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Abstract
In the efficient global optimization problem, we minimize anunknown functionf , using as few ob-
servationsf (x) as possible. It can be considered a continuum-armed-banditproblem, with noiseless
data, and simple regret. Expected-improvement algorithmsare perhaps the most popular methods
for solving the problem; in this paper, we provide theoretical results on their asymptotic behaviour.

Implementing these algorithms requires a choice of Gaussian-process prior, which determines
an associated space of functions, its reproducing-kernel Hilbert space (RKHS). When the prior is
fixed, expected improvement is known to converge on the minimum of any function in its RKHS.
We provide convergence rates for this procedure, optimal for functions of low smoothness, and
describe a modified algorithm attaining optimal rates for smoother functions.

In practice, however, priors are typically estimated sequentially from the data. For standard
estimators, we show this procedure may never find the minimumof f . We then propose alternative
estimators, chosen to minimize the constants in the rate of convergence, and show these estimators
retain the convergence rates of a fixed prior.
Keywords: convergence rates, efficient global optimization, expected improvement, continuum-
armed bandit, Bayesian optimization

1. Introduction

Suppose we wish to minimize a continuous functionf : X →R, whereX is a compact subset ofRd.
Observingf (x) is costly (it may require a lengthy computer simulation or physical experiment), so
we wish to use as few observations as possible. We know little about the shape of f ; in particular
we will be unable to make assumptions of convexity or unimodality. We thereforeneed aglobal
optimization algorithm, one which attempts to find a global minimum.

Many standard global optimization algorithms exist, including genetic algorithms, multistart,
and simulated annealing (Pardalos and Romeijn, 2002), but these algorithms are designed for func-
tions that are cheap to evaluate. Whenf is expensive, we need anefficientalgorithm, one which
will choose its observations to maximize the information gained.

We can consider this a continuum-armed-bandit problem (Srinivas et al., 2010, and references
therein), with noiseless data, and loss measured by the simple regret (Bubeck et al., 2009). At time
n, we choose a design pointxn ∈ X, make an observationzn = f (xn), and then report a pointx∗n
where we believef (x∗n) will be low. Our goal is to find a strategy for choosing thexn andx∗n, in
terms of previous observations, so as to minimizef (x∗n).

We would like to find a strategy which can guarantee convergence: for functions f in some
smoothness class,f (x∗n) should tend to minf , preferably at some fast rate. The simplest method

c©2011 Adam D. Bull.



BULL

would be to fix a sequence ofxn in advance, and setx∗n = argminf̂n, for some approximation̂fn
to f . We will show that if f̂n converges in supremum norm at the optimal rate, thenf (x∗n) also
converges at its optimal rate. However, while this strategy gives a good worst-case bound, on
average it is clearly a poor method of optimization: the design pointsxn are completely independent
of the observationszn.

We may therefore ask if there are more efficient methods, with better average-case performance,
that nevertheless provide good guarantees of convergence. The difficulty in designing such a method
lies in the trade-off betweenexplorationandexploitation. If we exploit the data, observing in regions
where f is known to be low, we will be more likely to find the optimum quickly; however, unless
we explore every region ofX, we may not find it at all (Macready and Wolpert, 1998).

Initial attempts at this problem include work on Lipschitz optimization (summarized in Hansen
et al., 1992) and the DIRECT algorithm (Jones et al., 1993), but perhaps the best-known strategy is
expected improvement. It is sometimes called Bayesian optimization, and first appeared in Mǒckus
(1974) as a Bayesian decision-theoretic solution to the problem. Contemporary computers were not
powerful enough to implement the technique in full, and it was later popularized by Jones et al.
(1998), who provided a computationally efficient implementation. More recently, it has also been
called a knowledge-gradient policy by Frazier et al. (2009). Many extensions and alterations have
been suggested by further authors; a good summary can be found in Brochu et al. (2010).

Expected improvement performs well in experiments (Osborne, 2010, §9.5), but little is known
about its theoretical properties. The behaviour of the algorithm dependscrucially on the Gaussian
process priorπ chosen forf . Each prior has an associated space of functionsH , its reproducing-
kernel Hilbert space.H contains all functionsX → R as smooth as a posterior mean off , and is
the natural space in which to study questions of convergence.

Vazquez and Bect (2010) show that whenπ is a fixed Gaussian process prior of finite smooth-
ness, expected improvement converges on the minimum of anyf ∈ H , and almost surely forf
drawn fromπ. Grunewalder et al. (2010) bound the convergence rate of a computationally infea-
sible version of expected improvement: for priorsπ of smoothnessν, they show convergence at a
rateO∗(n−(ν∧0.5)/d) on f drawn fromπ. We begin by bounding the convergence rate of the feasible
algorithm, and show convergence at a rateO∗(n−(ν∧1)/d) on all f ∈ H . We go on to show that a
modification of expected improvement converges at the near-optimal rateO∗(n−ν/d).

For practitioners, however, these results are somewhat misleading. In typical applications, the
prior is not held fixed, but depends on parameters estimated sequentially from the data. This process
ensures the choice of observations is invariant under translation and scaling of f , and is believed
to be more efficient (Jones et al., 1998, §2). It has a profound effect on convergence, however:
Locatelli (1997, §3.2) shows that, for a Brownian motion prior with estimated parameters, expected
improvement may not converge at all.

We extend this result to more general settings, showing that for standard priors with estimated
parameters, there exist smooth functionsf on which expected improvement does not converge. We
then propose alternative estimates of the prior parameters, chosen to minimize the constants in the
convergence rate. We show that these estimators give an automatic choice of parameters, while
retaining the convergence rates of a fixed prior.

Table 1 summarizes the notation used in this paper. We sayf : Rd → R is a bump function if
f is infinitely differentiable and of compact support, andf : Rd → C is Hermitian if f (x) = f (−x).
We use the Landau notationf = O(g) to denote limsup| f/g|< ∞, and f = o(g) to denotef/g→ 0.
If g = O( f ), we say f = Ω(g), and if both f = O(g) and f = Ω(g), we say f = Θ(g). If further
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f/g→ 1, we sayf ∼ g. Finally, if f andg are random, andP(sup| f/g| ≤ M)→ 1 asM → ∞, we
say f = Op(g).

In Section 2, we briefly describe the expected-improvement algorithm, and detail our assump-
tions on the priors used. We state our main results in Section 3, and discuss implications for further
work in Section 4. Finally, we give proofs in Appendix A.

2. Expected Improvement

Suppose we wish to minimize an unknown functionf , choosing design pointsxn and estimated
minima x∗n as in the introduction. If we pick a prior distributionπ for f , representing our beliefs
about the unknown function, we can describe this problem in terms of decision theory. Let(Ω,F ,P)
be a probability space, equipped with a random processf having lawπ. A strategyu is a collection
of random variables(xn), (x∗n) taking values inX. Setzn := f (xn), and define the filtrationFn :
= σ(xi ,zi : i ≤ n). The strategyu is valid if xn is conditionally independent off givenFn−1, and
likewise x∗n given Fn. (Note that we allow random strategies, provided they do not depend on
unknown information aboutf .)

When taking probabilities and expectations we will writeP
u
π andEu

π, denoting the dependence
on both the priorπ and strategyu. The average-case performance at some future timeN is then
given by the expected loss,

E
u
π[ f (x

∗
N)−min f ],

and our goal, givenπ, is to choose the strategyu to minimize this quantity.

2.1 Bayesian Optimization

For N > 1 this problem is very computationally intensive (Osborne, 2010, §6.3), butwe can solve
a simplified version of it. First, we restrict the choice ofx∗n to the previous design pointsx1, . . . ,xn.
(In practice this is reasonable, as choosing anx∗n we have not observed can be unreliable.) Secondly,
rather than finding an optimal strategy for the problem, we derive the myopic strategy: the strategy
which is optimal if we always assume we will stop after the next observation. This strategy is sub-
optimal (Ginsbourger et al., 2008, §3.1), but performs well, and greatly simplifies the calculations
involved.

