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Abstract

Fisher linear discriminant analysis (FDA) and its kernele@sion—Kkernel discriminant analysis
(KDA)—are well known methods that consider dimensional@gtuction and classification jointly.
While widely deployed in practical problems, there are sfilfesolved issues surrounding their
efficient implementation and their relationship with leastan squares procedures. In this paper
we address these issues within the framework of regulagatichation. Our approach leads to
a flexible and efficient implementation of FDA as well as KDAe\Wso uncover a general rela-
tionship between regularized discriminant analysis addeiregression. This relationship yields
variations on conventional FDA based on the pseudoinverd@aairect equivalence to an ordinary
least squares estimator.

Keywords: Fisher discriminant analysis, reproducing kernel, gdirea eigenproblems, ridge
regression, singular value decomposition, eigenvaluerdgosition

1. Introduction

In this paper we are concerned with Fisher linear discriminant analysi&)(FId enduring clas-
sification method in multivariate analysis and machine learning. It is well knoanttie FDA
formulation reduces to the solution of a generalized eigenproblem (GotukaanLoan, 1996) that
involves the between-class scatter matrix and total scatter matrix of the dé&dbasvelo solve the
generalized eigenproblem, FDA typically requires the pooled scatter matr&riofisingular. This
can become problematic when the dimensionality is high, because the scatterigriikteilly to be
singular. In applications such as information retrieval, face recognitidmacroarray analysis, for
example, we often meet undersampled problems which are in a “srhati largep” regime; that
is, there are a small number of samples but a very large number of varidiiiese are two main
variants of FDA in the literature that aim to deal with this issue:gbeudoinversenethod and the
regularizationmethod (Hastie et al., 2001; Webb, 2002).

Another important family of methods for dealing with singularity is based on astage pro-
cess in which two symmetric eigenproblems are solved successively. Tinsaap was pioneered
by Kittler and Young (1973). Recently, Howland et al. (2003) used thisagxh to introduce the
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generalized singular value decomposition (GSVD) (Paige and Saudd®8&®) into the FDA solu-
tion by using special representations of the pooled scatter matrix and Ipethess scatter matrix.
A similar general approach has been used in the development of effigipraximation algorithms
for FDA (Cheng et al., 1992; Ye et al., 2004). However, the challerdgieweloping an efficient
general implementation methodology for FDA still remains.

In the binary classification problem, FDA is equivalent to a least mean edaror proce-
dure (Duda et al., 2001). It is of great interest to obtain a similar relatiprishmulti-class prob-
lems. A significant literature has emerged to address this issue (Hastie €04l Park and Park,
2005b; Ye, 2007). However, the results obtained by these authossilhject to restrictive condi-
tions. The problem of finding a general theoretical link between FDA aast leean squares is still
open.

In this paper we address the issues within a regularization framework. rog@ge a novel
algorithm for solving the regularized FDA (RFDA) problem. Our algorithm igenefficient than
the GSVD-based algorithm (Howland et al., 2003), especially in the settingndltn but largep”
problems. More importantly, our algorithm leads us to an equivalence betRf€BA and a ridge
estimator for multivariate linear regression (Hoerl and Kennard, 19#0%. equivalence is derived
in a general setting and it is fully consistent with the established result in theylpinoblem (Duda
etal., 2001).

Our algorithm is also appropriate for the pseudoinverse variant of Fieed, we establish
an equivalence between the pseudoinverse variant and an ordiaatstpiares (OLS) estimation
problem. Thus, we are able to resolve the open problem concerninglaieniship between the
multi-class FDA and multivariate linear estimation problems.

FDA relies on the assumption of linearity of the data manifold. In recent ykarsel methods
(Shawe-Taylor and Cristianini, 2004) have aimed at removing such lineastyngptions. The
kernel technology can circumvent the linearity assumption of FDA, bedausrks by nonlinearly
mapping vectors in the input space to a higher-dimensional feature spddbemn implementing
traditional versions of FDA in the feature space. Many different agghies have been proposed to
extend FDA to kernel spaces in the existing literature (Baudat and An@0@®; Mika et al., 2000;
Roth and Steinhage, 2000).

The KDA method in Mika et al. (2000) was developed for binary problenyg, @md it was
based on using the relationship between KDA and the least mean squaneprecedure. A more
general method, known as generalized discriminant analysis (GDA)@aund Anouar, 2000),
requires that the kernel matrix be nonsingular. Unfortunately, centaritige feature space will
violate this requirement. Park and Park (2005a) argued that this might togan the theoretical
justification for GDA and proposed their GSVD method to avoid this requirefenbnsingularity.

KDA methods have been successfully deployed in many practical probldins.approach
to FDA that we present in the current paper not only handles the naraiity issue but also
extends naturally to KDA, both in its regularization and pseudoinverse faiiaswill see that our
regularized KDA is different from the existing regularization methods fDKsee, e.g., Park and
Park, 2005a), where as we discuss later, there is a problem with inEmtsisof solutions. Our
methods for regularized KDA derive directly from the corresponding oelior regularized FDA
and avoid the inconsistency problem.

Finally, we extend our approach for FDA as well as KDA to a certain familgerieralized
eigenvalue problems.
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The paper is organized as follows. Section 2 reviews FDA and KDA, &utich 3 presents
our KDA formulations. In Sections 4 and 5 we propose two new algorithm§&fk and KDA,
respectively. An equivalence between FDA and multivariate linear ssgme problems is presented
in Section 6. We conduct empirical comparisons in Section 7. We extend piheaayh to a certain
family of generalized eigenproblems in Section 8 and conclude in Section 9.

2. Problem Formulation

We are concerned with a multi-class classification problem. Given a sepafimensional data
points,{X1,...,Xn} € X C RP, we assume that thg are to be grouped into disjoint classes and
that eachx; belongs to one and only one class. Vet {1,2,...,n} denote the index set of the data
pointsx; and partitionV into c disjoint subset¥;; that is,Vi NV = @ fori # j andU‘j’:le =V,
where the cardinality o¥; is nj so thaty§_, nj = n. We also make use of a matrix representation
for the partitions. In particular, we |& = [g;] be annxc indicator matrix withe; = 1 if input x; is
in classj andegj = 0 otherwise.

In this section we review FDA and KDA solutions to this multi-class classificatioblpm. We
begin by presenting our notation.

2.1 Preliminaries

Throughout this papel, denotes thenxm identity matrix, 1y, themx1 vector of ones) the zero
vector or matrix with appropriate size, ahld= 1, — %1,11§1 thenxn centering matrix. For amx1
vectora= (a,...,am), diaga) represents thexx mdiagonal matrix withey, ..., am as its diagonal
entries. For amxm matrix A = [a;], we letA™ be the Moore-Penrose inverseAftr(A) be the
trace ofA, rk(A) be the rank oA and||A||g = /tr(A’A) be the Frobenius norm &. For anmxq
real matrixA, & (A) andA(A) denote its range and null spaces; that{gA) = {Ax|x € R%} and
AN (A) = {x € RYAx = 0}.

For a matrixA € R™9 with m > g, we always express the (reduced) singular value decompo-
sition (SVD) of A asA = UI'V’ whereU € R™1 is a matrix with orthonormal columns (that is,
U'U =1g), V € R™%is orthogonal (i.e.V'V =VV’' = lg), andl' = diag(yi,...,Yq) is arrayed in
descending order ofy > y> > --- > yq (> 0). Let the rank ofA ber (< min{m,q}) and denote
rk(A) =r. The condensed SVD & is thenA = Ual AV, whereUp € R™" andV € R are
matrices with orthonormal columns (i.&J,Ua = I, andV,,Va = I;), andlp = diag(y1, ..., ¥r)
satisfiesyy >y > - >y > 0.

