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Abstract

Many popular linear classifiers, such as logistic regresdioosting, or SVM, are trained by op-
timizing a margin-based risk function. Traditionally, sieerisk functions are computed based on
a labeled data set. We develop a novel technique for estighatich risks using only unlabeled
data and the marginal label distribution. We prove that tfep@sed risk estimator is consistent
on high-dimensional data sets and demonstrate it on syniled real-world data. In particular,
we show how the estimate is used for evaluating classifietmaimsfer learning, and for training
classifiers with no labeled data whatsoever.
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1. Introduction

Many popular linear classifiers, such as logistic regression, boosuiAr@\/M, are trained by op-
timizing a margin-based risk function. For standard linear classifferssigny 0;X; with Y €
{—1,+1}, andX, 8 € RY the margin is defined as the product

d
Y fe(X) where fe(X) & Z erj.
=1

Training such classifiers involves choosing a particular valug dtis is done by minimizing the
risk or expected loss

R(8) = E px,v) L(Y, fo(X)) 1)
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with the three most popular loss functions

L1(Y, fo(X)) = exp(=Y (X)), (2)
Lp(Y, fg(X)) = log (1 +exp(—Y f(X))) and 3)
Lg(Y, fo(X)) = (1 =Y (X)) + (4)

being exponential los€, (boosting), logloss., (logistic regression) and hinge logg (SVM)
respectively A, above corresponds tif A > 0 and 0 otherwise).

Since the riskR(8) depends on the unknown distributipnit is usually replaced during training
with its empirical counterpart

)= 5 200 (X)) ©)

based on a labeled training set
(XD Y W), (x Wy ) £ p (6)
leading to the following estimator
6, = argminR,(8).
]

Note, however, that evaluating and minimiziRgrequires labeled data (6). While suitable in some
cases, there are certainly situations in which labeled data is difficult or iny®$&s obtain.
In this paper we construct an estimator R{f) using only unlabeled data, that is using

XD XM Ep (7)

instead of (6). Our estimator is based on the assumption that when the dath dirhi@nsional
(d — ) the quantities

foX){Y =V}, ye{-1,+1} (8)

are normally distributed. This phenomenon is supported by empirical ewdgertmay also be de-
rived using non-iid central limit theorems. We then observe that the limit disiitsiof (8) may be
estimated from unlabeled data (7) and that these distributions may be usedstoer@argin-based
losses such as (2)-(4). We examine two novel unsupervised applgatiyrestimating margin-
based losses in transfer learning and (ii) training margin-based classifiée investigate these
applications theoretically and also provide empirical results on syntheticeafdavorld data. Our
empirical evaluation shows the effectiveness of the proposed frarkémoisk estimation and clas-
sifier training without any labeled data.

The consequences of estimatiR¢p) without labels are indeed profound. Label scarcity is a
well known problem which has lead to the emergence of semisuperviseihigalearning using a
few labeled examples and many unlabeled ones. The techniques we deaelopa new paradigm
that goes beyond semisupervised learning in requiring no labels whatsoev
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2. Unsupervised Risk Estimation

In this section we describe in detail the proposed estimation framework acukdigs theoretical
properties. Specifically, we construct an estimatorR@) defined in (1) using the unlabeled data
(7) which we denotd,(8; X, ..., X(M) or simply Ry(8) (to distinguish it fromR, in (5)).

Our estimation is based on two assumptions. The first assumption is that thenkig@hals
p(Y) are known and thap(Y = 1) # p(Y = —1). While this assumption may seem restrictive at
first, there are many cases where it holds. Examples include medical disago@ ) is the well
known marginal disease frequency), handwriting recognition or Q&{R)(is the easily computable
marginal frequencies of different letters in the English language), lifeetancy predictiong(Y)
is based on marginal life expectancy tables). In these and other exapfgleis known with great
accuracy even if labeled data is unavailable. Our experiments show sliatiag) a wrong marginal
p'(Y) causes a graceful performance degradatidp(v) — p’(Y)|. Furthermore, the assumption of
a knownp(Y) may be replaced with a weaker form in which we know the ordering of theirmadrg
distributions, for examplep(Y = 1) > p(Y = —1), but without knowing the specific values of the
marginal distributions.

The second assumption is that the quantigyX)|Y follows a normal distribution. Adg(X)|Y
is a linear combination of random variables, it is frequently normal wkes high dimensional.
From a theoretical perspective this assumption is motivated by the central igoittin (CLT). The
classical CLT states thdg(X) = T, 8;X|Y is approximately normal for largeif the data compo-
nentsXy, ..., Xq are iid givenY. A more general CLT states th&i(X)|Y is asymptotically normal
if Xq,...,X4|Y are independent (but not necessary identically distributed). Evengeorxal CLTs
state thaffg(X)[Y is asymptotically normal iXy, ..., X4|Y are not independent but their dependency
is limited in some way. We examine this issue in Section 2.1 and also show that theliyorma
assumption holds empirically for several standard data sets.

To derive the estimator we rewrite (1) by taking expectation with respecetoda = fg(X)

RO) = Epnoon 20600 = 5 p0y) [ plfo(X) =al)clyorda. (@)
ye{-T+1} R

Equation (9) involves three terms(y,a), p(y) and p(fg(X) = aly). The loss functionz is
known and poses no difficulty. The second tepfy) is assumed to be known (see discussion
above). The third term is assumed to be norfdKX) | {Y =y} = 56X |[{Y =y} ~ N(uy,0y)
with parametersgy, oy, y € {—1,1} that are estimated by maximizing the likelihood of a Gaussian
mixture model (we denotg = (p, 1) ando? = (02,02 ;). These estimated parameters are used
to construct the plug-in estimaté¥,(6) as follows:

ho)=3log 3 POY") Pry.o, (fo(X)Iy")). (10)
=1 yief{-1,+1}
(A, 6) = argmaxy(, o). (11)
wo
RiO= 3w | Pup s (TalX) =aly) L(y.a)da. (12)

We make the following observations.

3121



BALASUBRAMANIAN , DONMEZ, AND LEBANON

1. Although we do not denote it explicitly, andoy are functions ob.
2. The loglikelihood (10) does not use labeled data (it marginalizes ovéatibgy/()).

