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Abstract

This paper considers the problem of estimating a high dilneasinverse covariance matrix that

can be well approximated by “sparse” matrices. Taking athgamof the connection between mul-

tivariate linear regression and entries of the inverse tanee matrix, we propose an estimating
procedure that can effectively exploit such “sparsity”. eTproposed method can be computed
using linear programming and therefore has the potentia¢tased in very high dimensional prob-

lems. Oracle inequalities are established for the estamatiror in terms of several operator norms,
showing that the method is adaptive to different types ofsipeof the problem.

Keywords: covariance selection, Dantzig selector, Gaussian grapimodel, inverse covariance
matrix, Lasso, linear programming, oracle inequality,rsita

1. Introduction

One of the classical problems in multivariate statistics is to estimate the covariatrbe onats
inverse. LetX = (Xi,...,Xp)" be ap-dimensional random vector with an unknown covariance
matrix Zg. The goal is to estimatEg or its inverseQq := Zal based om independent copies o,
XD, ...,X"M The usual sample covariance matrix is most often adopted for this purpose

1L

S Zl(x(” —X)(X =XxY,

n.&

whereX = 3 X /n. The behavior oSis well understood and it is known to perform well in the
classical setting when the dimensionalftys small (see, e.g., Anderson, 2003; Muirhead, 2005).
On the other hand, with the recent advances in science and technokgyewnore and more often
faced with the problem of high dimensional covariance matrix estimation whedittensionality
pis large when compared with the sample siz&iven the large number of parameteps{+1)/2)
involved, exploiting the sparse nature of the problem becomes critical. rticydar, traditional
estimates such &do not take advantage of the possible sparsity and are known to peyémmy
under many usual matrix norms whetis large. Motivated by the practical demands and the failure
of classical methods, a number of sparse models and approachesdesvntroduced in recent
years to deal with high dimensional covariance matrix estimation. See, farpdealedoit and
Wolf (2004), Levina, Rothman and Zhu (2007), Deng and Yuan (2@&aroui (2008), Fan, Fan
and Lv (2008), Ravikumar, Raskutti, Wainwright and Yu (2008), Rawviky Wainwright, Ruskutti
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and Yu (2008), Rocha, Zhao and Yu (2008), Lam and Fan (200@) Rothman, Levina and Zhu
(2009) among others.

Bickel and Levina (2008a) pioneered the theoretical study of high dimesissparse covariance
matrices. They consider the case where the magnitude of the entdgsetays at a polynomial
rate of their distance from the diagonal; and show that banding the sam@dacwe matrix or
Sleads to well-behaved estimates. More recently, Cai, Zhang and ZhoQ)(26tablished min-
imax convergence rates for estimating this type of covariance matrices. Ageoegal class of
covariance matrix model is investigated in Bickel and Levina (2008b) wihereows or columns
of 2y is assumed to come from dp ball with 0 < o < 1. They suggest thresholding the entries
of Sand study its theoretical behavior whpris large. In addition to the aforementioned methods,
sparse models have also been proposed for the modified Choleskydttercovariance matrix
in a series of papers by Pourahmadi and co-authors (Pourahma8ij,A@@ahmadi, 2000; Wu and
Pourahmadi, 2003; Huang et al., 2006).

In this paper, we focus on another type of sparsity—sparsity in terms efithies of the inverse
covariance matrix. This type of sparsity naturally connects with the probleavariance selection
(Dempster, 1972) and Gaussian graphical models (see, e.g., Whitt@@6r,Llauritzen, 1996; Ed-
wards, 2000), which makes it particularly appealing in a number of applicatMethods to exploit
such sparsity have been proposed recently. Inspired by the ndiveaggrrote (Breiman, 1995) and
Lasso (Tibshirani, 1996) for the linear regression, Yuan and Lin{2pfbpose to imposé type of
penalty on the entries of the inverse covariance matrix when maximizing the nogr&elihood
and therefore encourages some of the entries of the estimated inveasicos matrix to be exact
zero. Similar approaches are also taken by Banerjee, El Ghaoui Asgrdmont (2008). One
of the main challenges for this type of methods is computation which has besmtlyeaddressed
by d’Aspremont, Banerjee and El Ghaoui (2008), Friedman, Hastielgrsthirani (2008), Rocha,
Zhao and Yu (2008), Rothman et al. (2008) and Yuan (2008). Someeties properties of this
type of methods have also been developed by Yuan and Lin (2007), Reailet al. (2008), Roth-
man et al. (2008) and Lam and Fan (2009) among others. In particidagghlts from Ravikumar
et al. (2008) and Rothman et al. (2008) suggest that, although betteththaample covariance
matrix, these methods may not perform well whers larger than the sample size It remains
unclear to what extent the sparsity of inverse covariance matrix entailsbeledived covariance
matrix estimates.