Given two matrice; andX; € R™™, we refer to(A, B) whereA = diag(A1,...,Aq) andB =
[b1,...,bg] asq eigenpairs of the matrix pendiky, >») if 1B = Z,BA; namely,

21bi = A 2bi, fori=1,...,q

The problem of finding eigenpairs @&;,%,) is known as ageneralized eigenproblemin this
paper, we especially consider the problem with the nonkefor i = 1,...,q and refer toqA,B) as
the nonzero eigenpairs 0E;,%,). If 25 is nonsingular(/A,B) is also referred to as the (nonzero)
eigenpairs oEglzl because the generalized eigenproblem is equivalent to the eigenproblem:

>,151B=BA.
In the case thal, is singular, one typically resorts to a pseudoinverse eigenproblem:
$J%1B=BA.
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Fortunately, we are able to establish a connection between the solutiongefigralized eigen-
problem and its corresponding pseudoinverse eigenproblem. In partioie have the following
theorem, the proof of which is given in Appendix A.

Theorem 1 LetX; and 2, be two nxm real matrices. Assumg (1) C R (Z2). Then, if(A,B)
are the nonzero eigenpairs &f 21, we have thafA,B) are the nonzero eigenpairs of the matrix
pencil (X1,%7). Conversely, ifA,B) are the nonzero eigenpairs of the matrix periéil, ), then
(N, Z5 2,B) are the nonzero eigenpairs Bf Z;.

As we see from Appendix A, a necessary and sufficient conditio®fa;) C R (2») is
3,555 =3,

SinceR™ is equal to the direct sum & (Z1) (or R (Z2)) and A[(Z7) (or AL(Z5)), we obtain that
R (Z1) C R(Z2) if and only if A((Z,) C A[(Z]). Furthermore, if bott¥; andZ, are symmetric,
thenA((Z2) C A((Z;) is equivalent taR (21) C R (Z2).

2.2 Fisher Linear Discriminant Analysis

Letm = 15" X be the sample mean, and Iet; = ﬁljZier xi be the jth class mean fof =
1,...,c. We then have the pooled scatter maBix= 3 ;(x; —m)(x; —m)" and the between-class
scatter matrx§, = ¥ §_, nj(m; —m)(m; —m)’. Conventional FDA solves the following generalized
eigenproblem:

Shaj =AjSaj, A1>A>-->Ng>Agr1=0 1)

whereq < min{p, c—1} and where we refer ta; as thejth discriminant direction. Note that we
ignore a multiplier ¥n in these scatter matrices for simplicity.

SinceS = S + Sy whereS,, is the pooled within-class scatter matrix, FDA is equivalent to
finding a solution to

Ssa=A/(1-N)Spa.

We see that FDA involves solving the generalized eigenproblem in (1) jmdain be expressed in
matrix form:

SoA = SAA. 2)
HereA = [ay,...,aq) (nxq) andA = diag(Ay,...,Aq) (gx0). If § is nonsingular, we obtain

S 1A = AA.

Thus, the(Aj,a;) are the eigenpairs & 1S, and the eigenvectors corresponding to the largest
eigenvalues o5 1S, are used for the discriminant directions. SincéSy is at mostc—1, the
projection will be onto a space of dimension at mostl (i.e.,g < c—1).

In applications such as information retrieval, face recognition and mieapamnalysis, however,
we often meet a “smalh but largep” problem. Thus,S is usually ill-conditioned; that is, it is
either singular or close to singular. In this caSglS, is not well defined or cannot be computed
accurately.
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Let X = [X1,...,Xn) (nxp), M = [my,....m¢] (cxp), M = diagny,...,nc) (cxc),

N2 = diag(y/Ny, ..., v/Ag), T= (N,...,Nc)', VA= (VAy,..., /M) andHp = lc—L/Tt/T. It then
follows that1l/E = 1.M = 11, Elc = 15, 1.t=n, E’E = N, N~ =1, and

M =M"1E'X.

In addition, we have . )
EN zH;=HEN 2
given thatEM~2H, = EM~2 — 11,/ andHEN 2 = EN~ % — 11, /7.
Based on these results and the idempotendy,& can be written as

S = X'HHX = X'HX, 3)
and we have
S = M’[I’I—;Tm’]M
= M’[ﬂé—in\/ﬁ'] [n%—ifm’}m

— X'EM~MzHH N0 1EX
= X'HEM~!E’'HX. (4)

Given these representations &fand S, the problem in (2) can be solved by using the GSVD
method (Van Loan, 1976; Paige and Saunders, 1981; Golub and \&mn L696; Howland et al.,
2003).

There are also two variants of conventional FDA in the literature that aim ndléahe ill-
conditioned problem (Webb, 2002). The first variant, pseudoinverse methpithvolves replacing
S 1 by S' and solving the following eigenproblem:

SFSHA = AA. (5)

Note thatS™ exists and is unique (Golub and Van Loan, 1996). MoreoSgrjs equal toS*
whenevers is nonsingular. Thus, we will use (5) whé&his either nonsingular or singular.

The second variant is referred toragularized discriminant analysifRDA) (Friedman, 1989).
It replacesS by S + 62l , and solves the following eigenproblem:

(S +0%p) 1A = AA. (6)

It is a well known result that FDA is equivalent to a least mean squanedl procedure in
the binary classification problene & 2) (Duda et al., 2001). Recently, similar relationships have
been studied for multi-class & 2) problems (Hastie et al., 2001; Park and Park, 2005b; Ye, 2007).
Moreover, Park and Park (2005b) proposed an efficient algoritiRDA based on a least mean
squared error procedure in the multi-class problem.

We can see that the solutidnfor (5) or (6) is not unique. For example Afis the solution, then
so isAD whereD is an arbitrarygxq nonsingular diagonal matrix. Thus, the constraintS; +
o?l p)A = lq is typically imposed in the literature. In this paper we concentrate on the solution o
(6) with or without this constraint, and investigate the connection with a ridggession problem
in the multi-class setting.
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2.3 Kernd Discriminant Analysis

Kernel methods (Shawe-Taylor and Cristianini, 2004) work in a feataeesf , which is related
to the original input spac& C RP by a mapping,

o X—>7T.

That is,¢ is a vector-valued function which gives a vecds), called afeature vectorcorrespond-
ing to an inputs € X. In kernel methods, we are given a reproducing kekhelX x X — R such
thatK(s,t) = ¢(s)'d(t) for s,t € X. The mappingp(-) itself is typically not given explicitly.

In the sequel, we use the tilde notation to denote vectors and matrices in the fepace.
For example, the data vectors and mean vectors in the feature spacenareddask; and m;.
Accordingly,X = [%1,...,%n)" (nxg) andM = [My,..., M)’ (cxg) are the data and mean matrices
in the feature space. Heggis the dimension of the feature space. Althoggis possibly infinite,
we here assume that it is finite but not necessarily known.

Kernel discriminant analysis (KDA) seeks to solve the following generdligigenproblem:

SoA = SAA, (7)

whereS and$, are the pooled scatter matrix and the between-class scatter magfix nespec-
tively:

)Y = X'HEN~E'HX.

C
Il
™M
=
E
[
2
=
[

=

The KDA problem is to solve (7), doing so by working solely with the kernelrma& = XX’
This is done by noting tha can be expressed as
n

A= Zl(fq—rﬁ)Bf—i—N:f(’HY—l—N, (8)

whereY = [B,,...,B,] (nxq) andN € R9<9 such that\’X'H = 0 (Park and Park, 2005a; Mika et al.,
2000). It then follows from (7) that

X'HEMNE'HXX'HY = X'HXX'HYA. 9)

This implies that(A,>~<’HY) are also they eigenpairs of the matrix penc@éb,é). Thus, in the
literature the solution of (7) is typically restrictedi@(f(’H); thatis,N = Ois set.
Premultiplying both sides of the Equation (9) byX, we have a new generalized eigenvalue
problem
CEM~E'CY=CCYA, (10)

which involves only the kernel matrit = XX’ via its centered forn€ = HKH.
The current concern then becomes that of solving the problem (10pugtiK can be assumed
to be nonsingularC is positive semidefinite but not positive definite because the centering matrix
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H is singular. In fact, the rank a is not larger tham—1 because the rank éf is n—1. Thus the
GDA method devised by Baudat and Anouar (2000) cannot be usetdigifer problem (10).