3. The parameters of the loglikelihood (10) are- (W, 1) ando = (01,0_1) rather than the
parameteB associated with the margin-based classifier. We consider the latter oneed a fi
constant at this point.

4. The estimation problem (11) is equivalent to the problem of maximum likelifimocheans
and variances of a Gaussian mixture model where the label marginalssamexsto be
known. It is well known that in this case (barring the symmetric case of @umip(y)) the
MLE converges to the true parameter values (Teicher, 1963).

5. The estimatoR, (12) is consistent in the limit of infinite unlabeled data
P (Am’Rn(e) - R(e)) —1

6. The two risk estimatorR,(8) (12) andR,(8) (5) approximate the expected lo&). The
latter uses labeled samples and is typically more accurate than the formended a. fi

7. Under suitable conditions arg ngiR,(8) converges to the expected risk minimizer

P<Iim argminR,(8) = arg minR(G)) =1
=  gco 8cO

This far reaching conclusion implies that in cases where argR{B) is the Bayes classifier
(as is the case with exponential loss, log loss, and hinge loss) we cawedtree optimal
classifier without a single labeled data point.

2.1 Asymptotic Normality of fg(X)|Y

The quantityfe(X)|Y is essentially a sum af random variables which under some conditions for
larged is likely to be normally distributed. One way to verify this is empirically, as we show in
Figures 1-3 which contrast the histogram with a fitted normal pdf for textt higages, and face
images data. For these data sets the dimensiomhitgufficiently high to provide a nearly normal
fo(X)|Y. For example, in the case of text documerXsi¢ the relative number of times woid
appeared in the document)corresponds to the vocabulary size which is typically a large number
in the range 19— 10°. Similarly, in the case of image classificatioq ¢lenotes the brightness of
thei-pixel) the dimensionality is on the order of4.0 10°.

Figures 1-3 show that in these cases of text and imagefdéxa|Y is approximately normal
for both randomly draw® vectors (Figure 1) and fd representing estimated classifiers (Figures 2
and 3). A caveat in this case is that normality may not hold whensparse, as may happen for
example forl; regularized models (last row of Figure 2).

From a theoretical standpoint normality may be argued using a central limitetinedNe ex-
amine below several progressively more general central limit theorechdisacuss whether these
theorems are likely to hold in practice for high dimensional data. The origawdtal limit theorem
states tha[idzlzi is approximately normal for larggif Z; are iid.
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RCV1 text data face images
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Figure 1: Centered histograms &f(X)|{Y = 1} overlayed with the pdf of a fitted Gaussian for
randomly drawr® vectors 6; ~ U (—1/2,1/2)). The columns represent data sets (RCV1
text data, Lewis et al., 2004, MNIST digitimages, and face images, Phdm28a@R) and
the rows represent multiple random draws. For uniformity we subtracteentipérical
mean and divided by the empirical standard deviation. The twelve panelstshbeven
in moderate dimensionality (RCV1: 1000 top words, MNIST digits: 784 pixelsef
images: 400 pixels) the assumption tHfatX)|Y is normal holds often for randomly
drawn®.
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RCV1 text data face images
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Figure 2: Centered histograms &f(X)|{Y = 1} overlayed with the pdf of a fitted Gaussian for
multiple 8 vectors (four rows: Fisher's LDA, logistic regressidp regularized logistic
regression, anth regularized logistic regression-all regularization parameters were se-
lected by cross validation) and data sets (columns: RCV1 text data, Leais 2004,
MNIST digit images, and face images, Pham et al., 2002). For uniformitywveacted
the empirical mean and divided by the empirical standard deviation. The twahels
show that even in moderate dimensionality (RCV1: 1000 top words, MNISiTsdig84
pixels, face images: 400 pixels) the assumption f8&X)|Y is normal holds well for fit-
ted 0 values (except perhaps fbg regularization in the last row which promotes sparse
0).
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Figure 3: Centered histograms &f(X)|{Y = 1} overlayed with the pdf of a fitted Gaussian for
multiple 8 vectors (four rows: Fisher’'s LDA, logistic regressidp regularized logistic
regression, anty regularized logistic regression-all regularization parameters were se-
lected by cross validation) and data sets (columns: USPS Handwritten Digasné\
data set, and ISOLET). For uniformity we subtracted the empirical meaniaiced by
the empirical standard deviation. The twelve panels further confirm thatsthemption
that fg(X)|Y is normal holds well for fitte® values (except perhaps fog regularization
in the last row which promotes spafgfor various data sets.

Proposition 1 (de-Moivre) If Z;,i € N are iid with expectation u and variance? and
Z4 = d‘lzi“:lzi then we have the following convergence in distribution

Vd(Zg—u)/o ~ N(0,1) as d— o.
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As aresult, the quantity? , Z, (which is a linear transformation afd(Z4 — W) /o) is approximately
normal for larged. This relatively restricted theorem is unlikely to hold in most practical cases a
the data dimensions are often not iid.

A more general CLT does not require the summagide be identically distributed.

Proposition 2 (Lindberg) For Z;,i € N independent with expectation and varianceo?, and de-
noting § = 5% ; 6%, we have the following convergence in distribution as-do

d
%3 (@) = N©.D

if the following condition holds for everg/> 0

d
lim ;2 S E(Z — )% L% —u =0. 13
im sa” 3 B(Z—H) Lk f-es) (13)
This CLT is more general as it only requires that the data dimensions besimdiept. The condition
(13) is relatively mild and specifies that contributions of each o4te the variancey should not
dominate it. Nevertheless, the Lindberg CLT is still inapplicable for depdrdiga dimensions.
More general CLTs replace the condition tEat € N be independent with the notion of(k)-

dependence.

Definition 3 The random variables;Z < N are said to be rtk)-dependent if wheneverg > m(k)
the two set4Zy,...,Z}, {Zs,...,Z} are independent.

An early CLT form(k)-dependent RVs was provided by Hoeffding and Robbins (1948pvBis a
slightly weakened version of the CLT, as proved in Berk (1973).

