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Abstract
Recently there has been an increasing interest in regression methods that deal with multiple out-
puts. This has been motivated partly by frameworks like multitask learning, multisensor networks
or structured output data. From a Gaussian processes perspective, the problem reduces to spec-
ifying an appropriate covariance function that, whilst being positive semi-definite, captures the
dependencies between all the data points and across all the outputs. One approach to account for
non-trivial correlations between outputs employs convolution processes. Under a latent function
interpretation of the convolution transform we establish dependencies between output variables.
The main drawbacks of this approach are the associated computational and storage demands. In
this paper we address these issues. We present different efficient approximations for dependent out-
put Gaussian processes constructed through the convolution formalism. We exploit the conditional
independencies present naturally in the model. This leads to a form of the covariance similar in
spirit to the so called PITC and FITC approximations for a single output. We show experimental
results with synthetic and real data, in particular, we showresults in school exams score prediction,
pollution prediction and gene expression data.

Keywords: Gaussian processes, convolution processes, efficient approximations, multitask learn-
ing, structured outputs, multivariate processes

1. Introduction

Accounting for dependencies between model outputs has important applications in several areas. In
sensor networks, for example, missing signals from failing sensors may bepredicted due to correla-
tions with signals acquired from other sensors (Osborne et al., 2008). In geostatistics, prediction of
the concentration of heavy pollutant metals (for example, Copper), that are expensive to measure,
can be done using inexpensive and oversampled variables (for example, pH) as a proxy (Goovaerts,
1997). Within the machine learning community this approach is sometimes known as multitask
learning. The idea in multitask learning is that information shared between the tasks leads to im-
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proved performance in comparison to learning the same tasks individually (Caruana, 1997; Bonilla
et al., 2008).

In this paper, we consider the problem of modeling related outputs in a Gaussian process (GP).
A Gaussian process specifies a prior distribution over functions. When using a GP for multiple
related outputs, our purpose is to develop a prior that expresses correlation between the outputs.
This information is encoded in the covariance function. The class of valid covariance functions is
the same as the class of reproducing kernels.1 Such kernel functions for single outputs are widely
studied in machine learning (see, for example, Rasmussen and Williams, 2006). More recently the
community has begun to turn its attention to covariance functions for multiple outputs.One of the
paradigms that has been considered (Teh et al., 2005; Osborne et al., 2008; Bonilla et al., 2008)
is known in the geostatistics literature asthe linear model of coregionalization(LMC) (Journel
and Huijbregts, 1978; Goovaerts, 1997). In the LMC, the covariance function is expressed as the
sum of Kronecker products betweencoregionalization matricesand a set of underlying covariance
functions. The correlations across the outputs are expressed in the coregionalization matrices, while
the underlying covariance functions express the correlation between different data points.

Multitask learning has also been approached from the perspective ofregularization theory(Ev-
geniou and Pontil, 2004; Evgeniou et al., 2005). Thesemultitask kernelsare obtained as generaliza-
tions of the regularization theory to vector-valued functions. They can also be seen as examples of
LMCs applied to linear transformations of the input space.

In the linear model of coregionalization each output can be thought of as an instantaneous mix-
ing of the underlying signals/processes. An alternative approach to constructing covariance func-
tions for multiple outputs employsconvolution processes(CP). To obtain a CP in the single output
case, the output of a given process is convolved with a smoothing kernelfunction. For example,
a white noise process may be convolved with a smoothing kernel to obtain a covariance function
(Barry and Ver Hoef, 1996; Ver Hoef and Barry, 1998). Ver Hoefand Barry (1998) and then Hig-
don (2002) noted that if a single input process was convolved with different smoothing kernels
to produce different outputs, then correlation between the outputs could be expressed. This idea
was introduced to the machine learning audience by Boyle and Frean (2005). We can think of this
approach to generating multiple output covariance functions as a non-instantaneous mixing of the
base processes.

The convolution process framework is an elegant way for constructing dependent output pro-
cesses. However, it comes at the price of having to consider the full covariance function of the
joint GP. ForD output dimensions andN data points the covariance matrix scales asDN lead-
ing toO(N3D3) computational complexity andO(N2D2) storage. We are interested in exploiting
the richer class of covariance structures allowed by the CP framework, but reducing the additional
computational overhead they imply.

In this paper, we propose different efficient approximations for the full covariance matrix in-
volved in the multiple output convolution process. We exploit the fact that, in theconvolution
framework, each of the outputs is conditional independent of all others ifthe input process is fully
observed. This leads to an approximation that turns out to be strongly related to the partially in-
dependent training conditional (PITC) (Quiñonero-Candela and Rasmussen, 2005) approximation
for a single output GP. This analogy inspires us to consider a further conditional independence

1. In this paper we will use kernel to refer to both reproducing kernels and smoothing kernels. Reproducing kernels are
those used in machine learning that conform to Mercer’s theorem. Smoothing kernels are kernel functions which are
convolved with a signal to create a smoothed version of that signal.
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assumption across data points. This leads to an approximation which shares the form of the fully in-
dependent training conditional (FITC) approximation (Snelson and Ghahramani, 2006; Quĩnonero-
Candela and Rasmussen, 2005). This reduces computational complexity toO(NDK2) and storage
to O(NDK) with K representing a user specified value for the number of inducing points in the
approximation.

The rest of the paper is organized as follows. First we give a more detailed review of related
work, with a particular focus on relating multiple output work in machine learningto other fields.
Despite the fact that there are several other approaches to multitask learning (see for example Caru-
ana, 1997, Heskes, 2000, Bakker and Heskes, 2003, Xue et al., 2007 and references therein), in this
paper, we focus our attention to those that address the problem of constructing the covariance or
kernel function for multiple outputs, so that it can be employed, for example,together with Gaus-
sian process prediction. Then we review the convolution process approach in Section 3 and Section
4. We demonstrate how our conditional independence assumptions can be used to reduce the com-
putational load of inference in Section 5. Experimental results are shown inSection 6 and finally
some discussion and conclusions are presented in Section 7.

2. Related Work

In geostatistics, multiple output models are used to model the co-occurrence of minerals or pollu-
tants in a spatial field. Many of the ideas for constructing covariance functions for multiple outputs
have first appeared within the geostatistical literature, where they are known as linear models of
coregionalization (LMC). We present the LMC and then review how several models proposed in the
machine learning literature can be seen as special cases of the LMC.

2.1 The Linear Model of Coregionalization

The term linear model of coregionalization refers to models in which the outputsare expressed as
linear combinations of independent random functions. If the independent random functions are
Gaussian processes then the resulting model will also be a Gaussian process with a positive semi-
definite covariance function. Consider a set ofD output functions{fd(x)}Dd=1 wherex ∈ ℜp is the
input domain. In a LMC each output function,fd(x), is expressed as (Journel and Huijbregts, 1978)

fd(x) =
Q∑

q=1

ad,quq(x). (1)

Under the GP interpretation of the LMC, the functions{uq(x)}
Q
q=1 are taken (without loss of gener-

ality) to be drawn from a zero-mean GP withcov[uq(x),uq′(x′)] = kq(x,x′) if q = q′ and zero oth-
erwise. Some of these base processes might have the same covariance, this iskq(x,x′) = kq′(x,x′),
but they would still be independently sampled. We can group together the base processes that share
latent functions (Journel and Huijbregts, 1978; Goovaerts, 1997), allowing us to express a given
output as

fd(x) =
Q∑

q=1

Rq∑

i=1

aid,qu
i
q(x), (2)
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where the functions
{
uiq(x)

}Rq

i=1
, i = 1, . . . ,Rq, represent the latent functions that share the same

covariance functionkq(x,x′). There are nowQ groups of functions, each member of a group shares
the same covariance, but is sampled independently.

In geostatistics it is common to simplify the analysis of these models by assuming that the pro-
cessesfd(x) are stationary and ergodic (Cressie, 1993). The stationarity and ergodicity conditions
are introduced so that the prediction stage can be realized through an optimal linear predictor using
a single realization of the process (Cressie, 1993). Such linear predictors receive the general name
of cokriging. The cross covariance between any two functionsfd(x) andfd′(x) is given in terms of
the covariance functions foruiq(x)

cov[fd(x),fd′(x
′)] =

Q∑

q=1

Q∑

q′=1

Rq∑

i=1

Rq∑

i′=1

aid,qa
i′

d′,q′ cov[u
i
q(x),u

i′

q′(x
′)].

Because of the independence of the latent functionsuiq(x), the above expression can be reduced to

cov[fd(x),fd′(x
′)] =

Q∑

q=1

Rq∑

i=1

aid,qa
i
d′,qkq(x,x

′) =

Q∑

q=1

bqd,d′kq(x,x
′), (3)

with bqd,d′ =
∑Rq

i=1a
i
d,qa

i
d′,q.

For a numberN of input vectors, letfd be the vector of values from the outputd evaluated at
X = {xn}Nn=1. If each output has the same set of inputs the system is known asisotopic. In general,

we can allow each output to be associated with a different set of inputs,X(d) = {x(d)n }Nd

n=1, this is
known asheterotopic.2 For notational simplicity, we restrict ourselves to the isotopic case, but our
analysis can also be completed for heterotopic setups. The covariance matrix for fd is obtained
expressing Equation (3) as

cov[fd, fd′ ] =
Q∑

q=1

Rq∑

i=1

aid,qa
i
d′,qK q =

Q∑

q=1

bqd,d′K q,

whereK q ∈ ℜN×N has entries given by computingkq(x,x′) for all combinations fromX. We now
define f to be a stacked version of the outputs so thatf = [f⊤1 , . . . , f

⊤
D]

⊤. We can now write the
covariance matrix for the joint process overf as

K f,f =

Q∑

q=1

AqA⊤
q ⊗K q =

Q∑

q=1

Bq⊗K q, (4)

where the symbol⊗ denotes the Kronecker product,Aq ∈ℜD×Rq has entriesaid,q andBq =AqA⊤
q ∈

ℜD×D has entriesbqd,d′ and is known as thecoregionalization matrix. The covariance matrixK f,f

is positive semi-definite as long as the coregionalization matricesBq are positive semi-definite and
kq(x,x′) is a valid covariance function. By definition, coregionalization matricesBq fulfill the
positive semi-definiteness requirement. The covariance functions for thelatent processes,kq(x,x′),
can simply be chosen from the wide variety of covariance functions (reproducing kernels) that are

2. These names come from geostatistics.
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used for the single output case. Examples include the squared exponential (sometimes called the
Gaussian kernel or RBF kernel) and the Matérn class of covariance functions (see Rasmussen and
Williams, 2006, Chapter 4).

The linear model of coregionalization represents the covariance functionas a product of the
contributions of two covariance functions. One of the covariance functions models the dependence
between the functions independently of the input vectorx, this is given by the coregionalization
matrix Bq, whilst the other covariance function models the input dependence independently of the
particular set of functionsfd(x), this is the covariance functionkq(x,x′).

We can understand the LMC by thinking of the functions having been generated as a two step
process. Firstly we sample a set of independent processes from the covariance functions given by
kq(x,x′), takingRq independent samples for eachkq(x,x′). We now haveR =

∑Q
q=1Rq indepen-

dently sampled functions. These functions areinstantaneously mixed3 in a linear fashion. In other
words the output functions are derived by application of a scaling and a rotation to an output space
of dimensionD.

