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Abstract

Large-scale linear classification is widely used in manyasreThe L1-regularized form can be
applied for feature selection; however, its non-differanitity causes more difficulties in training.
Although various optimization methods have been proposewdéent years, these have not yet
been compared suitably. In this paper, we first broadly veeristing methods. Then, we discuss
state-of-the-art software packages in detail and propeseefficient implementations. Extensive
comparisons indicate that carefully implemented cootdiniescent methods are very suitable for
training large document data.

Keywords: L1 regularization, linear classification, optimization tmeds, logistic regression,
support vector machines, document classification

1. Introduction

Recently, L1-regularized classifiers have attracted considerable attéeti@use they can be used
to obtain a sparse model. Given a set of instance-label pairg), i=1,....,1, X e R", y; €
{—1,+1}, training an L1-regularized linear classifier involves the following untrairsed opti-
mization problem:

|
min - f(w) = !\W||1+C_ZE(W§Xi,yi), (1)

where|| - |1 denotes the 1-norm ar&dw; X, yi) is a non-negative (convex) loss function. The regu-
larization term||w/||; is used to avoid overfitting the training data. The user-defined para@etér
is used to balance the regularization and loss terms.

If [|w||2is usedin (1), we obtain an L2-regularized classifier. Although L2 regaiéon is used
more commonly, an L1-regularized formula often produces a spardéonzero elements help to
select important features; in addition, the time required to produce prediatiay be reduced.
Considerable literature has been published on the advantages of usieguldrization; see, for
example, Zhao and Yu (2006). However, an L1-regularized forns(@dt differentiable regardless
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of its loss function. This drawback leads to greater difficulty in solving theropation problem.
Therefore, certain considerations are required to handle the namediiffability.
Many loss functions can be used for linear classification. A commonly usedsdogistic loss:

E10g(W; X, y) = log(1+e M'¥). )

This loss function is twice differentiable. Note that minimizing logistic loss is edgemtado maxi-
mizing the likelihood, whereas minimizing the regularized loss in (1) is equividemiaximizing
the posterior with independent Laplace priors on the parameters. Twofmgfaently used func-
tions are the L1- and the L2-loss functions:

E1(w;x,y)=max1—yw'x, 0) and (3)
ELo(w;x,y) =max1—yw'x, 0)2. (4)

Because of the m@x operation, the L1-loss function is not differentiable. On the other ha2d, L
loss is differentiable, but not twice differentiable (Mangasarian, 200&)refer to (1) with logistic
loss as L1-regularized logistic regression and (1) with L1/L2 loss aseblitarized L1-/L2-loss
support vector machines (SVMs).

In some applications, we require a bias tdrfalso called as an intercept) in the loss function;
thereforew" x in (2)—(4) is replaced witv" x + b. For example, the logistic loss function becomes

&log(W, b;x,y) = log (1+ e*Y(WTX+b)> .

The optimization problem then involves variablegandb:

|
min HW||1+Ci;E(W, b;Xi, i) 5)

Becauseb does not appear in the regularization term, most optimization methods used ¢o solv
(1) can solve (5) as well. In this paper, except whendver required, we mainly consider the
formulation (1).

Many papers have proposed optimization methods for large-scale ullargd logistic regres-
sion (i.e., usingog as the loss function). These studies did not consider L1- or L2-loggifuns
because logistic loss has a probability interpretation and is twice differentidtfiese methods
differ in various aspects such as the convergence speed, ease ohanpd¢ion, and practical appli-
cability. With so many available methods, it is important to conduct a comprefeetsinparison.
Schmidt et al. (2007, 2009) compared optimization methods for L1-regethdlassifiers; how-
ever, they did not include some state-of-the-art solvers. Moreowr,dbmparison is based on the
number of function evaluations instead of the actual running time. In thig papecategorize and
compare existing methods for logistic regression. We also extend some mathsmlge L2-loss
SVMs. We exclude L1 loss from the discussion because most methodgyfstidaegression or
L2-loss SVMs assume the differentiability of the loss functions. Readensstésl in using L1-
loss SVMs can refer to Bradley and Mangasarian (1998), Zhu et@4{2 Fung and Mangasarian
(2004), Mangasarian (2006), and references therein.
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1.1 Basic Properties of1)

In this paper, we assume that the loss func§om; x;, y;) is convex, differentiable, and nonnegative.
The proof presented in Appendix A shows that (1) attains at least obalgdptimum. Unlike L2
regularization, which leads to a unique optimal solution, here, (1) may g®s$saltiple optimal
solutions. We us&* to denote any optimal solution of (1). The convexityfdfv) implies that alll
optimal solutions have the same function value, which is denotéd. &r more information about
the set of optimal solutions, see, for example, Hale et al. (2008, Section 2)

From standard convex analysig; is optimal for (1) if and only ifw* satisfies the following
optimality conditions:

OLw")+1=0 if wj >0,
OjLw")—1=0 if wj <0, (6)
—1<0OjL(w") <1 ifwj=0,
whereL(w) is the loss term in (1):
|
L(w) =C Y EWixiy). (7)
i=

1.2 Organization and Notation

The remainder of this paper is organized as follows. In Section 2, weybsefl/ey existing ap-
proaches. Section 3 lists state-of-the-art L1-regularized logistic seigne packages compared in
this study. Sections 4—6 discuss these packages in detail; two of thetier{Sdcl.2 and 5.1) are
our proposed implementations. In Section 7, we extend several methodmtbarkboss SVMs.
Section 8 describes the extensive experiments that were carried out.a@sonpresults indicate
that decomposition methods (Section 4) are very suitable for large-saalendot data. Finally, the
discussions and conclusions are presented in Section 9. A supplemiietargluding additional
details and descriptions of experiments is availablettat/www.csie.ntu.edu.tw/ ~cjlin/
papers/ILl/supplement.pdf

In this study, we use consistent notation to describe several state-afttheethods that are
considered. The following table lists some frequently used symbols:

I:  number of instances

n: number of features

i: index for a data instance

j: index for a data feature

k: iteration index for an optimization algorithm

We may represent training instandes y;), i = 1,...,I in the following form:
X1 Y1
X=|:]eR* and y=|:|e{-1,+1}"
x| Yi

For any vectow, we consider the following two representations for sub-vectors:

Viis = [Vtw-wVS]T and v, = [Vilv"‘vvim]Tv
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wherel = {iy,...,i)|} is anindex set. Similarly,

T
Xi1

XI,: = ol (8)
X
i

The functiont(s) gives the first derivative of the logistic loss function (ag- €°):

1

= (©)

1(9)

An indicator vector for thgth component is

e=10,...,0,1,0,...,0]". (10)

j—1

We use€|| - || or || - ||2 to denote the 2-norm anj ||1 to denote the 1-norm.

2. A Survey of Existing Methods

In this section, we survey existing methods for L1-regularized problem&ettions 2.1-2.3, we
focus on logistic regression and L2-loss SVMs for data classificatioctid®e2.5 briefly discusses
works on regression problems using the least-square loss.

2.1 Decomposition Methods

Decomposition methods are a classical optimization approach. Because fidsltdib update
all variables simultaneously, at each iteration, we can choose a subsetiaiiles as the working
set and fix all others. The resulting sub-problem contains fewer Vasiand is easier to solve.
The various decomposition methods that have been applied to solve Lasizgd problems are
categorized into two types according to the selection of the working set.

2.1.1 CrcLic COORDINATE DESCENTMETHODS

A simple coordinate descent method cyclically chooses one variable at a tdreobes the fol-
lowing one-variable sub-problem:

mzin 0j(2) = f(w+2zej) — f(w), (11)

whereeg; is defined in (10). This functiog;(z) has only one non-differentiable point z& —w;.
In optimization, the cyclic method for choosing working variables is often caledsauss-Seidel
rule (Tseng and Yun, 2007).

Several works have applied coordinate descent methods to solve (UIpgigtic loss. Here, a
difficulty arises in that sub-problem (11) does not have a closed-fmiotion. Goodman (2004)
assumed nonnegative feature values (kg2 0, Vi, j) and then approximategi (z) by a function
Aj(z) at each iterationA;(z) satisfiesA;(z) > gj(z),Vz, andA;(0) = g;(0) = 0; therefore, minimiz-
ing Aj(z) may reduce the function value. Moreover, there is a closed-form soliasioninimizing
Aj(z). Goodman (2004) actually studied a problem with additional constraintsO; however, his
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approach can be extended to solve the original L1-regularized logigtiession by taking the sign
of wj into consideration.

Genkin et al. (2007) implemented a cyclic coordinate descent method &sfedo solve L1-
regularized logistic regressioBBR approximately minimizes sub-problem (11) in a trust region
and applies one-dimensional Newton steps. Balakrishnan and Madi@f2s) (2ported an extension
of BBR for online settings.

In Section 4.1.2, we propose a coordinate descent method by extendamg €hal.’s (2008)
approach for L2-regularized classifiers. Chang et al. (2008)aappately solved the sub-problem
(11) by a one-dimensional Newton direction with line search. Experiments gfat their approach
outperforms @BR variant for L2-regularized classification. Therefore, for L1 regaktion, this
approach might be faster th&BR. Hereafter, we refer to this efficient coordinate descent method
asCDN (coordinate descent using one-dimensional Newton steps).

Tseng and Yun (2007) broadly discussed decomposition methods fargudarized problems.
One of their approaches is a cyclic coordinate descent method. Theideoed a general cyclic
setting so that several working variables are updated at each iterattosh & thaCDN is a special
case of their general algorithms.

If we randomly select the working variable, then the procedure becosteslaastic coordinate
descent method. Shalev-Shwartz and Tewari (2009, Algorithm 2htigcstudied this issue. Duchi
and Singer (2009) proposed a similar coordinate descent method for k@una entropy model,
which is a generalization of logistic regression.

2.1.2 \WRIABLE SELECTION USING GRADIENT INFORMATION

Instead of cyclically updating one variable, we can choose workinghlasdased on the gradient
information! This method for selecting variables is often referred to as the Gaussv@siutle
(Tseng and Yun, 2007). Because of the use of gradient informatienuimber of iterations is fewer
than those in cyclic coordinate descent methods. However, the costnatioites higher. Shevade
and Keerthi (2003) proposed an early decomposition method with the Gaugkwell rule to solve
(2). In their method, one variable is chosen at a time and one-dimensiongbiNsteps are applied;
therefore, their method differs from the cyclic coordinate descent metihestribed in Section 2.1.1
mainly in terms of finding the working variables. Hsieh et al. (2008) showaifth L2-regularized
linear classification, maintaining the gradient for selecting only one varidladime is not cost-
effective. Thus, for decomposition methods using the gradient informadidarger working set
should be used at each iteration.

In the framework of decomposition methods proposed by Tseng and A@7)2one type of
method selects a set of working variables based on the gradient informaiienvorking set can be
large, and therefore, they approximately solved the sub-problem. Fsathe method, Yun and Toh
(2009) enhanced the theoretical results and carried out experimentslagitiment classification
data. We refer to their method @&D-GS because the method described in Tseng and Yun (2007)
is called “coordinate gradient descent” and a Gauss-Southwell ruleds us

2.1.3 ACTIVE SET METHODS

Active set methods are a popular optimization approach for linear-corexiraroblems. For prob-
lem (1), an active method becomes a special decomposition method betaash &eration, a

1. Becausd (w) is not differentiable[JjL(w) £ 1 is used according to the sign\ef.
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sub-problem over a working set of variables is solved. The main diféerérom decomposition
methods described earlier is that the working set contains all non-zeadbbes. Therefore, an ac-
tive set method iteratively predicts what a correct split of zero andzeoo-elements iw is. If the
split is correct, then solving the sub-problem gives the optimal valuesrekam elements.

Perkins et al. (2003) proposed an active set method for (1) with logistsc Tbhis implementa-
tion uses gradient information to predigls zero and non-zero elements.

2.2 Methods by Solving Constrained Optimization Problems

This type of method transforms (1) to equivalent constrained optimizatidolgans. We further
classify them into two groups.

