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Abstract

We develop the distance dependent Chinese restauranspraciexible class of distributions over
partitions that allows for dependencies between the elesn&his class can be used to model many
kinds of dependencies between data in infinite clusteringeis including dependencies arising
from time, space, and network connectivity. We examine tlupgrties of the distance depen-
dent CRP, discuss its connections to Bayesian nonparammeitcture models, and derive a Gibbs
sampler for both fully observed and latent mixture settingée study its empirical performance
with three text corpora. We show that relaxing the assumptioexchangeability with distance
dependent CRPs can provide a better fit to sequential dataetmark data. We also show that
the distance dependent CRP representation of the traalit@RP mixture leads to a faster-mixing
Gibbs sampling algorithm than the one based on the origamaidlation.

Keywords: Chinese restaurant processes, Bayesian nonparametrics

1. Introduction

Dirichlet process (DP) mixture models provide a valuable suite of flexiblearing algorithms for
high dimensional data analysis. Such models have been adapted to text g¢@etiret al., 2006;
Goldwater et al., 2006), computer vision (Sudderth et al., 2005), sdgurodels (Dunson, 2006;
Fox et al., 2007), and computational biology (Xing et al., 2007). Moreaeeent years have seen
significant advances in scalable approximate posterior inference mdtrdtiés class of models
(Liang et al., 2007; Daume, 2007; Blei and Jordan, 2005). DP mixtaes ihecome a valuable tool
in modern machine learning.

DP mixtures can be described via the Chinese restaurant process, @HgiBjribution over
partitions that embodies the assumed prior distribution over cluster stru¢Ritesin, 2002). The
CRP is fancifully described by a sequence of customers sitting down athites taf a Chinese
restaurant. Each customer sits at a previously occupied table with probabdjtgrtional to the
number of customers already sitting there, and at a new table with probabdippional to a
concentration parameter. In a CRP mixture, customers are identified with diata, and data
sitting at the same table belong to the same cluster. Since the number of occbfgedsaandom,
this provides a flexible model in which the number of clusters is determined luathe
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The customers of a CRP are exchangeable—under any permutation afrttezing, the prob-
ability of a particular configuration is the same—and this property is essentiahtoect the CRP
mixture to the DP mixture. The reason is as follows. The Dirichlet process istribdtion over
distributions, and the DP mixture assumes that the random parametersigguamobservations
are drawn from a distribution drawn from a Dirichlet process. The masens are conditionally
independent given the random distribution, and thus they must be margmahyangeablé.If the
CRP mixture did not yield an exchangeable distribution, it could not be alguit/to a DP mixture.

Exchangeability is a reasonable assumption in some clustering applicatibimsiyiany it is not.
Consider data ordered in time, such as a time-stamped collection of news aiictbg setting,
each article should tend to cluster with other articles that are nearby in timeor@ider spatial data,
such as pixels in an image or measurements at geographic locations. Hiereeagh datum should
tend to cluster with other data that are nearby in space. While the traditionainG®ire provides
a flexible prior over partitions of the data, it cannot accommodate suclexdrmangeability.

In this paper, we develop thdistance dependent Chinese restaurant pracassew CRP in
which the random seating assignment of the customers depends on theedidtatween ther.
These distances can be based on time, space, or other characteriiesic®dependent CRPs
can recover a number of existing dependent distributions (Ahmed and 2008; Zhu et al., 2005).
They can also be arranged to recover the traditional CRP distribution. diStence dependent
CRP expands the palette of infinite clustering models, allowing for many usefiidexchangeable
distributions as priors on partitiors.

The key to the distance dependent CRP is that it represents the partitioousttmer assign-
ments rather than table assignments. While the traditional CRP connects custonedntety the
distance dependent CRP connects customers to other customers. fitienpaifrthe data, that
is, the table assignment representation, arises from these customectammeWhen used in a
Bayesian model, the customer assignment representation allows for atébraighd Gibbs sam-
pling algorithm for approximate posterior inference (see Section 3). Thiddes a new tool for
flexible clustering of non-exchangeable data, such as time-seriest@l gfzda, as well as a new
algorithm for inference with traditional CRP mixtures.

1.1 Related Work

Several other non-exchangeable priors on partitions have appiaredent research literature.
Some can be formulated as distance dependent CRPs, while otheren¢arasfferent class of
models. The most similar to the distance dependent CRP is the probability distribatjmartitions
presented in Dahl (2008). Like the distance dependent CRP, this diitribmay be constructed
through a collection of independent priors on customer assignments tacatemers, which then
implies a prior on partitions. Unlike the distance dependent CRP, howeeedistribution pre-

1. That these parameters will exhibit a clustering structure is due to theeisess of distributions drawn from a
Dirichlet process (Ferguson, 1973; Antoniak, 1974; Blackwell, 1973

2. This is an expanded version of our shorter conference papetiosutiject (Blei and Frazier, 2010). This version
contains new perspectives on inference and new results

3. We avoid calling these clustering models “Bayesian nonparametricPjBicause they cannot necessarily be cast as
a mixture model originating from a random measure, such as the DP mixioglel. The DP mixture is BNP because
it includes a prior over the infinite space of probability densities, and theri@Rfre is only BNP in its connection
to the DP mixture. That said, most applications of this machinery are kzasedd letting the data determine their
number of clusters. The fact that it actually places a distribution on thetefiiimensional space of probability
measures is usually not exploited.
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sented in Dahl (2008) requires normalization of these customer assigprobabilities. The model
in Dahl (2008) may always be written as a distance dependent CRP, ditttmeigormalization re-
guirement prevents the reverse from being true (see Section 2). Wéhabteahl (2008) does not
present an algorithm for sampling from the posterior, but the Gibbs sapgsented here for the
distance dependent CRP can also be employed for posterior inferethes model.

There are a number of Bayesian nonparametric models that allow for adiepen between
(marginal) partition membership probabilities. These include the dependeiohiBirprocess
(MacEachern, 1999) and other similar processes (Duan et al., 200ffh @nd Steel, 2006; Xue
et al., 2007). Such models place a prior on collections of sampling distribudiams from Dirich-
let processes, with one sampling distribution drawn per possible valuevafiate and sampling
distributions from similar covariates more likely to be similar. Marginalizing out #ragding dis-
tributions, these models induce a prior on partitions by considering two cusstaonee clustered to-
gether if their sampled values are equal. (Recall, these sampled valueawangichm the sampling
distributions corresponding to their respective covariates.) This prienl net be exchangeable if
we do not condition on the covariate values.

Distance dependent CRPs represent an alternative strategy for ngodetirexchangeability.
The difference hinges on marginal invariance, the property that a miebisgyvation does not af-
fect the joint distribution. In general, dependent DPs exhibit marginariamce while distance
dependent CRPs do not. For the practitioner, this property is a modelingeckdiich we discuss
in Section 2. Section 4 shows that distance dependent CRPs and depbRderepresent nearly
distinct classes of models, intersecting only in the original DP or CRP.

