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Abstract
This paper considers the problem of estimating a high dimensional inverse covariance matrix that
can be well approximated by “sparse” matrices. Taking advantage of the connection between mul-
tivariate linear regression and entries of the inverse covariance matrix, we propose an estimating
procedure that can effectively exploit such “sparsity”. The proposed method can be computed
using linear programming and therefore has the potential tobe used in very high dimensional prob-
lems. Oracle inequalities are established for the estimation error in terms of several operator norms,
showing that the method is adaptive to different types of sparsity of the problem.
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matrix, Lasso, linear programming, oracle inequality, sparsity

1. Introduction

One of the classical problems in multivariate statistics is to estimate the covariance matrix or its
inverse. LetX = (X1, . . . ,Xp)

′ be a p-dimensional random vector with an unknown covariance
matrix Σ0. The goal is to estimateΣ0 or its inverseΩ0 := Σ−1

0 based onn independent copies ofX,
X(1), . . . ,X(n). The usual sample covariance matrix is most often adopted for this purpose:

S=
1
n

n

∑
i=1

(X(i)− X̄)(X(i)− X̄)′,

whereX̄ = ∑X(i)/n. The behavior ofS is well understood and it is known to perform well in the
classical setting when the dimensionalityp is small (see, e.g., Anderson, 2003; Muirhead, 2005).
On the other hand, with the recent advances in science and technology, we are more and more often
faced with the problem of high dimensional covariance matrix estimation where the dimensionality
p is large when compared with the sample sizen. Given the large number of parameters (p(p+1)/2)
involved, exploiting the sparse nature of the problem becomes critical. In particular, traditional
estimates such asSdo not take advantage of the possible sparsity and are known to performpoorly
under many usual matrix norms whenp is large. Motivated by the practical demands and the failure
of classical methods, a number of sparse models and approaches have been introduced in recent
years to deal with high dimensional covariance matrix estimation. See, for example, Ledoit and
Wolf (2004), Levina, Rothman and Zhu (2007), Deng and Yuan (2008), El Karoui (2008), Fan, Fan
and Lv (2008), Ravikumar, Raskutti, Wainwright and Yu (2008), Ravikumar, Wainwright, Ruskutti
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and Yu (2008), Rocha, Zhao and Yu (2008), Lam and Fan (2009), and Rothman, Levina and Zhu
(2009) among others.

Bickel and Levina (2008a) pioneered the theoretical study of high dimensional sparse covariance
matrices. They consider the case where the magnitude of the entries ofΣ0 decays at a polynomial
rate of their distance from the diagonal; and show that banding the sample covariance matrix or
S leads to well-behaved estimates. More recently, Cai, Zhang and Zhou (2010) established min-
imax convergence rates for estimating this type of covariance matrices. A moregeneral class of
covariance matrix model is investigated in Bickel and Levina (2008b) wherethe rows or columns
of Σ0 is assumed to come from anℓα ball with 0< α < 1. They suggest thresholding the entries
of Sand study its theoretical behavior whenp is large. In addition to the aforementioned methods,
sparse models have also been proposed for the modified Cholesky factorof the covariance matrix
in a series of papers by Pourahmadi and co-authors (Pourahmadi, 1999; Pourahmadi, 2000; Wu and
Pourahmadi, 2003; Huang et al., 2006).

In this paper, we focus on another type of sparsity—sparsity in terms of theentries of the inverse
covariance matrix. This type of sparsity naturally connects with the problem of covariance selection
(Dempster, 1972) and Gaussian graphical models (see, e.g., Whittaker, 1990; Lauritzen, 1996; Ed-
wards, 2000), which makes it particularly appealing in a number of applications. Methods to exploit
such sparsity have been proposed recently. Inspired by the nonnegative garrote (Breiman, 1995) and
Lasso (Tibshirani, 1996) for the linear regression, Yuan and Lin (2007) propose to imposeℓ1 type of
penalty on the entries of the inverse covariance matrix when maximizing the normal log-likelihood
and therefore encourages some of the entries of the estimated inverse covariance matrix to be exact
zero. Similar approaches are also taken by Banerjee, El Ghaoui and d’Aspremont (2008). One
of the main challenges for this type of methods is computation which has been recently addressed
by d’Aspremont, Banerjee and El Ghaoui (2008), Friedman, Hastie andTibshirani (2008), Rocha,
Zhao and Yu (2008), Rothman et al. (2008) and Yuan (2008). Some theoretical properties of this
type of methods have also been developed by Yuan and Lin (2007), Ravikumar et al. (2008), Roth-
man et al. (2008) and Lam and Fan (2009) among others. In particular, the results from Ravikumar
et al. (2008) and Rothman et al. (2008) suggest that, although better thanthe sample covariance
matrix, these methods may not perform well whenp is larger than the sample sizen. It remains
unclear to what extent the sparsity of inverse covariance matrix entails well-behaved covariance
matrix estimates.

Through the study of a new estimating procedure, we show here that the estimability of a high
dimensional inverse covariance matrix is related to how well it can be approximated by a graphical
model with a relatively low degree. The revelation that the degree of a graph dictates the diffi-
culty of estimating a high dimensional covariance matrix suggests that the proposed method may be
more appropriate to harness sparsity in the inverse covariance matrix than those mentioned earlier in
which theℓ1 penalty serves as a proxy to control the total number of edges in the graphas opposed
to its degree. The proposed method proceeds in two steps. A preliminary estimateis first con-
structed using a well known relationship between inverse covariance matrixand multivariate linear
regression. We show that the preliminary estimate, although often dismissed asan estimate of the
inverse covariance matrix, can be easily modified to produce a satisfactoryestimate for the inverse
covariance matrix. We show that the resulting estimate enjoys very good theoretical properties by
establishing oracle inequalities for the estimation error.

The probabilistic bounds we prove suggest that the estimation error of the proposed method
adapts to the sparseness of the true inverse covariance matrix. The implications of these oracle in-
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equalities are demonstrated on a couple of popular covariance matrix models.WhenΩ0 corresponds
to a Gaussian graphical model of degreed, we show that the proposed method can achieve conver-
gence rate of the orderOp[d(n−1 logp)−1/2] in terms of several matrix operator norms. We also
examine the more general case where the rows or columns ofΩ0 belong to anℓα ball (0< α < 1),
the family of positive definite matrices introduced by Bickel and Levina (2008b). We show that the
proposed method achieves the convergence rate ofOp[(n−1 logp)(1−α)/2], the same as that obtained
by Bickel and Levina (2008b) when assuming thatΣ0 rather thanΩ0 belongs to the same family of
matrices. For both examples, we also show that the obtained rates are optimal ina minimax sense
when considering estimation error in terms of matrixℓ1 or ℓ∞ norms.

The proposed method shares similar spirits with the neighborhood selection approach proposed
by Meinshausen and B̈uhlmann (2006). However, the two techniques are developed for different
purposes. Neighborhood selection aims at identifying the correct graphical model whereas our goal
is to estimate the covariance matrix. The distinction is clear when the inverse covariance matrix is
only “approximately” sparse and does not have many zero entries. Evenwhen the inverse covariance
matrix is indeed sparse, the two tasks of estimation and selection can be different. In particular,
our results suggest that good estimation can be achieved under conditionsweaker than those often
assumed to ensure good selection.

The rest of the paper is organized as follows. In the next section, we describe in details the
estimating procedure. Theoretical properties of the method are establishedin Section 3. All detailed
proofs are relegated to Section 6. Numerical experiments are presented inSection 4 to illustrate the
merits of the proposed method before concluding with some remarks in Section 5.

2. Methodology

In what follows, we shall writeX−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xp)
′. Similarly, denote byΣ−i,− j the

submatrix ofΣ with its ith row and jth column removed. Other notation can also be interpreted in
the same fashion. For example,Σi,− j or Σ−i, j represents theith row ofΣ with its j entry removed or
the jth column with itsith entry removed respectively.

2.1 Regression and Inverse Covariance Matrix

It is well known that ifX follows a multivariate normal distributionN (µ,Σ), then the conditional
distribution ofXi givenX−i remains normally distributed (Anderson, 2003), that is,

Xi |X−i ∼N
(

µi +Σi,−iΣ−1
−i,−i(X−i −µ−i),Σii −Σi,−iΣ−1

−i,−iΣ−i,i

)
.