Proposition 4 (Berk) For each ke N let d(k) and m(k) be increasing sequences and suppose that

Z&k),...,zé'z)k) is an mk)-dependent sequence of random variables. If

1. e|z¥)2<Mforalliandk,

2. Var(Z¥) +...+Z9) < (j—i)K foralli, ] k,

3. limy_,e Var (Zik) +...+ Zé'z)k))/d(k) exists and is non-zero, and

4. limy_.mP(k)/d(k) =0
sz
then AT
Proposition 4 states that under mild conditions the sum(&j-dependent RVs is asymptotically
normal. Ifm(k) is a constant, that isn(k) = m, m(k)-dependence implies thaZamay only depend
on its neighboring dimensions (in the sense of Definition 3). Intuitively, diloassvhose indices
are far removed from each other are independent. The full powenogbBition 4 is invoked when
m(k) grows withk relaxing the independence restriction as the dimensionality grows. Intujtively
the dependency of the summands is not fixed to a certain order, but dtagnow too rapidly.
A more realistic variation om(k) dependence where the dependency of each variable is speci-
fied using a dependency graph (rather than each dimension dependgbhoring dimensions) is
advocated in a number of papers, including the following recent resiirugtt (1994).

is asymptotically normal as &> .

3126



MARGIN-BASED CLASSIFICATION WITHOUT LABELS

Definition 5 A graph G = (¥, E) indexing random variables is called a dependency graph if for
any pair of disjoint subsets @, A; and A such that no edge i has one endpoint inAand the
other in A, we have independence betweeh: i € A;} and{Z :i € Ax}. The degree (/) of a
vertex is the number of edges connected to it and the maximal degre s, d(v).

Proposition 6 (Rinott) LetZ,...,Z, be random variables having a dependency graph whose max-
imal degree is strictly less than D, satisfyingi — EZ| < B a.s., Vi, E(3[.1Z) = A and
Var (S, Z) = 02 > 0, Then for any ve R,

'P(z‘n‘f‘ -2 §w> —CD(W)‘ <1 <\/TTDB 16(;) e D282 +10( )D253>

where®(w) is the CDF corresponding to a N(0,1) distribution.

The above theorem states a stronger result than convergence in tistrioua Gaussian in that it
states a uniform rate of convergence of the CDF. Such results arenkinaWe literature as Berry
Essen bounds (Davidson, 1994). WHarandB are bounded andar (3! ;Z;) = O(n) it yields a
CLT with an optimal convergence rate wf'/2,

The question of whether the above CLTs apply in practice is a delicate amaeX one can
argue that the appearance of a word depends on some words butpendeéat of other words.
Similarly for images it is plausible to say that the brightness of a pixel is indegparaf pixels
that are spatially far removed from it. In practice one needs to verify thmaldy assumption
empirically, which is simple to do by comparing the empirical histogranigéX) with that of a
fitted mixture of Gaussians. As the figures above indicate this holds for nelkinsage data for
some values dd, assuming it is not sparse. Also, it is worth mentioning that one dimensiorfa CL
kick in relatively early perhaps at 50 or 100 dimensions. Even when thedigensional data lie
on a lower dimensional manifold whose dimensionality is on the order of 100 diomes) the CLT
still applies to some extent (see histogram plots).

2.2 Unsupervised Consistency dR,(8)

We start with proving identifiability of the maximum likelihood estimator (MLE) for a mietof
two Gaussians with known ordering of mixture proportions. Invoking @assonsistency resultsin
conjunction with identifiability we show consistency of the MLE estimator(foo) parameterizing
the distribution offg(X)|Y. As a result consistency of the estimaRa(8) follows.

Definition 7 A parametric family{ py : a € A} is identifiable when @(x) = py (X), ¥X impliesa =
a’.

Proposition 8 Assuming known label marginals witliYp= 1) # p(Y = —1) the Gaussian mixture
family

Puo(X) = p(y = DN(X; i, 07) + p(y = —1)N(X; p_1,0% )
is identifiable.

Proof It can be shown that the family of Gaussian mixture model with no apriorinmébion about
label marginals is identifiable up to a permutation of the lalgdlBeicher, 1963). We proceed by
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assuming with no loss of generality thaty = 1) > p(y = —1). The alternative casp(y=1) <
p(y = —1) may be handled in the same manner. Using the result of Teicher (1963)ve ez if
Puo(X) = pu.o(X) for all x, then(p(y), u, o) = (p(y),,0") up to a permutation of the labels. Since
permuting the labels violates our assumptjay = 1) > p(y = —1) we establishp, o) = ([, 0’)
proving identifiability. |
The assumption thai(y) is known is not entirely crucial. It may be relaxed by assuming that it
is known whethep(Y = 1) > p(Y = —1) or p(Y =1) < p(Y = —1). Proving Proposition 8 under
this much weaker assumption follows identical lines.

Proposition 9 Under the assumptions of Proposition 8 the MLE estimates (jolo) =
(Ma,M-1,01,0-1)

(07.6) = argmants(b.),
Zlog p(Y) P, (fa (X ) |y).
e{ 1,+1}

are consistent, that |s(u1 ,u( i,o(l ), (n )) converge as R+ o to the true parameter values with
probability 1.

Proof Denoting py(2) = 3y P(Y)Py,.0,(2ly) With n = (u,0) we note thatp, is identifiable (see
Proposition 8) im and the available sample® = fg(X()) are iid samples fronp, (z). We there-

fore use standard statistics theory which indicates that the MLE for idetifiabametric model is
strongly consistent (Ferguson, 1996, Chapter 17). |

Proposition 10 Under the assumptions of Proposition 8 and assuming thedasgiven by one of
(2)-(4) with a normal §(X)[Y ~ N(py, of,), the plug-in risk estimate

Ri®) = 5 P [ Pyn o ((X) =aly) L(y.co) o (14)

ye{-1,+1}
is consistent, that is, for a8,

P (Ii[]n Rn(6) = R(e)) =1

Proof The plug-in risk estimat®, in (14) is a continuous function (whenis given by (2), (3)
or (4)) of il p") 6" 6" (note thaty, anday are functions o), which we denotdR,(6) =
(e, 1%,8",61%).

