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Abstract

Small sample high-dimensional principal component angl¢RCA) suffers from variance infla-
tion and lack of generalizability. It has earlier been pethout that a simple leave-one-out vari-
ance renormalization scheme can cure the problem. In titsrpse generalize the cure in two
directions: First, we propose a computationally less isitenapproximate leave-one-out estimator,
secondly, we show that variance inflation is also preseneimndd principal component analysis
(KPCA) and we provide a non-parametric renormalizatiorestd which can quite efficiently re-
store generalizability in KPCA. As for PCA our analysis atamgests a simplified approximate
expression.

Keywords: PCA, kernel PCA, generalizability, variance renormalmat

1. Introduction

While linear dimensionality reduction by principal component analysis (PCA)igsted machine
learning workhorse, kernel based methodgion-lineardimensionality reduction are only starting
to find application. We expect the use of non-linear dimensionality reductiexgand in many
applications as recent research has shown that kernel principaboemipanalysis (kPCA) can be
expected to work well as a pre-processing device for pattern recag(igraun et al., 2008). In the
following we consider non-linear signal detection by kernel PCA followega linear discriminant
classifier.

In spite of its conceptual simplicity and ubiquitous use, principal componantilgg in high
dimensions is in fact highly non-trivial (see, e.g., Hoyle and Rattray, 2B8@&mns et al., 2001).
In the physics literature much attention has been devoted to learnability phasiions. In PCA
there is a sharp transition as function of sample size frantearning at allto a regime where
the projections become more and more accurate. In the transition regime le&eriag is still
incomplete there is a mismatch between the test and training projections. In Kjan$2&01) it
was shown that this can be interpreted as a casweftfittingand leads to pronouncedriance
inflationin the training set projections and results in lack of generalization to test sldtastrated
in Figure 1.

Variance inflation is of particular concern if PCA is used to reduce dimeasigmprior to, for
example, a classifier. When the data analytic pipeline is applied to test datativedevariance of
the PCA text projections can lead to significantly reduced performanagurfately, the bias can
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Figure 1: lllustration of the variance inflation problem in PCA. Because R@&imizes variance,
small data sets in high dimensions will be overfitted. When the PCA subspade (A
applied to a test data set (B) the projected data will have smaller variandg.le@ds
to lack of generalizability if the training data is used to train a classifier, say arline
discriminant (D). In Kjems et al. (2001) this problem was noted and it wawslthat the
necessary renormalization can be estimated in a leave-one-out pcedur

be reduced effectively by a leave-one-out (LOO) scale renormalizafithe PCA test projections
to restore generalizability (Kjems et al., 2001). In this paper we pursweraesxtensions of this
result. We give a straightforward geometric analysis of the projectiorigmothat suggests a com-
putationally less intensive approximate cure than the one originally propydéems et al. (2001).
Next, we proceed to investigate the issue in the contelk¢éfelbased unsupervised dimensionality
reduction. We show in both simulation and in real world data (USPS handwdiiggéts and func-
tional MRI data) that variance inflation also happens in kPCA and basicallthé same reasons
as in PCA. We then provide an extension to the LOO procedure for kPGghvdan cope with
potential non-Gaussian distributions of the KkPCA projections, and finallprepose a simplified
approximate renormalization scheme.