2.2.1 OPTIMIZATION PROBLEMS WITH SMOOTH CONSTRAINTS

We can replacev in (1) with wt —w~, wherew' andw~ are both nonnegative vectors. Then,
problem (1) becomes equivalent to the following bound-constrained oatiimizproblem:

wt w—

n n |
min wi4+ S w +CS Ewh—w ;XY
A RPRIOR W (12)

subjectto w >0, w; >0, j=1,...,n

The objective function and constraints of (12) are smooth, and thetdfa problem can be solved
by standard bound-constrained optimization techniques. Schmidt et 8B)(pBoposedProjec-
tionL1 to solve (12). This is an extension of the “two-metric projection” method (Gaid Bert-
sekas, 1984). Limited-memory quasi Newton implementations, for exampisS-B by Byrd
et al. (1995) andBLMVM by Benson and Mda (2001), require function/gradient evaluations and
use a limited amount of memory to approximate the Hessian matrix. Kazama and 2808) fre-
sented an example of usimyMVM for (12). Lin and Mog’s (1999) trust region Newton method
(TRON) can also be applied to solve (12). In addition to function/gradient evahsgfi®ON needs
to calculate Hessian-vector products for faster convergence. LIn(B088) appliedr'RON to solve
L2-regularized logistic regression and showed #RON outperformsLBFGS for document data.
No previous work has applieTRON to solve L1-regularized problems, and therefore, we describe
this in Section 5.1.

Koh et al. (2007) proposed an interior point method to solve L1-regelddizgistic regression.
They transformed (1) to the following constrained problem:

n |
i lelJj i Ci;E(W; X (13)

subjectto —u; <w; <u;, j=1,...,n

Equation (13) can be made equivalent to (12) by setting

To ensure thatv andu are in the interior of the feasible region set, Koh et al. (2007) added a log
barrier to the objective function of (13) and applied a Newton method.
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2.2.2 OPTIMIZATION PROBLEMS WITH NON-SMOOTH CONSTRAINTS

It is well-known that for any choice of in (1), there exists a correspondikgsuch that (1) is
equivalent to the following problem:

min _iE(W;Xi,Yi)

subjectto |jw|jz <K.

(14)

See the explanation in, for example, Donoho and Tsaig (2008, SectiorNb@®je that in (14), the
constraint is not smooth gw | w; = 0 for somej}. However, (14) contains fewer variables and
constraints than (12). Lee et al. (2006) applied the LARS algorithm itbestin Efron et al. (2004)
to find a Newton direction at each step and then used a backtracking lireh $eaninimize the
objective value. Kivinen and Warmuth’s (1997) concept of expontattigradientEG) can solve
(14) with additional constraint®; > 0, Vj. In a manner similar to the technique for constructing
(12), we can remove the nonnegative constraints by replaciwgh w™ —w. If kis the iteration
index,EG updatesv by the following rule:

Wkt whexp(—ni; (311 (W< xi, )))
Zx ’

wherezy is a normalization term for maintainingvX||; = K, Vk andny is a user-defined learning
rate. Duchi et al. (2008) applied a gradient projection method to solye T4 update rule is

Wt = argmin{ || (WK~ (T}, EWSsxiy)) —wil | [wll <K} (15)

They developed a fast algorithm to project a solution to the closest pdistysag the constraint.
They also considered replacing the gradient in (15) with a stochastigraglient. In a manner sim-
ilar to (15), Liu et al. (2009) proposed a gradient projection method calesblore and carefully
addressed the selection of the learning rateHowever, they evaluated their method only on data
with no more than 200 instances$.

Kim and Kim (2004) discussed a coordinate descent method to solvelidy.used the gradi-
ent information to select an elememf for update. However, because of the constramf; <K,
the whole vectow is normalized at each step. Thus, the setting is very different from the un-
constrained situations described in Section 2.1.1. Kim et al. (2008) matierfimprovements to
realize faster convergence.

Active set methods have also been applied to solve (14). However, tnasbito the active
set methods described in Section 2.1.3, here, the sub-problem at eatiorités a constrained
optimization problem. Roth (2004) studied general loss functions includinstiotpss.

2.3 Other Methods for L1-regularized Logistic Regression/L2-loss SMs

We briefly review other methods in this section.

2. Although Table 1 in Liu et al. (2009) shows larger numbers, in Sectiofiitibe same paper, they stated that “we use
a total of 2,000 samples in the following experiments.”
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2.3.1 EXPECTATION MAXIMIZATION

Many studies have considered Expectation Maximization (EM) frameworkslve (1) with logis-
tic loss (e.g., Figueiredo, 2003; Krishnapuram et al., 2004, 2005%k€elwerks find an upper-bound
function f(w) > f(w),vw, and perform Newton steps to minimiéw). However, as pointed out
by Schmidt et al. (2009, Section 3.2), the upper-bound funcfi(wm) may not be well-defined at
somew; = 0 and hence certain difficulties must be addressed.

2.3.2 SOCHASTIC GRADIENT DESCENT

Stochastic gradient descent methods have been successfully appladwet@ls. At each iteration,
the solution is updated using a randomly selected instance. These types ofisnath known to
efficiently generate a reasonable model, although they suffer from staldonvergence. Under
an online setting, Langford et al. (2009) solved L1-regularized problby a stochastic gradient
descent method. Shalev-Shwartz and Tewari (2009) combined Lraregfal.’s (2009) method with
other techniques to obtain a new stochastic gradient descent methodl for (1

2.3.3 QUASI NEWTON METHODS

Andrew and Gao (2007) proposed an Orthant-Wise Limited-memory guasidd OWL-QN)
method. This method is extended fraBFGS (Liu and Nocedal, 1989), a limited memory quasi
Newton approach for unconstrained smooth optimization. At each iteratienmétthod finds a
sub-space without considering some dimensions wjth= 0 and obtains a search direction simi-
lar to LBFGS. A constrained line search on the same sub-space is then conductee sndgtéarty
vv'j‘“w‘f > 0is maintained. Yu et al. (2010) proposed a quasi Newton approachversm-smooth
convex optimization problems. Their method can be used to improve the lindhggacedure in
OWL-QN.

2.3.4 HyBRID METHODS

Shi et al. (2010) proposed a hybrid algorithm for (1) with logistic losseyTbsed a fixed-point
method to identify the seftj | wj = O}, wherew* is an optimal solution, and then applied an interior
point method to achieve fast local convergence.

2.3.5 QUADRATIC APPROXIMATION FOLLOWED BY COORDINATE DESCENT

Krishnapuram et al. (2005) and Friedman et al. (2010) replaced thedos with a second-order
approximation at the beginning of each iteration and then applied a cyclidioate descent method
to minimize the quadratic function. We will show that an implementation in Friedman @04I0)
is efficient.

2.3.6 QUTTING PLANE METHODS

Teo et al. (2010) implemented a bundle (cutting plane) meBEM to handle non-smooth loss
functions. It includes an extension for L1 regularization.
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2.3.7 APPROXIMATING L1 REGULARIZATION BY L2 REGULARIZATION

Kujala et al. (2009) proposed the approximation of L1-regularized Stviteratively reweighting
training data and solving L2-regularized SVMs. That is, using the cuwgrthey adjusted th¢th
feature of the training data and then trained an L2-regularized SVM in tttestep.

2.3.8 SOLUTION PATH

Several works have attempted to find the “solution path” of (1). The optiotatisn of (1) varies
according to paramet&. It is occasionally useful to find all solutions as a functiorCofksee, for
example, Rosset (2005), Zhao and Yu (2007), Park and Hastie ) 280d Keerthi and Shevade
(2007). We do not provide details of these works because this papesde on the case in which a
singleC is used.

2.4 Strengths and Weaknesses of Existing Methods

Although this paper will compare state-of-the-art software, we discuse known strengths and
weaknesses of existing methods.

2.4.1 GONVERGENCESPEED

Optimization methods using higher-order information (e.g., quasi Newtonwtdsenethods) usu-

ally enjoy fast local convergence. However, they involve an experitgration. For example, New-
ton methods such aR0N or IPM need to solve a large linear system related to the Hessian matrix.
In contrast, methods using or partially using the gradient information (e.ghastic gradient de-
scent) have slow local convergence although they can more quicklgatecthe function value in
the early stage.

2.4.2 IMPLEMENTATION EFFORTS

Methods using higher-order information are usually more complicated. Memt&thods need to
include a solver for linear systems. In contrast, methods such as caerdiescent or stochas-
tic gradient descent methods are easy to implement. They involve only vgsoatimns. Other

methods such as expectation maximization are intermediate in this respect.

2.4.3 HANDLING LARGE-SCALE DATA

In some methods, the Newton step requires solving a linear systewaofables. Inverting an x n
matrix is difficult for largen. Thus, one should not use direct methods (e.g., Gaussian elimination) to
solve the linear system. InsteatkON andIPM employ conjugate gradient methods and Friedman
et al. (2007) use coordinate descent methods. We observe thatiging>EM implementations,
many consider direct inversions, and therefore, they cannot hamgéedaale data.

2.4.4 FEATURE CORRELATION

Methods that work on a block of variables at a time (e.g., decomposition mgthaysbe more
efficient if features are almost independent; however, they may beffiessrd if features are highly
correlated.
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2.4.5 DaTA TYPE

No method is the most suitable for all data types. A method that is efficient éoapplication may
be slow for another. This paper is focused on document classificatidrg giable method must be
able to easily handle large and sparse features.

2.5 Least-square Regression for Signal Processing and Image Amations

Recently, L1-regularized problems have attracted considerable atteatisighal processing and
image applications. However, they differ from (1) in several aspedtst, i € R, and therefore, a
regression instead of a classification problem is considered. Secendagi-square loss function
is used:

E(WXi,Yi) = (yi — W' ;). (16)

Third, in many situationsy; are not directly available. Instead, the product between the data matrix
X and a vector can be efficiently obtained through certain operators. Mféylreview some of
the many optimization methods for least-square regression. If we use foionulad4) with non-
smooth constraints, the problem reduces to LASSO proposed by Tikigtiie&6) and some early
optimization studies include, for example, Fu (1998) and Osborne et &0420). Fu (1998) ap-
plied a cyclic coordinate descent method. For least-square loss, the minimiziti@ one-variable
sub-problem (11) has a closed-form solution. Sardy et al. (2000alssidered coordinate descent
methods, although they allowed a block of variables at each iteration. Wuargk (2008) con-
sidered a coordinate descent method, but used the gradient informatiselécting the working
variable at each iteration. Osborne et al. (2000a) reported one océtlese active set methods for
L1-regularized problems. Roth’s (2004) method for general losses $gction 2.2.2) reduces to
this method if the least-square loss is used. Friedman et al. (2007) extEndecbordinate de-
scent method to find a solution path. Donoho and Tsaig (2008) also obtaswdatian path. Their
procedure requires solving a linear system of a m@(ﬁg@(;J, whereJ is a subset of 1,...,n}.
Figueiredo et al. (2007) transformed the regression problem to a bmamsdrained formula in (12)
and applied a projected gradient method. Wright et al. (2009) profbssiterative minimization
of the sum of the L1 regularization term and a quadratic approximation of fsetésm. In the
guadratic approximation, they used a diagonal matrix instead of the Hegdiam loss term, and
therefore, the minimization can be easily carried out. Hale et al. (2008pgedpa fixed point
method to solve (1) with the least-square loss (16). Their update rule issgedérom a fixed-point
view; however, it is very similar to a gradient projection algorithm.

The dual of LASSO and the dual of (1) have been discussed in Osledad. (2000b) and Kim
et al. (2007), respectively. However, thus far, there have begrofgimization methods for the
dual problem. Tomioka and Sugiyama (2009) proposed a dual augmeagedrigian method for
L1-regularized least-square regression that theoretically conveunges-linearly.

Most optimization methods for classification discussed in the earlier sectinfgodle general
smooth loss functions, and therefore, they can be applied to the regressidem. However, data
for classification applications may be very different from those foresgjon applications. For
example, in text classification, the numbers of instances and featurestartatge and data are
very sparse. However, in certain signal processing applications,utinder of instances may be
much smaller than the number of features (iLeg n) and the data may be dense. Moreover, in
classification, the paramet€ris often selected by cross validation; however, in signal processing,
the selection may be application dependent. Few optimization studies have iatgstgth types
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of applications. The interior point method for logistic regression by solii3) ias been applied to
the least-square regression problem (Kim et al., 2007). Duchi etGii8jZompared their gradient
projection implementation (see Section 2.2.2) with interior point methods using lpgtidcand
least-square losses. In Section 2.1.2, we mentioned a decomposition ra&the@s by Yun and
Toh (2009). In the same paper, Yun and Toh have also investigatedrfoenpe@nce oiCGD-GS on
regression problems.