Using Proposition 9 we have that

(M (M &) 4 (i) (

lim (0 o true , true true
n—>oo(ul 7p'717 1>

W W o

")

with probability 1. Since continuous functions preserve limits we have

(N) (M) &(n) ()

. N t t t )
r!moh(ul H1,07 70_1):h( rue true strue rUe)

IJ' ,IJ., 7 70-71

with probability 1 which implies convergence lime ﬁn(e) = R(0) with probability 1. |
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2.3 Unsupervised Consistency airgminR, ()

The convergence aboW,(8) — R(8) is pointwise inB. If the stronger concept of uniform con-
vergence is assumed overc © we obtain consistency of arg rréiﬁn(e). This surprising result
indicates that in some cases it is possible to retrieve the expected risk mininrmdehémefore the
Bayes classifier in the case of the hinge loss, log-loss and exp-losg)arginunlabeled data. We
show this uniform convergence using a modification of Wald's classicak Mansistency result
(Ferguson, 1996, Chapter 17).

Denoting

Pn (Z) = Z p(y) pl-ly:cy(f(x) = Z’y)v n= (ulv u—170-17o-—1)
ye{-1,+1}
we first show that the MLE converges to the true parameter viglue no uniformly. Uniform
convergence of the risk estimatig(0) follows. Since changin@ € © results in a different) € E
we can state the uniform convergencdia © or alternatively im € E.

Proposition 11 Let6 take values if® for whichn € E for some compact set E. Then assuming the
conditions in Proposition 10 the convergence of the MLE to the true v@lue ng is uniform in
No € E (or alternativelyd € ©).

Proof We start by making the following notation

U(z,n,Nno) = log py(2) —log py,(2),
a(n,No) = Ep,,U(z,Nn,N0) = —D(Pne, Pn) <O

with the latter quantity being non-positive and Onfi= ng (due to Shannon’s inequality and identi-
fiability of py).

Forp > 0 we define the compact s&f, , = {n € E : |[n —no|| > p}. Sincea(n,no) is continu-
ous it achieves its maximum (with respectjjoon S,, , denoted by, (No) = Maxes, , A(N,No) <
0 which is negative since(n,no) = 0 iff n = no. Furthermore, note tha} (no) is itself continuous
in No € E and sinceE is compact it achieves its maximum

0 = maxd =max max a(n,no) <0
e p(No) Mook neto (N,No)
which is negative for the same reason.

Invoking the uniform strong law of large numbers (Ferguson, 1996p@h 16) we have
n-tyM U(Z,n,n0) — a(n,no) uniformly over (n,ne) € E2. Consequentially, there exishé
such that fon > N (with probability 1)

12 i
sup sup - ZU(Z('>,n,no) <3/2<0.
No€E neSyype N
But sincen 3" U (Z",n,no) — 0 for n = no it follows that the MLE

n

. 1 .
fin= max = ¥ U(Z",n,no)
” 2

is outsideS,, p (for n > N uniformly in no € E) which implies||fjn — no|| < p. Sincep > 0 is arbi-
trarily andN does not depend amy we havef),, — no uniformly overng € E. |
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Proposition 12 Assuming that X© are bounded in addition to the assumptions of Proposition 11
the convergencR,(8) — R(8) is uniform in6 € ©.

Proof SinceX,® are bounded the margin valdg(X) is bounded with probability 1. As a result
the loss function is bounded in absolute value by a con§lakite also note that a mixture of two
Gaussian model (with known mixing proportions) is Lipschitz continuous in itarpaters

P(Y) P s (2) — P(Y) Pyirve gtrue (2)
ye{-1,+1} e ye{—zl,+1} W
<t(2) - ‘ (N) (M &(n) () fiue |rue tiue ruey

(ﬂl 7u_1701 70_1) (p' M1, 0 -1

which may be verified by noting that the partial derivativeppfz) = 5y p(Y) Py, 0, (2ly)

P )y 2
(2 _ py=1)(z—") = pp?
o (226"’ ’
op(2) _ ply=-1)@z-") . (2;3(3})2
™ (emy2e™) ’
o0m(2) __py=1@E-{")? (;Z%:?Z
06y (219226 ’
o2  ply=-1(z— (") *(Z;;%)Z
6" (226" 7

are bounded for a compagt These observations, together with Proposition 11 lead to

Re(6) —R(®)| < py) [ )p = a) — Pyeopel fo(X) = @)| |£(.)|da
ye{— 1+1}

<C/

< C”(l:lln ,ﬂfl,ffl”),ff@) (utrue true o.arue’ true H/ t(z

<c H(ﬂ:(Ln)v ﬂ(,ni,ﬁ(ln),é(ﬂ) (Htrue7 Htrue o.tlrue7 true)H -0

Y) P A (O) — P(Y) Pyive gtrue(at) | da
yel 1+1} oy ye{zul} S ’

uniformly over@ € ©.

Proposition 13 Under the assumptions of Proposition 12

P <Iim argminR,(8) = arg minR(9)> =1
n=%° gco 8cO
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Proof We denote* = argminR(8), t, = argminR,(8). SinceR,(8) — R(8) uniformly, for each
g > 0 there existd such that for alh > N, |R,(8) — R(8)| < «.

LetS={0: |6 —t*|| > €} and mincsR(B) > R(t*) (Sis compact and thuR achieves its min-
imum on it). There existdl’ such that for allh > N’ and® € S, Ry(8) > R(t*) +&. On the other
hand,R,(t*) — R(t*) which together with the previous statement implies that there eMisgich
that forn > N”, Ry(t*) < R,(8) for all 8 € S We thus conclude that far> N”, t, ¢ S. Since we
showed that for each > 0 there existdN such that for allh > N we have||t, —t*|| < g, t, — t*
which concludes the proof. |

2.4 Asymptotic Variance

In addition to consistency, it is useful to characterize the accuracy oestimatorR,(8) as a
function of p(y),4,0. We do so by computing the asymptotic variance of the estimator which
equals the inverse Fisher information

V(AT = no) ~ N(0,171(n'""9))
and analyzing its dependency on the model parameters. We first deziasymptotic variance of
MLE for mixture of Gaussians (we denote belgw= (n1,n2),Ni = (K, 0i))
Pn(2) = P(Y = )N(z b1, 0%) + (Y = ~1)N(z 11,0%4)

= plpﬂl(z> + p—lpn—l(z)'

The elements of 4 4 information matrix (n)
dlogpy(2) dlogpy (Z)>
I(ni,nj) =E

may be computed using the following derivatives

dlogm(2) _ pi (Z—Ui> Pni (2)