2. Generalizability in PCA

The most complete theoretical picture of principal component learning s&pred by Hoyle and
Rattray (2007), which builds on and extends earlier work by, for exanigikhl and Mietzner
(1994), Hoyle and Rattray (2004c), Johnstone (2001), Reimann gt9#16), and Silverstein and
Combettes (1992). Hoyle and Rattray (2007) consider a general PCAlmitth a multidimen-
sional normal distributed signal that emerges from an isotropic noisgylbmakd as the sample size
increases. The stabilization of a given principal component happergivan sample size and takes
the form of a phase transition. For small sample sizes -below the phaséadrapsint - the train-
ing set principal component eigenvectors are in completely random dimedticspace and there is
no learning at all. Then, as the sample size increases, the first prinoipalonent stabilizes, and
for even larger sample sizes the second, and so forth. Sharp transit@sisictly present only in a
limit where both dimensionality and sample size are infinite with a finite catioN /D, but the the-
oretical results are very accurate at realistic dimensions as seen in Eigiine location of the first
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Figure 2: Phase transitions in PCA. Simulated data was created -asju + €, with a nor-
mal distributed signal of unit strength ~ N(0,1), embedded in i.i.d. normal noise
€ ~ N(0,0%1). In this simulated data set we show the phase transition like behavior
of the overlap (the mean square of the projection) of the first PCA eigtmvand the
signal directionu. The input space has dimensibrn= 1000, and the curves are for 10
values of signal to noise within the intervale [0.01,0.5]. For a noise level of, for ex-
ample,o = 0.17 (black curves) there is a sharp transition both in the theoretical curve
(dash/cross) and the experimental curve (full/circle) arddre 120 examples.

phase transition depends on the signal variance to noise variance ). (Bhe theoretical result
provides anean biador a specific model, hence, cannot directly be used to restore geabiktiz
in a given data set.

Now, what happens to the generalization performance of PCA in the negsyn? The PCA
projections will be offset by different angles depending on how setlee given component is
affected by the noise. Because of the bias the test projections will folldereiiit probability laws
than the training data, typically with much lower variance. Hence, if we train ssifier on the
training projections the classifier will make additional errors on the testsseésaalized in Figure
1.

In the case of PCA the subspace projections are uncorrelated, fitseaaganingful to renor-
malize them independently. Assuming approximate normality, a simple affinedraratfon suf-
fices. The scale factor is simply the ratio of the standard deviations of thenggaind test projec-
tions and can be estimated by a leave-one-out procedure (Kjems et dl), 20@wever, since the
LOO procedure involves the computationdSVD'’s of an(N — 1) x (N — 1) matrix, it is of interest
to find a simplified estimate.
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Figure 3: Approximating the leave-one-out (LOO) procedure. Heresiwrilate data with four
normal independent signal componenis; Zf(‘zlr]kuk+ e of strengthg1.4,1.2,1.0,0.8,
embedded in i.i.d. normal noise~ N(0,0°1), with 0 = 0.2. The dimension was
D = 2000 and the sample size whis= 50. In the four panels we show the training
set projections (red crosses), the projections corrected for theetimdrmean overlap
(Hoyle and Rattray, 2007) (yellow squares) and the geometric approximatiequation
(1) (green dots) versus the exact LOO projections (black line).

Let {x1,...,zn} beN training data points in B dimensional input spack (see notation§,we
consider the casH < D. The LOO step for th&l'th point zy concerns projecting onto the PCA
eigenvectors derived from the subget;,...,zn_1}. Define the orthogonal and parallel compo-
nents of the test pointgy = xy; + w‘,‘\, relative to the subspace spanned by the training data. As the
PCA eigenvectors with non-zero variance are all in the span of the trailaitagwe obtain

T T
UN_1k TN =UN_1k" TN >

whereun_1 is thek'th eigenvector of the LOO training set. Assuming that the changes in the PCA
eigenvectors going from sample siXgo N — 1 are small, we can approximate the test projections
as

T _ T . T Il
UN_1k" TN =UN_1k TN~ UNK TN > 1)

whereuy k is thek'th eigenvector on the full sample. The approximation introduces a smafl erro
of order /N as discussed in detail in the Appendix and further illustrated in a simulation efata s
in Figure 3. Note that the orthogonal projectionl% of the N points may be calculated from the
inverse matrix of the inner products of all data pointd\isteps each of a cost scalingh& thereby
achieving a computational burden which scaledN&sather than thé* scaling for an exact LOO
procedure proposed in Kjems et al. (2001).

