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Abstract

We consider a generalization of stochastic bandits wheresé¢h of arms X, is allowed to be a
generic measurable space and the mean-payoff functioréslty Lipschitz” with respect to a
dissimilarity function that is known to the decision makgnder this condition we construct an arm
selection policy, called HOO (hierarchical optimistic iopization), with improved regret bounds
compared to previous results for a large class of problemgatticular, our results imply that if
X is the unit hypercube in a Euclidean space and the mean{payafion has a finite number
of global maxima around which the behavior of the functiotoisally continuous with a known
smoothness degree, then the expected regret of HOO is bibupde a logarithmic factor by/n,
that is, the rate of growth of the regret is independent offiheension of the space. We also prove
the minimax optimality of our algorithm when the dissimitgiis a metric. Our basic strategy has
guadratic computational complexity as a function of the hanof time steps and does not rely on
the doubling trick. We also introduce a modified strategyiciwhielies on the doubling trick but
runs in linearithmic time. Both results are improvementwespect to previous approaches.
Keywords: bandits with infinitely many arms, optimistic online optiration, regret bounds,
minimax rates

1. Introduction

In the classical stochastic bandit problem a gambler tries to maximize his esbgraequentially
playing one of a finite number of slot machines that are associated with initiakgown (and
potentially different) payoff distributions (Robbins, 1952). Assumingfalshioned slot machines,
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the gambler pulls the arms of the machines one by one in a sequential manndiarsously
learning about the machines’ payoff-distributions and gaining actual nmnetaard. Thus, in
order to maximize his gain, the gambler must choose the next arm by taking irgioletion both
the urgency of gaining reward (“exploitation”) and acquiring new infarora(“exploration”).

Maximizing the total cumulative payoff is equivalent to minimizing the (totefret that is,
minimizing the difference between the total cumulative payoff of the gamblettenohe of another
clairvoyant gambler who chooses the arm with the best mean-payoffiy exend. The quality of
the gambler’s strategy can be characterized as the rate of growth ofgd@stes regret with time.
In particular, if this rate of growth is sublinear, the gambler in the long runspésywell as the
clairvoyant gambler. In this case the gambler’s strategy is called Hanmaistant.

Bandit problems have been studied in the Bayesian framework (Gittins,,128@kll as in the
frequentist parametric (Lai and Robbins, 1985; Agrawal, 1995ahaneparametric settings (Auer
et al., 2002a), and even in non-stochastic scenarios (Auer et al.h20@8a-Bianchi and Lugosi,
2006). While in the Bayesian case the question is whether the optimal actiormeaomputed
efficiently, in the frequentist case the question is how to achieve low rateowftly of the regret
in the lack of prior information, that is, it is a statistical question. In this papercansider the
stochastic, frequentist, non-parametric setting.

Although the first papers studied bandits with a finite number of arms, wsgarhave soon
realized that bandits with infinitely many arms are also interesting, as well eticatly significant.
One particularly important case is when the arms are identified by a finite nushbentinuous-
valued parameters, resulting amline optimizationproblems over continuous finite-dimensional
spaces. Such problems are ubiquitous to operations research arm.cBxamples are “pricing
a new product with uncertain demand in order to maximize revenue, contrtténtgansmission
power of a wireless communication system in a noisy channel to maximize the nabits
transmitted per unit of power, and calibrating the temperature or levels afiafhés to a reaction
so as to maximize the yield of a chemical process” (Cope, 2009). Other éesame optimizing
parameters of schedules, rotational systems, traffic networks or oliaepter tuning of numeri-
cal methods. During the last decades numerous authors have invessigeltetontinuum-armed”
bandit problems (Agrawal, 1995b; Kleinberg, 2004; Auer et al., 280&inberg et al., 2008a; Cope,
2009). A special case of interest, which forms a bridge between thetadaite number of arms
and the continuum-armed setting, is formed by bandit linear optimization, semethg et al.
(2008) and the references therein.

In many of the above-mentioned problems, however, the natural domaonw ef the opti-
mization parameters is a discrete set, while other parameters are still contiraloed. For ex-
ample, in the pricing problem different product lines could also be testdd wiming the price, or
in the case of transmission power control different protocols could bedeghile optimizing the
power. In other problems, such as in online sequential search, thegi@ravector to be optimized
is an infinite sequence over a finite alphabet (Coquelin and Munos, Bo®éck and Munos, 2010).

The motivation for this paper is to handle all these various cases in a undieegork. More
precisely, we consider a general setting that allows us to study banditslmitstano restriction on
the set of arms. In particular, we allow the set of arms to be an arbitraryunsdds space. Since
we allow non-denumerable sets, we shall assume that the gambler has sawhedige about the
behavior of the mean-payoff function (in terms of its local regularity adoits maxima, roughly
speaking). This is because when the set of arms is uncountably infini@baotltely no assump-
tions are made on the payoff function, it is impossible to construct a strataggithultaneously
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achieves sublinear regret for all bandits problems (see, e.g., Bubalck2911, Corollary 4). When
the set of arms is a metric space (possibly with the power of the continuumbppseworks have
assumed either the global smoothness of the payoff function (Agraw@bbi¥Xleinberg, 2004;
Kleinberg et al., 2008a; Cope, 2009) or local smoothness in the vicinityeahdxima (Auer et al.,
2007). Here, smoothness means that the payoff function is either Lipschitalder continuous
(locally or globally). These smoothness assumptions are indeed ressonatany practical prob-
lems of interest.

In this paper, we assume that there exists a dissimilarity function that cosstiaibehavior of
the mean-payoff function, where a dissimilarity function is a measure of ticeeghancy between
two arms that is neither symmetric, nor reflexive, nor satisfies the trianglaafigq (The same no-
tion was introduced simultaneously and independently of us by Kleinbetg 20@8b, Section 4.4,
under the name “quasi-distance.”) In particular, the dissimilarity functiosssrmed to locally set
a bound on the decrease of the mean-payoff function at each of itd glabama. We also assume
that the decision maker can construct a recursive covering of the gparms in such a way that
the diameters of the sets in the covering shrink at a known geometric ratemadassured with this
dissimilarity.

1.1 Relation to the Literature

Our work generalizes and improves previous works on continuum-aranedits.

In particular, Kleinberg (2004) and Auer et al. (2007) focused os-@dimensional problems,
while we allow general spaces. In this sense, the closest work to thenprantribution is that
of Kleinberg et al. (2008a), who considered generic metric spacemass that the mean-payoff
function is Lipschitz with respect to the (known) metric of the space; its fullioe (Kleinberg et al.,
2008Db) relaxed this condition and only requires that the mean-payaffiumis Lipschitz at some
maximum with respect to some (known) dissimilafitKleinberg et al. (2008b) proposed a novel
algorithm that achieves essentially the best possible regret bound in a misémsg with respect
to the environments studied, as well as a much better regret bound if thepagaififunction has
a small “zooming dimension”.

Our contribution furthers these works in two ways:

(i) our algorithms, motivated by the recent successful tree-based optimizdgioithms (Kocsis
and Szepesvari, 2006; Gelly et al., 2006; Coquelin and Munos, 20@@aay to implement;

(i) we show that a version of our main algorithm is able to exploit the local ptiegesf the mean-
payoff function at its maxima only, which, as far as we know, was not tigeted in the
approach of Kleinberg et al. (2008a,b).

The precise discussion of the improvements (and drawbacks) with tesptte papers by
Kleinberg et al. (2008a,b) requires the introduction of somewhat extenstations and is therefore
deferred to Section 5. However, in a nutshell, the following can be said.

1. The present paper paper is a concurrent and independentwitbriespect to the paper of Kleinberg et al. (2008b).
An extended abstract (Kleinberg et al., 2008a) of the latter was pudlish&ay 2008 at STOC’'08, while the
NIPS’08 version (Bubeck et al., 2009) of the present paper wami#ted at the beginning of June 2008. At that time,
we were not aware of the existence of the full version (Kleinberg eP@08b), which was released in September
2008.
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First, by resorting to a hierarchical approach, we are able to avoid thefuthe doubling
trick, as well as the need for the (covering) oracle, both of which theafled zooming algorithm
of Kleinberg et al. (2008a) relies on. This comes at the cost of slightly nestective assumptions
on the mean-payoff function, as well as a more involved analysis. Mergthe oracle is replaced
by ana priori choice of a covering tree. In standard metric spaces, such as the Enctigaces,
such trees are trivial to construct, though, in full generality they may bieulifto obtain when
their construction must start from (say) a distance function only. We algpope a variant of
our algorithm that has smaller computational complexity of ordan compared to the quadratic
complexityn? of our basic algorithm. However, the cheaper algorithm requires thelidgutick
to achieve an anytime guarantee (just like the zooming algorithm).

Second, we are also able to weaken our assumptions and to considerapdyties of the
mean-payoff function in the neighborhoods of its maxima; this leads to rbegreids scaling as
6(\m)2 when, for example, the space is the unit hypercube and the mean-payctiion has a
finite number of global maxims* around which it is locally equivalent to a functigm— x*||* with
some known degree > 0. Thus, in this case, we get the desirable property that the rate of gobwth
the regret is independent of the dimensionality of the input space. (Cablpatimensionality-free
rates are obtained under different assumptions in Kleinberg et al., 2008b

Finally, in addition to the strong theoretical guarantees, we expect outithlgao work well
in practice since the algorithm is very close to the recent, empirically veryessfid tree-search
methods from the games and planning literature (Gelly and Silver, 2007; 20608dd et al., 2008;
Chaslot et al., 2008; Finnsson and Bjornsson, 2008).

1.2 Ouitline
The outline of the paper is as follows:

1. In Section 2 we formalize th&-armed bandit problem.

2. In Section 3 we describe the basic strategy proposed, called H@€earchical optimistic
optimizatior).

3. We present the main results in Section 4. We start by specifying andirerglaur as-
sumptions (Section 4.1) under which various regret bounds are prolieen we prove a
distribution-dependent bound for the basic version of HOO (Section AZ)roblem with
the basic algorithm is that its computational cost increases quadratically wittuthkeer of
time steps. Assuming the knowledge of the horizon, we thus propose a caimpailg more
efficient variant of the basic algorithm, calledncated HOCand prove that it enjoys a regret
bound identical to the one of the basic version (Section 4.3) while its complabtiomplex-
ity is only log-linear in the number of time steps. The first set of assumptiorstreams the
mean-payoff function everywhere. A second set of assumptions isftinerpresented that
puts constraints on the mean-payoff function only in a small vicinity of its globadimmes
we then propose another algorithm, callecal-HOO, which is proven to enjoy a regret again
essentially similar to the one of the basic version (Section 4.4). Finally, we pievninimax
optimality of HOO in metric spaces (Section 4.5).

4. In Section 5 we compare the results of this paper with previous works.

2. We writeun = O(vn) whenup, = O(vn) up to a logarithmic factor.
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2. Problem Setup

A stochastic bandit problers is a pairB = (X,M), whereX is a measurable space of arms and
M determines the distribution of rewards associated with each arm. We sall tisad bandit
environmenbn X. Formally,M is an mappingt — M;(R), whered; (R) is the space of probability
distributions over the reals. The distribution assigned toxamX is denoted byM,. We require
that for each armx € X, the distributionMy admits a first-order moment; we then denoteflfy) its
expectation (“mean payoff”),

1) = [y du(y).