To address this problem Park and Park (2005a) proposed a GS$4atfzdgorithm to solve
(10). Running this algorithm requires the complete orthogonal decompo@anb and Van Loan,
1996) of matrix[CEI‘I‘% ,C|’, which is of size(n+c) xn. This approach is infeasible for large values
of n. Thus, Park and Park (2005a) developed an efficient alternativehvebnsists of two SVD
procedures but does not involve the complete orthogonal decompoditior{io+c) x n matrix. We
refer to it as thesVD-based algorithm

Another approach to solving the problem (10) is based on the followingagged version of
the problem:

CEMN'E'CY = (CC+0?l,)YA, (11)

which was also studied by Park and Park (2005a). Note that this variaot ésdirectly regularized
form of the original KDA problem in (7).

After having obtained from (10) or (11), for a new input vectar the projectiore of its feature
vectorX ontoA is computed by

z:VH)”((i-%)”(’ln) — Y'H (kx—%mn), (12)

whereky = (K(x,xl),...,K(x,xn))’. This shows that the kernel trick can be used for KDA, and
this approach has been widely deployed in practical problems. Howgettegoretical justification
for using the projection in (12) has been lacking in the literature. We aretalpeovide such as
justification as follows. Recall that {fA\, X’HY) is the solution of (7), thef\, Y) is the solution of
(10). As we will see in Theorem 3, {f\,Y) is the solution of (10)(/\,)~(’HY) is the solution of (7).
This justifies the projection (12).

Note, however, that ifA,Y) is the solution of (11) this does not imply thak, X'HY) is the
solution of (7). This shows that the projection (12) is inconsistent with (Tfjs is an inconsistency
that underlies the regularized KDA methodology of Park and Park (200%& new methodology
that we propose in the following section surmounts this problem.

3. New Approachesto Kernel Discriminant Analysis

Recall that we are interested in the pseudoinverse and regularizatios &r(7), defined respec-
tively by
§ SHA = AA (13)
and
SoA = (S + %l g)AA. (14)

We wish to find solutions of (7) and (13) or (14) that are consistent with e¢her.

Since R (S) = R(X'HHX) = R (X'H) and R(S) = R(X’HENE'HX) = R (X'HE), we
have that® (S,) € R (S). As a direct corollary of Theorem 1, we thus obtain a connection between
(7) and (13); that is,

Theorem 2 If (A, A) (nonzero eigenpairs) is the solution of (13), thi@nA) is the solution of (7).
Conversely, ifA, A) is the solution of (7), the(W\, SﬁS[A) is the solution of (13).
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Theorem 2 implies that the solution of (7) can be obtained from (13). Te$&B), we consider
the pseudoinverse form of (10), which is

CTEME'CY=YA (15)

due toCTC*C = C* (see Lemma 11). To obtain the solution of (14), we substitute (8) into (14)
and then premultiply by X. As a result, we have

CEN~lE'CY= (CC+0?C)YA. (16)

The following theorem shows that we are able to obtain the solutions of X3),gnd (14)
respectively from the solutions of (10), (15) and (16). That is,

Theorem 3 Considering the KDA problems, we have:
(@) If (A,Y) is the solution of (10), the(*/\,)?’HY) is the solution of (7).
(i) If (AY) is the solution of (15), the(V\,f(’HY) is the solution of (13).
(i) If (A,Y) is the solution of (16), thef\, X'HY) is the solution of (14).

The proof of this theorem is given in Appendix C. Theorem 3 shows tleasdfutions of (7),
(13) and (14) lie in spa{rf(’H}. Moreover, we see thiﬂ\,f(’HY) are their solutions. We also note
that (16) is different from (11). Theorem 3 provides a relationshipvben (14) and (16); there is
not a similar relationship between (14) and (11).

Finally, as a corollary of Theorems 2 and 3, we have

Corollary 4 If (A,Y) is the solution of (15), thel(uA,)?’HY) is the solution of (7). Moreover, if
(A,Y) is the solution of (10), thef\, X’HY) is the solution of (13).

We see from Corollary 4 that the solution of (7) can be also obtained fidn (We now
concentrate our attention on the regularized KDA problem (14). We fuistlle (14) by using (16)
and Theorem 3, and then we present an approach for directly sodng (

4. SVD-based Algorithmsfor RDA Problems
It is clear that we can solve the regularized KDA (RKDA) problem in ()1 3blving

(CC+a?l,) ICEM~E'CY = YA.

However, sinceCC + 02C is singular, this approach is not appropriate for the RKDA problem in
(16). In this section we show how to solve the RKDA problems in both (11)Y&6) as well as the
regularized FDA (RFDA) problem in (6).

In particular, we exploit the SVD-based algorithm developed for sohvi®y by Park and Park
(2005a). Our algorithms are summarized as Algorithm 1, which is an SVBdbasthod for solving
RFDA problem (6), and Algorithms 2 and 3, which are SVD-based algorifonfRKDA problems
(11) and (16). We defer the derivations to Section 8 in which we conidesVD-based algorithm
for a more general generalized eigenvalue problem. According to &he8rand the following
theorem, we immediately have the solution of (14)5613 X'HY.
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Algorithm 1 SVD-based Algorithm for RFDA problem (6)
1: procedure RFDA(X,E,,M,0%)
2: Perform the condensed SVD KX asHX = UxIxV%:;
3: CalculateF = (I + o2l r)‘%erQ(EI'I*% wherer = rk(lx);
4: Perform the condensed SVD BfasF = Ugl'g Vi and sety = rk(T'g);

5: ReturnA =V (I'% + o2l r)—%UF as the solution of RFDA.
6: end procedure

Algorithm 2 SVD-based Algorithm for RKDA problem (11)
1: procedure RKDA(C,E, ,IM,0?)
2: Perform the condensed SVD 6fasC = UclcUg;
3: CalculateF = (M2 4 o2 r)*% rcugEn—% wherer =rk(l'c);
4: Perform the condensed SVD BfasF = UgMgVE;
5 LetY= UC(F%+02Ir)*%UF and sey=rk(lg);
6
7

. Calculatez via (12) as tha-dimensional representation xf
. end procedure

Theorem 5 Consider Algorithms 1, 2 and 3 for the corresponding RDA problems.
() If A is obtained from Algorithm 1, then,

A(S+0%p)A=1q and A'SA=TEZ.
(ii) If Yis obtained from Algorithm 2, then
Y(CC+d%,)Y=1q and YCEMN'ECY=r¢.

(iii) If Yis obtained from Algorithm 3 and = X’HY;, then
Y(CC+0®’C)Y=I1q and YCEM 'E'CY=rZ,
and o N o
AS+d%gA=1q and A'SA=TZ.
The proof of the theorem is given in Appendix D. According to this theorfema newx, the
projectionz ontoA is given by
1
z:Y’H(kx—ﬁKln) (17)

Note that ifo? = 0, Algorithm 1 degenerates to the SVD-based algorithm for the convehtiona
FDA in (2) (Howland et al., 2003) and Algorithms 2 and 3 become identical.