This can be equivalently expressed as the following regression equation:

Xi = αi +X′
−iθ(i)+ εi , (1)

whereαi = µi −Σi,−iΣ−1
−i,−iµ−i is a scalar,θ(i) = Σ−1

−i,−iΣ−i,i is a p−1 dimensional vector andεi ∼

N (0,Σii − Σi,−iΣ−1
−i,−iΣ−i,i) is independent ofX−i . WhenX follows a more general distribution,

similar relationship holds in thatαi +X′
−iθ(i) is the best linear unbiased estimate ofXi given X−i

whereas Var(εi) = Σii −Σi,−iΣ−1
−i,−iΣ−i,i .
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Now by the inverse formula for block matrices,Ω := Σ−1 is given by

(
Σ11 Σ1,−1

Σ−1,1 Σ−1,−1

)−1

=




Ω11︷ ︸︸ ︷(
Σ11−Σ1,−1Σ−1

−1,−1Σ−1,1

)−1
−Ω11Σ1,−1Σ−1

−1,−1

−Σ−1
−1,−1Σ−1,1Ω11 ∗


 .

More generally, theith column ofΩ can be written as

Ωii =
(

Σii −Σi,−iΣ−1
−i,−iΣ−i,i

)−1
;

Ω−i,i = −
(

Σii −Σi,−iΣ−1
−i,−iΣ−i,i

)−1
Σ−1
−i,−iΣ−i,i .

This immediately connects with (1):

Ωii = (Var(εi))
−1 ;

Ω−i,i = −(Var(εi))
−1 θ(i).

Therefore, an estimate ofΩ can potentially be obtained by regressingXi overX−i for i = 1, . . . , p.
Furthermore, the sparsity in the entries ofΩ can be translated into sparsity in regression coefficients
θ(i)s.

2.2 Initial Estimate

From the aforementioned relationship, a zero entry on theith column of the inverse covariance
matrix implies a zero entry in the regression coefficientθ(i) and vice versa. This property is exploited
by Meinshausen and B̈uhlmann (2006) to identify the zero pattern of the inverse covariance matrix.
Specifically, in the so-called neighborhood selection method, the zero entries of theith column of
Ω0 are identified by doing variable selection when regressingXi overX−i . More specifically, they
suggest to use Lasso (Tibshirani, 1996) for the purpose of variable selection.

Our goal here, however, is rather different. Instead of identifying which entries ofΩ0 are zero,
our focus is on estimating it. The distinction is apparent whenΩ0 is only “approximately” sparse
instead of having a lot of zero entries. Even ifΩ0 indeed has lot of zeros, the two tasks can still
be quite different in high dimensional problems. For example, in identifying thenonzero entries of
Ω0, it is necessary to assume that all nonzero entries are sufficiently different from zero (see, e.g.,
Meinshausen and B̈uhlmann, 2006). Such assumptions may be unrealistic and can be relaxed if the
purpose is to estimate the covariance matrix. With such a distinction in mind, the question now
is whether or not similar strategies of applying sparse multivariate linear regression to recover the
inverse covariance matrix remains useful. The answer is affirmative.

To this end, we consider estimatingΩ0 as follows:

Ω̃ii =
(

V̂ar(εi)
)−1

;

Ω̃−i,i = −
(

V̂ar(εi)
)−1

θ̂(i),

whereV̂ar(εi) and θ̂(i) are estimated from regressingXi overX−i . In particular, we suggest to use
the so-called Dantzig selector (Candès and Tao, 2007) for estimating the regression coefficients. We
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begin by centering each variableXi to eliminate the interceptαi in (1). Denote byZi =Xi − X̄i where
X̄i is the sample average ofXi . The Dantzig selector estimate ofθ(i) is the solution to

min
β∈Rp−1,β0∈R

‖β‖ℓ1 subject to
∥∥En

[(
Zi −Z′

−iβ
)

Z−i
]∥∥

ℓ∞
≤ δ,

whereEn represents the sample average, andδ > 0 is a tuning parameter. Recall thatEnZiZ j = Si j .
The above problem can also be written in terms ofS:

min
β∈Rp−1,β0∈R

‖β‖ℓ1 subject to
∥∥S−i,i −S−i,−iβ

∥∥
ℓ∞

≤ δ. (2)

The minimization of theℓ1 norm of the regression coefficient reflects our preference towardssparse
models which is particularly important when dealing with high dimensional problems. Once an
estimate ofθ(i) is obtained, we can then estimate the variance ofεi by the mean squared error of the
residuals:

V̂ar(εi) = En
(
Xi −X′

−i θ̂(i)

)2
= Sii −2θ̂′

(i)S−i,i + θ̂′
(i)S−i,−i θ̂(i).

We obtainΩ̃ by repeating this procedure fori = 1, . . . , p.
We emphasize that for practical purposes, one can also use the Lasso inplace of the Dantzig

selector for constructing̃Ω. The choice of Dantzig selector is made for the sake of our further
technical developments. In the light of the results of Bickel, Ritov and Tsybakov (2009), similar
performance can be expected with either the Lasso or the Dantzig selector although a more rigorous
proof when using the Lasso is beyond the scope of the current paper.

2.3 Symmetrization

Ω̃ is is usually dismissed as an estimate ofΩ for it is not even symmetric. In fact, it is not obvi-
ous thatΩ̃ is in any sense a reasonable estimate ofΩ0. But a more careful examination suggests
otherwise. It reveals that̃Ω could be a good estimate in a certain matrix operator norm.

The matrix operator norm is a class of matrix norms induced by vector norms. Let‖x‖ℓq be the
ℓq norm of anp dimensional vectorx = (x1, . . . ,xp)

′, that is,

‖x‖ℓq = (|x1|
q+ . . .+ |xp|

q)1/q.

Then the matrixℓq norm for anp× p square matrixA= (ai j )1≤i, j≤p is given by

‖A‖ℓq = sup
x 6=0

‖Ax‖ℓq

‖x‖ℓq

.

In the case ofq= 1 andq= ∞, the matrix norm can be given more explicitly as

‖A‖ℓ1 = max
1≤ j≤p

p

∑
i=1

∣∣ai j
∣∣ ;

‖A‖ℓ∞ = max
1≤i≤p

p

∑
j=1

∣∣ai j
∣∣ .

When q = 2, the matrix operator norm ofA amounts to its leading singular value, and is often
referred to as the spectral norm.
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A careful study shows that̃Ω can be a good estimate ofΩ in terms of the matrixℓ1 norm in
sparse circumstances. It is therefore of interest to consider improved estimates fromΩ̃ that inherits
this property. To this end, we propose to adjustΩ̃ by seeking a symmetric matrix̂Ω that is the the
closest toΩ̃ in the sense of the matrixℓ1 norm, that is, it solves the following problem:

min
Ω is symmetric

‖Ω− Ω̃‖ℓ1. (3)

Recall that

‖Ω− Ω̃‖ℓ1 = max
1≤ j≤p

p

∑
i=1

∣∣Ωi j − Ω̃i j
∣∣ .

Problem (3) can therefore be re-formulated as a linear program just likethe computation of̃Ω.
To sum up, our estimate of the inverse covariance matrix is obtained in the following steps:

ALGORITHM FOR COMPUTING Ω̂

Input: Sample covariance matrix –S, tuning parameter –δ.
Output: An estimate of the inverse covariance matrix –Ω̂.

• Construct Ω̃
for i = 1 to p

– Estimateθ(i) by θ̂(i), the solution to

min
β∈Rp−1

‖β‖ℓ1 subject to
∥∥S−i,i −S−i,−iβ

∥∥
ℓ∞

≤ δ.

– Set

Ω̃ii =
(

Sii −2θ̂′
(i)S−i,i + θ̂′

(i)S−i,−i θ̂(i)

)−1
.

– Set

Ω̃−i,i =−Ω̃ii θ̂(i).

end

• Construct Ω̂

– SetΩ̂ as the solution to

min
Ω is symmetric

‖Ω− Ω̃‖ℓ1.