In this paper, we focus on data classification, and therefore, outusiogs may not apply to
regression applications. In particular, the efficient calculation betWesrd a vector in some signal
processing applications may afford advantages to some optimization methods.

3. Methods and Software Included for Comparison

In the rest of this paper, we compare some state-of-the-art sof@&Re SCD, CGD-GS, IPM,
BMRM, OWL-QN, Lassplore andGLMNET. We further develop two efficient implementations. One
is a coordinate descent methazb(N) and the other is a trust region Newton method®N). These
packages are selected because of two reasons. First, they are paNdi¢hple. Second, they are
able to handle large and sparse data sets. We categorize these patkeiese groups:

e decomposition methods,
e methods by solving constrained optimization problems,
e other methods,

and describe their algorithms in Sections 4—-6. The comparison resultssaréee in Sections 8.
Note that classification (logistic regression and L2-loss SVMs) is oursfaand therefore, software
for regression problems using the least-square loss (16) is not caethide

4. Decomposition Methods

This section discusses three methods sequentially or randomly choosialgiesifor update, and
one method using gradient information for the working set selection.

4.1 Cyclic Coordinate Descent Methods

From the current solutiow, a coordinate descent method updates one variable at a time to generate
wkie R j=1,...,n+1, such thaw®l = wk, w1 = wk+1 and

. T
whi = [\/\/‘fl,...,wj‘fi,\/\/’j‘,...,\/\/ﬂ forj=2,...,n.
To updaten’] to wki+1, the following one-variable optimization problem is solved:
min gj(2) = |V\}j<’] 42— |V\)j"J |+ Lj(zwoD) —Lj(0;wh), (17)

where
Lij(zwkT) = L(w*T +zey).
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Algorithm 1 A framework of coordinate descent methods

1. Givenw?,
2. Fork=1,23,... (outer iterations)
(@) wht =wk.

(b) Forj=1,2,...,n(inner iterations)
e Findd by solving the sub-problem (17) exactly or approximately.
o WKL =wki 1 de;.

(C) Wk+1 — Wk,n+1'

For simplicity, hereafter, we udgj(z) in most places. If the solution of (17) & then we update

the jth element by
i i :

Typically, a coordinate descent method sequentially goes through alblemiand then repeats
the same process; see the framework in Algorithm 1. We refer to the grotepdating every
elements (i.e., fromv* to w**1) as an outer iteration and the step of updating one element (i.e., from
wki to wkitl) as an inner iteration. Practically, we only approximately solve (17), wheveral
approaches are discussed below.

Using the same way to obtain the optimality condition in (6), for the one-variabtifing;(z),
we have thaz = 0 is optimal for (17) if and only if

Lj(0)+1=0 ifw >0,
Lj(0-1=0 ifw <o, (18)
—1<Lj(0) <1 if\/\/Jj“’ =0

The optimality condition at = 0 shows if modifyingv\)j(’j may decrease the function value or not.

4.1.1 BBR

Genkin et al. (2007) propose a coordinate descent mesiadfor (1) and (5) with logistic loss.
This method is extended from Zhang and Oles (2001) for L2-regulalorgstic regression. At each
inner iteration,BBR approximately solves the sub-problem (17) by a trust region Newton method
With the trust regior;, it requires the stepto satisfy

>0 ifw >0,

. 19
<0 ifw‘;-'<o. (19)

|z <A and V\)J‘J +z{
The first constraint confines the step size to be in the trust regiodprxlupdated at the end of

each inner iteration. Due to the non-differentiable poirztat—\/\)j‘”, the second constraint ensures
that the function is differentiable in the search space.

To approximately solve (17BBR minimizes a quadratic function upper-bounding the function
gj(2) in the trust region. Thougpj(z) is not differentiable, by considering both casesvx)?’l’ >0

andV\)j"j < 0, we obtain the following form:
1
9i(2) =g;(0) + gi(0)z+ 59/ (127, (20)
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where O<n < 1,

g, (0) = {"/i 0)+1 ifw >0 g/(n2) =L(n2). 21)

Lj(0)—1 ifw <o,

Notice that whew\fj‘*j =0, 9;(2) is non-differentiable at = 0 andgj (0) is not well-defined. We will
discuss this situation lateBBR finds an upper bound; of g’j’(z) such that

Uj > gj(2), vz < 4.
Thendj(2) is an upper-bound function ofj(2):
- 1
6i(2) = 9;(0) +gj(0)z+ JU;Z"
Any stepz satisfyingdj(z) < §;(0) leads to
9j(2) —9i(0) = g;(2) - §;(0) < §j(2) - §;(0) <O,

so the function value is decreased. If logistic loss (2) is uBB&, suggests setting; as

I .
i=
where
0.25 if Ir] <&
F(r,3) = . =<3,
a9 1T otherwise

If \/\}J‘J # 0, BBR minimizesgj(z) under the constraints (19) to obtain
d=min (max(P(— ,\/\)-<’j),—Aj),Aj>, (23)
where

P(zw) = z if sgn(w+ z) = sgnw),
"7 | —w otherwise

Now consider the case mfj” = 0, whereg;(0) is not well-defined at this point. If;(0) +1 < 0, by
definingdj (0) = Lj(0) + 1, any 0< z< —g;(0)/U; gives a smallegj{z) thangj(0). We thus obtain
the new point by mapping-gj(0)/U; back to the trust region. The situation fof(0) —1> 0 is
similar. We do not need to handle the situatiot < L’J- (0) <1as(18) andr\)j"J = 0 indicate that
z=0is the minimum oD;(2).

The procedure 0BBR to approximately solve (17) is described in Algorithm 2. The major cost
is on calculatingg;(0) andU;. For logistic lossLj(0) needed for calculating;(0) is

Lj(0) = C,_Izlyixij (T ™) =1, (24)
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Algorithm 2 BBR: Approximately solving the sub-problem by a trust region method
1. Givenw®l andA.
2. CalculatdJ; by (22).
3. Find a stem by (23).
4. Updatedj by Aj <— max(2|d|,Aj/2).

where1(+) is defined in (9). From (22) and (24), the most expensive operation sbtaining
w'x;, Vi. A common trick for saving the running time is to stavéx;, Vi and update them accord-
ing to

WX ¢ WX +d-X;. (25)

If wx;, Vi are available, both (22) and (24) ne®d ) operations. Because maintaining x; via
(25) also take®(l), the cost per inner iteration B3(1).
Unfortunately, there is no convergence proof yet for the medgRl.

4.1.2 GORDINATE DESCENTMETHOD USING ONE-DIMENSIONAL NEWTON DIRECTIONS
(CDN)

BBR replaces the second derivative term in (20) with an upper bayndf we keep usingg’j’(O)
and obtain the one-dimensional Newton directiorz at 0, the local convergence may be faster.
This issue has been studied in L2-regularized logistic regression/SVMseBBR reduces to the
approach by Zhang and Oles (2001), and Chang et al. (2008) dhihaea coordinate descent
method using one-dimensional Newton directions is faster. Here, we eRteanty et al.'s method
for L1-regularized problems. The new approach, referred o, is expected to be faster than
BBR following a similar reason.

A Newton direction is obtained from minimizing the second-order approximabang;(z)
is not differentiable due to the L1-regularization term. Thus, we considigrthe second-order
approximation of the loss terin (z) and solve

min W+ 2] - W 4L 02+ 5L (02 (26)

This problem can be reduced to a form commonly referred to as “softktblding” in signal pro-
cessing. We show in Appendix B that (26) has the following closed-falurtisn:

- LJL% Lt L)+ 1< LI (0w,
. L'(0)—-1 . ’
d= ~rg L0 12 LY (0w, (27)
] otherwise

J

Because (26) is only a quadratic approximatiorf ok + zej) — f(wkJ), the directiond may not
ensure the decrease of the function value. For the convergenceg €hal. (2008) consider a line
search procedure to fide (0,1) such that the stepd satisfies the sufficient decrease condition:

f(w*) +Adey) — f (W) = gj(Ad) — g;(0) < —o(Ad)?,

whereao is any constant ii0, 1). However, as pointed out by Tseng and Yun (2007), this condition
may not be suitable here due to the non-smooth regularization fefn We follow Tseng and
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Algorithm 3 CDN: Approximately solving the sub-problem by Newton directions with line search
1. Givenw®l. ChooseB € (0,1).
2. Calculate the Newton directiahby (27).
3. Compute\ = max{1,B,B?,...} such thai\d satisfies (28).

Yun (2007) to use a modified condition:
0j(Ad) —;(0) < o) (Lj(0)d+ ! +d — W) (28)

To find A, CDN adopts a backtrack line search to sequentially cheek1, B, B2, ..., where
B € (0,1), until Ad satisfies (28). A description of ho@DN approximately solves the sub-problem
(17) is in Algorithm 3.

In Appendix D, we explain that Algorithm 3 falls into a class of Gauss-Seidetdinate descent
methods in Tseng and Yun (2007). By showing that all required assursmiensatisfied, we can
directly enjoy some nice theoretical properties. First, following Lemma 3.4(fseéng and Yun
(2007), the line search procedure stops in a finite number of stepsadgdon(1) with logistic loss,
any limit point of {wX} is an optimum.

We discuss the computational cost. To obtain the sub-problem (26), wecnaduatateL’j (0)
andL{(0). For logistic lossLj(0) is shown in (24) and

/(0 :CZ‘Z" (T ) ) ) (1= ) ) ). (29)

Similar to the situation il8BR, calculatingwx;, Vi is the major cost here. We can apply the same
trick in (25) to maintairw"x;, Vi. In our implementation, we maintag¥ % instead:

g @i ghdXj (30)

The line search procedure needs to calcugpt@d). From (2), the main cost is still on obtaining
(w+Adej)Txi, Vi, so the trick in (30) is again useful. dafVTXi, Vi are available, from (24), (29) and
(2), the cost per inner iteration is

(1+# line search steps< O(l).

To reduce the cost for line search, Chang et al. (2008) obtain a fargitio satisfyinggj(Ad) >
gj(Ad) and checkgj(Ad) —g;(0) in (28). Calculatinggj(Ad) is much easier thag;(Ad), so we
may avoid calculating the lagi(Ad) in the line search procedure. In some iteratidns, 1 already
satisfies (28), and therefore, this trick makes the cost of the line searckdure negligible. We do
not show details here; however, derivations can be found in Fan(@0&i8, Appendix G).

Next we describe two implementation techniques to improve the convergeaed. sphe first
one is to use a random permutation of sub-problems. In Algorithm 1, we allglwonsider vari-
ables to form one-variable sub-problems. Chang et al. (2008) shawstohang sub-problems
in a random order may lead to faster convergence. That is, dttkth@eration, we randomly
permute{1,2,...,n} to {Ti(1),T(2),...,Tk(n)} and update the elements wf in the order of

{Wry (1), Wry (2)> - - - Wrge () }-
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The second implementation technique is shrinking. Past works such as éisah(2008),
Joachims (1998), and Krishnapuram et al. (2005, Section 3.5) heallistiemove some variables
to obtain a smaller optimization problem. W has remained zero at many iterations, it is very
possible that the optimal; is also zero. Therefore, we can remove such variables. Our shrink-
ing implementation is related to that in the softwarBSvVM (Chang and Lin, 2001). From the
optimality condition (6),

—1<0OjL(w*) <1 implies wj=0. (31)

We prove in Appendix C the following theorem:

Theorem 1 Assume{w} globally converges tov*. If —1 < O0;L(w*) < 1, then there is Ksuch
that for all k> K;,

—1<OLWwW*) <1 and wi=o.