Still other prior distributions on partitions include those presented in Ahmedangl(2008)
and Zhu et al. (2005), both of which are special cases of the distapmndent CRP. Rasmussen
and Ghahramani (2002) use a gating network similar to the distance depePRP to partition
datapoints among experts in way that is more likely to assign nearby points emtleectuster. Also
included are the product partition models of Hartigan (1990), their repgahsion to dependence
on covariates (Muller et al., 2008), and the dependent Pitman-Yor ggsd&udderth and Jordan,
2008). A review of prior probability distributions on partitions is presentddireller and Quintana
(2008). The Indian Buffet Process, a Bayesian non-parametric qmigparse binary matrices, has
also been generalized to model non-exchangeable data by Miller et @8)(20/e further discuss
these priors in relation to the distance dependent CRP in Section 2.

The rest of this paper is organized as follows. In Section 2 we develogistence dependent
CRP and discuss its properties. We show how the distance dependemh&@Rbe used to model
discrete data, both fully-observed and as part of a mixture model. In 8&tice show how the
customer assignment representation allows for an efficient Gibbs samigorgtan. In Section 4
we show that distance dependent CRPs and dependent DPs repistiect classes of models. Fi-
nally, in Section 5 we describe an empirical study of three text corporg tiséndistance dependent
CRP. We show that relaxing the assumption of exchangeability with distapesmdent CRPs can
provide a better fit to sequential data. We also show its alternative formutdtiba traditional CRP
leads to a faster-mixing Gibbs sampling algorithm than the one based on thabiigmulation.
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Figure 1: An illustration of the distance dependent CRP. The procesatepat the level of cus-
tomer assignments, where each customer chooses either another custoonausiomer
according to Equation (2). Customers that chose not to connect to amothedicated
with a self link The table assignments, a representation of the partition that is fatmilia
the CRP, are derived from the customer assignments.

&

2. Distance-dependent CRPs

The Chinese restaurant process (CRP) is a probability distribution avétigns (Pitman, 2002). It
is described by considering a Chinese restaurant with an infinite numkesle$ and a sequential
process by which customers enter the restaurant and each sit dowmaradanly chosen table.
After N customers have sat down, their configuration at the tables represearigdant partition.
Customers sitting at the same table are in the same cycle.

In the traditional CRP, the probability of a customer sitting at a table is compubed the
number of other customers already sitting at that table. zLdenote the table assignment of the
ith customer, assume that the custon®gys 1) occupyK tables, and lety denote the number of
customers sitting at table The traditional CRP draws eaghsequentially,

N | ng for k<K
Mz—Hhmmﬂ)D{a for k=K-+1, ?

wherea is a given scaling parameter. When Hlicustomers have been seated, their table assign-
ments provide a random partition. Though the process is describednsiedjyethe CRP is ex-
changeable. The probability of a particular partitionNofcustomers is invariant to the order in
which they sat down.

We now introduce thdistance dependent CRR this distribution, the seating plan probability
is described in terms of the probability of a customer sitting with each of the ctistomers
The allocation of customers to tables is a by-product of this representafitwo customers are
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Figure 2: Draws from sequential CRPs. lllustrated are draws forrdiftedecay functions, which
are inset: (1) The traditional CRP; (2) The window decay function; (8 &xponential

decay function; (4) The logistic decay function. The table assignmenti#lues&ated,
which are derived from the customer assignments drawn from the distipmndent
CRP. The decay functions (inset) are functions of the distance betweeamitrent cus-

tomer and each previous customer.
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reachable by a sequence of interim customer assignments, then they atrthdable. This is
illustrated in Figure 1.

Letc; denote théth customer assignment, the index of the customer with whontrtloeistomer
is sitting. Letd;; denote the distance measurement between custana@dj, let D denote the
set of all distance measurements between customers, andkt decay function (described in
more detail below). The distance dependent CRP independently drawadtuener assignments
conditioned on the distance measurements,

=il 0{ (W {170 @
Notice the customer assignments do not depend on other customer assigiomigritee distances
between customers. Also notice thatanges over the entire set of customers, and so any customer
may sit with any other. (If desirable, restrictions are possible throughittentesd;;. See the
discussion below of sequential CRPs.)

As we mentioned above, customers are assigned to tables by considésinf@estomers that
are reachable from each other through the customer assignments.,(#emkigure 1.) We denote
the induced table assignmertg), and notice that many configurations of customer assignments
¢ might lead to the same table assignment. Finally, customer assignments canepaocie,
for example, customer 1 sits with 2 and customer 2 sits with 1. This still determing&aable
assignment: All customers sitting in a cycle are assigned to the same table.

By being defined over customer assignments, the distance dependenir@Ries a more
expressive distribution over partitions than models based on table assignnidris distribution
is determined by the nature of the distance measurements and the decaynfuRotiexample, if
each customer is time-stamped, tllgnmight be the time difference between customeasd j;
the decay function can encourage customers to sit with those that arenpanémeous. If each
customer is associated with a location in space, themight be the Euclidean distance between
them; the decay function can encourage customers to sit with those thapaoimity.* For many
sets of distance measurements, the resulting distribution over partitions isger Exchangeable;
this is an appropriate distribution to use when exchangeability is not a raalsassumption.

2.1 Decay Functions

In general, the decay function mediates how distances between custdi@etrtha resulting distri-
bution over partitions. We assume that the decay functi@non-increasing, takes non-negative
finite values, and satisfielg«) = 0. We consider several types of decay as examples, all of which
satisfy these nonrestrictive assumptions.

Thewindow decay fd) = 1[d < a] only considers customers that are at most distanftem
the current customer. Thexponential decay (H) = e 9/2 decays the probability of linking to
an earlier customer exponentially with the distance to the current customerlogiktic decay
f(d) =exp(—d+a)/(1+exp(—d+a)) is a smooth version of the window decay. Each of these
affects the distribution over partitions in a different way.

4. The probability distribution over partitions defined by Equation (2) is sinhidhe distribution over partitions pre-
sented in Dahl (2008). That probability distribution may be specified byakgn (2) if f(djj) is replaced by a
non-negative valuéij that satisfies a normalization requiremgni; hij = N — 1 for eachj. Thus, the model pre-
sented in Dahl (2008) may be understood as a normalized versionditthace dependent CRP. To write this model
as a distance dependent CRP, teje= 1/hjj and f (d) = 1/d (with 1/0 = « and 1/ = 0), so thatf (d;j) = hj;.
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2.2 Sequential CRPs and the Traditional CRP

With certain types of distance measurements and decay functions, we olataipebial case of
sequential CRP3 A sequential CRP is constructed by assuming tiyat= o for thosej > i. With

our previous requirement th&fe) = 0, this guarantees that no customer can be assigned to a later
customer, that isp(ci <i|D) = 1. The sequential CRP lets us define alternative formulations of
some previous time-series models. For example, with a window decay functiba & 1, we
recover the model studied in Ahmed and Xing (2008). With a logistic decagtim we recover

the model studied in Zhu et al. (2005). In our empirical study we will examageential models in
detail.

The sequential CRP can re-express the traditional CRP. Specificalisadlitional CRP is recov-
ered whenf (d) = 1 ford # o andd;; < « for j <i. To see this, consider the marginal distribution
of a customer sitting at a particular table, given the previous customeighasnts. The probabil-
ity of being assigned to each of the other customers at that table is propbttioone. Thus, the
probability of sitting at that table is proportional to the number of customeradyrsitting there.
Moreover, the probability of not being assigned to a previous customesg®pional to the scaling
parameteir. This is precisely the traditional CRP distribution of Equation (1). Althougtsehe
models are the same, the corresponding Gibbs samplers are diffeeeBie(=eon 5.4).