In this setting, givenFn, if we are to stop at timen we should choosex∗n := xi∗n, wherei∗n :=
argmin1,...,nzi . (In the case of ties, we may pick any minimizingi∗n.) We then suffer a lossz∗n−min f ,
wherez∗n := zi∗n. Were we to observe atxn+1 before stopping, the expected loss would be

E
u
π[z

∗
n+1−min f | Fn],

so the myopic strategy should choosexn+1 to minimize this quantity. Equivalently, it should maxi-
mize the expected improvement over the current loss,

EIn(xn+1;π) := E
u
π[z

∗
n−z∗n+1 | Fn] = E

u
π[(z

∗
n−zn+1)

+ | Fn], (1)

wherex+ = max(x,0).
So far, we have merely replaced one optimization problem with another. However, for suitable

priors,EIn can be evaluated cheaply, and thus maximized by standard techniques. Theexpected-
improvement algorithm is then given by choosingxn+1 to maximize (1).
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Section 1

f unknown functionX → R to be minimized
X compact subset ofRd to minimize over
d number of dimensions to minimize over
xn points inX at which f is observed
zn observationszn = f (xn) of f
x∗n estimated minimum off , givenz1, . . . ,zn

Section 2.1

π prior distribution for f
u strategy for choosingxn, x∗n
Fn filtrationFn = σ(xi ,zi : i ≤ n)
z∗n best observationz∗n = mini=1,...,nzi

EIn expected improvement givenFn

Section 2.2

µ, σ2 global mean and variance of Gaussian-process priorπ
K underlying correlation kernel forπ
Kθ correlation kernel forπ with length-scalesθ

ν, α smoothness parameters ofK
µ̂n, f̂n, s2

n, R̂2
n quantities describing posterior distribution off givenFn

Section 2.3

EI(π) expected improvement strategy with fixed prior
σ̂2

n, θ̂n estimates of prior parametersσ2, θ
cn rate of decay of̂σ2

n

θL, θU bounds on̂θn

EI(π̂) expected improvement strategy with estimated prior

Section 3.1

Hθ(S) reproducing-kernel Hilbert space ofKθ onS
Hs(D) Sobolev Hilbert space of orders onD

Section 3.2

Ln loss suffered over an RKHS ball aftern steps

Section 3.3

EI(π̃) expected improvement strategy with robust estimated prior

Section 3.4

EI( · ,ε) ε-greedy expected improvement strategies

Table 1: Notation

2882



CONVERGENCERATES OFEFFICIENT GLOBAL OPTIMIZATION

2.2 Gaussian Process Models

We still need to choose a priorπ for f . Typically, we modelf as a stationary Gaussian process: we
consider the valuesf (x) to be jointly Gaussian, with mean and covariance

Eπ[ f (x)] = µ, Covπ[ f (x), f (y)] = σ2Kθ(x−y). (2)

µ∈R is the global mean off ; we place a flat prior onµ, reflecting our uncertainty over the location
of f .

σ > 0 is the global scale of variation off , andKθ : Rd →R its correlation kernel, governing the
local properties off . In the following, we will consider kernels

Kθ(t1, . . . , td) := K(t1/θ1, . . . , td/θd), (3)

for an underlying kernelK with K(0) = 1. (Note that we can always satisfy this condition by
suitably scalingK andσ.) Theθi > 0 are the length-scales of the process: two valuesf (x) and f (y)
will be highly correlated if eachxi − yi is small compared withθi . For now, we will assume the
parametersσ andθ are fixed in advance.

For (2) and (3) to define a consistent Gaussian process,K must be a symmetric positive-definite
function. We will also make the following assumptions.

Assumption 1. K is continuous and integrable.

K thus has Fourier transform

K̂(ξ) :=
∫
Rd

e−2πi〈x,ξ〉K(x)dx,

and by Bochner’s theorem,̂K is non-negative and integrable.

Assumption 2. K̂ is isotropic and radially non-increasing.

In other words,K̂(x) = k̂(‖x‖) for a non-increasing function̂k : [0,∞)→ [0,∞); as a consequence,
K is isotropic.

Assumption 3. As x→ ∞, either:

(i) K̂(x) = Θ(‖x‖−2ν−d) for someν > 0; or

(ii) K̂(x) = O(‖x‖−2ν−d) for all ν > 0 (we will then say thatν = ∞).

Note the conditionν > 0 is required forK̂ to be integrable.

Assumption 4. K is Ck, for k the largest integer less than2ν, and at the origin, K has k-th order
Taylor approximation Pk satisfying

|K(x)−Pk(x)|= O
(
‖x‖2ν(− log‖x‖)2α

)

as x→ 0, for someα ≥ 0.
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Whenα = 0, this is just the condition thatK be 2ν-Hölder at the origin; whenα > 0, we instead
require this condition up to a log factor.

The rateν controls the smoothness of functions from the prior: almost surely,f has continuous
derivatives of any orderk< ν (Adler and Taylor, 2007, §1.4.2). Popular kernels include the Matérn
class,

Kν(x) :=
21−ν

Γ(ν)

(√
2ν‖x‖

)ν
kν

(√
2ν‖x‖

)
, ν ∈ (0,∞),

wherekν is a modified Bessel function of the second kind, and the Gaussian kernel,

K∞(x) := e−
1
2‖x‖2

,

obtained in the limitν → ∞ (Rasmussen and Williams, 2006, §4.2). Between them, these kernels
cover the full range of smoothness 0< ν ≤∞. Both kernels satisfy Assumptions 1–4 for theν given;
α = 0 except for the Mat́ern kernel withν ∈N, whereα = 1

2 (Abramowitz and Stegun, 1965, §9.6).
Having chosen our prior distribution, we may now derive its posterior. We find

f (x) | z1, . . . ,zn ∼ N
(

f̂n(x;θ),σ2s2
n(x;θ)

)
,

where

µ̂n(θ) :=
1TV−1z
1TV−11

, (4)

f̂n(x;θ) := µ̂n+vTV−1(z− µ̂n1), (5)

and

s2
n(x;θ) := 1−vTV−1v+

(1−1TV−1v)2

1TV−11
, (6)

for z= (zi)
n
i=1, V = (Kθ(xi −x j))

n
i, j=1, andv= (Kθ(x−xi))

n
i=1 (Santner et al., 2003, §4.1.3). Equiv-

alently, these expressions are the best linear unbiased predictor off (x) and its variance, as given in
Jones et al. (1998, §2). We will also need the reduced sum of squares,

R̂2
n(θ) := (z− µ̂n1)TV−1(z− µ̂n1). (7)

2.3 Expected Improvement Strategies

Under our assumptions onπ, we may now derive an analytic form for (1), as in Jones et al. (1998,
§4.1). We obtain

EIn(xn+1;π) = ρ
(
z∗n− f̂n(xn+1;θ),σsn(xn+1;θ)

)
, (8)

where

ρ(y,s) :=

{
yΦ(y/s)+sϕ(y/s), s> 0,

max(y,0), s= 0,
(9)

andΦ andϕ are the standard normal distribution and density functions respectively.
For a priorπ as above, expected improvement choosesxn+1 to maximize (8), but this does not

fully define the strategy. Firstly, we must describe how the strategy breaksties, when more than one
x ∈ X maximizesEIn. In general, this will not affect the behaviour of the algorithm, so we allow
any choice ofxn+1 maximizing (8).
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Secondly, we must say how to choosex1, as the above expressions are undefined whenn= 0.
In fact, Jones et al. (1998, §4.2) find that expected improvement can beunreliable given few data
points, and recommend that several initial design points be chosen in a random quasi-uniform ar-
rangement. We will therefore assume that until some fixed timek, pointsx1, . . . ,xk are instead
chosen by some (potentially random) method independent off . We thus obtain the following strat-
egy.

Definition 1. An EI(π) strategy chooses:

(i) initial design points x1, . . . ,xk independently of f ; and

(ii) further design points xn+1 (n≥ k) from the maximizers of(8).

