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Abstract

Recently there has been an increasing interest in regressithods that deal with multiple out-
puts. This has been motivated partly by frameworks like itaslk learning, multisensor networks
or structured output data. From a Gaussian processes pavspe¢he problem reduces to spec-
ifying an appropriate covariance function that, whilstrigeipositive semi-definite, captures the
dependencies between all the data points and across allithets. One approach to account for
non-trivial correlations between outputs employs controtuprocesses. Under a latent function
interpretation of the convolution transform we establigpehdencies between output variables.
The main drawbacks of this approach are the associated d¢atigmal and storage demands. In
this paper we address these issues. We present differentieftapproximations for dependent out-
put Gaussian processes constructed through the convofotimalism. We exploit the conditional
independencies present naturally in the model. This leadsform of the covariance similar in
spirit to the so called PITC and FITC approximations for ayk#routput. We show experimental
results with synthetic and real data, in particular, we shesults in school exams score prediction,
pollution prediction and gene expression data.

Keywords: Gaussian processes, convolution processes, efficiemdapmations, multitask learn-
ing, structured outputs, multivariate processes

1. Introduction

Accounting for dependencies between model outputs has important digpigcin several areas. In
sensor networks, for example, missing signals from failing sensors marelieted due to correla-
tions with signals acquired from other sensors (Osborne et al., 200§®dstatistics, prediction of
the concentration of heavy pollutant metals (for example, Copper), thagensive to measure,
can be done using inexpensive and oversampled variables (for exguHplas a proxy (Goovaerts,
1997). Within the machine learning community this approach is sometimes knownlgissku

learning. The idea in multitask learning is that information shared between #elézsls to im-
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proved performance in comparison to learning the same tasks individualtyg@a, 1997; Bonilla
et al., 2008).

In this paper, we consider the problem of modeling related outputs in a @aysscess (GP).
A Gaussian process specifies a prior distribution over functions. Whieng @ GP for multiple
related outputs, our purpose is to develop a prior that expressesatiorrdbetween the outputs.
This information is encoded in the covariance function. The class of validriamce functions is
the same as the class of reproducing kerheSsich kernel functions for single outputs are widely
studied in machine learning (see, for example, Rasmussen and Williams, R0Q@) recently the
community has begun to turn its attention to covariance functions for multiple outpotsof the
paradigms that has been considered (Teh et al., 2005; Osborne €0&;,Bbnilla et al., 2008)
is known in the geostatistics literature e linear model of coregionalizatiol.MC) (Journel
and Huijbregts, 1978; Goovaerts, 1997). In the LMC, the covariangetibn is expressed as the
sum of Kronecker products betweearegionalization matriceand a set of underlying covariance
functions. The correlations across the outputs are expressed in dggar@lization matrices, while
the underlying covariance functions express the correlation betwderedif data points.

Multitask learning has also been approached from the perspectiegudérization theoryEv-
geniou and Pontil, 2004; Evgeniou et al., 2005). Thasétitask kernelare obtained as generaliza-
tions of the regularization theory to vector-valued functions. They canleseen as examples of
LMCs applied to linear transformations of the input space.

In the linear model of coregionalization each output can be thought of Bstantaneous mix-
ing of the underlying signals/processes. An alternative approach &iracting covariance func-
tions for multiple outputs employsonvolution processg€£P). To obtain a CP in the single output
case, the output of a given process is convolved with a smoothing Kemalon. For example,
a white noise process may be convolved with a smoothing kernel to obtairadaime function
(Barry and Ver Hoef, 1996; Ver Hoef and Barry, 1998). Ver Hapfl Barry (1998) and then Hig-
don (2002) noted that if a single input process was convolved with difftesmoothing kernels
to produce different outputs, then correlation between the outputs ceuttkgressed. This idea
was introduced to the machine learning audience by Boyle and Frean)(208%an think of this
approach to generating multiple output covariance functions as a nomers@us mixing of the
base processes.

The convolution process framework is an elegant way for construcepgrtlent output pro-
cesses. However, it comes at the price of having to consider the fudrieoece function of the
joint GP. ForD output dimensions and/ data points the covariance matrix scales’a8 lead-
ing to O(N3D3) computational complexity an@ (N2 D?) storage. We are interested in exploiting
the richer class of covariance structures allowed by the CP framewatrke@ucing the additional
computational overhead they imply.

In this paper, we propose different efficient approximations for tilecvariance matrix in-
volved in the multiple output convolution process. We exploit the fact that, inctémeolution
framework, each of the outputs is conditional independent of all othéng ilhput process is fully
observed. This leads to an approximation that turns out to be stronglydétatee partially in-
dependent training conditional (PITC) (@oinero-Candela and Rasmussen, 2005) approximation
for a single output GP. This analogy inspires us to consider a furthefitemmal independence

1. In this paper we will use kernel to refer to both reproducing kernedssanoothing kernels. Reproducing kernels are
those used in machine learning that conform to Mercer’s theorem. tBingdernels are kernel functions which are
convolved with a signal to create a smoothed version of that signal.
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assumption across data points. This leads to an approximation which stef@stof the fully in-
dependent training conditional (FITC) approximation (Snelson and @hemni, 2006; Quiionero-
Candela and Rasmussen, 2005). This reduces computational compleX{¥to K 2) and storage

to O(NDK) with K representing a user specified value for the number of inducing points in the
approximation.

The rest of the paper is organized as follows. First we give a more dktaNgew of related
work, with a particular focus on relating multiple output work in machine leartongther fields.
Despite the fact that there are several other approaches to multitaskde@ee for example Caru-
ana, 1997, Heskes, 2000, Bakker and Heskes, 2003, Xue et@l.apd references therein), in this
paper, we focus our attention to those that address the problem ofadirgjrthe covariance or
kernel function for multiple outputs, so that it can be employed, for exandether with Gaus-
sian process prediction. Then we review the convolution processagpio Section 3 and Section
4. We demonstrate how our conditional independence assumptions caadwueduce the com-
putational load of inference in Section 5. Experimental results are sho®adtion 6 and finally
some discussion and conclusions are presented in Section 7.

2. Related Work

In geostatistics, multiple output models are used to model the co-occurrermirearals or pollu-
tants in a spatial field. Many of the ideas for constructing covariancditunscfor multiple outputs
have first appeared within the geostatistical literature, where they arenkas linear models of
coregionalization (LMC). We present the LMC and then review how sgweodels proposed in the
machine learning literature can be seen as special cases of the LMC.

2.1 The Linear Model of Coregionalization

The term linear model of coregionalization refers to models in which the oudpetexpressed as
linear combinations of independent random functions. If the independedbrariunctions are
Gaussian processes then the resulting model will also be a Gaussiaaspnottea positive semi-
definite covariance function. Consider a sefbutput functions{ f,(x)}7_, wherex € ®? is the
input domain. In a LMC each output functiofy(x), is expressed as (Journel and Huijbregts, 1978)

Q
fa) = aqquq(X). (1)
q=1

Under the GP interpretation of the LMC, the functie{rz@(x)}qQ:1 are taken (without loss of gener-
ality) to be drawn from a zero-mean GP witbw [u, (X), uy (X')] = kq(X,X') if ¢ = ¢’ and zero oth-
erwise. Some of these base processes might have the same covariansé,th,x') = k, (x,X'),
but they would still be independently sampled. We can group together tegobasesses that share
latent functions (Journel and Huijbregts, 1978; Goovaerts, 199@)yiag us to express a given
output as

Q Bq

Fa() =D "al ui(x), 2)

q=1i=1
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where the functiong v/ (x) }R , i=1,..., Ry, represent the latent functions that share the same
covariance functiotk,(x,x’). There are nov@ groups of functions, each member of a group shares
the same covariance, but is sampled independently.

In geostatistics it is common to simplify the analysis of these models by assumingehmbth
cesseg,(x) are stationary and ergodic (Cressie, 1993). The stationarity andieityanditions
are introduced so that the prediction stage can be realized through anldpi@aapredictor using
a single realization of the process (Cressie, 1993). Such linear pnediet®ive the general name
of cokriging The cross covariance between any two functififig) and f (X) is given in terms of
the covariance functions far! (x)

Q Q Rq Rg

covlfa¥), far (<)) = 30 D733 al i covluh (), s ()]

g=1¢'=1i=14=1
Because of the independence of the latent functigl(\x), the above expression can be reduced to

Q Iq Q

cov[fa(X), for ) =D " aly galy JFig(},X) = 0T 4 kg(x,X), (3)

g=11=1 g=1

with bg}d, = qul a’, qad,’q

For a numberV of input vectors, lef; be the vector of values from the outplievaluated at
X = {x,})_,. If each output has the same set of inputs the system is knownta@lc In general,
we can allow each output to be associated with a different set of ingifts= {xn }a | this is
known asheterotopic® For notational simplicity, we restrict ourselves to the isotopic case, but our
analysis can also be completed for heterotopic setups. The covariande fmafy; is obtained
expressing Equation (3) as

Q Rq

covlfg,far] = ZZad qad, q= Zbd &

q=11i=1

whereK , € RV has entries given by computirig(x,x’) for all combinations fronX. We now
definef to be a stacked version of the outputs so that[f],...,f]T. We can now write the
covariance matrix for the joint process ov¥exs

Q Q
Kig=Y AA, @K, =Y B,@K,, (4)
q=1 q=1

where the symbab denotes the Kronecker produgt, € 7>« has entries; , andB, =A,A; €
RP*P has entrieg , and is known as theoregionalization matrix The covariance matrik
is positive semi-definite as long as the coregionalization matBgese positive semi-definite and
kq(x,x") is a valid covariance function. By definition, coregionalization matriBgdulfill the
positive semi-definiteness requirement. The covariance functions ftatdre processes, (x,x’),
can simply be chosen from the wide variety of covariance functionsdqdeging kernels) that are

2. These names come from geostatistics.
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used for the single output case. Examples include the squared expbfsmtiatimes called the
Gaussian kernel or RBF kernel) and the Btatclass of covariance functions (see Rasmussen and
Williams, 2006, Chapter 4).

The linear model of coregionalization represents the covariance fure@sianproduct of the
contributions of two covariance functions. One of the covariance fumetioodels the dependence
between the functions independently of the input vegiathis is given by the coregionalization
matrix B,, whilst the other covariance function models the input dependence indepiy of the
particular set of functiong,(x), this is the covariance functidi, (x,x’).

We can understand the LMC by thinking of the functions having been gtatbas a two step
process. Firstly we sample a set of independent processes fromvidrgaoae functions given by
kq(x,X'), taking R, independent samples for eakh(x,x’). We now haveR = EqQ:l R, indepen-
dently sampled functions. These functions imstantaneously mixédn a linear fashion. In other
words the output functions are derived by application of a scaling anthtian to an output space
of dimensionD.

2.1.1 INTRINSIC COREGIONALIZATION MODEL

A simplified version of the LMC, known as the intrinsic coregionalization mokf&iA) (Goovaerts,
1997), assumes that the elemelffs, of the coregionalization matrig, can be written as , =
vg,qbg. In Other words, as a scaled version of the eleméghich do not depend on the particular
output functionsfy(x). Using this form forbqu,, Equation (3) can be expressed as

COV[fd fd’ Zvdd’bk XX —Udd’zbk XX

The covariance matrix fdrtakes the form
Kif =T K, (5)

whereY € RP*D, with entriesvy o, andK = 229:1 bsK, is an equivalent valid covariance func-
tion.