Figure 2 illustrates seating assignments (attie level) derived from draws from sequential
CRPs with each of the decay functions described above, including thea@RP. (To adapt these
settings to the sequential case, the distancesiarei — j for | < i anddj = o for j >i.) Com-
pared to the traditional CRP, customers tend to sit at the same table with oth®y cestomers. We
emphasize that sequential CRPs are only one type of distance depERferdther distances, com-
bined with the formulation of Equation (2), lead to a variety of other non-amgbable distributions
over partitions.

2.3 Marginal Invariance

The traditional CRP isnarginally invariant Marginalizing over a particular customer gives the
same probability distribution as if that customer were not included in the mod#] ahe distance
dependent CRP does not generally have this property, allowing it toredpieiway in which influ-
ence might be transmitted from one point to another. See Section 4 forisgpcbaracterization of
the class of distance dependent CRPs that are marginally invariant.

To see when this might be a relevant property, consider the goal of mgdweikferences of
people within a social network. The model used should reflect the facp#raons A and B are
more likely to share preferences if they also share a common friend C. Aryimally invariant
model, however, would insist that the distribution of the preferences oid¥Bais the same whether
(1) they have no such common friend C, or (2) they do but his prefeseame unobserved and
hence marginalized out. In this setting, we might prefer a model that is noimallygnvariant.
Knowing that they have a common friend affects the probability that A andaBespreferences,
regardless of whether the friend’s preferences are observedmikusexample is modeling the
spread of disease. Suddenly discovering a city between two others-fdlie status of that city

5. Even though the traditional CRP is described as a sequential priigggss an exchangeable distribution. Thus, se-
guential CRPs, which include both the traditional CRP as well as non-egehale distributions, are more expressive
than the traditional CRP.
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is unobserved—should change our assessment of the probability thdistiase travels between
them.

We note, however, that if observations are missing then models that arerginally invariant
require that relevant conditional distributions be computed as ratios ofalizing constants. In
contrast, marginally invariant models afford a more convenient factorizatiod so allow easier
computation. Even when faced with data that clearly deviates from margiaaiance, the modeler
may be tempted to use a marginally invariant model, choosing computationalniemee over
fidelity to the data.

We have described a general formulation of the distance dependenteRfw describe two
applications to Bayesian modeling of discrete data, one in a fully observedlrand the other
in a mixture model. These examples illustrate how one might use the posteriorutistribf the
partitions, given data and an assumed generating process based mtatheeddependent CRP. We
will focus on models of discrete data and we will use the terminology of doctinudiections to
describe these modéisThus, our observations are assumed to be collections of words fromda fix
vocabulary, organized into documents.

2.4 Language M odeling

In the language modeling application, each document is associated with adidigrendent CRP,
and its tables are embellished with IID draws from a base distribution over tarmerds. (The
documents share the same base distribution.) The generative processisfinva document is as
follows. The data are first placed at tables via customer assignments eamnaistsigned to the word
associated with their tables. Subsets of the data exhibit a partition structstealing the same
table.

When using a traditional CRP, this is a formulation of a simple Dirichlet-smoothepi¢aye
model. Alternatives to this model, such as those using the Pitman-Yor prdwess.also been
applied in this setting (Teh, 2006; Goldwater et al., 2006). We consideguertdal CRP, which
assumes that a word is more likely to occur near itself in a document. Wordsilaoonsidered
contagious—seeing a word once means we're likely to see it again—butitlkdew of contagion
is mediated by the decay function.

More formally, given a decay functiof, sequential distancd3, scaling parametex, and base
distributionGg over discrete wordd\l words are drawn as follows,

1. For each word e {1,...,N} draw assignmert; ~ dist-CRRa, f,D).
2. For each tabl& € {1,...}, draw a wordv* ~ Go.

3. For each word e {1,...,N}, assign the worel; = W),

The notationz(c); is the table assignment of tlih customer in the table assignments induced by
the complete collection of customer assignments.

For each document, we observe a sequence of wargsdrom which we can infer their seating
assignments in the distance dependent CRP. The patrtition structure ofatlises—that is, which
words are the same as other words—indicates either that they share théab#ra the seating

6. While we focus on text, these models apply to any discrete data, su@nasocgdata, and, with modification, to
non-discrete data as well. That said, CRP-based methods have bewesively applied to text modeling and natural
language processing (Teh et al., 2006; Johnson et al., 2007aLj 8007; Blei et al., 2010).
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arrangement, or that two tables share the same term drawnGgnWe have not described the
process sequentially, as one would with a traditional CRP, in order to eimphthe three stage
process of the distance dependent CRP—first the customer assignmenéble parameters are
drawn, and then the observations are assigned to their corresporataggier. However, the
sequential distancd3 guarantee that we can draw each word successively. This, in turmsmea
that we can easily construct a predictive distribution of future wordsrgprevious words. (See
Section 3 below.)

2.5 Mixture Modeling

The second model we study is akin to the CRP mixture or (equivalently) the Diammjibut differs
in that the mixture component for a data point depends on the mixture contdoneearby data.
Again, each table is endowed with a draw from a base distrib@grbut here that draw is a dis-
tribution over mixture component parameters. In the document setting vatises are documents
(as opposed to individual words), a8 is typically a Dirichlet distribution over distributions of
words (Teh et al., 2006). The data are drawn as follows:

1. For each document [1,N] draw assignmert; ~ dist-CRRa, f,D).
2. For each tablé € {1,...}, draw a parametd; ~ Go.
3. For each document [1,N], draww; ~ F (Byc),).

In Section 5, we will study the sequential CRP in this setting, choosing its steustuthat con-
temporaneous documents are more likely to be clustered together. The eisiantan be the
differences between indices in the ordering of the data, or lags betwesmma measurements of
distance like date or time. (Spatial distances or distances based on othgats/can be used to
define more general mixtures, but we leave these settings for future)wigkin, we have not de-
fined the generative process sequentially but, as loriy respects the assumptions of a sequential
CRP, an equivalent sequential model is straightforward to define.

2.6 Relationship to Dependent Dirichlet Processes

More generally, the distance dependent CRP mixture provides an alterttetine dependent Dirich-
let process (DDP) mixture as an infinite clustering model that models depeiedebetween the
latent component assignments of the data (MacEachern, 1999). ThehB®Been extended to
sequential, spatial, and other kinds of dependence (Griffin and St€&él, Bian et al., 2007; Xue
etal., 2007). In all these settings, statisticians have appealed to trunaafttbasstick-breaking rep-
resentation for approximate posterior inference, citing the dependetweén data as precluding
the more efficient techniques that integrate out the component paramadgusogortions. In con-
trast, distance dependent CRP mixtures are amenable to Gibbs sampling rmigdhigh integrate
out these variables (see Section 3).

