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Abstract
Fisher linear discriminant analysis (FDA) and its kernel extension—kernel discriminant analysis
(KDA)—are well known methods that consider dimensionality reduction and classification jointly.
While widely deployed in practical problems, there are stillunresolved issues surrounding their
efficient implementation and their relationship with leastmean squares procedures. In this paper
we address these issues within the framework of regularizedestimation. Our approach leads to
a flexible and efficient implementation of FDA as well as KDA. We also uncover a general rela-
tionship between regularized discriminant analysis and ridge regression. This relationship yields
variations on conventional FDA based on the pseudoinverse and a direct equivalence to an ordinary
least squares estimator.
Keywords: Fisher discriminant analysis, reproducing kernel, generalized eigenproblems, ridge
regression, singular value decomposition, eigenvalue decomposition

1. Introduction

In this paper we are concerned with Fisher linear discriminant analysis (FDA), an enduring clas-
sification method in multivariate analysis and machine learning. It is well known that the FDA
formulation reduces to the solution of a generalized eigenproblem (Golub and Van Loan, 1996) that
involves the between-class scatter matrix and total scatter matrix of the data vectors. To solve the
generalized eigenproblem, FDA typically requires the pooled scatter matrix to be nonsingular. This
can become problematic when the dimensionality is high, because the scatter matrixis likely to be
singular. In applications such as information retrieval, face recognition and microarray analysis, for
example, we often meet undersampled problems which are in a “smalln but largep” regime; that
is, there are a small number of samples but a very large number of variables. There are two main
variants of FDA in the literature that aim to deal with this issue: thepseudoinversemethod and the
regularizationmethod (Hastie et al., 2001; Webb, 2002).

Another important family of methods for dealing with singularity is based on a two-stage pro-
cess in which two symmetric eigenproblems are solved successively. This approach was pioneered
by Kittler and Young (1973). Recently, Howland et al. (2003) used this approach to introduce the
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generalized singular value decomposition (GSVD) (Paige and Saunders,1981) into the FDA solu-
tion by using special representations of the pooled scatter matrix and between-class scatter matrix.
A similar general approach has been used in the development of efficientapproximation algorithms
for FDA (Cheng et al., 1992; Ye et al., 2004). However, the challenge of developing an efficient
general implementation methodology for FDA still remains.

In the binary classification problem, FDA is equivalent to a least mean squared error proce-
dure (Duda et al., 2001). It is of great interest to obtain a similar relationship in multi-class prob-
lems. A significant literature has emerged to address this issue (Hastie et al., 2001; Park and Park,
2005b; Ye, 2007). However, the results obtained by these authors aresubject to restrictive condi-
tions. The problem of finding a general theoretical link between FDA and least mean squares is still
open.

In this paper we address the issues within a regularization framework. We propose a novel
algorithm for solving the regularized FDA (RFDA) problem. Our algorithm is more efficient than
the GSVD-based algorithm (Howland et al., 2003), especially in the setting of “smalln but largep”
problems. More importantly, our algorithm leads us to an equivalence between RFDA and a ridge
estimator for multivariate linear regression (Hoerl and Kennard, 1970).This equivalence is derived
in a general setting and it is fully consistent with the established result in the binary problem (Duda
et al., 2001).

Our algorithm is also appropriate for the pseudoinverse variant of FDA.Indeed, we establish
an equivalence between the pseudoinverse variant and an ordinary least squares (OLS) estimation
problem. Thus, we are able to resolve the open problem concerning the relationship between the
multi-class FDA and multivariate linear estimation problems.

FDA relies on the assumption of linearity of the data manifold. In recent years, kernel methods
(Shawe-Taylor and Cristianini, 2004) have aimed at removing such linearity assumptions. The
kernel technology can circumvent the linearity assumption of FDA, because it works by nonlinearly
mapping vectors in the input space to a higher-dimensional feature space and then implementing
traditional versions of FDA in the feature space. Many different approaches have been proposed to
extend FDA to kernel spaces in the existing literature (Baudat and Anouar, 2000; Mika et al., 2000;
Roth and Steinhage, 2000).

The KDA method in Mika et al. (2000) was developed for binary problems only, and it was
based on using the relationship between KDA and the least mean squared error procedure. A more
general method, known as generalized discriminant analysis (GDA) (Baudat and Anouar, 2000),
requires that the kernel matrix be nonsingular. Unfortunately, centeringin the feature space will
violate this requirement. Park and Park (2005a) argued that this might break down the theoretical
justification for GDA and proposed their GSVD method to avoid this requirementfor nonsingularity.

KDA methods have been successfully deployed in many practical problems.The approach
to FDA that we present in the current paper not only handles the nonsingularity issue but also
extends naturally to KDA, both in its regularization and pseudoinverse forms. We will see that our
regularized KDA is different from the existing regularization methods for KDA (see, e.g., Park and
Park, 2005a), where as we discuss later, there is a problem with inconsistency of solutions. Our
methods for regularized KDA derive directly from the corresponding methods for regularized FDA
and avoid the inconsistency problem.

Finally, we extend our approach for FDA as well as KDA to a certain family ofgeneralized
eigenvalue problems.
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The paper is organized as follows. Section 2 reviews FDA and KDA, and Section 3 presents
our KDA formulations. In Sections 4 and 5 we propose two new algorithms forFDA and KDA,
respectively. An equivalence between FDA and multivariate linear regression problems is presented
in Section 6. We conduct empirical comparisons in Section 7. We extend the approach to a certain
family of generalized eigenproblems in Section 8 and conclude in Section 9.

2. Problem Formulation

We are concerned with a multi-class classification problem. Given a set ofn p-dimensional data
points,{x1, . . . ,xn} ∈ X ⊂ R

p, we assume that thexi are to be grouped intoc disjoint classes and
that eachxi belongs to one and only one class. LetV = {1,2, . . . ,n} denote the index set of the data
pointsxi and partitionV into c disjoint subsetsVj ; that is,Vi ∩Vj = ∅ for i 6= j and∪c

j=1Vj = V,
where the cardinality ofVj is n j so that∑c

j=1n j = n. We also make use of a matrix representation
for the partitions. In particular, we letE = [ei j ] be ann×c indicator matrix withei j = 1 if input xi is
in classj andei j = 0 otherwise.

In this section we review FDA and KDA solutions to this multi-class classification problem. We
begin by presenting our notation.

2.1 Preliminaries

Throughout this paper,Im denotes them×m identity matrix,1m them×1 vector of ones,0 the zero
vector or matrix with appropriate size, andH = In− 1

n1n1′n then×n centering matrix. For anm×1
vectora = (a1, . . . ,am)

′, diag(a) represents them×mdiagonal matrix witha1, . . . ,am as its diagonal
entries. For anm×m matrix A = [ai j ], we letA+ be the Moore-Penrose inverse ofA, tr(A) be the
trace ofA, rk(A) be the rank ofA and‖A‖F =

√

tr(A′A) be the Frobenius norm ofA. For anm×q
real matrixA, R (A) andN (A) denote its range and null spaces; that is,R (A) = {Ax|x ∈ R

q} and
N (A) = {x ∈ R

q|Ax = 0}.
For a matrixA ∈ R

m×q with m≥ q, we always express the (reduced) singular value decompo-
sition (SVD) of A asA = UΓV′ whereU ∈ R

m×q is a matrix with orthonormal columns (that is,
U′U = Iq), V ∈ R

q×q is orthogonal (i.e.,V′V = VV′ = Iq), andΓ = diag(γ1, . . . ,γq) is arrayed in
descending order ofγ1 ≥ γ2 ≥ ·· · ≥ γq (≥ 0). Let the rank ofA be r (≤ min{m,q}) and denote
rk(A) = r. The condensed SVD ofA is thenA = UAΓAV′

A whereUA ∈ R
m×r andVA ∈ R

q×r are
matrices with orthonormal columns (i.e.,U′

AUA = Ir and V′
AVA = Ir ), andΓA = diag(γ1, . . . ,γr)

satisfiesγ1 ≥ γ2 ≥ ·· · ≥ γr > 0.
Given two matricesΣ1 andΣ2 ∈ R

m×m, we refer to(Λ,B) whereΛ = diag(λ1, . . . ,λq) andB =
[b1, . . . ,bq] asq eigenpairs of the matrix pencil(Σ1,Σ2) if Σ1B = Σ2BΛ; namely,

Σ1bi = λiΣ2bi , for i = 1, . . . ,q.

The problem of finding eigenpairs of(Σ1,Σ2) is known as ageneralized eigenproblem. In this
paper, we especially consider the problem with the nonzeroλi for i = 1, . . . ,q and refer to(Λ,B) as
the nonzero eigenpairs of(Σ1,Σ2). If Σ2 is nonsingular,(Λ,B) is also referred to as the (nonzero)
eigenpairs ofΣ−1

2 Σ1 because the generalized eigenproblem is equivalent to the eigenproblem:

Σ−1
2 Σ1B = BΛ.