The intrinsic coregionalization model can also be seen as a linear modelegfi@ualization
where we havé) = 1. In such case, Equation (4) takes the form

Kif=AIA] ®K; =B @Ky, (6)

where the coregionalization matr has elements} , = 3>/, a, ,a}, |. The value ofR; deter-
mines the rank of the matrig; .

As pointed out by Goovaerts (1997), the ICM is much more restrictive theuh MiC since it
assumes that each basic covariahge,x’) contributes equally to the construction of the autoco-
variances and cross covariances for the outputs.

3. The term instantaneous mixing is taken from blind source separatioccoutde, if the underlying processes are not
temporal but spatial, instantaneous is not being used in its original selasever, it allows us to distinguish this
mixing from convolutional mixing.
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2.1.2 UNEAR MODEL OF COREGIONALIZATION IN MACHINE LEARNING

Several of the approaches to multiple output learning in machine learniegd lbaskernels can be
seen as examples of the linear model of coregionalization.

Semiparametric latent factor modé@lhe semiparametric latent factor model (SLFM) proposed
by Teh et al. (2005) turns out to be a simplified version of Equation (4)atticular, ifR, =1 (see
Equation 1), we can rewrite Equation (4) as

Q
Kf7f = Zaqa; &® Kq7

q=1

wherea, € RP*! with elements:, ,. With some algebraic manipulations that exploit the properties
of the Kronecker produtiwe can write

Q
K=Y (a,®1n)Kq(a ®ly) = (Al KA @1y),
q=1

wherel y is the N-dimensional identity matrixA € RP*@ is a matrix with columns, andK ¢
REN*QN is a block diagonal matrix with blocks given I,

The functions, (x) are considered to be latent factors and the semiparametric name comes from
the fact that it is combining a nonparametric model, this is a Gaussian pred#dss, parametric
linear mixing of the functions.,(x). The kernel for each basic procegs:,(x,x’), is assumed to
be of Gaussian type with a different length scale per input dimension.droputational speed up
the informative vector machine (IVM) is employed (Lawrence et al., 2003).

Multi-task Gaussian processed.he intrinsic coregionalization model has been employed in
Bonilla et al. (2008) for multitask learning. We refer to this approach as mski-@&aussian pro-
cesses (MTGP). The covariance matrix is expressel@sz .\ = K T @ k(x,x'), with f(x) =
[f1(X),...,fp(X)]T, Kf being constrained positive semi-definite aiig,x’) a covariance func-
tion over inputs. It can be noticed that this expression has is equal to thendb), when it is
evaluated fox,x’ € X. In Bonilla et al. (2008) K/ (equal toX in Equation 5 oB; in Equation
6) expresses the correlation between tasks or inter-task dependamti¢ s represented through a
probabilistic principal component analysis (PPCA) model. In turn, thetsgddactorization in the
PPCA model is replaced by an incomplete Cholesky decomposition to keepioahséability, so
that K/ ~LLT, whereL € RP*F1. An application of MTGP for obtaining the inverse dynamics
of a robotic manipulator was presented in Chai et al. (2009).

It can be shown that if the outputs are considered to be noise-fra¢iioa using the intrinsic
coregionalization model under an isotopic data case is equivalent to imiflemteprediction over
each output (Helterbrand and Cressie, 1994). This circumstance ikredam as autokrigeability
(Wackernagel, 2003) and it can also be seen as the cancellation dfasiteransfer (Bonilla et al.,
2008).

Multi-output Gaussian processeshe intrinsic coregionalization model has been also used in
Osborne et al. (2008). MatriX in Expression (5) is assumed to be of the spherical parametrisation
kind, Y = diag(e)S' Sdiag(e), wheree gives a description for the length scale of each output
variable andsis an upper triangular matrix whogeh column is associated with particular spherical

4. See Brookes (2005) for a nice overview.
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coordinates of points ifit? (for details see Osborne and Roberts, 2007, Section 3.4). Function
k(x,x') is represented through adern kernel, where different parametrisations of the covariance
allow the expression of periodic and non-periodic terms. Sparsificatiothi®omodel is obtained
using an IVM style approach.

Multi-task kernels in regularization theoriernels for multiple outputs have also been studied
in the context of regularization theory. The approach is based mainly ateftmtion of kernels for
multitask learning provided in Evgeniou and Pontil (2004) and Evgeniou@095), derived based
on the theory of kernels for vector-valued functions. Det {1,..., D}. According to Evgeniou
et al. (2005), the following lemma can be used to construct multitask kernels,

Lemma 1 If Gisakernelon/ x 7 and, for everyl € D there are prescribed mappings;: X — T
such that

kaa (X,X') =k((x,d), (X', d)) = G(®q(X),Px (X)), x,X €RP, d,d €D,
thenk(-) is a multitask or multioutput kernel.

A linear multitask kernel can be obtained if we §et= R™, ®,4(x) = Cyx with &, € ®™ and
G : R™ x R™ — R as the polynomial kernel (z,Z) = (2" Z)" with n = 1, leading tokg 4 (X, X') =
xTCJ CaX'. The lemma above can be seen as the result of applying kernel propettiesnapping
d,4(X) (see Genton, 2001, p. 2). Notice that this corresponds to a generaliphtibe semipara-
metric latent factor model where each output is expressed through itsasimpgyocess acting over
the linear transformatio x, this is, us(®4(X)) = uqs(CgX). In general, it can be obtained from
fa(x) = Zle aqquq(Py(X)), Wwhereaq , = 1if d = q or zero, otherwise.

A more detailed analysis of the LMC and more connections with other methodsigtistsand
machine learning can be foundAdvarez et al. (2011b).

3. Convolution Processes for Multiple Outputs

The approaches introduced above all involve some form of instantameursy of a series of
independent processes to construct correlated processestdnstaus mixing has some limitations.
If we wanted to model two output processes in such a way that one gra@ssa blurred version
of the other, we cannot achieve this through instantaneous mixing. Wekgva blurring through
convolving a base process with a smoothing kernel. If the base proee&sisssian process, itturns
out that the convolved process is also a Gaussian process. We cefot@axploit convolutions
to construct covariance functions (Barry and Ver Hoef, 1996; \eeftdnd Barry, 1998; Higdon,
1998, 2002). A recent review of several extensions of this appré@cthe single output case is
presented in Calder and Cressie (2007). Applications include the comstrof nonstationary
covariances (Higdon, 1998; Higdon et al., 1998; Fuentes, 2002adnriek and Schervish, 2004)
and spatiotemporal covariances (Wikle et al., 1998; Wikle, 2002, 2003).

Ver Hoef and Barry (1998) first, and Higdon (2002) later, suggessaty convolutions to con-
struct multiple output covariance functions. The approach was introdiecéhe machine learn-
ing community by Boyle and Frean (2005). Consider again a sdb dfinctions {fd(x)}dDzl.
Now each function could be expressed through a convolution integrakba a smoothing ker-
nel, {G4(x)}2_,, and a latent function(x),

falx) = /X Gu(x — 2)u(z)dz. @)

1465



ALVAREZ AND LAWRENCE

More generally, and in a similar way to the linear model of coregionalizatiorcameconsider the
influence of more than one latent functim@(z), withg=1,...,Q andi =1,..., R, to obtain

Q Rq

ZZ/ qux Z)uy(2)dz.

q=11=1

As in the LMC, there aré) groups of functions, each member of the group has the same covariance
kq(x,x"), but is sampled independently. Under the same independence assumpgdnis the
LMC, the covariance betweefy(x) and f4 (x’) follows

Q Rq

cov [ fa(X), far (X ZZ/ G, (x—2) /XGQ,’q(x’—z’)kq(z,z’)dz’dz. (8)

q=11i=1

SpecifyingGZL ,(X—2) andkg(z, Z') in (8), the covariance for the outpufg(x) can be constructed
indirectly. Note that if the smoothing kernels are taken to be the Dirac deltddarsuch that,

fi,q (X - Z) - afi,qé(x - 2)7

whered(-) is the Dirac delta function, the double integral is easily solved and the lineaglrobd
coregionalization is recovered. This matches to the concdapstdntaneous mixinge introduced
to describe the LMC. In a convolutional process the mixing is more generaxample the latent
process could be smoothed for one output, but not smoothed for amdithweing correlated output
functions of different length scales.

The traditional approach to convolution processes in statistics and sigicalgsing is to assume
that the latent functions,(z) are independent white Gaussian noise proceésész') = 026(z—
Z'). This allows us to simplify (8) as

cov [ fa(X), far (X ZZO’ /qux 2)Gy (X' —2)dz.
q=11i=1

In general, though, we can consider any type of latent processxdonme, we could assume GPs
for the latent functions with general covarianégéz, z').

As well as this covariance across outputs, the covariance between ﬂrtefdmmion,ug(z), and
any given outputf;(x), can be computed,

cov [ fa(X) /qux Z)k,(Z,z)dZ. (9)

Additionally, we can corrupt each of the outputs of the convolutions with@agandent process
(which could also include a noise terna),(x), to obtain

Ya(X) = fa(X) +wq(X). (10)

The covariance between two different outpui$x) andyy (X') is then recovered as

[¢0)% [yd(x),yd/ (X/)] =COoV [fd(X), fd/ (X/)] + cov [wd(x),wd/ (X/)] 6d,d’7
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whered,  is the Kronecker delta functioh.

As mentioned before, Ver Hoef and Barry (1998) and Higdon (206&)gsed the direct use of
convolution processes for constructing multiple output Gaussian pexesawrence et al. (2007)
arrive at a similar construction from solving a physical model: a firstroddgerential equation (see
also Gao et al., 2008). This idea of using physical models to inspire multiple tayptems has
been further extended ilvarez et al. (2009) who give examples using the heat equation artd a se
ond order system. A different approach using Kalman Filtering ideas ders froposed in Calder
(2003, 2007). Calder proposed a model that incorporates dynamgitahss ideas to the process
convolution formalism. Essentially, the latent processes are of two typedomawalks and in-
dependent cyclic second-order autoregressions. With this formul#tismossible to construct a
multivariate output process using convolutions over these latent pesceRarticular relationships
between outputs and latent processes are specified using a spesi@rtrattion matrix ensuring
that the outputs are invariant under invertible linear transformations ofrttlerlying factor pro-
cesses (this matrix is similar in spirit to the sensitivity matrix of Lawrence et aD7qand it is
given a particular form so that not all latent processes affect thdéevded of outputs).

Bayesian kernel methodslhe convolution process is closely related to the Bayesian kernel
method (Pillai et al., 2007; Liang et al., 2009) for constructing reprodei¢iernel Hilbert spaces
(RKHS), assigning priors to signed measures and mapping these metasavegh integral opera-
tors. In particular, define the following space of functions,

F={1|f@ = [ G@2n). et}

for some spac& C B(X) of signed Borel measures. In Pillai et al. (2007, Proposition 1), the au-
thors show that fof’ = B(X'), the space of all signed Borel measurg&scorresponds to a RKHS.
Examples of these measures that appear in the form of stochastic pooedade Gaussian pro-
cesses, Dirichlet processes anelvlz processes. This framework can be extended for the multiple
output case, expressing the outputs as

fd(ac)—/XGd(x,z)’y(dz).