1. Bold uppercase letters denote matrices, bold lowercase lettersengfprelimn vectors, and non-bold letters denote
scalars.aj denotes th¢th column of A, while a; denotes the scalar in tlith row andj’th column of A. Finally
1nn is aN x N matrix of ones.
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3. Renormalization Cure for Variance Inflation in kernel PCA

The statistical properties of kernel PCA have also been studied ex@¢gnby Blanchard et al.
(2007), Hoyle and Rattray (2004a), Hoyle and Rattray (2004b), Masal. (2007), Shawe-Taylor
and Williams (2003) and Zwald and Blanchard (2006), but to our knoveekdg geometry of gen-
eralization for KPCA has not been discussed in the extremely ill-posed\c&s®.

To better understand the variance inflation problem in relation to KPCA |etoapitulate some
basic aspects of this non-linear dimensional reduction technique.

Let F be the Reproducing Kernel Hilbert Space (RKHS) associated with thek&mction
k(z,2') = ¢(x)"d(2), whered : X — ¥ is a possibly non-linear map from tliz-dimensional
input spaceX to the high dimensional (possibly infinite) feature spgceln kPCA the PCA step
is carried out in the feature spacg, mapped data (Sétkopf et al., 1998). However, 8 can
be infinite dimensional we first apply the kernel trick allowing us to work with @ram matrix
of inner products. Lefx,,...,zN} beN training data points itk and{¢(x1),...,¢(xN)} be the
corresponding images ifi. The mean of thé-mapped data points is denot@end the ‘centered’
images are given b§i(x) = ¢(x) — ¢. The kPCA is performed by solving the eigenvalue problem
f(/ai = Ajaj Wwhere the centered kernel matrﬁ, is defined as

1

=~ 1 1
K=K—-_-1\wK—--K1 — INNKInN - 2
N DNN N NN+N2 NNESCINN )

The projection of @-mapped test point onto théh component is given by

2

N
Bi=6(x)Tvi= and(@) §(zn) = Y dink(z,zn), (3)
n=1 n=1

wherew; is thei'th eigenvector of the feature space covariance matrix andglsehave been nor-
malized. The centered kernel function can be founEi(asa:’) =k(z,2’)— %11,\11% — %11,\,1%, +
éllNKlNl, wherek, = [k(z,z1),...,k(z,zn)]". The projection ofp(z) onto the firsty princi-
pal components will in be denotéy(x).

In the following we focus on a Gaussian kernel of the féaim, ') = exp(— ||z — z'||?), where
cis the scale parameter controlling the non-linearity of the kernel map. By tiieragg operation,
PCA is the obtained in the limit whan— . Thus for large values we expect variance inflation to
be present due the reasons discussed above. What happens in-dlreeaoregime with a finite?
To answer this question we analyze the LOO scenario for kPCA.

Consider the squared distange, — zn||? in the exponent in the Gaussian kernel for some
training set pointe,, and a test poinky. If we split the test point in the orthogonal components as
above with respect to the subspace spanned by the training set we obtain,

2 2 2
|0 — 2|2 = |20 — @[>+ [z

Inserting this expression in the Gaussian kernel in Equation (3) it is seethih test projection
acquire a common factor exp-1 ||z |?):

& 12 g kol
Bian) = 3 cnklamen) = exp( ~Zl1ai|?) 3 ankalzn).
n=1 n=1

which can be arbitrary small for small valugghat is, in the non-linear regime.
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Figure 4: Approximating the leave-one-out (LOO) procedure for kP@# simulate a data
set with four normal independent signal components; Z‘k‘zlnkukJr e of strengths
(1.4,1.2,1.0,0.8, embedded in i.i.d. normal noige~ A((0,0%1), with ¢ = 0.2. The di-
mension was chosdd = 2000 and the sample size wids= 50. In the four panels we
show the four KPCA component’s training set projections (red crasaed)the result of
applying the point wise correction factor e(%p]a:m |?) for the lost orthogonal projection
(green dots) versus the exact LOO kPCA test projections (black).