5. EVD-based Algorithmsfor RDA

It is desirable to directly find the solution of the RKDA problem (14), rathantlobtaining the
solution indirectly via (16). However, it is not feasible to devise a SVDeldadgorithm for directly
solving the RKDA problem in (14). In this section we propose a new ajgpramasolving the RFDA
problem (6). We then extend this approach for the solution of the RKDAlpno (14).
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Algorithm 3 SVD-based Algorithm for RKDA problem (16) as well as for (14)
1: procedure RKDA(C,E, ,IM,0?)
2: Perform the condensed SVD 6fasC = UclcUg;
3 CalculateF = (M2 + ozrc)‘% FcUREN ~2 wherer = rk(Fc);
4 Perform the condensed SVD BfasF = UgMgVE;
5: LetY= UC(F%+02FC)*%UF and seg=rk(lg);
6
7

; Calculatez via (17) as tha-dimensional representation xf
. end procedure

5.1 TheAlgorithm for RFDA

We reformulate the eigenproblem in (6) as
GMZE'HXA = AA,
where
G = (X'HX + 02l ,) IX'HEM 2 (18)
due to (3) and (4). We also have
G = X'H(HXX'H + 02 ,)*EN 2 (19)

due to(X'HX + 0?1 p) " IX'H = X'H(HXX'H + 0?l,) L. If n < p, we can use (19) to reduce the
computational cost. Moreover, we will see that (19) plays a key role in gveldpment of an
efficient algorithm for KDA to be presented shortly.

LetR = N 2E’HXG. SinceGM—2E'HX (px p) andR (cxc) have the same nonzero eigenval-
ues (Horn and Johnson, 1985), the j = 1,...,q, are the nonzero eigenvaluesRf Moreover, if

(A, V) is the nonzero eigenpair &, (A,GV) is the nonzero eigenpair @M~ 2E’HX. Note that
R =M~ 2E'HX(X'HX + 0% 5) " IX'HEM 2. (20)

This shows thaR is positive semidefinite.

We use these facts to develop an algorithm for solving the RFDA problen).iT(és is also a
two-step process, which is presented in Algorithm 4. The first step com(:nﬁbps+ X'HX)~1 (or
(6ln+HXX'H)~1), while the second step is an SVD procedure. Note that the first stepedem b
plemented by computing the condensed SVIX8iX (or HXX'H). SinceR andX’HX (HXX'H)
are positive semidefinite, their SVD are equivalent to the eigenvalue desitop (EVD). Thus,
we refer to this two-step process asEMD-based algorithpdistinguishing it from the SVD-based
algorithm.

The first step calculate§ by either (18) or (19). The computational complexityGgm?)
wherem= min(n, p). The second step forms the condensed SVB &fr which the computational
complexity isO(c®). If both n and p are large, we recommend an approximate strategy; that is,
we first perform the incomplete Cholesky decompositioi®fX'H (or X’HX) and then calculate
(HXX'H + 6?l,) 71 (or (X'HX + 62l ,) 1) via the Sherman-Morrison-Woodbury formula (Golub
and Van Loan, 1996). This strategy makes the first step still efficient.
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Whena? = 0, we can solve the problem in (5) by simply adjusting the first step in the EVD-

based algorithm. In particular, we calcul&@&ey
G = (X'HX)"X'HEM 2
) X'H(HXX'H)TEN-2. 1)

Algorithm 4 EVD-based Algorithm for RFDA problem (6)

1: procedure RFDA(X,E,M,0?)
2: CalculateG by (18) or (19) andR by (20);
3: Perform the condensed SVD BfasR = VrIRVk;

1
4 ReturnA = GVRI g * or B = GVR as the solution of RFDA problem (6).
5. end procedure

Compared with the SVD-based algorithm, the EVD-based algorithm is morieeffiespecially
for “small n but largep” problems. Using the notation in Algorithms 1 and 4, we have

R=FF

by performing some matrix computations. This implies fhat= ['2. Moreover, it is immediate to
obtain the following result.

Theorem 6 LetA be obtained from Algorithm 4. Then,
A(S+0%p)A=1q and A'SA=TE.

This theorem shows that Algorithms 1 and 4 are essentially equivalent. Agomech before, it
is not feasible to develop an SVD-based algorithm for solving the RKDAlpro (14), which is
the kernel extension of RFDA in (6). On the other hand, in the next stibsewe will see that
Algorithm 4 can be used for solving the RKDA problem (14).

5.2 TheAlgorithm for RKDA
It follows immediately from (19) that
G = X'H(HXX'H + 0% ,) EN 2
from which, using (20), we calculat by
R=M"2E'C(C+0?,) *EMN 2.

Moreover, given a new input vectar we can compute the projectiarof the feature vectak onto
A through

z=A'(%X—1m)
_1 ~ 1~
= MR 2VRM2E/(C + 021,) " HX (x - ﬁx’1n)

_1 1
=[R2V 2E/(C+02l,) tH (kx—ﬁKln). (22)
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This shows that we can calculd®andz directly usingK andky. We thus obtain an EVD-based
algorithm for RKDA, which is given in Algorithm 5. Also, whes? = 0, we calculatdr by

R=M":E'CC*EN
and exploit the EVD-based algorithm to solve the following variant of KDA:
& &A — AN,
We see that the EVD-based algorithm is more efficient than the SVD-bdgedtlam (i.e.,
Algorithm 2) for the RKDA problem in (11). Recall that the RKDA problem4)lis not fully
equivalent to that in (11). Moreover, we also have an EVD-baseditigofor solving (11), by

replacingC by CC in calculatingR and (22) by (17) in calculating. However, the resulting
algorithm is less efficient computationally.

Algorithm 5 EVD-based Algorithm for RKDA problem (14)
1: procedure RKDA(K , E,ky,M,02)
2. CalculateR = MM~ 2E'C(C+02l,)~1EM2;
3: Perform the condensed SVD BfasR = VRrIRVk;
4: Calculatez by (22);
5: Returnz as theg-dimensional representation xf
6: end procedure

Let us investigate the relationship between the solutions of (14) from Algasithand 5. First,
let Y be obtained from Algorithm 3. It follows from (16) th&€ + ¢l,) 1CEMN~1E'CY = CYA,
that is,

C(C+02,) " XEN—2M"2E/'CY = CYA.

Thus, (A, I'I‘%E’CYl'gl) is the nonzero eigenpair &. Finally, we have\ = F% = [r. In addition,
it follows from Theorem 5 that

FEYCENECYTt =1,
Moreover, we have
BN 2E'CYTR2 = X'H(C+0?,) EN1E'CYA !
= X'HC*C(C+0?l,) tENtE'CYA?
= X'HC*CY=X'HY (23)

becaus&’H = X’HC*+C. This implies thatA = X’HY obtained from Algorithm 3 is equivalent to
that obtained from Algorithm 5.
On the other hand, 1& = VgI'rVR be the condensed SVD &. Then

CEMN~'E'CY = (C?+0%C)YTR,
1
whereY = (C+02In)*1EI‘I‘%VI‘R2. Moreover, it is easily checked that

Y(C24+0?C)Y=1q and YCEM ECY=Tg
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This implies tha{'r, Y) is the solution of (16). Again, using (23), we conclude that the solution of
(14) from Algorithm 5 is equivalent to the one from Algorithm 3.

In summary, Algorithms 5 and 3 yield equivalent solutions for (14). Howe&tgorithm 5 is
more efficient than Algorithm 3.

6. Relationships Between RFDA and Ridge Regression

Itis a well known result that FDA (or KDA) is equivalent to a least meaumesgd error procedure in
the binary classification problens £ 2) (Duda et al., 2001; Mika et al., 2000). Recently, relation-
ships between FDA and a least mean squared error procedure in mudt{ecta®) problems have
been discussed by Hastie et al. (2001), Park and Park (2005byeai2007).

Motivated by this line of work, we investigate a possible equivalency betRedA and ridge
regression (Hoerl and Kennard, 1970). We then go on to considermilarsrelationship between
RKDA and the corresponding ridge regression problem.

