %) as& — . Hence

C(1—|— ||E||2)*(V+d/2) S R\G(E) S C/(1+ ||E‘|2)7(\;+d/2)7

for constant<C,C’ > 0, and we obtain thatig(RY) is equivalent to the Sobolev spadé+d/2(RY),

From Lemma 2#(D) is given by the restriction of functions tfg(RY); asD is Lipschitz, the
same is true oHV*9/2, 7f4(D) is thus equivalent té1V+9/2(D). Finally, functions in#g(D) are
continuous, so uniquely identified by their restrictiorDtpand

Hy(D) ~ Hg(D) ~ HVTI/2(D).

If v = oo, by a similar argument(D) is continuously embedded in &5(D). O

From Lemma 1, we can derive results on the behavioliif ¢, 5 as8 varies. For smal, we
obtain the following result.

Lemma 4. If f € Hy(S), then fe Hy(S) forall 0 < <6, and

d
115, < (ﬂei/ei'> 1154
i=

Proof. LetC=[1%,(8//6;). As K is isotropic and radially non-increasing,
Ko (§) = CKo((6/81)E1,. -, (83/64)€q) > CKo(E).

Given f € H(9), letg € Hg(RY) be its minimum norm extension, as in Lemma 2. By Lemma 1,

8 1o o
115 < 19054 00 = | - < [ G =C M. =

2892



CONVERGENCERATES OFEFFICIENT GLOBAL OPTIMIZATION

Likewise, for larged, we obtain the following.
Lemmab. If v< oo, f € Hy(S), then fe Hpg(S) fort > 1, and
11565 < C" 113451
for aC” > 0 depending only on K an@.
Proof. As in the proof of Lemma 3, we have consta@t€’ > 0 such that
C(L+[&]1%) =792 < Ko (&) < C'(1+|§]|%) /2.
Thus fort > 1,
Kio(§) = %K (t€) > Cté(1+t2[[E||?) V92
> Ct2(1+ g% M/
> CC U 2Kg(8),
and we may argue as in the previous lemma. O

We can also describe the posterior distributionfah terms of Hy(S); as a consequence, we
may deduce Corollary 1.

Lemma 6. Suppose (x) = u+9g(x), g€ Hp(S).
0] fn(x; 0) = i + Gn(X) solves the optimization problem
minimize|§||5, s, Subjecttoi+§(x)=z, 1<i<n,
with minimum valud??().
(ii) The prediction error satisfies
[£() = fa(x:0) < 1(x:8) 19l 55
with equality for some g Hy(S).
Proof.

(i) LetW = sparky,, ..., kx, ), and writeg’= gl 4+ §* for gl e W, - e WE. G- (x) = (§" ks ) =
0, sog" affects the optimization only throughg||. The minimalg'thus hasg® = 0, so
§ = >i_1Aiky. The problem then becomes

minimizeATVA, subject tal +VA =z
The solution is given by (4) and (5), with value (7).
(i) By symmetry, the prediction error does not dependipgso we may tak@ = 0. Then
f(x) = fa(x8) = g(x) = (fn+ (X)) = (9. €nx),
for enx =k« — Y11 Aiky, and
A= l\T/\;llll+ <| - V_lllT)vlv.

Now, Hen,xﬂié(s) = §(x;0), as given by (6); this is a consequence o&le’s isometry, but is
easily verified algebraically. The result then follows by Cauchy-Schwar O
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A.2 Fixed Parameters

Proof of Theorem 1We first establish the lower bound. Suppose we havéuBctionsy,, with
disjoint supports. We will argue that, givenobservations, we cannot distinguish between all the
Wm, and thus cannot accurately pick a minimugn

To begin with, assum¥ = [0,1]9. Lety : RY — [0,1] be aC* function, supported insid¢ and
with minimum -1. By Lemma 3 € H(RY). Fix k € N, and seth = (2k)¢/2. For vectorsn €
{0,...,2k—1}4, construct functiongim(x) = C(2k) ~V)(2kx— m), whereC > 0 is to be determined.
Ym is given by a translation and scalingf so by Lemmas 1, 2 and 5, for soi@é> 0,

[Wmllsgx) < 1Wmll 5 (ma) = C2K) ™ W] gy sy < CCIIW]] 50 -

SetC = R/C'[|Y|| 5ga), SO that|Wm|[ 44 x) < Rfor all mandk.