P(2)’

dlogpn(2)  pi [ [z—m\? Pn; (2)
ao?‘zoi« ) ‘1> (o

fori =1,—1. Using the method of Behboodian (1972) we obtain

Oi

oW Oj

(k) = M (P (2, (2)).
(,07) = 5 52 [Ma2 (s 2): P 2)) ~ Mo (2P (@)
((14.2,07) = 57 5z [Mas (P 2,0 4(2)) — Mon (P (2P . (2)) ]
16%.0%) = 2 [Miof 21 P (2) ~2Mua o 2. P 2) o 2. P 2)|
108.0%1) = gz [Moo(n(2)Pn () — Mao( Py (2) P (2)

- M02<Pn1(2)a pn—l(z)) + MZZ(pm(Z)> pn—l(z)>i|
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where

Men(Prs(2) P, @) = [ (Z;i“*)'" (Z;jw ) pmgj o @ 4

In some cases it is more instructive to consider the asymptotic variance dgkhestimator
Rn(8) rather than that of the parameter estimaterfet (1, o). This could be computed using the
delta method and the above Fisher information matrix

~

VA(R,(8) = R(8)) ~~ N(O. Ch(n"™)T1 (") Dn(n™*)

where [Oh is the gradient vector of the mappii®(0) = h(n). For example, in the case of the
exponential loss (2) we get

h(n)=|0(Y=1)ole2exp((“1—1>2 0 )+p(Y=1)olfzexp((lL1—1>2 2, )

2 29 2 2%,

oh(n) _ V2P(Y =1)(pu(cf - 1) — o)) ox (m-1°% &

o P 2 202)°

M1 (o2 0%

oh(n) _ V2P(Y = -1)(u1(0?; — 1) +0?)) exp (L1+1)? ¥y

01 o1 2 202, )’
oh(n) _ P(Y =1)(p +0%) ((Ul— 1% u%)

003 V201 2 202/
oh(n) _ P(Y=-1)(¥,+02y) ((LL1+1)2 Ry >

Figure 4 plots the asymptotic accuracy I%f(e) for log-loss. The left panel shows that the
accuracy ofR, increases with the imbalance of the marginal distributig¥). The right panel
shows that the accuracy &% increases with the difference between the means- 1| and the
variances1/0>.

2.5 Multiclass Classification

Thus far, we have considered unsupervised risk estimation in binaifidason. In this section
we describe a multiclass extension based on standard extensions of tivecoamept to multiclass
classification. In this case the margin vector associated with the multiclass elassifi

Y =argmaxfg(X),  X,6KeRd
k=1....K

is fo(X) = (fg1(X), ..., fgc(X)). Following our discussion of the binary casgg,(X)|Y,k=1,...,K
is assumed to be normally distributed with parameters that are estimated by maximeiiigth
lihood of a Gaussian mixture model. We thus h&&aussian mixture models, each one with
mixture components. The estimated parameters are plugged-in as beforeimtolticlass risk

R(0) = Ep(1,0x).v) L(Y, fo(X))
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1/Trace of asymptotic variance matrix
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Figure 4: Left panel: asymptotic accuracy (inverse of trace of asymptatiance) ofli’n(e) for
logloss as a function of the imbalance of the class margi(¥). The accuracy increases
with the class imbalance as it is easier to separate the two mixture components. Righ
panel: asymptotic accuracy (inverse of trace of asymptotic variancefuaston of the
difference between the meafis — 1| and the variances;/02. See text for more
information.

whereL is a multiclass margin based loss function such as
L(Y, fo(X)) = ; log(1+exp(—fe(X))), (15)
KZY

LY, fo(X)) = ; (14 (X)) (16)
k£Y

Care should be taken when defining the loss function for the multi-classasaestraight-forward

extension from the binary case might render the framework inconsistemtusé/the specific ex-
tension which is proved to be consistent for various loss functions (imgudnge-loss) by Tewari

and Bartlett (2007). Since the MLE for a Gaussian mixture model Witomponents is consistent
(assumind?(Y) is known and all probabilitieR(Y = k),k=1,...,K are distinct) the MLE estima-

tor for fg(X)|Y = K’ are consistent. Furthermore, if the lasss a continuous function of these
parameters (as is the case for (15)-(16)) the risk estinﬁa.t((ﬁ) is consistent as well.

3. Application 1: Estimating Risk in Transfer Learning

We consider applying our estimation framework in two ways. The first aggitawhich we
describe in this section, is estimating margin-based risks in transfer learhieig wlassifiers are
trained on one domain but tested on a somewhat different domain. Thietri@gning assumption
that labeled data exists for the training domain but not for the test domain testitvee use of our
unsupervised risk estimation. The second application, which we describe imext section, is
more ambitious. It is concerned with training classifiers without labeled dattsabver.

In evaluating our framework we consider both synthetic and real-wotia da the synthetic
experiments we generate high dimensional data from two uniform distribuofé = 1} and
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Figure 5: The relative accuracy &, (measured byR,(8) — R,(8)|/R.(0)) as a function ofn,
classifier accuracy (acc) and the label margip@f) (left: logloss, right: hinge-loss).
The estimation error nicely decreases witfapproaching 1% at = 1000 and decaying
further). It also decreases with the accuracy of the classifier (tappan-uniformity of
p(Y) (bottom) in accordance with the theory of Section 2.4.

X|{Y = —1} with independent dimensions and prescrilpg¥) and classification accuracy. This
controlled setting allows us to examine the accuracy of the risk estimator astafuafn, p(Y),
and the classifier accuracy.

Figure 5 shows that the relative errorf(8) (measured byR,(8) — R,(8)|/Ra(8)) in estimat-
ing the logloss (left) and hinge loss (right). The curves decreasenntid achieve accuracy of
greater than 99% fon > 1000. In accordance with the theoretical results in Section 2.4 the fig-
ure shows that the estimation error decreases as the classifiers becoenecmoate and gxY)
becomes less uniform. We found these trends to hold in other experimentdlasnvthe case of
exponential loss, however, the estimator performed substantially worsssabe board, in some
cases with an absolute error of as high as 10. This is likely due to the exjedreependency of
the loss orY f3(X) which makes it very sensitive to outliers.