In the case thatΣ2 is singular, one typically resorts to a pseudoinverse eigenproblem:

Σ+
2 Σ1B = BΛ.
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Fortunately, we are able to establish a connection between the solutions of thegeneralized eigen-
problem and its corresponding pseudoinverse eigenproblem. In particular, we have the following
theorem, the proof of which is given in Appendix A.

Theorem 1 Let Σ1 and Σ2 be two m×m real matrices. AssumeR (Σ1) ⊆ R (Σ2). Then, if(Λ,B)
are the nonzero eigenpairs ofΣ+

2 Σ1, we have that(Λ,B) are the nonzero eigenpairs of the matrix
pencil(Σ1,Σ2). Conversely, if(Λ,B) are the nonzero eigenpairs of the matrix pencil(Σ1,Σ2), then
(Λ,Σ+

2 Σ2B) are the nonzero eigenpairs ofΣ+
2 Σ1.

As we see from Appendix A, a necessary and sufficient condition forR (Σ1)⊆ R (Σ2) is

Σ2Σ+
2 Σ1 = Σ1.

SinceRm is equal to the direct sum ofR (Σ1) (or R (Σ2)) andN (Σ′
1) (or N (Σ′

2)), we obtain that
R (Σ1) ⊆ R (Σ2) if and only if N (Σ′

2) ⊆ N (Σ′
1). Furthermore, if bothΣ1 andΣ2 are symmetric,

thenN (Σ2)⊆N (Σ1) is equivalent toR (Σ1)⊆ R (Σ2).

2.2 Fisher Linear Discriminant Analysis

Let m = 1
n ∑n

i=1 xi be the sample mean, and letm j =
1
n j

∑i∈Vj
xi be the jth class mean forj =

1, . . . ,c. We then have the pooled scatter matrixSt = ∑n
i=1(xi −m)(xi −m)′ and the between-class

scatter matrixSb =∑c
j=1n j(m j −m)(m j −m)′. Conventional FDA solves the following generalized

eigenproblem:

Sba j = λ jSta j , λ1 ≥ λ2 ≥ ·· · ≥ λq > λq+1 = 0 (1)

whereq≤ min{p, c−1} and where we refer toa j as thejth discriminant direction. Note that we
ignore a multiplier 1/n in these scatter matrices for simplicity.

SinceSt = Sb + Sw whereSw is the pooled within-class scatter matrix, FDA is equivalent to
finding a solution to

Sba = λ/(1−λ)Swa.

We see that FDA involves solving the generalized eigenproblem in (1), which can be expressed in
matrix form:

SbA = StAΛ. (2)

HereA = [a1, . . . ,aq] (n×q) andΛ = diag(λ1, . . . ,λq) (q×q). If St is nonsingular, we obtain

S−1
t SbA = AΛ.

Thus, the(λ j ,a j) are the eigenpairs ofS−1
t Sb and the eigenvectors corresponding to the largest

eigenvalues ofS−1
t Sb are used for the discriminant directions. Since rk(Sb) is at mostc−1, the

projection will be onto a space of dimension at mostc−1 (i.e.,q≤ c−1).
In applications such as information retrieval, face recognition and microarray analysis, however,

we often meet a “smalln but largep” problem. Thus,St is usually ill-conditioned; that is, it is
either singular or close to singular. In this case,S−1

t Sb is not well defined or cannot be computed
accurately.
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Let X = [x1, . . . ,xn]
′ (n×p), M = [m1, . . . ,mc]

′ (c×p), Π = diag(n1, . . . ,nc) (c×c),
Π

1
2 = diag(

√
n1, . . . ,

√
nc), π = (n1, . . . ,nc)

′,
√

π = (
√

n1, . . . ,
√

nc)
′ andHπ = Ic−1

n

√
π
√

π′. It then
follows that1′nE = 1′cΠ = π′, E1c = 1n, 1′cπ = n, E′E = Π, Π−1π = 1c, and

M = Π−1E′X.

In addition, we have
EΠ− 1

2 Hπ = HEΠ− 1
2

given thatEΠ− 1
2 Hπ = EΠ− 1

2 − 1
n1n

√
π′ andHEΠ− 1

2 = EΠ− 1
2 − 1

n1n
√

π′.
Based on these results and the idempotency ofH, St can be written as

St = X′HHX = X′HX, (3)

and we have

Sb = M′
[

Π−1
n

ππ′
]

M

= M′
[

Π
1
2−1

n
π
√

π′
][

Π
1
2−1

n

√
ππ′

]

M

= X′EΠ−1Π
1
2 HπHπΠ

1
2 Π−1E′X

= X′HEΠ−1E′HX. (4)

Given these representations ofSt and Sb, the problem in (2) can be solved by using the GSVD
method (Van Loan, 1976; Paige and Saunders, 1981; Golub and Van Loan, 1996; Howland et al.,
2003).

There are also two variants of conventional FDA in the literature that aim to handle the ill-
conditioned problem (Webb, 2002). The first variant, thepseudoinverse method, involves replacing
S−1

t by S+
t and solving the following eigenproblem:

S+
t SbA = AΛ. (5)

Note thatS+
t exists and is unique (Golub and Van Loan, 1996). Moreover,S+

t is equal toS−1
t

wheneverSt is nonsingular. Thus, we will use (5) whenSt is either nonsingular or singular.
The second variant is referred to asregularized discriminant analysis(RDA) (Friedman, 1989).

It replacesSt by St +σ2Ip and solves the following eigenproblem:

(St +σ2Ip)
−1SbA = AΛ. (6)

It is a well known result that FDA is equivalent to a least mean squared error procedure in
the binary classification problem (c = 2) (Duda et al., 2001). Recently, similar relationships have
been studied for multi-class (c> 2) problems (Hastie et al., 2001; Park and Park, 2005b; Ye, 2007).
Moreover, Park and Park (2005b) proposed an efficient algorithm for FDA based on a least mean
squared error procedure in the multi-class problem.

We can see that the solutionA for (5) or (6) is not unique. For example, ifA is the solution, then
so isAD whereD is an arbitraryq×q nonsingular diagonal matrix. Thus, the constraintA′(St +
σ2Ip)A = Iq is typically imposed in the literature. In this paper we concentrate on the solution of
(6) with or without this constraint, and investigate the connection with a ridge regression problem
in the multi-class setting.
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2.3 Kernel Discriminant Analysis

Kernel methods (Shawe-Taylor and Cristianini, 2004) work in a feature spaceF , which is related
to the original input spaceX ⊂ R

p by a mapping,

ϕ : X → F .

That is,ϕ is a vector-valued function which gives a vectorϕ(s), called afeature vector, correspond-
ing to an inputs ∈ X . In kernel methods, we are given a reproducing kernelK : X ×X → R such
thatK(s, t) = ϕ(s)′ϕ(t) for s, t ∈ X . The mappingϕ(·) itself is typically not given explicitly.

In the sequel, we use the tilde notation to denote vectors and matrices in the feature space.
For example, the data vectors and mean vectors in the feature space are denoted asx̃i and m̃ j .
Accordingly,X̃ = [x̃1, . . . , x̃n]

′ (n×g) andM̃ = [m̃1, . . . ,m̃c]
′ (c×g) are the data and mean matrices

in the feature space. Hereg is the dimension of the feature space. Althoughg is possibly infinite,
we here assume that it is finite but not necessarily known.

Kernel discriminant analysis (KDA) seeks to solve the following generalized eigenproblem:

S̃bÃ = S̃tÃΛ, (7)

whereS̃t and S̃b are the pooled scatter matrix and the between-class scatter matrix inF , respec-
tively:

S̃t =
n

∑
i=1

(x̃i − m̃)(x̃i − m̃)′ = X̃′HX̃,

S̃b =
c

∑
j=1

n j(m̃ j − m̃)(m̃ j − m̃)′ = X̃′HEΠ−1E′HX̃.

The KDA problem is to solve (7), doing so by working solely with the kernel matrix K = X̃X̃′.
This is done by noting that̃A can be expressed as

Ã =
n

∑
i=1

(x̃i − m̃)β′
i +N = X̃′Hϒ+N, (8)

whereϒ = [β1, . . . ,βn] (n×q) andN ∈R
g×q such thatN′X̃′H = 0 (Park and Park, 2005a; Mika et al.,

2000). It then follows from (7) that

X̃′HEΠ−1E′HX̃X̃′Hϒ = X̃′HX̃X̃′HϒΛ. (9)

This implies that(Λ, X̃′Hϒ) are also theq eigenpairs of the matrix pencil(S̃b, S̃t). Thus, in the
literature the solution of (7) is typically restricted toR (X̃′H); that is,N = 0 is set.

Premultiplying both sides of the Equation (9) byHX̃, we have a new generalized eigenvalue
problem

CEΠ−1E′Cϒ = CCϒΛ, (10)

which involves only the kernel matrixK = X̃X̃′ via its centered formC = HKH.
The current concern then becomes that of solving the problem (10). AlthoughK can be assumed

to be nonsingular,C is positive semidefinite but not positive definite because the centering matrix
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H is singular. In fact, the rank ofC is not larger thann−1 because the rank ofH is n−1. Thus the
GDA method devised by Baudat and Anouar (2000) cannot be used directly for problem (10).