So far, we have not considered the choice of parametersσ andθ. While these can be fixed in
advance, doing so requires us to specify characteristic scales of the unknown functionf , and causes
expected improvement to behave differently on a rescaling of the same function. We would prefer
an algorithm which could adapt automatically to the scale off .

A natural approach is to take maximum likelihood estimates of the parameters, as recommended
by Jones et al. (1998, §2). Givenθ, the MLE σ̂2

n = R̂2
n(θ)/n; for full generality, we will allow

any choiceσ̂2
n = cnR̂2

n(θ), wherecn = o(1/ logn). Estimates ofθ, however, must be obtained by
numerical optimization. Asθ can vary widely in scale, this optimization is best performed over
logθ; as the likelihood surface is typically multimodal, this requires the use of a globaloptimizer.
We must therefore place (implicit or explicit) bounds on the allowed values of logθ. We have thus
described the following strategy.

Definition 2. Let π̂n be a sequence of priors, with parametersσ̂n, θ̂n satisfying:

(i) σ̂2
n = cnR̂2

n(θ̂n) for constants cn > 0, cn = o(1/ logn); and

(ii) θL ≤ θ̂n ≤ θU for constantsθL, θU ∈ R
d
+.

An EI(π̂) strategy satisfies Definition 1, replacingπ with π̂n in (8).

3. Convergence Rates

To discuss convergence, we must first choose a smoothness class forthe unknown functionf .
Each kernelKθ is associated with a space of functionsHθ(X), its reproducing-kernel Hilbert space
(RKHS) or native space.Hθ(X) contains all functionsX → R as smooth as a posterior mean of
f , and is the natural space to study convergence of expected-improvement algorithms, allowing a
tractable analysis of their asymptotic behaviour.

3.1 Reproducing-Kernel Hilbert Spaces

Given a symmetric positive-definite kernelK onR
d, setkx(t) = K(t −x). ForS⊆ R

d, letE(S) be
the space of functionsS→ R spanned by thekx, for x ∈ S. FurnishE(S) with the inner product
defined by

〈kx,ky〉 := K(x−y).
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The completion ofE(S) under this inner product is the reproducing-kernel Hilbert spaceH (S) of K
onS. The membersf ∈H (S) are abstract objects, but we can identify them with functionsf : S→R

through the reproducing property,
f (x) = 〈 f ,kx〉,

which holds for allf ∈E(S). See Aronszajn (1950), Berlinet and Thomas-Agnan (2004), Wendland
(2005) and van der Vaart and van Zanten (2008).

We will find it convenient also to use an alternative characterization ofH (S). We begin by
describingH (Rd) in terms of Fourier transforms. Let̂f denote the Fourier transform of a function
f ∈ L2. The following result is stated in Parzen (1963, §2), and proved in Wendland (2005, §10.2);
we give a short proof in Appendix A.

Lemma 1. H (Rd) is the space of real continuous f∈ L2(Rd) whose norm

‖ f‖2
H (Rd) :=

∫ | f̂ (ξ)|2

K̂(ξ)
dξ

is finite, taking0/0= 0.

We may now describeH (S) in terms ofH (Rd).

Lemma 2 (Aronszajn, 1950, §1.5). H (S) is the space of functions f= g|S for some g∈ H (Rd),
with norm

‖ f‖H (S) := inf
g|S= f

‖g‖H (Rd),

and there is a unique g minimizing this expression.

These spaces are in fact closely related to the Sobolev Hilbert spaces offunctional analysis. Say
a domainD ⊆R

d is Lipschitz if its boundary is locally the graph of a Lipschitz function (see Tartar,
2007, §12, for a precise definition). For such a domainD, the Sobolev Hilbert spaceHs(D) is the
space of functionsf : D → R, given by the restriction of someg : Rd → R, whose norm

‖ f‖2
Hs(D) := inf

g|D= f

∫ |ĝ(ξ)|2

(1+‖ξ‖2)s/2
dξ

is finite. Thus, for the kernelK with Fourier transform̂K(ξ) = (1+‖ξ‖2)s/2, this is just the RKHS
H (D). More generally, ifK satisfies our assumptions withν < ∞, these spaces are equivalent in the
sense of normed spaces: they contain the same functions, and have norms‖·‖1,‖·‖2 satisfying

C‖ f‖1 ≤ ‖ f‖2 ≤C′‖ f‖1,

for constants 0<C≤C′.

Lemma 3. LetHθ(S) denote the RKHS of Kθ on S, and D⊆ R
d be a Lipschitz domain.

(i) If ν < ∞, Hθ(D̄) is equivalent to the Sobolev Hilbert space Hν+d/2(D).

(ii) If ν = ∞, Hθ(D̄) is continuously embedded in Hs(D) for all s.

Thus if ν < ∞, andX is, say, a product of intervals∏d
i=1[ai ,bi ], the RKHSHθ(X) is equivalent

to the Sobolev Hilbert spaceHν+d/2(∏d
i=1(ai ,bi)), identifying each function in that space with its

unique continuous extension toX.
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3.2 Fixed Parameters

We are now ready to state our main results. LetX ⊂ R
d be compact with non-empty interior. For

a function f : X → R, letPu
f andEu

f denote probability and expectation when minimizing the fixed
function f with strategyu. (Note that whilef is fixed,u may be random, so its performance is still
probabilistic in nature.) We define the loss suffered over the ballBR in Hθ(X) after n steps by a
strategyu,

Ln(u,Hθ(X),R) := sup
‖ f‖Hθ(X)≤R

E
u
f [ f (x

∗
n)−min f ].

We will say thatu converges on the optimum at ratern, if

Ln(u,Hθ(X),R) = O(rn)

for all R> 0. Note that we do not allowu to vary withR; the strategy must achieve this rate without
prior knowledge of‖ f‖Hθ(X).

We begin by showing that the minimax rate of convergence isn−ν/d.

Theorem 1. If ν < ∞, then for anyθ ∈ R
d
+, R> 0,

inf
u

Ln(u,Hθ(X),R) = Θ(n−ν/d),

and this rate can be achieved by a strategy u not depending on R.

The upper bound is provided by a naive strategy as in the introduction: wefix a quasi-uniform
sequencexn in advance, and takex∗n to minimize a radial basis function interpolant of the data. As
remarked previously, however, this naive strategy is not very satisfying; in practice it will be outper-
formed by any good strategy varying with the data. We may thus ask whether more sophisticated
strategies, with better practical performance, can still provide good worst-case bounds.

One such strategy is theEI(π) strategy of Definition 1. We can show this strategy converges at
least at raten−(ν∧1)/d, up to log factors.

Theorem 2. Let π be a prior with length-scalesθ ∈ R
d
+. For any R> 0,

Ln(EI(π),Hθ(X),R) =

{
O(n−ν/d(logn)α), ν ≤ 1,

O(n−1/d), ν > 1.

For ν ≤ 1, these rates are near-optimal. Forν > 1, we are faced with a more difficult problem;
we discuss this in more detail in Section 3.4.

3.3 Estimated Parameters

First, we consider the effect of the prior parameters onEI(π). While the previous result gives a
convergence rate for any fixed choice of parameters, the constant in that rate will depend on the
parameters chosen; to choose well, we must somehow estimate these parameters from the data. The
EI(π̂) strategy, given by Definition 2, uses maximum likelihood estimates for this purpose. We can
show, however, that this may cause the strategy to never converge.
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x

f (x)

Figure 1: A counterexample from Theorem 3

Theorem 3. Supposeν < ∞. Given θ ∈ R
d
+, R> 0, ε > 0, there exists f∈ Hθ(X) satisfying

‖ f‖Hθ(X) ≤ R, and for some fixedδ > 0,

P
EI(π̂)
f

(
inf
n

f (x∗n)−min f ≥ δ
)
> 1− ε.