The analysis of the mathematical properties of such spaces of functioegasdthe scope of this
paper and is postponed for future work.

Other connections of the convolution process approach with methods inissadisd machine
learning are further explored ilvarez et al. (2011b).

A general purpose convolution kernel for multiple outpuéssimple general purpose kernel
for multiple outputs based on the convolution integral can be constructathagsthat the kernel
smoothing functionG, ,(x), and the covariance for the latent functidg,x,x’), follow both a
Gaussian form. A similar construction using a Gaussian fornGfor) and a white noise process
for u(x) has been used in Paciorek and Schervish (2004) to propose a norstatiovariance
function in single output regression. It has also been used in Boyle r&ash £2005) as an example
of constructing dependent Gaussian processes.

The kernel smoothing function is given as

Gaq(x) = SagN(x0,P5"),

5. We have slightly abused of the delta notation to indicate the Kronecker deltistrete arguments and the Dirac
function for continuous arguments. The particular meaning should therstood from the context.
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wheresS, , is a variance coefficient that depends both on the outautd the latent function and
P4 is the precision matrix associated to the particular outpufhe covariance function for the
latent process is expressed as

kg(%,X) =N (x—x'|0,A; 1),

with A, the precision matrix of the latent functign
Expressions for the kernels are obtained applying systematically the idemtityef product of
two Gaussian distributions. L&t (x|u,P~1) denote a Gaussian fay then

N (X1, PN (X[ 2, Py 1) = N (| po, Pyt + Py DN (X[ e, P, (11)

wherep, = (P1 +Py) (P11 +Popo) andP; !t = (P, +P;) ™', For all integrals we assume that
X = RP. Using these forms fof; ,(x) andk,(x,X’), expression (8) (witl?, = 1) can be written
as

Q
kfmfd,(x,x’):Zdequlyq/X/\/'(x—zm,Pd1)/){N(x’—z’|0,Pd,l)/\/'(z—z’|O,Aq_1)dz’dz.

q=1

Since the Gaussian covariance is stationary, we can writd\i(@as-x'|0,P~1) = N'(x' —x|0,P~1) =
N (x|x',P~1) = N (X'|x,P~1). Using the identity in Equation (11) twice, we get

Q
kpop, (XX) = Z SaqSa N (x—X[0,P; 1+ P+ A1), (12)
g=1

For a high value of the input dimensiop, the term1/[(27)P/2|P; ! +P' + A71[*/?] in each of
the Gaussian’s normalization terms will dominate, making values go quickly to\Aérgan fix this
problem, by scaling the outputs using the factgf§2r)?/42P; ' + A1 [/4] and1/[(2m)P/4|2P, " +
Aq—1 |1/4]. Each of these scaling factors correspond to the standard deviatomiedss tdt/, 1, (X,X)
andky,, 1, (X,X).

Equally for the covarianceov [ f,;(x), us(X))] in Equation (9), we obtain

g 0X) = SaN (= X0, +A7).

Again, this covariance must be standardized when working in higher diorens

4. Hyperparameter Learning

Given the convolution formalism, we can construct a full GP over the sattpiuts. The likelihood
of the model is given by
p(yIX,0) = N(y|0,Ks s+ X), (13)

wherey = [yf,...y},]T is the set of output functions withhy = [ya(X1),...,ya(xn)] " ; Kig €
RPNXDN is the covariance matrix arising from the convolution. It expresses thariemce of each
data point at every other output and data point and its elements are given [ff;(X), fo (X')] in
(8). The termX represents the covariance associated with the independent praogd€gsw (x).

It could contain structure, or alternatively could simply represent noeeishindependent across
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the data points. The vectérrefers to the hyperparameters of the model. For exposition we will
focus on the isotopic case (although our implementations allow heterotopic ng)dstrwe have a
matrix X = {Xy,...,Xx } which is the common set of training input vectors at which the covariance
is evaluated.

The predictive distribution for a new set of input vectirsis (Rasmussen and Williams, 2006)

PV, X, X, 0) = N (ya|Ks, 1 (Kis + )7y, K, 1, —Ki, 1(Ke 4+ 2) 7 Kep, +5.),

where we have uselds, ¢, as a compact notation to indicate when the covariance matrix is evalu-
ated at the inputX,, with a similar notation foK;, . Learning from the log-likelihood involves
the computation of the inverse &f; ¢ + X giving the problematic complexity ad(N3D3). Once

the parameters have been learned, predictian( & D) for the predictive mean and(N?2D?) for

the predictive variance.

As we have mentioned before, the main focus of this paper is to presenteftiorent approxi-
mations for the multiple output convolved Gaussian Process. Given the rsgihesknted before,
we now show an application that benefits from the non-instantaneous mieimgiet brought by
the convolution process framework.

Comparison between instantaneous mixing and non-instantaneous mixinggfession in
genes expression dataMicroarray studies have made the simultaneous measurement of mMRNA
from thousands of genes practical. Transcription is governed by #sepce or absence of tran-
scription factor (TF) proteins that act as switches to turn on and off fhession of the genes. Most
of these methods are based on assuming that there is an instantaneoulatiesuship between
the gene expression and the protein concentration. We compare theng@rée of the intrinsic
coregionalization model (Section 2.1.1) and the convolved GPs for two émdiemt time series or
replicas of 12 time points collected hourly throughout Drosophila embryexgieim wild-type em-
bryos (Tomancak et al., 2002). For preprocessing the data, we foltmvkéfa et al. (2010). We
concentrate on a particular transcription factor protein, namelyand the genes associated with it.
The information about the network connections is obtained from the GhifPexperiments. This
particular TF is key regulator of mesoderm and muscle development in phids@Zinzen et al.,
2009).

After preprocessing the data, we end up with a data s&éé2f genes with expression data for
N =12time points. Itis believed that this set of genes are regulated by at leasi the&anscription
factor. For each one of these genes, we have access to 2 repliceandenly selecD = 50 genes
from replica 1 for training a full multiple output GP model based on either theCLfkhmework
or the convolved GP framework. The correspondiiiggenes of replica 2 are used for testing
and results are presented in terms of the standardized mean squareSkt8#)(and the mean
standardized log loss (MSLL) as defined in Rasmussen and Williams (8006¢. parameters of
both the LMC and the convolved GPs are found through the maximization of ttgémabikelihood
in Equation (13). We repeated the experiméfttimes using a different set df0 genes each
time. We also repeated the experiment selectingsthgenes for training from replica 2 and the
corresponding0 genes of replica 1 for testing.

6. The definitions for the SMSE and the MSLL we have used here are slidiffidyent from the ones provided in
Rasmussen and Williams (2006). Instead of comparing against a i@auwgth a global mean and variance com-
puted from all the outputs in the training data, we compare against a Gaugttidocal means and local variances
computed from the training data associated to each output.
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We are interested in a reduced representation of the data so we assuethandR, =1,
for the LMC and the convolved multiple output GP in Equations (2) and (8peetively. For the
LMC model, we follow Bonilla et al. (2008) and assume an incomplete Cholesggrdposition
for B = LL", where L € R5°*! and as the basic covarianég(x,x’) we assume the squared
exponential covariance function (p. 83, Rasmussen and Williams, 2B066ihe convolved multiple
output GP we employ the covariance described in Section 3, EquationwitR)the appropriate
scaling factors.

Train set| Testset | Method | Average SMSE| Average MSLL
LMC | 0.6069=+0.0294 | —0.2687 +0.0594
CMOC | 0.4859£0.0387 | —0.3617+0.0511
LMC | 0.619440.0447 | —0.2360+ 0.0696
CMOC | 0.4615+0.0626 | —0.38114+0.0748

Replica 1| Replica 2

Replica 2| Replica 1

Table 1: Standardized mean square error (SMSE) and mean standdeodjzess (MSLL) for the
gene expression data f80 outputs. CMOC stands for convolved multiple output covari-
ance. The experiment was repeated ten times with a different $étgénes each time.
Table includes the value of one standard deviation over the ten repetitias. ridgative
values of MSLL indicate better models.

Table 1 shows the results of both methods over the test set for the twediffeplicas. It can be
seen that the convolved multiple output covariance (appearing as CMOE ialile), outperforms
the LMC covariance both in terms of SMSE and MSLL.

Figure 1 shows the prediction made over the test set (replica 2 in this gati®) two models
for two particular genes, namely FBgn0038617 (Figure 1, first rowl) RiBgn0032216 (Figure 1,
second row). The black dots in the figures represent the gene sikpresta of the particular genes.
Figures 1(a) and 1(c) show the response of the LMC and Figuread)(d) show the response of
the convolved multiple output covariance. It can be noticed from the dat#avo genes differ
in their responses to the action of the transcription factor, that is, while EBga0038617 has
a rapid decay around tinzand becomes relatively constant for the rest of the time interval, gene
FBgn0032216 has a smoother response within the time frame. The linearohodetgionalization
is driven by a latent function with a length-scale that is shared acrossutpets. Notice from
Figures 1(a) and 1(c) that the length-scale for both responses isrtige €mn the other hand, due-
to the non-instantaneous mixing of the latent function, the convolved multiple tongpuework,
allows the description of each output using its own length-scale, whick givadded flexibility for
describing the data.

Table 2 (first four rows) shows the performances of both models fogémes of Figure 1.

CMOC outperforms the linear model of coregionalization for both genes imstef SMSE and
MSLL.

A similar analysis can be made for Figures 2(a), 2(b), 2(c) and 2(dhidrcase, the test set is
replica 1 and we have chosen two different genes, FBgn001053EBga0004907 with a similar
behavior. Table 2 (last four rows) also highlights the performancestbfimodels for the genes of
Figure 2. Again, CMOC outperforms the linear model of coregionalizatiomédh genes and in
terms of SMSE and MSLL.
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FBgn0038617 MSLL -0.60185 SMSE 0.27299 FBgn0038617 MSLL -1.3965 SMSE 0.056511
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Figure 1: Predictive mean and variance for genes FBgn003861t#¢firsand FBgn0032216 (sec-
ond row) using the linear model of coregionalization in Figures 1(a) anpd(d the
convolved multiple-output covariance in Figures 1(b) and 1(d), @ite 1 andR, = 1.
The training data comes from replica 1 and the testing data from replica Zoliddine
corresponds to the predictive mean, the shaded region correspoRdsaiodard devia-
tions of the prediction. Performances in terms of SMSE and MSLL are givére title
of each figure and appear also in Table 2. The adjectives “short”lang™given to the
length-scales in the captions of each figure, must be understood likeee¢tagach other.