The mean-payoff functio thus defined is assumed to be measurable. For simplicity, we shall also
assume that alMy have bounded supports, included in some fixed bounded infeszg), the unit
interval [0, 1]. Then,f also takes bounded values,[(1].

A decision maker (the gambler of the introduction) that interacts with a stochstdit prob-
lem B plays a game at discrete time steps according to the following rules. In theofirsd the
decision maker can select an akne X and receives a rewain drawn at random fronMy,. In
roundn > 1 the decision maker can select an aXge X based on the information available up
to timen, that is,(X1,Y1,...,Xn—1,Yn—1), and receives a rewahy drawn fromMy, independently
of (X1,Y1,...,%Xn-1,Yn—1) givenX,. Note that a decision maker may randomize his choice, but can
only use information available up to the point in time when the choice is made.

Formally, astrategy of the decision makirthis game (“bandit strategy”) can be described by
an infinite sequence of measurable mappings; (¢1,¢2,...), whered, maps the space of past
observations,

Hp = (X x[0,1)" 7,

to the space of probability measures over By convention,d; does not take any argument. A
strategy is calledeterministidf for everyn, ¢, is a Dirac distribution.

The goal of the decision maker is to maximize his expected cumulative rewgrdveiently,
the goal can be expressed as minimizing the expected cumulative regrét jsutédined as follows.
Let

f* = supf(x)
xeX
be the best expected payoff in a single round. At ronnitiecumulative regrebf a decision maker
playingB is

n
Rn =N f* - ZlYta
t=
that is, the difference between the maximum expected payaffannds and the actual total payoff.
In the sequel, we shall restrict our attention to the expected cumulativet redrich is defined as

the expectatiofit[R,] of the cumulative regreR,.
Finally, we define the cumulativeseudo-regreas

Ro=nf = 3 X0,

3. More generally, our results would also hold when the tails of the rewiandiditions are uniformly sub-Gaussian.
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that is, the actual rewards used in the definition of the regret are reptgcthe mean-payoffs of
the arms pulled. Since (by the tower rule)

E[%] = E[E[%[X]] = E[f(X)],
the expected valugg[R,] of the cumulative regret aniél[R,] of the cumulative pseudo-regret are
the same. Thus, we focus below on the study of the behaviBfRf].

Remark 1 Asitis argued in Bubeck et al. (2011), in many real-world problemsg#oision maker
is not interested in his cumulative regret but rather in its simple regret. Ttierlaan be defined
as follows. After n rounds of play in a stochastic bandit probiBnthe decision maker is asked to
make a recommendation, £ X based on the n obtained rewardsg Y. Y,. The simple regret of
this recommendation equals

rn: f*—f(Zn)

In this paper we focus on the cumulative regrgt But all the results can be readily extended to the
simple regret by considering the recommendatiQe=2<r,, where T, is drawn uniformly at random
in {1,...,n}. Indeed, in this case,

as is shown in Bubeck et al. (2011, Section 3).

3. The Hierarchical Optimistic Optimization (HOO) Strategy

The HOO strategy (cf., Algorithm 1) incrementally builds an estimate of the magofifunction

f overX. The core idea (as in previous works) is to estimaf@ecisely around its maxima, while
estimating it loosely in other parts of the spaceTo implement this idea, HOO maintains a binary
tree whose nodes are associated with measurable regions of the aex¥spach that the regions
associated with nodes deeper in the tree (further away from the rootseey increasingly smaller
subsets ofX. The tree is built in an incremental manner. At each node of the tree, HGEssto
some statistics based on the information received in previous rounds.rtioufa, HOO keeps
track of the number of times a node was traversed up to rowemd the corresponding empirical
average of the rewards received so far. Based on these, HO@sasigptimistic estimate (denoted
by B) to the maximum mean-payoff associated with each node. These estimatesratséld to
select the next node to “play”. This is done by traversing the tree, begjrirom the root, and
always following the node with the higheBtvalue (cf., lines 4-14 of Algorithm 1). Once a node is
selected, a point in the region associated with it is chosen (line 16) andtitogbe environment.
Based on the point selected and the received reward, the tree is ufldeted 8—33).

The tree of coverings which HOO needs to receive as an input is an irffinéey tree whose
nodes are associated with subset& offhe nodes in this tree are indexed by pairs of integeis;
node(h,i) is located at depth > 0 from the root. The range of the second indeassociated with
nodes at depth is restricted by K i < 2h. Thus, the root node is denoted ®1). By convention,
(h+1,2i—1) and(h+1,2i) are used to refer to the two children of the ndqtig). Let #,; C X
be the region associated with nogei). By assumption, these regions are measurable and must
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satisfy the constraints

Pop =X, 1)
Phi = Phi12i-1U Pz, forallh>0and 1< i < 2". 2)

As a corollary, the regions}; at any leveh > 0 cover the spacg,

2h

X =] %,

i=1

explaining the term “tree of coverings”.

In the algorithm listing the recursive computation of Bwalues (lines 28—-33) makes a local
copy of the tree; of course, this part of the algorithm could be implementearious other ways.
Other arbitrary choices in the algorithm as shown here are how tie breskithg node selection
part is done (lines 9-12), or how a point in the region associated with tbetsg node is chosen
(line 16). We note in passing that implementing these differently would notgehauar theoretical
results.

To facilitate the formal study of the algorithm, we shall need some more notatigarticular,
we shall introduce time-indexed versior& ((Hn, In), Xn, Yn, Fhji(n), etc.) of the quantities used by
the algorithm. The convention used is that the indexation Isyused to indicate the value taken at
the end of the" round.

In particular,7;, is used to denote the finite subtree stored by the algorithm at the end of round
n. Thus, the initial tree igy = {(0,1) } and it is expanded round after round as

Tn=Tn-1U{(Hn,In)},

where(Hn, In) is the node selected in line 15. We cély, I) the node played in round. We use
X, to denote the point selected by HOO in the region associated with the node ptagindn,
while Y, denotes the received reward.

Node selection works by compariigjvalues and always choosing the node with the highest
B-value. TheB-value,By;(n), at node(h,i) by the end of roundh is an estimated upper bound on
the mean-payoff function at nodé,i). To define it we first need to introduce the average of the
rewards received in rounds when some descendant of (ipdewas chosen (by convention, each
node is a descendant of itself):

N 1 2
Pni(n) = () ;W«Ht,u)eah,i)} :

Here,C(h,i) denotes the set of all descendants of a nddg in the infinite tree,
C(h,i)y={(hi)}uc(h+1,2i—1)uC(h+1,2i),

andTh;(n) is the number of times a descendantlafi) is played up to and including round that
is,

n
Thi(n) = t;]l{mt,h)ec(h,i)}-
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Algorithm 1 The HOO strategy

Parameters: Two real numbers; > 0 andp € (0,1), a sequencehi)pq 1<i<on Of Subsets off

satisfying the conditions (1) and (2).

Auxiliary function LEAF(7): outputs a leaf ofl".

Initialization: 7 = {(0,1)} andBy = By = +.

1. forn=1,2,...do
2: (h,i) < (0,1)
3 P+« {(h,i)}
4: while (h,i) € 7 do
5: if Bhy1,2i-1 > Bhya12i then
6: (h,i)« (h+1,2i—1)
7: else ifBny12i-1 < Bhy12i then
8: (hi) < (h+1,2i)
9: else
10: Z ~ Ber(0.5)
11: (h,i) « (h+1,21—2)
12: end if
13: P« PU{(h,i)}
14: end while
15: (H,1) < (h,i)
16: Choose arnX in %4, and play it
17: Receive corresponding reward
18: T+ TU{H, )}
19:  forall (h,i) e P do
20: Thi< Thi+1
21: Phi < (1= 1/Thi)Pni +Y/Th;
22: end for
23:  forall (h,i)e T do
24: Uni < P ++/(2InN) /Ty +V1ph
25: end for
26 Bui12-1¢ fo
270 Bpi12 ¢+
28: T T
29:  while 7" # {(0,1)} do
30: (h,i) < LEAF(T")
31
32: T+ T\ {(h,i)}
33 end while
34: end for

> Strategy HOO in round > 1
> Start at the root
> P stores the path traversed in the tree
> Search the tre@
> Select the “more promising” child

> Tie-breaking rule
> e.g., choose a child at random

> The selected node
> Arbitrary selection of an arm

> Extend the tree

> Update the statistick andji stored in the path
> Increment the counter of nod, i)
> Update the meapy; of node(h,i)

> Update the statistidd stored in the tree
> Update théJ-value of nod€h,i)

> B-values of the children of the new leaf
> Local copy of the current tre@

> Backward computation of the-values
> Take any remaining leaf

Bhj < min{Uh,i, max{Bn1,2i-1,Bn1.2 }} > Backward computation

> Drop updated leafh, i)
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A key quantity determining i (n) isUn;(n), an initial estimate of the maximum of the mean-payoff
function in the regior#,; associated with nodgh, i):

P 2Inn h o e _
Un,i(n) = i)+ iy TV T Tni() >0 3)

+-00, otherwise

In the expression corresponding to the c&sén) > 0, the first term added to the average of rewards
accounts for the uncertainty arising from the randomness of the rewatthe average is based
on, while the second termygp", accounts for the maximum possible variation of the mean-payoff
function over the regior#h,;. The actual bound on the maxima used in HOO is defined recursively

by

By (1) = min{Uh,i(n)a maX{Bthl,Zifl(n)aBh+1,2i(n)}}, if (h,i) € Tn;
! +oo, otherwise

The role ofBy i (n) is to put a tight, optimistic, high-probability upper bound on the best mean-payof
that can be achieved in the regi@h;. By assumption®,; = Phi12i—1U Phy12i. Thus, assuming
that Bp1.2i—1(Nn) (resp.,Bny1.2i(n)) is a valid upper bound for regiof, 121 (resp.,Phi1.2i), We

see that ma{<Bh+1,2i,1(n),Bh+1,2i(n)} must be a valid upper bound for regidh;. SinceUp;(n)

is another valid upper bound for regidh;, we get a tighter (less overoptimistic) upper bound by
taking the minimum of these bounds.

Obviously, for leafs(h,i) of the treeZ,, one hasBy;(n) = Up;(n), while close to the root one
may expect thaByj(n) < Un;(n); that is, the upper bounds close to the root are expected to be less
biased than the ones associated with nodes farther away from the root.

Note that at the beginning of roum the algorithm useBy;(n— 1) to select the nodéHp, In)
to be played (sinc®(n) will only be available at the end of round. It does so by following a
path from the root node to an inner node with only one child or a leaf anift@nsidering a child
(Hn, In) of the latter; at each node of the path, the child with higBegalue is chosen, till the node
(Hn, In) with infinite B-value is reached.

3.1 lllustrations

Figure lillustrates the computation done by HOO in ronyas well as the correspondence between
the nodes of the tree constructed by the algorithm and their associatenktdgigure 2 shows trees
built by running HOO for a specific environment.

3.2 Computational Complexity

At the end of roundh, the size of the active tre®, is at mostn, making the storage requirements
of HOO linear inn. In addition, the statistics an8-values of all nodes in the active tree need
to be updated, which thus takes tir@¢n). HOO runs in timeO(n) at each rounch, making the
algorithm’s total running time up to rourmdquadratic im. In Section 4.3 we modify HOO so that
if the time horizomg is known in advance, the total running timedgngInng), while the modified
algorithm will be shown to enjoy essentially the same regret bound as theaingirsion.
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/ Followed path

Selected node
7 o)

Figure 1: lllustration of the node selection procedure in ronndhe tree represents,. In the
illustration, Bpy12i—1(N—1) > Bpy12i(n— 1), therefore, the selected path included the
node(h+ 1,2i — 1) rather than the nodg+1,2i).