The counterexamples constructed in the proof of the theorem may be difficult to minimize, but
they are not badly-behaved (Figure 1). A good optimization strategy should be able to minimize
such functions, and we must ask why expected improvement fails.

We can understand the issue by considering the constant in Theorem 2. Define

τ(x) := xΦ(x)+ϕ(x).

From the proof of Theorem 2, the dominant term in the convergence rate has constant

C(R+σ)
τ(R/σ)

τ(−R/σ)
, (10)

for C> 0 not depending onR or σ. In Appendix A, we will prove the following result.

Corollary 1. R̂n(θ) is non-decreasing in n, and bounded above by‖ f‖Hθ(X).

Hence for fixedθ, the estimatêσ2
n = R̂2

n(θ)/n≤ R2/n, and thusR/σ̂n ≥ n1/2. Inserting this choice
into (10) gives a constant growing exponentially inn, destroying our convergence rate.

To resolve the issue, we will instead try to pickσ to minimize (10). The termR+σ is increasing
in σ, and the termτ(R/σ)/τ(−R/σ) is decreasing inσ; we may balance the terms by takingσ = R.
The constant is then proportional toR, which we may minimize by takingR= ‖ f‖Hθ(X). In practice,
we will not know‖ f‖Hθ(X) in advance, so we must estimate it from the data; from Corollary 1, a

convenient estimate iŝRn(θ).
Suppose, then, that we make some bounded estimateθ̂n of θ, and set̂σ2

n = R̂2
n(θ̂n). As Theorem 3

holds for anyσ̂2
n of faster than logarithmic decay, such a choice is necessary to ensure convergence.
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(We may also chooseθ to minimize (10); we might then pick̂θn minimizing R̂n(θ)∏d
i=1 θ−ν/d

i , but
our assumptions on̂θn are weak enough that we need not consider this further.)

If we believe our Gaussian-process model, this estimateσ̂n is certainly unusual. We should,
however, take care before placing too much faith in the model. The function inFigure 1 is a rea-
sonable function to optimize, but as a Gaussian process it is highly atypical: there are intervals on
which the function is constant, an event which in our model occurs with probability zero. If we
want our algorithm to succeed on more general classes of functions, wewill need to choose our
parameter estimates appropriately.

To obtain good rates, we must add a further condition to our strategy. Ifz1 = · · ·= zn, EIn( · ; π̂n)
is identically zero, and all choices ofxn+1 are equally valid. To ensure we fully exploref , we will
therefore require that when our strategy is applied to a constant functionf (x) = c, it produces a
sequencexn dense inX. (This can be achieved, for example, by choosingxn+1 uniformly at random
from X whenz1 = · · ·= zn.) We have thus described the following strategy.

Definition 3. An EI(π̃) strategy satisfies Definition 2, except:

(i) we instead set̂σ2
n = R̂2

n(θ̂n); and

(ii) we require the choice of xn+1 maximizing(8) to be such that, if f is constant, the design points
are almost surely dense in X.

We cannot now prove a convergence result uniform over balls inHθ(X), as the rate of conver-
gence depends on the ratioR/R̂n, which is unbounded. (Indeed, any estimator of‖ f‖Hθ(X) must
sometimes perform poorly:f can appear from the data to have arbitrarily small norm, while in
fact having a spike somewhere we have not yet observed.) We can, however, provide the same
convergence rates as in Theorem 2, in a slightly weaker sense.

Theorem 4. For any f ∈HθU (X), underPEI(π̃)
f ,

f (x∗n)−min f =

{
Op(n−ν/d(logn)α), ν ≤ 1,

Op(n−1/d), ν > 1.

3.4 Near-Optimal Rates

So far, our rates have been near-optimal only forν ≤ 1. To obtain good rates forν > 1, standard
results on the performance of Gaussian-process interpolation (Narcowich et al., 2003, §6) then
require the design pointsxi to be quasi-uniform in a region of interest. It is unclear whether this
occurs naturally under expected improvement, but there are many ways wecan modify the algorithm
to ensure it.

Perhaps the simplest, and most well-known, is anε-greedy strategy (Sutton and Barto, 1998,
§2.2). In such a strategy, at each step with probability 1− ε we make a decision to maximize some
greedy criterion; with probabilityε we make a decision completely at random. This random choice
ensures that the short-term nature of the greedy criterion does not overshadow our long-term goal.

The parameterε controls the trade-off between global and local search: a good choiceof ε will
be small enough to not interfere with the expected-improvement algorithm, butlarge enough to
prevent it from getting stuck in a local minimum. Sutton and Barto (1998, §2.2) consider the values
ε = 0.1 andε = 0.01, but in practical workε should of course be calibrated to a typical problem set.

We therefore define the following strategies.
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Definition 4. Let · denoteπ, π̂ or π̃. For 0< ε < 1, an EI( · ,ε) strategy:

(i) chooses initial design points x1, · · · ,xk independently of f ;

(ii) with probability 1− ε, chooses design point xn+1 (n≥ k) as in EI( ·); or

(iii) with probability ε, chooses xn+1 (n≥ k) uniformly at random from X.

We can show that these strategies achieve near-optimal rates of convergence for allν < ∞.

Theorem 5. Let EI( · ,ε) be one of the strategies in Definition 4. Ifν < ∞, then for any R> 0,

Ln(EI( · ,ε),HθU (X),R) = O((n/ logn)−ν/d(logn)α),

while if ν = ∞, the statement holds for allν < ∞.

Note that unlike a typicalε-greedy algorithm, we do not rely on random choice to obtain global
convergence: as above, theEI(π) andEI(π̃) strategies are already globally convergent. Instead, we
use random choice simply to improve upon the worst-case rate. Note also thatthe result does not in
general hold whenε = 1; to obtain good rates, we must combine global search with inference about
f .

4. Conclusions

We have shown that expected improvement can converge near-optimally, but a naive implementation
may not converge at all. We thus echo Diaconis and Freedman (1986) in stating that, for infinite-
dimensional problems, Bayesian methods are not always guaranteed to find the right answer; such
guarantees can only be provided by considering the problem at hand.

We might ask, however, if our framework can also be improved. Our upper bounds on conver-
gence were established using naive algorithms, which in practice would prove inefficient. If a so-
phisticated algorithm fails where a naive one succeeds, then the sophisticated algorithm is certainly
at fault; we might, however, prefer methods of evaluation which do not consider naive algorithms
so successful.

Vazquez and Bect (2010) and Grunewalder et al. (2010) consider amore Bayesian formulation
of the problem, where the unknown functionf is distributed according to the priorπ, but this
approach can prove restrictive: as we saw in Section 3.3, placing too much faith in the prior may
exclude functions of interest. Further, Grunewalder et al. find the same issues are present also within
the Bayesian framework.

A more interesting approach is given by the continuum-armed-bandit problem (Srinivas et al.,
2010, and references therein). Here the goal is to minimize the cumulative regret,

Rn :=
n

∑
i=1

( f (xi)−min f ),

in general observing the functionf under noise. Algorithms controlling the cumulative regret at rate
rn also solve the optimization problem, at ratern/n (Bubeck et al., 2009, §3). The naive algorithms
above, however, have poor cumulative regret. We might, then, considerthe cumulative regret to be
a better measure of performance, but this approach too has limitations. Firstly, the cumulative regret
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is necessarily increasing, so cannot establish rates of optimization faster thann−1. (This is not an
issue under noise, where typicallyrn = Ω(n1/2), see Kleinberg and Slivkins, 2010.) Secondly, if our
goal is optimization, then minimizing the regret, a cost we do not incur, may obscure the problem
at hand.

Bubeck et al. (2010) study this problem with the additional assumption thatf has finitely many
minima, and is, say, quadratic in a neighbourhood of each. This assumption may suffice in practice,
and allows the authors to obtain impressive rates of convergence. For optimization, however, a
further weakness is that these rates hold only once the algorithm has found a basin of attraction;
they thus measure local, rather than global, performance. It may be that convergence rates alone are
not sufficient to capture the performance of a global optimization algorithm, and the time taken to
find a basin of attraction is more relevant. In any case, the choice of an appropriate framework to
measure performance in global optimization merits further study.