2.1.1 INTRINSIC COREGIONALIZATION MODEL

A simplified version of the LMC, known as the intrinsic coregionalization model (ICM) (Goovaerts,
1997), assumes that the elementsbqd,d′ of the coregionalization matrixBq can be written asbqd,d′ =
υd,d′bq. In other words, as a scaled version of the elementsbq which do not depend on the particular
output functionsfd(x). Using this form forbqd,d′ , Equation (3) can be expressed as

cov[fd(x),fd′(x
′)] =

Q∑

q=1

υd,d′bqkq(x,x
′) = υd,d′

Q∑

q=1

bqkq(x,x′).

The covariance matrix forf takes the form

K f,f =Υ⊗K , (5)

whereΥ ∈ ℜD×D, with entriesυd,d′ , andK =
∑Q

q=1 bqK q is an equivalent valid covariance func-
tion.

The intrinsic coregionalization model can also be seen as a linear model of coregionalization
where we haveQ= 1. In such case, Equation (4) takes the form

K f,f = A1A⊤
1 ⊗K1 = B1⊗K1, (6)

where the coregionalization matrixB1 has elementsb1d,d′ =
∑R1

i=1a
i
d,1a

i
d′,1. The value ofR1 deter-

mines the rank of the matrixB1.
As pointed out by Goovaerts (1997), the ICM is much more restrictive than the LMC since it

assumes that each basic covariancekq(x,x′) contributes equally to the construction of the autoco-
variances and cross covariances for the outputs.

3. The term instantaneous mixing is taken from blind source separation. Ofcourse, if the underlying processes are not
temporal but spatial, instantaneous is not being used in its original sense.However, it allows us to distinguish this
mixing from convolutional mixing.
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2.1.2 LINEAR MODEL OF COREGIONALIZATION IN MACHINE LEARNING

Several of the approaches to multiple output learning in machine learning based on kernels can be
seen as examples of the linear model of coregionalization.

Semiparametric latent factor model.The semiparametric latent factor model (SLFM) proposed
by Teh et al. (2005) turns out to be a simplified version of Equation (4). Inparticular, ifRq = 1 (see
Equation 1), we can rewrite Equation (4) as

K f,f =

Q∑

q=1

aqa⊤q ⊗K q,

whereaq ∈ℜD×1 with elementsad,q. With some algebraic manipulations that exploit the properties
of the Kronecker product4 we can write

K f,f =

Q∑

q=1

(aq⊗ IN )K q(a⊤q ⊗ IN ) = (Ã⊗ IN )K̃(Ã⊤⊗ IN ),

whereIN is theN -dimensional identity matrix,̃A ∈ ℜD×Q is a matrix with columnsaq andK̃ ∈
ℜQN×QN is a block diagonal matrix with blocks given byK q.

The functionsuq(x) are considered to be latent factors and the semiparametric name comes from
the fact that it is combining a nonparametric model, this is a Gaussian process,with a parametric
linear mixing of the functionsuq(x). The kernel for each basic processq, kq(x,x′), is assumed to
be of Gaussian type with a different length scale per input dimension. For computational speed up
the informative vector machine (IVM) is employed (Lawrence et al., 2003).

Multi-task Gaussian processes.The intrinsic coregionalization model has been employed in
Bonilla et al. (2008) for multitask learning. We refer to this approach as multi-task Gaussian pro-
cesses (MTGP). The covariance matrix is expressed asK f(x),f(x′) = Kf ⊗ k(x,x′), with f(x) =

[f1(x), . . . ,fD(x)]⊤, Kf being constrained positive semi-definite andk(x,x′) a covariance func-
tion over inputs. It can be noticed that this expression has is equal to the one in (5), when it is
evaluated forx,x′ ∈ X. In Bonilla et al. (2008),Kf (equal toΥ in Equation 5 orB1 in Equation
6) expresses the correlation between tasks or inter-task dependenciesand it is represented through a
probabilistic principal component analysis (PPCA) model. In turn, the spectral factorization in the
PPCA model is replaced by an incomplete Cholesky decomposition to keep numerical stability, so
thatKf ≈ L̃ L̃⊤, whereL̃ ∈ ℜD×R1 . An application of MTGP for obtaining the inverse dynamics
of a robotic manipulator was presented in Chai et al. (2009).

It can be shown that if the outputs are considered to be noise-free, prediction using the intrinsic
coregionalization model under an isotopic data case is equivalent to independent prediction over
each output (Helterbrand and Cressie, 1994). This circumstance is alsoknown as autokrigeability
(Wackernagel, 2003) and it can also be seen as the cancellation of inter-task transfer (Bonilla et al.,
2008).

Multi-output Gaussian processes.The intrinsic coregionalization model has been also used in
Osborne et al. (2008). MatrixΥ in Expression (5) is assumed to be of the spherical parametrisation
kind, Υ = diag(e)S⊤Sdiag(e), wheree gives a description for the length scale of each output
variable andS is an upper triangular matrix whosei-th column is associated with particular spherical

4. See Brookes (2005) for a nice overview.
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coordinates of points inℜi (for details see Osborne and Roberts, 2007, Section 3.4). Function
k(x,x′) is represented through a Mátern kernel, where different parametrisations of the covariance
allow the expression of periodic and non-periodic terms. Sparsification for this model is obtained
using an IVM style approach.

Multi-task kernels in regularization theory.Kernels for multiple outputs have also been studied
in the context of regularization theory. The approach is based mainly on thedefinition of kernels for
multitask learning provided in Evgeniou and Pontil (2004) and Evgeniou et al. (2005), derived based
on the theory of kernels for vector-valued functions. LetD = {1, . . . ,D}. According to Evgeniou
et al. (2005), the following lemma can be used to construct multitask kernels,

Lemma 1 If G is a kernel onT ×T and, for everyd∈D there are prescribed mappingsΦd :X →T
such that

kd,d′(x,x
′) = k((x,d),(x′,d′)) =G(Φd(x),Φd′(x

′)), x,x′ ∈ ℜp, d,d′ ∈ D,

thenk(·) is a multitask or multioutput kernel.

A linear multitask kernel can be obtained if we setT = ℜm, Φd(x) = Cdx with Φd ∈ ℜm and
G :ℜm×ℜm →ℜ as the polynomial kernelG(z,z′) = (z⊤z′)n with n= 1, leading tokd,d′(x,x′) =
x⊤C⊤

d Cd′x′. The lemma above can be seen as the result of applying kernel propertiesto the mapping
Φd(x) (see Genton, 2001, p. 2). Notice that this corresponds to a generalization of the semipara-
metric latent factor model where each output is expressed through its own basic process acting over
the linear transformationCdx, this is,ud(Φd(x)) = ud(Cdx). In general, it can be obtained from
fd(x) =

∑D
q=1ad,quq(Φq(x)), wheread,q = 1 if d= q or zero, otherwise.

A more detailed analysis of the LMC and more connections with other methods in statistics and
machine learning can be found ińAlvarez et al. (2011b).

3. Convolution Processes for Multiple Outputs

The approaches introduced above all involve some form of instantaneousmixing of a series of
independent processes to construct correlated processes. Instantaneous mixing has some limitations.
If we wanted to model two output processes in such a way that one process was a blurred version
of the other, we cannot achieve this through instantaneous mixing. We can achieve blurring through
convolving a base process with a smoothing kernel. If the base process isa Gaussian process, it turns
out that the convolved process is also a Gaussian process. We can therefore exploit convolutions
to construct covariance functions (Barry and Ver Hoef, 1996; Ver Hoef and Barry, 1998; Higdon,
1998, 2002). A recent review of several extensions of this approach for the single output case is
presented in Calder and Cressie (2007). Applications include the construction of nonstationary
covariances (Higdon, 1998; Higdon et al., 1998; Fuentes, 2002a,b; Paciorek and Schervish, 2004)
and spatiotemporal covariances (Wikle et al., 1998; Wikle, 2002, 2003).

Ver Hoef and Barry (1998) first, and Higdon (2002) later, suggestedusing convolutions to con-
struct multiple output covariance functions. The approach was introduced to the machine learn-
ing community by Boyle and Frean (2005). Consider again a set ofD functions{fd(x)}Dd=1.
Now each function could be expressed through a convolution integral between a smoothing ker-
nel,{Gd(x)}Dd=1, and a latent functionu(x),

fd(x) =
∫

X

Gd(x−z)u(z)dz. (7)
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More generally, and in a similar way to the linear model of coregionalization, wecan consider the
influence of more than one latent function,uiq(z), with q = 1, . . . ,Q andi= 1, . . . ,Rq to obtain

fd(x) =
Q∑

q=1

Rq∑

i=1

∫

X

Gi
d,q(x−z)uiq(z)dz.

As in the LMC, there areQ groups of functions, each member of the group has the same covariance
kq(x,x′), but is sampled independently. Under the same independence assumptions used in the
LMC, the covariance betweenfd(x) andfd′(x′) follows

cov
[
fd(x),fd′(x

′)
]
=

Q∑

q=1

Rq∑

i=1

∫

X

Gi
d,q(x−z)

∫

X

Gi
d′,q(x

′−z′)kq(z,z′)dz′dz. (8)

SpecifyingGi
d,q(x−z) andkq(z,z′) in (8), the covariance for the outputsfd(x) can be constructed

indirectly. Note that if the smoothing kernels are taken to be the Dirac delta function such that,

Gi
d,q(x−z) = aid,qδ(x−z),

whereδ(·) is the Dirac delta function, the double integral is easily solved and the linear model of
coregionalization is recovered. This matches to the concept ofinstantaneous mixingwe introduced
to describe the LMC. In a convolutional process the mixing is more general, for example the latent
process could be smoothed for one output, but not smoothed for anotherallowing correlated output
functions of different length scales.

The traditional approach to convolution processes in statistics and signal processing is to assume
that the latent functionsuq(z) are independent white Gaussian noise processes,kq(z,z′) = σ2

qδ(z−
z′). This allows us to simplify (8) as

cov
[
fd(x),fd′(x

′)
]
=

Q∑

q=1

Rq∑

i=1

σ2
q

∫

X

Gi
d,q(x−z)Gi

d′,q(x
′−z)dz.

In general, though, we can consider any type of latent process, for example, we could assume GPs
for the latent functions with general covarianceskq(z,z′).

As well as this covariance across outputs, the covariance between the latent function,uiq(z), and
any given output,fd(x), can be computed,

cov
[
fd(x),uiq(z)

]
=

∫

X

Gi
d,q(x−z′)kq(z′,z)dz′. (9)

Additionally, we can corrupt each of the outputs of the convolutions with an independent process
(which could also include a noise term),wd(x), to obtain

yd(x) = fd(x)+wd(x). (10)

The covariance between two different outputsyd(x) andyd′(x′) is then recovered as

cov
[
yd(x),yd′(x

′)
]
=cov

[
fd(x),fd′(x

′)
]
+cov

[
wd(x),wd′(x

′)
]
δd,d′ ,
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whereδd,d′ is the Kronecker delta function.5

As mentioned before, Ver Hoef and Barry (1998) and Higdon (2002) proposed the direct use of
convolution processes for constructing multiple output Gaussian processes. Lawrence et al. (2007)
arrive at a similar construction from solving a physical model: a first order differential equation (see
also Gao et al., 2008). This idea of using physical models to inspire multiple output systems has
been further extended ińAlvarez et al. (2009) who give examples using the heat equation and a sec-
ond order system. A different approach using Kalman Filtering ideas has been proposed in Calder
(2003, 2007). Calder proposed a model that incorporates dynamical systems ideas to the process
convolution formalism. Essentially, the latent processes are of two types: random walks and in-
dependent cyclic second-order autoregressions. With this formulation,it is possible to construct a
multivariate output process using convolutions over these latent processes. Particular relationships
between outputs and latent processes are specified using a special transformation matrix ensuring
that the outputs are invariant under invertible linear transformations of the underlying factor pro-
cesses (this matrix is similar in spirit to the sensitivity matrix of Lawrence et al. (2007) and it is
given a particular form so that not all latent processes affect the whole set of outputs).