Having said this, we can argue that the performance of the LMC model eamgroved by
either increasing the value ¢f or the valueR,, or both. For the intrinsic coregionalization model,
we would fix the value of) = 1 and increase the value &f;. Effectively, we would be increasing
the rank of the coregionalization matiB¢, meaning that more latent functions sampled from the
same covariance function are being used to explain the data. In a extreenia g#ich each output
has its own length scale, this translates into equating the number of latent ignitithe number
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Testreplica| Testgenes | Method| SMSE | MSLL
LMC | 0.2729 | —0.6018

Reolica 2 FBOn0038617 ~vioc | 0.0565 | —1.3965
P CBan00azate LMC | 07621 | —0.0998

9 CMOC | 0.1674 | —0.8443

LMC | 0.2572 | —0.5699

Reblica 1 FBgN001053L ~\15c | 0.0446 | —1.3434
P FBan0004007 MC | 04981 | ~0.3069

9 CMOC | 0.0971 | —1.0841

Table 2: Standardized mean square error (SMSE) and mean standdodjzess (MSLL) for the
genes in Figures 1 and 2 for LMC and CMOC. Genes FBgn0038617 Bgdd®10531
have a shorter length-scale when compared to genes FBgn003221B@m@04907.

of outputs, or in other words assuming a full rank for the maBix This leads to the need of
estimating the matri8; € RP*P, that might be problematic iD is high. For the semiparametric
latent factor model, we would fix the value Bf, = 1 and increase€), the number of latent functions
sampled from) different GPs. Again, in the extreme case of each output having its owthleng
scale, we might need to estimate a matix RP*P, which could be problematic for a high value
of outputs. In a more general case, we could also combine valugs-of andR, > 1. We would
need then, to find values ¢f and R, that fit the different outputs with different length scales.

In practice though, we will see in the experimental section, that both the Imedel of core-
gionalization and the convolved multiple output GPs can perform equally welhime data sets.
However, the convolved covariance could offer an explanation of dltee ttirough a simpler model
or converge to the LMC, if needed.

5. Efficient Approximations for Convolutional Processes

Assuming that the double integral in Equation (8) is tractable, the principléeenlge for the con-
volutional framework is computing the inverse of the covariance matrix &gedowith the outputs.
For D outputs, each havinyy data points, the inverse has computational compleX{tp? N?) and
associated storage 6f(D?N?). We show how through making specific conditional independence
assumptions, inspired by the model structukivgrez and Lawrence, 2009), we arrive at a efficient
approximation similar in form to the partially independent training conditional m@d@C, see
Quiflonero-Candela and Rasmussen, 2005). The relationship with PITGngres us to make
further conditional independence assumptions.

5.1 Latent Functions as Conditional Means

For notational simplicity, we restrict the analysis of the approximations to o fatectionw(x).
The key to all approximations is based on the form we assume for the latesiioius. From the
perspective of a generative model, Equation (7) can be interpretetiasd: first we draw a sample
from the Gaussian process prigfu(z)) and then solve the integral for each of the outpfytisc)
involved. Uncertainty about(z) is also propagated through the convolution transform.
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FBgn0010531 MSLL —-0.56996 SMSE 0.25721 FBgn0010531 MSLL —1.3434 SMSE 0.044655
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Figure 2: Predictive mean and variance for genes FBgn001053Ir¢frsand FBgn0004907 (sec-
ond row) using the linear model of coregionalization in Figures 2(a) any a0d the
convolved multiple-output covariance in Figures 2(b) and 2(d), @ite 1 andR, = 1.
The difference with Figure 1 is that now the training data comes from replidail2 the
testing data comes from replica 1. The solid line corresponds to the prediotian, the
shaded region corresponds to 2 standard deviations of the predictoforrRances in
terms of SMSE and MSLL are given in the title of each figure.

For the set of approximations, instead of drawing a sample fr¢an, we first draw a sample
from a finite representation af{z), u(Z) = [u(z,),...,u(zx)] ', whereZ = {z,}1-_, is the set of in-
put vectors at which(z) is evaluated. Due to the properties of a Gaussian propas& )) follows
a multivariate Gaussian distribution. Conditioning wfZ ), we next sample from the conditional
prior p(u(z)|u(Z)) and use this function to solve the convolution integral for eAglx).” Under

7. For simplicity in the notation, we just writeto refer tou(Z).
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this generative approach, we can approximate each fungion using
fu¥) =~ [ Galx-2)Elu@)luldz. (14)
X

Replacingu(z) for E [u(z)|u] is a reasonable approximation as long.&s) is a smooth function
so that the infinite dimensional objeetz) can be summarized hy. Figure 3 shows a cartoon
example of the quality of the approximations for two outputs as the size of tlZeiseteases. The
first column represents the conditional prigiu(z)|u) for a particular choice ofi(z). The second
and third columns represent the outpyitéx) and f2(x) obtained when using Equation (14).

Using expression (14), the likelihood function fdiollows

p(flu,Z,X,0) = N (nyf,uK;j,u, Krf— Kf,uKujaKfTu) , (15)

whereK, , is the covariance matrix between the samples from the latent funetioy with ele-
ments given bys, ., (z,2') andK , = K [ ; is the cross-covariance matrix between the latent function
u(z) and the outputg,(x), with elementsov [fa(X),u(2)] in (9).

Given the set of points, we can have different assumptions about the uncertainty of the out-
puts in the likelihood term. For example, we could assume that the outputs apeftdst or
uncorrelated, keeping only the uncertainty involved for each output ilikiléhood term. Another
approximation assumes that the outputs are deterministic, thigsis= Kty K, iK{,. The only
uncertainty left would be due to the pripfu). Next, we present different appro>’<imations of the
covariance of the likelihood that lead to a reduction in computational complexity.

5.1.1 RARTIAL INDEPENDENCE

We assume that the individual outputsfiare independent given the latent functipnleading to
the following expression for the likelihood

D D
p(f|u7z7x70) = Hp(fd\u,Z,X,B) = HN(f|de7uK;3]u7de7fd - de,UKJ,lIJKU,fd) :
d=1 d=1

We rewrite this product of multivariate Gaussians as a single Gaussian wititcladiagonal co-
variance matrix, including the uncertainty about the independent pexess

p(y|u,Z,X,0) =N (y|Ks Ky ju,D+ %) (16)

whereD = blockdiag {Kf,f — KLUK;}JKIU} , and we have used the notatiblockdiag [G] to indi-
cate that the block associated with each output of the m@&rshould be retained, but all other
elements should be set to zero. We can also write thid as[K¢ — K¢ K Kyt ©M where
© is the Hadamard product atd = | p ® 1y, 1y being the N x N matrix of ones. We now
marginalize the values of the samples from the latent function by using itsgarpder, this means
p(u|Z) = N (u|0,Ky ). This leads to the following marginal likelihood,

p(y|Z,X,0) = /p(ylu,Z,X,H)p(UIZNu =N (y0,D+Ks K, (Kus+2). (17)
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Figure 3: Conditional prior and two outputs for different valueskaf The first column, Figures

3(a), 3(d) and 3(g), shows the mean and confidence intervals of tiditiomal prior

distribution using one input function and two output functions. The dakhedepresents
one sample from the prior. Conditioning over a few points of this sample, rstasv

black dots, the conditional mean and conditional covariance are compuitex solid
line represents the conditional mean and the shaded region correspodgandard
deviations away from the mean. The second column, 3(b), 3(e) and S{bys the
solution to Equation (7) for output one using the sample from the prior édbkife) and
the conditional mean (solid line), for different valuesf The third column, 3(c), 3(f)
and 3(i), shows the solution to Equation (7) for output two, again for iiffevalues of

K.

Notice that, compared to (13), the full covariance malttpx has been replaced by the low rank co-
variancd(tuKlI},Ku,f in all entries except in the diagonal blocks correspondingsa,. Depend-
ing on our choice off, the inverse of the low rank approximation to the covariance is either dom-

inated by aO(DN?) term or aO(K2DN) term. Storage of the matrix ©(N?D) + O(NDK).
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Note that if we sefk = NV these reduce t®(N3D) andO(N2D) respectively. Rather neatly this
matches the computational complexity of modeling the data vithdependent Gaussian processes
across the outputs.

The functional form of (17) is almost identical to that of the partially indejeen training
conditional (PITC) approximation (Q@onero-Candela and Rasmussen, 2005) or the partially inde-
pendent conditional (PIC) approximation (Qanero-Candela and Rasmussen, 2005; Snelson and
Ghahramani, 2007), with the samples we retain from the latent function jmgwice same role as
the inducing valuesn the PITC or PICE This is perhaps not surprising given that the PI(T)C ap-
proximations are also derived by making conditional independence asusipA key difference
is that in PI(T)C it is not obvious which variables should be grouped tegetthen making these
conditional independence assumptions; here it is clear from the strudttire model that each of
the outputs should be grouped separately.

5.1.2 FULL INDEPENDENCE

We can be inspired by the analogy of our approach to the PI(T)C ajppatinn and consider a more
radical factorization of the likelihood term. In the fully independent trainiogditional (FITC) ap-
proximation or the fully independent conditional (FIC) approximation (Swmelnd Ghahramani,
2006, 2007), a factorization across the data points is assumed. Fot usthd lead to the follow-
ing expression for the conditional distribution of the output functionsrgthe inducing variables,

p(flu,Z,X,0) = Hprndyuzxm

d=1n=1

which can be expressed through (16) with= diag |:Kf’f — Kf,uK;ﬁKfTu} = |:Kf,f — Kf,uKJ,LIJKIu] o

M, withM =1p®Iy or simplyM =1 pn. The marginal likelihood, including the uncertainty about
the independent processes, is given by Equation (17) with the diafgsnafor D. Training with
this approximated likelihood reduces computational complexit® t&2DN) and the associated
storage taO (K DN).

5.1.3 DETERMINISTIC LIKELIHOOD

In Quifionero-Candela and Rasmussen (2005), the relationship betweernjiwetqu process ap-
proximation (Csdi and Opper, 2001; Seeger et al., 2003) and the FI(T)C and PI@p@ama-
tions is elucidated. They show that if, given the set of valugthe outputs are assumed to be
deterministic, the likelihood term of Equation (15) can be simplified as

p(flu,Z,X,0) = N (f|K¢uK 4u,0).

Marginalizing with respect to the latent function usip@|Z) = N (u|0,K, ) and including the
uncertainty about the independent processes, we obtain the margifhhblikeas

pY1Z.X.0) = [ plyluZ X.0)p(ulZ)du = A7 (YIOKruK i KT, + )

8. We refer to both PITC and PIC by PI(T)C.
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In other words, we can approximate the full covariakgg using the low rank approximation
Kf,uKJ}JKfTU. Using this new marginal likelihood to estimate the parameflersduces computa-
tional complexity toO(K2DN). The approximation obtained has similarities with the projected
latent variables (PLV) method also known as the projected processxappiamn (PPA) or the de-
terministic training conditional (DTC) approximation (C8and Opper, 2001; Seeger et al., 2003;
Quinonero-Candela and Rasmussen, 2005; Rasmussen and Williams, 2006).