Table 1 shows the accuracy of logloss estimation for a real world tralesfering experiment
based on the 20-newsgroup data. We followed the experimental setspaby Dai et al. (2007)
in order to have different distributions for training and test sets. Moeegifipally, 20-newsgroup
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Data Rn [Rn—Ra| | [Ri—Rn|/Ra | N pY=1)
scivs. comp | 0.7088| 0.0093 | 0.013 3590 | 0.8257
sci vs. rec 0.641 | 0.0141 | 0.022 3958 | 0.7484
talk vs. rec | 0.5933| 0.0159 | 0.026 3476| 0.7126
talk vs. comp| 0.4678| 0.0119 | 0.025 3459 0.7161
talk vs. sci 0.5442| 0.0241 0.044 3464 | 0.7151
comp vs. rec| 0.4851| 0.0049 | 0.010 4927 | 0.7972

Table 1: Error in estimating logloss for logistic regression classifiers trainezhe 20-newsgroup
classification task and tested on another. We followed the transfer leaetimg described
by Dai et al. (2007) which may be referred to for more detail. The traintasting sets
contained samples from two top categories in the topic hierarchy but withefiffeubcat-
egory proportions. The first column indicates the top category classificiatik and the
second indicates the empirical log-ld&scalculated using the true labels of the testing set
(5). The third and forth columns indicate the absolute and relative erfd®s. drhe fifth
and sixth columns indicate the train set size and the label marginal distribution.

data has a hierarchical class taxonomy and the transfer learning prizbllefined at the top-level
categories. We split the data based on subcategories such that the taaiditegt sets contain data
sampled from different subcategories within the same top-level catebiamnyce, the training and
test distributions differ. We trained a logistic regression classifier on thertgeset and estimate its
risk on the test set of a different distribution. Our unsupervised rigkator was quite effective in
estimating the risk with relative accuracy greater than 96% and absolutdesssdhan 0.02.

4. Application 2: Unsupervised Learning of Classifiers

Our second application is a very ambitious one: training classifiers usinpelathdata by min-
imizing the unsupervised risk estimafg = arg minﬁn(e). We evaluate the performance of the
learned classified, based on three guantities: (i) the unsupervised risk estiﬁaaﬁa), (ii) the su-
pervised risk estimatlén(én), and (iii) its classification error rate. We also compare the performance
of 8, = argminR,(8) with that of its supervised analog arg ().

We computeén =arg minﬁn(e) using two algorithms (see Algorithms 1-2) that start with an
initial 890 and iteratively construct a sequence of classif@éts ..., 8(T) which steadily decrease
R,. Algorithm 1 adopts a gradient descent-based optimization. At each itetattapproximates
the gradient vectoﬂlin(e(”) numerically using a finite difference approximation (17). We com-
pute the integral in the loss function estimator using numeric integration. Sindat¢geal is one
dimensional a variety of numeric methods may be used with high accuracyasindoimputation.
Algorithm 2 proceeds by constructing a grid search along every dimeon$ig# and sef8®]; to
the grid value that minimizeR, (iteratively optimize one dimension at a time). This amounts to
greedy search converging to local maxima. The same might hold for Algofitht we observe
that Algorithm 1 works slightly better in practice, leading to lower test error Vetis number of
training iterations.
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Although we focus on unsupervised training of logistic regression (minimiaimgupervised
logloss estimate), the same techniques may be generalized to train other nzegihebassifiers
such as SVM by minimizing the unsupervised hinge-loss estimate.

Algorithm 1 Unsupervised Gradient Descent

Input: XM, ... XM cRY, p(Y), step sizex

Initialize t = 0, 8 = 8% ¢ RY

repeat
Computefgy (X)) = (80 Xy vj=1...,n
Estimate({ly, L_1,01,6_1) by maximizing (11)
fori=1toddo

Plug-in the estimates into (14) to approximate

IR (BY)  Ry(8Y +hig) — Ra(6V) —hie)

aei N 2hi
(e is an all zero vector except fég )i = 1) (a7)
end for U U
Form OR,(8M) = ( Rge(g” ). Ra”ég) )

Updatef™D) = g — aqOR,(80), t =t+1
until convergence _
Output: linear classifiegfina = g(t)

Algorithm 2 Unsupervised Grid Search
Input: XD, ... XMW cRY, p(Y), grid-sizet
Initialize 6; ~ Uniform(—2,2) for all i
repeat
fori=1toddo
Constructt points grid in the rangéd; — 41, 6; + 41|
Compute the risk estimate (14) where all dimensior&‘fare fixed except fol8®]; which
is evaluated at each grid point.
Set[8*+Y)]; to the grid value that minimized (14)
end for
until convergence
Output: linear classifie®i =0

Figures 6-7 displayRn(8,), Ra(8n) and error-ratéd,,) on the training and testing sets as on two
real world data sets: RCV1 (text documents) and MNIST (handwritten idigiges) data sets. In
the case of RCV1 we discarded all but the most frequent 504 wortds &bp-word removal) and
represented documents using their tfidf scores. We experimented onaing ddassification task of
distinguishing the top category (positive) from the next 4 top categoreggafive) which resulted
in p(y=1) = 0.3 andn = 199328. 70% of the data was chosen as a (unlabeled) training set and the
rest was held-out as a test-set. In the case of MNIST data, we normeézadf the 2& 28= 784
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pixels to have 0 mean and unit variance. Our classification task was to distinguages of the
digit one (positive) from the digit 2 (negative) resulting in 14867 samptepdY = 1) = 0.53. We
randomly choose 70% of the data as a training set and kept the rest iagdet

Figures 6-7 indicate that minimizing the unsupervised logloss estimate is quitdiveffen
learning an accurate classifier without labels. Both the unsupervisesipedvised risk estimates
ﬁn(én), Rn(én) decay nicely when computed over the train set as well as the test set. Alestintg
is the decay of the error rate. For comparison purposes supervisstidoggression with the same
n achieved only slightly better test set error rate: 0.05 on RCV1 (instead p&Ad 0.07 or MNIST
(instead of 0.1).