LetY = [y1,...,yn] = EM~2Hy Thatisyi = (Yi,...,Yic) is defined by

TN fieV,
Yij = - .
N otherwise

2

Regarding{(x;,Vi),i = 1,...,n} as the training samples, we fit the following multivariate linear
function:
f(x) = wo+W’x

wherewg € R andW € RP*C. We now find ridge estimates @fy andW. In particular, we consider
the following minimization problem:

o2
—1r

: 1
min L(wo, W) = Z||Y —=1aWh—XW||2 + —tr(W'W). (24)
Wo,W 2 2
We focus on the solution fai:
W = (X'HX + 021 p) MM ZH = (X'HX + 021 ) IX'HEM 2. (25)

The derivation is given in Appendix E. It is then seen from (18) that= G. Moreover, when
02 =0, W reduces to the ordinary least squares (OLS) estimai¥,afhich is the solution of the
following minimization problem:

min L(wo, W) = }HY—lnwg—XWHE. (26)
Wo,W 2

In this case, iiX’HX is singular, a standard treatment ugg&HX)* in (25). Such aV is identical
with G in (21).

In summary, we have obtained a relationship between the ridge estimationrpriokf24) and
the RFDA problem in (6).

Theorem 7 LetW be the solution of the ridge estimation problem in (24) (resp. the OLS estimation
problem in (26)) andA be defined in Algorithm 4 for the solution of the RFDA problem in (6) (resp.
the FDA problem in (5)). Then

_1
A =WVRlg?,
whereVg andrl  are defined in Algorithm 4.

2211



ZHANG, DAI, XU AND JORDAN

This theorem provides an important connection betwdemdW. IndeedB = Al'é is also a
solution of the RFDA problem (6). HoweveB, satisfies the conditioB’(S; + ol p)B = TR, rather
thanB'(S + o2l p)B = lq. Thus, with thisB, we obtain the following result, which is the principal
theoretical result of this paper.

Theorem 8 Under the conditions in Theorem 7, we have
BB =WW'.

Moreover, we have
(X —Xj)/BB/(Xi —Xj) = (Xi —Xj)/WW/(Xi —Xj)

for anyx; andx; € RP.

The proof of this theorem is given in Appendix F. Theorem 8 shows thernwapplying a
distance-based classifier such askhaearest neighbor (KNN) in the reduced dimensional space,
the classification results obtained by the multi-class FDA and multivariate lindaragsrs are
same. Since Theorem 8 holds in general cases, we obtain a complete stolttieropen problem
concerning the relationship between multi-class FDA problems and multivariate Estimators.

Similar results have been obtained by Park and Park (2005b); Ye (20@&7)nder restrictive
conditions which arise from a different definition of the label scoring matrilkan ours. The choice
that of label scoring matrix that we have presented has also been u¥ed®907), but Ye (2007)
attempted to establish a connection between the solui@mdA as given in Algorithm 1.

It is also worth noting that Zhang and Dai (2009) discussed a conneogitween the label
scoring matrixY and the optimal scoring procedure in Hastie et al. (1994). Moreovem@hand
Jordan (2008) exploited this label scoring matrix in spectral clustering.

Our theorem also goes through immediately in the kernel setting. In partitaddhe RKDA
problem defined by (11), the corresponding ridge estimator is

o2
—1tr

5 (D'D). (27)

. 1
min  L(wg, ®) £ Z||Y—1,wh—KH®||Z +
wo,PeRrnxc 2

The ridge estimation problem corresponding to our RKDA in (14) is given by
) ~ .1 L e 0% -~
min  L(wo,W) = Z[|Y =Lwyp—XW||g + —tr(W'W),
Wo,WeRgxC 2 2
while the estimation problem for the RKDA in (16) is
: A 1 / 2 02 /
min  L(wo,®) = Z||Y —1Wwy—KH®||g + —=-tr(P'CP), (28)
Wo,q)ERnXC 2 2

which is no longer a conventional ridge regression problem. In fact, tbidgm can be regarded a
multi-class extension of the least squares SVM (LS-SVM) (Suykens andéwalle, 1999; Suykens
et al., 2002); (see, e.g., Van Gestel et al., 2002; Pelckmans et al., ZD@5)ork thus provides the
relationship between RKDA and the LS-SVM.

Note that whero? = 0, the problems in (27) and (28) are identical. Moreover, the solution of
the problems is given by

® = (HKHKH)"HKHEMN Z = CTEMN .
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In this case, the RKDA methods in (11) and (16) are also the same. As \Jﬁreseﬁelction 3,its cor-
responding pseudoinverse form is given by (15). Let the conde®¥® of R =M 2E'CCTEN 2
1

be R = VRIRVk. Then (Mg, ®VRrIk?) is the solution of (15). This implies that in the case of
0? = 0, there is still the connection between the least squares kernel-basédr@VRKDA shown
in Theorem 7.

7. Experimental Study

To evaluate the performance of the proposed algorithms for FDA and KiAconducted experi-
mental comparisons with other closely related algorithms for FDA and KDA werakreal-world

data sets. In particular, the comparison was implemented on four face tatansehandwritten
digits data sets, the “letters” data set, and the WebKB data set. All algorithnesmelemented in
Matlab on a PC configured with an Intel Dual Core 2.0GHz CPU and 2.06@Bmory.

7.1 Setup

The four face data sets are the ORL face database, the Yale facesdatisaYale face database B
with extension, and the CMU PIE face database, respectively.

— The ORL face database contains 400 facial images of 40 subjects with fé@edtfim-
ages for each subject. This database was developed at the Olivetir&tes@boratories
in Cambridge, U.K. The images were taken at different times with variationial fdetails
(glasses/no glasses), facial expressions (open/closed eyes, sroitisigiting), and facial
poses (tilted and rotated up to 20 degrees). There is also variation in theofog to about
10%. The spatial resolution of the images is ¥92, with 256 gray levels.

— The Yale face images for each subject were captured under diffreiat expressions or
configurations (e.g., center-light, w/glasses, happy, left-light, w/no egagsormal, right-
light, sad, sleepy, surprised, and wink).

— The Yale face database with extension includes the Yale face databaso®lii@des et al.,
2001) and the extended Yale Face Database B (Lee et al., 2005). Ehéada database B
contains 5760 face images of 10 subjects with 576 different images fbrsedgect, and the
extended Yale Face Database B contains 16128 face images of 28 suhbjgcéach subject
having 576 different images. The facial images for each subject ve@tered under 9 poses
and 64 illumination conditions. For the sake of simplicity, a subset called the &ilefas
collected from two databases; it contains the 2414 face images of 38 subjec

— The CMU PIE face database contains 41,368 face images of 68 subjéetfacial images
for each subject were captured under 13 different poses, 43diffélumination conditions,
and with 4 different expressions. In our experiments, we considengdhwe five near-frontal
poses under different illuminations and expressions. For simplicity, wectetlea subset
of the PIE face database, containing the 6800 face images of 68 subjdctO® different
images for each subject.

In all of the experiments, each whole image was cropped and furtheedesizhave a spatial
resolution of 3% 32 with 256 gray levels. Figure 1 shows some samples from the four data sets
where four subjects are randomly chosen from each data set anglggett has six sample images.
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(c) YaleB&E

Figure 1: Some sample images randomly chosen from the four data sets, faiesubjects from
each data set and each subject with six sample images.

The two handwritten digits data sets are the USPS data set and the Binargigiph@BA) data
set, respectively.

— The USPS data set was derived from the well-known United States Pesta&S(USPS) set
of handwritten digits, and contains 2000 images of 10 digits, each digit witin2@@es. The
spatial resolution of the images in the USPS data setislB6with 256 gray levels.

— The Binary Alphadigits (BA) data set was collected from a binary 26 digits database of
“0” through “9” and capital “A” through “Z,” and thus contains 1404 ingsgof 36 subjects,
each subject with 39 image.

The “letters” data set can be obtained from Statibgp: // www. | i acc. up. pt/M/) and it
consists of images of the letters “A,” “B,” “C,” “D” and “E” with 789, 766,36, 805 and 768 cases
respectively.