5.1.4 ADDITIONAL INDEPENDENCEASSUMPTIONS

As mentioned before, we can consider different conditional indeperedessumptions for the like-
lihood term. One further assumption that is worth mentioning considers coraitimiependencies
across data points and dependence across outputs. This would leatbltothieg likelihood term

N
p(flu.2,X,0) = [ p(fnlu,Z,X.0),

n=1

wheref,, = [f1(X,), f2(Xn), ..., fp(X,)] . We can use again Equation (16) to express the likelihood.
In this case, though, the matrixis a partitioned matrix with blockB, o € R*V*" and each block
Dy, would be given a®, o = diag [Kr, 1, —Kr, Ky Kug, |. For cases in whicth > N, that

is, the number of outputs is greater than the number of data points, this apptiaa may be more
accurate than the one obtained with the partial independence assumpti@as€s wheré® < N

it may be less accurate, but faster to compute.

5.2 Posterior and Predictive Distributions

Combining the likelihood term for each approximation witlu|Z) using Bayes’ theorem, the pos-
terior distribution oveu is obtained as

p(uly,X,Z,0) =N (u[KyuA ' Kyi(D+ )y, KuuA ' Kuy), (18)

whereA = Ky y + KfTu(D + %)~ 'Kt andD follows a particular form according to the different
approximations: for partial independence it equals- blockdiag [Kr — Kt Ky Kys]; for full
independence it iB = diag Ky — Ky 4K {Kyt] and for the deterministic likelihood) = 0.

For computing the predictive distribution we have two options, either use gtenmr foru and
the approximated likelihoods or the posterior toand the likelihood of Equation (15), that cor-
responds to the likelihood of the model without any approximations. Therglifée between both
options is reflected in the covariance for the predictive distribution ighéro-Candela and Ras-
mussen (2005) proposed a taxonomy of different approximationsaingdo the type of likelihood
used for the predictive distribution, in the context of single output Gangsiacesses.

In this paper, we opt for the posterior forand the likelihood of the model without any approx-
imations. If we choose the exact likelihood term in Equation (15) (includinghtise term), the

9. Notice that if we work with the block diagonal matrid®g 4, we would need to invert the full matriz. However,
since the block®, 4 are diagonal matrices themselves, the inversion can be done efficisintty, or example, a
block Cholesky decomposition. Furthermore, we would be restricted tk with isotopic input spaces. Alterna-
tively, we could rearrange the elements of the makrigo that the blocks of the main diagonal are the covariances
associated with the vectofs.
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predictive distribution is expressed through the integration of the likelihood éealuated ak,,
with (18), giving

PO Y XX Z.0) = [ 01U 2. X, O)p(Uly. X.Z,0)du =N (v 1y, K. ).
where
py, =Ke, JATK{(D+3) Yy,
Ky, y. =Kt 1. — K oKgdKe g + K bATIK L+ 3,

For the single output case, the assumption of the deterministic likelihood is Emuiva the de-
terministic training conditional (DTC) approximation, the full independenga@pmation leads

to the fully independent training conditional (FITC) approximation {@@umero-Candela and Ras-
mussen, 2005) and the partial independence leads to the partially inéepéraining conditional
(PITC) approximation (Quiionero-Candela and Rasmussen, 2005). The similarities of our approx-
imations for multioutput GPs with respect to approximations presented ifloQero-Candela and
Rasmussen (2005) for single output GPs are such, that we find it ientdo follow the same
terminology and also refer to our approximations as DTC, FITC and PIp@apations for mul-
tioutput Gaussian processes.

5.3 Discussion: Model Selection in Approximated Models

The marginal likelihood approximation for the PITC, FITC and DTC variangsfisnction of both
the hyperparameters of the covariance function and the location of theimgdvariables. For es-
timation purposes, there seems to be a consensus in the GP community thabrympeters for
the covariance function can be obtained by maximization of the marginal likeliréar selecting
the inducing variables, though, there are different alternatives thahgainciple be used. Simpler
methods include fixing the inducing variables to be the same set of input data poigrouping
the input data using a clustering method likemeans and then use tli€ resulting vectors as in-
ducing variables. More sophisticated alternatives consider that thé setugzing variables must
be restricted to be a subset of the input data (@€aatl Opper, 2001; Williams and Seeger, 2001).
This set of methods require a criteria for choosing the optimal subset tifatihég points (Smola
and Bartlett, 2001; Seeger et al., 2003). Such approximations are tanyesip the sense that only
few data points are needed at the end for making predictions. Recerglgo8rand Ghahramani
(2006) suggested using the marginal likelihood not only for the optimizatitimediyperparameters
in the covariance function, but also for the optimization of the location of timekecing variables.
Although, using such procedure to find the optimal location of the inducingtsnmight look in
principle like an overwhelming optimization problem (inducing points usually appen-linearly
in the covariance function), in practice it has been shown that perfamsaciose to the full GP
model can be obtained in a fraction of the time that it takes to train the full modethalnre-
spect, the inducing points that are finally found are optimal in the same optimatiég skat the
hyperparameters of the covariance function.

Essentially, it would be possible to use any of the methods just mentioned tg®iber with
the multiple-output GP regression models presented in Sections 2.1, 2.1.2 dndis paper,
though, we follow Snelson and Ghahramani (2006) and optimize the locatidins inducing vari-
ables using the approximated marginal likelihoods and leave the compariseeebehe different
model selection methods for inducing variables for future work.
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In appendix A we include the derivatives of the marginal likelihood wrt thérices Ky ¢, Ky ¢
andKy y.

6. Experimental Evaluation

In this section we present results of applying the approximations in exara peediction, pol-
lutant metal prediction and the prediction of gene expression behavior émexmgetwork. When
possible, we first compare the convolved multiple output GP method againstttimsic model

of coregionalization and the semiparametric latent factor model. Then, weacertige different
approximations in terms of accuracy and training times. First, though, we ilestr@performance
of the approximation methods in a toy examfle.

6.1 A Toy Example

For the toy experiment, we employ the kernel constructed as an exampletianS&c The toy
problem consists ab = 4 outputs, one latent functio® = 1 andR, = 1 and one input dimension.
The training data was sampled from the full GP with the following paramefgrs= Sz 1 = 1,
S31=2541=>5, P11 = FPo1 =50, P31 =300,FP; =200 for the outputs and\; = 100 for the
latent function. For the independent processegx), we simply added white noise separately to
each output so we have varianegs= o5 = 0.0125, 0 = 1.2 ando? = 1. We generatéV = 500
observation points for each output and 268 observation points (per output) for training the full
and the approximated multiple output GP and the remaiB@igobservation points for testing. We
repeated the same experiment setup ten times and compute the standardizeduasagrror and
the mean standardized log loss. For the approximations w&use&0 inducing inputs. We sought
the kernel parameters and the positions of the inducing inputs through maxjntlienmarginal
likelihood using a scaled conjugate gradient algorithm. Initially the inducingtinpte equally
spaced between the interyall, 1].

Figure 4 shows the training result of one of the ten repetitions. The praticsioown corre-
spond to the full GP in Figure 4(a), the DTC approximation in Figure 4(b)IFtRE€ approximation
in Figure 4(c) and the PITC approximation in Figure 4(d).

Tables 3 and 4 show the average prediction results over the test set3 Eloles that the SMSE
of the approximations is similar to the one obtained with the full GP. Howeveeg #rerimportant
differences in the values of the MSLL shown in Table 4. DTC offers thestygerformance. It gets
better for FITC and PITC since they offer a more precise approximatioretiuthcovariance.

The training times for iteration of each model ar@7 secs for the full GR).20 secs for DTC,
0.41 for FITC and0.59 for the PITC, on average.

As we have mentioned before, one important feature of multiple output picadis that we can
exploit correlations between outputs to predict missing observations. deausimple example to
illustrate this point. We removed a portion of one output betwiedng, 0] from the training data in
the experiment before (as shown in Figure 5) and train the differentisteredict the behavior of
y4(x) for the missing information. The predictions shown correspond to the fulhGiRyure 5(a),
an independent GP in Figure 5(b), the DTC approximation in Figure 5J;IthC approximation in

10. Code to run all simulations in this section is availablehtatp:// st af f ww. dcs. shef . ac. uk/ peopl e/ N.
Law ence/ nul ti gp/ .

1479



ALVAREZ AND LAWRENCE

X X X XX X %

I I I I I I I I I I
-0.8 -06 -04 -0.2 0 02 04 06 08 1
x

(b) y4(z) using the DTC approximation

I I I I I I I I I I I !
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1

T
(a) y4(x) using the full GP

- X XXX X X X X XXX XX X XX XXXX X X X X X 4

10X X XX X X X X X X X X X X X XX X X X ¥

I . . . . . . . . . . . 1 . 1 . 1 . 1 . . .
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06 08 1

(¢) ya(zx) using theJIL:ITC approximation (d) y4(z) using theJ;DITC approximation

Figure 4: Predictive mean and variance using the full multi-output GP anapjmeximations for
output 4. The solid line corresponds to the predictive mean, the shagiexh ieorre-
sponds ta2 standard deviations of the prediction. The dashed line corresponds to the
ground truth signal, that is, the sample from the full GP model without nois¢hdse
plots the predictive mean overlaps almost exactly with the ground truth. Tisead®
the noisy training points. The crosses in Figures 4(b), 4(c) and 4{d@smond to the
locations of the inducing inputs after convergence. Notice that the DT@x=ipmation
in Figure 4(b) captures the predictive mean correctly, but fails in remmiod the correct
predictive variance.

Method | SMSEy;(x) | SMSEys(x) | SMSEys(x) | SMSEy,(x)
FullGP| 1.064+0.08 | 0.994+0.06 | 1.10£0.09 | 1.054+0.09
DTC 1.06£0.08 | 0.99+0.06 | 1.12£0.09 | 1.05+0.09
FITC 1.06£0.08 | 0.99+0.06 | 1.10£0.08 | 1.05+0.08
PITC 1.06£0.08 | 0.99+0.06 | 1.10£0.09 | 1.05+0.09

Table 3: Standardized mean square error (SMSE) for the toy problenttevtest set. All numbers
are to be multiplied byi0~2. The experiment was repeated ten times. Table includes the
value of one standard deviation over the ten repetitions.

Figure 5(d) and the PITC approximation in Figure 5(e). The training of pipecximation methods
is done in the same way than in the experiment before.
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Method | MSLL y;(z) | MSLL y2(z) | MSLL y3(x) | MSLL y4(x)
FullGP | —2.274+0.04 | —2.304+0.03 | —2.25+0.04 | —2.27+0.05
DTC —0.98+0.18 | —=0.98£0.18 | —1.25+0.16 | —1.25+0.16
FITC | —2.26£0.04 | —2.29£0.03 | —2.16+0.04 | —2.23£0.05
PITC | —2.27+£0.04 | —2.30£0.03 | —2.234+0.04 | —2.26£0.05

Table 4: Mean standardized log loss (MSLL) for the toy problem over thiestt. More negative
values of MSLL indicate better models. The experiment was repeated ten tifabke
includes the value of one standard deviation over the ten repetitions.

Due to the strong dependencies between the signals, our model is ablaute ¢hpe correlations
and predicts accurately the missing information.

6.2 Exam Score Prediction

In the first experiment with real data that we consider, the goal is to prtb@iexam score obtained
by a particular student belonging to a particular school. The data commastHi® Inner London
Education Authority (ILEA)!! It consists of examination records from 139 secondary schools in
years 1985, 1986 and 1987. It is a randd6¥ sample with 15362 students. The input space
consists of four features related to each student (year in which eatdnstiook the exam, gender,
performance in a verbal reasoning (VR) tésind ethnic group) and four features related to each
school (percentage of students eligible for free school meals, gageeof students in VR band
one, school gender and school denomination). From the multiple outputgiaiew, each school
represents one output and the exam score of each student a paitistdatiation of that output or
D =139.