4. Main Results

We start by describing and commenting on the assumptions that we need tpeathedyegret of
HOO. This is followed by stating the first upper bound, followed by some ingrents on the
basic algorithm. The section is finished by the statement of our results on the mioptiaality
of HOO.

4.1 Assumptions

The main assumption will concern the “smoothness” of the mean-payoffifumdliowever, some-
what unconventionally, we shall use a notion of smoothness that is builhdmissimilarity func-
tions rather than distances, allowing us to deal with function classes of ldgfdyent smoothness
degrees in a unified manner. Before stating our smoothness assumptotstine the notion of a
dissimilarity function and some associated concepts.

Definition 2 (Dissimilarity) A dissimilarity¢ over X is a non-negative mapping: X2 — R satis-
fying £(x,x) = Ofor all x € X.

Given a dissimilarity, thediameterof a subsef of X as measured b§is defined by

diam(A) = sup(x,y),
X,YEA

while the/—open ballof X with radiuse > 0 and center € X is defined by

B(x,e)={ye X :lxy) <e}.
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|

Il Ll 1l
g I
3 |

i u&m&* i "ﬁ*’"*’&Wi‘

Figure 2: The trees (bottom figures) built by HOO after 1,000 (left) an@d® (right) rounds.
The mean-payoff function (shown in the top part of the figure)xis [0,1] —
1/2(sin(13x)sin(27x) + 1); the corresponding payoffs are Bernoulli-distributed. The
inputs of HOO are as follows: the tree of coverings is formed by all dyaderials,

vi =1 andp = 1/2. The tie-breaking rule is to choose a child at random (as shown in
the Algorithm 1), while the points iX to be played are chosen as the centers of the
dyadic intervals. Note that the tree is extensively refined where the neganifjfunction

is near-optimal, while it is much less developed in other regions.

Note that the dissimilarity is only used in the theoretical analysis of HOO; the algorithm does not
requiref as an explicit input. However, when choosing its parameters (the treeeficgs and the
real numbery; > 0 andp < 1) for the (set of) two assumptions below to be satisfied, the user of
the algorithm probably has in mind a given dissimilarity.

However, itis also natural to wonder what is the class of functions factwthe algorithm (given
a fixed tree) can achieve non-trivial regret bounds; a similar questiordression was investigated,
for example, by Yang (2007). We shall indicate below how to construaiaet of such a class,
right after stating our assumptions connecting the tree, the dissimilarity, arshtirenment (the
mean-payoff function). Of these, Assumption A2 will be interpreted, dised, and equivalently
reformulated below into (5), a form that might be more intuitive. The formsfdjed below will
turn out to be the most useful one in the proofs.

Assumptions Given the parameters of HOO, that is, the real numbers 0 andp € (0,1) and the
tree of coveringgh,), there exists a dissimilarity functiohsuch that the following two assump-
tions are satisfied.

Al. There existy, > 0 such that for all integeis > 0,

(@) diam(;) <vipforalli=1,...,2"
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(b) foralli=1,...,2", there existsq; € #h such that
def ,/ o
Bni = Qg(XhJ,Vzph) C B ;
(€) BninBnj=0foral1<i<j<2n
A2. The mean-payoff functiofi satisfies that for alk,y € X,

f*—f(y) < £ — f(x) +max{ f*— f(x), £(x,y)}. 4)

We show next how a tree induces in a natural way first a dissimilarity and ahelass of
environments. For this, we need to assume that the tree of covétihgs—in addition to (1)
and (2)—is such that the subséts and#, j are disjoint whenever £ i < j < 2" and that none of
them is empty. Then, eache X corresponds to a unique path in the tree, which can be represented
as an infinite binary sequenggx . .., where

X = H{XETL1+1}’

o= H{XGTZ‘H(ZXOH)}’

X =1
{X€T3.1+(4x0+2x1+l)} ’

For pointsx,y € X with respective representatiorsx; ... andygys . .., we let
E(X’ y) = (1_ p)V]_ z ]I{Xh;ﬁyh}ph‘
h=0

Itis not hard to see that this dissimilarity satisfies A1l. Thus, the associatsdaflanvironmentg’
is formed by those with mean-payoff functions satisfying A2 with the so-ddfiissimilarity. This
is a “natural class” underlying the tree for which our tree-based algorithn achieve non-trivial
regret. (However, we do not know if this is the largest such class.)

In general, Assumption Al ensures that the regions in the tree of cos¢@hg shrink exactly
at a geometric rate. The following example shows how to satisfy A1 when thmaidoX is a
D-dimensional hyper-rectangle and the dissimilarity is some positive poweedtticlidean (or
supremum) norm.

Example 1 Assume that is a D-dimension hyper-rectangle and consider the dissimild(ityy) =
bl|x—y||3, where a> 0 and b> 0 are real numbers an{l - || is the Euclidean norm. Define the tree
of coveringq %) in the following inductive way: lefy 1 = X. Given a noded, , let 1 211 and
Ph+1,2i be obtained from the hyper-rectanghs; by splitting it in the middle along its longest side
(ties can be broken arbitrarily).

We now argue that Assumption Al is satisfied. With no loss of generality evg takl0, 1]°.
Then, for all integers = 0and0O < k<D —1,

a a
. 1/ 3 vD
diam(Pupik1) =b <2u D 4k> <b ( o >
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Itis now easy to see that Assumption Al is satisfied for the indicated dissimilarigxample, with
the choice of the parameteps= 2-2/P andv, = b (2\5)a for HOO, and the valug, = b/22,

Example 2 In the same setting, with the same tree of coverif®g) over X = [0,1]°, but now
with the dissimilarity/(x,y) = b||x—y||2, we get that for all integers & 0 andO < k< D —1,

1 a
diam(?umk,l) =b <2u> .
This time, Assumption A1 is satisfied, for example, with the choice of the ginsm=2-2/° and
v1 = b22 for HOO, and the value, = b/22.

The second assumption, A2, concerns the environment; when Assumgiiensatisfied, we
say thatf is weakly Lipschitavith respect to (w.r.t.Y. The choice of this terminology follows from
the fact that iff is 1-Lipschitz w.r.t., that is, for allx,y € X, one hagf(x) — f(y)| < £(x,y), then
it is also weakly Lipschitz w.r.t/.

On the other hand, weak Lipschitzness is a milder requirement. It implies locaigided)
1-Lipschitzness at any global maximum, since at any ®rsuch thatf (x*) = f*, the criterion (4)
rewrites tof (x*) — f(y) < ¢(x*,y). In the vicinity of other arms, the constraint is milder as the
armx gets worse (a$* — f(x) increases) since the condition (4) rewrites to

Vy e X, f(x) — f(y) <max{f*— f(x), £(x,y)}. (5)

Here is another interpretation of these two facts; it will be useful whesidering local as-
sumptions in Section 4.4 (a weaker set of assumptions). First, concermirgettavior around
global maxima, Assumption A2 implies that for any setC X with sug, 4 f(X) = f*,

£ — inf (x) < diam(). (6)

Second, it can be seen that Assumption A2 is equivalienthe following property: for alk € X
ande > 0,

@(X7 f*— f(X)+€) C XZ(f*—f(x))+£ (7)

where
Xe={xex:f(x)>f" —¢}

denotes the set afoptimal arms This second property essentially states that there is no sudden
and large drop in the mean-payoff function around the global maxima (natehils property can
be satisfied even for discontinuous functions).

Figure 3 presents an illustration of the two properties discussed above.

Before stating our main results, we provide a straightforward, thoughilusensequence of
Assumptions Al and A2, which should be seen as an intuitive justificationdahtid term in (3).

4. That Assumption A2 implies (7) is immediate; for the converse, it ffto consider, for eaghe X, the sequence
en=(L(xy)— (f*— f(X 1/n
n= (o) = ("= 19)) +1/n,

where( )4 denotes the nonnegative part.
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X* X

Figure 3: lllustration of the property of weak Lipschitzness (on the realdind for the distance
£(x,y) = [x—y]). Around the optimunx* the valuesf (y) should be abové* — ¢(x*,y).
Around anye-optimal pointx the valuesf (y) should be larger thah* — 2¢ for /(x,y) <€
and larger tharf (x) — £(x,y) elsewhere.

For all nodegh,i), let

fri = sup f(x) and  Apj=f"—fp;.
' XE P, '

Q) is called thesuboptimality factoof node(h,i). Depending whether it is positive or not, a node
(h,i) is calledsuboptimalAn; > 0) or optimal (An; = 0).

Lemma 3 Under Assumptions Al and A2, if the suboptimality fagdgrof a region,; is bounded
by ov1p" for some ¢ 0, then all arms inA,; are max{2c,c+ 1} v1pM-optimal, that is,

Phi C Xmaxi2c,c+1}viph -
Proof For alld > 0, we denote by; ;(3) an element off,; such that
f(xi(8) > frj —0=f*—Ap; - 0.
By the weak Lipschitz property (Assumption A2), it then follows that foryadl B,
£ = 1(y) < 1= 1 (,(8)) +max{ £ = 1 (,4(8)). £(4:,(8). y) }
< Dnj+ 8+ max{Anj + 5, diam,; } .

Letting & — O and substituting the bounds on the suboptimality and on the diamef®y; ¢As-
sumption Al) concludes the proof. |
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4.2 Upper Bound for the Regret of HOO

Auer et al. (2007, Assumption 2) observed that the regret of a comtirarmned bandit algorithm
should depend on how fast the volumes of the se¢sayftimal arms shrink as— 0. Here, we cap-
ture this by defining a new notion, the near-optimality dimension of the mearffgagotion. The
connection between these concepts, as well as with the zooming dimensioeddeafi Kleinberg
et al. (2008a), will be further discussed in Section 5. We start by regdhie definition of packing
numbers.

Definition 4 (Packing number) Theg-packing numbef\ (X, ¢,€) of X w.r.t. the dissimilarity’ is
the size of the largest packing &fwith disjoint/-open balls of radius. That is,\(X,¢,¢€) is the
largest integer k such that there exists k disjdipen balls with radiug contained inX.

We now define the—near-optimality dimension, which characterizes the size of theXsgts
a function ofe. It can be seen as some growth rate iof the metric entropy (measured in terms of
¢ and with packing numbers rather than covering numbers) of the setagtimal arms.

Definition 5 (Near-optimality dimension) For ¢ > 0 the c-near-optimality dimensioaf f w.r.t. ¢
equals

: In N (Xee, 4, €)
maxy 0, lim sup———~<— /.
ev0 In(et)
The following example shows that using a dissimilarity (rather than a metric, $tarice) may
sometimes allow for a significant reduction of the near-optimality dimension.