An alternative to the DDP formalism is the Bayesian density regression (Bl of Dun-
son et al. (2007). In BDR, each data point is associated with a randosuneeand is drawn from a
mixture of per-data random measures where the mixture proportionslatedreo the distance be-
tween data points. Unlike the DDP, this model affords a Gibbs sampler wresrartiom measures
can be integrated out.
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However, it is still different in spirit from the distance dependent CR&alare drawn from
distributions that are similar to distributions of nearby data, and the particallzes of nearby data
impose softer constraints than those in the distance dependent CRP. Atseaneecase, consider
a random patrtition of the nodes of a network, where distances are diégfinerms of the number
of hops between nodes. Further, suppose that there are sevemirdisted components in this
network, that is, pairs of nodes that are not reachable from each dththe DDP model, these
nodes are very likely not to be partitioned in the same group. In the ddCREInmvever, it is
impossible for them to be grouped together.

We emphasize that DDP mixtures (and BDR) and distance dependent CRPamixtatifferent
classes of models. DDP mixtures are Bayesian nonparametric models,etdabteras data drawn
from a random measure, while the distance dependent CRP mixturesifjensz not. DDP mix-
tures exhibit marginal invariance, while distance dependent CRPsaligrdw not (see Section 4).
In their ability to capture dependence, these two classes of models capiiae assumptions, but
the appropriate choice of model depends on the modeling task at hand.

3. Posterior Inference and Prediction

The central computational problem for distance dependent CRP modelpagtisrior inference,
determining the conditional distribution of the hidden variables given theragditsens. This poste-
rior is used for exploratory analysis of the data and how it clusters, aneeded to compute the
predictive distribution of a new data point given a set of observations.

Regardless of the likelihood model, the posterior will be intractable to computube the
distance dependent CRP places a prior over a combinatorial numbessiblgocustomer configu-
rations. In this section we provide a general strategy for approximatingasierior using Monte
Carlo Markov chain (MCMC) sampling. This strategy can be used in eithigrdbbserved or mix-
ture settings, and can be used with arbitrary distance functions. (Forpéxain Section 5 we
illustrate this algorithm with both sequential distance functions and grapdlzhstance functions
and in both fully-observed and mixture settings.)

In MCMC, we aim to construct a Markov chain whose stationary distributidinegosterior of
interest. For distance dependent CRP models, the state of the chain isldBfinethe customer
assignments for each data point. We will also consajey, which are the table assignments that
follow from the customer assignments (see Figure 1) Let{D,qa, f,Gp} denote the set of model
hyperparameters. It contains the distanDeshe scaling facton, the decay functiorf, and the
base measur@g. Let x denote the observations.

In Gibbs sampling, we iteratively draw from the conditional distribution ohdatent variable
given the other latent variables and observations. (This defines aopajgpe Markov chain, see
Neal 1993.) In distance dependent CRP models, the Gibbs sampler itgrdtaes from

p(c™™|c_i,x,n) O p(c™™|D,a) p(x| z(c_i UC"™™), Go).

The first term is the distance dependent CRP prior from Equation (2).

The second term is the likelihood of the observations under the partition lyv&ie_; Ucf”e"”).
This can be thought of as removing the current link from itthecustomer and then considering
how each alternative new link affects the likelihood of the observationgor8e&xamining this
likelihood, we describe how removing and then replacing a customer linktaffee underlying
partition (i.e., table assignments).
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Customer link representation Table assignment representation

FEED KB ®<®>® O®

Here we are going to sample the third customer link. To begin, the customer links imply a partition of two tables.

ORRORFORO S6 06 0

When we remove the third link, we split one of the tables into two. Two customers' table assignments have changed.

& @
g% O® ®0®
®

We have now drawn the third link and obtained the fifth customer. This merges two of the tables from step #2.

Figure 3: An example of a single step of the Gibbs sampler. Here we illustraterario that
highlights all the ways that the sampler can move: A table can be split whernmavee

the customer link before conditioning; and two tables can join when we resahgile
link.
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To begin, consider the effect of removing a customer link. What is therdiffae between the
partitionz(c) andz(c_;)? There are two cases.

The first case is that a table splits. This happens whés the only connection between the
ith data point and a particular table. Upon removinighe customers at its table are split in two:
those customers pointing (directly or indirectly)itare at one table; the other customers previously
seated with are at a different table. (See the change from the first to secondofdvigure 3.)

The second case is that there is no change. litthénk is not the only connection between
customet and his table or it; was a self-link ¢; = i) then the tables remain the same. In this case,
z(c_j) = z(c).

Now consider the effect of replacing the customer link. What is the differebetween the
partition z(c_;) andz(c_; Uc"®)? Again there are two cases. The first case is ¢ff&t? joins
two tables inz(c_;). Upon addlng:(”e"") the customers at its table become linked to another set of
customers. (See the change from the second to third rows of Figure 3.)

The second case, as above, is that there is no change. This oaéﬁ‘?‘g) iboints to a customer
that is already at its table undefc_;) or if ¢"*)is a self-link.

With the changed partition in hand, we now compute the likelihood term. We finspote the
likelihood term for partitionz(c). The likelihood factors into a product of terms, each of which is
the probability of the set of observations at each table.|t(e}| be the number of tables aumt{c)
be the set of indices that are assigned to téblehe likelihood term is

|z(c)|
p(x|z(c) |_| (¢) | Go)- (3)

Because of this factorization, the Gibbs sampler need only compute termsthegpond to
changes in the partition. Consider the partitzgo_;), which may have split a table, and the new
partitionz(c_; Uc(”eW)). There are three cases to consider. Fastnight link to itself—there will
be no change to the likelihood function because a self-link cannot join tvestaBeconds; might
link to another table but cause no change in the partition. Firglipight link to another table and
join two tablesk and/. The Gibbs sampler for the distance dependent CRP is thus

(new) :

a if ¢ is equal ta.
(™| x,n) o fdi) if c,(”ew): j does not join two tables.
! o p(XZk(C,i)uz[(cfi)‘GO) . (new) ..
f(dij) PXxe ) [GoIP(y o 1G] if ¢ = j joins tablesk and/.

The specific form of the terms in Equation (3) depend on the model. We dinsiaer the fully
observed case (i.e., “language modeling”). Recall that the partitionspmnels to words of the
same type, but that more than one table can contain identical types. (Foplex&our tables could
contain observations of the word “peanut.” But, observations of thel Viwalnut” cannot sit at
any of the peanut tables.) Thus, the likelihood of the data is simply the probalilitgrGg of
a representative from each table, for example, the first customer, tinteslacp of indicators to
ensure that all observations are equal,

P(Xx(c) | Go) = P(Xx(c), | Go) Mic(c) LK = X (c),)s

whereZ<(c); is the index of the first customer assigned to tdble
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In the mixture model, we compute the marginal probability that the set of oligBrsdrom
each table are drawn independently from the same parameter, which itsaivis flomGy. Each
termis

P(xs(c) | Go) = [ (Mic(e) Px8) ) P(6I Go)de:

Because this term marginalizes out the mixture compoéetite result is a collapsed sampler for
the mixture model. Whef®y and p(x|8) form a conjugate pair, the integral is straightforward to
compute. In nonconjugate settings, an additional layer of sampling is needed

3.1 Prediction

In prediction, our goal is to compute the conditional probability distribution aha data poink,ew
given the data set. This computation relies on the posterior. Recall thas the set of distances
between all the data points. The predictive distribution is

P(Xnew/X, D, Go, ) = z P(Cnew| D, a) dc P(Xnew|Cnew, €, X, Go) p(c|x, D, a, Go).