It is worth pointing out that that proposed method depends on the data only through the sample
covariance matrix. This fact is of great practical importance since it suggests that a large sample
size will not affect the computational complexity in calculatingΩ̂ more than the evaluation ofS.
Furthermore, only linear programs are involved in the computation ofΩ̂, which makes the approach
appealing when dealing with very high dimensional problems.
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3. Theory

In what follows, we shall assume that the components ofX are uniformly sub-gaussian, that is, there
exist constantsc0 ≥ 0, andT > 0 such that for any|t| ≤ T

EetX2
i ≤ c0, i = 1,2, . . . , p.

This condition is clearly satisfied whenX follows a multivariate normal distribution. It also holds
true whenXis are bounded.

3.1 Oracle Inequality

Our main tool to study the theoretical properties ofΩ̂ is an oracle type of inequality regarding
the estimation error‖Ω̂−Ω0‖ℓ1. To this end, we introduce the following set of “oracle” inverse
covariance matrices:

O(ν,η,τ) =



Ω ≻ 0 :

ν−1 ≤ λmin(Ω)≤ λmax(Ω)≤ ν (Bounded Eigenvalues)
‖Σ0Ω− I‖max≤ η (“Good” Approximation)
‖Ω‖ℓ1 ≤ τ (Sparsity)



 ,

whereA≻ 0 indicates that a matrixA is symmetric and positive definite;ν > 1, τ > 0, andη ≥ 0 are
parameters;λmin andλmax represent the smallest and largest eigenvalue respectively; and‖ · ‖max

represents the entry-wiseℓ∞ norm, that is,

‖A‖max= max
1≤i, j≤p

|ai j |.

We refer toO(ν,η,τ) as an “oracle” set because its definition requires the knowledge of the true
covariance matrixΣ0. Every member ofO(ν,η,τ) is symmetric, positive definite with eigenvalues
bounded away from 0 and∞, and belongs to anℓ1 ball. Moreover,O(ν,η,τ) consists of matrices
that approximateΩ0 well. It is worth noting that different from the usual vector case, the choice of
metric is critical when evaluating approximating error for matrices. In particular for our purpose,
the approximation error is measured by‖Σ0Ω− I‖max, which vanishes if and only ifΩ = Ω0. We
are now in position to state our main result.

Theorem 1 There exist constants C1,C2 depending only onν,τ, λmin(Ω0) and λmax(Ω0), and C3

depending only on c0 such that, for any A> 0, with probability at least1− p−A,

∥∥Ω̂−Ω0
∥∥
ℓ1
≤C1 inf

Ω∈O(ν,η,τ)

(∥∥Ω−Ω0
∥∥
ℓ1
+deg(Ω)δ

)
, (4)

provided that

inf
Ω∈O(ν,η,τ)

(∥∥Ω−Ω0
∥∥
ℓ1
+deg(Ω)δ

)
≤C2, (5)

and
δ ≥ νη+C3ντλ−1

min(Ω0)((A+1)n−1 logp)1/2, (6)

wheredeg(Ω) = maxi ∑ j I(Ωi j 6= 0).
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We remark that the oracle inequality given in Theorem 1 is of probabilistic nature and non-
asymptotic. However, (4) holds with overwhelming probability as we are interested in the case
when p is very large. The requirement (5) is in place to ensure that the true inverse covariance
matrix is indeed “approximately” sparse. Another note is on the choice of the tuning parameter
δ. To ensure an tight upper bound in (4), smallerδs are preferred. On the other hand, Condition
(6) specifies how small they can be. For simplicity, we have used the same tuning parameterδ for
estimating allθ(i)s. In practice, it may be beneficial to use differentδs for differentθ(i)s. Following
the same argument, it can be shown that the statement of Theorem 1 continue tohold if all tuning
parameters used satisfy Condition (6).

Recall that for a symmetric matrixA, ‖A‖ℓ∞ = ‖A‖ℓ1 and

‖A‖ℓ2 ≤ (‖A‖ℓ1‖A‖ℓ∞)
1/2 = ‖A‖ℓ1.

A direct consequence of Theorem 1 is that the same upper bound holds true under matrixℓ∞ andℓ2

norms.

Corollary 2 There exist constants C1,C2 depending only onν,τ, λmin(Ω0) and λmax(Ω0), and C3

depending only on c0 such that, for any A> 0, with probability at least1− p−A,

∥∥Ω̂−Ω0
∥∥
ℓ∞
,
∥∥Ω̂−Ω0

∥∥
ℓ2
≤C1 inf

Ω∈O(ν,η,τ)

(∥∥Ω−Ω0
∥∥
ℓ1
+deg(Ω)δ

)
,

provided that

inf
Ω∈O(ν,η,τ)

(∥∥Ω−Ω0
∥∥
ℓ1
+deg(Ω)δ

)
≤C2,

and
δ ≥ νη+C3ντλ−1

min(Ω0)((A+1)n−1 logp)1/2.

The bound on the matrixℓ2 has great practical implications when we are interested in estimating
the covariance matrix or need to a positive definite estimate ofΩ. The proposed estimatêΩ is
symmetric but not guaranteed to be positive definite. However, Corollary 2suggests that with
overwhelming probability, it is indeed positive definite provided that the upper bound is sufficiently
small because

λmin(Ω̂)≥ λmin(Ω0)−
∥∥Ω̂−Ω0

∥∥
ℓ2
.

Moreover, a positive definite estimate ofΩ can always be constructed by replacing its negative

eigenvalues withδ. Denote the resulting estimate byˆ̂Ω. By Corollary 2, it can be shown that

Corollary 3 There exist constants C1,C2 depending only onν,τ, λmin(Ω0) and λmax(Ω0), and C3

depending only on c0 such that, for any A> 0, with probability at least1− p−A,

∥∥ ˆ̂Ω−1−Σ0
∥∥
ℓ2
,
∥∥ ˆ̂Ω−Ω0

∥∥
ℓ2
≤C1 inf

Ω∈O(ν,η,τ)

(∥∥Ω−Ω0
∥∥
ℓ1
+deg(Ω)δ

)
,

provided that

inf
Ω∈O(ν,η,τ)

(∥∥Ω−Ω0
∥∥
ℓ1
+deg(Ω)δ

)
≤C2,

and
δ ≥ νη+C3ντλ−1

min(Ω0)((A+1)n−1 logp)1/2.
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When considering a particular class of inverse covariance matrices, we can use the oracle in-
equalities established here with a proper choice of the oracle setO. Typically in choosing a good
oracle setO, we takeν andτ to be of finite magnitude whereas the approximation errorη sufficiently
small. To further illustrate their practical implications, we now turn to a couple of more concrete
examples.

3.2 Sparse Models

We begin with a class of matrix models that are closely connected with graphicalmodels. When
X follows a multivariate normal distribution, the sparsity of the entries of the inverse covariance
matrix relates to the notion of conditional independence: the(i, j) entry of Ω0 being zero implies
thatXi is independent ofXj conditional on the remaining variables and vice versa. The conditional
independence relationships among the coordinates of the Gaussian random vectorX can be repre-
sented by an undirected graphG= (V,E), often referred to as a Gaussian graphical model, whereV
containsp vertices corresponding to thep coordinates and the edge betweenXi andXj is present if
and only ifXi andXj are not independent conditional on the others. The complexity of a graphical
model is commonly measured by its degree:

deg(G) = max
1≤i≤p

∑
j

ei j ,

whereei j = 1 if there is an edge betweenXi andXj and 0 otherwise. Gaussian graphical models
are an indispensable statistical tool in studying communication networks and gene pathways among
many other subjects. The readers are referred to Whittaker (1990), Lauritzen (1996) and Edwards
(2000) for further details.

Motivated by this connection, we consider the following class of inverse covariance matrices:

M1(τ0,ν0,d) =
{

A≻ 0 : ‖A‖ℓ1 < τ0,ν−1
0 < λmin(A)< λmax(A)< ν0,deg(A)< d

}
,

whereτ0,ν0 > 1, and deg(A) = maxi ∑ j I(Ai j 6= 0). In this case, taking an oracle set such that
Ω0 ∈ O yields the following result:

Theorem 4 Assume that d(n−1 logp)1/2 = o(1). Then

sup
Ω0∈M1(τ0,ν0,d)

∥∥Ω̂−Ω0
∥∥
ℓq
= Op

(
d

√
logp

n

)
, (7)

provided thatδ =C(n−1 logp)1/2 and C is large enough.