We follow the same preprocessing steps employed in Bonilla et al. (2008) ofilly features
used are the student-dependent ones, which are categorial varigblds of them is transformed
to a binary representation. For example, the possible values that theleasa of the exam can
take are 1985, 1986 or 1987 and are representdd@d10 or 001. The transformation is also
applied to the variables gender (two binary variables), VR band (foarpivariables) and ethnic
group (eleven binary variables), ending up with an input space20itimensions. The categorial
nature of the data restricts the input spacéte= 202 unique input feature vectors. However, two
students represented by the same input vegtand belonging both to the same schagkan obtain
different exam scores. To reduce this noise in the data, we take the rhéenadservations that,
within a school, share the same input vector and use a simple heteroskadasimodel in which
the variance for each of these means is divided by the number of obeasmsed to compute 1
The performance measure employed is the percentage of explainedceadieiined as the total
variance of the data minus the sum-squared error on the test set aeatpgecof the total data
variance. It can be seen as the percentage version of the coeftitiéatermination between the

11. This data is available attp://www. cnm bristol.ac.uk/learning-training/nultilevel-m support/
dat asets.shtm .

12. Performance in the verbal reasoning test was divided in thressbBand 1 corresponds to the highgs¥, band 2
corresponds to the ne%0% and band 3 the bottor26% (Nuttall et al., 1989; Goldstein, 1991).

13. Different noise models can be used. However, we employed this@that we can compare directly to the results
presented in Bonilla et al. (2008).
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Figure 5: Predictive mean and variance using the full multi-output GP, theosimations and
an independent GP for output 4 with a range of missing observations in tdrdh
[—0.8,0.0]. The solid line corresponds to the mean predictive, the shaded region cor
responds t® standard deviations away from the mean and the dash line is the actual
value of the signal without noise. The dots are the noisy training points. ciidsses
in Figures 5(c), 5(d) and 5(e) correspond to the locations of the ingunjputs after
convergence.

test targets and the predictions. The performance measure is computenl fegpetitions withy5%
of the data in the training set aRd% of the data in the testing set.

We first compare different methods without including the efficient agprattons. These meth-
ods are independent GPs, multi-task GPs (Bonilla et al., 2008), the intriaggégionalization
model, the semiparametric latent factor model and convolved multiple output &€sults are
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Method Explained variance%)
Independent GPs (Bonilla et al., 2008) 31.12+1.33
Multi-task GP (Nystom, R; = 2) (Bonilla et al., 2008) 36.16 +0.99
Intrinsic coregionalization modeR; = 1) 52.54+2.46
Intrinsic coregionalization modeR; = 2) 51.94+1.84
Intrinsic coregionalization modeR; = 5) 45.31+£1.63
Semiparametric latent factor modé)} & 2) 51.824+1.93
Semiparametric latent factor modé) & 5) 44.87+£1.15
Convolved Multiple Outputs GP$X=1, R, = 1) 53.84+2.01

Table 5: Average percentage of explained variance and standaedioleor the exam score pre-
diction on the ILEA data set computed over 10 repetitions. The indepei@enesult
and the multi-task GP result were taken from Bonilla et al. (2008). The \wlé® in the
multi-task GP and in the intrinsic coregionalization model indicates the rank of ttrexma
B in Equation (6). The value @ in the semiparametric latent factor model indicates the
number of latent functions. The value Bf; in the convolved multiple output GP refers to
the number of latent functions that share the same number of parame&Es)(saion 8).
Refer to the text for more details.

presented in Table 5. The results for the independent GPs and the mulBRaskere taken from
Bonilla et al. (2008). The multi-task GP result uses a maisixvith rank R, = 2. For the intrinsic
model of coregionalization, we use an incomplete Cholesky decompoBiii@nEET, and include
results for different values of the rark;. The basic covarianck,(x,x’) in the ICM is assumed

to follow a Gaussian form. For the semiparametric latent factor model, all the fatestions use
covariance functions with Gaussian forms. For SLFM, we include resuitdifferent values of
the number of latent functiong)X= 2 and@ = 5). Note that SLFM with) = 1 is equivalent to
ICM with R; = 1. For the convolved multiple output covariance result, the kernel employesd w
introduced in Section 3. For all the models we estimate the parameters maximizingethe bki
through scaled conjugate gradient and run the optimization algorithm for smaxof 1000 iter-
ations. Table 5 shows that all methods outperform the independent GEa.tltough multi-task
GPs withR; = 2 and ICM with R; = 2 are equivalent methods, the difference of results might be
explained because the multi-task GP method uses a dysipproximation for the matrik; in
Equation (6). Results for ICM wittR; = 1, SLFM with @) = 2 and the convolved covariance are
similar within the standard deviations. The convolved GP was able to recavbett performance
using only one latent functiod{ = 1). This data set was also employed to evaluate the performance
of the multitask kernels in Evgeniou and Pontil (2004). The best residepted in this work was
34.37+0.3. However, due to the averaging of the observations that we employeditiernot fair

to compare directly against those results.

We present next the results of using the efficient approximations foxdra echool prediction
example. In Figure 6, we have included the results of Table 5 alongsidegshks of using DTC,
FITC and PITC fors, 20 and50 inducing points. The initial positions of the inducing points are
selected using the-meansalgorithm with the training data points as inputs to the algorithm. The
positions of these points are optimized in a scaled conjugate gradient prededether with the
parameters of the model. We notice that using the approximations we obtain siemfiampances
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Figure 6: Mean and standard deviation of the percentage of explainede®for exam score pre-
diction results on the ILEA data set. The experiment was repeated ten timeke In
bottom of the figure, IND stands for independent GPs, MT stands for naski-GPs,
ICR; stands for intrinsic coregionalization model with raRk, SQ stands for semipara-
metric latent factor model witld) latent functions, CM1 stands for convolved multiple
output covariance witld) = 1 and R, = 1 and DK, FK, PK stands for DTC, FITC and
PITC with K inducing points, respectively. The independent GPs and multi-task GPs
results were obtained from Bonilla et al. (2008).

to the full models with as few a$inducing points. FITC and PITC slightly outperform the DTC
method, although results are within the standard deviation.

Table 6 shows the training times for the different methbd€learly, the efficient approxima-
tions are faster than the full methods. This is particularly true when comptmingaining times
per iteration (second column). The approximations were run i@’ iterations, but the results for
100 iterations were pretty much the same. For the ICM and SLFM results, definiteby timan100
iterations were needed. WittD00 iterations DTC with5 inducing points offers a speed up factor
of 24 times over the ICM withR; = 1 and a speed up factor 87 over the full convolved multiple
output method?® On the other hand, with000 iterations, PITC withs0 inducing points offers a
speed up 09.8 over ICM with R; = 1 and a speed up &b over the full convolved GP method.

14. All experiments with real data were run in workstations Witsp GHz, AMD Opteron’s and up té6 GHz of RAM.
Only one processor was used on each run.

15. The speed up factor is computed as the relation between the slowednaettthe faster method, using the training
times of the third column in Table 6.
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Method Time per iter. (secs) Training time (secs
ICM(R;1=1) 83.60 16889
ICM (R; =2) 85.61 47650
ICM (R; =5) 88.02 64535
SLFM (Q =2) 97.00 58564
SLFM (Q = 5) 130.23 130234
CMOGP @ =1,R,=1) 95.55 95510
DTC5@=1,R,=1) 0.69 694
DTC20@=1,R,=1) 0.80 804
DTC50@=1,R,=1) 1.04 1046
FITC5@=1,R,=1) 0.94 947
FITC20Q =1, R,=1) 1.02 1026
FITCS0@=1,R,=1) 1.27 1270
PTC5@=1,R,=1) 1.13 1132
PITC20Q=1,R,=1) 1.24 1248
PITC50Q =1, R,=1) 1.71 1718

Table 6: Training times for the exam score prediction example. In the tabl€@®Ristands for
convolved multiple outputs GP. The first column indicates the training time per iteratio
of each method while the second column indicates the total training time. All the msmbe
presented are average results over the ten repetitions.

As mentioned before, the approximations reach similar performances 1&iriterations, in-
creasing the speed up factors by ten.

To summarize this example, we have shown that the convolved multiple outpuf&ssasim-
ilar performance to the ICM and SLFM methods. We also showed that thieaffapproximations
can offer similar performances to the full methods and by a fraction of thairitig times. More-
over, this example involved a relatively high-input high-output dimensidatd set, for which the
convolved covariance has not been used before in the literature.

6.3 Heavy Metals in the Swiss Jura

The second example with real data that we consider is the prediction ofribertoation of several
metal pollutants in a region of the Swiss Jura. This is a relatively low-inpuotput dimensional
data set that we use to illustrate the ability of the PITC approximation to reactetfiemance of
the full GP if the enough amount of inducing points is used. The data caisistasurements of
concentrations of several heavy metals collected in the topsoilldfsakm? region of the Swiss
Jura. The data is divided into a prediction s&Ylocations) and a validation set(0 locations)®
In a typical situation, referred to as undersampled or heterotopic cde®, expensive measure-
ments of the attribute of interest are supplemented by more abundant daierelated attributes
that are cheaper to sample. We follow the experiment described in Gtoya@87, p. 248, 249)
in which aprimary variable(cadmium) at prediction locations in conjunction with sogeeondary
variables(nickel and zinc) at prediction and validation locations, are employed tigiréhe con-

16. This data is available att p: // www. ai - geostats. org/ .
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Figure 7: Cadmium concentration for the Swiss Jura example. The bluescigfler to the pre-
diction set (training data for cadmium) and the red squares are the cataargrfor the
validation set (testing data for cadmium).

centration of the primary variable at validation locations. Figure 7 showstimicim concentration
for the particular set of input locations of the prediction set (blue cirdesl)the particular set of
input locations of the validation set (red squares). As in the exam scedicpon example, we
first compare the performances of the full GP methods and later we indtlecperformances
of the approximations. We compare results of independent GPs, ordiokriging, the intrinsic
coregionalization model, the semiparametric latent factor model and the cedvalitiple output
covariance. For independent GPs we use Gaussian covariancedfgrénd length-scales for each
input dimension. Before describing the particular setup for the other metippasaring in Table 7,
we first say a few lines about the cokriging method. The interested readdind details in several
geostatistics books (see Cressie, 1993; Goovaerts, 1997; Wagkkr2@03).