Finally, the WebKB data set contains web pages gathered from compigecesdepartments
in several universities (Craven et al., 1998). The pages can beadiutido seven categories. In
our experiments, we used the four most populous categories, natebt, faculty, course, and
project, resulting in a total of 4192 pages. Based on information gain, 300 fesatewe selected.

Table 1 summarizes these benchmark data sets. In our experiments, @estt s randomly
partitioned into two disjoint subsets as the training and test data sets, agctirdive percentage
n/k listed in the last column of Table 1. Ten random partitions were obtained ¢bra=ta set, and
several evaluation criteria were reported, including average classificaccuracy rate, standard
deviation, and average computational time.

The hyperparameters involved in the following methods were selected &s-eadidation. After
having obtained thg-dimensional representatiornsof thex; from each method, we used a simple
nearest neighbor classifier to evaluate the classification accuracy.

7.2 Comparison of FDA Methods

Inthe linear setting, we compared Algorithm 4 with Algorithm 1 (RFDA/SVD-liisthe FDA/GSVD (How-
land and Park, 2004) and FDA/MSE methods. Here the FDA/MSE methodevaed by Park and
Park (2005b) from the relationship between FDA and the minimum squaradsetution. We refer
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Data set c p k vk
ORL 40 1024 400 40%
Yale 15 1024 165 50%
YaleB&E 38 1024 2414 30%
PIE 68 1024 6800 20%
USPS 10 256 2000 10%
BA 36 320 1404 50%
Letters 5 16 3864 10%
WebKB 4 300 4192 10%

Table 1: Summary of the benchmark data setsthe number of classeg—the dimension of the
input vectork—the size of the data sat—the number of the training data.

to Algorithm 4 working withA as the RFDA/EVD-based method. As we have shown, wiiés
used, Algorithm 4 provides the solution of ridge regression. We thusteethe algorithm working
with B as RFDA/RR. Similar notation also applies to the kernel setting in the next sidrsec

Empirically, the performance of the RFDA/EVD-based method is fully identic#ihab of the
RFDA/SVD-based method. This bears out the theoretical analysis in dime®r Thus, we only
report the classification accuracies of the RFDA/RR method for Algorithm 4.

Table 2 presents an overall comparison of the methods on all of the datanget&igure 2
presents the comparative classification results on the four face datdtsetseen that the RFDA
methods have better classification accuracy overall than other methodghbrd a range of choices
of the number of discriminant variates. Particularly striking is the performafithe RFDA meth-
ods when the number of discriminant variatgs small.

From Figure 2, we see that the performance of RFDA/RR method is a little bedtethat of
RFDA/SVD-based method. This implies that RFDA/RR outperforms RFDA/EdBel method;
that is, the performance using the transformation matiibetter than that using the transformation
matrix A in Algorithm 4. Therefore, the constraiAt (S + 62l ,)A = |4 is not necessarily the best
choice for RFDA. This also shows that the ridge regression method giv8action 6 is effective
and efficient.

We also compared the computational time of the different methods on the frudéda sets.
Figure 3 plots the results as a function of the training percentdigen the four face data sets.
We see that our method has an overall favorable computational complexiynpagison with the
other methods on the four face data sets. As the training percentéagacreases, our method
yields more efficient performance.

Note that when the training percentagék on the YaleB&E and PIE data sets increases, the
singularity problem of the within-class scatter maty, that is, the small sample size problem,
tends to disappear. Figures 3 (c) and (d) show that the FDA/MSE metlcothies more efficient in
this case, and the corresponding computational time becomes flat withtresfiexincrease of the
training percentage/k. On the other hand, Figures 3 (c) and (d) also reveal that the compuatlation
time of the FDA/SVD-based method significantly increases as the size of tralatagncreases.
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Data Set FDA/GSVD FDA/MSE RFDA/SVD-based RFDA/RR
acc(+std) time acc(fstd) time acc(+std) time acc(+std) time
ORL 91.54 (-1.98) 1.952 91.5842.00) 0.293 93.17+41.94) 0.347 94.0441.95) 0.079

Yale  78.56 {2.29)1.281
YaleB&E 59.54 (-11.8) 43.18

78.4442.47) 0.047
65.34:£9.23) 9.967
77.2641.05) 23.10

79.2244.19) 0.072
89.8641.15) 9.177
90.4040.65) 83.88

79.5643.75) 0.014
90.201.09) 1.479
91.1440.63) 2.726

PIE 77.26 {-1.05) 89.85
USPS  43.02{1.86) 0.392
Letters  91.2340.98) 0.017

WebKB  67.45 £-2.29) 0.853

42.9541.82) 0.229
91.2340.98) 0.011
67.4542.29) 0.595

82.1641.07) 0.273
91.6840.89) 0.013
83.4040.61) 0.748

83.4941.39) 0.035
91.8940.65) 0.021
83.3940.63) 0.073

BA 36.40 (£2.40) 1.586 36.4042.40) 0.784 68.51£1.91) 0.981 68.851.35)0.157

Table 2: Experimental results for the four methods on different data stte limear settingacc—
the best classification accuracy percentagid:— the corresponding standard deviation;
time— the corresponding computational tirs. (

7.3 Comparison of RKDA Methods

In the kernel setting, we compared Algorithms 2, 3 and RKDA/RR (Algorithmaskimg with
B). We also implemented the KDA/GSVD method (Park and Park, 2005a) asetingas The
RBF kernelK (x;,x;) = exp(—||x; — Xj||2/6%) was employed, anfl was set to the mean Euclidean
distance among training data points. This setting was empirically found to lotiedfan real-world
applications.

Table 3 summarizes the different evaluation criteria on all the data sets.eEiguand 5 fur-
ther illustrate these results. As we see, our two RKDA methods yield betteraagcthan the
KDA/GSVD method and Algorithm 2. Moreover, RKDA/RR is more efficient cargtionally
than the other methods, especially as the size of training data increasésuld e mentioned
here that the data sets in our experiments range from small-sample to largke-gaoblems. Thus,
Table 3 also confirms that the RKDA method based on (14) is more effectteféicient than the
method based on (11).

Finally, Figure 6 presents the performance of the four regularized methibkl respect to dif-
ferent regularization parametar®n the four face data sets. From this figure, it can be seen that the
regularized parameterplays an important role in our RFDA/RR and RKDA/RR methods. Similar
results are obtained for the other regularized FDA or KDA methods cordene.

8. Beyond FDA

In this section we extend our results to a more general setting. We first #pplgVD-based
algorithm to a family of generalized eigenvector problems, and then pr@woséicient algorithm
for penalized kernel canonical correlation analysis (KCCA) (Ak&tf)1; Van Gestel et al., 2001;
Bach and Jordan, 2002).
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Figure 2: Comparison of the classification accuracies for FDA methodseoiotin face data sets:
(a) ORL; (b) Yale; (c) YaleB&E; (d) PIE.

8.1 A Family of Generalized Eigenvector Problems

Assume thag is a px p semidefinite positive matrix. Here and later, we define
k .
f(Q)= Z}ijJ = byl p—l—le—|—b2Q2_|_ ..._|_ka|<
J:

whereby, ..., bk are nonnegative real scalars for some positive intkg@/e assume that there is at
least onebj such thab; > 0. LetQ = VIV’ be the SVD ofQ. We have

f(Q) = V(bol p+ b1l + M2+ + b )V

This implies thatf (Q) is also semidefinite positive. Moreover, we haveJk < rk(f(Q)). In fact,
we have rkQ) = rk(f(Q)) if bp = 0. However,f(Q) is nonsingular whenevéxp > 0.