In another experiment we examined the proposed approach on sdiffmadnt data sets and
compared the classification performance with a supervised baseline (loggtssion) and Gaus-
sian mixture modeling (GMM) clustering with known label proportions in the odbtata space
(Table 2). The comparison was made under the same experimental seftp(yy () for all three
approaches. We used data sets from UCI machine learning repositank@&nd Asuncion, 2010)
and from previously cited sources, unless otherwise noted. The foljdagks were considered for
each data set.

e RCV1: top category versus next 4 categories

e MNIST: Digit 1 versus Digit 2

e 20 newsgroups: Comp category versus Recreation category
e USPS: Digit 2 versus Digit 5

e Umistl: Male face (16 subjects) versus Female faces (4 subjects) with imadeti@sae-
duced to 40« 40

e Arcene: Cancer versus Normal

e Isolet: Vowels versus Consonants

e Dexter: Documents about corporate acquisitions versus rest

e Secom: Semiconductor manufacturing defects versus good items
e Pham faces: Face versus Non-face images

e CMU pie facé: male (30 subjects) vs female (17 subjects)

e Madelor?: It consists of data points (artificially generated) grouped in 32 clustaceg on
the vertices of a five dimensional hypercube and randomly labeled +1, oorLpted with
features that are not useful for classification.

1. Data set can be found latp://www.cs.nyu.edu/ ~ roweis/data.html

. Data set can be found fatp://www.zjucadcg.cn/dengcai/Data/FaceData.html .

3. Data set can be found altttp://archive.ics.uci.edu/ml/machine-learning-data bases/madelon/
Dataset.pdf

N
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Figure 6: Performance of unsupervised logistic regression clas&iﬁmnputed using Algorithm 1

(left) and Algorithm 2 (right) on the RCV1 data set. The top two rows show dtayl

of the two risk estimate®,(6,), R.(8n) as a function of the algorithm iterations. The
risk estimates of, were computed using the train set (top) and the test set (middle).
The bottom row displays the decay of the test set error raféy afs a function of the
algorithm iterations. The figure shows that the algorithm obtains a relatieelyrate
classifier (testing set error rate 0.1, aRgl decaying similarly toR,) without the use

of a single labeled example. For comparison, the test error rate fornssgetogistic
regression with the sanmeis 0.07.

3138



MARGIN-BASED CLASSIFICATION WITHOUT LABELS

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 30 60 90 120 150 1 10 20 30 40
0.7 ‘ ‘ ‘ 0.9 ‘ ‘
s 0.8f- - —
06F ., | e
* 0.7+ ‘\
. : Sea
0.5f i 1 Sel
v 0.6f e
\‘ ‘~,
0.4r " 1 os5f R
s LY
\‘ -
0.3 ~y { 04r .
5‘ -~
~,~ 037 A Y
02t v ] S
. .
S 0.2 R
“““““ PR e ’ iy
0.1f 1 oal e
0 ‘ ‘ ‘ ‘ 0 ‘ ‘
1 30 60 90 120 150 1 10 20 30 40

Figure 7. Performance of unsupervised logistic regression claséﬂﬁmnputed using Algorithm 1
(left) and Algorithm 2 (right) on the MNIST data set. The top two rows showdieay
of the two risk estimate®,(6,), R.(8n) as a function of the algorithm iterations. The
risk estimates 0B, were computed using the train set (top) and the test set (middle).
The bottom row displays the decay of the test set error raféy afs a function of the
algorithm iterations. The figure shows that the algorithm obtains a relatieelyrate
classifier (testing set error rate 0.1, aRgl decaying similarly toR,) without the use
of a single labeled example. For comparison, the test error rate forngsgetogistic
regression with the sanreis 0.05.
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| Dataset | Dimensions | Supervised log-reg USL-2| GMM |
RCV1 top 504 words 0.0500 0.0923| 0.2083
Mnist 784 0.0700 0.1023| 0.3163

20 news group top 750 words 0.0652 0.0864| 0.1234
USPS 256 0.0348 0.0545| 0.1038
Umist 400 PCA componentg 0.1223 0.1955| 0.2569
Arcene 1000 PCA components 0.1593 0.1877| 0.3843*
Isolet 617 0.0462 0.0568| 0.1332
Dexter top-700 words 0.0564 0.1865| 0.2715
Secom 591 0.1246 0.1532| 0.2674
Pham faces 400 0.1157 0.1669| 0.2324
CMU pie face 1024 0.0983 0.1386| 0.2682*
Madelon 500 0.0803 0.1023| 0.1120

Table 2: Comparison (test set error rate) between supervised logigptesston, Unsupervised lo-
gistic regression and Gaussian mixture modeling in original data space n¥hparvised
classifier performs better than the GMM clustering on the original spaceamgares
well with its supervised counterpart on most data sets. See text for miitsd&he stars
represent GMM with covarianag?l due to the high dimensionality. In all other cases we
used a diagonal covariance matrix. Non-diagonal covariance matrixmyaactical due
to the high dimensionality.

Table 2 displays the test set error for the three methods on each data setot®\that our
unsupervised approach achieves test set errors comparable tg#reised logistic regression in
several data sets. The poor performance of the unsupervised teetoricthe Dexter data set is
due to the fact that the data contains many irrelevant features. In faesitemgineered for a
feature selection competition and has a sparse solution vector. In generakthod significantly
outperforms Gaussian mixture model clustering in the original feature spadely explanation
is that (i) fo(X)|Y is more likely to be normal thaX|Y and (ii) it is easier to estimate in one
dimensional space rather than in a high dimensional space.

4.1 Inaccurate Specification ofp(Y)

Our estimation framework assumes that the margot#l) is known. In some cases we may only
have an inaccurate estimatemly). It is instructive to consider how the performance of the learned
classifier degrades with the inaccuracy of the assupf¥gl.

Figure 8 displays the performance of the learned classifier for RCV lagagafunction of the
assumed value gi(Y = 1) (correct value ip(Y = 1) = 0.3). We conclude that knowledge pfY)
is an important component in our framework but precise knowledge isrnciat. Small deviations
of the assumeg(Y) from the truep(Y) result in a small degradation of logloss estimation quality
and testing set error rate. Naturally, large deviation of the assyaf¥edrom the truep(Y) renders
the framework ineffective.
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Figure 8: Performance of unsupervised classifier training on RCV1(tigialass vs. classes 2-5)
for misspecifiedp(Y). The performance of the estimated classifier (in terms of training
set empirical loglos&, (5) and test error rate measured using held-out labels) decreases
with the deviation between the assumed and pé= 1) (true p(Y = 1) = 0.3)). The
classifier performance is very good when the assum@d is close to the truth and
degrades gracefully when the assunpéd) is not too far from the truth.