Finally, we should also ask how to choose the smoothness parameterν (or the equivalent pa-
rameter in similar algorithms). Van der Vaart and van Zanten (2009) show that Bayesian Gaussian-
process models can, in some contexts, automatically adapt to the smoothness ofan unknown func-
tion f . Their technique requires, however, that the estimated length-scalesθ̂n to tend to 0, posing
both practical and theoretical challenges. The question of how best to optimize functions of un-
known smoothness remains open.
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Appendix A. Proofs

We now prove the results in Section 3.

A.1 Reproducing-Kernel Hilbert Spaces

Proof of Lemma 1.LetV be the space of functions described, andW be the closed real subspace of
Hermitian functions inL2(Rd, K̂−1). We will show f 7→ f̂ is an isomorphismV → W, so we may
equivalently work withW. Given f̂ ∈W, by Cauchy-Schwarz and Bochner’s theorem,

∫
| f̂ | ≤

(∫
K̂

)1/2(∫
| f̂ |2/K̂

)1/2

< ∞,

and as‖K̂‖∞ ≤ ‖K‖1, ∫
| f̂ |2 ≤ ‖K̂‖∞

∫
| f̂ |2/K̂ < ∞,

so f̂ ∈ L1∩L2. f̂ is thus the Fourier transform of a real continuousf ∈ L2, satisfying the Fourier
inversion formula everywhere.
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f 7→ f̂ is hence an isomorphismV →W. It remains to show thatV =H (Rd). W is complete, so
V is. Further,E(Rd)⊂V, and by Fourier inversion eachf ∈V satisfies the reproducing property,

f (x) =
∫

e2πi〈x,ξ〉 f̂ (ξ)dξ =
∫

f̂ (ξ)k̂x(ξ)
K̂(ξ)

dξ = 〈 f ,kx〉,

soH (Rd) is a closed subspace ofV. Given f ∈ H (Rd)⊥, f (x) = 〈 f ,kx〉 = 0 for all x, so f = 0.
ThusV =H (Rd).

Proof of Lemma 3.By Lemma 1, the norm onHθ(R
d) is

‖ f‖2
Hθ(Rd) =

∫ | f̂ (ξ)|2

K̂θ(ξ)
dξ,

andKθ has Fourier transform

K̂θ(ξ) =
K̂(ξ1/θ1, . . . ,ξd/θd)

∏d
i=1 θi

.

If ν < ∞, by assumption̂K(ξ) = k̂(‖ξ‖), for a finite non-increasing function̂k satisfyingk̂(‖ξ‖) =
Θ(‖ξ‖−2ν−d) asξ → ∞. Hence

C(1+‖ξ‖2)−(ν+d/2) ≤ K̂θ(ξ)≤C′(1+‖ξ‖2)−(ν+d/2),

for constantsC,C′ > 0, and we obtain thatHθ(R
d) is equivalent to the Sobolev spaceHν+d/2(Rd).

From Lemma 2,Hθ(D) is given by the restriction of functions inHθ(R
d); asD is Lipschitz, the

same is true ofHν+d/2. Hθ(D) is thus equivalent toHν+d/2(D). Finally, functions inHθ(D̄) are
continuous, so uniquely identified by their restriction toD, and

Hθ(D̄)≃Hθ(D)≃ Hν+d/2(D).

If ν = ∞, by a similar argumentHθ(D̄) is continuously embedded in allHs(D).

From Lemma 1, we can derive results on the behaviour of‖ f‖Hθ(S)
asθ varies. For smallθ, we

obtain the following result.

Lemma 4. If f ∈Hθ(S), then f∈Hθ′(S) for all 0< θ′ ≤ θ, and

‖ f‖2
Hθ′ (S)

≤
(

d

∏
i=1

θi/θ′
i

)
‖ f‖2

Hθ(S)
.

Proof. Let C= ∏d
i=1(θ′

i/θi). As K̂ is isotropic and radially non-increasing,

K̂θ′(ξ) =CK̂θ((θ′
1/θ1)ξ1, . . . ,(θ′

d/θd)ξd)≥CK̂θ(ξ).

Given f ∈Hθ(S), let g∈Hθ(R
d) be its minimum norm extension, as in Lemma 2. By Lemma 1,

‖ f‖2
Hθ′ (S)

≤ ‖g‖2
Hθ′ (R

d) =
∫ |ĝ|2

K̂θ′
≤

∫ |ĝ|2

CK̂θ
=C−1‖ f‖2

Hθ(S)
.
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Likewise, for largeθ, we obtain the following.

Lemma 5. If ν < ∞, f ∈Hθ(S), then f∈Htθ(S) for t ≥ 1, and

‖ f‖2
Htθ(S)

≤C′′t2ν‖ f‖2
Hθ(S)

,

for a C′′ > 0 depending only on K andθ.

Proof. As in the proof of Lemma 3, we have constantsC,C′ > 0 such that

C(1+‖ξ‖2)−(ν+d/2) ≤ K̂θ(ξ)≤C′(1+‖ξ‖2)−(ν+d/2).

Thus fort ≥ 1,

K̂tθ(ξ) = tdK̂θ(tξ)≥Ctd(1+ t2‖ξ‖2)−(ν+d/2)

≥Ct−2ν(1+‖ξ‖2)−(ν+d/2)

≥CC′−1t−2νK̂θ(ξ),

and we may argue as in the previous lemma.

We can also describe the posterior distribution off in terms ofHθ(S); as a consequence, we
may deduce Corollary 1.

Lemma 6. Suppose f(x) = µ+g(x), g∈Hθ(S).

(i) f̂n(x;θ) = µ̂n+ ĝn(x) solves the optimization problem

minimize‖ĝ‖2
Hθ(S)

, subject toµ̂+ ĝ(xi) = zi , 1≤ i ≤ n,

with minimum valuêR2
n(θ).

(ii) The prediction error satisfies

| f (x)− f̂n(x;θ)| ≤ sn(x;θ)‖g‖Hθ(S)

with equality for some g∈Hθ(S).

Proof.

(i) Let W = span(kx1, . . . ,kxn), and writeĝ= ĝ‖+ ĝ⊥ for ĝ‖ ∈W, ĝ⊥ ∈W⊥. ĝ⊥(xi) = 〈ĝ⊥,kxi 〉=
0, so ĝ⊥ affects the optimization only through‖ĝ‖. The minimal ĝ thus has ˆg⊥ = 0, so
ĝ= ∑n

i=1 λikxi . The problem then becomes

minimizeλTVλ, subject toµ̂1+Vλ = z.

The solution is given by (4) and (5), with value (7).

(ii) By symmetry, the prediction error does not depend onµ, so we may takeµ= 0. Then

f (x)− f̂n(x;θ) = g(x)− (µ̂n+ ĝn(x)) = 〈g,en,x〉,
for en,x = kx−∑n

i=1 λikxi , and

λ =
V−11

1TV−11
+

(
I − V−11

1TV−11
1T
)

V−1v.

Now, ‖en,x‖2
Hθ(S)

= s2
n(x;θ), as given by (6); this is a consequence of Loève’s isometry, but is

easily verified algebraically. The result then follows by Cauchy-Schwarz.
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A.2 Fixed Parameters

Proof of Theorem 1.We first establish the lower bound. Suppose we have 2n functionsψm with
disjoint supports. We will argue that, givenn observations, we cannot distinguish between all the
ψm, and thus cannot accurately pick a minimumx∗n.

To begin with, assumeX = [0,1]d. Let ψ : Rd → [0,1] be aC∞ function, supported insideX and
with minimum -1. By Lemma 3,ψ ∈ Hθ(R

d). Fix k ∈ N, and setn = (2k)d/2. For vectorsm∈
{0, . . . ,2k−1}d, construct functionsψm(x) =C(2k)−νψ(2kx−m), whereC> 0 is to be determined.
ψm is given by a translation and scaling ofψ, so by Lemmas 1, 2 and 5, for someC′ > 0,

‖ψm‖Hθ(X) ≤ ‖ψm‖Hθ(Rd) =C(2k)−ν‖ψ‖H2kθ(Rd) ≤CC′‖ψ‖Hθ(Rd).