Bayesian kernel methods.The convolution process is closely related to the Bayesian kernel
method (Pillai et al., 2007; Liang et al., 2009) for constructing reproducible kernel Hilbert spaces
(RKHS), assigning priors to signed measures and mapping these measuresthrough integral opera-
tors. In particular, define the following space of functions,

F =
{
f
∣∣∣f(x) =

∫

X

G(x,z)γ(dz), γ ∈ Γ
}
,

for some spaceΓ ⊆ B(X ) of signed Borel measures. In Pillai et al. (2007, Proposition 1), the au-
thors show that forΓ = B(X ), the space of all signed Borel measures,F corresponds to a RKHS.
Examples of these measures that appear in the form of stochastic processes include Gaussian pro-
cesses, Dirichlet processes and Lévy processes. This framework can be extended for the multiple
output case, expressing the outputs as

fd(x) =

∫

X

Gd(x,z)γ(dz).

The analysis of the mathematical properties of such spaces of functions is beyond the scope of this
paper and is postponed for future work.

Other connections of the convolution process approach with methods in statistics and machine
learning are further explored ińAlvarez et al. (2011b).

A general purpose convolution kernel for multiple outputs.A simple general purpose kernel
for multiple outputs based on the convolution integral can be constructed assuming that the kernel
smoothing function,Gd,q(x), and the covariance for the latent function,kq(x,x′), follow both a
Gaussian form. A similar construction using a Gaussian form forG(x) and a white noise process
for u(x) has been used in Paciorek and Schervish (2004) to propose a nonstationary covariance
function in single output regression. It has also been used in Boyle and Frean (2005) as an example
of constructing dependent Gaussian processes.

The kernel smoothing function is given as

Gd,q(x) = Sd,qN (x|0,P−1
d ),

5. We have slightly abused of the delta notation to indicate the Kronecker delta for discrete arguments and the Dirac
function for continuous arguments. The particular meaning should be understood from the context.
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whereSd,q is a variance coefficient that depends both on the outputd and the latent functionq and
Pd is the precision matrix associated to the particular outputd. The covariance function for the
latent process is expressed as

kq(x,x′) =N (x−x′|0,Λ−1
q ),

with Λq the precision matrix of the latent functionq.
Expressions for the kernels are obtained applying systematically the identity for the product of

two Gaussian distributions. LetN (x|µ,P−1) denote a Gaussian forx, then

N (x|µ1,P−1
1 )N (x|µ2,P−1

2 ) =N (µ1|µ2,P−1
1 +P−1

2 )N (x|µc,P−1
c ), (11)

whereµc = (P1+P2)
−1 (P1µ1+P2µ2) andP−1

c = (P1+P2)
−1. For all integrals we assume that

X = ℜp. Using these forms forGd,q(x) andkq(x,x′), expression (8) (withRq = 1) can be written
as

kfd,fd′ (x,x
′) =

Q∑

q=1

Sd,qSd′,q

∫

X

N (x−z|0,P−1
d )

∫

X

N (x′−z′|0,P−1
d′ )N (z−z′|0,Λ−1

q )dz′dz.

Since the Gaussian covariance is stationary, we can write it asN (x−x′|0,P−1)=N (x′−x|0,P−1)=
N (x|x′,P−1) =N (x′|x,P−1). Using the identity in Equation (11) twice, we get

kfd,fd′ (x,x
′) =

Q∑

q=1

Sd,qSd′,qN (x−x′|0,P−1
d +P−1

d′ +Λ
−1
q ). (12)

For a high value of the input dimension,p, the term1/[(2π)p/2|P−1
d +P−1

d′ +Λ
−1
q |1/2] in each of

the Gaussian’s normalization terms will dominate, making values go quickly to zero. We can fix this
problem, by scaling the outputs using the factors1/[(2π)p/4|2P−1

d +Λ
−1
q |1/4] and1/[(2π)p/4|2P−1

d′ +

Λ
−1
q |1/4]. Each of these scaling factors correspond to the standard deviation associated tokfd,fd(x,x)

andkfd′ ,fd′ (x,x).
Equally for the covariancecov [fd(x),uq(x′))] in Equation (9), we obtain

kfd,uq
(x,x′) = Sd,qN (x−x′|0,P−1

d +Λ
−1
q ).

Again, this covariance must be standardized when working in higher dimensions.

4. Hyperparameter Learning

Given the convolution formalism, we can construct a full GP over the set ofoutputs. The likelihood
of the model is given by

p(y|X,θ) =N (y|0,K f,f +Σ), (13)

wherey =
[
y⊤1 , . . . ,y

⊤
D

]⊤
is the set of output functions withyd = [yd(x1), . . . ,yd(xN )]⊤; K f,f ∈

ℜDN×DN is the covariance matrix arising from the convolution. It expresses the covariance of each
data point at every other output and data point and its elements are given by cov [fd(x),fd′(x′)] in
(8). The termΣ represents the covariance associated with the independent processesin (10),wd(x).
It could contain structure, or alternatively could simply represent noise that is independent across
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the data points. The vectorθ refers to the hyperparameters of the model. For exposition we will
focus on the isotopic case (although our implementations allow heterotopic modeling), so we have a
matrixX = {x1, . . . ,xN} which is the common set of training input vectors at which the covariance
is evaluated.

The predictive distribution for a new set of input vectorsX∗ is (Rasmussen and Williams, 2006)

p(y∗|y,X,X∗,θ) =N
(
y∗|K f∗,f(K f,f +Σ)−1y,K f∗,f∗ −K f∗,f(K f,f +Σ)−1K f,f∗ +Σ∗

)
,

where we have usedK f∗,f∗ as a compact notation to indicate when the covariance matrix is evalu-
ated at the inputsX∗, with a similar notation forK f∗,f . Learning from the log-likelihood involves
the computation of the inverse ofK f,f +Σ giving the problematic complexity ofO(N3D3). Once
the parameters have been learned, prediction isO(ND) for the predictive mean andO(N2D2) for
the predictive variance.

As we have mentioned before, the main focus of this paper is to present someefficient approxi-
mations for the multiple output convolved Gaussian Process. Given the methods presented before,
we now show an application that benefits from the non-instantaneous mixing element brought by
the convolution process framework.

Comparison between instantaneous mixing and non-instantaneous mixing for regression in
genes expression data.Microarray studies have made the simultaneous measurement of mRNA
from thousands of genes practical. Transcription is governed by the presence or absence of tran-
scription factor (TF) proteins that act as switches to turn on and off the expression of the genes. Most
of these methods are based on assuming that there is an instantaneous linear relationship between
the gene expression and the protein concentration. We compare the performance of the intrinsic
coregionalization model (Section 2.1.1) and the convolved GPs for two independent time series or
replicas of 12 time points collected hourly throughout Drosophila embryogenesis in wild-type em-
bryos (Tomancak et al., 2002). For preprocessing the data, we follow Honkela et al. (2010). We
concentrate on a particular transcription factor protein, namelytwi, and the genes associated with it.
The information about the network connections is obtained from the ChIP-chip experiments. This
particular TF is key regulator of mesoderm and muscle development in Drosophila (Zinzen et al.,
2009).

After preprocessing the data, we end up with a data set of1621 genes with expression data for
N = 12 time points. It is believed that this set of genes are regulated by at least thetwi transcription
factor. For each one of these genes, we have access to 2 replicas. Werandomly selectD = 50 genes
from replica 1 for training a full multiple output GP model based on either the LMC framework
or the convolved GP framework. The corresponding50 genes of replica 2 are used for testing
and results are presented in terms of the standardized mean square error (SMSE) and the mean
standardized log loss (MSLL) as defined in Rasmussen and Williams (2006).6 The parameters of
both the LMC and the convolved GPs are found through the maximization of the marginal likelihood
in Equation (13). We repeated the experiment10 times using a different set of50 genes each
time. We also repeated the experiment selecting the50 genes for training from replica 2 and the
corresponding50 genes of replica 1 for testing.

6. The definitions for the SMSE and the MSLL we have used here are slightlydifferent from the ones provided in
Rasmussen and Williams (2006). Instead of comparing against a Gaussian with a global mean and variance com-
puted from all the outputs in the training data, we compare against a Gaussian with local means and local variances
computed from the training data associated to each output.
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We are interested in a reduced representation of the data so we assume thatQ= 1 andRq = 1,
for the LMC and the convolved multiple output GP in Equations (2) and (8), respectively. For the
LMC model, we follow Bonilla et al. (2008) and assume an incomplete Cholesky decomposition
for B1 = L̃L̃⊤, whereL̃ ∈ ℜ50×1 and as the basic covariancekq(x,x′) we assume the squared
exponential covariance function (p. 83, Rasmussen and Williams, 2006).For the convolved multiple
output GP we employ the covariance described in Section 3, Equation (12),with the appropriate
scaling factors.

Train set Test set Method Average SMSE Average MSLL

Replica 1 Replica 2
LMC 0.6069±0.0294 −0.2687±0.0594

CMOC 0.4859±0.0387 −0.3617±0.0511

Replica 2 Replica 1
LMC 0.6194±0.0447 −0.2360±0.0696

CMOC 0.4615±0.0626 −0.3811±0.0748

Table 1: Standardized mean square error (SMSE) and mean standardized log loss (MSLL) for the
gene expression data for50 outputs. CMOC stands for convolved multiple output covari-
ance. The experiment was repeated ten times with a different set of50 genes each time.
Table includes the value of one standard deviation over the ten repetitions. More negative
values of MSLL indicate better models.

Table 1 shows the results of both methods over the test set for the two different replicas. It can be
seen that the convolved multiple output covariance (appearing as CMOC in the table), outperforms
the LMC covariance both in terms of SMSE and MSLL.

Figure 1 shows the prediction made over the test set (replica 2 in this case) by the two models
for two particular genes, namely FBgn0038617 (Figure 1, first row) and FBgn0032216 (Figure 1,
second row). The black dots in the figures represent the gene expression data of the particular genes.
Figures 1(a) and 1(c) show the response of the LMC and Figures 1(b)and 1(d) show the response of
the convolved multiple output covariance. It can be noticed from the data that the two genes differ
in their responses to the action of the transcription factor, that is, while geneFBgn0038617 has
a rapid decay around time2 and becomes relatively constant for the rest of the time interval, gene
FBgn0032216 has a smoother response within the time frame. The linear modelof coregionalization
is driven by a latent function with a length-scale that is shared across the outputs. Notice from
Figures 1(a) and 1(c) that the length-scale for both responses is the same. On the other hand, due-
to the non-instantaneous mixing of the latent function, the convolved multiple output framework,
allows the description of each output using its own length-scale, which gives an added flexibility for
describing the data.