To address this problem Park and Park (2005a) proposed a GSVD-based algorithm to solve
(10). Running this algorithm requires the complete orthogonal decomposition(Golub and Van Loan,
1996) of matrix[CEΠ− 1

2 ,C]′, which is of size(n+c)×n. This approach is infeasible for large values
of n. Thus, Park and Park (2005a) developed an efficient alternative which consists of two SVD
procedures but does not involve the complete orthogonal decomposition of an (n+c)×n matrix. We
refer to it as theSVD-based algorithm.

Another approach to solving the problem (10) is based on the following regularized version of
the problem:

CEΠ−1E′Cϒ = (CC+σ2In)ϒΛ, (11)

which was also studied by Park and Park (2005a). Note that this variant isnot a directly regularized
form of the original KDA problem in (7).

After having obtainedϒ from (10) or (11), for a new input vectorx, the projectionz of its feature
vectorx̃ ontoÃ is computed by

z = ϒ′HX̃
(

x̃− 1
n

X̃′1n

)

= ϒ′H
(

kx −
1
n

K1n

)

, (12)

wherekx =
(

K(x,x1), . . . ,K(x,xn)
)′

. This shows that the kernel trick can be used for KDA, and
this approach has been widely deployed in practical problems. However,a theoretical justification
for using the projection in (12) has been lacking in the literature. We are ableto provide such as
justification as follows. Recall that if(Λ, X̃′Hϒ) is the solution of (7), then(Λ,ϒ) is the solution of
(10). As we will see in Theorem 3, if(Λ,ϒ) is the solution of (10),(Λ, X̃′Hϒ) is the solution of (7).
This justifies the projection (12).

Note, however, that if(Λ,ϒ) is the solution of (11) this does not imply that(Λ, X̃′Hϒ) is the
solution of (7). This shows that the projection (12) is inconsistent with (11). This is an inconsistency
that underlies the regularized KDA methodology of Park and Park (2005a). The new methodology
that we propose in the following section surmounts this problem.

3. New Approaches to Kernel Discriminant Analysis

Recall that we are interested in the pseudoinverse and regularization forms of (7), defined respec-
tively by

S̃+
t S̃bÃ = ÃΛ (13)

and
S̃bÃ = (S̃t +σ2Ig)ÃΛ. (14)

We wish to find solutions of (7) and (13) or (14) that are consistent with each other.
SinceR (S̃t) = R (X̃′HHX̃) = R (X̃′H) andR (S̃b) = R (X̃′HEΠ−1E′HX̃) = R (X̃′HE), we

have thatR (S̃b)⊆ R (S̃t). As a direct corollary of Theorem 1, we thus obtain a connection between
(7) and (13); that is,

Theorem 2 If (Λ, Ã) (nonzero eigenpairs) is the solution of (13), then(Λ, Ã) is the solution of (7).
Conversely, if(Λ, Ã) is the solution of (7), then(Λ, S̃+

t S̃tÃ) is the solution of (13).
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Theorem 2 implies that the solution of (7) can be obtained from (13). To solve (13), we consider
the pseudoinverse form of (10), which is

C+EΠ−1E′Cϒ = ϒΛ (15)

due toC+C+C = C+ (see Lemma 11). To obtain the solution of (14), we substitute (8) into (14)
and then premultiply byHX̃. As a result, we have

CEΠ−1E′Cϒ = (CC+σ2C)ϒΛ. (16)

The following theorem shows that we are able to obtain the solutions of (7), (13) and (14)
respectively from the solutions of (10), (15) and (16). That is,

Theorem 3 Considering the KDA problems, we have:

(i) If (Λ,ϒ) is the solution of (10), then
(

Λ, X̃′Hϒ
)

is the solution of (7).

(ii) If (Λ,ϒ) is the solution of (15), then
(

Λ, X̃′Hϒ
)

is the solution of (13).

(iii) If (Λ,ϒ) is the solution of (16), then
(

Λ, X̃′Hϒ
)

is the solution of (14).

The proof of this theorem is given in Appendix C. Theorem 3 shows that the solutions of (7),
(13) and (14) lie in span{X̃′H}. Moreover, we see that

(

Λ, X̃′Hϒ
)

are their solutions. We also note
that (16) is different from (11). Theorem 3 provides a relationship between (14) and (16); there is
not a similar relationship between (14) and (11).

Finally, as a corollary of Theorems 2 and 3, we have

Corollary 4 If (Λ,ϒ) is the solution of (15), then
(

Λ, X̃′Hϒ
)

is the solution of (7). Moreover, if
(Λ,ϒ) is the solution of (10), then

(

Λ, X̃′Hϒ
)

is the solution of (13).

We see from Corollary 4 that the solution of (7) can be also obtained from (15). We now
concentrate our attention on the regularized KDA problem (14). We first handle (14) by using (16)
and Theorem 3, and then we present an approach for directly solving (14).

4. SVD-based Algorithms for RDA Problems

It is clear that we can solve the regularized KDA (RKDA) problem in (11) by solving

(CC+σ2In)
−1CEΠ−1E′Cϒ = ϒΛ.

However, sinceCC+σ2C is singular, this approach is not appropriate for the RKDA problem in
(16). In this section we show how to solve the RKDA problems in both (11) and(16), as well as the
regularized FDA (RFDA) problem in (6).

In particular, we exploit the SVD-based algorithm developed for solving (10) by Park and Park
(2005a). Our algorithms are summarized as Algorithm 1, which is an SVD-based method for solving
RFDA problem (6), and Algorithms 2 and 3, which are SVD-based algorithmsfor RKDA problems
(11) and (16). We defer the derivations to Section 8 in which we considerthe SVD-based algorithm
for a more general generalized eigenvalue problem. According to Theorem 3 and the following
theorem, we immediately have the solution of (14) asÃ = X̃′Hϒ.
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Algorithm 1 SVD-based Algorithm for RFDA problem (6)

1: procedure RFDA(X,E,π,Π,σ2)
2: Perform the condensed SVD ofHX asHX = UXΓXV′

X;

3: CalculateF = (Γ2
X +σ2Ir)

− 1
2 ΓXU′

XEΠ− 1
2 wherer = rk(ΓX);

4: Perform the condensed SVD ofF asF = UFΓFV′
F and setq= rk(ΓF);

5: ReturnA = VX(Γ2
X +σ2Ir)

− 1
2 UF as the solution of RFDA.

6: end procedure

Algorithm 2 SVD-based Algorithm for RKDA problem (11)

1: procedure RKDA(C,E,π,Π,σ2)
2: Perform the condensed SVD ofC asC = UCΓCU′

C;

3: CalculateF = (Γ2
C+σ2Ir)

− 1
2 ΓCU′

CEΠ− 1
2 wherer = rk(ΓC);

4: Perform the condensed SVD ofF asF = UFΓFV′
F ;

5: Let ϒ = UC(Γ2
C+σ2Ir)

− 1
2 UF and setq= rk(ΓF);

6: Calculatez via (12) as theq-dimensional representation ofx.
7: end procedure

Theorem 5 Consider Algorithms 1, 2 and 3 for the corresponding RDA problems.

(i) If A is obtained from Algorithm 1, then,

A′(St +σ2Ip)A = Iq and A′SbA = Γ2
F .

(ii) If ϒ is obtained from Algorithm 2, then

ϒ′(CC+σ2In)ϒ = Iq and ϒ′CEΠ−1E′Cϒ = Γ2
F .

(iii) If ϒ is obtained from Algorithm 3 and̃A = X̃′Hϒ, then

ϒ′(CC+σ2C)ϒ = Iq and ϒ′CEΠ−1E′Cϒ = Γ2
F ,

and
Ã′(S̃t +σ2Ig)Ã = Iq and Ã′S̃bÃ = Γ2

F .

The proof of the theorem is given in Appendix D. According to this theorem,for a newx, the
projectionz ontoÃ is given by

z = ϒ′H
(

kx −
1
n

K1n

)

. (17)

Note that ifσ2 = 0, Algorithm 1 degenerates to the SVD-based algorithm for the conventional
FDA in (2) (Howland et al., 2003) and Algorithms 2 and 3 become identical.

5. EVD-based Algorithms for RDA

It is desirable to directly find the solution of the RKDA problem (14), rather than obtaining the
solution indirectly via (16). However, it is not feasible to devise a SVD-based algorithm for directly
solving the RKDA problem in (14). In this section we propose a new approach to solving the RFDA
problem (6). We then extend this approach for the solution of the RKDA problem (14).
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Algorithm 3 SVD-based Algorithm for RKDA problem (16) as well as for (14)

1: procedure RKDA(C,E,π,Π,σ2)
2: Perform the condensed SVD ofC asC = UCΓCU′

C;

3: CalculateF = (Γ2
C+σ2ΓC)

− 1
2 ΓCU′

CEΠ− 1
2 wherer = rk(ΓC);

4: Perform the condensed SVD ofF asF = UFΓFV′
F ;

5: Let ϒ = UC(Γ2
C+σ2ΓC)

− 1
2 UF and setq= rk(ΓF);

6: Calculatez via (17) as theq-dimensional representation ofx.
7: end procedure

5.1 The Algorithm for RFDA

We reformulate the eigenproblem in (6) as

GΠ− 1
2 E′HXA = AΛ,

where

G = (X′HX+σ2Ip)
−1X′HEΠ− 1

2 (18)

due to (3) and (4). We also have

G = X′H(HXX′H+σ2In)
−1EΠ− 1

2 (19)

due to(X′HX+σ2Ip)
−1X′H = X′H(HXX′H+σ2In)

−1. If n < p, we can use (19) to reduce the
computational cost. Moreover, we will see that (19) plays a key role in the development of an
efficient algorithm for KDA to be presented shortly.