SetC= R/C′‖ψ‖Hθ(Rd), so that‖ψm‖Hθ(X) ≤ R for all m andk.
Supposef = 0, and letxn andx∗n be chosen by any valid strategyu. Setχ = {x1, . . . ,xn−1,x∗n−1},

and letAm be the event thatψm(x) = 0 for all x∈ χ. There aren points inχ, and the 2n functions
ψm have disjoint support, so∑mI(Am)≥ n. Thus

∑
m
P

u
0(Am) = E

u
0

[
∑
m
I(Am)

]
≥ n,

and we have some fixedm, depending only onu, for whichPu
0(Am)≥ 1

2. On the eventAm,

ψm(x
∗
n−1)−minψm =C(2k)−ν,

but on that event,u cannot distinguish between 0 andψm before timen, so

C−1(2k)ν
E

u
ψm
[ f (x∗n−1)−min f ]≥ P

u
ψm
(Am) = P

u
0(Am)≥ 1

2.

As the minimax loss is non-increasing inn, for (2(k−1))d/2≤ n< (2k)d/2 we conclude

inf
u

Ln(u,Hθ(X),R)≥ inf
u

L(2k)d/2−1(u,Hθ(X),R)

≥ inf
u

sup
m

E
u
ψm

[
f
(

x∗(2k)d/2−1

)
−min f

]

≥ 1
2C(2k)−ν = Ω(n−ν/d).

For generalX having non-empty interior, we can find a hypercubeS= x0+[0,ε]d ⊆ X, with ε > 0.
We may then proceed as above, picking functionsψm supported insideS.

For the upper bound, consider a strategyu choosing a fixed sequencexn, independent of the
zn. Fit a radial basis function interpolant̂fn to the data, and pickx∗n to minimize f̂n. Then if x∗

minimizes f ,

f (x∗n)− f (x∗)≤ f (x∗n)− f̂n(x
∗
n)+ f̂n(x

∗)− f (x∗)

≤ 2‖ f̂n− f‖∞,

so the loss is bounded by the error inf̂n.
From results in Narcowich et al. (2003, §6) and Wendland (2005, §11.5), for suitable radial

basis functions the error is uniformly bounded by

sup
‖ f‖Hθ(X)≤R

‖ f̂n− f‖∞ = O(h−ν
n ),
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where the mesh norm

hn := sup
x∈X

n
min
i=1

‖x−xi‖.

(For ν 6∈ N, this result is given by Narcowich et al. for the radial basis functionKν, which is ν-
Hölder at 0 by Abramowitz and Stegun, 1965, §9.6; forν ∈ N, the result is given by Wendland for
thin-plate splines.) AsX is bounded, we may choose thexn so thathn = O(n−1/d), giving

Ln(u,Hθ(X),R) = O(n−ν/d).

To prove Theorem 2, we first show that some observationszn will be well-predicted by past
data.

Lemma 7. Set

β :=

{
α, ν ≤ 1,

0, ν > 1.

Givenθ∈R
d
+, there is a constant C′ > 0 depending only on X, K andθ which satisfies the following.

For any k∈ N, and sequences xn ∈ X, θn ≥ θ, the inequality

sn(xn+1;θn)≥C′k−(ν∧1)/d(logk)β

holds for at most k distinct n.

Proof. We first show that the posterior variances2
n is bounded by the distance to the nearest design

point. Letπn denote the prior with varianceσ2 = 1, and length-scalesθn. Then for anyi ≤ n, as
f̂n(x;θn) = Eπn[ f (x) | Fn],

s2
n(x;θn) = Eπn[( f (x)− f̂n(x;θn))

2 | Fn]

= Eπn[( f (x)− f (xi))
2− ( f (xi)− f̂n(x;θn))

2 | Fn]

≤ Eπn[( f (x)− f (xi))
2 | Fn]

= 2(1−Kθn(x−xi)).

If ν ≤ 1
2, then by assumption

|K(x)−K(0)|= O
(
‖x‖2ν(− log‖x‖)2α

)

asx→ 0. If ν > 1
2, thenK is differentiable, so asK is symmetric,∇K(0) = 0. If furtherν ≤ 1, then

|K(x)−K(0)|= |K(x)−K(0)−x ·∇K(0)|= O
(
‖x‖2ν(− log‖x‖)2α

)
.

Similarly, if ν > 1, thenK is C2, so

|K(x)−K(0)|= |K(x)−K(0)−x ·∇K(0)|= O(‖x‖2).

We may thus conclude

|1−K(x)|= |K(x)−K(0)|= O
(
‖x‖2(ν∧1)(− log‖x‖)2β

)
,
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and
s2
n(x;θn)≤C2‖x−xi‖2(ν∧1)(− log‖x−xi‖)2β,

for a constantC> 0 depending only onX, K andθ.
We next show that most design pointsxn+1 are close to a previousxi . X is bounded, so can be

covered byk balls of radiusO(k−1/d). If xn+1 lies in a ball containing some earlier pointxi , i ≤ n,
then we may conclude

s2
n(xn+1;θn)≤C′2k−2(ν∧1)/d(logk)2β,

for a constantC′ > 0 depending only onX, K andθ. Hence as there arek balls, at mostk points
xn+1 can satisfy

sn(xn+1;θn)≥C′k−(ν∧1)/d(logk)β.

Next, we provide bounds on the expected improvement whenf lies in the RKHS.

Lemma 8. Let‖ f‖Hθ(X) ≤ R. For x∈ X, n∈ N, set I= ( f (x∗n)− f (x))+, and s= sn(x;θ). Then for

τ(x) := xΦ(x)+φ(x),

we have

max

(
I −Rs,

τ(−R/σ)
τ(R/σ)

I

)
≤ EIn(x;π)≤ I +(R+σ)s.

Proof. If s= 0, then by Lemma 6,̂fn(x;θ) = f (x), soEIn(x;π) = I , and the result is trivial. Suppose
s> 0, and sett = ( f (x∗n)− f (x))/s, u= ( f (x∗n)− f̂n(x;θ))/s. From (8) and (9),

EIn(x;π) = σsτ(u/σ),

and by Lemma 6,|u− t| ≤ R. As τ′(z) = Φ(z) ∈ [0,1], τ is non-decreasing, andτ(z) ≤ 1+ z for
z≥ 0. Hence

EIn(x;π)≤ σsτ
(

t++R
σ

)
≤ σs

(
t++R

σ
+1

)
= I +(R+σ)s.

If I = 0, then asEI is the expectation of a non-negative quantity,EI ≥ 0, and the lower bounds
are trivial. SupposeI > 0. Then asEI ≥ 0, τ(z)≥ 0 for all z, andτ(z) = z+ τ(−z)≥ z. Thus

EIn(x;π)≥ σsτ
(

t −R
σ

)
≥ σs

(
t −R

σ

)
= I −Rs.

Also, asτ is increasing,

EIn(x;π)≥ στ
(−R

σ

)
s.

Combining these bounds, and eliminatings, we obtain

EIn(x;π)≥ στ(−R/σ)
R+στ(−R/σ)

I =
τ(−R/σ)
τ(R/σ)

I .