Table 2 (first four rows) shows the performances of both models for thegenes of Figure 1.
CMOC outperforms the linear model of coregionalization for both genes in terms of SMSE and
MSLL.

A similar analysis can be made for Figures 2(a), 2(b), 2(c) and 2(d). Inthis case, the test set is
replica 1 and we have chosen two different genes, FBgn0010531 andFBgn0004907 with a similar
behavior. Table 2 (last four rows) also highlights the performances of both models for the genes of
Figure 2. Again, CMOC outperforms the linear model of coregionalization for both genes and in
terms of SMSE and MSLL.
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(a) LMC for a short length-scale output
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(b) CMOC for a short length-scale output
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(c) LMC for a long length-scale output
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(d) CMOC for a long length-scale output

Figure 1: Predictive mean and variance for genes FBgn0038617 (first row) and FBgn0032216 (sec-
ond row) using the linear model of coregionalization in Figures 1(a) and 1(c) and the
convolved multiple-output covariance in Figures 1(b) and 1(d), withQ = 1 andRq = 1.
The training data comes from replica 1 and the testing data from replica 2. Thesolid line
corresponds to the predictive mean, the shaded region corresponds to2 standard devia-
tions of the prediction. Performances in terms of SMSE and MSLL are givenin the title
of each figure and appear also in Table 2. The adjectives “short” and “long” given to the
length-scales in the captions of each figure, must be understood like relative to each other.

Having said this, we can argue that the performance of the LMC model can be improved by
either increasing the value ofQ or the valueRq, or both. For the intrinsic coregionalization model,
we would fix the value ofQ= 1 and increase the value ofR1. Effectively, we would be increasing
the rank of the coregionalization matrixB1, meaning that more latent functions sampled from the
same covariance function are being used to explain the data. In a extreme case in which each output
has its own length scale, this translates into equating the number of latent functions to the number
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Test replica Test genes Method SMSE MSLL

Replica 2
FBgn0038617

LMC 0.2729 −0.6018
CMOC 0.0565 −1.3965

FBgn0032216
LMC 0.7621 −0.0998

CMOC 0.1674 −0.8443

Replica 1
FBgn0010531

LMC 0.2572 −0.5699
CMOC 0.0446 −1.3434

FBgn0004907
LMC 0.4984 −0.3069

CMOC 0.0971 −1.0841

Table 2: Standardized mean square error (SMSE) and mean standardized log loss (MSLL) for the
genes in Figures 1 and 2 for LMC and CMOC. Genes FBgn0038617 and FBgn0010531
have a shorter length-scale when compared to genes FBgn0032216 and FBgn0004907.

of outputs, or in other words assuming a full rank for the matrixB1. This leads to the need of
estimating the matrixB1 ∈ ℜD×D, that might be problematic ifD is high. For the semiparametric
latent factor model, we would fix the value ofRq = 1 and increaseQ, the number of latent functions
sampled fromQ different GPs. Again, in the extreme case of each output having its own length-
scale, we might need to estimate a matrixÃ ∈ ℜD×D, which could be problematic for a high value
of outputs. In a more general case, we could also combine values ofQ> 1 andRq > 1. We would
need then, to find values ofQ andRq that fit the different outputs with different length scales.

In practice though, we will see in the experimental section, that both the linearmodel of core-
gionalization and the convolved multiple output GPs can perform equally well insome data sets.
However, the convolved covariance could offer an explanation of the data through a simpler model
or converge to the LMC, if needed.

5. Efficient Approximations for Convolutional Processes

Assuming that the double integral in Equation (8) is tractable, the principle challenge for the con-
volutional framework is computing the inverse of the covariance matrix associated with the outputs.
ForD outputs, each havingN data points, the inverse has computational complexityO(D3N3) and
associated storage ofO(D2N2). We show how through making specific conditional independence
assumptions, inspired by the model structure (Álvarez and Lawrence, 2009), we arrive at a efficient
approximation similar in form to the partially independent training conditional model (PITC, see
Quiñonero-Candela and Rasmussen, 2005). The relationship with PITC theninspires us to make
further conditional independence assumptions.

5.1 Latent Functions as Conditional Means

For notational simplicity, we restrict the analysis of the approximations to one latent functionu(x).
The key to all approximations is based on the form we assume for the latent functions. From the
perspective of a generative model, Equation (7) can be interpreted as follows: first we draw a sample
from the Gaussian process priorp(u(z)) and then solve the integral for each of the outputsfd(x)
involved. Uncertainty aboutu(z) is also propagated through the convolution transform.
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(a) LMC for a short length-scale output
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(b) CMOC for a short length-scale output
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(c) LMC for a long length-scale output
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(d) CMOC for a long length-scale output

Figure 2: Predictive mean and variance for genes FBgn0010531 (first row) and FBgn0004907 (sec-
ond row) using the linear model of coregionalization in Figures 2(a) and 2(c), and the
convolved multiple-output covariance in Figures 2(b) and 2(d), withQ = 1 andRq = 1.
The difference with Figure 1 is that now the training data comes from replica 2while the
testing data comes from replica 1. The solid line corresponds to the predictive mean, the
shaded region corresponds to 2 standard deviations of the prediction. Performances in
terms of SMSE and MSLL are given in the title of each figure.

For the set of approximations, instead of drawing a sample fromu(z), we first draw a sample
from a finite representation ofu(z), u(Z) = [u(z1), . . . ,u(zK)]⊤, whereZ = {zk}

K
k=1 is the set of in-

put vectors at whichu(z) is evaluated. Due to the properties of a Gaussian process,p(u(Z)) follows
a multivariate Gaussian distribution. Conditioning onu(Z), we next sample from the conditional
prior p(u(z)|u(Z)) and use this function to solve the convolution integral for eachfd(x).7 Under

7. For simplicity in the notation, we just writeu to refer tou(Z).
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this generative approach, we can approximate each functionfd(x) using

fd(x)≈
∫

X

Gd(x−z)E[u(z)|u]dz. (14)

Replacingu(z) for E[u(z)|u] is a reasonable approximation as long asu(z) is a smooth function
so that the infinite dimensional objectu(z) can be summarized byu. Figure 3 shows a cartoon
example of the quality of the approximations for two outputs as the size of the setZ increases. The
first column represents the conditional priorp(u(z)|u) for a particular choice ofu(z). The second
and third columns represent the outputsf1(x) andf2(x) obtained when using Equation (14).

Using expression (14), the likelihood function forf follows

p(f|u,Z,X,θ) =N
(

f|K f,uK−1
u,uu,K f,f −K f,uK−1

u,uK⊤
f,u

)
, (15)

whereKu,u is the covariance matrix between the samples from the latent functionu(Z), with ele-
ments given byku,u(z,z′) andK f,u =K⊤

u,f is the cross-covariance matrix between the latent function
u(z) and the outputsfd(x), with elementscov [fd(x),u(z)] in (9).

Given the set of pointsu, we can have different assumptions about the uncertainty of the out-
puts in the likelihood term. For example, we could assume that the outputs are independent or
uncorrelated, keeping only the uncertainty involved for each output in thelikelihood term. Another
approximation assumes that the outputs are deterministic, this isK f,f = K f,uK−1

u,uK⊤
f,u. The only

uncertainty left would be due to the priorp(u). Next, we present different approximations of the
covariance of the likelihood that lead to a reduction in computational complexity.

5.1.1 PARTIAL INDEPENDENCE

We assume that the individual outputs inf are independent given the latent functionu, leading to
the following expression for the likelihood

p(f|u,Z,X,θ) =
D∏

d=1

p(fd|u,Z,X,θ) =
D∏

d=1

N
(
f|K fd,uK−1

u,uu,K fd,fd −K fd,uK−1
u,uKu,fd

)
.

We rewrite this product of multivariate Gaussians as a single Gaussian with a block diagonal co-
variance matrix, including the uncertainty about the independent processes

p(y|u,Z,X,θ) =N
(
y|K f,uK−1

u,uu,D+Σ
)

(16)

whereD = blockdiag
[
K f,f −K f,uK−1

u,uK⊤
f,u

]
, and we have used the notationblockdiag [G] to indi-

cate that the block associated with each output of the matrixG should be retained, but all other
elements should be set to zero. We can also write this asD =

[
K f,f −K f,uK−1

u,uKu,f
]
⊙M where

⊙ is the Hadamard product andM = ID ⊗ 1N , 1N being theN ×N matrix of ones. We now
marginalize the values of the samples from the latent function by using its process prior, this means
p(u|Z) =N (u|0,Ku,u). This leads to the following marginal likelihood,

p(y|Z,X,θ) =

∫
p(y|u,Z,X,θ)p(u|Z)du =N

(
y|0,D+K f,uK−1

u,uKu,f +Σ
)
. (17)
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(a) Conditional prior forK = 5
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(c) Output two forK = 5
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(d) Conditional prior forK = 10
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(f) Output two forK = 10
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(g) Conditional prior forK = 30
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(h) Output one forK = 30
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(i) Output two forK = 30

Figure 3: Conditional prior and two outputs for different values ofK. The first column, Figures
3(a), 3(d) and 3(g), shows the mean and confidence intervals of the conditional prior
distribution using one input function and two output functions. The dashedline represents
one sample from the prior. Conditioning over a few points of this sample, shown as
black dots, the conditional mean and conditional covariance are computed.The solid
line represents the conditional mean and the shaded region correspondsto 2 standard
deviations away from the mean. The second column, 3(b), 3(e) and 3(h), shows the
solution to Equation (7) for output one using the sample from the prior (dashed line) and
the conditional mean (solid line), for different values ofK. The third column, 3(c), 3(f)
and 3(i), shows the solution to Equation (7) for output two, again for different values of
K.

Notice that, compared to (13), the full covariance matrixK f,f has been replaced by the low rank co-
varianceK f,uK−1

u,uKu,f in all entries except in the diagonal blocks corresponding toK fd,fd . Depend-
ing on our choice ofK, the inverse of the low rank approximation to the covariance is either dom-
inated by aO(DN3) term or aO(K2DN) term. Storage of the matrix isO(N2D)+O(NDK).
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Note that if we setK =N these reduce toO(N3D) andO(N2D) respectively. Rather neatly this
matches the computational complexity of modeling the data withD independent Gaussian processes
across the outputs.

The functional form of (17) is almost identical to that of the partially independent training
conditional (PITC) approximation (Quiñonero-Candela and Rasmussen, 2005) or the partially inde-
pendent conditional (PIC) approximation (Quiñonero-Candela and Rasmussen, 2005; Snelson and
Ghahramani, 2007), with the samples we retain from the latent function providing the same role as
the inducing valuesin the PITC or PIC.8 This is perhaps not surprising given that the PI(T)C ap-
proximations are also derived by making conditional independence assumptions. A key difference
is that in PI(T)C it is not obvious which variables should be grouped together when making these
conditional independence assumptions; here it is clear from the structureof the model that each of
the outputs should be grouped separately.

5.1.2 FULL INDEPENDENCE

We can be inspired by the analogy of our approach to the PI(T)C approximation and consider a more
radical factorization of the likelihood term. In the fully independent training conditional (FITC) ap-
proximation or the fully independent conditional (FIC) approximation (Snelson and Ghahramani,
2006, 2007), a factorization across the data points is assumed. For us that would lead to the follow-
ing expression for the conditional distribution of the output functions given the inducing variables,

p(f|u,Z,X,θ) =
D∏

d=1

N∏

n=1

p(fn,d|u,Z,X,θ),

which can be expressed through (16) withD=diag
[
K f,f −K f,uK−1

u,uK⊤
f,u

]
=
[
K f,f −K f,uK−1

u,uK⊤
f,u

]
⊙

M , with M = ID⊗ IN or simplyM = IDN . The marginal likelihood, including the uncertainty about
the independent processes, is given by Equation (17) with the diagonalform for D. Training with
this approximated likelihood reduces computational complexity toO(K2DN) and the associated
storage toO(KDN).