Theorem 4 follows immediately from Theorem 1 and Corollary 2 by takingη = 0, τ = ‖Ω0‖ℓ1,
andν = max{λ−1

min(Ω0),λmax(Ω0)}, which ensures thatΩ0 ∈ O(ν,η,τ). We note that the rate of
convergence given by (7) is also optimal in the minimax sense when considering matrixℓ1 norm.

Theorem 5 Assume that d(n−1 logp)1/2 = o(1). Then there exists a constant C> 0 depending only
on τ0, andν0 such that

inf
Ω̄

sup
Ω0∈M1(τ0,ν0,d)

P

{
∥∥Ω̄−Ω0

∥∥
ℓ1
≥Cd

√
logp

n

}
> 0,

where the infimum is taken over all estimateΩ̄ based on observations X(1), . . . ,X(n).
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Theorem 5 indicates that the estimability of a sparse inverse covariance matrixis dictated by its
degree as opposed to the total number of nonzero entries. This observation gives a plausible expla-
nation on why the usualℓ1 penalized likelihood estimate (see, e.g., Yuan and Lin, 2007; Banarjee,
El Ghaoui and d’Aspremont, 2008) may not be the best to exploit this type of sparsity because the
penalty employed by these methods is convex relaxations of the constraint ontotal number of edges
in a graphical model instead of its degree.

It is also of interest to compare our results with those from Meinshausen and Bühlmann (2006).
As mentioned before, the goal of the neighborhood selection from Meinshausen and B̈uhlmann
(2006) is to select the correct graphical model whereas our focus here is on estimating the covariance
matrix. However, the neighborhood selection method can be followed by the maximum likelihood
estimation based on the selected graphical model to yield a covariance matrix estimate. Clearly
the success of this method hinges upon the ability of the neighborhood selection to choose a correct
graphical model. It turns out that selecting the graphical model can be more difficult than estimating
the covariance matrix as reflected by the more restrictive assumptions made in Meinshausen and
Bühlmann (2006). In particular, to be able to identify the nonzero entries of the inverse covariance
matrix, it is necessary that they are sufficiently large in magnitude whereas such requirement is
generally not needed for the purpose of estimation. Moreover, Meinshausen and B̈uhlmann (2006)
only deals with the case when the dimensionality is of a polynomial order of the sample size, that
is, p= O(nγ) for someγ > 0.

3.3 Approximately Sparse Models

In many applications, the inverse covariance matrix is only approximately sparse. A popular way
to model this class of covariance matrix is to assume that its rows or columns belong to anℓα ball
(0< α < 1):

M2(τ0,ν0,α,M) =

{
A≻ 0 : ‖A−1‖ℓ1 < τ0,ν−1

0 ≤ λmin(A)≤ λmax(A)≤ ν0,
p

∑
j=1

∣∣Ai j
∣∣α ≤ M

}
,

whereτ0,ν0 > 1 and 0< α < 1. M2 can be viewed as a natural extension of the sparse model
M1. In particular,M1 can be viewed as the limiting case ofM2 whenα approaches 0. By relaxing
α, M2 includes matrices that are less sparse than those included inM1. The particular class of
matrices were first introduced by Bickel and Levina (2008b) who investigate the case whenΣ0 ∈
M2(τ0,ν0,α,M). We note that their setting is different from ours asM2 is not closed with respect
to inversion. An application of Theorem 1 and Corollary 2 yields:

Theorem 6 Assume that M
(
n−1 logp

) 1−α
2 = o(1). Then

sup
Ω0∈M2(τ0,ν0,α,M)

‖Ω̂−Ω0‖ℓq = Op

(
M

(
logp

n

) 1−α
2

)
, (8)

provided thatδ =C(n−1 logp)1/2 and C is sufficiently large.

Assuming thatΣ0 ∈M2, Bickel and Levina (2008b) study thresholding estimator of the covari-
ance matrix. Their setting is different from ours becauseM2 is not closed under inversion. It is
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however interesting to note that Bickel and Levina (2008b) show that thresholding the sample co-
variance matrixSat an appropriate level can achieve the same rate given by right hand side of (8).
The coincidence should not come as a surprise despite the difference in problem setting because the
size of the parameter space in both problems are the same. Moreover, the following theorem shows
that in both settings, the rate is optimal in the minimax sense.

Theorem 7 Assume that M
(
n−1 logp

) 1−α
2 = o(1). Then there exists a constant C> 0 depending

only onτ0, andν0 such that

inf
Ω̄

sup
Ω0∈M2(τ0,ν0,α,M)

P

{
∥∥Ω̄−Ω0

∥∥
ℓ1
≥CM

(
logp

n

) 1−α
2

}
> 0, (9)

and

inf
Σ̄

sup
Σ0∈M2(τ0,ν0,α,M)

P

{
∥∥Σ̄−Σ0

∥∥
ℓ1
≥CM

(
logp

n

) 1−α
2

}
> 0, (10)

where the infimum is taken over all estimate,Ω̄ or Σ̄, based on observations X(1), . . . ,X(n).

4. Numerical Experiments

To illustrate the merits of the proposed method and compare it with other popular alternatives, we
now conduct a set of numerical studies. Specifically, we generatedn = 50 observations from a
multivariate normal distribution with mean 0 and variance covariance matrix given by Σ0

i j = ρ|i− j|

for someρ 6= 0. Such covariance structure corresponds to an AR(1) model. Its inverse covariance
matrix is banded with the magnitude ofρ determining the strength of the dependence among the
coordinates. We consider combinations of seven different values ofρ, 0.1, 0.2,. . . , 0.7 and four val-
ues of the dimensionality,p= 25, 50, 100 or 200. Two hundred data sets were simulated for each
combination. For each simulated data set, we ran the proposed method to construct estimate of the
inverse covariance matrix. As suggested by the theoretical developments,we setδ = (2n−1 logp)−1

throughout all simulation studies. For comparison purposes, we included acouple of popular alter-
native covariance matrix estimates in the study. The first is theℓ1 penalized likelihood estimate of
Yuan and Lin (2007). As suggested by Yuan and Lin (2007), the BIC criterion was used to choose
the tuning parameter among a total of 20 pre-specified values. The secondis a variant of the neigh-
borhood selection approach of Meinshausen and Bühlmann (2006). As pointed out earlier, the goal
of the neighborhood selection is to identify the underlying graphical model rather than estimating
the covariance matrix. We consider here a simple two-step procedure where the maximum likeli-
hood estimate based on the selected graphical model is employed. As advocated by Meinshausen
and B̈uhlmann (2006), the level of significance is set atα = 0.05 in identifying the graphical model.
Figure 1 summarizes the estimation error measured by the spectral norm, that is, ‖Ĉ−C‖ℓ2, for the
three methods, averaged over two hundred runs.

A few observations can be made from Figure 1. We first note that the proposed method tends to
outperform the other two methods whenρ is small and the advantage becomes more evident as the
dimensionality increases. On the other hand, the advantage over the neighborhood selection based
method gradually vanishes asρ increases yet the proposed method remains competitive. A plausible
explanation is the distinction between estimation and selection in high dimensional problems as
pointed out earlier. The success of the neighbor selection based method hinges upon a good selection
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Figure 1: Estimation error of the proposed method (black solid lines), theℓ1 penalized likelihood
estimate (red dashed lines) and the maximum likelihood estimate based on the graphical
model selected through neighborhood selection (green dotted lines). Each panel corre-
sponds to a different value of the dimensionality. X-axes represent the value ofρ. The
estimation errors are averaged over two hundred runs.

of the graphical model. Recall that the inverse covariance matrix is bandedwith nonzero entries
increasing in magnitude withρ. For large values ofρ, the task of identifying the correct graphical
model is relatively easier. With a good graphical model chosen, refitting it with the maximum
likelihood estimator could reduce biases often associated with regularization approaches. Such
benefit diminishes for small values ofρ as identifying nonzero entries in the inverse covariance
matrix becomes more difficult.

At last, we note that all three methods are relatively efficient to compute. Forexample, when
p= 200 andρ= 0.5, the averaged CPU time for theℓ1 penalized likelihood estimate is 0.53 seconds,
for the neighborhood selection based method is 1.42 seconds, and for the proposed method is 3.21
seconds. Both theℓ1 penalized likelihood estimate and the neighborhood selection based method
are computed using the graphical Lasso algorithm of Friedman, Hastie and Tibshirani (2008) which
iteratively solves a sequence ofp Lasso problems using a modified Lars algorithm (Efron et al.,
2004). The algorithm is specially developed to take advantage of the sparse nature of the problem
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and available in theglasso package in R. The proposed method is implemented inMATLAB using
its general purpose interior-point algorithm based linear programming solver and could be further
improved using more specialized algorithms (see, e.g., Asif, 2008).