We may now prove the theorem. We will use the above bounds to show that there must be times
nk when the expected improvement is low, and thusf (x∗nk

) is close to minf .
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Proof of Theorem 2.From Lemma 7 there existsC> 0, depending onX, K andθ, such that for any
sequencexn ∈ X andk∈ N, the inequality

sn(xn+1;θ)>Ck−(ν∧1)/d(logk)β

holds at mostk times. Furthermore,z∗n−z∗n+1 ≥ 0, and for‖ f‖Hθ(X) ≤ R,

∑
n

z∗n−z∗n+1 ≤ z∗1−min f ≤ 2‖ f‖∞ ≤ 2R,

soz∗n−z∗n+1 > 2Rk−1 at mostk times. Sincez∗n− f (xn+1)≤ z∗n−z∗n+1, we have alsoz∗n− f (xn+1)>

2Rk−1 at mostk times. Thus there is a timenk, k≤ nk ≤ 3k, for whichsnk(xnk+1;θ)≤Ck−(ν∧1)/d(logk)β

andz∗nk
− f (xnk+1)≤ 2Rk−1.

Let f have minimumz∗ atx∗. Fork large,xnk+1 will have been chosen by expected improvement
(rather than being an initial design point, chosen at random). Then asz∗n is non-increasing inn, for
3k≤ n< 3(k+1) we have by Lemma 8,

z∗n−z∗ ≤ z∗nk
−z∗

≤ τ(R/σ)
τ(−R/σ)

EInk(x
∗;π)

≤ τ(R/σ)
τ(−R/σ)

EInk(xnk+1;π)

≤ τ(R/σ)
τ(−R/σ)

(
2Rk−1+C(R+σ)k−(ν∧1)/d(logk)β

)
.

This bound is uniform inf with ‖ f‖Hθ(X) ≤ R, so we obtain

Ln(EI(π),Hθ(X),R) = O(n−(ν∧1)/d(logn)β).

A.3 Estimated Parameters

To prove Theorem 3, we first establish lower bounds on the posterior variance.

Lemma 9. GivenθL,θU ∈ R
d
+, pick sequences xn ∈ X, θL ≤ θn ≤ θU . Then for open S⊂ X,

sup
x∈S

sn(x;θn) = Ω(n−ν/d),

uniformly in the sequences xn, θn.

Proof. Sis open, so contains a hypercubeT. Fork∈ N, let n= 1
2(2k)d, and construct 2n functions

ψm on T with ‖ψm‖HθU (X) ≤ 1, as in the proof of Theorem 1. LetC2 = ∏d
i=1(θU

i /θL
i ); then by

Lemma 4,‖ψm‖Hθn(X) ≤C.
Given n design pointsx1, . . . ,xn, there must be someψm such thatψm(xi) = 0, 1≤ i ≤ n. By

Lemma 6, the posterior mean ofψm given these observations is the zero function. Thus forx∈ T
minimizing ψm,

sn(x;θn)≥C−1sn(x;θn)‖ψm‖Hθn(X) ≥C−1|ψm(x)−0|= Ω(k−ν).

As sn(x;θ) is non-increasing inn, for 1
2(2(k−1))d < n≤ 1

2(2k)d we obtain

sup
x∈S

sn(x;θn)≥ sup
x∈S

s1
2(2k)d(x;θn) = Ω(k−ν) = Ω(n−ν/d).
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Next, we bound the expected improvement when prior parameters are estimated by maximum
likelihood.

Lemma 10. Let ‖ f‖HθU (X) ≤ R, xn,yn ∈ X. Set In(x) = z∗n− f (x), sn(x) = sn(x; θ̂n), and tn(x) =

In(x)/sn(x). Suppose:

(i) for some i< j, zi 6= zj ;

(ii) for some Tn →−∞, tn(xn+1)≤ Tn whenever sn(xn+1)> 0;

(iii) I n(yn+1)≥ 0; and

(iv) for some C> 0, sn(yn+1)≥ e−C/cn.

Then forπ̂n as in Definition 2, eventually EIn(xn+1; π̂n)< EIn(yn+1; π̂n). If the conditions hold on a
subsequence, so does the conclusion.

Proof. Let R̂2
n(θ) be given by (7), and set̂R2

n = R̂2
n(θ̂n). For n ≥ j, R̂2

n > 0, and by Lemma 4 and
Corollary 1,

R̂2
n ≤ ‖ f‖2

Hθ̂n
(X) ≤ S2 = R2

d

∏
i=1

(θU
i /θL

i ).

Thus 0< σ̂2
n ≤ S2cn. Then ifsn(x)> 0, for some|un(x)− tn(x)| ≤ S,

EIn(x; π̂n) = σ̂nsn(x)τ(un(x)/σ̂n),

as in the proof of Lemma 8.
If sn(xn+1) = 0, thenxn+1 ∈ {x1, . . . ,xn}, so

EIn(xn+1; π̂n) = 0< EIn(yn+1; π̂n).

Whensn(xn+1)> 0, asτ is increasing we may upper boundEIn(xn+1; π̂n) usingun(xn+1)≤ Tn+S,
and lower boundEIn(yn+1; π̂n) usingun(yn+1)≥−S. Sincesn(xn+1)≤ 1, andτ(x) = Θ(x−2e−x2/2)
asx→−∞ (Abramowitz and Stegun, 1965, §7.1),

EIn(xn+1; π̂n)

EIn(yn+1; π̂n)
≤ τ((Tn+S)/σ̂n)

e−C/cnτ(−S/σ̂n)

= O
(
(Tn+S)−2eC/cn−(T2

n +2STn)/2σ̂2
n

)

= O
(
(Tn+S)−2e−(T2

n +2STn−2CS2)/2S2cn

)

= o(1).

If the conditions hold on a subsequence, we may similarly argue along that subsequence.

Finally, we will require the following technical lemma.

Lemma 11. Let x1, . . . ,xn be random variables taking values inRd. Given open S⊆R
d, there exist

open U⊆ S for whichP(
⋃n

i=1{xi ∈U}) is arbitrarily small.
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Proof. Givenε > 0, fix m≥ n/ε, and pick disjoint open setsU1, . . . ,Um ⊂ S. Then

m

∑
j=1

E[#{xi ∈U j}]≤ E[#{xi ∈ R
d}] = n,

so there existsU j with

P

(⋃
i

{xi ∈U j}
)

≤ E[#{xi ∈U j}]≤ n/m≤ ε.

We may now prove the theorem. We will construct a functionf on which theEI(π̂) strategy
never observes within a regionW. We may then construct a functiong, agreeing withf except on
W, but having different minimum. As the strategy cannot distinguish betweenf andg, it cannot
successfully find the minimum of both.

Proof of Theorem 3.Let theEI(π̂) strategy choose initial design pointsx1, . . . ,xk, independently of
f . Givenε > 0, by Lemma 11 there exists openU0 ⊆ X for whichP

EI(π̂)(x1, . . . ,xk ∈U0) ≤ ε; we
may chooseU0 so thatV0 =X\U0 has non-empty interior. Pick openU1 such thatV1 = Ū1 ⊂U0, and
set f to be aC∞ function, 0 onV0, 1 onV1, and everywhere non-negative. By Lemma 1,f ∈HθU (X).

We work conditional on the eventA, having probability at least 1− ε, that z∗k = 0, and thus
z∗n = 0 for all n ≥ k. Supposexn ∈ V1 infinitely often, so thezn are not all equal. By Lemma 7,
sn(xn+1; θ̂n)→ 0, so on a subsequence withxn+1 ∈V1, we have

tn = (z∗n− f (xn+1))/sn(xn+1; θ̂n) =−sn(xn+1; θ̂n)
−1 →−∞

wheneversn(xn+1; θ̂n) > 0. However, by Lemma 9, there are pointsyn ∈ V0 with z∗n− f (yn+1) =
0, andsn(yn+1; θ̂n) = Ω(n−ν/d). Hence by Lemma 10,EIn(xn+1; π̂n) < EIn(yn+1; π̂n) for somen,
contradicting the definition ofxn+1.

Hence, onA, there is a random variableT taking values inN, for which n > T =⇒ xn 6∈ V1.
Hence there exists a constantt ∈ N for which the eventB= A∩{T ≤ t} hasPEI(π̂)

f -probability at
least 1−2ε. By Lemma 11, we thus have an open setW ⊂V1 for which the event

C= B∩{xn 6∈W : n∈ N}= B∩{xn 6∈W : n≤ t}

hasPEI(π̂)
f -probability at least 1−3ε.