Let R = Π− 1
2 E′HXG. SinceGΠ− 1

2 E′HX (p×p) andR (c×c) have the same nonzero eigenval-
ues (Horn and Johnson, 1985), theλ j , j = 1, . . . ,q, are the nonzero eigenvalues ofR. Moreover, if

(Λ,V) is the nonzero eigenpair ofR, (Λ,GV) is the nonzero eigenpair ofGΠ− 1
2 E′HX. Note that

R = Π− 1
2 E′HX(X′HX+σ2Ip)

−1X′HEΠ− 1
2 . (20)

This shows thatR is positive semidefinite.
We use these facts to develop an algorithm for solving the RFDA problem in (6). This is also a

two-step process, which is presented in Algorithm 4. The first step computes(σ2Ip+X′HX)−1 (or
(σ2In+HXX′H)−1), while the second step is an SVD procedure. Note that the first step can be im-
plemented by computing the condensed SVD ofX′HX (or HXX′H). SinceR andX′HX (HXX′H)
are positive semidefinite, their SVD are equivalent to the eigenvalue decomposition (EVD). Thus,
we refer to this two-step process as anEVD-based algorithm, distinguishing it from the SVD-based
algorithm.

The first step calculatesG by either (18) or (19). The computational complexity isO(m3)
wherem= min(n, p). The second step forms the condensed SVD ofR for which the computational
complexity isO(c3). If both n and p are large, we recommend an approximate strategy; that is,
we first perform the incomplete Cholesky decomposition ofHXX′H (or X′HX) and then calculate
(HXX′H+σ2In)

−1 (or (X′HX+σ2Ip)
−1) via the Sherman-Morrison-Woodbury formula (Golub

and Van Loan, 1996). This strategy makes the first step still efficient.
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Whenσ2 = 0, we can solve the problem in (5) by simply adjusting the first step in the EVD-
based algorithm. In particular, we calculateG by

G = (X′HX)+X′HEΠ− 1
2

(or)
= X′H(HXX′H)+EΠ− 1

2 . (21)

Algorithm 4 EVD-based Algorithm for RFDA problem (6)

1: procedure RFDA(X,E,Π,σ2)
2: CalculateG by (18) or (19) andR by (20);
3: Perform the condensed SVD ofR asR = VRΓRV′

R;

4: ReturnA = GVRΓ− 1
2

R or B = GVR as the solution of RFDA problem (6).
5: end procedure

Compared with the SVD-based algorithm, the EVD-based algorithm is more efficient, especially
for “small n but largep” problems. Using the notation in Algorithms 1 and 4, we have

R = F′F

by performing some matrix computations. This implies thatΓR = Γ2
F . Moreover, it is immediate to

obtain the following result.

Theorem 6 Let A be obtained from Algorithm 4. Then,

A′(St +σ2Ip)A = Iq and A′SbA = Γ2
F .

This theorem shows that Algorithms 1 and 4 are essentially equivalent. As mentioned before, it
is not feasible to develop an SVD-based algorithm for solving the RKDA problem (14), which is
the kernel extension of RFDA in (6). On the other hand, in the next subsection we will see that
Algorithm 4 can be used for solving the RKDA problem (14).

5.2 The Algorithm for RKDA

It follows immediately from (19) that

G̃ = X̃′H(HX̃X̃′H+σ2In)
−1EΠ− 1

2

from which, using (20), we calculateR by

R = Π− 1
2 E′C(C+σ2In)

−1EΠ− 1
2 .

Moreover, given a new input vectorx, we can compute the projectionz of the feature vector̃x onto
Ã through

z = Ã′(x̃− m̃)

= Γ− 1
2

R V′
RΠ− 1

2 E′(C+σ2In)
−1HX̃

(

x̃− 1
n

X̃′1n

)

= Γ− 1
2

R V′
RΠ− 1

2 E′(C+σ2In)
−1H

(

kx −
1
n

K1n

)

. (22)
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This shows that we can calculateR andz directly usingK andkx. We thus obtain an EVD-based
algorithm for RKDA, which is given in Algorithm 5. Also, whenσ2 = 0, we calculateR by

R = Π− 1
2 E′CC+EΠ− 1

2

and exploit the EVD-based algorithm to solve the following variant of KDA:

S̃+
t S̃bÃ = ÃΛ.

We see that the EVD-based algorithm is more efficient than the SVD-based algorithm (i.e.,
Algorithm 2) for the RKDA problem in (11). Recall that the RKDA problem (14) is not fully
equivalent to that in (11). Moreover, we also have an EVD-based algorithm for solving (11), by
replacingC by CC in calculatingR and (22) by (17) in calculatingz. However, the resulting
algorithm is less efficient computationally.

Algorithm 5 EVD-based Algorithm for RKDA problem (14)

1: procedure RKDA(K,E,kx,Π,σ2)
2: CalculateR = Π− 1

2 E′C(C+σ2In)
−1EΠ− 1

2 ;
3: Perform the condensed SVD ofR asR = VRΓRV′

R;
4: Calculatez by (22);
5: Returnz as theq-dimensional representation ofx.
6: end procedure

Let us investigate the relationship between the solutions of (14) from Algorithms 3 and 5. First,
let ϒ be obtained from Algorithm 3. It follows from (16) that(C+σ2In)

−1CEΠ−1E′Cϒ = CϒΛ,
that is,

C(C+σ2In)
−1EΠ− 1

2 Π− 1
2 E′Cϒ = CϒΛ.

Thus,(Λ,Π− 1
2 E′CϒΓ−1

F ) is the nonzero eigenpair ofR. Finally, we haveΛ = Γ2
F = ΓR. In addition,

it follows from Theorem 5 that

Γ−1
F ϒ′CEΠ−1E′CϒΓ−1

F = Iq.

Moreover, we have

G̃Π− 1
2 E′CϒΓ−2

R = X̃′H(C+σ2In)
−1EΠ−1E′CϒΛ−1

= X̃′HC+C(C+σ2In)
−1EΠ−1E′CϒΛ−1

= X̃′HC+Cϒ = X̃′Hϒ (23)

becausẽX′H = X̃′HC+C. This implies thatÃ = X̃′Hϒ obtained from Algorithm 3 is equivalent to
that obtained from Algorithm 5.

On the other hand, letR = VRΓRV′
R be the condensed SVD ofR. Then

CEΠ−1E′Cϒ = (C2+σ2C)ϒΓR,

whereϒ = (C+σ2In)
−1EΠ− 1

2 VΓ− 1
2

R . Moreover, it is easily checked that

ϒ′(C2+σ2C)ϒ = Iq and ϒ′CEΠ−1E′Cϒ = ΓR.
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This implies that(ΓR,ϒ) is the solution of (16). Again, using (23), we conclude that the solution of
(14) from Algorithm 5 is equivalent to the one from Algorithm 3.

In summary, Algorithms 5 and 3 yield equivalent solutions for (14). However, Algorithm 5 is
more efficient than Algorithm 3.

6. Relationships Between RFDA and Ridge Regression

It is a well known result that FDA (or KDA) is equivalent to a least mean squared error procedure in
the binary classification problem (c= 2) (Duda et al., 2001; Mika et al., 2000). Recently, relation-
ships between FDA and a least mean squared error procedure in multi-class (c> 2) problems have
been discussed by Hastie et al. (2001), Park and Park (2005b), andYe (2007).

Motivated by this line of work, we investigate a possible equivalency between RFDA and ridge
regression (Hoerl and Kennard, 1970). We then go on to consider a similar relationship between
RKDA and the corresponding ridge regression problem.

Let Y = [y1, . . . ,yn]
′ = EΠ− 1

2 Hπ. That is,yi = (yi1, . . . ,yic) is defined by

yi j =

{ n−n j

n
√

n j
if i ∈Vj ,

−
√

n j

n otherwise.

Regarding{(xi ,yi), i = 1, . . . ,n} as the training samples, we fit the following multivariate linear
function:

f(x) = w0+W′x

wherew0 ∈R
c andW ∈R

p×c. We now find ridge estimates ofw0 andW. In particular, we consider
the following minimization problem:

min
w0,W

L(w0,W) =
1
2
‖Y−1nw′

0−XW‖2
F +

σ2

2
tr(W′W). (24)

We focus on the solution forW:

W = (X′HX+σ2Ip)
−1M′Π

1
2 Hπ = (X′HX+σ2Ip)

−1X′HEΠ− 1
2 . (25)

The derivation is given in Appendix E. It is then seen from (18) thatW = G. Moreover, when
σ2 = 0, W reduces to the ordinary least squares (OLS) estimate ofW, which is the solution of the
following minimization problem:

min
w0,W

L(w0,W) =
1
2
‖Y−1nw′

0−XW‖2
F . (26)

In this case, ifX′HX is singular, a standard treatment uses(X′HX)+ in (25). Such aW is identical
with G in (21).