Example 3 Letx = [0,1]P and let f: [0,1]° — [0, 1] be defined by () = 1— ||x||* for some &> 1

and some nornfj - || on RP. Consider the dissimilarity defined by/(x,y) = [|x—y||2. We shall see

in Example 4 that f is weakly Lipschitz w.it(in a sense however slightly weaker than the one
given by(6) and (7) but sufficiently strong to ensure a result similar to the one of the main result,
Theorem 6 below). Here we claim that the c—near-optimality dimension ffipca 0) of f w.r.t. ¢

is 0. On the other hand, the c—near-optimality dimension (for any@) of f w.r.t. the dissimilarity

¢’ defined, fol0 < b < a, by (x,y) = ||x—y]||? is (1/b—1/a)D > 0. In particular, when a> 1 and

b = 1, the c—near-optimality dimension (& —1/a)D.

Proof (sketch)Fix ¢ > 0. The setX is the|| - ||-ball with center 0 and radiuge)Y/2,
that is, thel-ball with center 0 and radius. Its e-packing number w.r.¥ is bounded
by a constant depending only &) ¢ anda; hence, the value 0 for the near-optimality
dimension w.r.t. the dissimilarity.

In case of?’, we are interested in the packing number of thé-ball with center 0 and
radius(ce)Y/2 w.r.t. -balls. The latter is of the order of

(ce)¥/a 0 D (1/b—1/a)D
=cP/ae™?) ;

el/b

hence, the valuél/b— 1/a)D for the near-optimality dimension in the case of the
dissimilarity '
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Note that in all these cases tbaear-optimality dimension of is independent of the
value ofc. |

We can now state our first main result. The proof is presented in Section A.1.

Theorem 6 (Regret bound for HOO) Consider HOO tuned with parameters such that Assump-
tions Al and A2 hold for some dissimilarity Let d be thedv; /vo—near-optimality dimension of
the mean-payoff function f w.rd&. Then, for all d > d, there exists a constagtsuch that for all
n>1,

E [Rn] < yn(d’+1) /(d'+2) (In n) 1/(d'+2)

Note that ifd is infinite, then the bound is vacuous. The constaint the theorem depends ah
and on all other parameters of HOO and of the assumptions, as well as baritie environment
M. (The value ofy is determined in the analysis; it is in particular proportionabgd'/.) The
next section will exhibit a refined upper bound with a more explicit valugiofterms of all these
parameters.

Remark 7 The tuning of the parameters of HOO is critical for the assumptions to be edtigfius
to achieve a good regret; given some environment, one should selgrrmmeters of HOO such
that the near-optimality dimension of the mean-payoff function is minimizeck 8ie mean-payoff
function is unknown to the user, this might be difficult to achieve. Thudjyddaese parameters
should be selected adaptively based on the observation of some prelirsamapte. For now, the
investigation of this possibility is left for future work.

4.3 Improving the Running Time when the Time Horizon is Known

A deficiency of the basic HOO algorithm is that its computational complexity scpiadratically
with the number of time steps. In this section we propose a simple modification to H&O th
achieves essentially the same regret as HOO and whose computationalxitynsglees only log-
linearly with the number of time steps. The needed amount of memory is still lineawdhk out
the case when the time horizomg, is known in advance. The case of unknown horizon can be
dealt with by resorting to the so-called doubling trick, see, for examplea-B&nchi and Lugosi
(2006, Section 2.3), which consists of periodically restarting the algoritrmefyimes of lengths
that double at each such fresh start, so that thimstance of the algorithm runs fof Bounds.

We consider two modifications to the algorithm described in Section 3. First, tatities
Uni(n) of (3) are redefined by replacing the factonlhy Inng, that is, now

. 2Inng
Uh,l(n) uh,l(n) + Th,i (n)
(This results in a policy which explores the arms with a slightly increaseddrexyl) The definition

of the B-values in terms of th&;(n) is unchanged. A pleasant consequence of the above modi-
fication is that theB-value of a given node changes only when this node is part of a patttestle

by the algorithm. Thus at each roungdonly the nodes along the chosen path need to be updated
according to the obtained reward.

+vip".
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However, and this is the reason for the second modification, in the basiGtiatgoa path at
roundn may be of length linear im (because the tree could have a depth lineam)inThis is why
we also truncate the tre€s at a depttDy, of the order of Img. More precisely, the algorithm now
selects the nod@Hy, I,y) to pull at round by following a path in the tre€;,_1, starting from the root
and choosing at each node the child with the higBegalue (with the new definition above using
Inng), and stopping either when it encounters a node which has not beandeghbefore or a node

at depth equal to
D. — {(Inno)/Z—In(l/vl)"
h In(1/p) '

(Itis assumed thaty > 1/v? so thatDy, > 1.) Note that since no child of a nodBy,, i) located at
depthDp, will ever be explored, it8-value at rounch < no simply equaldJp, i (n).

We call this modified version of HOO theuncated HOQalgorithm. The computational com-
plexity of updating alB-values at each roundlis of the order oDy, and thus of the order of im.
The total computational complexity up to rounglis therefore of the order afpInng, as claimed
in the introduction of this section.

As the next theorem indicates this new procedure enjoys almost the samé&ativentegret
bound as the basic HOO algorithm.

Theorem 8 (Upper bound on the regret of truncated HOO) Fix a horizon i such that B3, > 1.
Then, the regret bound of Theorem 6 still holds true at rougdan truncated HOO up to an
additional additive4,/ng factor.

4.4 Local Assumptions

In this section we further relax the weak Lipschitz assumption and requirgyitto hold locally
around the maxima. Doing so, we will be able to deal with an even larger didsaations and
in fact we will show that the algorithm studied in this section achiev&Xg@n) bound on the
regret regret when it is used for functions that are smooth aroundrttaiima (e.g., equivalent to
|x—x*||* for some known smoothness degree 0).

For the sake of simplicity and to derive exact constants we also state in a rpticit evay the
assumption on the near-optimality dimension. We then propose a simple andcheéitigtation of
the HOO algorithm suited for this context.

4.4.1 MODIFIED SET OFASSUMPTIONS

Assumptions Given the parameters of (the adaption of) HOO, that is, the real number® and
p € (0,1) and the tree of covering®h,; ), there exists a dissimilarity functiohsuch that Assump-
tion Al (for somev, > 0) as well as the following two assumptions hold.

A2'. There existgg > 0 such that for all optimal subsefs C X (i.e., sug.4 f(x) = f*) with
diameter diam4) < &,
f*—inf f(x) < diam(A4).

xXeA

Further, there existis > 0 such that for alk € Xg, ande € [0, £q],

B(x, f*—f(x)+€) C A (et t00)1e)
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A3. There exis€C > 0 andd > 0 such that for alt < &g,
N(-XC& E? 8) g Cs_d b)

wherec = 4Lv; /vs.

When f satisfies Assumption A2’, we say thatis ep—Ilocally L—weakly Lipschitaw.r.t. ¢.
Note that this assumption was obtained by weakening the characterizatjoasd(§7) of weak
Lipschitzness.

Assumption A3 is not a real assumption but merely a reformulation of the defirofimear
optimality (with the small added ingredient that the limit can be achieved, seedbedsstep of the
proof of Theorem 6 in Section A.1).

Example 4 We consider again the domai and function f studied in Example 3 and prove (as
announced beforehand) that fgg—locally22~1—weakly Lipschitz w.r.t. the dissimilarifydefined
by ¢(x,y) = ||x—Y]||?; which, in fact, holds for alko.

Proof Note thatx* = (0,...,0) is such thatf* = 1 = f(x*). Therefore, for alk € X,
= (%) = [Ix]|* = £(x",%),

which yields the first part of Assumption A2'. To prove that the secontliparue for
L = 22~1 and with no constraint on the considergdve first note that since > 1, it
holds by convexity thatu+ v)2 < 22-1(ud +V?) for all u,v > 0. Now, for alle > 0 and
y € B(x, [[x]|2+¢), that is,y such that(x,y) = [|x—y[|? < ||x||2+¢,

£ = fy) = VI < (x4 x=y1)* < 222 (X2 + = y)1?) < 227 (21X +e).

which concludes the proof of the second part of A2'. |

4.4.2 MoDIFIED HOO ALGORITHM

We now describe the proposed modifications to the basic HOO algorithm.

We first consider, as a building block, the algorithm calteldOQ which takes an integeras
an additional parameter to those of HOO. AlgoriterlOO works as follows: it never plays any
node with depth smaller or equal ze- 1 and starts directly the selection of a new node at depth
To do so, it first picks the node at dephvith the besB-value, chooses a path and then proceeds as
the basic HOO algorithm. Note in particular that the initialization of this algorithmistsén the
first 22 rounds) in playing once each of thér®des located at dep#in the tree (since by definition
a node that has not been played yet hBsvalue equal tot-). We note in passing that whenr= 0,
algorithmz-HOO coincides with the basic HOO algorithm.

Algorithm local-HOO employs the doubling trick in conjunction with consecutive instances of
z-HOO. It works as follows. The integers> 1 will index different regimes. The" regime starts
at round 2 — 1 and ends when the next regime starts; it thus lasts fosuhds. At the beginning of
regimer, a fresh copy of-HOO, wherez, = [log,r ], is initialized and is then used throughout the
regime.
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Note that each fresh start needs to pull each of thedles located at depthat least once (the
number of these nodesasr). However, since roundlasts for 2 time steps (which is exponentially
larger than the number of nodes to explore), the time spent on the initializatiprHiO in any
regimer is greatly outnumbered by the time spent in the rest of the regime.

In the rest of this section, we propose first an upper bound on thetrefg-HOO (with exact
and explicit constants). This result will play a key role in proving a bountherperformance of
local-HOO.

4.4.3 ADAPTATION OF THE REGRETBOUND

In the following we writehg for the smallest integer such that
2v1p™ < &g

and consider the algorithmHOO, wherez > hg. In particular, wherz = 0 is chosen, the obtained
bound is the same as the one of Theorem 6, except that the constantear® gnalytic forms.

Theorem 9 (Regret bound forzzHOOQO) Consider z-HOO tuned with parameterg and p such
that Assumptions A1, A2’ and A3 hold for some dissimilaiigyd the values, L, €o, C, d. If, in
addition, z= hg and n> 2 is large enough so that

1 In(4Lvin) —In(ylnn)

<
’Sdt2 In(1/p) ’
where d
B 4CLvyv, 16
Y= et -1 <v§p2 +9> ’

then the following bound holds for the expected regret of z-HOO:
1 8Inn
E[Rn] < <1+pd+2> (4|_Vln)(d+1)/(d+2)(y|nn)l/(o|+2)Jr (22_1) (\)2p22+4> .
1

The proof, which is a modification of the proof to Theorem 6, can be fonr&ection A.3 of
the Appendix. The main complication arises because the weakened ass@dptitot allow one to
reason about the smoothness at an arbitrary scale; this is essentiallytdeereesholdy used in
the formulation of the assumptions. This is why in the proposed variant of W@@iscard nodes
located too close to the root (at depth smaller than 1). Note that in the bound the second term
arises from playing in regions corresponding to the descendants of“podes located at level
In particular, this term disappears whes: 0, in which case we get a bound on the regret of HOO
provided that 2; < gg holds.

Example 5 We consider again the setting of Examples 2, 3, and 4. The domain=g0, 1]°

and the mean-payoff function f is defined kx)f= 1 — ||x||2. We assume that HOO is run with
parametersp = (1/4)/® andv; = 4. We already proved that Assumptions A1, A2’ and A3 are
satisfied with the dissimilarity(x,y) = ||x—y]||2, the constants, =1/4, L=2,d=0, and® C =

5. To computeC, one can first note thatl4, /v, = 128; the question at hand for Assumption A3 to be satisfied is
therefore to upper bound the number of balls of radifew.r.t. the supremum north- ||) that can be packed in a

ball of radiusy/12&, giving rise to the boun@ < \/128D.