==

Using this theorem, we design the following shrinking strategy. Beforetirpgplva/j(’j via approxi-
mately solving the sub-problem (17), if

Wl=0 and —1+Mt<OiLwkl) <1-MK? (32)

we conjecture thals)f’J may remain zero and hence remove it for optimization. We choose

ML = malxj Vi ’
where
|OjL(wkL1) 4+ 1] if W >0,
Vi = |OjL(wk i) — 1 if w! <0,
max(OjL(w 1) — 1, —1-OjLwe2), 0) if w ™ =0,
From (6),vj, j = 1,...,n measure the violation of the optimality condition at tle- 1)st iteration.

The valueM*! reflects how aggressive we remove variables. It is large in the beginbirg
approaches zero in the end.
The shrinking implementation introduces little extra cost. When updatingttheomponent at
thekth iteration, we calculate
OjL(weT) = L (0;wk)

for the directiond in (27), regardless of implementing shrinking or not. Thﬂgr(wkvj) needed
for checking (32) is already available. Moreover, it can be used twleaéy; andMX, which are
needed for the next iteration.

4.1.3 SOCHASTIC COORDINATE DESCENTMETHOD (SCD)

Shalev-Shwartz and Tewari (2009) propose a stochastic coordiestert methodSCD) to solve
the bound-constrained problem in (12). At tkih iteration, SCD randomly chooses a working
variable from{w; ,...,w}, w,...,w;, }. The one-variable sub-problem is

min  gj(2) = z+Lj(zwc" —whT) — L0kt —wko),
z
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Algorithm 4 SCD for L1-regularized logistic regression
1. Given(w*,w™) andU; > 0.
2. While (w*,w™) is not optimal for (12)
(@) Selectan element frofw; ..., Wi, wi,...,w; }.
(b) Updatew; orw; by (36)—(37).

subject to the non-negativity constraint

\/\)j(’++220 or \N’f’ﬁrzz 0,

according to Whetheﬂl}" orw; is the working variableSCD considers a second-order approxima-
tion similar toBBR:

. 1
6i(2) = 9;(0) +gj(0)z+ 5U; 2, (33)
where
/ +
g/(0) = LHL(0) forwy o d v, > g/(2), vz
1-Lj(0) forw;

BBR considerdJ; to be an upper bound cgfj’(z) only in the trust region, whil&CD finds a global
upper bound offj(2). For logistic regression, following (9) and (29), we hayg (1—1(-)) <0.25
and

[
Uj = 0.25C leﬁ >d/(2), vz (34)
i=
Shalev-Shwartz and Tewari (2009) assunte< x;j < 1, Vi, j, so a simpler upper bound is
Uj = 0.25CI. (35)

Using the direction obtained by minimizing (33) and taking the non-negativity iomsidera-
tion, SCD updatesv by the following way:

If wj+ is selected

1+ L/(0)
W/ < w +max-w], _TJ) (36)
Else
o _1-L5(0)

A description ofSCD is in Algorithm 4.

4.2 CGD-GS: a Decomposition Method Using Gradients for Selecting Variables

Instead of updating one variable at a time, some decomposition methods eHaager working set
JC N={1,...,n}. We discuss a Gauss-Southwell method for selecti(ibseng and Yun, 2007;
Yun and Toh, 2009). This method, referred toGGD-GS, can handle any smooth loss function
includingé|og.
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Following the principle of decomposition methodswif is the current solution andlis the set
of working variables, one should solve the following sub-problem:

min L(wW*4d) — L(WH) + [[w -+ dl1 — [w¥]2
subjectto d; =0, Vj ¢ J.
Because it is still difficult to solve this sub-proble@GD-GS considers a quadratic approximation
of the loss term:

1
—d"Hd + |[wK+d||1 — ||w¥||1

min - ok(d) = OL(w)Td + 3 (38)

subjectto d; =0, Vj ¢ J,

whereH is either?L(wX) or its approximation. To ensure the converger@@p-GS conducts a
backtrack line search to fildsuch that\d satisfies

f(wk+Ad) — f(Wk) < oA (DL(WK)Td +yd"Hd + W +dJj; — HW"Hl) : (39)

where 0< 0 < 1 and 0< y < 1. This condition is the same as (28)yi= 0 andJ contains only
one element. Tseng and Yun (2007) used (39) for both the cyclic seld@mumss-Seidel) or the
selection using gradient information (Gauss-Southwell).

For selecting) using gradients, Tseng and Yun (2007) proposed two possible wanesfirst
one, referred to as the Gauss-Southwell-r rule, requitessatisfy

1d(I)]leo > V[[d(N)]]oo, (40)

wherev € (0,1) is a constant and(J) andd(N) are the solution of (38) by consideridgandN as
the working set, respectively. This condition connects the directionshdahgasub-problems using
a subset and a full set. The other condition for seledliig

ok(d(J)) < v-ak(d(N)), (41)

wherev € (0,1) andgk(d) is defined in (38). This condition is referred to as the Gauss-Southwell-q
rule. Algorithm 5 summarizes the procedure.

The remaining issues are how to solve the sub-problem (38) and how to dbsatisfying
(40) or (41). TheCGD-GS implementation considers a diagonal matrix with positive entridd.as
For exampleHjj = max(DJ?jL(wk),s), wheree is a small positive value. Then, the sub-problem
becomedJ| separable one-variable problems like (26). Each one-variable prdidsna simple
closed-form solution. Further, it is easy to find indices satisfying (4Q4by. For example, the rule
(40) becomes to find the larger elementsi@fl). Tseng and Yun (2007) proved that any limit point
of {wK} is an optimum of (1).

We discuss the computational cost for logistic regressiomd i§ diagonal, then solving (38)
takes onlyO(|J|) operations. Constructing (38) is more expensive because we neddutata

|
OL(w) :CZL(T(inTXi) —1)yiXi. (42)
i=
Yun and Toh (2009) apply a trick similar to (30) and maintaf®, Vi, but the gradient calculation
still needsO(In). This high cost may not pay off, and therefore, Hsieh et al. (2008) fdecom-

position methods without maintaining the gradient. Finding the working seainother potentially
expensive step, but it is cheap for a diagddal
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Algorithm 5 CGD-GS for L1-regularized logistic regression

1. Givenw?. Choose (40) or (41) as the strategy for selecting working sets. ®Givef, o < 1
and 0<y< 1.

2. Fork=1,23,...

Choose atd and a working sei.

Getd* by solving the sub-problem (38).

Computex = max{1,B,B,...} such thatdX satisfies (39).

Wk+1 — Wk —i—)\dk.

5. Methods by Solving Constrained Optimization Problems

Section 2.2 lists several methods for L1-regularized classification by galwenbound-constrained
problems (12), (13), and (14). In this section, we diSGURSN, IPM, andLassplore in detail.

5.1 A Trust Region Newton Method TRON)

We apply the trust region Newton method in Lin and B1¢1999) to solve (12). A previous study of
this method for L1-regularized logistic regression is by Lee (2008). &venience, in this section,
we slightly abuse the notation by redefining

W= [Wf] e R (43)

Then, problem (12) can be written in a general form of boundedtrzined problems:
min f(w)
subjectto we Q= {w|l; <w; <uj,Vj},
where f_(w) denotes the objective function of (12), dnahdu are lower and upper bounds, respec-
tively.
At the kth iteration of the trust region Newton method, we have an iteséte size/ of the
trust region, and a quadratic model

ok(d) = =d" 0% f (wWX)d + Of (w¥)Td

NI =

to approximate the valug(wX +d) — f(wk). Next, we find a step* by approximately solving the
following trust region problem

min  qy(d)
d (44)
subjectto ||d|| < Ay, WX+d e Q.
We then update/X andA by checking the ratio
ErwK L dK) _ Fwk
f(wk4d*) — f(w") (45)

P T g d)
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Algorithm 6 A trust region method for L1-regularized logistic regression

1. Givenw?.

2. Fork=1,2,3,... (outer iterations)
o Approximately solve (44) and obtain a directidfy see Algorithm 7.
e Computepy via (45).
o Updatew* to wk*1 according to (46) and updafg to Ay, 1.

Algorithm 7 TRON: Finding a directiord® by approximately solving (44)
1. Given O< € < 1. Find the Cauchy steg}*C and the Cauchy point

wit=wk+dC and det=d<C.

2. Fort =1,...,2n+1 (inner iterations)
e Find R andB; (free/bounded sets) at! by (50).
e If R =0, then stop and returd = wt —wk,
e Approximately solve

min g (d* 4 v)
VR
subjectto [|d*! +v|| <Ay, vg =0,

by Conjugate Gradient (CG) methods. Denote the solutiorfas
e Projected line search am! + Akt to obtainwkt+1 andd“t*1; see Equation (55). We

ensure thak C Ry1 and|R| < Ryl
¢ If one of the following situations occurs:

10ak(d“ g | < €| DF (W )R],
or CG abnormally stops (explained in text), then stop and return

dk — Wt _ K

of the actual reduction in the function to the predicted reduction in the quadradel. The direc-
tion d* is accepted ipy is large enough:

_ 46
Wk if Px < No, ( )

WL {Wk+dk if pk > No,
whereno > 0 is a pre-specified value. The sieof the trust region is then updated according to the
reduction of the function value. If the reduction is significant, thgns enlarged. Otherwise, we
reducely. More details can be found in Lin and M®(1999). The framework of our trust region
method is given in Algorithm 6. Earlier works applying trust region methodd.Bregularized
problems include, for example, Lin et al. (2008). The algorithm here is momgplicated due to
the bound constraints.
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5.1.1 CQauCHY POINT

A challenge for minimizing bound-constrained problems is to quickly identifynded components
at an optimal solution (i.e., components which are upper- or lower-bojinBedause eacl; can
be either bounded or free, the number of combinations is exponential.ddmaeanly used approach
takes the negative gradient direction to obtain a new point and projectkitd¢he feasible region
Q. With a proper line search to ensure the reduction of the quadratic mp@gl, not only do
we effectively guess the set of bounded components at an optimum, buhalg€onvergence is
guaranteed. To be more precise, we find a step’sizé so that

A (d“%) < a(0) +00a(0)Td“" and [|d“| <A, #7)

where _
d<C = P[wK — A (WX)] —wK (48)

is called the Cauchy step in bound-constrained optimizationaaad0,1/2) is a constant. The
projection operatoP[-] mapswk — AL f (wX) back to the feasible regidf:

Plwj] = min(uj, max(wj,lj)), (49)

so some components become bounded. Although the negative gradietibdiie projected in
(48), the resulting direction is still a descending one (iey(0)Td*C < 0). Hence, one can always
find a small\ > 0 such that (47) is satisfied. The pomtt® = wk + d¥C is referred to as the Cauchy
point.

5.1.2 NEwWTON DIRECTION

Gradient descent methods suffer from slow convergence, so inv@8hould have used the Newton
direction. However, the second-order information is accurate only iéther no bound constraints.
Lin and Mot (1999) propose using Newton directions on the subspace of the Lpaitit's free
components. Recall that we find the Cauchy point to predict the bounelegts at an optimum.
We obtain the free/bounded sets at the Cauchy point

F=FWC) ={j|lj<w<u} and B=BW)={j|j¢F}, (50)
and find a Newton direction on the spdedy solving

min g (d*C +v)
" (51)
subject to ||d*C +v|| < Ay, vg =0.

If the free set at the Cauchy point is close to that at an optimum, using a Nelivertion on this
sub-space leads to fast convergence.

Because (51) does not enforce the feasibilitynf© + v, one needs a projected line search
procedure similar to (47)—(48). Details are shown later in (55). Thdtmegypoint may contain
more bounded components than the Cauchy point. In this situation, Lin ar& (4@99) continue
to minimize a quadratic approximation on the new sub-space. They thus gemerer iterates
whkl = wkC wk2 wk3  until that the free/bounded sets do not changen ifiner iterations are
taken, then the directiod for thekth trust region iteration in Algorithm 6 is

dk — Wk,m+1 _ Wk
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Details of our procedure are described in Algorithm 7. Because eaeh itemation enlarges the
bounded set, the number of inner iterations is boundednbth2 number of variables. In practice,
very few inner iterations (one or two) are taken. Another reason to taier iterations is for the
guadratic convergence proof in Lin and Mqi1999).