In summary, we have obtained a relationship between the ridge estimation problem in (24) and
the RFDA problem in (6).

Theorem 7 LetW be the solution of the ridge estimation problem in (24) (resp. the OLS estimation
problem in (26)) andA be defined in Algorithm 4 for the solution of the RFDA problem in (6) (resp.
the FDA problem in (5)). Then

A = WVRΓ− 1
2

R ,

whereVR andΓR are defined in Algorithm 4.
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This theorem provides an important connection betweenA andW. IndeedB = AΓ
1
2
R is also a

solution of the RFDA problem (6). However,B satisfies the conditionB′(St +σ2Ip)B = ΓR, rather
thanB′(St +σ2Ip)B = Iq. Thus, with thisB, we obtain the following result, which is the principal
theoretical result of this paper.

Theorem 8 Under the conditions in Theorem 7, we have

BB′ = WW′.

Moreover, we have
(xi −x j)

′BB′(xi −x j) = (xi −x j)
′WW′(xi −x j)

for anyxi andx j ∈ R
p.

The proof of this theorem is given in Appendix F. Theorem 8 shows that when applying a
distance-based classifier such as theK-nearest neighbor (KNN) in the reduced dimensional space,
the classification results obtained by the multi-class FDA and multivariate linear estimators are
same. Since Theorem 8 holds in general cases, we obtain a complete solutionto the open problem
concerning the relationship between multi-class FDA problems and multivariate linear estimators.

Similar results have been obtained by Park and Park (2005b); Ye (2007), but under restrictive
conditions which arise from a different definition of the label scoring matrixY than ours. The choice
that of label scoring matrix that we have presented has also been used byYe (2007), but Ye (2007)
attempted to establish a connection between the solutionW andA as given in Algorithm 1.

It is also worth noting that Zhang and Dai (2009) discussed a connectionbetween the label
scoring matrixY and the optimal scoring procedure in Hastie et al. (1994). Moreover, Zhang and
Jordan (2008) exploited this label scoring matrix in spectral clustering.

Our theorem also goes through immediately in the kernel setting. In particular,for the RKDA
problem defined by (11), the corresponding ridge estimator is

min
w0,Φ∈Rn×c

L(w0,Φ),
1
2
‖Y−1nw′

0−KHΦ‖2
F +

σ2

2
tr(Φ′Φ). (27)

The ridge estimation problem corresponding to our RKDA in (14) is given by

min
w0,W̃∈Rg×c

L(w0,W̃),
1
2
‖Y−1nw′

0−X̃W̃‖2
F +

σ2

2
tr(W̃′W̃),

while the estimation problem for the RKDA in (16) is

min
w0,Φ∈Rn×c

L(w0,Φ),
1
2
‖Y−1nw′

0−KHΦ‖2
F +

σ2

2
tr(Φ′CΦ), (28)

which is no longer a conventional ridge regression problem. In fact, this problem can be regarded a
multi-class extension of the least squares SVM (LS-SVM) (Suykens and Vandewalle, 1999; Suykens
et al., 2002); (see, e.g., Van Gestel et al., 2002; Pelckmans et al., 2005). Our work thus provides the
relationship between RKDA and the LS-SVM.

Note that whenσ2 = 0, the problems in (27) and (28) are identical. Moreover, the solution of
the problems is given by

Φ = (HKHKH)+HKHEΠ− 1
2 = C+EΠ− 1

2 .
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In this case, the RKDA methods in (11) and (16) are also the same. As we seefrom Section 3, its cor-
responding pseudoinverse form is given by (15). Let the condensed SVD ofR = Π− 1

2 E′CC+EΠ− 1
2

be R = VRΓRV′
R. Then (ΓR,ΦVRΓ− 1

2
R ) is the solution of (15). This implies that in the case of

σ2 = 0, there is still the connection between the least squares kernel-based SVM and RKDA shown
in Theorem 7.

7. Experimental Study

To evaluate the performance of the proposed algorithms for FDA and KDA,we conducted experi-
mental comparisons with other closely related algorithms for FDA and KDA on several real-world
data sets. In particular, the comparison was implemented on four face data sets, two handwritten
digits data sets, the “letters” data set, and the WebKB data set. All algorithms were implemented in
Matlab on a PC configured with an Intel Dual Core 2.0GHz CPU and 2.06GB of memory.

7.1 Setup

The four face data sets are the ORL face database, the Yale face database, the Yale face database B
with extension, and the CMU PIE face database, respectively.

− The ORL face database contains 400 facial images of 40 subjects with 10 different im-
ages for each subject. This database was developed at the Olivetti Research Laboratories
in Cambridge, U.K. The images were taken at different times with variations in facial details
(glasses/no glasses), facial expressions (open/closed eyes, smiling/nonsimling), and facial
poses (tilted and rotated up to 20 degrees). There is also variation in the scale of up to about
10%. The spatial resolution of the images is 112×92, with 256 gray levels.

− The Yale face images for each subject were captured under differentfacial expressions or
configurations (e.g., center-light, w/glasses, happy, left-light, w/no glasses, normal, right-
light, sad, sleepy, surprised, and wink).

− The Yale face database with extension includes the Yale face database B (Georghiades et al.,
2001) and the extended Yale Face Database B (Lee et al., 2005). The Yale face database B
contains 5760 face images of 10 subjects with 576 different images for each subject, and the
extended Yale Face Database B contains 16128 face images of 28 subjects, with each subject
having 576 different images. The facial images for each subject were captured under 9 poses
and 64 illumination conditions. For the sake of simplicity, a subset called the YaleB&E was
collected from two databases; it contains the 2414 face images of 38 subjects.

− The CMU PIE face database contains 41,368 face images of 68 subjects. The facial images
for each subject were captured under 13 different poses, 43 different illumination conditions,
and with 4 different expressions. In our experiments, we considered only the five near-frontal
poses under different illuminations and expressions. For simplicity, we collected a subset
of the PIE face database, containing the 6800 face images of 68 subjects with 100 different
images for each subject.

In all of the experiments, each whole image was cropped and further resized to have a spatial
resolution of 32×32 with 256 gray levels. Figure 1 shows some samples from the four data sets,
where four subjects are randomly chosen from each data set and eachsubject has six sample images.
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(a) ORL (b) Yale

(c) YaleB&E (d) PIE

Figure 1: Some sample images randomly chosen from the four data sets, where four subjects from
each data set and each subject with six sample images.

The two handwritten digits data sets are the USPS data set and the Binary Alphadigits (BA) data
set, respectively.

− The USPS data set was derived from the well-known United States Postal Service (USPS) set
of handwritten digits, and contains 2000 images of 10 digits, each digit with 200images. The
spatial resolution of the images in the USPS data set is 16×16, with 256 gray levels.

− The Binary Alphadigits (BA) data set was collected from a binary 20×16 digits database of
“0” through “9” and capital “A” through “Z,” and thus contains 1404 images of 36 subjects,
each subject with 39 image.

The “letters” data set can be obtained from Statlog(http://www.liacc.up.pt/ML/) and it
consists of images of the letters “A,” “B,” “C,” “D” and “E” with 789, 766,736, 805 and 768 cases
respectively.

Finally, the WebKB data set contains web pages gathered from computer science departments
in several universities (Craven et al., 1998). The pages can be divided into seven categories. In
our experiments, we used the four most populous categories, namely,student, faculty, course, and
project, resulting in a total of 4192 pages. Based on information gain, 300 features were selected.

Table 1 summarizes these benchmark data sets. In our experiments, each data set was randomly
partitioned into two disjoint subsets as the training and test data sets, according to the percentage
n/k listed in the last column of Table 1. Ten random partitions were obtained for each data set, and
several evaluation criteria were reported, including average classification accuracy rate, standard
deviation, and average computational time.

The hyperparameters involved in the following methods were selected by cross-validation. After
having obtained theq-dimensional representationszi of thexi from each method, we used a simple
nearest neighbor classifier to evaluate the classification accuracy.

7.2 Comparison of FDA Methods

In the linear setting, we compared Algorithm 4 with Algorithm 1 (RFDA/SVD-based), the FDA/GSVD (How-
land and Park, 2004) and FDA/MSE methods. Here the FDA/MSE method was derived by Park and
Park (2005b) from the relationship between FDA and the minimum squared error solution. We refer
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Data set c p k n/k
ORL 40 1024 400 40%
Yale 15 1024 165 50%
YaleB&E 38 1024 2414 30%
PIE 68 1024 6800 20%
USPS 10 256 2000 10%
BA 36 320 1404 50%
Letters 5 16 3864 10%
WebKB 4 300 4192 10%

Table 1: Summary of the benchmark data sets:c−the number of classes;p−the dimension of the
input vector;k−the size of the data set;n−the number of the training data.

to Algorithm 4 working withA as the RFDA/EVD-based method. As we have shown, whenB is
used, Algorithm 4 provides the solution of ridge regression. We thus refer to the algorithm working
with B as RFDA/RR. Similar notation also applies to the kernel setting in the next subsection.