1673



BUBECK, MUNOS, STOLTZ AND SZEPESVARI

128/2, as well as anyg > 0 (that is, with ly = 0). Thus, resorting to Theorem 9 (applied with
z=0), we obtain

32x 12872 , &

=~p 1 (42 1-9)

and get

E[Ry] < (1+4%°)/32yninn= \/exp(O(D)) ninn.

Under the prescribed assumptions, the rate of convergence is of gfdeno matter the ambient
dimension D. Although the rate is independent of D, the latter impacts therpenfize through the
multiplicative factor in front of the rate, which is exponential in D.

The following theorem is an almost straightforward consequence ofréhe® (the detailed
proof can be found in Section A.4 of the Appendix). Note that local-HO®sduot require the
knowledge of the parameteg in A2’

Theorem 10 (Regret bound for local-HOQ) Consider local-HOO and assume that its parameters
are tuned such that Assumptions A1, A2’ and A3 hold for some dissimitaritiien the expected
regret of local-HOO is bounded (in a distribution-dependent sensé&)lksvs,

E [Rn] _ 6(n(d+1)/(d+2)) _

4.5 Minimax Optimality in Metric Spaces

In this section we provide two theorems showing the minimax optimality of HOO in meicesp
The notion of packing dimension is key.

Definition 11 (Packing dimension) The/-packing dimension of a sgt (w.r.t. a dissimilarity?) is
defined as
lim sup M i
£=0 In(e~1)

For instance, it is easy to see that whenevis a norm, compact subsets BP with non-empty
interiors have a packing dimension Bf We note in passing that the packing dimension provides
a bound on the near-optimality dimension that only depend& amd/ but not on the underlying
mean-payoff function.

Let Fx ¢ be the class of all bandit environments.&irwith a weak Lipschitz mean-payoff func-
tion (i.e., satisfying Assumption A2). For the sake of clarity, we now denotea bandit strategy
¢ and a bandit environmeM on X, the expectation of the cumulative regretpobverM at timen
by Em [Ra()]-

The following theorem provides a uniform upper bound on the regrei® over this class of
environments. It is a corollary of Theorem 9; most of the efforts in th@fpconsist of showing
that the distribution-dependent constgmh the statement of Theorem 9 can be upper bounded by
a quantity (they in the statement below) that only depends.orvy, p, ¢, v2, D/, but not on the
underlying mean-payoff functions. The proof is provided in Section Ath® Appendix.
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Theorem 12 (Uniform upper bound on the regret of HOO) Assume thak has a finite/-packing
dimension D and that the parameters of HOO are such that Al is satisfiezh, Tdr all D' > D
there exists a constagtsuch that for all n> 1,
sup Ey [Ra(HOO)] < yn®*D/(C+2) (Inp) Y(O'+2),
Me Fx ¢

The next result shows that in the case of metric spaces this upper booptingl up to a
multiplicative logarithmic factor. Similar lower bounds appeared in Kleinber®42@for D = 1)
and in Kleinberg et al. (2008a). We propose here a weaker statemestittscour needs. Note that
if X is a large enough compact subseR5fwith non-empty interior and the dissimilarityis some
norm of RP, then the assumption of the following theorem is satisfied.

Theorem 13 (Uniform lower bound) Consider a setx equipped with a dissimilarity that is a
metric. Assume that there exists some constan(3; 1] such that for alk < 1, the packing numbers
satisfyA[(X,¢,€) > ce P > 2. Then, there exist two constant$d\D) andy(c, D) depending only
on ¢ and D such that for all bandit strategi$sand all n> N(c, D),

sup Em[Ra(9)] = y(c,D) n(P+/(D+2),
Me Fx

The reader interested in the explicit expressiondl @, D) andy(c,D) is referred to the last
lines of the proof of the theorem in the Appendix.

5. Discussion

In this section we would like to shed some light on the results of the previotiesgclin particular
we generalize the situation of Example 5, discuss the regret that we cam, aloihcompare it with
what could be obtained by previous works.

5.1 Examples of Regret Bounds for Functions Locally Smooth at theiMaxima

We equipX = [0,1]° with a norm|| - ||. We assume that the mean-payoff functibhas a finite
number of global maxima and that it is locally equivalent to the funcfior x*||*—with degree
a € [0,00)—around each such global maximuwhof f; that is,

f(x)—f(x)=0(x—x"*) as x—x".
This means that there exist, ¢, d > 0 such that for alk satisfying||x — x*|| < 9,
Coflx = x|% < £(x7) — f(x) < cafx—x7|.

In particular, one can check that Assumption A2’ is satisfied for the dissityildefined by
Cep(X.y) = c|[x—Y|[P, wherep < o (andc > ¢; whenB = a). We further assume that HOO is
run with parameters; andp and a tree of dyadic partitions such that Assumption Al is satisfied as
well (see Examples 1 and 2 for explicit values of these parameters in te@ttse Euclidean or

the supremum norms over the unit cube). The following statements can tiemhéated on the
expected regret of HOO.
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e Known smoothness:If we know the true smoothness éfaround its maxima, then we set
B =a andc > c;. This choicel, o of a dissimilarity is such that is locally weak-Lipschitz
with respect to it and the near-optimality dimensiomlis- O (cf., Example 3). Theorem 10
thus implies that the expected regret of local-HO@is/n), that is,the rate of the bound is
independent of the dimension D

e Smoothness underestimatedHere, we assume that the true smoothnes$ afound its
maxima is unknown and that it is underestimated by chooBirga (and somee). Thenf
is still locally weak-Lipschitz with respect to the dissimilartys and the near-optimality di-

mension isd = D(1/B — 1/a), as shown in Example 3; the regret of HO@ign(d+1)/(d+2))

e Smoothness overestimatedNow, if the true smoothness is overestimated by chooBing
o or o = B andc < ci, then the assumption of weak Lipschitzness is violated and we are
unable to provide any guarantee on the behavior of HOO. The latter, wémoh with an
overestimated smoothness parameter, may lack exploration and exploit toly frean the
beginning. As a consequence, it may get stuck in some local optimufm wiissing the
global one(s) for a very long time (possibly indefinitely). Such a behasidtustrated in
the example provided in Coquelin and Munos (2007) and showing the pogsdblematic
behavior of the closely related algorithm UCT of Kocsis and Szepes2@@i6). UCT is an
example of an algorithm overestimating the smoothness of the function; thisdadeethe
B-values of UCT are defined similarly to the ones of the HOO algorithm but witieaLthird
term in the definition (3) of th&J-values. This corresponds to an assumed infinite degree of
smoothness (that is, to a locally constant mean-payoff function).

5.2 Relation to Previous Works

Several works (Agrawal, 1995b; Kleinberg, 2004; Cope, 200%rAat al., 2007; Kleinberg et al.,
2008a) have considered continuum-armed bandits in Euclidean or, maeadg normed or metric
spaces and provided upper and lower bounds on the regret for gagses of environments.

e Cope (2009) derived é(ﬁ) bound on the regret for compact and convex subseks aind
mean-payoff functions with a unique minimum and second-order smoothness

¢ Kleinberg (2004) considered mean-payoff functidnsn the real line that are éider contin-
uous with degree & a < 1. The derived regret bound &(n(@+/(0+2)),

e Auer etal. (2007) extended the analysis to classes of functions thedqairalent td|x — x*||*
around their maxima*, where the allowed smoothness degree is also lacger0, «). They
derived the regret bound

O(n%) )

where the parametgis such that the Lebesgue measure-optimal arm isO(e?).

e Another setting is the one of Kleinberg et al. (2008a) and Kleinberg ek@08b), who
considered a spade(, /) equipped with some dissimilariyand assumed thdtis Lipschitz
w.r.t. £ at some maximunx® (when the latter exists and a relaxed condition otherwise), that
is,

VX e X, f(X') — F(x) <L(XX"). (8)
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The obtained regret bound @&(n(¢+1/(4+2)) 'whered is thezooming dimensioriThe latter
is defined similarly to our near-optimality dimension with the exceptions that in theititefi
of zooming dimensioli) covering numbers instead of packing numbers are usediqsets
of the form X¢ \ X;/» are considered instead of the sgt. When(X,¢) is a metric space,
covering and packing numbers are within a constant factor to each atitetherefore, one
may prove that the zooming and near-optimality dimensions are also equal.

For an illustration, consider again the example of Section 5.1. The resultexft al. (2007)
shows that foD = 1, the regret i®(,/n) (since herdd = 1/a, with the notation above). Our result
extends thg/n rate of the regret bound to any dimensidn

On the other hand the analysis of Kleinberg et al. (2008b) does not bppiuse in this example
f(x*) — f(x) is controlled only wherx is close in some sense b (i.e., when||x — X*|| < &), while
(8) requires such a control over the whole gt However, note that the local weak-Lipschitz
assumption A2’ requires an extra condition in the vicinityxbfcompared to (8) as it is based on
the notion of weak Lipschitzness. Thus, A2’ and (8) are in generahipewable (both capture a
different phenomenon at the maxima).

We now compare our results to those of Kleinberg et al. (2008a) and Kelegjred al. (2008b)
under Assumption A2 (which does not cover the example of Section 5.1sunlsdarge). Under
this assumption, our algorithms enjoy essentially the same theoretical guaraattéee zooming
algorithm of Kleinberg et al. (2008a,b). Further, the following hold.

e Our algorithms do not require the oracle needed by the zooming algorithm.

e Ourtruncated HOO algorithm achieves a computational complexity of @@ddogn), whereas
the complexity of a naive implementation of the zooming algorithm is likely to be much
larger®

e Both truncated HOO and the zooming algorithms use the doubling trick. The H&xx
algorithm, however, avoids the doubling trick, while meeting the computatiomaplexity
of the zooming algorithm.

The fact that the doubling trick can be avoided is good news since aritaigdhat uses the dou-
bling trick must start frontabula rasatime to time, which results in predictable, yet inevitable,
sharp performance drops—a quite unpleasant property. In parfitrighis reason algorithms that
rely on the doubling trick are often neglected by practitioners. In additie@fattt that we avoid the
oracle needed by the zooming algorithm is attractive as this oracle might lmildifti implement
for general (non-metric) dissimilarities.
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Appendix A. Proofs

We provide here the proofs of the results stated above.

A.1 Proof of Theorem 6 (Main Upper Bound on the Regret of HOO)

We begin with three lemmas. The proofs of Lemmas 15 and 16 rely on conoemo&measure
techniques, while the one of Lemma 14 follows from a simple case study. Lfet ssme path
(0,1), (1,i3), (2,i3), ... of optimal nodes, starting from the root. That is, denofjg 1, we mean
that for all j > 1, the suboptimality ofj,i7) equalsAm = 0 and(j,ij) is a child of(j — 1, i]ffl).