5.1.3 DETERMINISTIC L IKELIHOOD

In Quiñonero-Candela and Rasmussen (2005), the relationship between the projected process ap-
proximation (Csat́o and Opper, 2001; Seeger et al., 2003) and the FI(T)C and PI(T)C approxima-
tions is elucidated. They show that if, given the set of valuesu, the outputs are assumed to be
deterministic, the likelihood term of Equation (15) can be simplified as

p(f|u,Z,X,θ) =N
(
f|K f,uK−1

u,uu,0
)
.

Marginalizing with respect to the latent function usingp(u|Z) = N (u|0,Ku,u) and including the
uncertainty about the independent processes, we obtain the marginal likelihood as

p(y|Z,X,θ) =

∫
p(y|u,Z,X,θ)p(u|Z)du =N

(
y|0,K f,uK−1

u,uK⊤
f,u +Σ

)
.

8. We refer to both PITC and PIC by PI(T)C.
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In other words, we can approximate the full covarianceK f,f using the low rank approximation
K f,uK−1

u,uK⊤
f,u. Using this new marginal likelihood to estimate the parametersθ reduces computa-

tional complexity toO(K2DN). The approximation obtained has similarities with the projected
latent variables (PLV) method also known as the projected process approximation (PPA) or the de-
terministic training conditional (DTC) approximation (Csató and Opper, 2001; Seeger et al., 2003;
Quiñonero-Candela and Rasmussen, 2005; Rasmussen and Williams, 2006).

5.1.4 ADDITIONAL INDEPENDENCEASSUMPTIONS

As mentioned before, we can consider different conditional independence assumptions for the like-
lihood term. One further assumption that is worth mentioning considers conditional independencies
across data points and dependence across outputs. This would lead to thefollowing likelihood term

p(f|u,Z,X,θ) =
N∏

n=1

p(fn|u,Z,X,θ),

wherefn= [f1(xn),f2(xn), . . . ,fD(xn)]⊤. We can use again Equation (16) to express the likelihood.
In this case, though, the matrixD is a partitioned matrix with blocksDd,d′ ∈ ℜN×N and each block
Dd,d′ would be given asDd,d′ = diag

[
K fd,fd′ −K fd,uK−1

u,uKu,fd′
]
. For cases in whichD > N , that

is, the number of outputs is greater than the number of data points, this approximation may be more
accurate than the one obtained with the partial independence assumption. For cases whereD <N
it may be less accurate, but faster to compute.9

5.2 Posterior and Predictive Distributions

Combining the likelihood term for each approximation withp(u|Z) using Bayes’ theorem, the pos-
terior distribution overu is obtained as

p(u|y,X,Z,θ) =N
(
u|Ku,uA−1Ku,f(D+Σ)−1y,Ku,uA−1Ku,u

)
, (18)

whereA = Ku,u +K⊤
f,u(D+Σ)−1K f,u andD follows a particular form according to the different

approximations: for partial independence it equalsD = blockdiag
[
K f,f −K f,uK−1

u,uKu,f
]
; for full

independence it isD = diag
[
K f,f −K f,uK−1

u,uKu,f
]

and for the deterministic likelihood,D = 0.
For computing the predictive distribution we have two options, either use the posterior foru and

the approximated likelihoods or the posterior foru and the likelihood of Equation (15), that cor-
responds to the likelihood of the model without any approximations. The difference between both
options is reflected in the covariance for the predictive distribution. Quiñonero-Candela and Ras-
mussen (2005) proposed a taxonomy of different approximations according to the type of likelihood
used for the predictive distribution, in the context of single output Gaussian processes.

In this paper, we opt for the posterior foru and the likelihood of the model without any approx-
imations. If we choose the exact likelihood term in Equation (15) (including thenoise term), the

9. Notice that if we work with the block diagonal matricesDd,d′ , we would need to invert the full matrixD. However,
since the blocksDd,d′ are diagonal matrices themselves, the inversion can be done efficiently using, for example, a
block Cholesky decomposition. Furthermore, we would be restricted to work with isotopic input spaces. Alterna-
tively, we could rearrange the elements of the matrixD so that the blocks of the main diagonal are the covariances
associated with the vectorsfn.
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predictive distribution is expressed through the integration of the likelihood term evaluated atX∗,
with (18), giving

p(y∗|y,X,X∗,Z,θ) =
∫

p(y∗|u,Z,X∗,θ)p(u|y,X,Z,θ)du =N (y∗|µy∗ ,K y∗,y∗) ,

where

µy∗ = K f∗,uA−1K⊤
f,u(D+Σ)−1y,

K y∗,y∗ = K f∗,f∗ −K f∗,uK−1
u,uK⊤

f∗,u +K f∗,uA−1K⊤
f∗,u +Σ∗.

For the single output case, the assumption of the deterministic likelihood is equivalent to the de-
terministic training conditional (DTC) approximation, the full independence approximation leads
to the fully independent training conditional (FITC) approximation (Quiñonero-Candela and Ras-
mussen, 2005) and the partial independence leads to the partially independent training conditional
(PITC) approximation (Quiñonero-Candela and Rasmussen, 2005). The similarities of our approx-
imations for multioutput GPs with respect to approximations presented in Quiñonero-Candela and
Rasmussen (2005) for single output GPs are such, that we find it convenient to follow the same
terminology and also refer to our approximations as DTC, FITC and PITC approximations for mul-
tioutput Gaussian processes.

5.3 Discussion: Model Selection in Approximated Models

The marginal likelihood approximation for the PITC, FITC and DTC variants isa function of both
the hyperparameters of the covariance function and the location of the inducing variables. For es-
timation purposes, there seems to be a consensus in the GP community that hyperparameters for
the covariance function can be obtained by maximization of the marginal likelihood. For selecting
the inducing variables, though, there are different alternatives that can in principle be used. Simpler
methods include fixing the inducing variables to be the same set of input data points or grouping
the input data using a clustering method likeK-means and then use theK resulting vectors as in-
ducing variables. More sophisticated alternatives consider that the set of inducing variables must
be restricted to be a subset of the input data (Csató and Opper, 2001; Williams and Seeger, 2001).
This set of methods require a criteria for choosing the optimal subset of thetraining points (Smola
and Bartlett, 2001; Seeger et al., 2003). Such approximations are truly sparse in the sense that only
few data points are needed at the end for making predictions. Recently, Snelson and Ghahramani
(2006) suggested using the marginal likelihood not only for the optimization ofthe hyperparameters
in the covariance function, but also for the optimization of the location of theseinducing variables.
Although, using such procedure to find the optimal location of the inducing inputs might look in
principle like an overwhelming optimization problem (inducing points usually appear non-linearly
in the covariance function), in practice it has been shown that performances close to the full GP
model can be obtained in a fraction of the time that it takes to train the full model. Inthat re-
spect, the inducing points that are finally found are optimal in the same optimality sense that the
hyperparameters of the covariance function.

Essentially, it would be possible to use any of the methods just mentioned abovetogether with
the multiple-output GP regression models presented in Sections 2.1, 2.1.2 and 3. In this paper,
though, we follow Snelson and Ghahramani (2006) and optimize the locationsof the inducing vari-
ables using the approximated marginal likelihoods and leave the comparison between the different
model selection methods for inducing variables for future work.
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In appendix A we include the derivatives of the marginal likelihood wrt the matricesK f,f ,Ku,f

andKu,u.

6. Experimental Evaluation

In this section we present results of applying the approximations in exam score prediction, pol-
lutant metal prediction and the prediction of gene expression behavior in a gene-network. When
possible, we first compare the convolved multiple output GP method against theintrinsic model
of coregionalization and the semiparametric latent factor model. Then, we compare the different
approximations in terms of accuracy and training times. First, though, we illustrate the performance
of the approximation methods in a toy example.10

6.1 A Toy Example

For the toy experiment, we employ the kernel constructed as an example in Section 3. The toy
problem consists ofD= 4 outputs, one latent function,Q= 1 andRq = 1 and one input dimension.
The training data was sampled from the full GP with the following parameters,S1,1 = S2,1 = 1,
S3,1 = S4,1 = 5, P1,1 = P2,1 = 50, P3,1 = 300,P4,1 = 200 for the outputs andΛ1 = 100 for the
latent function. For the independent processes,wd (x), we simply added white noise separately to
each output so we have variancesσ2

1 = σ2
2 = 0.0125, σ2

3 = 1.2 andσ2
4 = 1. We generateN = 500

observation points for each output and use200 observation points (per output) for training the full
and the approximated multiple output GP and the remaining300 observation points for testing. We
repeated the same experiment setup ten times and compute the standardized meansquare error and
the mean standardized log loss. For the approximations we useK = 30 inducing inputs. We sought
the kernel parameters and the positions of the inducing inputs through maximizing the marginal
likelihood using a scaled conjugate gradient algorithm. Initially the inducing inputs are equally
spaced between the interval[−1,1].

Figure 4 shows the training result of one of the ten repetitions. The predictions shown corre-
spond to the full GP in Figure 4(a), the DTC approximation in Figure 4(b), theFITC approximation
in Figure 4(c) and the PITC approximation in Figure 4(d).

Tables 3 and 4 show the average prediction results over the test set. Table3 shows that the SMSE
of the approximations is similar to the one obtained with the full GP. However, there are important
differences in the values of the MSLL shown in Table 4. DTC offers the worst performance. It gets
better for FITC and PITC since they offer a more precise approximation to the full covariance.

The training times for iteration of each model are1.97 secs for the full GP,0.20 secs for DTC,
0.41 for FITC and0.59 for the PITC, on average.

As we have mentioned before, one important feature of multiple output prediction is that we can
exploit correlations between outputs to predict missing observations. We used a simple example to
illustrate this point. We removed a portion of one output between[−0.8,0] from the training data in
the experiment before (as shown in Figure 5) and train the different models to predict the behavior of
y4(x) for the missing information. The predictions shown correspond to the full GPin Figure 5(a),
an independent GP in Figure 5(b), the DTC approximation in Figure 5(c), the FITC approximation in

10. Code to run all simulations in this section is available athttp://staffwww.dcs.shef.ac.uk/people/N.
Lawrence/multigp/.
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Figure 4: Predictive mean and variance using the full multi-output GP and theapproximations for
output 4. The solid line corresponds to the predictive mean, the shaded region corre-
sponds to2 standard deviations of the prediction. The dashed line corresponds to the
ground truth signal, that is, the sample from the full GP model without noise. In these
plots the predictive mean overlaps almost exactly with the ground truth. The dots are
the noisy training points. The crosses in Figures 4(b), 4(c) and 4(d) correspond to the
locations of the inducing inputs after convergence. Notice that the DTC approximation
in Figure 4(b) captures the predictive mean correctly, but fails in reproducing the correct
predictive variance.