Empirically, the performance of the RFDA/EVD-based method is fully identical tothat of the
RFDA/SVD-based method. This bears out the theoretical analysis in Theorem 6. Thus, we only
report the classification accuracies of the RFDA/RR method for Algorithm 4.

Table 2 presents an overall comparison of the methods on all of the data setsand Figure 2
presents the comparative classification results on the four face data sets.It is seen that the RFDA
methods have better classification accuracy overall than other methods throughout a range of choices
of the number of discriminant variates. Particularly striking is the performance of the RFDA meth-
ods when the number of discriminant variatesq is small.

From Figure 2, we see that the performance of RFDA/RR method is a little better than that of
RFDA/SVD-based method. This implies that RFDA/RR outperforms RFDA/EVD-based method;
that is, the performance using the transformation matrixB is better than that using the transformation
matrix A in Algorithm 4. Therefore, the constraintA′(St +σ2Ip)A = Iq is not necessarily the best
choice for RFDA. This also shows that the ridge regression method givenin Section 6 is effective
and efficient.

We also compared the computational time of the different methods on the four face data sets.
Figure 3 plots the results as a function of the training percentagen/k on the four face data sets.
We see that our method has an overall favorable computational complexity in comparison with the
other methods on the four face data sets. As the training percentagen/k increases, our method
yields more efficient performance.

Note that when the training percentagen/k on the YaleB&E and PIE data sets increases, the
singularity problem of the within-class scatter matrixSw, that is, the small sample size problem,
tends to disappear. Figures 3 (c) and (d) show that the FDA/MSE method becomes more efficient in
this case, and the corresponding computational time becomes flat with respect to the increase of the
training percentagen/k. On the other hand, Figures 3 (c) and (d) also reveal that the computational
time of the FDA/SVD-based method significantly increases as the size of trainingdata increases.
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Data Set
FDA/GSVD FDA/MSE RFDA/SVD-based RFDA/RR

acc(±std) time acc(±std) time acc(±std) time acc(±std) time
ORL 91.54 (±1.98) 1.952 91.58 (±2.00) 0.293 93.17 (±1.94) 0.347 94.04 (±1.95) 0.079
Yale 78.56 (±2.29) 1.281 78.44 (±2.47) 0.047 79.22 (±4.19) 0.072 79.56 (±3.75) 0.014
YaleB&E 59.54 (±11.8) 43.18 65.34 (±9.23) 9.967 89.86 (±1.15) 9.177 90.20 (±1.09) 1.479
PIE 77.26 (±1.05) 89.85 77.26 (±1.05) 23.10 90.40 (±0.65) 83.88 91.14 (±0.63) 2.726
USPS 43.02 (±1.86) 0.392 42.95 (±1.82) 0.229 82.16 (±1.07) 0.273 83.49 (±1.39) 0.035
Letters 91.23 (±0.98) 0.017 91.23 (±0.98) 0.011 91.68 (±0.89) 0.013 91.89 (±0.65) 0.021
WebKB 67.45 (±2.29) 0.853 67.45 (±2.29) 0.595 83.40 (±0.61) 0.748 83.39 (±0.63) 0.073
BA 36.40 (±2.40) 1.586 36.40 (±2.40) 0.784 68.51 (±1.91) 0.981 68.85 (±1.35) 0.157

Table 2: Experimental results for the four methods on different data sets inthe linear setting:acc−
the best classification accuracy percentage;std− the corresponding standard deviation;
time− the corresponding computational time (s).

7.3 Comparison of RKDA Methods

In the kernel setting, we compared Algorithms 2, 3 and RKDA/RR (Algorithm 5 working with
B). We also implemented the KDA/GSVD method (Park and Park, 2005a) as a baseline. The
RBF kernelK(xi ,x j) = exp(−‖xi − x j‖2/θ2) was employed, andθ was set to the mean Euclidean
distance among training data points. This setting was empirically found to be effective in real-world
applications.

Table 3 summarizes the different evaluation criteria on all the data sets. Figures 4 and 5 fur-
ther illustrate these results. As we see, our two RKDA methods yield better accuracy than the
KDA/GSVD method and Algorithm 2. Moreover, RKDA/RR is more efficient computationally
than the other methods, especially as the size of training data increases. It should be mentioned
here that the data sets in our experiments range from small-sample to large-sample problems. Thus,
Table 3 also confirms that the RKDA method based on (14) is more effective and efficient than the
method based on (11).

Finally, Figure 6 presents the performance of the four regularized methods with respect to dif-
ferent regularization parametersσ on the four face data sets. From this figure, it can be seen that the
regularized parameterσ plays an important role in our RFDA/RR and RKDA/RR methods. Similar
results are obtained for the other regularized FDA or KDA methods compared here.

8. Beyond FDA

In this section we extend our results to a more general setting. We first applythe SVD-based
algorithm to a family of generalized eigenvector problems, and then proposean efficient algorithm
for penalized kernel canonical correlation analysis (KCCA) (Akaho,2001; Van Gestel et al., 2001;
Bach and Jordan, 2002).
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Figure 2: Comparison of the classification accuracies for FDA methods on the four face data sets:
(a) ORL; (b) Yale; (c) YaleB&E; (d) PIE.

8.1 A Family of Generalized Eigenvector Problems

Assume thatQ is a p×p semidefinite positive matrix. Here and later, we define

f (Q) =
k

∑
j=0

b jQ j = b0Ip+b1Q+b2Q2+ · · ·+bkQk

whereb0, . . . ,bk are nonnegative real scalars for some positive integerk. We assume that there is at
least oneb j such thatb j > 0. LetQ = VΓV′ be the SVD ofQ. We have

f (Q) = V(b0Ip+b1Γ+b2Γ2+ · · ·+bkΓk)V′.

This implies thatf (Q) is also semidefinite positive. Moreover, we have rk(Q)≤ rk( f (Q)). In fact,
we have rk(Q) = rk( f (Q)) if b0 = 0. However,f (Q) is nonsingular wheneverb0 > 0.
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Figure 3: Comparison of the computational times for FDA methods as the training percentagek/n
increases on the four face data sets: (a) ORL; (b) Yale; (c) YaleB&E; (d) PIE.

Letting X ∈ R
n×p andY ∈ R

n×m, we consider the following general optimization problem:

max
A∈Rp×q

tr
(

A′X′YY′XA(A′ f (Q)A)−1). (29)

whereQ = (X′X)1/2 and rk(Q) = rk(X) ≥ q. This problem can be formulated as a generalized
eigenproblem as follows:

X′YY′XA = f (Q)AΛ. (30)

Thus, we consider the following eigenproblem:
(

f (Q)
)+X′YY′XA = AΛ. (31)

The following theorem shows a relationship between (30) and (31).

Theorem 9 If (Λ,A) (nonzero eigenpairs) is the solution of (31), then(Λ,A) is the solution of (30).
Conversely, if(Λ,A) is the solution of (30), then(Λ,( f (Q))+ f (Q)A) is the solution of (31).
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Figure 4: Comparison of the classification accuracies for KDA methods on the four face data sets:
(a) ORL; (b) Yale; (c) YaleB&E; (d) PIE.

The theorem obviously holds whenb0 > 0, becausef (Q) is nonsingular. In the case thatb0 = 0,
this theorem is a special case of Theorem 1.

Returning to the optimization problem in (29), we have the following theorem.

Theorem 10 Assume thatrk(X) = r ≥ q. Let the condensed SVD ofX be X = UXΓXV′
X and

the condensed SVD ofF = ( f (ΓX))
− 1

2 ΓXU′
XY be F = UFΓFV′

F . We have: (i)(Λ,T) whereT =

VX( f (ΓX))
− 1

2 UF and Λ = Γ2
F are r eigenpairs of the pencil(X′YY′X, f (Q)); (ii) the matrix Tq

consisting of the first q columns ofT is a maximizer of the generalized Rayleigh quotient in(29).

The proof is given in Appendix G. This theorem shows that we can use theSVD-based algorithm
to solve (29). That is, we obtain a derivation of Algorithm 6. Moreover, itis easily seen that the
RFDA problems (6), (11), (14) and (16) are special cases of the problem (29) with different settings
for theb j .
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Figure 5: Comparison of the computational times for KDA methods as the training percentagek/n
increases on the four face data sets: (a) ORL; (b) Yale; (c) YaleB&E; (d) PIE.