For a coordinate-wise LOO renormalization procedure we thus propasertputeN test pro-
jections by repeated kPCA on tie— 1 sized sub training sets. However, compared to the PCA
case we face two additional challenges, namely the potentially strongly aass@&n distributions
and component dependencies.

To check for dependency we appeal to simple pairwise permutation tegmiffcant mutual
information measure (see, e.g., Moddemeijer, 1989). If the null hypottseségected for a given
set of components we cannot expect coordinate-wise renormalization éffdctive. If, on the
other hand, the kernel PCA projections pass the independence teanhvpeaceed to renormalize
the components individually. In the following we will assume that a coordingse-approach is
acceptable. First, as a simple approximation to the full LOO we consider adjdistithe common
scaling factor due to the lost orthogonal projection. This may indeed pgrdordsiable approxima-
tion as seen in Figure 4.

To address the second challenge, namely the potential non-normality pesprto generalize
the affine scaling method of Kjems et al. (2001) by a non-parametric puoeedAssume that
there exists a monotonic transformation betweenNhgaining andN LOO test set projections.
The problem of calibrating for an unknown monotone transformation is a canoperation in
image processing, and is used, for example, to transform the gray dcateimage in order to
standardize the pixel histogram (Gonzalez and Wintz, 1977). Equaliziogdtwal sized samples,
simply involves sorting both and assigning the sorted test projections thd saltes of the training
projections, this procedure is easily seen to equalize the histograms wittenging the level sets
(relative ordering) of the LOO test projections. In Figure 5 a simple 1-daioeal data set is used
to illustrate the equalization procedure. The training set clearly containdasses. However, due
to variance inflation (induced by, for example, kernel PCA) the test@e$ dot follow the same
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Figure 5: lllustration of renormalization by histogram equalization. The kfigbshows the train-
ing set (yellow squares) and original test set (red crosses) andekp&ctive histograms.
The histograms are then equalized as seen in the right panel, whereghealgts are the
renormalized test data. The renormalization clearly restores the variatibe st set.

distribution, and may potentially lead to a high misclassification rate. The riglel pathe figure
shows how histogram equalization restores generalizability.

Technically, the transformation may be described as followsH(ét) be the cumulative distri-
bution of valuesf of a given KPCA projection of the training set. Let the test set projectiartb®
same component faves Samples take valuggm). Let|(m) be the index of samplmin a sorted
list of the test set values. Then the renormalized value of the test projecison

g(m) = H ™ (1(M) /Nees) -

The test set projections can be obtained by the simple relation

g(m) = fsor(1(M)) , (4)

wherefsotis the sorted list of training set projections. The algorithm for approximaiernealiza-
tion is summarized in Algorithm 1.

4. Evaluation of the Proposed Cure in Classification Problems

In the following we evaluate the non-parametric exact LOO correctiomsehlehen kPCA is used
as a dimensional reduction step in simulated and real classification data sets.

2. We thank the reviewers for pointing out that while non-normality is etquein the case of KPCA, non-normality
may also appear in PCA calling for application of the proposed non-mramenormalization scheme in this case.
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Algorithm 1 Approximate renormalization in kernel PCA
Require: X and Xieto beNy x D andNge x D respectively
ComputeKy, using Equation (2) and find the eigenvectats, . .., aq
fori=1toN, do
fii + Py(zy) = k. a9{see Equation (3)
end for
for j =1toNedo
&+ Py(@l) = kyi,a"{see Equation (3)
end for
ford=1toqdo
[fsort, | < sort(f{;d) {ascending ordér
[ 1]« sort(f{éd) {ascending ordér
if Ny = Ne then
h < fsort
else{Nr # Nee}
h <+ spling([1 : Ni|, fson, linspacél, Ny, Nee) ) {interpolate to creatdke values of fsor in
the interval[l : N |}
end if
for n=1toN do
gté”*d «— h™d {renormalized test data in the principal subspace, see Equatipn (4)
end for
end for