Lemma 14 Let (h,i) be a suboptimal node. Lét< k < h— 1 be the largest depth such thi,iy)
is on the path from the rod0, 1) to (h,i). Then for all integers @ 0, we have

n
E[Thi(n] <u+ Y IP’{ [Usjs (t) < f* for somese {k+1,....,t —1}]
t=u+1

or [Thi(t) >u and Upj(t) > f*] }

Proof Consider a given rountie {1,...,n}. If (Hi, k) € C(h,i), then this is because the child
(k+1,i") of (ki) on the path tah,i) had a betteB-value than its brothefk+- 1,i; ;). Since
by definition,B-values can only increase on a chosen path, this entail8ghat; | < B+ 1,ir (1) <
Bn,i(t). This is turns implies, again by definition of tBevalues, thaBy 1 , () < Un;(t). Thus,

{(Ht,lt) € C(h,i)} C {Uhji(t) > Bk+1,i§+1(t)} C {Uh,i (t) > f*}U{Bk+17i;+l(t) < f*}.
But, once again by definition @&-values,
{Brrwi,, (1) < '} c{Ukgaip, () < P HU{Brgai; , (1) < F7},

and the argument can be iterated. Since up to rdund more thart nodes have been played
(including the suboptimal nodd, i)), we know thatt, i) has not been played so far and thus has a
B-value equal tet-«. (Some of the previous optimal nodes could also have had an irfinitsue,

if not played so far.) We thus have proved the inclusion

{(H,lt) € C(h,i)} C {Uni(t) > f*} U ({UkJrl,iﬁH(t) <UL u{Uig (1) < f*}) )
Now, for any integet > 0 it holds that
n n
Thi(n) = t;H{(HI,I[)eC(h,i),Thﬁi(t)gu}+t;H{(Hl,It)eC(h,i),Th‘i(t)>u}
< u+ i Lihe i ecthi), T )>u) »

t=u+1
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where we used for the inequality the fact that the quantliigd ) are constant frorhtot + 1, except
when(Ht, It) € C(h,i), in which case, they increase by 1; therefore, on the one hand, atiroftste
Th,i(t) can be smaller than and on the other handy;(t) > u can only happen if > u. Using (9)
and then taking expectations yields the result. |

Lemma 15 Let Assumptions Al and A2 hold. Then, for all optimal nqtiel and for all integers
n>1,

P{Uhvi(n) < f*} < ns.

Proof On the event thath,i) was not played during the first rounds, one has, by convention,
Uni(n) = 4. In the sequel, we therefore restrict our attention to the e{@nt(n) > 1}.

Lemma 3 withc = 0 ensures that* — f(x) < v1p" for all armsx e Bni. Hence,

n

Z(f(xt) +v1p" — ) Iraeciniy =0

t=

and therefore,

P{Un;i(n) < f* and Thi(n) >1}

= P ﬁh,i(n)+ 2Inn +v 1p < f* and Th| >1
Th,l( )
= P{Th,i(n)ﬁh,i(n)+Th.( )(vlp — %) < —4/2Thi(n)Inn and Tyi(n) > }
n n
= P{ (Yt—f(N))H«Ht,Meah,i)}JrZl(f<xt>+\’19h—f*)Hth.,n)eah,i)}
t= t=

2Thi(n)Inn and Th;(n )21}

N

n
P{Zl(f(xt) —Y) Limoechi = 1/ 2Thi(n)Inn and Thi(n) > 1} .
=

We take care of the last term with a union bound and the Hoeffding-Azunadatiey for martingale
differences.

To do this in a rigorous manner, we need to define a sequence of (rantqping times when
arms inC(h,i) were pulled:

Tj:min{t Thilt —j} i=12,....
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Note that 1< Ty < T> <., hence it holds thal; > j. We denote by~(j = Xy, the j" arm pulled in
the region corresponding ©(h,i). Its associated corresponding reward eqﬁ;al-s Y, and

n
P{zl(f()(t) _Yt)]I{(Ht,h)EC(h,i)} = 2Th7i(n> Inn and Th_’i(n) = 1}

t=
Thi(n) _ B
P{ JZl (f(xl) _Yj> Z \/m and Th7i(n) > 1}

> P{Ji(f(f(j) Vi) > JM} ,

where we used a union bound to get the last inequality.

We claim that .

z= Zl(f(f(j) -Y)
=
is a martingale w.r.t. the filtratiog = o (X1, Z1, ..., %, Z, %+1). This follows, via optional skipping
(see Doob, 1953, Chapter VII, adaptation of Theorem 2.3), fromattis that

n

Zi(f(xt) =YL 1)echiny

t=

is a martingale w.r.t. the filtratioffy = 0(X1,Y1,..., %, %, %+1) and that the event§T; = k} are
Jx_1-measurable for akk > j.

Applying the Hoeffding-Azuma inequality for martingale differences (seeffiling, 1963),
using the boundedness of the ranges of the induced martingale difeseqaence, we then get, for
eacht > 1,

2
t o 2(v2tInn
}P’{Z <f(Xj) —Yj) > \/2tlnn} < exp —u =n*,
=1 t
which concludes the proof. [ |

Lemma 16 For all integers t< n, for all suboptimal nodegh,i) such that,; > v1p", and for all

integers u> 1 such that
8Inn
u>

~ (Dnj—v1ph)2’
one has
P{Up;(t) > f* and Th(t) > u} <tn™*.

Proof Theu mentioned in the statement of the lemma are such that

—vlph> /2Inn /2Int Ah|+le
2 - u '’
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Therefore,

—I—leh > fﬁii + A and Th:i(t) > U}

L h
Aih’l V1P and Th,i (t) > U}

N

% —
R NG

p =y

v

5%

_l._

n . An: —V h
< PO (Ba() — fig) > =22 Ty and Thji(t)>u}
t Dni —vip"
= P ZL(YS— fﬁ,i)ﬂ{(Hst)eC(h,i)} > L 2 1P ThJ(t) and ThJ(t) > U}
S—

t Ani —V h
< P{ ZL(YS— f(x5>>ﬂ{(|_|s7|s>ec(h7i)} > mTlpTh_’i (t) and Th’i (t) > U} .
S=

Now it follows from the same arguments as in the proof of Lemma 15 (optionppisig, the
Hoeffding-Azuma inequality, and a union bound) that

t Ani — v
P{ Z(Ys— %) T assectniyy > h"flpTh,i (t) and Thi(t) > U}
£

t vy \2 t
Z exp<_§ <(Ah7| 2le )SI> >< Z exp(—;sl(Ah,i—leh)z)

S=u+1

N

1
<t exp(—2 u(Anj — leh)2> <tn 4,

where we used the stated boundwio obtain the last inequality. |

Combining the results of Lemmas 14, 15, and 16 leads to the following key kesuiding the
expected number of visits to descendants of a “poor” node.

Lemma 17 Under Assumptions Al and A2, for all suboptimal noges) with Ap; > vip", we

have, for all n> 1,

8Inn
E[Thi(n)] < (Bni —V1p")2 +4

Proof We takeu as the upper integer part @8 Inn)/(An; —v1p")? and use union bounds to get
from Lemma 14 the bound

8l
+ i (P{Tm (t) >u and Uh,i (t) > f*} +t§P{US7ig(t) < f*}> .
t=u+1 s=1
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Lemmas 15 and 16 further bound the quantity of interest as

E[Thi(n)]<78|nn +1+i tn_4+t71t_3
S B T 2 (1

and we now use the crude upper bounds

n t—-1 n
1+ y (tn4+ Zt"‘) <1+ Zl(n*3+t*2)<2+n2/6<4
S= t

t=u+1

to get the proposed statement. |

Proof (of Theorem 6)First, let us fixd’ > d. The statement will be proven in four steps.

First step. For allh=0,1,2,.. ., denote by, the set of those nodes at dejptthat are 21p"-
optimal, that is, the nodg#, i) such thatf;; > f* — 2v1p". (Of course,lp = {(0,1)}.) Then, letI
be the union of these sets whiemaries. Further, lef be the set of nodes that are notfibbut whose
parentisini. Finally, forh=1 2 ... we denote by}, the nodes iry that are located at depthin
the tree (i.e., whose parent is I 1).

Lemma 17 bounds in particular the expected number of times each(hddle 4, is visited.
Since for these nodes,; > 2v1p", we get

Second step.We bound the cardinalityl,| of I,. We start with the caske > 1. By definition,
when(h,i) € Iy, one had\y; < 2v1p", so that by Lemma 3 the inclusiafy; C Xy ph holds. Since
by Assumption A1, the set#,; contain disjoint balls of radius,p", we have that

| In| < A(Uniye 1, Phis £ V2P") < AL(Xay,pns £ V2P") = N (X(av, jug)upphs £ V20") -

We prove below that there exists a cons@mstuch that for alkE < vy,
N (Xiavy pvyyes £, €) <Ce 7. (10)

Thus we obtain the bound,| < C (vzph)*d, for all h > 1. We note that the obtained boupi| <

C (v2p") ~is still valid for h = 0, sincel| Io| = 1.
It only remains to prove (10). Sina# > d, whered is the near-optimality of, we have, by
definition, that
In AL(X, (€
limsup N (X(avs jvr)e> 4> €)
£50 In(e-1)
and thus, there existy > 0 such that for alE < gy,

IN A (X(avy jvg)es € €)
In(e~1)

<d,

<d,

which in turn implies that for alt < ey,

N(X(4V1/V2)87 67 8) < sid/ .
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The result is proved wit€ = 1 if e > v,. Now, consider the casg' < v2. Given the definition of
packing numbers, it is straightforward that for @l [sd/, vz],

def
N(‘X(4V1/V2)87 E? e) < ud/ :e N('X’ E’ ed/) ’
therefore, for alk € [eq, V2],

d/
\4 4
N(X(4\)1/V2)g, 67 8) < Uy ?g/ —Cs d

for the choiceC = max{17 Ug vg/}. Because we take the maximum with 1, the stated inequality
also holds for < =%, which concludes the proof of (10).

Third step. LetH > 1 be an integer to be chosen later. We partition the nodes of the infinite
treeT into three subsetd = 71U 72U T3, as follows. Let the sef'! contain the descendants of
the nodes iy (by convention, a node is considered its own descendant, hence the oidd are
included in7TY); let 72 = Upcnn In; and let72 contain the descendants of the nodesianp .
Thus, 7t and7? are potentially infinite, whileZ? is finite.

We recall that we denote b§H;, I;) the node that was chosen by HOO in round~rom the
definition of the algorithm, each node is played at most once, thus no twoaugbm variables are
equal whert varies. We decompose the regret according to which of theZetse nodegH, 1)
belong to:

—E[Ra] +E[Rnz] +E[Rog],

n

where Ry = Z(f* — f (%) [ pery,  fori=1,2,3

=

The contribution fronZ ! is easy to bound. By definition any node i is 2v1p"-optimal. Hence,
by Lemma 3, the corresponding domain is includedip ,+. By definition of a tree of coverings,
the domains of the descendants of these nodes are still includagllg,n. Therefore,

E[Rn1] <4vip™n.