Cokriging is the generalization of kriging to multiple outputs. It is an unbiaseadiipeedictor
that minimizes the error variance between the data and the predicted valifiieserid cokriging
methods assume that each output can be decomposed as a sum of & cesmhazaent with zero
mean and non-zero covariance function and a trend component. Téeedde between the cokrig-
ing estimators is based on the assumed model for the trend component. While I sikiging
the mean is assumed to be constant and known, in ordinary cokriging itisyadso be constant,
but unknown, leading to a different set of equations for the predittichever cokriging method
is used implies using the values of the covariance for the residual comparnéetequations for
the prediction, making explicit the need for a positive semidefinite covarifamotion. In the geo-
statistics literature, the usual practice is to use the linear model of coregatiwiizo construct a
valid covariance function for the residual component and then usefahg cokriging estimators
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Method Average Mean absolute error
Independent GPs 0.5739+0.0003
Ordinary cokriging (p. 248, 249 Goovaerts, 1997) 0.51
Intrinsic coregionalization modeR; = 2) 0.4608 £0.0025
Semiparametric latent factor modé) & 2) 0.4578 +0.0025
Convolved Multiple Outputs GP$X=2, R, =1) 0.4552+0.0013

Table 7: Average mean absolute error and standard deviation for fingdilbe concentration of
metal cadmium with the full dependent GP model and different forms fordkarance
function. The result for ordinary cokriging was obtained from Goowaé. 248, 249
1997) and it is explained in the text. For the intrinsic coregionalization modkize
semiparametric latent factor model we use a Gaussian covariance witterliffength-
scales along each input dimension. For the convolved multiple output covariave use
the covariance described in Section 3. See the text for more details.

for making predictions. A common algorithm to fit the linear model of coregioatdin minimizes
some error measure between a sample or experimental covariance matimedlbtam the data
and the particular matrix obtained from the form chosen for the linear mddsregionalization
(Goulard and Voltz, 1992).

Let us go back to the results shown in Table 7. The result that appeardinary cokriging
was obtained with the ordinary cokriging predictor and a LMC with= 3 and R, = 3 (p. 119
Goovaerts, 1997). Two of the basic covariankg, x’) have a particular polynomial form, while
the other corresponds to a bias terfrEor the prediction stage, only the closéétdata locations
in the primary and secondary variables are employed. Also in Table 7,esemtrresults using the
intrinsic coregionalization with a rank twa?{ = 2) for B, the semiparametric latent factor model
with two latent functions @ = 2) and the convolved multiple output covariance with two latent
functions (7 = 2 and R, = 1). The choice of eitheR?; = 2 or Q = 2 for the methods was due to
the cokriging setup for which two polynomial-type covariances were u$kd.basic covariances
for ICM and SLFM have a Gaussian form with different length scales ah eaput dimension.
For the CMOC, we employ the covariance from Section 3. Parameters fepéndent GPs, ICM,
SLFM and CMOC are learned maximizing the marginal likelihood in Equation (s3)g a scaled
conjugate gradient procedure. We run the optimization algorithm for @ptdaerations. Since the
prediction and location sets are fixed, we repeat the experiment ten tinregirdpghe initial values
of the parameters.

Table 7 shows that all methods, including ordinary cokriging, outperfoihependent GPs.
ICM, SLFM and CMOC outperform cokriging. Results for SLFM and CM@&e similar, although
CMOC outperformed ICM in every trial of the ten repetitions. The bettergoarnce for the
SLFM and the CMOC over the ICM would indicate the need for a second |&ection with
different parameters to the first one. Using a non-instantaneousaabpnaay slightly increase the
performance. However, results overlap within one standard deviation.

17. In fact, the linear model of coregionalization employed is constructid) variograms as basic tools that account for
the dependencies in the input space. Variograms and covariand®fsare related tools used in the geostatistics
literature to describe dependencies between variables. A precise defofitite concept of variogram is out of the
scope of this paper.
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Figure 8: Average mean absolute error and standard deviation facfoadf the pollutant metal
cadmium. The experiment was repeated ten times. In the bottom of the figur& B,
PK stands for DTC, FITC and PITC witR inducing values, CM2 stands for convolved
multiple output covariance with) = 2 and R, = 1, S2 stands for semiparametric latent
factor model with) = 2 latent functions, IC2 stands for intrinsic coregionalization model
with rank R; = 2, CO stands for the cokriging method explained in the text and IND
stands for independent GPs.

We next include the performances for the efficient approximations. eoretbults of the ap-
proximations, ak-meansprocedure is employed first to find the initial locations of the inducing
values and then these locations are optimized in the same optimization proceddr®uthe pa-
rameters. Each experiment is repeated ten times changing the initial valuepaf#imeeters. Figure
8 shows the results of prediction for cadmium for the different approximatath varying number
of inducing points (this is, different values &f). We also include in the figure the results for the
convolved multiple output GP (CM2), semiparametric latent factor model {82y)sic coregion-
alization model (IC2), ordinary cokriging (CO) and independent GRB]!

Notice that DTC and PITC outperform cokriging and independent GRafpvalue of. Also
for K =200 and K = 359, DTC and PITC reach the performance of the full GP methods, either
in average (forKK = 200) or within one standard deviation (fdf = 359). K = 200 might be a
considerable amount of inducing points when compared to the total amoungutftraining data
(359 for nickel and zinc an@59 for cadmium). The need of that amount of inducing points could
be explained due to the high variability of the data: mean values for the doatien of pollutant
metals ard .30, 20.01 and75.88 for cadmium, nickel and zinc, while standard deviations(a$e,
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Method | Time per iter. (secs) Training time (secs
ICM 3.84 507
SLFM 4.14 792
CMOGP 4.47 784
DTC 50 0.28 20
DTC 100 0.80 64
DTC 200 1.95 185
DTC 359 4.24 551
FITC 50 0.81 69
FITC 100 1.14 159
FITC 200 2.12 244
FITC 359 5.76 691
PITC 50 1.78 268
PITC 100 2.46 320
PITC 200 4.06 385
PITC 359 7.94 1191

Table 8: Training times for the prediction of the cadmium pollutant metal. In the,t&NEOGP
stands for convolved multiple outputs GP. The first column indicates the trainiegoer
iteration of each method and the second column indicates the total training timeeAll th
numbers presented are average results over the ten repetitions.

8.09 and30.81 giving coefficients of variation 0f0.00%, 40.42% and40.60%.18 Variability in
cadmium can be observed intuitively from Figure 7. Notice also that FITiBesiorms cokriging

and independent GPs fdt = 200 and K = 359. The figure also shows that DTC outperforms
FITC for all values ofi. However, the measure of performance employed, the mean absolute erro
does not take into account the predictive variance of the approximatedl@ihg as measures the
standardized mean absolute error and the mean standardized log-liketimattke into account
the predictive variance, FITC outperforms DTC: DTC in average hasShlMof 0.4544 and a
SMSE 0f0.9594 while FITC in average has a MSLL 6f0.0637 with a SMSE 0f0.9102. PITC in
average has a MSLL o6f0.1226 and SMSH).7740. Averages were taken over the different values
of K.

Finally, Table 8 shows the timing comparisons for the pollutant example. Thégaimes for
DTC with 200 inducing points and PITC witB00 inducing points, which are the first methods that
reach the performance of the full GP, are less than any of the times of lti@Hunethods. For
DTC with 200 inducing points, the speed up factor is abd when compared to ICM antl23
when compared to CMOGP. For PITC wi2h0 inducing points, the speed up factorli$1 when
compared to ICM an@.03 when compared to CMOGP. Notice also that all methods are less or
equally expensive than the different full GP variants, except folCPNith 359 inducing variables.
For this case, however, 4 out of the 10 repetitions reached the aymegemance in 00 iterations,
given a total training time of approximatef94.12 secs., atime much closer to CMOGP and SLFM.

18. The coefficient of variation is defined as the standard deviationtbeemean. It could be interpreted also as the
inverse of the signal-to-noise ratio.
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6.4 Regression Over Gene Expression Data

We now present a third example with real data. This time we only include therpehces for

the approximations. The goal is to do multiple output regression over ggmession data. The
setup was described in Section 4. The difference with that example, is steddhof using) = 50
outputs, here we usP = 1000 outputs. We do multiple output regression using DTC, FITC and
PITC fixing the number of inducing points t§ = 8 equally spaced in the interval0.5,11.5].

Since it is a 1-dimensional input data set, we do not optimize the location of theimgdpoints,

but fix them to the equally spaced initial positions. As for the full GP model imgta of Section

4, we makeR = 1 andR, = 1. Again we use scaled conjugate gradient to find the parameters that
maximize the marginal likelihood in each approximation. The optimization proceduossfor 100
iterations.

Train set| Testset | Method | Average SMSE| Average MSLL | Average TTPI
DTC | 0.5421+£0.0085 | —0.24934+0.0183 2.04

Replica 1| Replica2| FITC | 0.5469+0.0125 | —0.312440.0200 2.31
PITC | 0.5537+0.0136 | —0.3162 4 0.0206 2.59
DTC | 0.5454+£0.0173 0.6499+£0.7961 2.10

Replica 2| Replical| FITC | 0.5565+0.0425 | —0.3024 +0.0294 2.32
PITC | 0.5713+£0.0794 | —0.3128 +0.0138 2.58

Table 9: Standardized mean square error (SMSE), mean standardjzesdddMSLL) and training
time per iteration (TTPI) for the gene expression datalfifl0 outputs using the efficient
approximations for the convolved multiple output GP. The experiment wasategp ten
times with a different set of000 genes each time. Table includes the value of one standard
deviation over the ten repetitions.

Table 9 shows the results of applying the approximations in terms of SMSE 8hdl f¢olumns
4 and 5). DTC and FITC slightly outperforms PITC in terms of SMSE, but®Pdéttperforms both
DTC and FITC in terms of MSLL. This pattern repeats itself when the trainirig dames from
replica 1 or from replica 2.

In Figure 9 we show the performance of the approximations over the sangetves of Figure

1, these are FBgn0038617 and FBgn0032216. The non-instantamexing effect of the model

can still be observed. Performances for these particular genes atiglhigd in Table 10. Notice
that the performances are between the actual performances for theabthe CMOC appearing

in Table 2. We include these figures only for illustrative purposes, sintie éxperiments use a
different number of outputs. Figures 1 and 2 were obtained as part kipfawutput regression
problem of D = 50 outputs, while Figures 9 and 10 were obtained in a multiple output regression
problem withD = 1000 outputs.

In Figure 10, we replicate the same exercise for the genes FBgn0010&EBgn0004907, that
also appeared in Figure 2. Performances for DTC, FITC and PITGhemen in Table 10 (last six
rows), which compare favourably with the performances for the linearehmfdcoregionalization
in Table 2 and close to the performances for the CMOC. In average, 8liffierforms the other
methods for the specific set of genes in both figures above.
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Figure 9: Predictive mean and variance for genes FBgn003861t#¢firsand FBgn0032216 (sec-
ond row) using the different approximations. In the first column DTC in fagd(a)
and 9(d), second column FITC in Figures 9(b) and 9(e), and in the tbiwim PITC in
Figures 9(c) and 9(f). The training data comes from replica 1 and thededxita from
replica 2. The solid line corresponds to the predictive mean, the shagiea i@orre-
sponds to 2 standard deviations of the prediction. Performances in tef&dS% and
MSLL are given in the title of each figure. The adjectives “short” and glogiven to
the length-scales in the captions of each figure, must be understoodléiieer¢o each
other. The crosses in the bottom of each figure indicate the positions ofdheing
points, which remain fixed during the training procedure.