Lett be the inner-iteration index arl, i be bounded/free setswat!. With vg, =0,

O(d' +v) = %VE 02f (WH)R VR + Oa(d ) E ve + ae(d ), (52)
so minimizinggk(d! 4+ v) is equivalent to solving the following linear system
02 f (W)r R VR = —Oak(d“)s. (53)
To solve (53), we conduct conjugate gradient (CG) iterations until
102 f (W)r R VR + Dak(d )R | = | Dak(d g || < e OF (W) | (54)

is satisfied, where is a given positive constant. See Section 5.1.3 for reasons to choo8&G.
may stop before reaching (54) if either the iterate causes our searchiafireo exceed the trust
region boundary or the singularity of the matfi% f (W*)g, r, is detected.

Once a direction/®! is identified, we conduct a projected line search to ensure the feasibility
and the sufficient decreasea(d). This procedure is similar to (47)—(48) for the Cauchy step. We

find A (e.g., by a backtrack line search) such that
wit+l — P[Wk’t —i—)\Vk’t], dk,t-i—l — ittt —Wk, and
qk(dk,t+l) < qk(dk,t) + O-Dqk<dk’t)1|:—t (dk,tJrl _ dk,t)Ft7
whereP|] is defined in (49) and is the same as that in (47).

(55)

5.1.3 HESSIAN-VECTORPRODUCT

CG is very suitable for solving the linear system (53) as it requires onlgidesector products.
For logistic regression,

— XT
O2f(W)g.r =C [—XT] - D [X —x]:ﬁ, (56)
whereD is anl x | diagonal matrix with
Di =T (yi(w" —w)Tx) (L-t(yi(wh —w™)Tx;)). (57)

The matrixDZf(w)Ft,Ft may be too large to be stored. If using CG, the Hessian-vector product ca
be conducted by a sequence of matrix-vector products:

DZf_(Wk’t)F[,HVFt —C [_X):T} y (D ([X —X] R VH)) . (58)

Thus, the memory problem is solved.

In Lin et al. (2008) for L2-regularized problems, Hessian-vectodpots are only needed in
CG, but here they are also used in the projected line search for calcutpfifg+1) — g (d*!);
see (52) and (55). Moreover, in (58) we use only a sub-matrix of treside, sgk| columns of
[X —X] are needed. Because in geneFl is smaller than the number of variables, calculating
(58) may be faster than the product between the whole Hessian and a eojoiickly accesX'’s
columns, storing the data matiin the column format is more suitable. For a discussion between
row and column formats, see Lin et al. (2008, Section 4.3).
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5.1.4 GONVERGENCE

From Theorem 2.1 of Lin and Mér(1999), any limit point ofw*} is an optimum of (12). For
the local convergence rate, in Appendix E, we indicate that in gemBx@N can achieve quadratic
convergence.

5.2 An Interior Point Method ( IPM)

Koh et al. (2007) proposed an interior point method to solve (13) with lodegi In (13), we omit
the bias ternip, but Koh et al. (2007) included this term. They consider a log barriestfomn so that
(w, u) is an interior point of the feasible region:

n | n
@ (b,w,u) =t (leuj +Ci;E(W7 b; XuYi)) - Jleog(u,2 — W),

wheret > 0 is a parameter. The unique minimizgé®(t),w*(t),u*(t)) under any giver forms a
curve called the “central path,” which approaches an optimal solutiob3)fgst — c. An interior
point method thus alternatively minimizegs(b,w,u) and adjusts. From a set ofw,b) on the
search path, we can construct a feasible solution to the dual probldiR)ar{d evaluate the duality
gap. The duality gap is guaranteed to converge to 0 as we walk along tiel geth whert — co.
Thus, we can check the duality gap for the stopping condition.

At thekth iteration, using the currety, interior point methods approximately minimige(b, w, u)
by finding a Newton direction. The following linear system is solved:

Ab
20, (B, WK, ) [Aw] — — O (B, W, Y. (59)
Au

For logistic loss,
tCI_1¥i (T(yi (Wi +b)) — 1)

2w/ (U —wg)
tCyi_g (T(V(WTXi +b)) — 1) yixi + :

O (b,w, u) = 20/ (12— w2)
2uy/ (U —wg)

ten—

2up/ (uﬁ —wZ)

and
tCy' Dy tCgDX  0'
O%@(b,w,u) = [tCX"Dg tCX'DX+D; Dy,
0 D, D,

wheret(-) is defined in (9)g, € R" andg € R are the vectors of all oneB), is similar to (57) but
includesb, andD; andD, aren x n diagonal matrices:

(D1)jj :Z(sz-l-sz)/(sz—W-z)z and (D2)jj = —4Ujo/(uj2—W12)2.

I
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Algorithm 8 IPM for L1-regularized logistic regression

1. Givenb! and an interior poinfw!,u). Lett! = 4.

2. Fork=1,23,...

Ab
e Obtain a Newton directio Aw] by solving (59).
Au
A backtrack line search procedure to ensure the sufficient deavéggé )

Update
pk+1 b+ AAb
WKt = [wKk 4+ AAw | .
uktt uk+AAu

Construct a dual feasible point and evaluate the dualityrgap
Set

el _ max(pmin(2n/n,t¥), t<) if A > smin,
o)tk otherwise

wherep andsy, are constants.

Koh et al. (2007) apply preconditioned conjugate gradient methods YRCIve (59) with diag-
onal preconditioning.

For the convergence, a backtrack line search procedure is neededure the sufficient de-
crease ofp, (-). Koh et al. (2007) did not discuss details of their method’s convergdrowever,
because interior point methods are a type of Newton methods, they oftgnfasjdocal conver-
gence.

5.3 Lassplore Method

Liu et al. (2009) apply Nesterov's method (Nesterov, 2003) to solve (Tdis method can handle
(14) with and without the bias term. For simplicity, we do not consider the bias t@raddition to
the sequence of iteratiofsv¥}, for faster convergence, Nesterov’s method uses another sequence
of searching point$s<}, where
S = WK B(wk — w1,

for some positive parametgg. Froms¥, we obtainw®*? by taking the negative gradient direction:
WL = &\ OL(S9),

where |
L(w) = _;Ei(w; Xi,Vi)

is the objective function of (14) ankk is the step size. Note thatw) is different fromL(w) defined

in (7) because the penalty paramefeis not needed in (14). Liu et al. (2009) suggest to estimate
Bk by

_ W(d—0ak-1)
k(Y39

Br (60)
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Algorithm 9 Lassplore for solving (14)
e Givenw® andw?, ag=0.5,A1 > 0,y; > 0.
e Fork=1,23,...
1. While 1 do
— Computeoy € (0,1) as the root ofjk(a), Bk by (60), andyk+1 by (61).
— Computes® = XX + By (WK —wk=1).
— Computew®+ by (63).
— If L(WX*1) satisfies (62)
goto Step 2.
Else
Ak < Ak/2.
2. Find the initial\,1 for the next iteration by an adaptive schefne.

whereay € (0,1) is the root of a quadratic function

o2
nk(a) = 3o T WA — Vi
k
andyk > 0 satisfies
Vicr1 = (L—ak)yk if k> 1 andy; > 0. (61)

We haveay € (0,1) because(0) = —yk < 0 andng(1) = 1/A¢ > 0.
Lassplore applies an adaptive line search scheme that adjyste thatw**! satisfies

W) < L)+ DL ) 4 50 - o3 ©)

The new solutiow**! generated from the above process may not satisfy the constraint jrs(14)
Lassplore projects the solution to the feasible region:

WhH = arg minf| (4~ MOL($9) — wi] | [wz < K). (63)

This projection is related to (15) in Section 2.2.2, basgsplore applies the method in Liu and Ye
(2009) to efficiently compute (63).
A summary ofLassplore is given in Algorithm 9.

6. Three Other Methods for L1-regularized Logistic Regression

We describe details of three more methods because they are included onquarison.

6.1 Orthant-Wise Limited-memory Quasi-Newton OQWL-QN)

LBFGS (Liu and Nocedal, 1989) is a limited memory quasi Newton method for uncamstra
smooth optimization. It can not deal with (1) because of the non-diffetglitya Andrew and
Gao (2007) modified BFGS to solve (1) and named their method@#/L-QN. Here, we discuss
how they handle the non-differentiability.

3. See Liu et al. (2009, Algorithm 3) for details.
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From earlier discussion, we know that (1) is differentiable in a regiorrevtiee sign ofv; does
not change. ThusQWL-QN restricts the search space to such a region (called orthant). Athithe
iteration, it searches®* on the space:

Q={weR"|sgnwj) =sj=1...,n},

where
Slj< _ ggr(vv‘a ) if VVlJ( #+ -07 (64)
sgn—0; f(wX))  otherwise,
and
_ Li(w)+1 if wj >0 or(w; =0 andLj(w)+1<0),
Ojf(w) = q Lj(w)—1 if wj <0 or(wj =0 andL}(w)—1>0), (65)

0 otherwise

is defined as the pseudo gradientfdfv). In (64), if vv‘J‘ = 0, we consider the space whesg
can be moved by taking the negative gradient direct@wL-QN then approximately minimizes a
guadratic approximation of (1) in the search sp@ge

— 1
min  f(W) + O0f(WX)Td+ =d"Hd
I (w*) (w*) 5d" He (66)
subjectto wX+d € Q,

whereHy approximates the Hessian bfwX) by the first-order information gathered from previous
iterations. Details for gettingl can be found in Liu and Nocedal (1989). To approximately solve
(66), OWL-QN finds the minimum of the quadratic objective function:

df = —H_1Of(wh), (67)

obtains a directiom® by confiningd on the same orthant as f (w):

d< if sgn(d¥) = sgr(—0; f (WK))

1k )

di=4 ) : (68)
0 otherwise

and then conducts a backtracking line search toXisdch that the sufficient decrease of the function
value is satisfied. Note that“*1 must be inQy, so following (64),

Wit {w‘;ﬂd_jk if sgn(wk+Adk) =,

0 otherwise.
Algorithm 10 summarizes the procedure.

Regarding the convergence, Yu et al. (2010, Appendix D) point atithie proof by Andrew and
Gao (2007) is flawed. Yu et al. (2010) give the convergence pard Elightly modified algorithm.
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Algorithm 10 OWL-QN: An extension oL.BFGS for L1-regularized logistic regression
1. Givenw?.
2. Fork=1,2,3,...
Computedf (wX) by (65).
ObtainH"_by information gathered from previous iterations and complitey (67).
Computed by (68).
Findw*+! € Q, by a backtracking line search.

6.2 Generalized Linear Model with Elastic Net

Friedman et al. (2010) propos@L.MNET to handle least-square and log-linear losses with L1/L2

regularization. Here, we discuss h@®kMNET solves L1-regularized logistic regression. Although

GLMNET can solve (5) with the bias term, for simplicity, we only indicate FGMMNET solves (1).
Because of the twice differentiability of the logistic loss function, the gradi€b{w) is shown

in (42) and the Hessian is

2L (w) =CXTDX, (69)
whereD € R*! is a diagonal matrix with
Dii = T(yiw' x;) (1 —T(yiw" x;)) (70)

andt(-) is defined in (9). See similar formulations derived earliefTfRON in (56) and (57). Given
the current solutiom®, GLMNET considers a quadratic approximatiori¢#v). By the second-order
Taylor expansion,

f(WX4d) — (k)
= (Il + L+ d) ) = ([l + Lwh))
~OL(W<)Td+ %dTDZL(W")dJr WK+ d[1 — [|wW]|1.
Then,GLMNET solves the Newton-like system
min - qi(d) = OL(W*)Td+ %dT O?L(WH)d + [[w*+d| 1 — [[w¥||2 (71)

by a cyclic coordinate descent method. Following the framework in Algorithaiislvalues are
sequentially updated by minimizing the following one-variable function:

9j(2) = ak(d + zej) — qk(d)
1
= WK+ dj+2| - Wi+ dj| + Bz+ éAzz,

where
B= O;L(wX) + Z D4LWd  and A= D%L(wY)

can be calculated using (42) and (69). It is easy to minirgjze) by (27)*

4.mGLMNEHmpbmemmmmhwmadmﬁmmmadmaembMemmmbnumdMeBLwanogmMQ%dy
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Algorithm 11 GLMNET for L1-regularized logistic regression

1. Givenw?,
2. Fork=1,23,...
o Letd“« 0.
e While d¥ is not optimal for minimizingg(d)
—Forj=1,...,n

x Solve the following one-variable problem by (27):
Z=argmin ok (d* 4 zej) — gu(d¥).