Suppose = 0, and letx, andx;, be chosen by any valid strategySetx = {X,...,%-1,X}_1}
and letAy, be the event thapm(x) = 0 for all x € X. There aren points inx, and the 2 functions
Pm have disjoint support, S§,L1(An) > n. Thus

S PY(Am) = B3| S T(An)| >

and we have some fixad, depending only om, for whichPg(Am) > % On the event\y,
Wm(Xy_1) —minym = C(2k) ",
but on that event cannot distinguish between 0 agg, before timen, so
CH2K) Ry, [f(x 1) —minf] > Py (An) =P§(An) > 3.
As the minimax loss is non-increasingrinfor (2(k—1))¢/2 < n < (2k)4/2 we conclude
|rl]f Ln(u, %(X), R) > IrL]Jf L(Zk)d/z_l(u, %(X), R)
. u . :
> inf SrLTJ]qu_,m [f (X(Zk)d/Zfl) —min f}
>1c(2k) ™V =Q(n™V/9).

For generaX having non-empty interior, we can find a hypercie xo + [0,€]9 C X, with € > 0.
We may then proceed as above, picking functippssupported insid&.

For the upper bound, consider a strategghoosing a fixed sequeneg, independent of the
Z,. Fit a radial basis function interpolarﬁ,t; to the data, and pick;, to minimize f,. Then if x*
minimizesf,

FO) — F(x) < £0q) — f(x) + fo(x) — £(x)
< 2| — flle

so the loss is bounded by the errorfin
From results in Narcowich et al. (2003, 86) and Wendland (2005, jlfbbsuitable radial
basis functions the error is uniformly bounded by

sup || fa— fllo = O(N,Y),
fllsg00<R
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where the mesh norm |
hn = supmin||x — x|
xexX i=1

(Forv ¢ N, this result is given by Narcowich et al. for the radial basis funcdn which isv-
Holder at 0 by Abramowitz and Stegun, 1965, 89.6;\fa N, the result is given by Wendland for
thin-plate splines.) AX is bounded, we may choose tkeso thath, = O(n~/%), giving

Ln(u,Hg(X),R) = O(n~v/4). O

To prove Theorem 2, we first show that some observatmnagill be well-predicted by past
data.

Lemma 7. Set

B a, v<l1,
" lo, v>1

GivenB € R‘i, there is a constant’C> 0 depending only on X, K arftiwhich satisfies the following.
For any ke N, and sequences,x X, 6, > 6, the inequality

$n(%n+1;8n) > C'k=(V"D/9(logk)P
holds for at most k distinct n.

Proof. We first show that the posterior varianggs bounded by the distance to the nearest design
Qoint. LetTt, denote the prior with variance® = 1, and length-scale8,. Then for anyi < n, as
fn(X;6n) = Er, [T (X) | T,

(% 8n) = Ex, [(f(X) — f(x;8n))? | )
= En[(f (%) — F(x))? = (f(x) — fa(x:8n))? | )
< Er[(f(x) = f(x))? | Fl
=2(1—Kg,(X—%))-

If v < 1, then by assumption
K~ K(0)] = O (x|[*(~log|x|))*)
asx— 0. 1fv> 3 1 thenK is differentiable, so aK is symmetric/JK (0) = 0. If furtherv < 1, then
K() = K(0)] = [K(x) ~ K(0) - TK(0)] = O (x|[*(~log|x|)}*) .
Similarly, if v > 1, thenK is C?, so
[K(x) —K(0)] = [K(X) —K(0) —x- OK(0)| = O([|x||?).
We may thus conclude

[1-KX)|=[K(x)-K(0)]=0 (HXH VA (— |09||X||)ZB>,
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and
(% 8n) < C?[|x—x |2V (—log||x — x[|) %,

for a constan€ > 0 depending only oiX, K and®.