Method SMSEy1(x) SMSEy2(x) SMSEy3(x) SMSEy4(x)

Full GP 1.06±0.08 0.99±0.06 1.10±0.09 1.05±0.09
DTC 1.06±0.08 0.99±0.06 1.12±0.09 1.05±0.09
FITC 1.06±0.08 0.99±0.06 1.10±0.08 1.05±0.08
PITC 1.06±0.08 0.99±0.06 1.10±0.09 1.05±0.09

Table 3: Standardized mean square error (SMSE) for the toy problem over the test set. All numbers
are to be multiplied by10−2. The experiment was repeated ten times. Table includes the
value of one standard deviation over the ten repetitions.

Figure 5(d) and the PITC approximation in Figure 5(e). The training of the approximation methods
is done in the same way than in the experiment before.
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Method MSLL y1(x) MSLL y2(x) MSLL y3(x) MSLL y4(x)

Full GP −2.27±0.04 −2.30±0.03 −2.25±0.04 −2.27±0.05
DTC −0.98±0.18 −0.98±0.18 −1.25±0.16 −1.25±0.16
FITC −2.26±0.04 −2.29±0.03 −2.16±0.04 −2.23±0.05
PITC −2.27±0.04 −2.30±0.03 −2.23±0.04 −2.26±0.05

Table 4: Mean standardized log loss (MSLL) for the toy problem over the test set. More negative
values of MSLL indicate better models. The experiment was repeated ten times.Table
includes the value of one standard deviation over the ten repetitions.

Due to the strong dependencies between the signals, our model is able to capture the correlations
and predicts accurately the missing information.

6.2 Exam Score Prediction

In the first experiment with real data that we consider, the goal is to predict the exam score obtained
by a particular student belonging to a particular school. The data comes from the Inner London
Education Authority (ILEA).11 It consists of examination records from 139 secondary schools in
years 1985, 1986 and 1987. It is a random50% sample with 15362 students. The input space
consists of four features related to each student (year in which each student took the exam, gender,
performance in a verbal reasoning (VR) test12 and ethnic group) and four features related to each
school (percentage of students eligible for free school meals, percentage of students in VR band
one, school gender and school denomination). From the multiple output point of view, each school
represents one output and the exam score of each student a particularinstantiation of that output or
D = 139.

We follow the same preprocessing steps employed in Bonilla et al. (2008). The only features
used are the student-dependent ones, which are categorial variables. Each of them is transformed
to a binary representation. For example, the possible values that the variable year of the exam can
take are 1985, 1986 or 1987 and are represented as100, 010 or 001. The transformation is also
applied to the variables gender (two binary variables), VR band (four binary variables) and ethnic
group (eleven binary variables), ending up with an input space with20 dimensions. The categorial
nature of the data restricts the input space toN = 202 unique input feature vectors. However, two
students represented by the same input vectorx, and belonging both to the same school,d, can obtain
different exam scores. To reduce this noise in the data, we take the mean of the observations that,
within a school, share the same input vector and use a simple heteroskedasticnoise model in which
the variance for each of these means is divided by the number of observations used to compute it.13

The performance measure employed is the percentage of explained variance defined as the total
variance of the data minus the sum-squared error on the test set as a percentage of the total data
variance. It can be seen as the percentage version of the coefficientof determination between the

11. This data is available athttp://www.cmm.bristol.ac.uk/learning-training/multilevel-m-support/
datasets.shtml.

12. Performance in the verbal reasoning test was divided in three bands. Band 1 corresponds to the highest25%, band 2
corresponds to the next50% and band 3 the bottom25% (Nuttall et al., 1989; Goldstein, 1991).

13. Different noise models can be used. However, we employed this one so that we can compare directly to the results
presented in Bonilla et al. (2008).
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Figure 5: Predictive mean and variance using the full multi-output GP, the approximations and
an independent GP for output 4 with a range of missing observations in the interval
[−0.8,0.0]. The solid line corresponds to the mean predictive, the shaded region cor-
responds to2 standard deviations away from the mean and the dash line is the actual
value of the signal without noise. The dots are the noisy training points. Thecrosses
in Figures 5(c), 5(d) and 5(e) correspond to the locations of the inducing inputs after
convergence.

test targets and the predictions. The performance measure is computed forten repetitions with75%
of the data in the training set and25% of the data in the testing set.

We first compare different methods without including the efficient approximations. These meth-
ods are independent GPs, multi-task GPs (Bonilla et al., 2008), the intrinsic coregionalization
model, the semiparametric latent factor model and convolved multiple output GPs.Results are
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Method Explained variance (%)
Independent GPs (Bonilla et al., 2008) 31.12±1.33
Multi-task GP (Nystr̈om,R1 = 2) (Bonilla et al., 2008) 36.16±0.99
Intrinsic coregionalization model (R1 = 1) 52.54±2.46
Intrinsic coregionalization model (R1 = 2) 51.94±1.84
Intrinsic coregionalization model (R1 = 5) 45.31±1.63
Semiparametric latent factor model (Q= 2) 51.82±1.93
Semiparametric latent factor model (Q= 5) 44.87±1.15
Convolved Multiple Outputs GPs (Q= 1, Rq = 1) 53.84±2.01

Table 5: Average percentage of explained variance and standard deviation for the exam score pre-
diction on the ILEA data set computed over 10 repetitions. The independentGP result
and the multi-task GP result were taken from Bonilla et al. (2008). The valueof R1 in the
multi-task GP and in the intrinsic coregionalization model indicates the rank of the matrix
B1 in Equation (6). The value ofQ in the semiparametric latent factor model indicates the
number of latent functions. The value ofRq in the convolved multiple output GP refers to
the number of latent functions that share the same number of parameters (see Equation 8).
Refer to the text for more details.

presented in Table 5. The results for the independent GPs and the multi-taskGPs were taken from
Bonilla et al. (2008). The multi-task GP result uses a matrixB1 with rankR1 = 2. For the intrinsic
model of coregionalization, we use an incomplete Cholesky decompositionB1 = L̃L̃⊤, and include
results for different values of the rankR1. The basic covariancekq(x,x′) in the ICM is assumed
to follow a Gaussian form. For the semiparametric latent factor model, all the latent functions use
covariance functions with Gaussian forms. For SLFM, we include results for different values of
the number of latent functions (Q = 2 andQ = 5). Note that SLFM withQ = 1 is equivalent to
ICM with R1 = 1. For the convolved multiple output covariance result, the kernel employed was
introduced in Section 3. For all the models we estimate the parameters maximizing the likelihood
through scaled conjugate gradient and run the optimization algorithm for a maximum of 1000 iter-
ations. Table 5 shows that all methods outperform the independent GPs. Even though multi-task
GPs withR1 = 2 and ICM withR1 = 2 are equivalent methods, the difference of results might be
explained because the multi-task GP method uses a Nyström approximation for the matrixK1 in
Equation (6). Results for ICM withR1 = 1, SLFM with Q = 2 and the convolved covariance are
similar within the standard deviations. The convolved GP was able to recover the best performance
using only one latent function (Q=1). This data set was also employed to evaluate the performance
of the multitask kernels in Evgeniou and Pontil (2004). The best result presented in this work was
34.37±0.3. However, due to the averaging of the observations that we employed here, it is not fair
to compare directly against those results.

We present next the results of using the efficient approximations for the exam school prediction
example. In Figure 6, we have included the results of Table 5 alongside the results of using DTC,
FITC and PITC for5, 20 and50 inducing points. The initial positions of the inducing points are
selected using thek-meansalgorithm with the training data points as inputs to the algorithm. The
positions of these points are optimized in a scaled conjugate gradient procedure together with the
parameters of the model. We notice that using the approximations we obtain similar performances
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Figure 6: Mean and standard deviation of the percentage of explained variance for exam score pre-
diction results on the ILEA data set. The experiment was repeated ten times. Inthe
bottom of the figure, IND stands for independent GPs, MT stands for multi-task GPs,
ICR1 stands for intrinsic coregionalization model with rankR1, SQ stands for semipara-
metric latent factor model withQ latent functions, CM1 stands for convolved multiple
output covariance withQ = 1 andRq = 1 and DK, FK, PK stands for DTC, FITC and
PITC with K inducing points, respectively. The independent GPs and multi-task GPs
results were obtained from Bonilla et al. (2008).

to the full models with as few as5 inducing points. FITC and PITC slightly outperform the DTC
method, although results are within the standard deviation.

Table 6 shows the training times for the different methods.14 Clearly, the efficient approxima-
tions are faster than the full methods. This is particularly true when comparingthe training times
per iteration (second column). The approximations were run over1000 iterations, but the results for
100 iterations were pretty much the same. For the ICM and SLFM results, definitely more than100
iterations were needed. With1000 iterations DTC with5 inducing points offers a speed up factor
of 24 times over the ICM withR1 = 1 and a speed up factor of137 over the full convolved multiple
output method.15 On the other hand, with1000 iterations, PITC with50 inducing points offers a
speed up of9.8 over ICM withR1 = 1 and a speed up of55 over the full convolved GP method.

14. All experiments with real data were run in workstations with2.59 GHz, AMD Opteron’s and up to16 GHz of RAM.
Only one processor was used on each run.

15. The speed up factor is computed as the relation between the slower method and the faster method, using the training
times of the third column in Table 6.
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Method Time per iter. (secs) Training time (secs)
ICM (R1 = 1) 83.60 16889
ICM (R1 = 2) 85.61 47650
ICM (R1 = 5) 88.02 64535
SLFM (Q= 2) 97.00 58564
SLFM (Q= 5) 130.23 130234
CMOGP (Q= 1, Rq = 1) 95.55 95510
DTC 5 (Q= 1, Rq = 1) 0.69 694
DTC 20 (Q= 1, Rq = 1) 0.80 804
DTC 50 (Q= 1, Rq = 1) 1.04 1046
FITC 5 (Q= 1, Rq = 1) 0.94 947
FITC 20 (Q= 1, Rq = 1) 1.02 1026
FITC 50 (Q= 1, Rq = 1) 1.27 1270
PITC 5 (Q= 1, Rq = 1) 1.13 1132
PITC 20 (Q= 1, Rq = 1) 1.24 1248
PITC 50 (Q= 1, Rq = 1) 1.71 1718

Table 6: Training times for the exam score prediction example. In the table, CMOGP stands for
convolved multiple outputs GP. The first column indicates the training time per iteration
of each method while the second column indicates the total training time. All the numbers
presented are average results over the ten repetitions.

As mentioned before, the approximations reach similar performances using100 iterations, in-
creasing the speed up factors by ten.

To summarize this example, we have shown that the convolved multiple output GP offers a sim-
ilar performance to the ICM and SLFM methods. We also showed that the efficient approximations
can offer similar performances to the full methods and by a fraction of their training times. More-
over, this example involved a relatively high-input high-output dimensionaldata set, for which the
convolved covariance has not been used before in the literature.