Cnew

The outer summation is over the customer assignment of the new data point; itprota-
bility only depends on the distance matbx The inner summation is over the posterior customer
assignments of the data set; it determines the probability of the new data podliti@oed on the
previous data and its partition. In this calculation, the difference betwegres#al distances and
arbitrary distances is important.

Consider sequential distances and supposexthatis a future data point. In this case, the
distribution of the data set customer assignmemtses not depend on the new data point’s location
intime. The reason is that data points can only connect to data points in th&pastthe posterior
p(c|x,D,a,Gp) is unchanged by the addition of the new data, and we can use previoughytexd
Gibbs samples to approximate it.

In other situations—nonsequential distances or sequential distances tivhenew data occurs
somewhere in the middle of the sequence—the discovery of the new datalpaites the posterior
p(c|x,D,a,Gp). The reason is that the knowledge of where the new data is relative to #rs @th.,
the information inD) changes the prior over customer assignments and thus changes thi@poste
as well. This new information requires rerunning the Gibbs sampler to attmutihe new data
point. Finally, note that the special case where we know the new datat®logaadvance (without
knowing its value) does not require rerunning the Gibbs sampler.

4. Marginal Invariance

In Section 2 we discussed the propertynwdirginal invariance where removing a customer leaves
the partition distribution over the remaining customers unchanged. When d inasd#éis property,
unobserved data may simply be ignored. We mentioned that the traditional OR&gaally
invariant, while the distance dependent CRP does not necessarily ipedberty.

In fact, the traditional CRP is thenly distance dependent CRP that is marginally invarfant.
The details of this characterization are given in the appendix. This deawtion of marginally

7. One can also create a marginally invariant distance dependent C&dPriipining several independent copies of the
traditional CRP. Details are discussed in the appendix.
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invariant CRPs contrasts the distance dependent CRP with the alternadike qver partitions
induced by random measures, such as the Dirichlet process.

In addition to the Dirichlet process, random-measure models include thedEgeDirichlet
process (MacEachern, 1999) and the order-based dependarttl@iprocess (Griffin and Steel,
2006). These models suppose that data from a given covariate veava drdependently from a
fixed latent sampling probability measure. These models then suppose tatstdrapling mea-
sures were drawn from some parent probability measure. Depenbletvaeen the randomly drawn
sampling measures is achieved through this parent probability measure.

We formally define a random-measure model as follows. Xe&tndY be the sets in which
covariates and observations take their valuexilgtc X, y1.n C Y be the set of observed covariates
and their corresponding sampled values, aniIgl’) be the space of probability measuresianA
random-measure model is any probability distribution on the samyplegnduced by a probability
measures on the spact(Y)*. This random-measure model may be written

Yn ‘ Xn ~ IP)Xnv (PX)XGX ~ Ga

where they, are conditionally independent of each other giy&g)xcx. Such models implicitly
induce a distribution on partitions of the data by taking all pomtghose sampled valugg are
equal to be in the same cluster.

In such random-measure models, the (prior) distributiory gndoes not depend oxy, and
so such models are marginally invariant, regardless of the pript@nd the distances between
them. From this observation, and the lack of marginal invariance of the desttependent CRP, it
follows that the distributions on partitions induced by random-measure modetifgerent from
the distance dependent CRP. The only distribution that is both a distaneedisr CRP, and is also
induced by a random-measure model, is the traditional CRP.

Thus, distance dependent CRPs are generally not marginally invanahsoeare appropriate
for modeling situations that naturally depart from marginal invariance. disisnguishes priors
obtained with distance dependent CRPs from those obtained from raméasure models, which
are appropriate when marginal invariance is a reasonable assumption.

5. Empirical Study

We studied the distance dependent CRP in the language modeling and mikingss®n four text
data sets. We explored both time dependence, where the sequentiadgadéne data is respected
via the decay function and distance measurements, and network dependdre the data are
connected in a graph. We show below that the distance dependent GfMbgitter fits to text data
in both the fully-observed and mixture modeling settifigs.

Further, we compared the traditional Gibbs sampler for DP mixtures to the &ibniysler for the
distance dependent CRP formulation of DP mixtures. We found that the samapked on customer
assignments mixes faster than the traditional sampler.

5.1 Language M odeling

We evaluated the fully-observed distance dependent CRP models ontaveeds: a collection of
100 OCR’ed documents from the jourrtatienceand a collection of 100 world news articles from

8. Our R implementation of Gibbs sampling for ddCRP models is availabhetpatwww.cs.princeton.edu/
~ blei/downloads/ddcrp.tgz
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Figure 4. Bayes factors of the distance dependent CRP versus tit®ir@adCRP on documents
from Scienceand theNew York TimesThe black line at 0 denotes an equal fit between
the traditional CRP and distance dependent CRP, while positive valuesedehetter fit
for the distance dependent CRP. Also illustrated are standard errossaocuments.

the New York TimesWe modeled each document independently. We assess sampler cooeerge
visually, examining the autocorrelation plots of the log likelihood of the state ofhlén (Robert
and Casella, 2004).

We compare models by estimating the Bayes factor, the ratio of the probabiligy threl dis-
tance dependent CRP to the probability under the traditional CRP (Kadladitaty, 1995). For a
decay functionf, this Bayes factor is

BF.a = P(Win| dist-CRR o)/ (Wi | CRP).

A value greater than one indicates an improvement of the distance depérigBnover the tra-
ditional CRP. Following Geyer and Thompson (1992), we estimate this ratio witbrae Carlo
estimate from posterior samples.

Figure 4 illustrates the average log Bayes factors across documentrifans/settings of the
exponential and logistic decay functions. The logistic decay functionyalyeovides a better model
than the traditional CRP; the exponential decay function provides a betthl mbcertain settings
of its parameter. (These curves are for the hierarchical setting with Heedistribution over terms
Go unobserved; the shapes of the curves are similar in the non-hierdséiitiags.)

5.2 Mixture Modeling

We examined the distance dependent CRP mixture on two text corpora.alyeethone month of
theNew York TimegNYT) time-stamped by day, containing 2,777 articles, 3,842 unique terms and
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Figure 5: Predictive held-out log likelihood for the last year of NIPS lastithree days of theew
York Timescorpus. Error bars denote standard errors across MCMC samplesheO
NIPS data, the distance dependent CRP outperforms the traditional Cife flogistic
decay with a decay parameter of 2 years. OnNmsv York Timeslata, the distance
dependent CRP outperforms the traditional CRP in almost all settings tested.

530K observed words. We also analyzed 12 years of NIPS paperstamged by year, containing
1,740 papers, 5,146 unique terms, and 1.6M observed words. Disianeere differences between
time-stamps.