4.1 Simulated Data

To get some insight into the non-linear regime, we design a synthetic datardatning two 2-
dimensional semi-circular clusters which cannot be separated linear\écissen et al., 2006).
Gaussian noise is added to one of the clusters, and the data is furtherdembedl000 ‘noise
dimensions’. The basis is changed so that the 2D signal space occupge®ial position. The
noise is as earlier assumed i.i.d. with variam@e The assignment variable is= 0,1, and in the
experiments the data set is assumed unbalancedpitita 0) = 0.6.

In Figure 6 we show in the left panel a linear discriminant trained on the tgasghprojections
in a data set oN = 500 inD = 1000 dimensions. The role of the non-linearity as controlled by
the parametec in the Gaussian kernel is investigated in Figure 7 for a simulation setup similar to
Figure 6. As seen the inflation problem dramatically amplifies as non-linearitgéees. Finally,
Figure 8 shows how renormalization improves the learning curve for the geohiem.

4.2 USPS Handwritten Digit Data

The USPS handwritten digit benchmark data set is often used to illustratpamimed and super-
vised kernel methods. The USPS data set considbs-0fl6 x 16 = 256 pixels handwritten digit®.
For each digit we randomly chose 10 examples for training and anotheahipées for testing. The
scale was chosen as the 5th percentile of the mutual distances of the dé&dgauing tac =~ 120,

3. The USPS data set is described by Hull (1994) and can be dowdl@@aseww. ker nel - machi nes. org.
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Figure 6: An unbalanced two cluster data set showing a pronouncishe@rinflation problem in
the projections of the test data in the middle panel. In the right panel we ppliecthe
cure based on non-parametric renormalization to equalize training anddgsitipns us-
ing histogram equalization. The linear discriminant performs close to the od&iayas
rate after non-parametric renormalization. The sample sikk=s500 inD = 1000 di-
mensions and the SNR is 10. The training error rate@9® while the uncorrected test
error rate is 4. Renormalization reduces the test error 20Q@.

and the number of principal components was chosen so 85% of the @xiasccontained in the
principal subspace leading to aroume- 57 PCs to be included.

The first step is to submit the data to the mutual information permutation test. Fyrpaie
of principal components a permutation test with 1000 permutations was ipexdan order to test
the null hypothesis of the two given components being independent. Ugirg@05 significance
level, we find that the null hypothesis can only be rejected for approximateélpf the principal
component pairs when not using Bonferroni correction. The combmafior which the null hy-
pothesis can be rejected are equally distributed across the principal cenmtpo8ince the expected
number of rejected tests at the given confidence level is 5%, hencamsately proceed with the
coordinate-wise renormalization process.

In theq dimensional principal subspace the projections of the test set aremaled to follow
the training set histogram. We chose in these experiments for demonstraticssityaligit 8 versus
the rest. A linear discriminant classifier was trained on the kernel PCAgtiajs of the training
set, and the classification error was found using both the conventiomeall RCA projections of the
test set and their renormalized counterparts. In order to compare the tiiodagthe procedure
was repeated 300 times using random training and test sets. While classificatied on the
conventional projections resulted in a mean classification error tafiestd) of 006+ 0.01, using
the renormalized projections lowered the error rate. @& 0.02. A paired t-test showed that this
reduction is highly significant= 2.0875-10~11).