Algorithm 6 SVD-based Algorithm for Problem (29)

1: procedure GEP({X,Y,σ2})
2: Perform the condensed SVD ofX asX = UXΓXV′

X.
3: CalculateF = ( f (ΓX))

− 1
2 ΓXU′

XY wherer = rk(ΓX).
4: Perform the condensed SVD ofF asF = UFΓFV′

F .
5: Let T = VX( f (ΓX))

− 1
2 UF

6: ReturnA = T(:,1 : q) for q≤ r as a maximizer of Problem (29).
7: end procedure

8.2 Penalized KCCA

Given two data matricesX ∈ X ⊂ R
n×p andY ∈ Y ⊂ R

n×m, CCA finds two matricesAx ∈ R
p×q

andAy ∈ R
m×q of canonical correlation vectors by solving the following optimization problem:

maxAx, Ay tr(A′
xSxyAy),

s.t.A′
xSxxAx = Iq and A′

ySyyAy = Iq,2220
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KDA/GSVD Algorithm 2 Algorithm 3 RKDA/RR
Data Set acc(±std) time acc(±std) time acc(±std) time acc(±std) time
ORL 94.45 (±1.63) 0.231 92.79 (±1.74) 0.159 94.41 (±2.03) 0.162 94.50 (±1.64) 0.032
Yale 76.44 (±3.50) 0.017 76.44 (±2.71) 0.025 76.44 (±2.38) 0.025 76.78 (±3.20) 0.004
YaleB&E 40.34 (±22.4) 7.898 88.83 (±0.99) 6.520 88.20 (±0.88) 6.554 89.06 (±0.81) 0.818
PIE 91.00 (±0.36) 48.07 87.33 (±0.65) 40.71 91.52 (±0.45) 40.90 91.52 (±0.45) 5.079
USPS 82.25 (±1.59) 0.305 83.96 (±1.10) 0.238 84.92 (±1.56) 0.234 83.94 (±0.84) 0.020
Letters 92.74 (±2.10) 1.162 95.88 (±0.63) 1.100 94.60 (±0.99) 1.028 96.05 (±0.67) 0.134
WebKB 77.27 (±2.77) 1.684 83.51 (±0.51) 1.464 83.47 (±0.49) 1.452 83.47 (±0.49) 0.156
BA 66.19 (±1.21) 7.883 68.70 (±1.76) 6.715 69.86 (±1.30) 6.626 69.82 (±1.10) 0.709

Table 3: Experimental results for the five methods on different data sets in the kernel setting:acc−
the best classification accuracy percentage;std− the corresponding standard deviation;
time− the corresponding computational time (s).
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Figure 6: Performance of the RFDA/RR and RKDA/RR methods for different regularization pa-
rametersσ, where (a) displays the results of RFDA/RR on different data sets and (b)
displays the results of RKDA/RR on different data sets.

whereq≤ min{p,m,n−1}, Sxx = X′HX andSyy = Y′HY are the pooled covariance matrices ofx
andy, respectively, andSxy = X′HY = S′

yx is the pooled cross-covariance matrix betweenx andy.

Consider that eitherSxx or Syy is ill-conditioned. The penalized CCA method (Hastie et al.,
1995) solves the following optimization problem

maxAx, Ay tr(A′
xSxyAy),

s.t.A′
x(Sxx+σ2

xIp)Ax = Iq and A′
y(Syy+σ2

yIm)Ay = Iq.
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This problem can be solved in a two-step process (Mardia et al., 1979). The first step solves the
following generalized problem:

Syx(Sxx+σ2
xIp)

−1SxyAy = (Syy+σ2
yIm)AyΛ,

whereΛ is aq×q diagonal matrix with positive diagonal elements. The second step calculatesAx

by
Ax = (Sxx+σ2

xIp)
−1SxyAyΛ− 1

2 .

Assume that we have kernel functionsKx(·, ·): X×X → R, andKy(·, ·): Y ×Y → R. Similar to
the linear case, penalized KCCA first solves the following generalized problem:

S̃xy(S̃yy+σ2
yIh)

−1S̃yxÃx = (S̃xx+σ2
xIg)ÃxΛ, (32)

and then calculates̃Ay by

Ãy = (S̃yy+σ2
yIh)

−1S̃yxÃxΛ− 1
2 .

Hereg andh are the dimensions of the corresponding feature spaces. We now address the solution
to the generalized eigenproblem in (32). Consider

(S̃xx+σ2
xIg)

−1S̃xy(S̃yy+σ2
yIh)

−1S̃yx

= (X̃′HX̃+σ2
xIg)

−1X̃′HỸ(Ỹ′HỸ+σ2
yIh)

−1Ỹ′HX̃

= X̃′H(HX̃X̃′H+σ2
xIn)

−1(HỸỸ′H+σ2
yIn)

−1HỸỸ′HX̃

= X̃′H(Cx+σ2
xIn)

−1(Cy+σ2
yIn)

−1CyHX̃,

whereCx = HX̃X̃′H andCy = HỸỸ′H. SinceX̃′H(Cx+σ2
xIn)

−1(Cy+σ2
yIn)

−1CyHX̃ and(Cx+

σ2
xIn)

−1(Cy+σ2
yIn)

−1CyCx have the same nonzero eigenvalues, we let

(Cx+σ2
xIn)

−1(Cy+σ2
yIn)

−1CyCxϒ = ϒΛ

whereΛ consists of theq largest nonzero eigenvalues of(Cx+σ2
xIn)

−1(Cy+σ2
yIn)

−1CyCx. We thus
define

Ãx = X̃′Hϒ

and
Ãy = Ỹ′H(Cy+σ2

yIn)
−1CxϒΛ− 1

2

as the solution of the KCCA problem. Givenx ∈ R
p andy ∈ R

m, we can directly calculate their
canonical variables by

zx = Ã′
x(x̃− m̃x) = ϒ′

(

kx−
1
n

Kx1n

)

,

wherem̃x =
1
n ∑n

i=1 x̃i , kx = (Kx(x,x1), . . . ,Kx(x,xn))
′ andKx = X̃X̃′, and

zy = Ã′
y(ỹ−m̃y) = Λ− 1

2 ϒ′Cx(Cy+σ2
yIn)

−1
(

ky−
1
n

Ky1n

)

,

wherem̃y =
1
n ∑n

i=1 ỹi , ky = (Ky(y,y1), . . . ,Ky(y,yn))
′ andKy = ỸỸ′.

As we see, the canonical vectorszx andzy can be calculated without the explicit use ofX̃ and
Ỹ. Moreover, ifσ2

x = 0 or σ2
y = 0, the algorithm still works by usingC+

x or C+
y instead.
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9. Conclusion

In this paper we have provided a solution to an open problem concerning the relationship between
multi-class discriminant analysis problems and multivariate regression problems, both in the linear
setting and the kernel setting. Our theory has yielded efficient and effective algorithms for FDA and
KDA within both the regularization and pseudoinverse paradigms. The favorable performance of
our algorithms has been demonstrated empirically on a collection of benchmark data sets. We have
also extended our algorithms to a more general family of generalized eigenvalue problems.

Acknowledgments

Zhihua Zhang and Congfu Xu acknowledge support from the 973 Program of China
(No. 2010CB327903). Zhihua Zhang acknowledges support from Natural Science Foundations
of China (No. 61070239), Doctoral Program of Specialized Research Fund of Chinese Universities,
and the Fundamental Research Funds for the Central Universities. Michael Jordan acknowledges
support from Google, Intel and Microsoft Research.

Appendix A. Proof of Theorem 1

Let Σ1 = U1Γ1V′
1 andΣ2 = U2Γ2V′

2 be the condensed SVD ofΣ1 andΣ2. Thus, we haveR (Σ1) =
R (U1) andR (Σ2) = R (U2). Moreover, we haveΣ+

2 = V2Γ−1
2 U′

2 andΣ2Σ+
2 = U2U′

2. It follows
from R (Σ1) ⊆ R (Σ2) thatR (U1) ⊆ R (U2). This implies thatU1 can be expressed asU1 = U2Q
whereQ is some matrix of appropriate order. As a result, we have

Σ2Σ+
2 Σ1 = U2U′

2U2QΓ1V′
1 = Σ1.

It is worth noting that the conditionΣ2Σ+
2 Σ1 = Σ1 is not only necessary but also sufficient for

R (Σ1)⊆ R (Σ2).
If (Λ,B) are the eigenpairs ofΣ+

2 Σ1, then it is easily seen that(Λ,B) are also the eigenpairs of
(Σ1,Σ2) due toΣ2Σ+

2 Σ1 = Σ1.
Conversely, suppose(Λ,B) are the eigenpairs of(Σ1,Σ2). Then we haveΣ2Σ+

2 Σ1B = Σ2BΛ.
This implies that(Λ,Σ+

2 Σ2B) are the eigenpairs ofΣ+
2 Σ1 due toΣ2Σ+

2 Σ1 = Σ1 andΣ+
2 Σ2Σ+

2 = Σ+
2 .

Appendix B. Some Properties of Moore-Penrose Inverses

In order to prove Theorem 3, we will need some properties of Moore-Penrose inverses.

Lemma 11 Let C = HX̃X̃′H, S̃t = X̃′HX̃ andS̃b = X̃′HEΠ−1E′HX̃. Then

(a) CC+ = (CC+)′ = C+C, C+CC = CC+C = C, C+C+C = C+CC+ = C+;

(b) S̃+
t X̃′H = (X̃′HHX̃)+X̃′H = X̃′H(HX̃X̃′H)+ = X̃′HC+;

(c) X̃′H = S̃t S̃+
t X̃′H = X̃′HHX̃(X̃′HHX̃)+X̃′H

= X̃′H(HX̃X̃′H)+HX̃X̃′H = X̃′HC+C;

(d) S̃t S̃+
t S̃b = S̃b.