2217



ZHANG, DAI, XU AND JORDAN

®

—*+—FDA/GSVD

—=— FDA/MSE
[| —— RFDA/SVD-based
—6— RFDA/RR

~

o
T

&)
T

Computational Time (s)
w b

2.5¢

Computational Time (s)

—*— FDA/GSVD
—&— FDAIMSE

—— RFDA/SVD-based

——RFDA/RR

0.5f
1
e - 4
o o0 9 ! . . 5 5 o 69
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 9 100
Labeled Percentage (%) Labeled Percentage (%)
@) (b)
140 : : 180 :
—+—FDA/GSVD —+—FDA/GSVD
—=— FDAIMSE 1601| — FDAIMSE
1201 —— RFDA/SVD-based —— RFDA/SVD-based
—o—RFDA/RR —e—RFDA/RR
1401 1
£ 100+ L
() Q L T 4
£ £ 120
[ e
T 80f T 1001
c c
S S
<] s L
2 60F £ 8
£ £
o o 60f
O a0b o "
o iz =4 L = =l
o - 40 = = =) &
20 1 :
. 20 o
A o —o——0 e
e g " i o6
— ¢ I | | | 0 /,,@/& I I I
10 20 30 40 50 60 70 80 9 100 0 10 20 30 40 50 60
Labeled Percentage (%) Labeled Percentage (%)

(© (d)

Figure 3: Comparison of the computational times for FDA methods as the traianogmagéd/n
increases on the four face data sets: (a) ORL; (b) Yale; (c) YaleB&EPIE.

Letting X € R™P andY € R™™, we consider the following general optimization problem:

max tr(A’X'YY'XA(A'f(Q)A) ).

29
A€cRPxq (29)

whereQ = (X'X)¥2 and rKQ) = rk(X) > g. This problem can be formulated as a generalized
eigenproblem as follows:

X'YY'XA = f(Q)AA. (30)
Thus, we consider the following eigenproblem:
((Q)) "™X'YY'XA = AA. (31)

The following theorem shows a relationship between (30) and (31).

Theorem 9 If (A,A) (nonzero eigenpairs) is the solution of (31), tHénA) is the solution of (30).
Conversely, if A, A) is the solution of (30), thet\, (f (Q))" f(Q)A) is the solution of (31).
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Figure 4: Comparison of the classification accuracies for KDA methodseofothr face data sets:
(a) ORL; (b) Yale; (c) YaleB&E; (d) PIE.

The theorem obviously holds whéxg > 0, becausd (Q) is nonsingular. In the case thiag = 0,
this theorem is a special case of Theorem 1.
Returning to the optimization problem in (29), we have the following theorem.

Theorem 10 Assume thatk(X) =r > g. Let the condensed SVD ¥fbe X = UxI'xV% and
the condensed SVD &f= (f(I'x)) 2 xU4Y beF = UeTgVE. We have: (i)(A,T) whereT =
Vx(f(rx))*%UF and A\ = "2 are r eigenpairs of the penc{X'YY’X, f(Q)); (i) the matrix T
consisting of the first g columns ®fis a maximizer of the generalized Rayleigh quotier(2@).

The proofis given in Appendix G. This theorem shows that we can useMBebased algorithm
to solve (29). That is, we obtain a derivation of Algorithm 6. Moreoveis gasily seen that the
RFDA problems (6), (11), (14) and (16) are special cases of tHagmro(29) with different settings
for theb;.
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Figure 5: Comparison of the computational times for KDA methods as the traiengptagd,/n
increases on the four face data sets: (a) ORL; (b) Yale; (c) YaleB&EPIE.

Algorithm 6 SVD-based Algorithm for Problem (29)
1: procedure GEP({X,Y,0?})
2: Perform the condensed SVD ¥fasX = UxIx V.
3 Calculater = (f(I'x))~2MxUy Y wherer = rk(I'x).
4: Perform the condensed SVD BfasF = UglMg V.
5. LetT =Vx(f(I'x)) 2Ur
6
7

: ReturnA =T(:,1:q) for g <r as a maximizer of Problem (29).
. end procedure

8.2 Penalized KCCA

Given two data matriceX € X ¢ R™P andY € 9 ¢ R™™M, CCA finds two matriceg\y € RP*d
andAy € R™9 of canonical correlation vectors by solving the following optimization problem:

maXAx7 Ay tr (A;(S(YAY) )
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KDA/GSVD Algorithm 2 Algorithm 3 RKDA/RR

Data Set acc(+std) time acc(fstd) time acc(+std) time acc(+std) time
ORL 94.45 (+1.63) 0.231 92.7941.74) 0.159 94.41£2.03) 0.162 94.5041.64) 0.032
Yale 76.44 {-3.50) 0.017 76.44+K2.71) 0.025 76.4442.38) 0.025 76.7843.20) 0.004
YaleB&E 40.34 (-22.4) 7.898 88.8340.99) 6.520 88.2040.88) 6.554 89.0640.81) 0.818
PIE 91.00 £0.36) 48.07 87.33%0.65) 40.71 91.5240.45) 40.90 91.5240.45) 5.079
USPS  82.25£1.59) 0.305 83.9641.10) 0.238 84.9241.56) 0.234 83.94+0.84) 0.020
Letters 92.7442.10) 1.162 95.88%0.63) 1.100 94.6040.99) 1.028 96.0540.67) 0.134
WebKB 77.27 {£2.77) 1.684 83.5140.51) 1.464 83.4740.49) 1.452 83.4740.49) 0.156
BA 66.19 (+1.21) 7.883 68.7041.76) 6.715 69.86%1.30) 6.626 69.8241.10) 0.709

Table 3: Experimental results for the five methods on different data sets kethel settingacc—
the best classification accuracy percentagie:— the corresponding standard deviation;
time— the corresponding computational tirs. (
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Figure 6: Performance of the RFDA/RR and RKDA/RR methods for diffieregularization pa-
rameterso, where (a) displays the results of RFDA/RR on different data sets gnd (b
displays the results of RKDA/RR on different data sets.

whereq < min{p,m,n—1}, S,x = X’HX andS,y = Y’HY are the pooled covariance matricesof
andy, respectively, an@,y = X'HY = S’yX is the pooled cross-covariance matrix betwgemdy.

Consider that eithe®,y or Syy is ill-conditioned. The penalized CCA method (Hastie et al.,
1995) solves the following optimization problem

maxa,, A, tr(ALSyAy),
SLAL(Sx+ 02l p)Ax =g and Al(Syy+ 02l m)Ay = Ig.
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This problem can be solved in a two-step process (Mardia et al., 1918 fifBt step solves the
following generalized problem:

Syx(sxx+ 0)2<| p)ilsxyAy = (Syy-f— 0'§| m)Ay/\,

whereA\ is agqxq diagonal matrix with positive diagonal elements. The second step calcAlates
by
Ax = (St 021 p) LSgAN 2.
Assume that we have kernel functiodg(-, -): XxX — R, andKy(-,-): 9" x9 — R. Similar to
the linear case, penalized KCCA first solves the following generalizealgmro
Sxy(éyy+ O'§| h)_léyxAx = (~Sxx+ 0')2(| g)'&x/\, (32)

and then calculate, by

Ay = (y+02ln) 1SpAN 2
Hereg andh are the dimensions of the corresponding feature spaces. We novssitiaeesolution
to the generalized eigenproblem in (32). Consider

(Sxx+ leg) 13()/(3)’)’"’_0- Ih) 1é)’x
= (X'HX+0Zlg) SXHY (Y'HY +02l,) "Y' HX
= XH(HXX'H+0Zln) H(HYY'H +031,) tHYY'HX
= X'H(Cx+02ln) H(Cy+02ln) TCyHX,
whereCy = HXX'H andCy = HYY’H. SinceX'H(Cx+ 02l,)"Y(Cy + 02l,)~*CyHX and (Cx +
oZln) ~1(Cy+ 0fly) ~1CyCx have the same nonzero eigenvalues, we let

(Cx+0Zln) " H(Cy+0dln) 'CyCxY = YA

where/\ consists of the) largest nonzero eigenvalues (@y-+0o2l r])*1(Cy+0>2,l n) 1C,Cx. We thus
define
Ay =X'HY

and 3 N )
Ay =Y'H(Cy+03ln) 'CxYA 2

as the solution of the KCCA problem. Givenc RP andy € R™, we can directly calculate their
canonical variables by

~ e . 1
ZX == A;((X— mx) == Y”(kx— ﬁlen),
Wheremx — % zIn::L)"(’l’ kx — (KX(X,X]_), ey Kx(x, Xn))/ andKX — )2)2/, and
~ 1 _ 1

whereffy = 15T, §i, ky = (Ky(y,Y1),- .. Ky(Y.yn))" andKy = YV,
y As we see, the canonlcal vectm;gsandzy can be calculated without the explicit useXofand
Y. Moreover, ifZ = 0 oro = 0, the algorithm still works by usinGy orC+ instead.