6.3 Heavy Metals in the Swiss Jura

The second example with real data that we consider is the prediction of the concentration of several
metal pollutants in a region of the Swiss Jura. This is a relatively low-input low-output dimensional
data set that we use to illustrate the ability of the PITC approximation to reach the performance of
the full GP if the enough amount of inducing points is used. The data consistof measurements of
concentrations of several heavy metals collected in the topsoil of a14.5 km2 region of the Swiss
Jura. The data is divided into a prediction set (259 locations) and a validation set (100 locations).16

In a typical situation, referred to as undersampled or heterotopic case, afew expensive measure-
ments of the attribute of interest are supplemented by more abundant data on correlated attributes
that are cheaper to sample. We follow the experiment described in Goovaerts (1997, p. 248, 249)
in which aprimary variable(cadmium) at prediction locations in conjunction with somesecondary
variables(nickel and zinc) at prediction and validation locations, are employed to predict the con-

16. This data is available athttp://www.ai-geostats.org/.
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Figure 7: Cadmium concentration for the Swiss Jura example. The blue circles refer to the pre-
diction set (training data for cadmium) and the red squares are the concentrations for the
validation set (testing data for cadmium).

centration of the primary variable at validation locations. Figure 7 shows the cadmium concentration
for the particular set of input locations of the prediction set (blue circles)and the particular set of
input locations of the validation set (red squares). As in the exam score prediction example, we
first compare the performances of the full GP methods and later we introduce the performances
of the approximations. We compare results of independent GPs, ordinarycokriging, the intrinsic
coregionalization model, the semiparametric latent factor model and the convolved multiple output
covariance. For independent GPs we use Gaussian covariances with different length-scales for each
input dimension. Before describing the particular setup for the other methodsappearing in Table 7,
we first say a few lines about the cokriging method. The interested readercan find details in several
geostatistics books (see Cressie, 1993; Goovaerts, 1997; Wackernagel, 2003).

Cokriging is the generalization of kriging to multiple outputs. It is an unbiased linear predictor
that minimizes the error variance between the data and the predicted values. Different cokriging
methods assume that each output can be decomposed as a sum of a residual component with zero
mean and non-zero covariance function and a trend component. The difference between the cokrig-
ing estimators is based on the assumed model for the trend component. While in simple cokriging
the mean is assumed to be constant and known, in ordinary cokriging it is assumed to be constant,
but unknown, leading to a different set of equations for the predictor.Whichever cokriging method
is used implies using the values of the covariance for the residual componentin the equations for
the prediction, making explicit the need for a positive semidefinite covariancefunction. In the geo-
statistics literature, the usual practice is to use the linear model of coregionalization to construct a
valid covariance function for the residual component and then use any of the cokriging estimators
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Method Average Mean absolute error
Independent GPs 0.5739±0.0003
Ordinary cokriging (p. 248, 249 Goovaerts, 1997) 0.51
Intrinsic coregionalization model (R1 = 2) 0.4608±0.0025
Semiparametric latent factor model (Q= 2) 0.4578±0.0025
Convolved Multiple Outputs GPs (Q= 2, Rq = 1 ) 0.4552±0.0013

Table 7: Average mean absolute error and standard deviation for predicting the concentration of
metal cadmium with the full dependent GP model and different forms for the covariance
function. The result for ordinary cokriging was obtained from Goovaerts (p. 248, 249
1997) and it is explained in the text. For the intrinsic coregionalization model and the
semiparametric latent factor model we use a Gaussian covariance with different length-
scales along each input dimension. For the convolved multiple output covariance, we use
the covariance described in Section 3. See the text for more details.

for making predictions. A common algorithm to fit the linear model of coregionalization minimizes
some error measure between a sample or experimental covariance matrix obtained from the data
and the particular matrix obtained from the form chosen for the linear model of coregionalization
(Goulard and Voltz, 1992).

Let us go back to the results shown in Table 7. The result that appears asordinary cokriging
was obtained with the ordinary cokriging predictor and a LMC withQ = 3 andRq = 3 (p. 119
Goovaerts, 1997). Two of the basic covarianceskq(x,x′) have a particular polynomial form, while
the other corresponds to a bias term.17 For the prediction stage, only the closest16 data locations
in the primary and secondary variables are employed. Also in Table 7, we present results using the
intrinsic coregionalization with a rank two (R1 = 2) for B1, the semiparametric latent factor model
with two latent functions (Q = 2) and the convolved multiple output covariance with two latent
functions (Q = 2 andRq = 1). The choice of eitherR1 = 2 or Q = 2 for the methods was due to
the cokriging setup for which two polynomial-type covariances were used.The basic covariances
for ICM and SLFM have a Gaussian form with different length scales in each input dimension.
For the CMOC, we employ the covariance from Section 3. Parameters for independent GPs, ICM,
SLFM and CMOC are learned maximizing the marginal likelihood in Equation (13),using a scaled
conjugate gradient procedure. We run the optimization algorithm for up to200 iterations. Since the
prediction and location sets are fixed, we repeat the experiment ten times changing the initial values
of the parameters.

Table 7 shows that all methods, including ordinary cokriging, outperform independent GPs.
ICM, SLFM and CMOC outperform cokriging. Results for SLFM and CMOCare similar, although
CMOC outperformed ICM in every trial of the ten repetitions. The better performance for the
SLFM and the CMOC over the ICM would indicate the need for a second latentfunction with
different parameters to the first one. Using a non-instantaneous approach may slightly increase the
performance. However, results overlap within one standard deviation.

17. In fact, the linear model of coregionalization employed is constructedusing variograms as basic tools that account for
the dependencies in the input space. Variograms and covariance functions are related tools used in the geostatistics
literature to describe dependencies between variables. A precise definition of the concept of variogram is out of the
scope of this paper.
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Figure 8: Average mean absolute error and standard deviation for prediction of the pollutant metal
cadmium. The experiment was repeated ten times. In the bottom of the figure DK, FK,
PK stands for DTC, FITC and PITC withK inducing values, CM2 stands for convolved
multiple output covariance withQ = 2 andRq = 1, S2 stands for semiparametric latent
factor model withQ=2 latent functions, IC2 stands for intrinsic coregionalization model
with rankR1 = 2, CO stands for the cokriging method explained in the text and IND
stands for independent GPs.

We next include the performances for the efficient approximations. For the results of the ap-
proximations, ak-meansprocedure is employed first to find the initial locations of the inducing
values and then these locations are optimized in the same optimization procedure used for the pa-
rameters. Each experiment is repeated ten times changing the initial value of theparameters. Figure
8 shows the results of prediction for cadmium for the different approximations with varying number
of inducing points (this is, different values ofK). We also include in the figure the results for the
convolved multiple output GP (CM2), semiparametric latent factor model (S2),intrinsic coregion-
alization model (IC2), ordinary cokriging (CO) and independent GPs (IND).

Notice that DTC and PITC outperform cokriging and independent GPs for any value ofK. Also
for K = 200 andK = 359, DTC and PITC reach the performance of the full GP methods, either
in average (forK = 200) or within one standard deviation (forK = 359). K = 200 might be a
considerable amount of inducing points when compared to the total amount ofinput training data
(359 for nickel and zinc and259 for cadmium). The need of that amount of inducing points could
be explained due to the high variability of the data: mean values for the concentration of pollutant
metals are1.30, 20.01 and75.88 for cadmium, nickel and zinc, while standard deviations are0.91,
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Method Time per iter. (secs) Training time (secs)
ICM 3.84 507
SLFM 4.14 792
CMOGP 4.47 784
DTC 50 0.28 20
DTC 100 0.80 64
DTC 200 1.95 185
DTC 359 4.24 551
FITC 50 0.81 69
FITC 100 1.14 159
FITC 200 2.12 244
FITC 359 5.76 691
PITC 50 1.78 268
PITC 100 2.46 320
PITC 200 4.06 385
PITC 359 7.94 1191

Table 8: Training times for the prediction of the cadmium pollutant metal. In the table, CMOGP
stands for convolved multiple outputs GP. The first column indicates the trainingtime per
iteration of each method and the second column indicates the total training time. All the
numbers presented are average results over the ten repetitions.

8.09 and30.81 giving coefficients of variation of70.00%, 40.42% and40.60%.18 Variability in
cadmium can be observed intuitively from Figure 7. Notice also that FITC outperforms cokriging
and independent GPs forK = 200 andK = 359. The figure also shows that DTC outperforms
FITC for all values ofK. However, the measure of performance employed, the mean absolute error,
does not take into account the predictive variance of the approximated GPs. Using as measures the
standardized mean absolute error and the mean standardized log-likelihood,that take into account
the predictive variance, FITC outperforms DTC: DTC in average has a MSLL of 0.4544 and a
SMSE of0.9594 while FITC in average has a MSLL of−0.0637 with a SMSE of0.9102. PITC in
average has a MSLL of−0.1226 and SMSE0.7740. Averages were taken over the different values
of K.

Finally, Table 8 shows the timing comparisons for the pollutant example. The training times for
DTC with 200 inducing points and PITC with200 inducing points, which are the first methods that
reach the performance of the full GP, are less than any of the times of the full GP methods. For
DTC with 200 inducing points, the speed up factor is about2.74 when compared to ICM and4.23
when compared to CMOGP. For PITC with200 inducing points, the speed up factor is1.31 when
compared to ICM and2.03 when compared to CMOGP. Notice also that all methods are less or
equally expensive than the different full GP variants, except for PITC with 359 inducing variables.
For this case, however, 4 out of the 10 repetitions reached the averageperformance in100 iterations,
given a total training time of approximately794.12 secs., a time much closer to CMOGP and SLFM.

18. The coefficient of variation is defined as the standard deviation overthe mean. It could be interpreted also as the
inverse of the signal-to-noise ratio.
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6.4 Regression Over Gene Expression Data

We now present a third example with real data. This time we only include the performances for
the approximations. The goal is to do multiple output regression over gene expression data. The
setup was described in Section 4. The difference with that example, is that instead of usingD = 50
outputs, here we useD = 1000 outputs. We do multiple output regression using DTC, FITC and
PITC fixing the number of inducing points toK = 8 equally spaced in the interval[−0.5,11.5].
Since it is a 1-dimensional input data set, we do not optimize the location of the inducing points,
but fix them to the equally spaced initial positions. As for the full GP model in example of Section
4, we makeQ= 1 andRq = 1. Again we use scaled conjugate gradient to find the parameters that
maximize the marginal likelihood in each approximation. The optimization procedureruns for 100
iterations.

Train set Test set Method Average SMSE Average MSLL Average TTPI

Replica 1 Replica 2
DTC 0.5421±0.0085 −0.2493±0.0183 2.04
FITC 0.5469±0.0125 −0.3124±0.0200 2.31
PITC 0.5537±0.0136 −0.3162±0.0206 2.59

Replica 2 Replica 1
DTC 0.5454±0.0173 0.6499±0.7961 2.10
FITC 0.5565±0.0425 −0.3024±0.0294 2.32
PITC 0.5713±0.0794 −0.3128±0.0138 2.58

Table 9: Standardized mean square error (SMSE), mean standardized log loss (MSLL) and training
time per iteration (TTPI) for the gene expression data for1000 outputs using the efficient
approximations for the convolved multiple output GP. The experiment was repeated ten
times with a different set of1000 genes each time. Table includes the value of one standard
deviation over the ten repetitions.

Table 9 shows the results of applying the approximations in terms of SMSE and MSLL (columns
4 and 5). DTC and FITC slightly outperforms PITC in terms of SMSE, but PITC outperforms both
DTC and FITC in terms of MSLL. This pattern repeats itself when the training data comes from
replica 1 or from replica 2.

In Figure 9 we show the performance of the approximations over the same twogenes of Figure
1, these are FBgn0038617 and FBgn0032216. The non-instantaneous mixing effect of the model
can still be observed. Performances for these particular genes are highlighted in Table 10. Notice
that the performances are between the actual performances for the LMCand the CMOC appearing
in Table 2. We include these figures only for illustrative purposes, since both experiments use a
different number of outputs. Figures 1 and 2 were obtained as part of multiple output regression
problem ofD = 50 outputs, while Figures 9 and 10 were obtained in a multiple output regression
problem withD = 1000 outputs.