With respect to the training times, the Table 9 in the column 6 shows the averagegtime
per iteration (average TTPI) for each approximation. To have an ideheo$aving times, one
iteration of the full GP model for the sam®00 genes would take arountb95.3 seconds. This
gives a speed up factor 6780, approximately.

7. Conclusions

In this paper we first presented a review of different alternativesrfoltiple output regression
grouped under a similar framework known as the linear model of corégatian. Then we
illustrated how the linear model of coregionalization can be interpreted asstanianeous mix-
ing of latent functions, in contrast to a convolved multiple output framewatiere the mixing
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FBgn0010531 MSLL -1.0171 SMSE 0.077407 FBgn0010531 MSLL -0.74235 SMSE 0.1707 FBgn0010531 MSLL -0.98993 SMSE 0.087275
1

=
=N

I
[ )

o
©
o
©

o
o
o
=)

o ¢
)
o ¢
N

Gene expression level
o
S

Gene expression level
o
S

Gene expression level

I
o
N

|
o
N

x
x
x
x
x
x

|
I
IS
I
o
IS

0 2 4 . 6 10 4 . 6 10 0 4 . 6 10
Time Time Time
(a) DTC, short length scale (b) FITC, short length scale (c) PITC, short length scale
FBgn0004907 MSLL —0.21923 SMSE 0.60572 FBgn0004907 MSLL —0.84269 SMSE 0.15124 FBgn0004907 MSLL -0.71762 SMSE 0.24687

o
w

Gene expression level
o
Gene expression level

o
N

|
o
o

1
o
N

0 8 10 T oo 8 10 To

4 _ 6 4 _ 6
Time Time

(d) DTC, long length scale (e) FITC, long length scale (f) PITC, long length scale

Figure 10: Predictive mean and variance for genes FBgn0010531 rfiv) and FBgn0004907
(second row) using the different approximations. In the first column DTEigures
10(a) and 10(d), second column FITC in Figures 10(b) and 10(d)nethe third column
PITC in Figures 10(c) and 10(f). The training data comes now from r@@iand the
testing data from replica 1. The solid line corresponds to the predictive, tieashaded
region corresponds to 2 standard deviations of the prediction. Periocaan terms of
SMSE and MSLL are given in the title of each figure. The crosses in therbaifo
each figure indicate the positions of the inducing points, which remain fixedgltihe
training procedure.

is not necessarily instantaneous. Experimental results showed thatémsywith a presence of
some dynamics (for example, the gene expression data set), having tiisred@lement of non-
instantaneous mixing can lead to simpler explanations of the data. While, in syistentsch the
dynamics is not so obvious (for example, the exam score prediction datéhsebenefit of using
the non-instantaneous mixing was less noticeable.

We have also presented different efficient approximations for multipleub@p's, in the con-
text of convolution processes. Using these approximations we can eapwircorrelated infor-
mation among outputs while reducing the amount of computational load for poedend op-
timization purposes. The computational complexity for the DTC and the FITCoajppations
is O(NDK?). The reduction in computational complexity for the PITC approximation is from
O(N3D3?)to O(N3D). This matches the computational complexity for modeling with independent
GPs. However, as we have seen, the predictive power of indepeGmnis lower. Also, since
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Testreplica| Testgenes | Method| SMSE | MSLL
DTC | 0.2162 | —0.7015
FBgn0038617] FITC | 0.2240 | —0.6886
PITC | 0.1625 | —0.8600

Replica 2 DTC | 0.1845 | —0.3078

FBgn0032216 FITC | 0.3639 | —0.5086

PITC | 0.1613 | —0.8368

DTC | 0.0774 | —1.0171

FBgn0010531 FITC | 0.1707 | —0.7423

. PITC | 0.0872 | —0.9899
Replica 1

DTC | 0.6057 | —0.2192
FBgn0004907| FITC | 0.1512 | —0.8426
PITC | 0.2468 | —0.7176

Table 10: Standardized mean square error (SMSE) and mean starddedjzoss (MSLL) for the
genes in Figures 9 and 10 for DTC, FITC and PITC wikh= 8. Genes FBgn0038617
and FBgn0010531 have a shorter length-scale when compared to ERge8032216
and FBgn0004907.

PITC makes a better approximation of the likelihood, the variance of the resulsially lower
and approaches closely to the performance of the full GP, when cochfm2TC and FITC. As a
byproduct of seeing the linear model of coregionalization as a particasar af the convolved GPs,
we can extend all the approximations to work under the linear model oficoi@gation regime.

With an appropriate selection of the kernel smoothing function we have amedhdvay to
generate different forms for the covariance function in the multiple outgupséiMe showed an
example with Gaussian kernels, for which a suitable standardization of thelkean be made,
leading to competitive results in high-dimensional input regression probbsregen in the school
exam score prediction problem. The authors are not aware of oth&rimahich this convolution
process framework has been applied in problems with high input dimensions.

As shown with the Swiss Jura experiment, we might need a considerable tafdnducing
points compared to the amount of training data, when doing regressiorvemenoisy outputs.
This agrees to some extent with our intuition in Section 5, where we conditiomedattdity of
the approximations to the smoothness of the latent functions. However favéns case, we
can obtain the same performances in a fraction of the time that takes to trainGPfulloreover,
the approximations allow multiple output regression over a large amount ofteufpiscenarios
where training a full GP become extremely expensive. We showed an &xafripis type with the
multiple output regression over the gene expression data.

Linear dynamical systems responses can be expressed as a convodfti@en the impulse
response of the system with some input function. This convolution appiean equivalent way of
representing the behavior of the system through a linear differentiatiequ For systems involving
high amounts of coupled differential equatio%@rez etal., 2009Alvarez etal., 2011a; Honkela
et al., 2010), the approach presented here is a reasonable way inirghtgpproximate solutions
and incorporating prior domain knowledge to the model.
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Recently, Titsias (2009) highlighted how optimizing inducing variables canrbblgmatic
as they introduce many hyperparameters in the likelihood term. Titsias (28@8)ged a varia-
tional method with an associated lower bound where inducing variablesaational parameters
Following the ideas presented here, we can combine easily the method of ([BG0&83 and propose
a lower bound for the multiple output case. We have followed a first attempatrdifection and
some results have been presenteélirarez et al. (2010).

Acknowledgments

The authors would like to thank Edwin Bonilla for his valuable feedback witheet to the exam
score prediction example. The work has benefited greatly from disaisssiith David Luengo,
Michalis Titsias, and Magnus Rattray. We also thank to three anonymouwegsitor their helpful
comments. The authors are very grateful for support from a GoogiedReh Award “Mecha-
nistically Inspired Convolution Processes for Learning” and the EPSR@QtGo EP/FO05687/1
“Gaussian Processes for Systems Identification with Applications in Systertogig’. MA also
acknowledges the support from the Overseas Research Studemt 8alzeme (ORSAS), from the
School of Computer Science of the University of Manchester and frerJttiversidad Tecnélica
de Pereira, Colombia.

Appendix A. Derivatives for the Approximations

In this appendix, we present the derivatives needed to apply the gratk¢hods in the optimization
routines. We present the first order derivatives of the log-likelihodt vespect taKs s, Kt and
Kuu. These derivatives can be combined with the derivatives;ef K, s andK y with respect to
6 and employ these expressions in a gradient-like optimization procedure.

We follow the notation of Brookes (2005) obtaining similar results to Lawr¢@687). This
notation allows us to apply the chain rule for matrix derivation in a straightdadvmanner. Let's
defineG: = vec G, wherevec is the vectorization operator over the mat@x For a functionl the

equivalence betweef§ and 2% is given throughs = ((2%) :)T. The obtain the hyperparame-

ters, we maximize the following log-likelihood function,
1 -1 1 -1 1T
£(Z,6) o< — log D+ KK g K| -  trace [(D+Kf,uKu7uKu,f) vy } (19)

where we have redefindd asD = [Kf7f — Kf7uKu_jKu7f} ®M + X, to keep a simpler notation.
Using the matrix inversion lemma and its equivalent form for determinantsession (19) can be
written as

1 1 1 1
L£(Z,0) o<510g|Ku,u| — 510g|A] - §log]D| — itrace [D_lyy—r}

1
+ itrace |:D_1Kf7uA_1Ku,fD_1ny} :

We can find2s and2% applying the chain rule té obtaining expressions fcg%f, 6%,” an a?ﬁu
and combining those with the derivatives of the covariancegwarndZ,

oL - E)EA OA: 0D: 8£D oD: E)EA OA: 8£G

9G: ~ OA: 9D: 9G: | aD: 9G: [(‘9A: 9G: T 9G: } o6k, (20)
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where the subindex idg stands for those terms @f which depend oiE, G is eitherKs¢, K ¢ or
Kuu andicr is zero ifG is equal toK¢ s and one in other case. Next we present expressions for
each partial derivative

oL 1 OA: _ _ oL 1 _ o T
T;:—§(C3)T7 ﬁ:_(Ku,fD '@KyD™), TDI:DZ_i((D 'HD 1))
oD: =dia (M) ﬂ:_dia (M) [(|®K K_l)—i-(K K_1®|)T ]
OKi ! SR oKy g\ fufvuu fuluu D/,

8D . _ _ 8A _ B
Ky :dlag(M:)(Kf,uKu,a®Kf,uKu,a),aK7u7f: = (Ku,fD 1®|)—|—(| ®@KysD I)TA
oA. LKy —1 T\ T 9Lkew L AT
oKy u: =1 oKyt - ((A KurD™yy D )) Ky D) ((Ku,u)') )

whereC =A~1 +A~1K, D lyy "D~ K¢y AL, Tp andT s arevectorized transpose matricésee,
e.g., Brookes, 2005) artd =D —yy " + K¢ A~ 1K Dlyy T + (Kf’uA_lKu,fD_lny)T. We can
replace the above expressions in (20) to find the correspondingtiess, so

aiff: =3 {((c) )" (KuiD™ ©KyD™) — (D HD ) 1)T] diag(M:) — (21)
_ % ((D_IJD_l) :)Tdiag(MI) — _% (diag(MZ ) (D—IJD—I) ;)T (22)
:—%((Dfl\]D”@M):)T:—%(Q:)T (23)
or simply
oL 1
oKy~ 2%

whereJ = H — Kt ,CK ¢ andQ = (D~'JD~' ©M). We have used the propert:) " (F® P) =
((PTBF) :)T in (21) and the propertytiag(B:)F: = (B®F):, to go from (22) to (23). We also have

L 1
O = @) [(1KeuKGh) + (KruKgh @) To] — £ ()]
6Ku7f. 2 ) , 5 o0
-
[(KuD'@l)+ (1K D) Ta] + ((A*lKu’folnyDfl) :)
T
- ((KiﬁKuqu —CKy D™ ‘|‘A_1Ku,fD_1nyD_1> :>
or simply
oL . L L
WM:Ku,uKu,fQ—CKU’fD +A"'KyDlyy' DT

where in (24)(Q))T (Fe)To=(Q:) To(1®F) = (T5Q:) ' (1 ©F) = (Q:)" (1 ®F). Asimilar
analysis is formulated for the term involvifigy. Finally, results for&—ff andg—é are obtained as
oL 1

TR =5 (Kud— C—KalKuiQK1uK )

oL 1

ax - 2%
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