In both corpora we removed the last 250 articles as held out data. In thelitd, this amounts
to three days of news; in the NIPS data, this amounts to papers from thertiltf2th year. (We re-
tain the time stamps of the held-out articles because the predictive likelihooddi@a’s contents
depends on its time stamp, as well as the time stamps of earlier articles.) We evaduatalts by
estimating the predictive likelihood of the held out data. The results are ind=fgu®n the NYT
corpus, the distance dependent CRPs definitively outperform the tredi@RP. A logistic decay
with a window of 14 days performs best. On the NIPS corpus, the logistiaydemction with
a decay parameter of 2 years outperforms the traditional CRP. In detimse results show that
non-exchangeable models given by the distance dependent CRP mixividea better fit than the
exchangeable CRP mixture.

5.3 Modeling Networked Data

The previous two examples have considered data analysis settings witbhesmsaldistance func-
tion. However, the distance dependent CRP is a more general modelinglével.we demonstrate
its flexibility by analyzing a set ohetworked documentsith a distance dependent CRP mixture
model. Networked data induces an entirely different distance functioarendmny data point may
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link to an arbitrary set of other data. We emphasize that we can use the dabee 9ampling
algorithms for both the sequential and networked settings.

Specifically, we analyzed the CORA data set, a collection of Computer Scdrsteacts that
are connected if one paper cites the other (McCallum et al., 2000). Queahdistance function
is the number of connections between data (@rfitwo data points are not reachable from each
other). We use the window decay function with parameter 1, enforcingatbastomer can only
link to itself or to another customer that refers to an immediately connected dotwiie treat the
graph as undirected.

Figure 6 shows a subset of the MAP estimate of the clustering under thega@Etons. Note
that the clusters form connected groups of documents, though sekesi@rs are possible within a
large connected group. Traditional CRP clustering does not lean tevgamnth solutions. Overall,
the distance dependent CRP provides a better model. The log Bayesiat8062, strongly in
favor of the distance dependent CRP, although we emphasize that mtigh imhprovement may
occur simply because the distance dependent CRP avoids clusteringctsbhftom unconnected
components of the network. Further analysis is needed to understankbilitiesaof the distance
dependent CRP beyond those of simpler network-aware clusterinmeshe

We emphasize that this analysis is meant to be a proof of concept to denwtistréexibility
of distance dependent CRP mixtures. Many modeling choices can be exkpincluding longer
windows in the decay function and treating the graph as a directed gragmilar modeling set-up
could be used to analyze spatial data, where distances are natural tatepompmages (e.g., for
image segmentation), where distances might be the Manhattan distance bgiveéen

5.4 Comparison to the Traditional Gibbs Sampler

The distance dependent CRP can express a number of flexible modelgvétpas we describe
in Section 2, it can also re-express the traditional CRP. In the mixture met&lgs the Gibbs
sampler of Section 3 thus provides an alternative algorithm for approxinoatenor inference in
DP mixtures. We compare this Gibbs sampler to the widely used collapsed Gipkesdor DP
mixtures, that is, Algorithm 3 from Neal (2000), which is applicable whenbidige measur@ is
conjugate to the data generating distribution.

The Gibbs sampler for the distance dependent CRP iteratively samplesthmeunassignment
of each data point, while the collapsed Gibbs sampler iteratively samples ther @asignment of
each data point. The practical difference between the two algorithms is ¢éhdistiance dependent
CRP based sampler can change several customers’ cluster assigniaargsygle customer assign-
ment. This allows for larger moves in the state space of the posterior andijlseavbelow, faster
mixing of the sampler.

Moreover, the computational complexity of the two samplers is the same. Batine@gpmput-
ing the change in likelihood of adding or removing either a set of points (inidtarece dependent
CRP case) or a single point (in the traditional CRP case) to each clustesthévfadding or re-
moving one or a set of points, this amounts to computing a ratio of normalizingacdsgor each
cluster, and this is where the bulk of the computation of each samplér lies.

9. In some settings, removing a single point—as is done in Neal (2000)wsafltster computation of each sampler
iteration. This is true, for example, if the observations are single wosdsgposed to a document of words) or single
draws from a Gaussian. Although each iteration may be faster with the trediSampler, that sampler may spend
many more iterations stuck in local optima.
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Figure 6: The MAP clustering of a subset of CORA. Each node is anaaibsitrthe collection and
each link represents a citation. Colors are repeated across connenipdrnents—no
two data points from disconnected components in the graph can be assighedsame
cluster. Within each connected component, colors are not repeatedpdad with the

same color are assigned to the same cluster.
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Figure 7: Each panel illustrates 100 Gibbs runs using Algorithm 3 of Ne€() (CRP, in blue)
and the sampler from Section 3 with the identity decay function (distance depe@GRP,
in red). Both samplers have the same limiting distribution because the distarereléep
CRP with identity decay is the traditional CRP. We plot the log probability of the CRP
representation (i.e., the divergence) as a function of its iteration. Thepdeftl shows
the Sciencecorpus, and the right panel shows thew York Timesorpus. Higher values
indicate that the chain has found a better local mode of the posterior. kn¢amples,
the distance dependent CRP Gibbs sampler mixes faster.

To compare the samplers, we analyzed documents froi8dtemnceandNew York Timesollec-
tions under a CRP mixture with scaling parameter equal to one and unifornmBiriase measure.
Figure 7 illustrates the log probability of the state of the traditional CRP Gibbsleaawa function
of Gibbs sampler iteration. The log probability of the state is proportional todktegor; a higher
value indicates a state with higher posterior likelihood. These numbers amgacable because
the models, and thus the normalizing constant, are the same for both the tradépmesentation
and customer based CRP. Iterations 3—-1000 are plotted, where eadbrsarsfarted at the same
(random) state. The traditional Gibbs sampler is much more prone to stagnatomalaoptima,
particularly for theSciencecorpus.

6. Discussion

We have developed the distance dependent Chinese restauramsspeodistribution over partitions
that accommodates a flexible and non-exchangeable seating assignnrénitidis. The distance
dependent CRP hinges on the customer assignment representationriid degeneral-purpose
Gibbs sampler based on this representation, and examined sequential madebdls o

The distance dependent CRP opens the door to a number of furthdomlaeats in infinite
clustering models. We plan to explore spatial dependence in models oflIriatages, and multi-
level models akin to the hierarchical Dirichlet process (Teh et al., 20@6)jeover, the simplicity
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and fixed dimensionality of the corresponding Gibbs sampler suggests\tagaational method is
worth exploring as an alternative deterministic form of approximate inferenc
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Appendix A. A Formal Characterization of Marginal Invariance

In this section, we formally characterize the class of distance depenédtd that are marginally
invariant. This family is a very small subset of the entire set of distancendiepe CRPs, containing
only the traditional CRP and variants constructed from independentxopie This characteriza-
tion is used in Section 4 to contrast the distance dependent CRP with randasommenodels.

Throughout this section, we assume that the decay function satisfiesxadefarsion of the
triangle inequality, which uses the notatidf = min(djj,d;i). We assume: iflj = 0 anddjx =0
thendix = 0; and ifdjj < o anddj < o thend < .

A.1 Sequential Distances

We first consider sequential distances. We begin with the following prd@osvhich shows that a
very restricted class of distance dependent CRPs may also be corsbyclections of indepen-
dent CRPs.

Proposition 1 Fix a set of sequential distances between each of n customers, aurabken a> 0,
and a set Ac {0, {0},IR}. Then there is a (non-random) partition B. ., Bk of {1,...,n} for which
two distinct customers i and j are in the same setfBd;; € A. For each k=1,...,K, let there be
an independent CRP with concentration parametga, and let customers withinge clustered
among themselves according to this CRP.