These results can be found in Lütkepohl (1996).
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Appendix C. Proof of Theorem 3

First, if (Λ,ϒ) is the solution of (10), we have

S̃bX̃′Hϒ = X̃′HEΠ−1E′Cϒ

= X̃′HHX̃(X̃′HHX̃)+X̃′HEΠ−1E′Cϒ

= S̃tX̃′HC+EΠ−1E′Cϒ = S̃tX̃′HC+C+CEΠ−1E′Cϒ
= S̃tX̃′HC+C+CCϒΛ = S̃tX̃′HC+CϒΛ
= S̃tX̃′HϒΛ.

This implies that
(

Λ, X̃′Hϒ
)

is the solution of (7).
Second, if(Λ,ϒ) is the solution of (15), we have

S̃+
t S̃bX̃′Hϒ = (X̃′HHX̃)+X̃′HEΠ−1E′HX̃X̃′Hϒ

= X̃′HC+EΠ−1E′Cϒ
= X̃′HϒΛ.

This implies that(Λ, X̃′Hϒ) is the solution of (13).
Finally, it follows from (16) that

(C+σ2In)
−1CEΠ−1E′Cϒ = CϒΛ.

In addition, note that(S̃t+σ2Ig)
−1X̃′H = X̃′H(C+σ2In)

−1. Hence, we have

(S̃t+σ2Ig)
−1S̃bX̃′Hϒ = (S̃t+σ2Ig)

−1X̃′HEΠ−1E′Cϒ

= X̃′H(C+σ2In)
−1EΠ−1E′Cϒ

= X̃′HC+C(C+σ2In)
−1EΠ−1E′Cϒ

= X̃′HC+(C+σ2In)
−1CEΠ−1E′Cϒ = X̃′HC+Cϒ

= X̃′HϒΛ.

This completes the proof of part (iii).

Appendix D. Proof of Theorem 5

We prove the final part. As for other parts, their proof can be immediately obtained from Ap-
pendix G. In terms of Algorithm 3, we have

Ã′(S̃t+σ2Ig)Ã = ϒ′HX̃(S̃t+σ2Ig)X̃′Hϒ

= ϒ′C(C+σ2In)ϒ = Iq

and
Ã′S̃bÃ = ϒ′CEΠ−1E′Cϒ = Γ2

F .

2224



REGULARIZED DISCRIMINANT ANALYSIS

Appendix E. Derivation of Equation 25

The first-order derivatives ofL(w0,W) with respect tow0 andW are given by

∂L
∂w0

= nw0+W′X′1n−Y′1n,

∂L
∂W

= (X′X+σ2Ip)W+X′1nw′
0−X′Y,

Letting ∂L
∂w0

= 0, ∂L
∂W = 0 andx̄ = 1

n ∑n
i=1 xi =

1
nX′1n, we obtain

{

w0+W′x̄ = 0
nx̄w′

0+(X′X+σ2Ip)W = M′Π
1
2 Hπ

due toY′1n = 0 andX′Y = M′Π
1
2 Hπ. Further, it follows thatw0 =−Wx̄, and hence,

(X′HX+σ2Ip)W = M′Π
1
2 Hπ

because ofX′X−nx̄x̄′ = X′HX. We thus obtainW in (25). It then follows from (18) thatW = G.
Moreover, whenσ2 = 0, W reduces to the solution of the minimization problem in (26). In this
case, ifX′HX is singular, a standard treatment is to use the Moore-Penrose inverse(X′HX)+ in
(25). Such aW is identical withG in (21).

Appendix F. Proof of Theorem 8

SinceVR is anc×q orthogonal matrix, there exists ac×(c−q) orthogonal matrixV2 such thatV =
[VR,V2] is ac×c orthogonal matrix. Noting thatR = VRΓRV′

R, we haveRV2 = 0 andV′
2RV2 = 0.

Let Q = M′Π
1
2 HπV2. Then we obtainQ′(X′HX+σ2Ip)

−1Q = 0. This impliesQ = 0 because
(X′HX+σ2Ip)

−1 is positive definite. Hence,WV2 = (X′HX+σ2Ip)
−1Q = 0. As a result, we have

WW′ = WVV′W′

= WVRV′
RW′+WV2V′

2W′

= BB′.

Note that ifσ2 = 0 andX′HX is nonsingular, we still haveWW′ = BB′. In the case thatX′HX is
singular, we haveQ′(X′HX)+Q = 0. Since(X′HX)+ is positive semidefinite, its square root matrix
exists and it is denoted byΩ. It thus follows fromQ′(X′HX)+Q = QΩΩQ′ = 0 thatΩQ′ = 0. This
shows thatWV2 = (X′HX)+Q = 0. Thus, we also obtainWW′ = BB′. The proof is complete.

Appendix G. Proof of Theorem 10

It is immediate that

X′YY′XT = VXΓXU′
XYY′UXΓXV′

XVX( f (ΓX))
− 1

2 UF

= VX( f (ΓX))
1
2 UFΓFV′

FVFΓFU′
FUF

= VX( f (ΓX))
1
2 UFΓ2

F
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and

f (Q)TΛ = V
[

f (ΓX) 0
0 b0Ip−r

]

V′VX( f (ΓX))
− 1

2 UFΓ2
F

= VX( f (ΓX))
1
2 UFΓ2

F .

whereV = [VX,V2] such thatV′
XV2 = 0. In addition, we have

T′ f (Q)T = Ir and T′X′YY′XT = Γ2
F .
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expansion.Pattern Recognition, 5:335–352, 1973.

K. C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under variable
lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5):684–698, 2005.

H. Lütkepohl.Handbook of Matrices. John Wiley & Sons, New York, 1996.

K. V. Mardia, J. T. Kent, and J. M. Bibby.Multivariate Analysis. Academic Press, New York, 1979.

S. Mika, G. R̈atsch, J. Weston, B. Schölkopf, A. Smola, and K. R. M̈uller. Invariant feature extrac-
tion and classification in kernel space. InAdvances in Neural Information Processing Systems
12, volume 12, pages 526–532, 2000.

C. C. Paige and M. A. Saunders. Towards a generalized singular valuedecomposition. SIAM
Journal on Numerical Analysis, 18(3):398–405, 1981.

C. H. Park and H. Park. Nonlinear discriminant analysis using kernel functions and the generalized
singular value decomposition.SIAM Journal on Matrix Analysis and Applications, 27(1):87–102,
2005a.

C. H. Park and H. Park. A relationship between linear discriminant analysisand the generalized
minimum squared error solution.SIAM Journal on Matrix Analysis and Applications, 27(2):
474–492, 2005b.

K. Pelckmans, J. De Brabanter, J. A. K. Suykens, and B. De Moor. The differogram: Nonparametric
noise variance estimation and its use for model.Neurocomputing, 69:100–122, 2005.

V. Roth and V. Steinhage. Nonlinear discriminant analysis using kernel functions. InAdvances in
Neural Information Processing Systems 12, volume 12, pages 568–574, 2000.

J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cambridge University
Press, Cambridge, UK, 2004.

J. A. K. Suykens and J. Vandewalle. Least squares support vectormachine classifiers.Neural
Processing Letters, 9:293–300, 1999.

2227



ZHANG, DAI , XU AND JORDAN

J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J.Vandewalle.Least Squares
Support Vector Machines. World Scientific, Singapore, 2002.

C. F. Van Loan. Generalizing the singular value decomposition.SIAM Journal on Numerical
Analysis, 13(3):76–83, 1976.

T. Van Gestel, J. A. K. Suykens, J. De Brabanter, B. De Moor, and J.Vandewalle. Kernel canonical
correlation analysis and least squares support vector machines. InThe International Conference
on Artificial Neural Networks (ICANN), pages 381–386, 2001.

T. Van Gestel, J. A. K. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor, and J. Vandewalle.
Bayesian framework for least-squares support vector machine classifiers, Gaussian processes,
and kernel Fisher discriminant analysis.Neural Computation, 14:1115–1147, 2002.

A. R. Webb.Statistical Pattern Recognition. John Wiley & Sons, Hoboken, NJ, 2002.

J. Ye. Least squares linear discriminant analysis. InThe Twenty-Fourth International Conference
on Machine Learning (ICML), 2007.

J. Ye, Q. Li, H. Xiong, H. Park, R. Janardan, and V. Kumar. An incremental dimension reduction
algorithm via QR decomposition. InACM SIGKDD, pages 364–373, 2004.

Z. Zhang and G. Dai. Optimal scoring for unsupervised learning. InAdvances in Neural Information
Processing Systems 23, volume 12, pages 2241–2249, 2009.

Z. Zhang and M. I. Jordan. Multiway spectral clustering: A margin-based perspective.Statistical
Science, 3:383–403, 2008.

2228