We next show that most design poinxts 1 are close to a previous. X is bounded, so can be
covered byk balls of radiusO(k-1/%). If x,,1 lies in a ball containing some earlier poiti < n,
then we may conclude

A (%n1;6n) < C2k~2V"D/9(logk)

for a constan€’ > 0 depending only oiX, K and6. Hence as there aleballs, at mosk points
Xn.1 Can satisfy
$1(%n11;6n) > C'k="D/%(logk)P. m

Next, we provide bounds on the expected improvement whiées in the RKHS.
Lemma 8. Let||f[|,;x) < R. Forxe X, ne N, set I= (f(x;) — f(x))", and s= s,(x;0). Then for
T(X) = x®(x) + ¢(x),

we have (_R/0)
1(—R/o
—_Rs———7""|) < ) < !
max<| Rs 1R/0) I) <Elh(xm <1+ (R+0)s
Proof. If s=0, then by Lemma 6fn(x; 0) = f(x),AsoEIn(x; ) = |, and the result is trivial. Suppose
s> 0, and set = (f(x;) — f(x))/s,u=(f(x;,) — fn(x;0))/s. From (8) and (9),

Eln(x; 1) = ost(u/0),

and by Lemma 6ju—t| < R. AsT(z) = ®(2) € [0,1], T is non-decreasing, andz) < 1+ z for
z> 0. Hence

t"+R tt+R
Eln(x;n)gcsr< : >§05< ;r +1>:|+(R+o)s.

If I =0, then a€| is the expectation of a non-negative quantity,> 0, and the lower bounds
are trivial. Supposé > 0. Then a€l > 0,1(z) > 0 for all z, andt(z) = z+1(—2) > z Thus

Ely(X;T) > ost <t_R> > os(t_R) =1 —Rs
o o

Also, ast is increasing,
—R
Eln(x;10) > 0T <0> S.
Combining these bounds, and eliminatggve obtain

Elxem > 2RO 1=R/0),

“Rrot(-R/o) ~ 1(R/0) -

We may now prove the theorem. We will use the above bounds to show thantiust be times
nk when the expected improvement is low, and tii(s;, ) is close to mirf.
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Proof of Theorem 2From Lemma 7 there exis& > 0, depending oiX, K and6, such that for any
sequence, € X andk € N, the inequality

Sh(Xnr1;0) > Ck "\ D/d(1ogk)P
holds at mosk times. Furthermorey, — 7., > 0, and for|| f[|,; x) <R,

> 7 —Zyi<z—minf < 2|, <2R,
n

S0z, — 2z, > 2Rk at mostk times. Since; — f(Xnt1) < 7, — Z;,,, we have als@;; — f(Xn+1) >
2Rk ! at mosk times. Thus there is a tinmg, k < n < 3k, for whichs,, (¥, 1;8) < Ck “1/d(logk)?
andz, — f(Xp1) < 2Rk,

Let f have minimune* atx*. Fork large,x, 41 will have been chosen by expected improvement
(rather than being an initial design point, chosen at random). Th&hiasion-increasing im, for
3k < n< 3(k+ 1) we have by Lemma 8,

Z-7 <z, -7
< TT((_RF%Elnk(x*;n)
< TT((_RF%Elnk(xnkH;Tr)
< m <2Rk‘1+C(R+ o)k v/ d('og")ﬁ> ‘

This bound is uniform irf with || f ||, x) < R, so we obtain

Ln(E1 (1), #H5(X),R) = O(n~"V/4(logn)P). O

A.3 Estimated Parameters
To prove Theorem 3, we first establish lower bounds on the posteriamnee.