Then, the probability distribution on clusters induced by this construction istickd to the
distance dependent CRP with decay functi¢d)f= al[d € A]. Furthermore, this probability dis-
tribution is marginally invariant.

Proof We begin by constructing a partitids, . .., Bx with the stated property. L&f(i) = min{j :
j=iordjeA}, and lety = {J(i) : i = 1,...,n} be the set of unique values taken by Each
customei will be placed in the set containing custondér). Assign to each valu¢ € 7 a unique
integerk(j) between 1 and7|. For eachj € 7, let By = {i:J(i) = j} = {i :i=jordj € A}.
Each customeiris in exactly one seByy(j)), and sdBy, ..., By is a partition of{1,...,n}.

To show thati # i’ are both inBy iff dij; € A, we consider two possibilities. & = 0, then
J(i) =i and eaclBy contains only a single point. k= {0} or A= R, then it follows from the

relaxed triangle inequality assumed at the beginning of Appendix A.
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With this partitionBy, . . ., Bk, the probability of linkage under the distance dependent CRP with
decay functionf (d) = al[d € A] may be written

a ifi=j,
p(ci=j)0qa if j<iandje By,
0 ifj>iorj§éBk(i).
By noting that linkages between customers from different Bgisccur with probability 0, we
see that this is the same probability distribution produced by takKirigdependent distance de-

pendent CRPs, where théh distance dependent CRP governs linkages between custonigs in
using

a ifi=j,
p(cc=j)0ca ifj<i,
0 ifj>i,

fori,j € By.
Finally, dividing the unnormalized probabilities lay we rewrite the linkage probabilities for
thekth distance dependent CRP as

a/a ifi=j,
pci=j)0q1 if j<i,
0 if j>1,

fori, j € Bx. This is identical to the distribution of the traditional CRP with concentrationmater
a/a.

This shows that the distance dependent CRP with decay funétioh= al[d € A] induces
the same probability distribution on clusters as the one produced by a colle€tomdependent
traditional CRPs, each with concentration paramet&, where thekth traditional CRP governs
the clusters of customers withBy.

The marginal invariance of this distribution follows from the marginal invargéaof each tradi-
tional CRP, and their independence from one another. |

The probability distribution described in this proposition separates custoim@rgroups
Bi,...,Bk based on whether inter-customer distances fall within thésahd then governs clus-
tering within each group independently using a traditional CRP. Clustermgsigroups does not
occur.

We consider what this means for specific choices\.oif A = {0}, then each group contains
those customers whose distance from one another is 0. This group isefiaktd because of the
assumption thatl; = 0 anddjx = O impliesdi = 0. If A=R, then each group contains those
customers whose distance from one another is finite. Similarly té\tae{0} case, this group is
well-defined because of the assumption #hat< c anddj < c impliesdy < o. If A= 0, then
each group contains only a single customer. In this case, each customae imilhis own cluster.

Since the resulting construction is marginally invariant, Proposition 1 proadedficient con-
dition for marginal invariance. The following proposition shows that thisdéon is necessary as
well.
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Proposition 2 If the distance dependent CRP for a given decay function f is marginallyiamia
over all sets of sequential distances then f is of the fofd) ¥ al[d € A] for some a> 0 and A
equal to eithei, {0}, or R.

Proof Consider a setting with 3 customers, in which customer 2 may either be absprgsent
with his seating assignment marginalized out. Fix a non-increasing decetjoiumf with f(c) =0
and suppose that the distances are sequentidizse dy3 = d1» = . Suppose that the distance de-
pendent CRP resulting from thfsand any collection of sequential distances is marginally invariant.
Then the probability that customers 1 and 3 share a table must be the samenwciistomer 2 is
absent or present.

If customer 2 is absent,

P{1 and 3 sit at same tab|@ absen} = : f(ds1) @)

(dg1) +a’

If customer 2 is present, customers 1 and 3 may sit at the same table in twertiffeys: 3
sits with 1 directly ¢z = 1); or 3 sits with 2, and 2 sits with T{= 2 andc, = 1). Thus,

P{1 and 3 sit at same tab]& present

B f(da1) f(d32) f(d21)
- f(dgl) + f(d32)+d + ( f(d31) + f(dgz) +G> <f(d21) +G> - )

For the distance dependent CRP to be marginally invariant, Equation (Eauation (5) must
be identical. Writing Equation (4) on the left side and Equation (5) on the nghbave

f(ds1) f(ds1) f(ds2) f(d1)
f(dz1) +a - f(dz1) + f(ds2) +a + (f(d31)+ f(ds2) +G> ( f(d21)+(}) ' ()

We now consider two different possibilities for the distandgsandd,;, always keepinglz; =
Oy + d3o.

First, supposel1 = 0 andds, = d31 = d for somed > 0. By multiplying Equation (6) through
by (2f(d)+a) (f(0)+a)(f(d)+a) and rearranging terms, we obtain

0=af(d)(f(0)— f(d)).

Thus, eitherf(d) =0 or f(d) = f(0). Since this is true for eactt > 0 and f is nonincreasing,
f =alld € Al witha> 0 and eitheA =0, A=R, A= [0,b], or A= [0,b) with b € [0,). Because
A = 0is among the choices, we may assuane 0 without loss of generality. We now show that if
A=[0,b] or A= [0,b), then we must havie = 0 andA is of the form claimed by the proposition.

Suppose for contradiction that= [0,b] or A = [0,b) with b > 0. Consider distances given by
d32 = d21 = d =b—¢ewith € € (0,b/2). By multiplying Equation (5) through by

(f(2d)+ f(d)+a)(f(d)+a)(f(2d)+a)
and rearranging terms, we obtain

0=af(d)(f(d) - f(2d)).
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Sincef(d) =a> 0, we must have (2d) = f(d) > 0. But, 24 = 2(b—¢€) > b implies together with
f(2d) = al[2d € A] that f (2d) = 0, which is a contradiction. [ |

These two propositions are combined in the following corollary, which statdgtie class of
decay functions considered in Propositions 1 and 2 is both necesshaguditient for marginal
invariance.

Corollary 3 Fix a particular decay function f. The distance dependent CRP resultimy finis
decay function is marginally invariant over all sequential distances if amlgt & f is of the form
f(d) = alld € A] for some a> 0 and some A {0, {0}, R}.

Proof Sufficiency for marginal invariance is shown by Proposition 1. Necesgijown by Propo-
sition 2. m

Although Corollary 3 allows any choice af > 0 in the decay functiorf (d) = al[d € A, the
distribution of the distance dependent CRP with a partic@ilanda remains unchanged if both
f anda are multiplied by a constant factor (see Equation (2)). Thus, the distapsndent CRP
defined byf (d) = al[d € A] and concentration parameters identical to the one defined Hyd) =
1[d € A] and concentration parametefa. In this sense, we can restrict the choicaof Corollary 3
(and also Propositions 1 and 2)de= 1 without loss of generality.

A.2 General Distances

We now consider all sets of distances, including non-sequential distahbe class of distance de-
pendent CRPs that are marginally invariant over this larger class of destasmeven more restricted
than in the sequential case. We have the following proposition providingeseary condition for
marginal invariance.