* dTé—dT%—Z
o WK1 = wk4 gk,

Because calculating the matifixinvolves many exponential operatioi@&, MNET also consid-
ers using an approximation aL(w) and minimizes

1
Ok(d) = OL(W")Td+ Sd"Hd + [w*+dl|z — ||,

whereH = 0.25CX" IX and I is an identity matrix. That is, we use a cheaper but less accurate
approximation off (WK +4-d) — f(wk). A sketch ofGLMNET is in Algorithm 11.

We briefly describe somBLMNET’s implementation detailsSLMNET applies a shrinking tech-
nique to solve a smaller optimization problem than (71); see similar techniqudedomposition
methods in Section 4.1.2. Using a sparse representatisnasfd maintaining an index se€l to
indicate the non-zero elements @f GLMNET solves a smaller problem by a coordinate descent
method: 1

: kKT
n(}(lzn OL(w)'d+ >
GLMNET conducts feature-wise normalization before solving the optimization probléait i3, it
solves (1) by replacing; with X;, where

d"Hd + |wX+d||1 — [[w¥]1.

Xij =X

!

R T T
ML, X = 218 andgj =
Oj I

%ij

Notice that there is no guarantee tl&IMNET converges to an optimum. Furthermore, the
function value may not decrease becaG&®NET does not conduct a line search procedure on the
directiond. For minimizing the quadratic approximatigp(d), GLMNET measures the relative step
change in the successive coordinate descent iterations. Decidingtavetp minimizinggk(d) is
an issue because a strict stopping condition may already cause longgtinmérforg (d).

6.3 Bundle Method

Bundle method is a cutting plane approach for minimizing non-smooth conveiepns. Teo et al.
(2010) proposed a bundle methBsIiRM to handle non-differentiable loss functions (e.g., L1 loss).
They provide an extension to handle L1 regularization. InterestiBghgM applies cutting planes
only to the loss function, regardless of whether it is differentiable or noerdfore, for problem (1)
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Algorithm 12 BMRM for L1-regularized logistic regression
1. Givenw?.
2. Fork=1,23,...
e Compute and stora andby by (73).
e Obtainw¥t1 by solving the linear program (76).

with logistic loss,BMRM uses a non-smooth method to handle the smooth loss function and some
other ways for the non-smooth regularization tejuwj|;.

Let wX be the solution at théth iteration. Using the convexity of the loss functiaRM
builds a cutting plane (i.e., the first-order Taylor expansior)(@f) atw = wk:

L(w) >0LW) T (w —wk) + L(wK)

72
=afw+ by, Yw, (72)

where
ac=0L(W) and b= LW —alwk. (73)

If L(w) is non-differentiable, in (72BMRM substitutes1L (w) with the sub-gradient df(w).
BMRM maintains all cutting planes from the earlier iterations to form a lower-bounctifun
for L(w):

> LCP = y .
L(w) = L™(w) = maxa; w+by, Yw (74)

BMRM obtainswX! by solving the following sub-problem:

min w1+ LE7(w). (75)

Using (74) and the splitting of in (12) byw = w™ —w~, Equation (75) can be reformulated to the
following linear programming problem:

n n
min w w;
min, J; H—gl | +C
subjectto al (W —w)+b <7, t=1,... Kk
w>0,w; >0, j=1...,n

(76)

A summary of theBMRM approach is given in Algorithm 12. Teo et al. (2010, Appendix C) in-
dicated that because of the L1 regularization, the convergence rasulioh been fully established
yet.

7. L1-regularized L2-loss Support Vector Machines

Previous sections have focused on L1-regularized logistic regresétmmwe consider (1) with the
L2-loss function (4). The optimization problem can be rewritten as

min  f(w) =[wli+C Y bi(w)? (77)

iel(w)
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where
bi(w)=1—yw'x, and I(w)={i|bi(w) > 0}. (78)

Therefore, the sum of losses is

Lw)=C 5 bi(w)* (79)

icl(w)

In contrast to logistic loss, the L2-loss function is differentiable but notawiifferentiable (Man-
gasarian, 2002). Thus, some methods discussed in Sections 4—6 may diotdily applicable
because they use second-order information. However, as shownigagarian (2002, Section 3),
(79) is twice differentiable at all butw | bj(w) = 0 for somei}. Moreover,[0L(w) is globally Lip-
schitz continuous, so a generalized Hessian exists everywhere. Ugengeeaalized Hessian, we
may modify algorithms using the second-order information for L1-reguldrizzloss SVMs. In
the following two sections, we exter@DN andTRON to solve (77).

7.1 CDN for L2-loss SVMs
To applyCDN for L2-loss SVMs, in the sub-problem (17), we have

Li(z) =C Z bi (W + ze))2.
iel(wel+zep)

For a second-order approximation similar to (26), we ngga) andLj (0):

L/j(O):—ZC Z inijbi(Wk7j).

iel(wki)

Unfortunately,L;(0) is not well-defined if there exists somesuch thato; (W) = 0. Following
Chang et al. (2008), we consider the generalized second derivative

2y XE (80)

icl(wki)

By repIacingL’j’(O) in (26) with the above quantity, we can easily obtain a directiotHowever,

the value in (80) may be zeroxf; =0, Vi € | (wk1). To apply the convergence result in Tseng and
Yun (2007), we ensure the strict positivity by taking

max<2C Y xﬁ,s), (81)
iel{(wki)

wheree is a small positive value. Following the explanation in Appendix F, we have tlite fi
termination of the line search procedure and the asymptotic convergetiwefahction value.

Like the situation for logistic regression, the major cost for finding the Newtmctiond and
for the line search procedure is to calculatex;, Vi € 1. We maintainb;(w), Vi using the same
trick in (25). All other implementation techniques discussed in Section 4.1.2dstio regression
can be applied here.
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7.2 TRON for L2-loss SVMs

We applyTRON to solve the bound-constrained problem (12) using L2 loss. Followingdtegion
in Section 5.1y € R*" is defined in (43) and (w) is the objective function in (12).
The quadratic modejk(d) requires the gradient and the Hessiarf of/). We have

Of (w) = e+2C (XX W —XTyi)

wheree € R is a vector of all ones),?E [X —X], andl is defined in (78).)?“ denotes a sub-
matrix includingX's rows corresponding td; see (8). Note thab;(w) defined in (78) is now
calculated by

1—¥i(Wn —Wni1y:2n) " X

Following Mangasarian (2002) and Fan et al. (2008, Appendix D),amsider the generalized
Hessian matrix: B
2CX DX,

whereD € R*! is a diagonal matrix with

o _ 1 ifbw) >0,
"7 )0 ifbi(w)<o0.

We then apply Algorithm 7 to approximately minimigg(d). For the Hessian-vector product, only
instances in the index skand variables in the free setare considered. Thus, the Hessian-vector
product in (58) becomes

2CX"e (D11 (X V),

wherev is a vector inR?".

Regarding the convergence, from Theorem 2.1 of Lin andé\»®99), any limit point of wX}
is an optimal solution. However, without the twice differentiability, it is uncleénéflocal quadratic
convergence holds.

8. Numerical Experiments

In Sections 4-7, we have described details of several large-scale @gtoniznethods for L1-

regularized linear classification. In this section, we conduct experimeirtgdstigate their perfor-

mances. We describe data sets and experimental settings first. Thermme=hensively compare
methods for logistic regression and L2-loss SVMs. Programs used in th&s pae available at
http://www.csie.ntu.edu.tw/ ~ cjlinfliblinear/exp.html

8.1 Data Sets

Table 1 lists data statistics. Most data sets include documents, where the awhbeth fea-
tures and instances are large. An exception is the probfenfrom UCI “adults” data sets; it has

| > n. For other document setgal-sim includes some Usenet article®sws20 is a collection of
news documentsgvl is an archive of manually categorized newswire stories from Reutetis, an
yahoo-japan/yahoo-korea are document data from Yahoo!. Excephoo-japan andyahoo-korea,
other data sets are publicly availablehtip://www.csie.ntu.edu.tw/ ~ ¢jlin/libsvmtools/
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Data set I n #nz
a%a 32,561 123 451,592
real-sim 72,309 20,958 3,709,083
news20 19,996 1,355,191 9,097,916
revl 677,399 47,236 49,556,258
yahoo-japan | 176,203 832,026 23,506,415
yahoo-korea | 460,554 3,052,939 156,436,656

Table 1: Statistics of data setisandn denote the numbers of instances and features in a data set,
respectively. The column #nz indicates the number of non-zero entries.

Data set LR Withogt bias LR With'bias L2-loss SVM

C Density Acc. C Density Acc. C Density Acc.
a9a 4.0 94.3 85.21 2.0 89.3 85.3 0.5 90.2 85.2
real-sim 4.0 16.8 97.1 4.0 16.2 97.0 1.0 189 971
news20 64.0 0.2 95.1] 64.0 0.2 94.9 64.0 0.7 96.1
rcvl 4.0 23.8 97.8 4.0 23.0 97.8 1.0 259 97.8
yahoo-japan | 4.0 1.3 919 4.0 1.0 931 1.0 1.4 922
yahoo-korea | 4.0 1.0 87.6/ 4.0 0.9 87.7 1.0 1.0 87.7

Table 2: The best paramet@r the model density (%), and the testing accuracy (%). We conduct
five-fold cross validation on the training set to sel€ctn {2" | k= —4,—3,...,6}. Using the
selectedC, we build a model to predict the testing set.

datasets/ . For every document data set, instance-wise normalization has beeaunctemdo that
the length of each instance is one.

To estimate the testing accuracy, a stratified selection is taken to split eacletdata sne fifth
for testing and the rest for training.

8.2 Experimental Settings

We consider the following implementations discussed in Sections 4-7.

e BBR: the cyclic coordinate descent method for logistic regression is desdritfgelction 4.1.1.
We download version 4.03 froiitp://www.bayesianregression.org/

e CDN: the cyclic coordinate descent methods for logistic regression and k29g#ls are re-
spectively described in Sections 4.1.2 and 7.1. To check the sufficiergate condition, we use
0 =0.01 andB = 1/2. For L2-loss SVM, we use = 10*?in (81). The implementation is the
same as that included in version 1.6 of our softwaB INEAR (http://www.csie.ntu.edu.
tw/ ~ cjlin/liblinear/ ).
In Section 4.1.2, we discuss the shrinking techniqueCioN. We defer the investigation of its
effectiveness to Section 8.4. In all other places of the comparison,m&DN with the shrinking
strategy.

e SCD: the stochastic coordinate descent method for logistic regression iskeiesan Section
4.1.3. The source code is availablehty://ttic.uchicago.edu/ ~ tewari/code/scd/
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e CGD-GS: the block coordinate gradient descent method for logistic regressiossigited in
Section 4.2. Following Yun and Toh's (2009) settings, we choose

H = diag [min(max(DJZj wX),10710), 1010)}

and apply the Gauss-Southwell-r rule to choose the workingl;seee Equation (40). Note
that from Table 9 of Yun and Toh (2009), implementations using Gausgyell-r and Gauss-
Southwell-q rules perform similarly on document data. We use defaultv&uell parameters;
see Section 5.1 in Yun and Toh (2009). In particutas: 0.1, 3 = 1/2, andy = 0. The source
code is available dtttp://www.math.nus.edu.sg/ ~matys/ .

e TRON: the trust region Newton methods for logistic regression and L2-loss Sirdliespectively
described in Sections 5.1 and 7.2. In the projected line search (47) Bnavbuses = 0.01 and
3 = 0.1. For the stopping condition of the CG procedure in Algorithm 7, weeaused.1. The
parameteng in (46) is Q0001.

e IPM: the interior point method for logistic regression is described in Section ®R2srRall and
dense data setl?M solves a linear system in Algorithm 8 by Cholesky factorization. For large
and sparse data sets, it applies a preconditioned conjugate gradient toethpcoximately solve
the linear system. In the experiment, we only consider the large and sptiisg.sWe use default
parameterso = 0.01 and = 1/2 for the line search procedure. To upditeve usesmin = 1/2
andp = 2. The source code (version 0.8.2) is downloaded fhttpy/www.stanford.edu/
~boyd/I1_logreg/

As w lies in the interior of the feasible region, evewy is non-zero aftefPM stops. To gain the
sparsity, following the condition (31), Koh et al. (2007) assign theseatisfying|O;L(w)| <
0.9999 to zero. However, if we have not run enough iterations to obtais@mate solution, this
modification ofw may result in an erroneous model. We thus add another conditior< 1 in
deciding ifw; should be assigned to zero. We will address this issue again in Section 8.3.