Lemma 9. Given6,8Y € RY, pick sequences,c X, 8- < 8, < 8Y. Then for open & X,
Supsn(x; 8) = Q(n~"/9),
XeS
uniformly in the sequenceg,oy.
Proof. Sis open, so contains a hypercubeFork € N, letn = %(Zk)d, and construct2functions
Wm on T with [[m]l, x) < 1, as in the proof of Theorem 1. Le? = 4 ,(6Y /8h); then by
Lemma 4,[[Um|| 55 (x) < C.
Givenn design pointq, . .., Xn, there must be somé@p, such thatpm(x) =0, 1<i <n. By

Lemma 6, the posterior mean ¢f, given these observations is the zero function. ThuxferT
minimizing Y,
$1(X;Bn) = C ™50 (% Bn) [ Wml| s (x) > C*{Wm(X) — 0] = Q(k™).
As sn(x;8) is non-increasing im, for 3(2(k—1))¢ < n < $(2k) we obtain
SUpsa(X; 6n) > igsps%w(x; B) = Q(k™Y) = Q(nv/9). O

XES
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Next, we bound the expected improvement when prior parameters are edtlmateximum
likelihood.

Lemma 10. Let \|f||%U x) SR % ¥n € X Set h(X) =z, — £(X), sai(X) = s(X 6), and t(x) =
Ih(X)/sn(X). Suppose:

(i) forsome i< j, z # z;

(i) forsome |, = —, th(Xn+1) < Toh whenever §Xn1) > 0;
(ii)) 1n(ynr2) > 0; and
(iv) for some C> 0, sy(Yny1) > € /.

Then forft, as in Definition 2, eventually B(X,+1; T) < Eln(Yni1; T,). If the conditions hold on a
subsequence, so does the conclusion.

Proof. Let R(8) be given by (7), and sé¥ = R(8,). Forn> j, R2 > 0, and by Lemma 4 and
Corollary 1,

R 15 0 < = R /01
Thus 0< 62 < Sc. Then ifsy(x) > 0, for somelun(X) —th(X)| < S,
Eln(X; Tn) = Gnsn(X)T(Un(X)/Gn),
as in the proof of Lemma 8.
If Sv(Xn+1) =0, thenx,1 € {Xq,...,%n}, SO
Eln(X1+1;Th) = 0 < Eln(Yn+1; ).

Whens,(xn1+1) > 0, ast is increasing we may upper bouid, (Xn;1; Th) usingun(Xn+1) < Th + S
and lower bound Iy (Yn1; ) USINGUn(Yns1) > —S Sinces (X 1) < 1, andt(x) = O(x2e*/2)
asx — —oo (Abramowitz and Stegun, 1965, §7.1),

Eln(Xn:1; T0) < 1((Th+9S)/6n)
Eln(Yni1:Th) ~ e C/%1(-S/6y)

_0 ((Tn n S)—ZEC/cn—<Tr$+2sm/26%)
_0 < (Tot S)72e—(Tn2+ZST172C82)/2520n>

=0(1).

If the conditions hold on a subsequence, we may similarly argue along thegcuence. Ol
Finally, we will require the following technical lemma.
Lemma 11. Let x,...,X, be random variables taking valuesitf. Given open & RY, there exist

open UC S for whichP(iL;{x € U}) is arbitrarily small.
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Proof. Givene > 0, fix m> n/g, and pick disjoint open set$y,...,U, C S Then
m
> EM#{x € Uj}] <E#{x € R} =n,
=1

so there exists); with

P(U{xi er}> <EM#{x €Uj}] <n/m<e. O

We may now prove the theorem. We will construct a functfoan which theE (1) strategy
never observes within a regidil. We may then construct a functigp agreeing withf except on
W, but having different minimum. As the strategy cannot distinguish betweamd g, it cannot
successfully find the minimum of both.