Proposition 4 If the distance dependent CRP for a given decay function f is marginallyiamia
over all sets of distances, both sequential and non-sequential, thendnigadlly 0.

Proof From Proposition 2, we have that any decay function that is marginallyiamtaunder all
sequential distances must be of the foffd) = al[d € A], wherea > 0 andA € {0, {0},R}. We
now show that if the decay function is marginally invariant uralesets of distances (not just those
that are sequential), theh(0) = 0. The only decay function of the forrh(d) = al[d € A] that
satisfiesf (0) = 0 is the one that is identically 0, and so this will show our result.

To showf(0) = 0, suppose that we have+ 1 customers, all of whom are a distance 0 away
from one another, sdj =0 fori,j =1,...,n+ 1. Under our assumption of marginal invariance,
the probability that the firsh customers sit at separate tables should be invariant to the absence or
presence of customert 1.

When customen—+ 1 is absent, the only way in which the firstustomers may sit at separate
tables is for each to link to himself. Leh = a/(a+ (n—1) f(0)) denote the probability of a given
customer linking to himself when custome#- 1 is absent. Then

P{1,...,nsit separatelyn+ 1 absent = (pn)". (7)
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We now consider the case when customerl is present. Lep, 1 = a/(a+nf(0)) be the
probability of a given customer linking to himself, and égt,1 = f(0)/(a +nf(0)) be the proba-
bility of a given customer linking to some other given customer. The fiisistomers may each
sit at separate tables in two different ways. First, each may link to himsel§hwdtcurs with
probability (p,1)". Second, all but one of these firstcustomers may link to himself, with the
remaining customer linking to custome#- 1, and customen+ 1 linking either to himself or to the
customer that linked to him. This occurs with probabitipn; 1)" 10n: 1(Pni1+ Gnr1). Thus, the
total probability that the firgh customers sit at separate tables is

P{1,...,nsit separatelyn-+1 present = (pr1)" +n(Pnr1)" "Onra(Prea+ Onp).  (8)

Under our assumption of marginal invariance, Equation (7) must be em&ajuation (8), and
so

0= (pn+1)"+n( pn+1)n71Qn+1( Pr+1+ Gnr1) — (Pn)" 9

Considem = 2. By substituting the definitions gd,, ps, andqgs, and then rearranging terms,
we may rewrite Equation (9) as

af(0)2(2f(0)? - a?)
(a+ f(0))?(a+2f(0))%’
which is satisfied only whefi(0) € {0,a/v/2}. Consider the second of these roatg,/2. When

n = 3, this value off (0) violates Equation (9). Thus, the first root is the only possibility and we
must havef (0) = 0.

The decay functiorf = 0 described in Proposition 4 is a special case of the decay function from
Proposition 2, obtained by takily= 0. As described above, the resulting probability distribution
is one in which each customer links to himself, and is thus clustered by himsefdistribution is
marginally invariant. From this observation quickly follows the following conmglla

Corollary 5 The decay function £ 0 is the only one for which the resulting distance dependent
CRP is marginally invariant over all distances, both sequential and remusntial.

Proof Necessity off = 0 for marginal invariance follows from Proposition 4. Sufficiency follows
from the fact that the probability distribution on partitions induced by 0 is the one under which
each customer is clustered alone almost surely, which is marginally invariant. |

Appendix B. Gibbs Sampling for the Hyperparameters

To enhance our models, we place a prior on the concentration parammetelaugment our Gibbs
sampler accordingly, just as is done in the traditional CRP mixture (Escoblaast, 1995). To

sample from the posterior af given the customer assignmemt&nd data, we begin by noting
thata is conditionally independent of the observed data given the customenassits. Thus, the
quantity needed for sampling is

p(arfc) O p(c|a)p(a),
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wherep(a) is a prior on the concentration parameter.
From the independence of tiieunder the generative procesgc|a) = X, p(ci |D,a). Nor-
malizing provides

B N l[Ci = i]G+1[Ci 75 i]f(dici)
plcla) = il:l o+ 3z f(dij)

i)

whereK is the number of self-links; =i in the customer assignmemsAlthoughK is equal to the
number of table$z(c)| when distances are sequentiéland|z(c)| generally differ when distances
are non-sequential. Then,

N

-1
p(a|c) Oak [rl (a + ; f(dij)>] p(a). (10)
i= JF#

Equation (10) reduces further in the following special catés the window decay function,
f(d) =1[d < a]; djj =i— j fori > j; and distances are sequentialdgo= o for i < j. In this case,
z'j;ll f(dij) = (i—1) A (a—1), whereA is the minimum operator, and

ﬁ(u Zl f(d@) = (a+a-)N AT (a+anN)/T(a), (11)
= =1

|
where[N —a]™ = max(0,N — a) is the positive part oN —a. Then,

M(a) ak

paje) O Ma+aAN) (a+a—1)N-

a7+ P(@).

If we use the identity decay function, which results in the traditional CRP, Wesrecover an
expression from Antoniak (1974)(a|c) O r&i?\l)aKp(cx). This expression is used in Escobar
and West (1995) to sample exactly from the posteriax @fhen the prior is gamma distributed.

In general, if the prior om is continuous then it is difficult to sample exactly from the posterior
of Equation (10). There are a number of ways to address this. We maxdmple, use the Griddy-
Gibbs method (Ritter and Tanner, 1992). This method entails evaluating Bg(Edoon a finite set
of points, approximating the inverse cdf pfa | c) using these points, and transforming a uniform
random variable with this approximation to the inverse cdf.

We may also sample over any hyperparameters in the decay function wugeth@window size
in the window decay function, or the rate parameter in the exponential diesetjon) within our
Gibbs sampler. For the rest of this section, we aise generically denote a hyperparameter in the
decay function, and we make this dependence explicit by writ{iga).

To describe Gibbs sampling over these hyperparameters in the decéprfiume first write

B N 1[ci =i]Ja+1[c #i]f(di;,a)
Plelene) = il:l a+y,% f(dj,a)

=aX [i:|;|éi f(dij,a)] [ﬁ <a+izif(di,-,a)>] 71.
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Sinceais conditionally independent of the observed data givanda, to sample ovea in our
Gibbs sampler it is enough to know the density

N i1 -1
p(alc,a) ! [ f(dij,a)] [rl <G+ > f(dij,a)>] p(al a). (12)
[Ker! i= =1
In many cases our prigy(a | o) ona will not depend oru.
In the case of the window decay function with sequential distancesiardi — j fori > j, we
can simplify this further as we did above with Equation (11). Noting ffya{_;; f(dij,a) will be 1
for thosea > maxi — ¢;, and O for othern, we have

M(a) p(a] a)lja> maxi— ¢
MNa+aAN)  (a+a—1)N-a*

pajca)d

If the prior distribution ora is discrete and concentrated on a finite set, as it might be with the
window decay function, one can simply evaluate and normalize Equatioro(iL)is set. If the
prior is continuous, as it might be with the exponential decay function, thislifficult to sample
exactly from Equation (12), but one can again use the Griddy-Gibb®agip of Ritter and Tanner
(1992) to sample approximately.
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