5. Discussions

High dimensional (inverse) covariance matrix estimation is becoming more and more common in
various scientific and technological areas. Most of the existing methods are designed to benefit
from sparsity of the covariance matrix, and based on banding or thresholding the sample covari-
ance matrix. Sparse models for the inverse covariance matrix, despite its practical appeal and close
connection to graphical modeling, are more difficult to be taken advantage of due to heavy computa-
tional cost as well as the lack of a coherent theory on how such sparsitycan be effectively exploited.
In this paper, we propose an estimating procedure that addresses both challenges. The proposed
method can be formulated using linear programming and therefore computed very efficiently. We
also show that the resulting estimate enjoys nice probabilistic properties, whichtranslates to sharp
convergence rates in terms of matrix operator norms under a couple of common settings.

The choice of the tuning parameterδ is of great practical importance. Our theoretical devel-
opments have suggested reasonable choices of the tuning parameter and itseems to work well in
the well-controlled simulation settings. In practice, however, a data-drivenchoice such as those
determined by multi-fold cross-validation may yield improved performance.

We also note that the method can be easily extended to handle prior information regarding the
sparsity patterns of the inverse covariance matrices. Such situations oftenarise in the context of, for
example, genomics. In a typical gene expression experiment, tens of thousands of genes are often
studied simultaneously. Among these genes, there are often known pathways which corresponding
to conditional (in)dependence among a subset of the genes, or in our notation, variables. This can
be naturally interpreted as some of the entries ofΩ0 being known to be nonzero or zero. Such prior
information can be easily incorporated in our procedure. In particular, itsuffices to set some of
the entries ofβ to be exact zero apriori in (2). Likewise, if a particular entry ofβ is known to be
nonzero, we can also opt to minimize theℓ1 norm of only the remaining entries.

6. Proofs

We now present the proofs to Theorems 1, 5, 6 and 7.

6.1 Proof of Theorem 1

We begin by comparinĝθ(i) with θ(i). For brevity, we shall abbreviate the subscript(i) in what
follows when no confusion occurs. Recall thatθ =−Ω0

−i,i/Ω0
ii and

θ̂ = argmin
β∈F

‖β‖ℓ1,

whereF = {β : ‖S−i,i −S−i,−iβ‖ℓ∞ ≤ δ}. For a givenΩ ∈ O(ν,η,τ), let Ω ∈ O andγ =−Ω−i,i/Ωii .
We first show thatγ ∈ F .

Lemma 8 Under the event that‖S−Σ0‖max<C0λmax(Σ0)((A+1)n−1 logp)1/2,

‖S−i,i −S−i,−iγ‖ℓ∞
≤ δ,
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provided that
δ ≥ ην+C0τνλmax(Σ0)((A+1)n−1 logp)1/2.

Proof By the definition ofO(ν,η,τ), for any j 6= i,
∣∣Σ0

j·Ω·i
∣∣= Ωii

∣∣Σ0
ji −Σ0

j,−iγ
∣∣≤ ‖Σ0Ω− I‖max≤ η,

which implies that
∥∥Σ0

−i,i −Σ0
−i,−iγ

∥∥
ℓ∞

= max
j 6=i

∣∣Σ0
ji −Σ0

j,−iγ
∣∣≤ Ω−1

ii η ≤ λ−1
min(Ω)η ≤ ην.

An application of the triangular inequality now yields

‖S−i,i −S−i,−iγ‖ℓ∞
≤

∥∥S−i,i −Σ0
−i,i

∥∥
ℓ∞
+
∥∥(S−i,−i −Σ0

−i,−i

)
γ
∥∥
ℓ∞
+
∥∥Σ0

−i,i −Σ0
−i,−iγ

∥∥
ℓ∞

≤ ‖S−Σ0‖max+‖S−Σ0‖max‖γ‖ℓ1 +ην
= ‖S−Σ0‖max‖Ω·i‖ℓ1/Ωii +ην
≤ τν‖S−Σ0‖max+ην.

The claim now follows.

Now thatγ ∈ F , by the definition of̂θ,

‖θ̂‖ℓ1 ≤ ‖γ‖ℓ1 ≤ Ω−1
ii ‖Ω·i‖ℓ1 −1≤ λ−1

min(Ω)‖Ω‖ℓ1 −1≤ ντ−1. (11)

Write J = { j : γ j 6= 0}. Denote bydJ = card(J ). It is clear thatdJ ≤ deg(Ω). From (11),

0≤ ‖γ‖ℓ1 −‖θ̂‖ℓ1 ≤ ‖θ̂J − γJ ‖ℓ1 −‖θ̂J c‖ℓ1.

Thus,

‖θ̂− γ‖ℓ1 = ‖θ̂J − γJ ‖ℓ1 +‖θ̂J c‖ℓ1

≤ 2‖θ̂J − γJ ‖ℓ1

≤ 2d1/2
J ‖θ̂J − γJ ‖ℓ2

≤ 2d1/2
J ‖θ̂− γ‖ℓ2

≤ 2d1/2
J λ−1

min(Σ
0
−i,−i)

[(
θ̂− γ

)′ Σ0
−i,−i

(
θ̂− γ

)]1/2

≤ 2λ−1
min(Σ0)d

1/2
J

[(
θ̂− γ

)′ Σ0
−i,−i

(
θ̂− γ

)]1/2

= 2λmax(Ω0)d
1/2
J

[(
θ̂− γ

)′ Σ0
−i,−i

(
θ̂− γ

)]1/2
.

Observe that (
θ̂− γ

)′ Σ0
−i,−i

(
θ̂− γ

)
≤ ‖θ̂− γ‖ℓ1

∥∥Σ0
−i,−i

(
θ̂− γ

)∥∥
ℓ∞
.

Therefore,

‖θ̂− γ‖ℓ1 ≤ 2λmax(Ω0)d
1/2
J ‖θ̂− γ‖1/2

ℓ1

∥∥Σ0
−i,−i

(
θ̂− γ

)∥∥1/2

ℓ∞
,
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which implies that
‖θ̂− γ‖ℓ1 ≤ 4λ2

max(Ω0)dJ
∥∥Σ0

−i,−i

(
θ̂− γ

)∥∥
ℓ∞
. (12)

We now set up to further bound the last term on the right hand side. We appeal to the following
result.

Lemma 9 Under the event that‖S−Σ0‖max<C0λmax(Σ0)((A+1)n−1 logp)1/2, we have
∥∥Σ0

−i,−i

(
θ̂− γ

)∥∥
ℓ∞

≤ 2δ,

provided that
δ ≥ ην+C0τνλmax(Σ0)((A+1)n−1 logp)1/2.

Proof By triangular inequality,
∥∥Σ0

−i,−i

(
θ̂− γ

)∥∥
ℓ∞

≤
∥∥Σ0

−i,−i (θ− γ)
∥∥
ℓ∞
+
∥∥Σ0

−i,−i

(
θ̂−θ

)∥∥
ℓ∞
. (13)

We begin with the first term on the right hand side. Recall that

Σ0
−i,iΩ

0
ii +Σ0

−i,−iΩ
0
−i,−i = 0,

which implies that
Σ0
−i,−iθ = Σ0

−i,i . (14)

Hence,
∥∥Σ0

−i,−i (θ− γ)
∥∥
ℓ∞

=
∥∥Σ0

−i,i −Σ0
−i,−iγ

∥∥
ℓ∞

= Ω−1
ii

∥∥Σ0
−i,iΩii +Σ0

−i,−iΩ−i,i
∥∥
ℓ∞

≤ νη.

We now turn to the second term on the right hand side of (13). Again by triangular inequality
∥∥Σ0

−i,−i

(
θ̂−θ

)∥∥
ℓ∞

≤
∥∥(S−i,−i −Σ0

−i,−i

)
θ̂
∥∥
ℓ∞
+
∥∥S−i,−i θ̂−Σ0

−i,−iθ
∥∥
ℓ∞
.