For h > 0, consider a nodéh,i) € 72. It belongs tol, and is therefore & p"-optimal. By
Lemma 3, the corresponding domain is includedip, ,». By the result of the second step of this
proof and using that each node is played at most once, one gets

E[Rn2] < :Z_l

H-1
4v1p" | In| < 4Cvyv, ¢ Z) ph-=d)
0 e

We finish by bounding the contribution from3. We first remark that since the parent of any
element(h,i) € % isin Ih_1, by Lemma 3 again, we have th&{; C Xy, pn-1- We now use the first
step of this proof to get

c h—1 H h—1 81Inn
E[Rn,s] < z 4v1p E[Th,i(n)] < Z AP | hl < 2~2h +4) :
h=1 h=1 V1P

i (NEh
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Now, it follows from the fact that the parent df is in I,_1 that| | < 2| Ih—1]| whenh > 1. Substi-
tuting this and the bound dr,_1| obtained in the second step of this proof, we get

H /
ERg] < 3 4v,p" 1 (2C (v2p"Y) ,d) <8 Inn +4>
h=1

2
vZp?h

H
< 8Cvyv, ¢ > ph(1-d)+d'-1 <8 Inn +4> ‘
h=1

Fourth step. Putting the obtained bounds together, we get

H-1 H
' ’ / heg—1 (81NN
E[Ry| < 4v1pH n+4Cvyv, @ hzo ph(lfd)—l—SCVle*d hzlph(lfd +d—1 < +4>

H
= O(an +(Inn) p‘h(“d/)) = O(npH +p M+ n)
=1

(recall thatp < 1). Note that all constants hidden in tBesymbol only depend ony, v,, p andd’.
Now, by choosingH such thap~H(@+2) is of the order ofi/Inn, that is,p" is of the order of
(n/Inn)~Y(@+2) ‘we get the desired result, namely,

E[R,] = o<n<d/+1>/<d/+2> (In n)l/(d’+2)) ‘

A.2 Proof of Theorem 8 (Regret Bound for Truncated HOO)

The proof follows from an adaptation of the proof of Theorem 6 and aissociated lemmas; for
the sake of clarity and precision, we explicitly state the adaptations of the latter.

Adaptations of the lemmas.Remember thaD,,, denotes the maximum depth of the tree, given
horizonng. The adaptation of Lemma 14 is done as follows. (fet) be a suboptimal node with
h < Dp, and let 0< k < h—1 be the largest depth such tii&tiy) is on the path from the ro@0, 1)
to (h,i). Then, for all integersi > 0, one has
No

E[Thi(no)] <u+ y }P’{ [Usiiz (t) < f* for someswith k-+1 < s < min{Dpy, No} |
t=u+1

or [Thi(t) >u and Upj(t) > f*] }

As for Lemma 15, its straightforward adaptation states that under Assumptioasd A2, for
all optimal nodegh, i) with h < Dy, and for all integers Xt < no,

[F’{Um (t) < f*} <t (no)74 < (no)3.

Similarly, the same changes yield from Lemma 16 the following result for trudd4@O. For
all integerst < ng, for all suboptimal nodegh,i) such thath < Dy, andAn; > vlph, and for all
integersu > 1 such that

8Inng

uz —————,
(Anj —v1p")2
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one has
]P’{Um(t) > f* and Th;(t) > U} <t (n0)74.

Combining these three results (using the same methodology as in the proofiwfd £7) shows
that under Assumptions Al and A2, for all suboptimal nades) such that < D, andAn; > vip",
one has

E[Thi(no)] < %—1—1—1— nzo (t(n0)4+min{tii,no}(no)3)

<Ah’i - leh)z t=u+1
8Inng
(Anj —v1p")2 3

(We thus even improve slightly the bound of Lemma 17.)

Adaptation of the proof of Theorem 6. The main change here comes from the fact that trees
are cut at the deptb,,. As a consequence, the sdis I, 7, and 4, are defined only by referring
to nodes of depth smaller thdby,. All steps of the proof can then be repeated, except the third
step; there, while the bounds on the regret resulting from nodés @ind 72 go through without
any changes (as these sets were constructed by considering afidtstseof some base nodes), the
bound on the regreR, > associated with the nodéZ? calls for a modified proof since at this stage
we used the property that each node is played at most once. But thistis@anymore for nodes
(h,i) located at deptiD,,, which can be played several times. Therefore the proof is modified as
follows.

Consider a node at depkh= Dy,,. Then, by definition oDy,

Inng)/2—1n(1/v4) . 1
In(L/p) . thatis  vip"< e

Since the considered nodes ave@@ " -optimal, the corresponding domains ave@-optimal by
Lemma 3, thus also/4/np-optimal. The instantaneous regret incurred when playing any of these
nodes is therefore bounded by,#no; and the associated cumulative regret (aygrounds) can be
bounded by 4/no. In conclusion, with the notations of Theorem 6, we get the new bound

h)DnOZ(

Ht H-1
E[Rn2] < > 41" | In| + 4y/No < 4/Ng + 4Cv1v, ¢ Z}ph(l—d)'
h=0 =

The rest of the proof goes through and only this additional additiverfafi, /ng is suffered in the
final regret bound. (The additional factor can be included irQhetation.)
A.3 Proof of Theorem 9 (Regret Bound forzzHOO)

We start with the following equivalent of Lemma 3 in this new local context. Reneenfiathg is
the smallest integer such that

2v1p™ < g.
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Lemma 18 Under Assumptions Al and A2’, for allZh ho, if the suboptimality factof\,; of a
region#; is bounded by p" for some &= [0,2], then all arms in?,; are Lmax{2c, c+ 1}v1ph—
optimal, that is,

Phi C meax{Zc, c+1lvgph-

When c= 0, that is, the nodéh, i) is optimal, the bound improves to

P C Xypph -

Proof We first deal with the general case ©€ [0,2]. By the hypothesis on the suboptimality of
B, for all > 0, there exists an elemerte Xevyphs N Fhiji- If & is small enough, for example,
o€ (O, € — 2v1ph0] , then this element satisfi@s= Xg,. Lety € B,;. By Assumption AL/(X,Y) <
diam(%) < v1p", which entails, by denoting= max{0,v,p" — (f* — f(x))},

Oxy) <vip" < fr—f(x)+€e,  thatis  ye B(x, f*—f(x)+e).
Sincex € Xg, ande < v1p" < vipM < go, the second part of Assumption A2’ then yields

ye B(x, f*—f(x)+¢) CXL(z(f*—f(x>>+£)‘

It follows from the definition of that f* — f(x) +& = max{ f* — f(x), vip"}, and this implies

ye EB(Xa f*—1(x) +8) C XL(f*ff(x)+max{f*7f(X),leh}) '

Butx € Xoy, pn5: thatis,f* — f(x) < cv1p" + 8, we thus have proved

ye xL(max{Zc, c+1}v1ph+26) '
In conclusionFhi C X max(2c, c+1}v,p"+2L5 fOr all sufficiently smalld > 0. Lettingd — 0 concludes
the proof.

In the case ot = 0, we resort to the first part of Assumption A2’, which can be appliedesinc
diam( %) < v1p" < & as already noted above, and can exactly be restated as indicating thlt for
y € Hj,

f*— f(y) < diam(#;) < vip";

thatis, %hi C X, pn- |

We now provide an adaptation of Lemma 17 (actually based on adaptationsnohas 14
and 15), providing the same bound under local conditions that relax shienggions of Lemma 17
to some extent.

Lemma 19 Consider a depth z hg. Under Assumptions Al and A2, the algorithm z-HOO satis-
fies that for all n> 1 and all suboptimal node@, i) with Apj > vip" and h> z,

81Inn
EL] < G vy
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Proof We consider some patfz,i;), (z+ 1,i3,,), ... of optimal nodes, starting at depth We
distinguish two cases, depending on whether there existk’ < h— 1 such thath,i) € C(K’,i},)
or not.

In the first case, we dencdkéthe largest such. The argument of Lemma 14 can be used without
any change and shows that for all integets O,

n
E[Ti(m] <u+ ¥ IP’{ [Usis (t) < f* for somes e {k+1,...,t —1}]
t=u+1

or [Thi(t) >u and Up;(t) > f*] }

In the second case, we denote(lyin) the ancestor ofh,i) located at depthk. By definition of
z-HOO, (H, It) € C(h,i) at some round > 1 only if Bj: (t) < By, (t) and sinceB-values can only
increase on a chosen pathi, ;) € C(h,i) can only happen iB;;:(t) < Bn;(t). Repeating again
the argument of Lemma 14, we get that for all integezs0,

n
E[Thi(m] <u+ Y IP’{ [Usjs (t) < f* for somese {z,...,t —1}]
t=u+1

or [Thi(t) >u and Upj(t) > f*] }

Now, notice that Lemma 16 is valid without any assumption. On the other hand,theth
modified assumptions, Lemma 15 is still true but only for optimal ngtigs with h > hy. Indeed,
the only point in its proof where the assumptions were used was in the fougthathren applying
Lemma 3; here, Lemma 18 with= 0 provides the needed guarantee.

The proof is concluded with the same computations as in the proof of Lemma 17. |

Proof (of Theorem 9)We follow the four steps in the proof of Theorem 6 with some slight adjust-
ments. In particular, foh > z, we use the sets of nodésand %, defined therein.

First step. Lemma 19 bounds the expected number of times each (fodec j, is visited.
Since for these nodés,; > 2v1p", we get

Second stepWe bound here the cardinalitys|. By Lemma 18 withc = 2, when(h, i) € I, and
h >z one hash; C Xy, ph-
Now, by Assumption Al and by using the same argument as in the second #teppooof of
Theorem 6,
[ In| < N(x(4Lv1/vz)vzphv l, Vth) .

Assumption A3 can be applied sinegp" < 2v1p" < 2v1pM < g5 and yields the inequalityl| <
—d
C(v2p") .
Third step. We consider some integét > z to be defined by the analysis in the fourth step.
We define a partition of the nodes located at a depth equal to or largez; tihmeome precisely,

e 71 contains the nodes df; and their descendants,
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o T2 = U I,
z<h<H-1

e 73 contains the nodes | J % and their descendants,
z+1<h<sH

e 7% is formed by the nodegz i) located at deptlz not belonging tol, that is, such that
Az > 2v1p?, and their descendants.

As in the proof of Theorem 6 we denote By; the regret resulting from the selection of nodes in
T, forie{1,2,3,4}.

Lemma 18 withc = 2 yields the bound [R, 1] < 4Lv1p"n, where we crudely bounded try
the number of times that nodesin" were played. Using that by definition each nodeZGfcan be
played only once, we get

H-1 H-1
E[R2] < 5 (4Lvip") || <4CLvyv, @ § p"H 9.
h=z h=z
As for Ry 3, we also use here that nodesir belong to someh, with z+ 1 < h < H; in particular,
they are the child of some element &f ; and as such, firstly, they ard v p"1-optimal (by

Lemma 18) and secondly, their number is boundetihly< 2| I 1| < ZC(vzphfl)_d. Thus,

H 4 4 (h-1)(1-a) (8NN
DY (4Lv1p" z E [Thi(n)] < 8CLv1v, > p 5o +4])
h:z+1 (N h=z+1

where we used the bound of Lemma 19. Finally,4dr we use that it contains at most-21 nodes,
each of them being associated with a regret controlled by Lemma 19; thesrefo

81Inn
B[Roa] < (2 1) (o +4) -
vip
Fourth step. Putting things together, we have proved that

B[R < 4bvip"n+ B[Rec] + B[Roa] + (Z-1) (1o +4)
1

where (using thap < 1 in the second inequality)

E[Rn2] +E[Rn3]

4 hd) 4w (ho1)1d (8Inn
< 4Clvv," > p +8CLviv,° S p +4
h=z h= z+1

4 (i) ha-d) (_8Inn
= 4Clvv, Z P9 4 8CLvv; ¢ Z p" 7+4

N\
C
5
<
M
'O
2
Q_
R
:T
_l_
C
S
<
I\)
M
'O
2
Q.
Ve
(0]
5
>
D
N—

ClLvyv, ¢ (Z ph(”d)> (36+ 63 In n)
h=z
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Denoting

y— 4CLvyv, ¢ < 16 +9>
(1/p)d+t —1 \vip? ’
it follows that forn > 2
E[Ruz] +E[Ryg] <yp @ Inn.