Figure 9 shows an example of the projections before and after renortimliz& he axis are
fixed across the two methods. The top row clearly illustrates the inflation pndioleconventional
kPCA. Furthermore, due to the imbalanced nature of the data set, the inflatisesca high misclas-
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Figure 7: The role of non-linearity on the variance inflation problem. Weyaaut three experi-
ments at different values of the Gaussian kernel scale parameter (topdmbc = 0.05,
c=0.1,c=0.5). We show classification errors as a function of SNR. The linear discrim-
inant performs close to the optimal Bayes rate after the renormalizationtiopeiraall
cases, while the un-renormalized systems suffers from poor genéikiyza he sample
size isN = 500 and the number of dimensiondis= 1000.

sification rate. The bottom row illustrates how renormalization overcomes tteetitias induced
by the variance inflation. The discriminant line is seen to separate the tweskagpropriately.

To gain a better understanding of how the variance inflation and quality eéttegmalization
are effected by noise, we added Gaussian ndi§ed(o2)) with e € [0,5]. For every noise level,
300 random training and test sets where drawn as explained abov@@hdkas performed. Once
again our goal was to classify digit 8 versus the rest by a linear classifilee principal subspace.
The results are summarized in Figure 10 where we show the error rate laefd after renormal-
ization as well as the result based on renormalizing according to the |@avetn error. In the last
case, theN projections determined from leave-one-out cross validation (LOOCG¥/)earormalized
to follow the entire training set histogram. Renormalization is then only applied teshset when
this renormalized LOOCYV error is less than the estimated baseline error.riglithganel of Figure
10 it is seen how renormalizing the projections leads to a much improved clasasifieng as the
SNR is ‘reasonable’. Even wheam, = 0 there is some inherent noise in the data, which explains
why renormalization still improves the classification. ésreaches 1 it is no longer possible to
identify the digits by visual inspection, and classification becomes incrdgasiificult.

The left panel of Figure 10 shows how the conventional error rateecges to the baseline of
0.1 (misclassifying all digits 8), for high noise levels. Basically, increasingnihise result in a
more skewed test set subspace in relation to the subspace spannedrhinthg set (see Figure
1). At a given threshold this causes all the projections to lie on the samefdiue discrimination
function due to the imbalanced composition, leading to a misclassifications rafd @f As the
idea of renormalization by histogram equalization is to restore the variation beghset, this be-

2036



A CURE FORVARIANCE INFLATION IN HIGH DIMENSIONAL KERNEL PCA

0.45 T T

Etrain
—»— Etest
—e— EtestRenorm

Error rate

0 500 1000 15(

Figure 8: Classification error learning curves for the two semicirculatensisn i.i.d. noise setup.
The signal to noise ratio weSNR= 60. The linear discriminant performs close to the
optimal Bayes rate after the renormalization operation in all cases, whiletkertoonal
system suffers from poor generalizability, and requires about ten tism@say examples
to reach the same error level as the renormalized classifier. The expeviaeoarried
out with D = 2000.

havior is naturally not encountered for the renormalized projectionteddsas the SNR decreases,
renormalization increases the error rate, as the test set observagdoscaid to be distributed on
both sides of the discrimination line - which leads to many misclassifications wheigtied is sup-
pressed by the noise. However, using LOOCV based renormalizativantsethe error rate from
blowing up while at the same time improving the classification in the more sensible &\Rer as
compared to conventional KPCA.

4.3 Functional MRI Data

As a second high dimensional real data example, functional magneticaresoimaging (fMRI)
data was used to illustrate the effect of renormalization. The fMRI dataaseaequired by Dr. Eqill
Rostrup at Hvidovre Hospital on a5LT Magnetom Vision MR scanner. The scanning sequence was
a 2D gradient echo EPI (T2- weighted) with 66 ms echo time arfd/3 flip angle. The images
were acquired with a matrix dD = 128x 128 = 16,384 pixels, with FOV of 230 mm, and 10
mm slice thickness, in a para-axial orientation parallel to the calcarine sdlbesvisual paradigm
consisted of a rest period of 20 sec of darkness using a light fixatigrfalmwed by 10 sec of
full-field checkerboard reversing at 8 Hz, and ending with 20 secgif(darkness). In total, 150
images were acquired in 50 sec, corresponding to a period of approkirB8kmsec per image.
The experiment was repeated in 10 separate runs containing 150 imafedrearder to reduce
saturation effects, the first 29 images were discarded, leaving 121 irfagesch run. We use a
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Figure 9: USPS handwritten digits test set projections. The top row shevestiventional projec-
tions, while the bottom row shows the projections after renormalization. Inxaimgle
the third kPC carries a large part of the signal, and hence this comporstatis versus
the other five first PCs. The variance reduction and the consequéris gvident from
the top row. The dashed line indicates the linear discriminant function forifgliags
digit 8 vs the rest.