To bound the first term on the right hand side, note that
∥∥(S−i,−i −Σ0

−i,−i

)
θ̂
∥∥
ℓ∞

≤
∥∥S−i,−i −Σ0

−i,−i

∥∥
max

‖θ̂‖ℓ1 ≤ ‖S−Σ0‖max‖θ̂‖ℓ1.

Also recall that ∥∥S−i,i −S−i,−i θ̂
∥∥
ℓ∞

≤ δ,

andΣ0
−i,−iθ = Σ0

−i,i . Therefore, by triangular inequality and (14),

∥∥S−i,−i θ̂−Σ0
−i,−iθ

∥∥
ℓ∞

≤ δ+‖Σ0
−i,i −S−i,i‖ℓ∞ ≤ δ+‖S−Σ0‖max.

To sum up,
∥∥Σ0

−i,−i

(
θ̂− γ

)∥∥
ℓ∞

≤ δ+νη+‖S−Σ0‖max+‖S−Σ0‖max‖θ̂‖ℓ1

≤ δ+νη+‖S−Σ0‖max(1+‖γ‖ℓ1)

≤ δ+νη+‖S−Σ0‖max‖Ω‖ℓ1/Ωii

≤ δ+νη+‖S−Σ0‖max‖Ω‖ℓ1λ−1
min(Ω)

≤ δ+νη+ τν‖S−Σ0‖max,
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which, under the event that‖S−Σ0‖max<C0λmax(Σ0)((A+1)n−1 logp)1/2, can be further bounded
by 2δ by Lemma 8.

Together with (12), Lemma 9 implies that for alli = 1, . . . , p

‖θ̂− γ‖ℓ1 ≤ 8λ2
max(Ω0)dJ δ,

if ‖S−Σ0‖max < C0λmax(Σ0)((A+1)n−1 logp)1/2. We are now in position to bound‖Ω̃−Ω0‖ℓ1.
We begin with the diagonal elements|Ω̃ii −Ω0

ii |.

Lemma 10 Assume that‖S−Σ0‖max<C0λmax(Σ0)((A+1)n−1 logp)1/2 and

δλmax(Ω0)
(
ντ+8λ2

max(Ω0)λ−1
min(Ω0)dJ

)
+ντλmax(Ω0)λ−2

min(Ω0)‖Ω−Ω0‖ℓ1 ≤ c0

for some numerical constant0< c0 < 1. Then

∣∣Ω0
ii − Ω̃ii

∣∣≤ 1
1−c0

(
δλ2

max(Ω0)
(
ντ+8λ2

max(Ω0)dJλ−1
min(Ω0)

)
+ντλ−2

min(Ω0)λ2
max(Ω0)‖Ω−Ω0‖ℓ1

)
,

provided that
δ ≥ ην+C0τνλmax(Σ0)((A+1)n−1 logp)1/2.

Proof Recall thatΣ0
−i,i = Σ0

−i,−iθ. Therefore

Ω0
ii =

(
Σ0

ii −2Σ0
i,−iθ+θ′Σ0

−i,−iθ
)−1

=
(
Σ0

ii −Σ0
i,−iθ

)−1
.

Because
Ω̃ii =

(
Sii −2Si,−i θ̂+ θ̂′S−i,−i θ̂

)−1
,

we have ∣∣∣Ω̃−1
ii −

(
Ω0

ii

)−1
∣∣∣≤ |Sii −Σ0

ii |+
∣∣θ̂′S−i,−i θ̂−Si,−i θ̂

∣∣+
∣∣Si,−i θ̂−Σ0

i,−iθ
∣∣ . (15)

We now bound the three terms on the right hand side separately. It is clear that the first term can be
bounded by‖S−Σ0‖max. Recall that̂θ ∈ F . Hence the second term can be bounded as follows:

∣∣θ̂′S−i,−i θ̂−Si,−i θ̂
∣∣≤
∥∥S−i,−i θ̂−S−i,i

∥∥
ℓ∞
‖θ̂‖ℓ1 ≤ δ‖θ̂‖ℓ1.

The last term on the right hand side of (15) can also be bounded similarly.
∣∣Si,−i θ̂−Σ0

i,−iθ
∣∣ ≤

∣∣(Si,−i −Σ0
i,−i

)
θ̂
∣∣+
∣∣Σ0

i,−i

(
θ̂−θ

)∣∣
≤ ‖S−Σ0‖max‖θ̂‖ℓ1 +‖Σ0

i,−i‖ℓ∞‖θ̂−θ‖ℓ1

≤ ‖S−Σ0‖max‖θ̂‖ℓ1 +λmax(Σ0)
(
‖θ̂− γ‖ℓ1 +‖γ−θ‖ℓ1

)

= ‖S−Σ0‖max‖θ̂‖ℓ1 +λ−1
min(Ω0)

(
‖θ̂− γ‖ℓ1 +‖γ−θ‖ℓ1

)
.

In summary, we have
∣∣∣Ω̃−1

ii −
(
Ω0

ii

)−1
∣∣∣ ≤ ‖S−Σ0‖max+δ‖θ̂‖ℓ1 +‖S−Σ0‖max‖θ̂‖ℓ1

+λ−1
min(Ω0)

(
‖θ̂− γ‖ℓ1 +‖γ−θ‖ℓ1

)

≤ ντ‖S−Σ0‖max+δ‖θ̂‖ℓ1 +λ−1
min(Ω0)

(
8λ2

max(Ω0)dJ δ+‖γ−θ‖ℓ1

)

≤ δ
(
ντ+8λ2

max(Ω0)λ−1
min(Ω0)dJ

)
+λ−1

min(Ω0)‖γ−θ‖ℓ1,
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provided that‖S−Σ0‖max < C0λmax(Σ0)((A+ 1)n−1 logp)1/2. Together with the fact thatΩ0
ii ≤

λmax(Ω0), this yields

∣∣∣∣
Ω0

ii

Ω̃ii
−1

∣∣∣∣≤ δλmax(Ω0)
(
ντ+8λ2

max(Ω0)λ−1
min(Ω0)dJ

)
+λmax(Ω0)λ−1

min(Ω0)‖γ−θ‖ℓ1.

Moreover, observe that

‖γ−θ‖ℓ1 ≤
(
Ω0

ii

)−1
‖Ω−i,i −Ω0

−i,i‖ℓ1 +Ω−1
ii

(
Ω0

ii

)−1
|Ωii −Ω0

ii |‖Ω−i,i‖ℓ1

≤ λ−1
min(Ω0)‖Ω−Ω0‖ℓ1 +λ−1

min(Ω0)‖Ω−Ω0‖ℓ1(ντ−1)

≤ ντλ−1
min(Ω0)‖Ω−Ω0‖ℓ1.

Therefore,

∣∣∣∣
Ω0

ii

Ω̃ii
−1

∣∣∣∣≤ δλmax(Ω0)
(
ντ+8λ2

max(Ω0)λ−1
min(Ω0)dJ

)
+ντλmax(Ω0)λ−2

min(Ω0)‖Ω−Ω0‖ℓ1, (16)

which implies that

Ω0
ii

Ω̃ii
≥ 1−c0.

Subsequently,

Ω̃ii ≤
1

1−c0
Ω0

ii ≤
1

1−c0
λmax(Ω0).

Together with (16), this implies

∣∣Ω0
ii − Ω̃ii

∣∣ ≤ Ω̃ii

∣∣∣∣
Ω0

ii

Ω̃ii
−1

∣∣∣∣

≤
1

1−c0
δλ2

max(Ω0)
(
ντ+8λ2

max(Ω0)λ−1
min(Ω0)dJ

)

+
1

1−c0
ντλ−2

min(Ω0)λ2
max(Ω0)‖Ω−Ω0‖ℓ1.

We now turn to the off-diagonal entries ofΩ̃−Ω0.