Proof of Theorem 3Let theE (1) strategy choose initial design poins . . ., X, independently of
f. Givene > 0, by Lemma 11 there exists opblg C X for which IPE'(ﬁ)(xl, ..o X €Up) <€ we
may choos&Jy so thatp = X\ Ug has non-empty interior. Pick opéh such thav; = U_l C Ugp, and
setf to be aC* function, 0 or\p, 1 onVy, and everywhere non-negative. By Lemmd ¥ Hgu (X).

We work conditional on the ever®, having probability at least X ¢, thatz; = 0, and thus
z, =0 for all n > k. Supposex, € V; infinitely often, so thez, are not all equal. By Lemma 7,
Sh(Xnt1; én) — 0, so on a subsequence with 1 € V1, we have

th= (Z— T (Xn+1))/Sn(Xn+1;6n) = —$i(Xn2;8n) 1 — —o0

wheneversq(xnﬂ;én) > 0. However, by Lemma 9, there are poigtse Vo with z, — f(yn1) =
0, andsn(ynﬂ;én) = Q(n*"/d). Hence by Lemma 1 I (Xn11; ) < Eln(Ynr1; T5) for somen,
contradicting the definition of,. 1.

Hence, orA, there is a random variable taking values i, for whichn > T = x, € V1.
Hence there exists a constant N for which the evenB = AN{T <t} hasIP"fE'(m-probability at
least 1- 2¢. By Lemma 11, we thus have an open\8et: V; for which the event

C=BN{x gW:neN} =BNn{x, ¢W:n<t}

hasP%'™-probability at least & 3e.

Construct a smooth functiog by adding tof a C* function which is 0 outsid&V, and has
minimum—2. Then mirg = —1, but on the ever&, E|(f1) cannot distinguish betweenandg, and
g(x;) > 0. Thus ford = 1,

25" (infg() —ming > 8) > P§'(c) - P17 (C) > 1 3¢

As the behaviour oEI(T1) is invariant under rescaling, we may scgleo have normi|g| ; x) < R,
and the above remains true for sode O. O

Proof of Theorem 4 As in the proof of Theorem 2, we will show there are tirmgsvhen the ex-
pected improvement is small, gx,, ) must be close to the minimum. First, however, we must
control the estimated parameté% On.
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If the z, are all equal, then by assumption theare dense iiX, sof is constant, and the result
is trivial. Suppose the, are not all equal, and 1t be a random variable satisfyirg # z for
somei < T. SetU = infgg-gu Rr(6). Rr() is a continuous positive function, 46> 0. Let
F=RM%,(8Y/6"). By Lemma 4 f s, x) < S so by Corollary 1, fon > T,

U <Rr(6n) <8n<|fllsy ) <S

As in the proof of Theorem 2, we have a const@nt 0, and somey, k < ng < 3k, for which
Z, — f(Xn41) < 2Rk and sy, (Xn+1: 6, ) < Ck%(logk)P. Then fork > T, 3k < n < 3(k+1),
arguing as in Theorem 2 we obtain

4*1 -7 < Z;k -z
1(S/Gny)
~ 1(=S/Gny)
(V)

< WV) 1 ~(VAL)/d B
< 8] (2Rk +2CSk (logk) )

(2Rk‘1+C(S+ &, )k D/9(10g k)B)

We thus have a random varialtflé satisfyingz; — z* < C'n-(V"1/d(jogn)P for all n, and the result
follows. O

A.4 Near-Optimal Rates

To prove Theorem 5, we first show that the points chosen at randorhewijuasi-uniform irX.

Lemma 12. Let x, be i.i.d. random variables, distributed uniformly over X, and define theihmes
norm,

n
hn == supmin||x—xi|.
xeX 1=1
For anyy > 0, there exists C> 0 such that
P(h, > C(n/logn)~¥9) = O(n™Y).