It remains to define the parametdr> z. In particular, we propose to choose it such that the

terms

d+1)

4vip"n  and  p M@V nn

are balanced. To this end, Ikt be the smallest integdr such that &v;pkn < yp @+ Inn; in

particular,
1/(d+2)
o < < ylnn >
4Lvin
and
AviptIn>yp PV Inn - implying  yp MY Inn < 4Lviptinp (@42

Note from the inequality that thid is such that

1 In(4Lvin) —In(ylnn)
H> G52 n@p)

and thus thidH satisfiesH > zin view of the assumption of the theorem indicating thas large
enough. The final bound on the regret is then

E[Ry] < 4Lvip'ntyp M@V inny (22-1) <SZ‘|222+4>
1

1 8Inn
1P

1 ylnn \ Y@ 81Inn
< ) - _— —
< <1+ 5 +2) 4Lvin < 4Lv1n> +(2¢-1) <V%p22 +4)
- <1+ dl+z) (aLvyn) SR (yinp /@42 4 (22 1) (82"12” +4) |

p le Z
This concludes the proof. -

A.4 Proof of Theorem 10 (Regret Bound for Local-HOO)

Proof We use the notation of the proof of Theorem 9. Lgbe a positive integer such that for
r >rg, one has

def 1 In(4Lv12") —In(yIn2")
= > < :
z = [log,r]| > ho and z < di2 in(1/p) :

we can therefore apply the result of Theorem 9 in regimes indexedyy. For previous regimes,
we simply upper bound the regret by the number of rounds, thatis; 2< 2. For roundn, we

1689



BUBECK, MUNOS, STOLTZ AND SZEPESVARI

denote byr, the index of the regime wherelies in (regimer, = |log,(n+1)]). Since regimen
terminates at round?? — 2, we have

]E[Rn] < ]E[RzrnJrlfz]

'n
< 204y <l+ dl+z> (4022) T (yin21) (942 (2% 1) (82"123: +4)
r=to p Vip

n

< 2°4Ci(inn) <(z<d+1>/<d+2>)r+(2/p2)z‘>

r=ro

< 20 +C2(Inn) (<z(d+1)/(d+2))rn fry (Z/pZ)Zrn> _ (Inn) O(n(d+1)/(d+2)) 7

whereCy,C, > 0 denote some constants depending only on the parameters but molNote that
for the last equality we used that the first term in the sum of the two terms thahdeonn domi-
nates the second term. [ |

A.5 Proof of Theorem 12 (Uniform Upper Bound on the Regret of HOO a@inst the Class of
all Weak Lipschitz Environments)

Equations (6) and (7), which follow from Assumption A2, show that AsstionpA2’ is satisfied
for L =2 and alleg > 0. We take, for instancegp = 3v1. Moreover, sinceX has a packing
dimension ofD, all environments have a near-optimality dimension less thaim particular, for
all D’ > D (as shown in the second step of the proof of Theorem 6 in Section A.1§ éxésts a
constaniC (depending only orf, X, €g = 3v1, V2, andD’) such that Assumption A3 is satisfied.
We can therefore takiey = 0 and apply Theorem 9 with= 0 andM € ¥y ; the fact that all the
guantities involved in the bound depend only.bn/, v,, D', and the parameters of HOO, but not
on a particular environment ifi, concludes the proof.

A.6 Proof of Theorem 13 (Minimax Lower Bound in Metric Spaces)

LetK > 2 an integer to be defined later. We provide first an overview of the pkbarfe, we exhibit
a set4 of environments for th¢1,...,K + 1}-armed bandit problem and a subgétc Fx , which
satisfy the following properties.

(i) The set4 contains “difficult” environments for thél, ..., K + 1}-armed bandit problem.

(i) For any strategp™) suited to thex-armed bandit problem, one can construct a stragfjy )
forthe{1,...,K+ 1}-armed bandit problem such that

YMeF, Fved,  Ew[R(¢™)] =Ey [R(wk)].
We now provide the details.

Proof We only deal with the case of deterministic strategies. The extension to raretbstiategies
can be done using Fubini's theorem (by integrating also w.r.t. the auxiliadoraizations used).
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First step. Letn € (0,1/2) be a real number aridl > 2 be an integer, both to be defined during
the course of the analysis. The sebnly containK elements, denoted by, ...,vK and given by
product distributions. For ¥ j < K, the distributiorv/ is obtained as the product of thé when
ie{1,...,K+1} and where

vl Ber(1/2), if i #j;
'\ Ber(1/2+1), ifi=]j.

One can extract the following result from the proof of the lower boun@eda-Bianchi and Lugosi
(2006, Section 6.9).

Lemma 20 For all strategiespK+1) for the{1,...,K+ 1}-armed bandit (where K= 2), one has

max By R )] > m (1 % —nvan@r3) g ).

j=1..,

Second step.We now need to construcgk’ such that item (ii) is satisfied. We assume that
K is such thatx containsK disjoint balls with radiug). (We shall quantify later in this proof a
suitable value oK.) Denoting byxa,...,xx the corresponding centers, these disjoint balls are then

B(x1,N); -+, B(Xk,N)-
With each of these balls we now associate a bandit environmentivearthe following way.
For allx* € X, we introduce a mappingy- , on X defined by

O (X) = max{0, n —£(x,x") }

for all x € X. This mapping is used to define an environmdpt, over.X, as follows. For alk € X,

1
Let fy , be the corresponding mean-payoff function; its values equal
1
Ben(9) =3+ max{0, n — £(x,x") }

for all x € X. Note that the mean payoff is maximizedxat x* (with value 3/2+n) and is minimal
for all points lying outsideB(x*,n), with value /2. In addition, that is a metric entails that these
mean-payoff functions are 1-Lipschitz and thus are also weakly Lipsdhites is the only pointin
the proof where we use théis a metric.) In conclusion, we consider

,{I’I == {MXlJ]’ ey MXK;n} C ,‘}—:Xf

Third step. We describe how to associate with each (deterministic) strai€fyon X a (ran-
dom) strategyp®+Y on the finite set of arm¢1,...,K + 1}. Each of these strategies is indeed
given by a sequence of mappings,

80 0% and g gk
where fort > 1, the mappingsbt(x) anqut(KH) should only depend on the past up to the beginning

of roundt. Since the strategyX) is deterministic, the mappingt(x) takes only into account the
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past rewardss,...,Y;_1 and is therefore a mappin@,1]'*~* — x. (In particular,q)(lx) equals a
constant.)

We use the notatiorl$ andY; for, respectively, the arms pulled and the rewards obtained by the
strategypK D at each round. The armd/ are drawn at random according to the distributions

K+1
Tl (N SN

which we now define. (Actually, they will depend on the obtained payyffs...Y, ; only.) To
do that, we need yet another mappihdhat links elements itk to probability distributions over
{1,...,K+1}. Denoting bydy the Dirac probability ok € {1,...,K+ 1}, the mapping is defined
as

6K+17 if Xg . U $(X]arl)l
T = _ _ I
<1— E(xr,]x,)> O + E(XAX') Ok+1, If xe B(xj,n) forsomej e {1,...,K},

for all x € X. Note that this definition is legitimate because the b&{(g;,n) are disjoint whenj
varies between 1 arid.
Finally, pK+1 is defined as follows. For al> 1,

D0 Yo ) = WD () =T (08 (Y W )).

Before we proceed, we study the distribution of the reWdrabtained undev' (fori € {1,...,K})
by the choice of a random arthdrawn according td (x), for somex € X. SinceY’ can only take
the values 0 or 1, its distribution is a Bernoulli distribution whose paranpgterwe compute now.
The computation is based on the fact that undethe Bernoulli distribution corresponding to arm
j has Y2 as an expectation, exceptji= i, in which case itis 12+n. Thus, for allx € X,

1/2, if x¢ B(x,n);

e (1—@) <;+n>+axr1m;:§+n—€<xa><i>v It x € B0,N).

Thatis,l = fy 5 ONX.

Fourth step. We now prove that the distributions of the regretspot) underMy; 5 and of
YK+ undervi are equal for allj = 1,...,K. On the one hand, the expectations of rewards asso-
ciated with the best arms equal2+n under the two environments. On the other hand, one can
prove by induction that the sequencésY,,... andY],Y;,... have the same distribution. (In the
argument below, conditioning by empty sequences means no conditioning willhbe the case
only fort =1.)

For allt > 1, we denote

X =0 (YY)
Underv! and givenY;,....Y/ ;, the distribution ofY{ is obtained by definition as the two-step

random draw of{ ~ T (X/) and then, conditionally on this first dra¥, ~ vljt,. By the above results,
the distribution ofY;" is thus a Bernoulli distribution with parameter(x/).
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At the same time, undévly, , and giveri, ..., Y;_1, the choice of

X[ - (I)t(X) (Yla .. 7Yt71)

yields a rewardy; distributed according tdy; (%), that is, by definition and with the notations
above, a Bernoulli distribution with parametia[ﬂ(x[) = (X).

The argument is concluded by induction and by using the fact that reveaeddrawn indepen-
dently in each round.

Fifth step. We summarize what we proved so far. Fpe (0,1/2), provided that there exist
K > 2 disjoint ballsB(x;,n) in X, we could construct, for all strategig@s”®) for the X-armed
bandit problem, a strategy®*% for the {1,...,K+ 1}-armed bandit problem such that, for all
j=1,...,Kandalln>1,

Em, o [Ra(@™))] = Eyi [Ra(w )]

But by the assumption on the packing dimension, there egist® such that for alh < 1/2,
the choice oKy, = [cn~P] > 2 guarantees the existence of sighdisjoint balls. Substituting this
value, and using the results of the first and fourth steps of the proajetve

max Ey,  [Ri(®Y)] = max E, [Ry(w*™)] >m (1——r]\/4ln 4/3) \/>>

=1, Ky i j=1,.-.Kq
The proof is concluded by noting that
e the left-hand side is smaller than the maximal regret w.r.t. all weak Lipschitzoemaints;

e the right-hand side can be lower bounded and then optimizedrpwet,/2 in the following
way.

By definition ofK,, and the fact that it is larger than 2, one has
nn (1— Ki —nv4In(4/3), /Kn>
n n

>nn (1— % —n%ﬁW@) =m (;—Cn”m\@

whereC = /(4In(4/3)) / c. We can optimize the final lower bound owge [0, 1/2).
To that end, we choose, for instangesuch thaCn+P/2,/n = 1/4, that is,

1 \Y+D/2) 1\ ¥/1+0/2)
n= _ (L n-1/(0+2)
4C\/n 4C

This gives the lower bound

1/ 1\Y@+D/2) /(14D/2)
i/ 1 nl-1/(0+2) _ = (D+1)/(D+2)
() “ila ) |

=y(c
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To ensure that this choice ofis valid we need to show that< 1/2. Since the latter requirement

is equivalent to
1\ ¥/1+D/2) D+2
2 2 A~ )

it suffices to choose the right-hand side toNi, D); we then get thaty < 1/2 indeed holds for all
n > N(c,D), thus concluding the proof of the theorem. [ |
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