Lemma 11 Under the assumptions of Lemma 10, there exist positive constants C1,C2 and C3 de-
pending only onν,τ, λmin(Ω0) andλmax(Ω0) such that

‖Ω̃−i,·−Ω0
−i,·‖ℓ1 ≤ (C1+C2dJ )δ+C3‖Ω−Ω0‖ℓ1.
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Proof Note that

‖Ω̃−i,i −Ω0
−i,i‖ℓ1 =

∥∥Ω̃ii θ̂−Ω0
ii θ
∥∥
ℓ1

≤ Ω0
ii‖θ̂−θ‖ℓ1 +

∣∣Ω̃ii −Ω0
ii

∣∣‖θ̂‖ℓ1

≤ λ−1
min(Ω0)

(
‖θ̂− γ‖ℓ1 +‖γ−θ‖ℓ1

)

+
ντ−1
1−c0

δλ2
max(Ω0)

(
ντ+8λ2

max(Ω0)dJλ−1
min(Ω0)

)

+
ντ−1
1−c0

ντλ−2
min(Ω0)λ2

max(Ω0)‖Ω−Ω0‖ℓ1

≤ 8ν2dJλ−1
min(Ω0)δ+ντλ−2

min(Ω0)‖Ω−Ω0‖ℓ1

+
ντ−1
1−c0

δλ2
max(Ω0)

(
ντ+8λ2

max(Ω0)dJλ−1
min(Ω0)

)

+
ντ−1
1−c0

ντλ−2
min(Ω0)λ2

max(Ω0)‖Ω−Ω0‖ℓ1.

Therefore,

‖Ω̃−i,·−Ω0
−i,·‖ℓ1 =

∣∣Ω0
ii − Ω̃ii

∣∣+‖Ω̃−i,i −Ω0
−i,i‖ℓ1

≤ δ
(

1
1−c0

ν2τ2λ2
max(Ω0)+8

(
1+

ντ
1−c0

)
λ2

max(Ω0)dJλ−1
min(Ω0)

)

+

(
1+

ντ
1−c0

λ2
max(Ω0)

)
ντλ−2

min(Ω0)‖Ω−Ω0‖ℓ1.

From Lemma 11, it is clear that under the assumptions of Lemma 10,

‖Ω̃−Ω0‖ℓ1 ≤C inf
Ω∈O(ν,η,τ)

(‖Ω−Ω0‖ℓ1 +deg(Ω)δ) , (17)

whereC = max{C1,C2,C3} is a positive constant depending only onν,τ, λmin(Ω0) andλmax(Ω0).
By the definition ofΩ̂,

‖Ω̂− Ω̃‖ℓ1 ≤ ‖Ω̃−Ω0‖ℓ1 ≤C inf
Ω∈O(ν,η,τ)

(‖Ω−Ω0‖ℓ1 +deg(Ω)δ) .

An application of triangular inequality immediately gives

‖Ω̂−Ω0‖ℓ1 ≤ ‖Ω̂− Ω̃‖ℓ1 +‖Ω̃−Ω0‖ℓ1

≤ 2C inf
Ω∈O(ν,η,τ)

(‖Ω−Ω0‖ℓ1 +deg(Ω)δ) .

To complete the proof, we appeal to the following lemma showing that

‖S−Σ0‖max≤C0λmax(Σ0)

√
t + logp

n
,

for a numerical constantC0 > 0, with probability at least 1−e−t . Takingt = Alogp yields

P

{
‖S−Σ0‖max<C0λmax(Σ0)((A+1)n−1 logp)1/2

}
≥ 1− p−A.
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Lemma 12 Assume that there exist constants c0 ≥ 0, and T> 0 such that for any|t| ≤ T

EetX2
i ≤ c0, i = 1,2, . . . , p.

Then there exists a constant C> 0 depending on c0 and T such that

‖S−Σ0‖max≤C

√
t + logp

n

with probability at least1−e−t for all t > 0.

Proof Observe thatS is invariant toEX. We shall assume thatEX = 0 without loss of generality.
Note thatSi j = EnXiXj −EnXiEnXj . We have

|Si j −Σ0
i j | ≤ |EnXiXj −EXiXj |+ |EnXi ||EnXj |=: ∆1+∆2.

We begin by bounding∆1.

∣∣(En−E)XiXj
∣∣ =

1
4

∣∣(En−E)
(
(Xi +Xj)

2− (Xi −Xj)
2)∣∣

≤
1
4

∣∣(En−E)(Xi +Xj)
2
∣∣+ 1

4

∣∣(En−E)(Xi −Xj)
2
∣∣ .

The two terms in the upper bound can be bounded similarly and we focus only on the first term. By
the sub-Gaussianity ofXi andXj , for any|t| ≤ T/4,

Eet(Xi+Xj )
2
≤ Ee2tX2

i e2tX2
j ≤ E

1/2e4tX2
i E

1/2e4tX2
j ≤ c0.

In other words,{Xi +Xj : 1≤ i, j ≤ p} are also sub-Gaussian. Observe that

ln
(
Eet[(Xi+Xj )

2−E(Xi+Xj )
2]
)

= lnEet(Xi+Xj )
2
− tE(Xi +Xj)

2

≤ E

[
et(Xi+Xj )

2
− t(Xi +Xj)

2−1
]
,

where we used the fact that lnu≤ u−1 for all u> 0. An application of the Taylor expansion now
yields that there exist constantsc1,T1 > 0 such that

ln
(
Eet[(Xi+Xj )

2−E(Xi+Xj )
2]
)
≤ c1t

2

for all |t|< T1. In other words,

Eet[(Xi+Xj )
2−E(Xi+Xj )

2] ≤ ec1t2

for any|t|< T1. Therefore,
Eet[(En−E)(Xi+Xj )

2] ≤ ec1t2/n.

By Markov inequality

P
{
(En−E)(Xi +Xj)

2 ≥ x
}
≤ e−tx

Eet[(En−E)(Xi+Xj )
2] ≤ exp

(
c1t

2/n− tx
)
.
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Takingt = nx/2c1 yields

P
{
(En−E)(Xi +Xj)

2 ≥ x
}
≤ exp

{
−

nx2

4c1

}
.

Similarly,

P
{
(En−E)(Xi +Xj)

2 ≤−x
}
≤ exp

{
−

nx2

4c1

}
.

Therefore,

P
{∣∣(En−E)(Xi +Xj)

2
∣∣≥ x

}
≤ 2exp

{
−

nx2

4c1

}
.

Following the same argument, one can show that

P
{∣∣(En−E)(Xi −Xj)

2
∣∣≥ x

}
≤ 2exp

{
−

nx2

4c1

}
.

Note also that this inequality holds trivially wheni = j. In summary, we have

P{∆1 ≥ x} ≤ P
{∣∣(En−E)(Xi +Xj)

2
∣∣≥ 2x

}
+P

{∣∣(En−E)(Xi −Xj)
2
∣∣≥ 2x

}

≤ 4exp
{
−c−1

1 nx2} .

Now consider∆2.

EetEnXiEnXj ≤ E
1/2e2tEnXiE

1/2e2tEnXj ≤ max
1≤i≤p

Ee2tEnXi .

Following a similar argument as before, we can show that there exist constantsc2,T2 > 0 such that

Ee2tEnXi ≤ ec2t2/n

for all |t|< T2. This further leads to, similar to before,

P{∆1 ≥ x} ≤ 2exp
{
−c−1

2 nx2} .

To sum up,

P{‖S−Σ0‖max≥ x} ≤ p2 max
1≤i, j≤p

P
{
|Si j −Σ0

i j‖ ≥ x
}

≤ p2 [P(∆1 ≥ x/2)+P(∆2 ≥ x/2)]

≤ 4p2exp
{
−c3nx2} .

for some constantc3 > 0. The claimed result now follows.
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6.2 Proof of Theorem 5

First note that the claim follows from

inf
Ω̄

sup
Ω0∈M1(τ0,ν0,d)

E
∥∥Ω̄−Ω0

∥∥
ℓ1
≥C′d

√
logp

n
(18)

for some constantC′ > 0. We establish the minimax lower bound (18) using the tools from Ko-
rostelev and Tsybakov (1993), which is based upon testing many hypotheses as well as statistical
applications of Fano’s lemma and the Varshamov-Gilbert bound. More specifically, it suffices to find
a collection of inverse covariance matricesM ′ = {Ω1, . . . ,ΩK+1} ⊂M1(τ0,ν0,d) such that

(a) for any two distinct membersΩ j ,Ωk ∈M ′, ‖Ω j −Ωk‖ℓ1 >Ad(n−1 logp)1/2 for some constant
A> 0;

(b) there exists a numerical constant 0< c0 < 1/8 such that

1
K

K

∑
k=1

K (P (Ωk),P (ΩK+1))≤ c0 logK,

whereK stands for the Kullback-Leibler divergence andP (Ω) is the probability measure
N (0,Ω).