Proof. We will partition X into n regions of siz&d(n~%/9), and show that with high probability we
will place anx; in each one. Then every poirtwill be close to arx;, and the mesh norm will be
small.
SupposeX = [0,1]9, fix k € N, and divideX into n = k% sub-cubesty = £(m+[0,1]%), for
me {0,...,k—1}9. Let Iy, be the indicator function of the event
{Xi & Xm:1<i<|ynlogn|},

and define
b= [z Im] = nE[lg] = n(1— 1/n)bmioan] _ ngviogn — p=(y-1),
m

Fornlarge,u, < 1, so by the generalized Chernoff bound of Panconesi and Srama997, §83.1),

(-1 \ '
(o)« (%) conmen
m

M;Un
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On the even§ Im < 1, Im = 0 for all m. For anyx € X, we then have € Xy, for somem, and
Xj € Xm for some 1< j < [ynlogn|. Thus

[ynlogn|
m|n Ix—x || < [x—xj|| < Vdk ™.

As this bound is uniform irx, we obtainhiogn| < vVdk™. Thus forn=kd,
(h[ynlogn > \Fk_ ) (k_ (y—l))7

and ashy is non-increasing im, this bound holds also fdkd < n < (k+1)9. By a change of
variables, we then obtain

P(hy > C(n/ylogn) /%) = O((n/ylogn) =)y,

and the result follows by choosindarge. For generaX, asX is bounded it can be partitioned into
n regions of measur®(n—%/9), so we may argue similarly. O

We may now prove the theorem. We will show that the paxqtsiust be quasi-uniform iX, so
posterior variances must be small. Then, as in the proofs of Theorents4 are have times when
the expected improvement is small, 50¢;) is close to mirf.

Proof of Theorem 5First suppose < «. Let theEl(-,¢) choosek initial design points indepen-
dent of f, and suppose > 2k. Let A, be the event thattin| of the pointsx,1,...,%, are chosen
uniformly at random, so by a Chernoff bound,

PEI (Aﬁ) < e—en/16.
Let B, be the event that one of the points 1, ..., X2y iS chosen by expected improvement, so
PEICE)(BG) =€,

Finally, letC, be the event thak, andB, occur, and further the mesh nohm< C(n/logn)~%/9, for
the constan€ from Lemma 12. Set,, = (n/logn)~¥/%(logn)®. Then by Lemma 12, sind@, C Ay,

PE'CE(co) < Clry,

for a constan€’ > 0 not depending orf.

Let EI(-,€) have priort, at timen, with (fixed or estimated) parameters, 6,. Suppose
1115, x) < R and set? = R, (8" /84), so by Lemma 4 flls6 x) <S If a=0, then by
Narc0W|ch et al. (2003, §6),

supsn(x; 8) = O(M(B)hy)
xeX

uniformly in 6, for M(8) a continuous function d. Hence on the evef,,

sups(X;8n) <sup sup s (x;0) <C'rp,

xeX xeX pt<p<pY

for a constan€” > 0 depending only oiX, K, C, 8- and@V. If a > 0, the same result holds by a
similar argument.
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On the even€,, we have some,, chosen by expected improvementc m< 2n. Let f have
minimumz* atx*. Then by Lemma 8,
Zn 1—Z <Eln 1(X";-) +C"Shn 1
< Elm-1(Xm; ')+C”S|'mfl
< (f(Xm-1) — f(xm)) " +C"(2S+ Om-1)rm-1
S Z;;‘]—l - an—l-CNTrn,
for a constanT > 0. (UnderEl (T, €), we havel = 2S+ o; otherwiseoy,_1 < Shy Corollary 1, so

T =3S) Thus, rearranging,
Z,—2<Z,—Z <C'Tr,.

On the evenC;, we havez,, — z* < 2|/ f||,, < 2R, so
EI(-, EI(-,
Ef 9 20,1~ 2] <Ef (3, 7]
< 2RPE'C8(C8) +-C" Ty
< (2CR+C'T)r.

As this bound is uniform irf with || f ||%U x) < R the result follows. If insteadl = «, the above
argument holds for any < . Ol
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