We find that because of a problem of not initializing an element in an arrayprévious ver-
sion (0.8.1) ofiPM is two or three times slower than the latest version (0.8.2). This observation
indicates the difficulty in comparing software. Some minor issues may significaifiélgt the
conclusions.

e OWL-QN: the quasi Newton method is described in Section 6.1. The source cad®o(vé.1.2)
is available ahttp://research.microsoft.com/en-us/um/people/jfgao /.

e GLMNET: the method is described in Section 6.2 for logistic regression. Following tlaelte
setting, we use the full Hessian in (71) instead of an approximation. Weiglladeduce the
stopping tolerance to obtain different models. The coordinate descermdrfettminimizing the
quadratic approximationy(d) stops according to a tolerance the same as the overall stopping
tolerance. The source code (version 1.5) is availablt@t/cran.r-project.org/web/
packages/gimnet/index.html

e Lassplore; this method is described in Section 5.3. We check the 1-norm of the optimébsolu
(obtained by other solvers) to calculate the vakuén (14). The source code (version 1.0) is
available atittp://www.public.asu.edu/ ~ jye02/Software/lassplore

e BMRM: this bundle method is described in Section 6.3. We apply it to both logistic segnesnd
L2-loss SVMs. The linear programming problem (76) is solved via GNU Lifragramming
Kit (GLPK). The source code (version 2.2) aBtPK are available abttp://users.rsise.
anu.edu.au/ ~chteo/BMRM.html  andhttp://www.gnu.org/software/glpk/ , respectively.
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GLMNET is implemented in Fortran along with an R interfac€GD-GS and Lassplore are
primarily implemented in MATLAB, but expensive operations are coded in €/@# other solvers
are implemented in C/C++ with double precision.

Some implementation$sCD, TRON, OWL-QN, andBMRM) solve (1), while someGGD-GS,
IPM, GLMNET, andLassplore) consider the bias term and solve (BBR® and ourCDN implemen-
tation can handle both (1) and (5). According to whether the bias term &dsred, we categorize
methods into two groups for comparisbnMoreover, for certain solvers their formulations are
scaled by a constant. We ensure that equivalent optimization problenahaed.s

Software such a®®M andGLMNET supports finding a solution path of varioGssalues. How-
ever, in our experiments, we focus on the performance of an algoritimy asfixedC. For all
methods, we set the initial solution® = 0.

The parameteC is chosen by five-fold cross validation (CV) on the training set. Using models
trained under the be&, we predict the testing set to obtain the testing accuracy. TheChekse
model density (the number of non-zero coefficientwidivided byn), and the corresponding testing
accuracy are recorded in Table 2.

In the rest of this section, we compare the training speed of solvers fistitogegression and
L2-loss SVMs by using the best parameteof each data set. We run all experiments on a 64-bit
machine with Intel Xeon 2.0GHz CPU (E5504), 128KB L1 cache, 1GB lcheaand 32GB main
memory. We use GNU C/C++/Fortran compilers (version 4.4.1) and ensurtheach package
the “-03” optimization flag is set.

8.3 Comparing Methods for L1-regularized Logistic Regression

We separately compare solvers for optimization problems without/with the bias t€h@.first
group, which solves (1), includeBBR, CDN, SCD, TRON, OWL-QN, andBMRM. We begin at
showing in Figure 1 the relation between the function value and the training trmeach figure,
thex-axis is the training time and theaxis is the relative difference to the optimal function value:

f(w) — f*

. (82)

wheref* is obtained by runnin@RON with a strict stopping condition. Botkaxis andy-axis are
log-scaled. We draw a dotted reference line in Figure 1 to indicate the eekatior 0.1. From
Figure 1,BBR andCDN can more quickly give a good solution th&eD, TRON, OWL-QN, and
BMRM. However, quasi Newton and Newton methods may have faster locatigmnce. In Figures
1(c) and 1(d),TRON’s curve is almost vertical in the end. This fast local convergence is mainly
useful for problems such a9a, for whichBBR andCDN are less competitive. We note thedta is
not a document data set and its number of features is much smaller than therrafritistances.
Earlier studies for L2-regularized classifiers have shown that coateliescent methods are less
competitive for this type of data (Hsieh et al., 2008). The same situation seerosuohere for L1
regularization.

It is surprising thatSCD is much slower thaltDN and BBR because they are all coordinate
descent methods. We modi§pN to randomly select working variables, a stochastic method similar
to SCD; the result was still much faster th&tD, suggesting that the stochastic selection is not the

5. BBR considers bias term as a feature and allows users to use an 6pttorspecify weights to individual features.
6. For simplicity, we appl\BBR only to solve (1).
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Figure 1: Relative difference between the objective function and the optivalue, versus training

time. Logistic regression without using the bias term. Bo#xis andy-axis are log-scaled.

culprit. Itturns out that a too large upper bound of the second dervadiuses the slow convergence
of SCD. Whenx;; € [-1,1], SCD replacesz!:m?} in (34) withl. Then itsU; in (35) is much larger
thanU; in (22) for BBR. Therefore SCD's step size—g’j (0)/Uj is often too small.

Equation (82) cannot be used for a practical stopping condition beddus not easily avail-
able. Instead, we often rely on the gradient information. Now (1) is nigréifitiable, so we follow
the optimality condition (6) to define the minimum-norm sub-gradient:

OjL(w)+1 if wj >0,
O5f(w) =< OjL(w) -1 if wj <0,
sgn(d;L(w))max(|0;L(w)| —1,0) otherwise.

SinceSf (w) = 0if and only if w is optimal, we can checkdSf(w)|| for the stopping condition.
Figure 2 shows the scaled 2-norm of the minimum-norm sub-gradient,

I
min(Zi:yizl 17 Zi:yi:fl 1) ” oSt (Wl) ”

along the training time. From Figure DN andBBR are the best in the early stage of the procedure,
while Newton and quasi Newton methods suchfB®N and OWL-QN have faster local conver-
gence. This observation is consistent with Figure 1. Some methods (e gmplesition methods)

do not calculatélSf (w) in their procedures, so a gradient-based stopping condition may introduce
extra cost. However, these methods may be able to use approximate gvatliestobtained during

the calculation. For example, coordinate descent methods calculatd-ﬂpfﬂwkvj), j=1...,n

ISt (W), (83)
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Figure 2: The 2-norm of the minimum-norm sub-gradient (83) versusitigaitime. Logistic re-

gression without using the bias term. Bataxis andy-axis are log-scaled.

instead ofJf (W), but these values can be directly used in a stopping condition; see details in
Appendix F of Fan et al. (2008).

In Figure 3, we investigate how the testing accuracy is improved along thangdime. The
testing accuracy is the percentage of correct predictions on the testingesailts show tha#@BR
andCDN achieve the final accuracy more quickly. In addition, we are interesteaiprgress of
these methods on gaining the sparsity. Figure 4 shows the number of riooeedficients ofv and
the training time. For most data seB8R andCDN more efficiently obtain a sparse solution.

Next, we compare methods solving (5) with the bias term. These solvers inchndeCGD-
GS, IPM, Lassplore, andGLMNET. AlthoughBBR can solve (5), we omit it in the comparison as its
performance is similar to that of solving (1). Following the comparison for nitisolving (1), we
begin with checking the running time to reduce the relative error of the funetiue and the scaled
norm of the minimum-norm sub-gradient; see (82) and (83), respectiVakly results are given in
Figures 5 and 6. The reference valiids obtained usingPM with a strict stopping condition. From
Figure 5,CDN is the fastestiPM comes the second, a@fD-GS is the third. However, in Figure 6
for reducing the gradient nornM often surpasse3DN in the final stage.

GLMNET gives good performances in Figures 5(b)-5(d). In particular, iféstdocal conver-
gence; see curves that are close to vertical in Figures 5(c) andB{i) fast local convergence is
due to using the quadratic approximatiquid), which generates a Newton-like direction. We find
that the approximation of replacirigyin (69) with a constant diagonal matrix is effective for micro-
array data used in Friedman et al. (2010). However, for large dodusaes) using the exact Hessian
is better. Unfortunately\GLMNET fails to generates results fgahoo-japan andyahoo-korea after
sufficient running time. We find that setting an appropriate stopping tolerfmaninimizing the
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Figure 3: The testing accuracy versus training time (log-scaled). Logéegiession without using
the bias term. Curves &MRM may not be shown because values are out of the range.
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Figure 7: The testing accuracy versus training time (log-scaled). (lalge) Logistic regression
with the bias term.

guadratic approximation in (71) is sometimes difficult. This issue might causedbtem in train-
ing yahoo-japan andyahoo-korea. ForIPM, the performance is in general competitive. BecdBise
is a type of Newton method, it has fast local convergence.

The result thaCDN is faster thanCGD-GS is worth for further discussion. Tseng and Yun
(2007) show that for some least-square regression problems, an impégimersimilar toCDN
(i.e., a Gauss-Seidel rule for selecting working variables) is slower d@MGS, which selects
variables using the gradient information. This result is opposite to ours. igsues might cause
the different results. First, problems are different. We aim at classifging and sparse document
data, but they solve regression problems. Second, we implement two teelr{germutation of
sub-problems and shrinking) to improve the convergence.

Yun and Toh (2009) show that for some document data sets used heEr&S@D-GS is faster
thanIPM. However, our results indicate thi@M is better. This difference is apparently due to that
Yun and Toh (2009) run an earlier version (0.8.1)rRM. We indicate in Section 8.2 that a minor
problem in this version causes this version to be two or three times slower ldizn zersion (0.8.2)
used here.

Figure 7 indicates the testing accuracy versus the training time. We can sigeried-7(e) and
7(f) thatiPM’s accuracy may not improve as the training time increases. As we mentionedtiors
8.2, this result is because we modify certaielements to zero. In the middle of the procedwés
not close to an optimum yet, but many elements have satigfigdw)| < 0.9999 and are trimmed
to zero. Hence, the resulting accuracy may be worse than that in the ety the procedure.
In fact, due tdPM’s densew throughout iterations, to get the final sparsity and the testing accuracy,
we need to accurately solve the optimization problem.
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Figure 8: The number of non-zero coefficients versus training time @ated). Logistic regression
with the bias term. The solid horizontal line indicates the final number of nomexefficients.

Figure 8 presents the numberwk non-zero coefficients. Similar to methods solving (1), all
methods here, excepGD-GS, have solutions with many non-zero coefficients in the beginning and
gradually gain the sparsity. In contraSiGD-GS’s numbers of non-zero coefficients in the whole
optimization process are not much more than those of the final solutions. Whénthis nice
property is from using the gradient information for selecting working \deis In contrast, without
the gradient informationCDN wrongly updates some elementswfto be non-zeros in the early
stage of the procedure.

In summary, for large document data, coordinate descents methodsssDbh gerform well
in the early stage of the optimization procedure. As a result, they achieven#h@dicuracy more
quickly. However, for some applications, a correct sparsity patterneofribdel is important and a
more accurate solution is sought. Th&MNET by combining both Newton-type and coordinate
descent approaches is useful.

8.4 Comparing Methods for L1-regularized L2-loss SVMs and Invesgating CDN's
Shrinking Strategy

In Section 7, we have extende®N andTRON to handle L2 loss, so methods included for compar-
ison areCDN, TRON, andBMRM. Note that we solve (77) without considering the bias term.