4.2 Effect of Regularization and Dimensionality Reduction

In Figure 9 we examine the effect of regularization on the performaniteamnsupervised classifier.
In this experiment we use the regularization software available btp://www.cs.ubc.ca/

~ schmidtm/Software/L1General.html . Clearly, regularization helps in the supervised case. It
appears that in the USL case weak regularization may improve perforrhaticet as drastically as

in the supervised case. Furthermore, the positive effdct afgularization in the USL case appears
to be weaker thah; regularization (compare the left and right panels of Figure 9). Onéeilpess
reason is that the sparsity promoting naturé p€onflicts with the CLT assumption.

In Figure 10 we examine the effect of reducing the data dimensionality viag?iGAto training
the unsupervised classifier. Specifically, the 256 dimensions USPS imagsetiatas embedded
in an increasingly lower dimensional space via PCA. For the original dimealiy of 256 or a
slightly lower dimensionality the classification performance of the unsupedisesifier is com-
parable to the supervised. Once the dimensions are reduced to less tharsigyiificant perfor-
mance gap appears. This is consistent with our observation above thaivéy dimensions the
CLT approximation is less accurate. The supervised classifier alsodgsgraperformance as less
dimensions are used but not as fast as the unsupervised classifier.

5. Related Work

Semi-supervised approacheSemisupervised learning is closely related to our work in that un-
supervised classification may be viewed as a limiting case. One of the first tgtatrgiudying
the sample complexity of classification with unlabeled and labeled data was BiliCasd Cover
(1995). They consider a setting when data is generated by mixture distnipatiml show that with
infinite unlabeled data, the probability of error decays exponentially fastee labeled data to the
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Figure 9: Test set error rate versus regularization paranieten(the left panel antd; on the right
panel) for supervised and unsupervised logistic regression on R@lsdt.
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Figure 10: Test set error rate versus the amount of dimensions ugeat{ed via PCA) for super-
vised and unsupervised logistic regression on USPS data set. The ladigieasional-
ity was 256.

Bayes risk. They also analyze the case when there are only finite labelachkabeled data sam-
ples, with known class conditional densities but unknown mixing proport{iGastelli and Cover,
1996). A variant of the same scenario with known parametric forms for s conditionals
(specificallyn-dimensional Gaussians) but unknown parameters and mixing propogials® an-
alyzed by J. Ratsaby and Venkatesh (1995). Some of the more recdnitwvtioe area concentrated
on analyzing semisupervised learning under the cluster assumption or thelthassumption. We
refer the reader to a recent survey by Zhu and Goldberg (2008)d@cussion of recent approaches.
However, none of the prior work consider mixture modeling in the projectddgpace along with

a CLT assumption which we exploit. In addition, assuming known mixing propwiae propose
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a framework for training a classifier with no labeled samples, while appesaghove still need
labeled samples for classification.

Unsupervised approache$he most recent related research approaches are by Quadriahnto et a
(2009), Gomes et al. (2010), and Donmez et al. (2010). The workuadfanto et al. (2009) aims
to estimate the labels of an unlabeled testing set using known label proposficeveral sets
of unlabeled observations. The key difference between their agpeoatours is that they require
separate training sets from different sampling distributions with diffenethkaown label marginals
(one for each label). Our method assumes only a single data set with a katmevmarginal but on
the other hand assumed the CLT approximation. Furthermore, as notéoughe\(see comment
after Proposition 8), our analysis is in fact valid when only the order @dllptoportions is known,
rather than the absolute values.

A different attempt at solving this problem is provided by Gomes et al. (R@hich focuses
on discriminative clustering. This approach attempts to estimate a conditiotalplistic model
in an unsupervised way by maximizing mutual information between the empirialdigiribution
and the label distribution. A key difference is the focus on probabilisticsiflass and in partic-
ular logistic regression whereas our approach is based on empiricahingkization which also
includes SVM. Another key difference is that the work by Gomes et all@Racks consistency
results which characterize when it works from a theoretical persgective approach by Donmez
et al. (2010) focuses on estimating the error rate of a given stochasikifigla (not necessarily
linear) without labels. It is similar in that it estimates the 0/1 risk rather than theimaaged risk.
However, it uses a different strategy and it replaces the CLT assumgpiibra symmetric noise
assumption.

An important distinction between our work and the references above isuhaiork provides an
estimate for the margin-based risk and therefore leads naturally to uasmgukeversions of logistic
regression and support vector machines. We also provide asymptdsisiarsiowing convergence
of the resulting classifier to the optimal classifier (minimizer of (1)). Experintertults show
that in practice the accuracy of the unsupervised classifier is on the sdere(lout slightly lower
naturally) as its supervised analog.

6. Discussion

In this paper we developed a novel framework for estimating margin-bésedusing only unla-
beled data. We show that it performs well in practice on several diffefeta sets. We derived
a theoretical basis by casting it as a maximum likelihood problem for Gaussianrenimodel
followed by plug-in estimation.

Remarkably, the theory states that assuming normalitig©f) and a knowrp(Y) we are able
to estimate the risR(8) without a single labeled example. That is the risk estimate converges to the
true risk as the number of unlabeled data increase. Moreover, usigrardbnvergence arguments
it is possible to show that the proposed training algorithm converges to timabplassifier as
n — oo without any labeled data. The results in the paper are applicable only to tilzsaifiers,
which are an extremely important class of classifiers especially in the high siiomah case. In
the non-linear classification scenario, it is worth examining if the CLT assumgptin the mapped
high-dimensional feature space could be used for building non-linessifitas via the kernel trick.

On a more philosophical level, our approach points at novel questioigaieyond supervised
and semi-supervised learning. What benefit do labels provide ovepenssed training? Can
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our framework be extended to semi-supervised learning where a felg ldbexist? Can it be

extended to non-classification scenarios such as margin based imgoegeargin based structured
prediction? When are the assumptions likely to hold and how can we makeaoueviork even

more resistant to deviations from them? These questions and others farandeexciting open

research directions.
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