Construct a smooth functiong by adding to f a C∞ function which is 0 outsideW, and has
minimum−2. Then ming=−1, but on the eventC, EI(π̂) cannot distinguish betweenf andg, and
g(x∗n)≥ 0. Thus forδ = 1,

P
EI(π̂)
g

(
inf
n

g(x∗n)−ming≥ δ
)
≥ P

EI(π̂)
g (C) = P

EI(π̂)
f (C)≥ 1−3ε.

As the behaviour ofEI(π̂) is invariant under rescaling, we may scaleg to have norm‖g‖Hθ(X) ≤ R,
and the above remains true for someδ > 0.

Proof of Theorem 4.As in the proof of Theorem 2, we will show there are timesnk when the ex-
pected improvement is small, sof (xnk) must be close to the minimum. First, however, we must
control the estimated parametersσ̂2

n, θ̂n.
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If the zn are all equal, then by assumption thexn are dense inX, so f is constant, and the result
is trivial. Suppose thezn are not all equal, and letT be a random variable satisfyingzT 6= zi for
somei < T. SetU = infθL≤θ≤θU R̂T(θ). R̂T(θ) is a continuous positive function, soU > 0. Let
S2 = R2 ∏d

i=1(θU
i /θL

i ). By Lemma 4,‖ f‖Hθ̂n
(X) ≤ S, so by Corollary 1, forn≥ T,

U ≤ R̂T(θ̂n)≤ σ̂n ≤ ‖ f‖Hθ̂n
(X) ≤ S.

As in the proof of Theorem 2, we have a constantC > 0, and somenk, k ≤ nk ≤ 3k, for which
z∗nk

− f (xnk+1) ≤ 2Rk−1 andsnk(xnk+1; θ̂nk) ≤ Ck−α(logk)β. Then fork ≥ T, 3k ≤ n < 3(k+ 1),
arguing as in Theorem 2 we obtain

z∗n−z∗ ≤ z∗nk
−z∗

≤ τ(S/σ̂nk)

τ(−S/σ̂nk)

(
2Rk−1+C(S+ σ̂nk)k

−(ν∧1)/d(logk)β
)

≤ τ(S/U)

τ(−S/U)

(
2Rk−1+2CSk−(ν∧1)/d(logk)β

)
.

We thus have a random variableC′ satisfyingz∗n− z∗ ≤C′n−(ν∧1)/d(logn)β for all n, and the result
follows.

A.4 Near-Optimal Rates

To prove Theorem 5, we first show that the points chosen at random willbe quasi-uniform inX.

Lemma 12. Let xn be i.i.d. random variables, distributed uniformly over X, and define their mesh
norm,

hn := sup
x∈X

n
min
i=1

‖x−xi‖.

For anyγ > 0, there exists C> 0 such that

P(hn >C(n/ logn)−1/d) = O(n−γ).

Proof. We will partition X into n regions of sizeO(n−1/d), and show that with high probability we
will place anxi in each one. Then every pointx will be close to anxi , and the mesh norm will be
small.

SupposeX = [0,1]d, fix k ∈ N, and divideX into n = kd sub-cubesXm = 1
k(m+ [0,1]d), for

m∈ {0, . . . ,k−1}d. Let Im be the indicator function of the event

{xi 6∈ Xm : 1≤ i ≤ ⌊γnlogn⌋},

and define

µn = E

[
∑
m

Im

]
= nE[I0] = n(1−1/n)⌊γnlogn⌋ ∼ ne−γ logn = n−(γ−1).

Forn large,µn ≤ 1, so by the generalized Chernoff bound of Panconesi and Srinivasan (1997, §3.1),

P

(
∑
m

Im ≥ 1

)
≤
(

e(µ
−1
n −1)

µ−µ−1
n

n

)µn

≤ eµn ∼ en−(γ−1).
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On the event∑mIm < 1, Im = 0 for all m. For anyx∈ X, we then havex∈ Xm for somem, and
x j ∈ Xm for some 1≤ j ≤ ⌊γnlogn⌋. Thus

⌊γnlogn⌋
min
i=1

‖x−xi‖ ≤ ‖x−x j‖ ≤
√

dk−1.

As this bound is uniform inx, we obtainh⌊γnlogn⌋ ≤
√

dk−1. Thus forn= kd,

P(h⌊γnlogn⌋ >
√

dk−1) = O(k−d(γ−1)),

and ashn is non-increasing inn, this bound holds also forkd ≤ n < (k+ 1)d. By a change of
variables, we then obtain

P(hn >C(n/γ logn)−1/d) = O((n/γ logn)−(γ−1)),

and the result follows by choosingγ large. For generalX, asX is bounded it can be partitioned into
n regions of measureΘ(n−1/d), so we may argue similarly.

We may now prove the theorem. We will show that the pointsxn must be quasi-uniform inX, so
posterior variances must be small. Then, as in the proofs of Theorems 2 and 4, we have times when
the expected improvement is small, sof (x∗n) is close to minf .

Proof of Theorem 5.First supposeν < ∞. Let theEI( · ,ε) choosek initial design points indepen-
dent of f , and supposen≥ 2k. Let An be the event that⌊ ε

4n⌋ of the pointsxk+1, . . . ,xn are chosen
uniformly at random, so by a Chernoff bound,

P
EI( · ,ε)(Ac

n)≤ e−εn/16.

Let Bn be the event that one of the pointsxn+1, . . . ,x2n is chosen by expected improvement, so

P
EI( · ,ε)(Bc

n) = εn.

Finally, letCn be the event thatAn andBn occur, and further the mesh normhn ≤C(n/ logn)−1/d, for
the constantC from Lemma 12. Setrn = (n/ logn)−ν/d(logn)α. Then by Lemma 12, sinceCn ⊂ An,

P
EI( · ,ε)
f (Cc

n)≤C′rn,

for a constantC′ > 0 not depending onf .
Let EI( · ,ε) have priorπn at time n, with (fixed or estimated) parametersσn, θn. Suppose

‖ f‖HθU (X) ≤ R, and setS2 = R2 ∏d
i=1(θU

i /θL
i ), so by Lemma 4,‖ f‖Hθn(X) ≤ S. If α = 0, then by

Narcowich et al. (2003, §6),
sup
x∈X

sn(x;θ) = O(M(θ)hν
n)

uniformly in θ, for M(θ) a continuous function ofθ. Hence on the eventCn,

sup
x∈X

sn(x;θn)≤ sup
x∈X

sup
θL≤θ≤θU

sn(x;θ)≤C′′rn,

for a constantC′′ > 0 depending only onX, K, C, θL andθU . If α > 0, the same result holds by a
similar argument.
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On the eventCn, we have somexm chosen by expected improvement,n< m≤ 2n. Let f have
minimumz∗ atx∗. Then by Lemma 8,

z∗m−1−z∗ ≤ EIm−1(x
∗; ·)+C′′Srm−1

≤ EIm−1(xm; ·)+C′′Srm−1

≤ ( f (xm−1)− f (xm))
++C′′(2S+σm−1)rm−1

≤ z∗m−1−z∗m+C′′Trn,

for a constantT > 0. (UnderEI(π,ε), we haveT = 2S+σ; otherwiseσm−1 ≤ Sby Corollary 1, so
T = 3S.) Thus, rearranging,

z∗2n−z∗ ≤ z∗m−z∗ ≤C′′Trn.

On the eventCc
n, we havez∗2n−z∗ ≤ 2‖ f‖∞ ≤ 2R, so

E
EI( · ,ε)
f [z∗2n+1−z∗]≤ E

EI( · ,ε)
f [z∗2n−z∗]

≤ 2RPEI( · ,ε)
f (Cc

n)+C′′Trn

≤ (2C′R+C′′T)rn.

As this bound is uniform inf with ‖ f‖HθU (X) ≤ R, the result follows. If insteadν = ∞, the above
argument holds for anyν < ∞.
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