In Figure 10, we replicate the same exercise for the genes FBgn0010531 and FBgn0004907, that
also appeared in Figure 2. Performances for DTC, FITC and PITC areshown in Table 10 (last six
rows), which compare favourably with the performances for the linear model of coregionalization
in Table 2 and close to the performances for the CMOC. In average, PITCoutperforms the other
methods for the specific set of genes in both figures above.
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Figure 9: Predictive mean and variance for genes FBgn0038617 (first row) and FBgn0032216 (sec-
ond row) using the different approximations. In the first column DTC in Figures 9(a)
and 9(d), second column FITC in Figures 9(b) and 9(e), and in the third column PITC in
Figures 9(c) and 9(f). The training data comes from replica 1 and the testing data from
replica 2. The solid line corresponds to the predictive mean, the shaded region corre-
sponds to 2 standard deviations of the prediction. Performances in terms ofSMSE and
MSLL are given in the title of each figure. The adjectives “short” and “long” given to
the length-scales in the captions of each figure, must be understood like relative to each
other. The crosses in the bottom of each figure indicate the positions of the inducing
points, which remain fixed during the training procedure.

With respect to the training times, the Table 9 in the column 6 shows the average training time
per iteration (average TTPI) for each approximation. To have an idea ofthe saving times, one
iteration of the full GP model for the same1000 genes would take around4595.3 seconds. This
gives a speed up factor of1780, approximately.

7. Conclusions

In this paper we first presented a review of different alternatives formultiple output regression
grouped under a similar framework known as the linear model of coregionalization. Then we
illustrated how the linear model of coregionalization can be interpreted as an instantaneous mix-
ing of latent functions, in contrast to a convolved multiple output framework,where the mixing
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(c) PITC, short length scale
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Figure 10: Predictive mean and variance for genes FBgn0010531 (first row) and FBgn0004907
(second row) using the different approximations. In the first column DTCin Figures
10(a) and 10(d), second column FITC in Figures 10(b) and 10(e), and in the third column
PITC in Figures 10(c) and 10(f). The training data comes now from replica 2 and the
testing data from replica 1. The solid line corresponds to the predictive mean, the shaded
region corresponds to 2 standard deviations of the prediction. Performances in terms of
SMSE and MSLL are given in the title of each figure. The crosses in the bottom of
each figure indicate the positions of the inducing points, which remain fixed during the
training procedure.

is not necessarily instantaneous. Experimental results showed that in systems with a presence of
some dynamics (for example, the gene expression data set), having this additional element of non-
instantaneous mixing can lead to simpler explanations of the data. While, in systemsfor which the
dynamics is not so obvious (for example, the exam score prediction data set), the benefit of using
the non-instantaneous mixing was less noticeable.

We have also presented different efficient approximations for multiple output GPs, in the con-
text of convolution processes. Using these approximations we can capture the correlated infor-
mation among outputs while reducing the amount of computational load for prediction and op-
timization purposes. The computational complexity for the DTC and the FITC approximations
is O(NDK2). The reduction in computational complexity for the PITC approximation is from
O(N3D3) toO(N3D). This matches the computational complexity for modeling with independent
GPs. However, as we have seen, the predictive power of independent GPs is lower. Also, since
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Test replica Test genes Method SMSE MSLL

Replica 2

FBgn0038617
DTC 0.2162 −0.7015
FITC 0.2240 −0.6886
PITC 0.1625 −0.8600

FBgn0032216
DTC 0.1845 −0.3078
FITC 0.3639 −0.5086
PITC 0.1613 −0.8368

Replica 1

FBgn0010531
DTC 0.0774 −1.0171
FITC 0.1707 −0.7423
PITC 0.0872 −0.9899

FBgn0004907
DTC 0.6057 −0.2192
FITC 0.1512 −0.8426
PITC 0.2468 −0.7176

Table 10: Standardized mean square error (SMSE) and mean standardized log loss (MSLL) for the
genes in Figures 9 and 10 for DTC, FITC and PITC withK = 8. Genes FBgn0038617
and FBgn0010531 have a shorter length-scale when compared to genesFBgn0032216
and FBgn0004907.

PITC makes a better approximation of the likelihood, the variance of the resultsis usually lower
and approaches closely to the performance of the full GP, when compared to DTC and FITC. As a
byproduct of seeing the linear model of coregionalization as a particular case of the convolved GPs,
we can extend all the approximations to work under the linear model of coregionalization regime.

With an appropriate selection of the kernel smoothing function we have an indirect way to
generate different forms for the covariance function in the multiple output setup. We showed an
example with Gaussian kernels, for which a suitable standardization of the kernels can be made,
leading to competitive results in high-dimensional input regression problems,as seen in the school
exam score prediction problem. The authors are not aware of other work in which this convolution
process framework has been applied in problems with high input dimensions.

As shown with the Swiss Jura experiment, we might need a considerable amount of inducing
points compared to the amount of training data, when doing regression oververy noisy outputs.
This agrees to some extent with our intuition in Section 5, where we conditioned the validity of
the approximations to the smoothness of the latent functions. However, evenfor this case, we
can obtain the same performances in a fraction of the time that takes to train a fullGP. Moreover,
the approximations allow multiple output regression over a large amount of outputs, in scenarios
where training a full GP become extremely expensive. We showed an example of this type with the
multiple output regression over the gene expression data.

Linear dynamical systems responses can be expressed as a convolutionbetween the impulse
response of the system with some input function. This convolution approach is an equivalent way of
representing the behavior of the system through a linear differential equation. For systems involving
high amounts of coupled differential equations (Álvarez et al., 2009;́Alvarez et al., 2011a; Honkela
et al., 2010), the approach presented here is a reasonable way of obtaining approximate solutions
and incorporating prior domain knowledge to the model.
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Recently, Titsias (2009) highlighted how optimizing inducing variables can be problematic
as they introduce many hyperparameters in the likelihood term. Titsias (2009) proposed a varia-
tional method with an associated lower bound where inducing variables arevariational parameters.
Following the ideas presented here, we can combine easily the method of Titsias(2009) and propose
a lower bound for the multiple output case. We have followed a first attempt in that direction and
some results have been presented inÁlvarez et al. (2010).
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Appendix A. Derivatives for the Approximations

In this appendix, we present the derivatives needed to apply the gradient methods in the optimization
routines. We present the first order derivatives of the log-likelihood with respect toK f,f , Ku,f and
Ku,u. These derivatives can be combined with the derivatives ofK f,f , Ku,f andKu,u with respect to
θ and employ these expressions in a gradient-like optimization procedure.

We follow the notation of Brookes (2005) obtaining similar results to Lawrence(2007). This
notation allows us to apply the chain rule for matrix derivation in a straight-forward manner. Let’s
defineG: = vecG, wherevec is the vectorization operator over the matrixG. For a functionL the

equivalence between∂L∂G and ∂L
∂G: is given through∂L

∂G: =
((

∂L
∂G

)
:
)⊤

. The obtain the hyperparame-
ters, we maximize the following log-likelihood function,

L(Z,θ)∝−
1

2
log|D+K f,uK−1

u,uKu,f |−
1

2
trace

[(
D+K f,uK−1

u,uKu,f
)−1

yy⊤
]

(19)

where we have redefinedD as D =
[
K f,f −K f,uK−1

u,uKu,f
]
⊙M +Σ, to keep a simpler notation.

Using the matrix inversion lemma and its equivalent form for determinants, expression (19) can be
written as

L(Z,θ)∝
1

2
log|Ku,u|−

1

2
log|A|−

1

2
log|D|−

1

2
trace

[
D−1yy⊤

]

+
1

2
trace

[
D−1K f,uA−1Ku,fD−1yy⊤

]
.

We can find∂L∂θ and ∂L
∂Z applying the chain rule toL obtaining expressions for∂L∂K f,f

, ∂L
∂K f,u

and ∂L
∂Ku,u

and combining those with the derivatives of the covariances wrtθ andZ,

∂L

∂G:
=

∂LA

∂A:
∂A:
∂D:

∂D:
∂G:

+
∂LD

∂D:
∂D:
∂G:

+

[
∂LA

∂A:
∂A:
∂G:

+
∂LG

∂G:

]
δGK , (20)
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where the subindex inLE stands for those terms ofL which depend onE, G is eitherK f,f , Ku,f or
Ku,u andδGK is zero ifG is equal toK f,f and one in other case. Next we present expressions for
each partial derivative

∂LA

∂A:
=−

1

2
(C:)⊤ ,

∂A:
∂D:

=−
(
Ku,fD−1⊗Ku,fD−1

)
,

∂LD

∂D:
=−

1

2

((
D−1HD−1

)
:
)⊤

∂D:
∂K f,f:

= diag(M: ),
∂D:
∂Ku,f:

=−diag(M: )
[(

I ⊗K f,uK−1
u,u

)
+
(
K f,uK−1

u,u ⊗ I
)

TD
]
,

∂D:
∂Ku,u:

= diag(M: )
(
K f,uK−1

u,u ⊗K f,uK−1
u,u

)
,
∂A:
∂Ku,f:

=
(
Ku,fD−1⊗ I

)
+
(
I ⊗Ku,fD−1

)
TA

∂A:
∂Ku,u:

= I ,
∂LKu,f
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=
((
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)

:
)⊤

,
∂LKu,u
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2
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)
:
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,

whereC=A−1+A−1Ku,fD−1yy⊤D−1K f,uA−1, TD andTA arevectorized transpose matrices(see,

e.g., Brookes, 2005) andH = D−yy⊤+K f,uA−1Ku,fD−1yy⊤ +
(
K f,uA−1Ku,fD−1yy⊤

)⊤
. We can

replace the above expressions in (20) to find the corresponding derivatives, so
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. We have used the property(B:)⊤ (F⊗P) =((

P⊤BF
)

:
)⊤

in (21) and the propertydiag(B:)F: = (B⊙F):, to go from (22) to (23). We also have

∂L

∂Ku,f:
=

1

2
(Q:)⊤

[(
I ⊗K f,uK−1

u,u

)
+
(
K f,uK−1

u,u ⊗ I
)

TD
]
−

1

2
(C:)⊤

[(
Ku,fD−1⊗ I

)
+
(
I ⊗Ku,fD−1

)
TA

]
+
((

A−1Ku,fD−1yy⊤D−1
)

:
)⊤

(24)

=
((

K−1
u,uKu,fQ−CKu,fD−1+A−1Ku,fD−1yy⊤D−1

)
:
)⊤

or simply

∂L

∂Ku,f
= K−1

u,uKu,fQ−CKu,fD−1+A−1Ku,fD−1yy⊤D−1,

where in (24),(Q:)⊤ (F⊗ I)TD = (Q:)⊤TD (I ⊗F) =
(
T⊤

D Q:
)⊤

(I ⊗F) = (Q:)⊤ (I ⊗F). A similar
analysis is formulated for the term involvingTA . Finally, results for ∂L

∂Ku,f
and ∂L

∂Σ are obtained as

∂L

∂Ku,u
=−

1

2

(
K−1

u,u −C−K−1
u,uKu,fQK f,uK−1

u,u

)
,

∂L

∂Σ
=−

1

2
Q.
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