simple on-off activation reference function for supervision of the di@ssThe reference function
is off-set by 4 seconds to emulate the hemodynamic delay.

The data set is split in two equal sized subsets: Five runs for training\ancuns for testing.
As the test and training data are independent, the test error estimate isiasednéstimator of
performance. The scale of the Gaussian kernel was chosen as theréémtge of the mutual
distances leading to~ 15000, while the dimension of the principal subspace is chosgr-a20.

Again the principal components are tested for independence by a mutahatfon permuta-
tion test. Using 1000 permutations angd & 0.05 significance level, we find that the null hypothesis
is rejected for approximately 1% of the principal component pairs.

Similar to the handwritten digit data we perform linear classification in the kemetipal
subspace. This was repeated 300 times using random splits for differisetlevels. The results
are summarized in Figure 11. Again renormalization is seen to decreasedheagr significantly,
while the LOOCYV based scheme furthermore prevents the increase inagdorhigh noise levels
(low SNR).

Figure 12 shows the projection of the data onto the first kPC’s beforaféedrenormalization.
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Figure 10: Mean error rates 1 standard deviation as a function of the noise level. The test error
based on conventional kernel PCA projections, renormalized projecton a LOOCV
scheme is shown. Renormalization is seen to improve the performance, wiiiEYO
based renormalization prevents the classification error to blow up in thdoxer$NR
regime.

5. Conclusion

Dimensionality reduction by PCA and KPCA can lack generalization due to tgasehvariance
inflation in the extremely ill-posed case when the sample size is much smaller thapuhspace
dimension. In this work we have provided a simple geometric explanation fomtie effect,
namely that test points ‘loose’ their orthogonal projections, when their ddibg is computed.
This insight allowed for a speed-up of a previously proposed LOOmseher renormalization.
For kPCA we showed that the effects can be even more dramatic than ingP@Ave proposed a
scheme for exact LOO renormalization of the embedding, and an approxéx@atession at lower
cost. The viability of the new scheme was demonstrated for kPCA when aseédhiensionality
reduction both in simple synthetic data, in the USPS digit classification problehipaiMRI brain
state decoding.
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Figure 11: Mean error rates 1 standard deviation as a function of the noise level for fMRI data
(D = 16,384 N = 605) . The test error based on conventional kernel PCA projections,
renormalized projections, and a LOOCYV scheme is shown. Renormalizatieanss
clearly improve the performance. Arrow 'A’ indicates the noise level usddgure 12

Appendix A.

Let un k be thek'th eigenvector of the covariance matrix on the full samplg andun_1« be the
corresponding eigenvector of LOO training set covariance maigjx;. In the following we use
first order perturbation theory to show that

T T
UN_1k TN~ “N,k'mﬂl )
where the data vecter has been split in its orthogonal and parallel componerys= =y +a:‘,l,,
relative to the subspace spanned by the training data. Thus, we arestidieie the difference
betweenuy x andun—_1 . Simple manipulations of the covariance matrices lead to
1

1 T
SN-1=2N+ mzN — N(CBN —pN-1)(TN — pN-1) " -

o(§)
By introducing the shorthand = X\ _; and B = 3\ we get
A=B+5C, (5)

whered is of order%. Note that all matrices are symmetric. We now look atktie eigenvector of
A andB:

Buy = Au (6)
Avk = VK . (7)
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Figure 12: Test set projections of the fMRI data with Gaussian noisedaalsienarked on Figure
11 (& = N((0,3.8?)). The top row shows the conventional projections, while the bottom
row shows the projections after renormalization. The ‘red class’ indiGattgation,
while the blue observations are acquired during rest. The dashed lins tharknear
discriminant. The scale is chosen as the 5th percentile of the mutual distances.