2222



REGULARIZED DISCRIMINANT ANALYSIS

9. Conclusion

In this paper we have provided a solution to an open problem concerrénglttionship between
multi-class discriminant analysis problems and multivariate regression proldethsin the linear

setting and the kernel setting. Our theory has yielded efficient andie&edgorithms for FDA and

KDA within both the regularization and pseudoinverse paradigms. Thedbleperformance of
our algorithms has been demonstrated empirically on a collection of benchatarkets. We have
also extended our algorithms to a more general family of generalized elgemprablems.

Acknowledgments

Zhihua Zhang and Congfu Xu acknowledge support from the 973 r@mogof China
(No. 2010CB327903). Zhihua Zhang acknowledges support fraturdl Science Foundations
of China (No. 61070239), Doctoral Program of Specialized Rebkdarnd of Chinese Universities,
and the Fundamental Research Funds for the Central Universitiesadlidbrdan acknowledges
support from Google, Intel and Microsoft Research.

Appendix A. Proof of Theorem 1

LetX; = U1lM1V) andZ, = U,lM,V) be the condensed SVD &f andX,. Thus, we haveR (X;1) =
R (Up) and R (22) = R (Uz). Moreover, we hav&] = VoI, U, and 2,55 = UoUS. It follows
from R (Z1) C R (%) thatR (U1) C R (U2). This implies thalJ; can be expressed &5 = U>Q
whereQ is some matrix of appropriate order. As a result, we have

555551 = UpUhUnQraVy = 55,

It is worth noting that the conditiorizzgzl = 27 is not only necessary but also sufficient for
R(Z1) € R(Z2)-

If (A,B) are the eigenpairs & =1, then it is easily seen thaf\, B) are also the eigenpairs of
(Zl, 22) due tOZzZ;Zl =23.

Conversely, suppos@\, B) are the eigenpairs a1,%,). Then we have&,2; 5B = Z,BA.
This implies tha{A, =] 5,B) are the eigenpairs &f} ¥; due toZ,5, %1 = 53 andX; 5,55 = 55

Appendix B. Some Properties of Moore-Penrose | nver ses
In order to prove Theorem 3, we will need some properties of MooreeRe inverses.
Lemmall LetC =HXX'H, § = X'HX andS, = X’HEM *E’HX. Then

(@) CCt=(CCH)=C*C,CcfCcC=CcCfC=C,CfCfC=C'CC* =C™;

(b) S"X'H = (X'HHX)*X'H = X'H(HXX'H)* = X'HC™;

(€) X'H=S8§ X'H=XHHX(X'HHX)"X'H
=X'H X

W

/
XX'H)THXX'H = X'"HC*C;
d) §§%=5.
These results can be found ifitkepohl (1996).
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Appendix C. Proof of Theorem 3
First, if (A,Y) is the solution of (10), we have

SX'H HEN~E'CY

"HHX (X'HHX)"X'HEN~*E'CY
X'HCYEM'E'CY = §X'HC*C*CENE'CY

= §X'HCTCTCCYA = §X’'HCTCYA

= SX'HYA.

(I ||
N X ><\z

This implies that A, X’HY) is the solution of (7).
Second, if(A,Y) is the solution of (15), we have

S SX'HY = (X'HHX)*X'HENE'HXX'HY
= X'HC*EN~E'CY
= X'HYA.

This implies tha(A, X’HY) is the solution of (13).
Finally, it follows from (16) that

(C+02l,) tCEN~tE'CY=CYA.

In addition, note thatS+02l §)""X’H = X'H(C 4 ¢?l,) L. Hence, we have

(§+0%1g) ISX'HY = (§+0%1 ) IX'HENLE'CY

>”<H(c+o| n) *ENTE'CY

= X'HC*C(C+0?l,)tENtE'CY

= X'HC*(C+ 0%, tCEN~E'CY=XHC'CY

=X'HYA.

This completes the proof of part (iii).

Appendix D. Proof of Theorem 5

We prove the final part. As for other parts, their proof can be immediatdigiredd from Ap-
pendix G. In terms of Algorithm 3, we have

A(S§+0%1g)A = YHX(§+0%1g) X'HY
=Y C(C+a%,)Y =14

and
A'SA =YCEN-E'CY=r2.
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Appendix E. Derivation of Equation 25

The first-order derivatives df(wp, W) with respect tavg andW are given by

oL
W - nW0+W/X/1n—Y/1n,
0
oL ! 2 / / !
Fri (X'X 4 0% p)W + X'Lawp — XY,

Letting 5‘—\,\% =0, & =0andx=23",x = iX'1, we obtain

Wo—l—W/)?: 0
XW) + (X'X + 621 p))W = M'M2Hy

due toY’1l, = 0andX'Y = M’I‘I%Hn. Further, it follows thatvg = —WX, and hence,
(X'HX + 0% )W = M'M2Hy,

because oK’'X — nxx’ = X’HX. We thus obtaiW in (25). It then follows from (18) thatV = G.
Moreover, whero? = 0, W reduces to the solution of the minimization problem in (26). In this
case, ifX’"HX is singular, a standard treatment is to use the Moore-Penrose ifP€t$X)" in
(25). Such aw is identical withG in (21).

Appendix F. Proof of Theorem 8

SinceVg is ancxq orthogonal matrix, there existsca (c—q) orthogonal matrix/, such thaV =
[VRr,V2] is acxc orthogonal matrix. Noting tha® = VgI'rVR, we haveRV;, = 0 andV,RV, = 0.
Let Q = M'MZHV,. Then we obtairQ’ (X'HX+02l p) 1Q = 0. This impliesQ = 0 because
(X'HX + 02l ;)L is positive definite. Henc&VV, = (X'HX + 0%l ,)1Q = 0. As a result, we have
WwW =wvvVv'w’

= WVRVRW +WVVoW’

— BB’
Note that ifo® = 0 andX’HX is nonsingular, we still hav&/W’ = BB'. In the case thaX’HX is
singular, we hav€)’(X'"HX)*Q = 0. Since(X'HX)™ is positive semidefinite, its square root matrix

exists and it is denoted 1. It thus follows fromQ’'(X'HX)TQ = QQQQ’ = 0thatQQ’ = 0. This
shows thatWV;, = (X’"HX)*Q = 0. Thus, we also obtaitvW’ = BB'. The proof is complete.

Appendix G. Proof of Theorem 10
It is immediate that
X'YY'XT = VM xU Y Y/ Ux T x Vi Vx (F(Tx)) " 2Ug
= Vx(f(Tx))2UeTeVEVEMEURUE
= Vx((Ix))2Uel'2
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and
f(Q)T/\:V[ ”BX) bol"l_r }V'Vx(f(rx))_éUFr%
= Vx(f(Fx))2Ugl2.

whereV = [Vx, V3] such thavv{V, = 0. In addition, we have

Tf(QT=I and T'X'YY'XT=r2.
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