To constructM ′, we assume thatd(n−1 logp)1/2 < 1/2, τ0,ν0 > 2 without loss of generality.
As shown by Birǵe and Massart (1998), from the Varshamov-Gilbert bound, there is a set of binary
vectors of lengthp−1,B = {b1, . . . ,bK} ⊂ {0,1}p−1 such that (i) there ared ones in a vectorb j for
any j = 1, . . . , p−1; (ii) the Hamming distance betweenb j andbk is at leastd/2 for any j 6= k; (iii)
logK > 0.233d log(p/d). We now takeΩk for k = 1, . . . ,K as follows. It differs from the identity
matrix only by its first row and column. More specifically,Ωk

11 = 1, Ωk
−1,1 = (Ωk

1,−1)
′ = anbk,

Ωk
−1,−1 = Ip−1, that is,

Ωk =

(
1 anb′k

anbk I

)
,

wherean = a0(n−1 logp)1/2 with a constant 0< a0 < 1 to be determined later. Finally, we take
ΩK+1 = I . It is clear that Condition (a) is satisfied with this choice ofM ′ andA= a0/2. It remains
to verify Condition (b). Simple algebraic manipulations yield that for any 1≤ k≤ K,

K (P (Ωk),P (ΩK+1)) =−
n
2

logdet(Ωk) =−
n
2

log(1−a2
nb′kbk).

Recall thata2
nb′kbk = da2

n < d2a2
n < 1/4. Together with the fact that− log(1−x)≤ log(1+2x)≤ 2x

for 0< x< 1/2, we have

K (P (Ωk),P (ΩK+1))≤ nda2
n.

By settinga0 small enough, this can be further bounded by 0.233c0d log(p/d) and subsequently
c0 logK. The proof is now completed.
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6.3 Proof of Theorem 6

We prove the theorem by applying the oracle inequality from Theorem 1. Tothis end, we need to
find an “oracle” inverse covariance matrixΩ. Let

Ωi j = Ω0
i j 1
(∣∣Ω0

i j

∣∣≥ ζ
)
,

whereζ > 0 is to be specified later. We now verify thatΩ ∈ O(ν,η,τ) with appropriate choices of
the three parameters.

First observe that

‖Ω−Ω0‖ℓ1 ≤ max
1≤i≤p

p

∑
j=1

∣∣Ω0
i j

∣∣1
(∣∣Ω0

i j

∣∣≤ ζ
)

≤ ζ1−α max
1≤i≤p

p

∑
j=1

∣∣Ω0
i j

∣∣α 1
(∣∣Ω0

i j

∣∣≤ ζ
)

≤ Mζ1−α.

Thus,
ν−1

0 −Mζ1−α ≤ λmin(Ω)≤ λmax(Ω)≤ ν0+Mζ1−α.

In particular, settingζ small enough such thatMζ1−α < (2ν0)
−1 yields

(2ν0)
−1 ≤ λmin(Ω)≤ λmax(Ω)≤ 2ν0.

We can therefore takeν = 2ν0.
Now consider the approximation error‖Σ0Ω− I‖max. Note that the(i, j) entry of Σ0Ω− I =

Σ0(Ω−Ω0) can be bounded as follows
∣∣∣∣∣

p

∑
k=1

Σ0
ikΩ0

k j1
(∣∣Ω0

k j

∣∣≤ ζ
)
∣∣∣∣∣ ≤

p

∑
k=1

∣∣Σ0
ik

∣∣ ∣∣Ω0
k j

∣∣1
(∣∣Ω0

k j

∣∣≤ ζ
)

≤ ζ max
1≤k≤p

p

∑
k=1

∣∣Σ0
ik

∣∣

= ζ‖Σ0‖ℓ1.

This implies that
‖Σ0Ω− I‖max≤ ζ‖Σ0‖ℓ1.

In other words, we can takeη = ζ‖Σ0‖ℓ1.
Furthermore, it is clear that we can take‖Ω‖ℓ1 ≤ ‖Ω0‖ℓ1. Therefore, by Theorem 1, there exist

constantsC1,C2 > 0 depending only on‖Ω0‖ℓ1, ‖Σ0‖ℓ1, andν0 such that for any

δ ≥C1

(
ζ+
√

(A+1) logp
n

)
(i = 1,2, . . . , p),

we have
‖Ω̂−Ω0‖ℓ1 ≤C2

(
Mζ1−α +deg(Ω)δ

)

2282



COVARIANCE MATRIX ESTIMATION

with probability at least 1− p−A. Now note that

deg(Ω) = max
1≤i≤p

p

∑
j=1

1
(∣∣Ω0

i j

∣∣≥ ζ
)
≤ Mζ−α.

The claimed the results then follows by takingζ = C3((A+ 1)n−1 logp)1/2 for a small enough
constantC3 > 0 such thatMζ1−α < (2ν0)

−1.

6.4 Proof of Theorem 7

Assume thatM(n−1 logp)(1−α)/2 < 1/2, τ0,ν0 > 2 without loss of generality. Similar to Theorem
5, there eixs a collection of inverse covariance matricesM ′ = {Ω1, . . . ,ΩK+1} ⊂M2 such that

(a) for any two distinct membersΩ j ,Ωk ∈ M ′, ‖Ω j −Ωk‖ℓ1 > AM(n−1 logp)(1−α)/2 for some
constantA> 0;

(b) there exists a numerical constant 0< c0 < 1/8 such that

1
K

K

∑
k=1

K (P (Ωk),P (ΩK+1))≤ c0 logK.

To this end, we follow the same construction as in the proof of Theorem 5 by taking

d =

⌊
M

(
logp

n

)− α
2

⌋
,

and ⌊x⌋ stands for the integer part ofx. First, we need to show thatM ′ ⊂ M2. Because
d(n−1 logp)1/2 < 1/2, it is clear that the bounded eigenvalue condition and‖Ωk‖ℓ1 < τ0 can en-
sured by settinga0 small enough. It is also obvious that

max
1≤ j≤p

p

∑
i=1

|Ωk
i j |

α ≤ M.

It remains to check that‖Σk‖ℓ1 is bounded. By the block matrix inversion formula

Σk =

( 1
1−a2

nb′kbk
− an

1−a2
nb′kbk

b′k

− an
1−a2

nb′kbk
bk I + a2

n
1−a2

nb′kbk
bkb′k

)
.

It can then be readily checked that‖Σk‖ℓ1 can also be bounded from above by settinga0 small
enough.

Next we verify Conditions (a) and (b). It is clear that Condition (a) is satisfied with this choice
of M ′ andA= a0/2. It remains to verify Condition (b). Simple algebraic manipulations yield that
for any 1≤ k≤ K,

K (P (Ωk),P (ΩK+1)) =−
n
2

logdet(Ωk) =−
n
2

log(1−a2
nb′kbk).

Recall thata2
nb′kbk = da2

n < d2a2
n < 1/4. Together with the fact that− log(1−x)≤ log(1+2x)≤ 2x

for 0< x< 1/2, we have
K (P (Ωk),P (ΩK+1))≤ nda2

n.
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By settinga0 small enough, this can be further bounded by 0.233c0d log(p/d) and subsequently
c0 logK. The proof of (9) is now completed.

The proof of (10) follows from a similar argument. We essentially constructthe same subset
M ′ but with

Σk =

(
1 anb′k

anbk I

)
.

The only difference from before is the calculation of Kullback-Leibler divergence, which in this
case is

K (P (Σk),P (ΣK+1)) =
n
2
(trace(Ωk)+ logdet(Σk)− p)

where

Ωk =

( 1
1−a2

nb′kbk
− an

1−a2
nb′kbk

b′k

− an
1−a2

nb′kbk
bk I + a2

n
1−a2

nb′kbk
bkb′k

)
.

Therefore, trace(Ωk) = p+ 2da2
n/(1− da2

n). Together with the fact that det(Σk) = 1− da2
n, we

conclude that

K (P (Σk),P (ΣK+1)) =
n
2

(
2da2

n

(1−da2
n)

+ log(1−da2
n)

)
≤

1
2

nda2
n.

where we used the fact that log(1−x)≤−x. The rest of the argument proceeds in the same fashion
as before.
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