First order perturbation theory posits

Vg = )\k + 6Ek 5 (8)
Vg = uk -+ Ow . 9)

That is, when going fronN to N — 1 samples we only have a smaﬂl((%)) change in eigenvalues
and rotation of eigenvectors. Since all eigenvectors are orthonornedlbitvs thatuy L wy, c.f.,

okl = | Juk+ dwi|* = [[ur]|?+ & ||wi]|*+ 2Bug wy = 1

du wy=0.
We now expand Equation (7) using Equation (5), (8) and (9)

Avy = Vg =
(B+0C)(uk+ dwy) = (A + 8&k) (uk + dw) ,

ignoring higher order terms @ gives

Buy + 0Cuk + d0Bwy = Agug + OA\gwy + O ku |
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Finally, exploiting Equation (6) reduces the above to
Cuy + Bwy = MNwy + Euy - (10)
We now look for an estimate @f by left multiplying with uI
uI Cuy+ uIBwk = )\kul'wk + Ekuluk ,
using||u||? = 1 anduy Lwy gives
uIC’uH— u-krBwk =&,

since B is symmetric,uy is both a left and right singular vector. Henm{Bwk = )\kulwkzo.
Thus finally, it follows that

uf Cuy = & . (11)
Next, we find an estimate aby by left multiplying Equation (10) WitmjT j #k.
uJT Cuy+ ujTBwk = )\kujT'wk + EkujTuk ,
again we exploit the fact thd® is symmetric and that; is orthogonal tauy, which gives
u}-C'uk —|—)\juijk = )\ku}-wk . (12)
Assuming that spauy, ua,..., up} = spafvi,vy,...,vp}, thatis, thev-basis is a rotation of the

u-basis, which implies thaivy can be represented as a linear combination ofutheesctors (or
v-vectors), leads to

D
m=1

Due to orthonormality of the eigenvectors, we now realize liqat 0 anduJka = uJT ZE):]. hkmttm
will only be non-zero fom= j. Hence, Equation (12) reduces to

ujTCuk—i—)\jhkj:)\khkj =

h u-jrCuk Kt i
kj = )\k_)\j 3&]
hg=0

In the above we have assumed a nondegenerate system, thagid,j vk # j. Thus,wk can be
expressed as
Nl Cug

)\k—Amum’

(13)

wg =
m=1=#£k
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where we used thaf'uy is only non-zero fok < N. We are now ready to return to Equation (8)
and (9) inserting the expressions derived§pandwy in Equation (11) and (13) respectively:

Vg = )\k+6uICuk (14)
N T _ T _
o= w5 (tm (2N HN)\l))(;\tk(wN 1)) (15)
m=T£k k=™ /Am

Equation (14) shows that the change in eigenvalue is indeed SD(%I)I when going fromN to
N — 1 samples. For the eigenvector perturbation, Equation (15), we caml eersquared length
of the sum and obtain a similar result,

% (g (&N — pin-1)) (uy (TN — ”N*l))um
m=Tk Ak —Am

1
WHOUN—MNAHZ

Zl -
IN

S (uh (N — pno1) u
Z )\k—)\m m

m=1+£k

C | (uh (2N — pno1)]?

Ak — Am|? -

1 2
WHiBN —HN71||
m=1+#k

1 2)|ey — pnal*
N2 M2

wherelAA is the spacing between tk&h eigenvalue and the closest neighbor, and the factor of two
compensates for the missikgh term in the sum, that is, the perturbation is of or@&f./N)
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