Following the experiment for logistic regression, we plot the relative diffee to the optimal
function value in Figure 9 and the scaled norm of the minimum-norm sub-gaidié-igure 10.
The referencd* is obtained by runnin@RON with a strict stopping condition. One can see that
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Figure 9: Relative difference between the objective function and the optivalue, versus training
time. L2-loss SVMs without using the bias term. Bathxis andy-axis are log-scaled.

CDN'’s training time is the shortest among the three solverst®@N is better tharBMRM. BMRM
does not properly decrease the function value and the norm of gtadidéarge data sets.

In Figures 9 and 10, we also present resultSs@RN without implementing the shrinking strategy
(denoted as<CDN-NS). In most cases, the implementation with shrinking is only slightly better.
However, shrinking is effective if the sparsity is high (emgews20 andyahoo-japan). In such a
situation, mostw components are zero. We can safely remove some zero components and mor
efficiently solve smaller optimization problems.

9. Discussions and Conclusions

In Section 2.5, we briefly discuss optimization methods for L1-regularizesi-kspuare regression.
Some comparisons can be seen in, for example, the experiment sectioigbf @fral. (2009) and
Yun and Toh (2009). Note that an optimization method may perform differemtlglassification
and regression problems. For instance, Yun and Toh (2009) sho@®@maGS is faster tharCDN
for regression problems, but here we have an opposite observatidadoment classification.

Figures 1-8 indicate thaDN is faster for solving (1) than (5). Our past work (Huang et al.,
2010, Section 5) has indicated that the bias term may affect the running titne sdme optimiza-
tion method. As the accuracy does not differ much, it seems that in gehetailas term should not
be considered.

Among quasi Newton and Newton approaches) andOWL-QN are faster thaiTRON. This
result seems to indicate thaRON suffers from the difficulty for findingv’s final non-zero coeffi-
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cients. HowevenPM’s w elements are all non-zeros, so we must accurately solve the optimization
problem before trimming some elements to zero.

Figures 9 and 10 indicate th@DN/TRON for L2-loss SVMs is faster tha@DN/TRON for
logistic regression. Each iteration ©ON/TRON for L2-loss SVMs is cheaper because no exp/log
operations are involved. Because the accuracy is similar, in generalefier h2-loss SVMs over
logistic regression.

The choice of the regularization parameteaffects the performance of solvers. In Figure 11,
we present results on thevl data set with regularization parameter€1@nd 01C*, respectively,
whereC* = 4 is the best parameter obtained from cross validation; see Table 2. Rdsmitghat
all solvers take longer running time whéhis large. Therefore, one should avoid a value much
larger tharC* by trying from a smallC. Moreover, methods using low-order (e.g., gradient only)
information seem to be more sensitive to the chang€.ofor example, withlC* and 01C* we
respectively observe in Figures 1(d) and 11(b) tbBN is faster tharOWL-QN, but with 1@C*,
OWL-QN surpasse€DN in the final stage.

GLMNET iteratively considers quadratic approximations and applies coordinatertaseth-
ods at each iteration. The discussion in Section 8.3 indicate StNET’'s speed may be further
improved if an adaptive stopping condition is properly designed for minimizanfp guadratic ap-
proximation.

It is challenging to efficiently solve L1-regularized linear classification [gmis. The 1-norm
term causes the non-differentiability of the objective function. In this pape review many exist-
ing methods for logistic regression and L2-loss SVMs. We discuss someo$tiiie-art methods
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Figure 11: A comparison of logistic regression solvers with regularizaterameters 10" and
0.1C*. Both x-axis (relative difference between the objective function and the optimaloeyand
y-axis (training time) are log-scaled.

in detail. Our extensive comparison shows that carefully implemented catediescent methods
are effective for L1-regularized classification with large-scale dociimata.
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Appendix A. Existence of Optimal Solutions of(1)

Consider the following level set:
S={w]| f(w) < f(0)}.

We prove thaSis compact (closed and bounded). Clea8lis closed due to the continuity ¢{w).

If Sis not bounded, then there is a sequefio¥} C Ssuch that|wX|; — «. Because we assume
that &(w;x;,y;) > 0, f(wK) > |[wK||;. Then, f(WX) — o contradictsf(wX) < f(0). Thus,Sis a
compact set. From Weierstrass’ Theorerfw) has at least one minimum &

Appendix B. Solution of (26)
We consider the following general form with> 0:
min - |w; +2|+Bz+ %Azz. (84)

Clearly,
if z> —w;
\Wj 42 +Bz+ Iz 9@ he="W
2 Q(z) if z< —wj,
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where
1 1
01(2) =wj +2z+Bz+ éAz2 and 0x(z) = —wj —z+Bz+ EAZZ'

By checking if the minimum of the quadratic function occurs on the right or thesige of —w;,
we know

arg, min 91(2) =

—B2 if B+1< Aw;,
—W; otherwise,

and

arg, min %(2) =

-B2 ifB-1>Aw;,
—wj  otherwise.

BecauséB+ 1 < Aw; andB — 1 > Aw; cannot hold at the same time, agd —w;) = g2(—w;), we
can easily conclude that the solution of (84) is

—% ifB+1< AWJ'7
B-1
—w;  otherwise

Appendix C. Proof of Theorem 1

From the assumption thatX — w* and the way thatv is cyclically updated, we havei —
w* as well. The first result-1 < OjL(w*}) < 1 immediately follows from the assumptionl <
O;L(w*) < 1 and the continuity ofIL (w).

We then focus on the second result to show vbfdt: 0 afterk is large enough. The optimality
condition (6) and the assumptionl < O;L(w*) < 1 imply thatwj = 0. From the continuity of
%L (w) and the compactness of the level Sgroved in Appendix A, we can define

M = max{%L(w) |w € S} > 0. (85)

With the assumption-1 < 0O;L(w*) < 1 and the property\}j(’j — wj =0, foranyo € (0,1), there
exists an iteration inde; such that for alk > Kj,

M : . . M .
~L W < L0 = DjLwe)) < 1w (86)

and
{w | w—whT | < w*T —w*|| for somek > K,-} cs’ (87)

We prove that/\)j"j =0, Yk > Kj. Recall that in the decomposition method we use (27) to obtain a

directiond. From (86), we see that &t= K, the third case in (27) is taken. That tb= —V\/j(’j. If
0 in (86) is chosen to be the constant used in the sufficient decreasi@oridad), we claim that

7. We need (w*) < f(0). This property generally holds. If not, we can slightly enlag® that (87) and all subsequent
derivations still follow.
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—\/\)j“j satisfies (28) with = 1: If \/\}J‘J >0,

<_w)_gj —o (—w! —Lj 0w yw )

—0) (Wi Lo ) + L”(z,wkvi)(w)z (88)
)( Wil — L 0wk )V\}fj>+%M(\A};’j)2 (89)
g%lM(\A}j(’j)z <0, (90)

whereZis between 0 aneLV\)j(’j, Equation (88) follows from (20)—(21), Equation (89) is from (87)

and (85)% and Equation (90) is from the first inequality of (86 The above resuydtésisely the
sufficient decrease condition (28) with= 1. The situation fow;’ < 0 is similar. By taking the

stepd = —vvlj”, we havewlj<+1J = 0. At the (k+ 1)st |terat|on,wlj<+1J = 0 and (86) imply that the
optimality condition (18) for the sub-problem has been satisfied. Thugthteement ofv remains
zero in all subsequent iterations.

Appendix D. Convergence ofCDN: Logistic Regression

If each time one variable is used, the sub-problem considered in Tsdriuar(2007) is
. , 1
min - w; +2| —|wj| +Lj(0)z+ EHZZ. (91)

Clearly, (26) is a special case of (91) by takidg= L’j’(O). Therefore, we can apply results proved
in Tseng and Yun (2007).

To have the finite termination of the line search procedure, Tseng and2907 (Lemma 3.4)
require that there exiss > 0 such that

| OL(w1) — OL(Wa)|| < Allwy — W[, Ywi,wp € R? (92)

and
L7(0;w) >0, (93)

wherew is the current solution used to generate the diredtiam (27). Equation (92) means that
L(-) is globally Lipschitz continuous. For logistic regression, we have

0L (w1) — OL(w2) || < [|O2L(W)][[lwy —we],
wherew is betweerw; andw,. Moreover,
IE2L(W) || = CIIXTD(W)X || < CIIXT | [IX]I, (94)

whereD(W) € R*! is a diagonal matrix similar to (70). Because any diagonal elemeR{\&j is
less than one, we have the inequality in (94). Thus, we caG|iXé||||X|| as the constamkin (92).

8. More precisely, ) )
W+ Zey — whd || < (W = kT — wi | < kT -
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For (93), from (29)L{(0;w) in the level seSis lower bounded by a positive value. The only
exception is that/(O;w) = 0 whenx;; =0, Vi =1,...,1. In this situation,Lj(0;w) = 0 and the
optimalwj = 0. The one-variable functiog(z) is reduced to

9i(2) = [wj +2| —[wj,

sod = —w; from (27) andd satisfies the sufficient decrease condition (28). Therefgréecomes
zero after the first iteration and is not changed after. It is like thajttnéeature has been removed
in the beginning.

Next, we discuss the asymptotic convergence of function values. Teendua (2007) impose
certain conditions on choosing the working set; see Equation (12) in theérp# one variable
is updated at a time, their condition is reduced to that betweeandw**, one must go through
n sub-problems covering all1, ..., w,. This setting is exactly what we do, regardless of using a
sequential order of,1..,n or a permutationt(1), ..., 7(n).

Tseng and Yun (2007) need an additional assumption for the asymptotiergence (see As-
sumption 1 in their paper):

0< Amin < D5 LWS) < Amax Vi =1,...,nk=1,..., (95)

whereAmin andAmax are positive constants. From (29) and the boundedness of the le@ st
Appendix A), this assumption holds except that for sgme; = 0,Vi. For suchj, 0;L(w) =0, vw.
Hence,w; becomes zero by (27) at the first iteration and is not changed sulmgbguBecause
w; = 0 is optimal in this situation, it is like that thgh variable has been removed for optimization.
Therefore, we have (95) without problems.

Following Tseng and Yun (2007, Theorem 4.1(e)), any limit poinfwf} is an optimum of (1)
with logistic loss.

Appendix E. Convergence offRON: Logistic Regression

Consider any limit pointv generated byw*}. Lin and Moié (1999) proved that if

02 (w);,4 is positive definite (96)

where

I={j|0;f(w) =0},
then the following two results hold:
1. {wK} globally converges tev.
2. {wk} quadratically converges. That is, there exist (0, 1) and a positive integef such that

[WEHt | < (1 ) [wK — W2, ko> K.
The remaining question is whether (96) holds. From (58), we have
— |: XT

0% f(w) =C _XT}D[X —X], (97)

whereD is defined in (57).0%f (w) cannot be positive definite if there exists<1j < n such that

{j,j+n} CJ. The reason is that one can easily find a veeterR?" such thawv " 02 f (w)v = 0. For
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example, lev; = vj.n # 0 and other elements be zero. However, we claim hat+n} C J does
not happen. Otherwise,

iL(W1:n —Wni1:20) and
j I—(Vvl:n - an+1:2n)

.
+
S

Il

|

]

are both zero, but this situation is not possible.
From the optimality condition (6)] is the same as the following set:

{i|wj>0orwj=0;f(w)=0}.
Therefore, if the solution is sparse and thege= 0 orwj,, =0, 1< j < nsatisfy

Djf_(VV)>O iijZO,

Dj+nf(W) >O |f Wj+n:O,
(i.e., the optimization problem is non-degenerate), tldeis small. From (97)[12 f_(VV)J,J tends to
be positive definite ifJ| is small. Then, we can have the quadratic convergence.

Appendix F. Convergence ofCDN: L2-loss SVM

To have the finite termination of the line search procedure, we need cosdsilmilar to (92) and
(93). The condition (92) means that (w) is globally Lipschitz continuous. L2-loss SVM satisfies
this property (Mangasarian, 2002, Section 3). For (93), the settindlineg@ures thatl in (91) is
always positive. Therefore, the line search procedure stops in arfiumtéer of steps.

For the asymptotic convergence, we need again the condition (95). @ugsa (81) meets
this assumption, so any limit point ¢} is an optimal solution of (77).
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