Through the study of a new estimating procedure, we show here thattitmaleiity of a high
dimensional inverse covariance matrix is related to how well it can be ajppated by a graphical
model with a relatively low degree. The revelation that the degree of ehglagpates the diffi-
culty of estimating a high dimensional covariance matrix suggests that thesgwptethod may be
more appropriate to harness sparsity in the inverse covariance matrix tisgmtientioned earlier in
which the/; penalty serves as a proxy to control the total number of edges in the gsamposed
to its degree. The proposed method proceeds in two steps. A preliminary estnfiasé con-
structed using a well known relationship between inverse covariance raattimultivariate linear
regression. We show that the preliminary estimate, although often dismissedeatimate of the
inverse covariance matrix, can be easily modified to produce a satisfastimyate for the inverse
covariance matrix. We show that the resulting estimate enjoys very goocttivabproperties by
establishing oracle inequalities for the estimation error.

The probabilistic bounds we prove suggest that the estimation error ofrdpeged method
adapts to the sparseness of the true inverse covariance matrix. The implaztibese oracle in-
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equalities are demonstrated on a couple of popular covariance matrix matedaQ, corresponds

to a Gaussian graphical model of degteeve show that the proposed method can achieve conver-
gence rate of the ord@,[d(n~tlogp)~Y/? in terms of several matrix operator norms. We also
examine the more general case where the rows or columflg bélong to ar/y ball (0< a < 1),

the family of positive definite matrices introduced by Bickel and Levina (B)O8/e show that the
proposed method achieves the convergence raﬁg[@h*llog p)(lf")/z], the same as that obtained
by Bickel and Levina (2008b) when assuming thgtather tharQg belongs to the same family of
matrices. For both examples, we also show that the obtained rates are optamalriimax sense
when considering estimation error in terms of matkior ¢, norms.

The proposed method shares similar spirits with the neighborhood selectimaap proposed
by Meinshausen andiBimann (2006). However, the two techniques are developed for etitfer
purposes. Neighborhood selection aims at identifying the correctigedphodel whereas our goal
is to estimate the covariance matrix. The distinction is clear when the inverseacmeamatrix is
only “approximately” sparse and does not have many zero entries.vidvemthe inverse covariance
matrix is indeed sparse, the two tasks of estimation and selection can bendiffereparticular,
our results suggest that good estimation can be achieved under condiéaker than those often
assumed to ensure good selection.

The rest of the paper is organized as follows. In the next section, seille in details the
estimating procedure. Theoretical properties of the method are estahisbection 3. All detailed
proofs are relegated to Section 6. Numerical experiments are presei@edtion 4 to illustrate the
merits of the proposed method before concluding with some remarks in Section 5

2. Methodology

In what follows, we shall writeX_; = (Xq,..., X1, Xi41,...,Xp)’. Similarly, denote byz_; _; the
submatrix ofZ with its ith row andjth column removed. Other notation can also be interpreted in
the same fashion. For examplg,_j or Z_; j represents thigh row of = with its j entry removed or
the jth column with itsith entry removed respectively.

2.1 Regression and Inverse Covariance Matrix

It is well known that ifX follows a multivariate normal distributiod’ (4, Z), then the conditional
distribution ofX; given X_; remains normally distributed (Anderson, 2003), that is,

Xi[X-i ~ N (Mi + 5T (X — ), i — zi,—iz:i]:_iz—i,i) -
This can be equivalently expressed as the following regression equation
X :o(i+X’_i9(i)+si, 1)

whereq; = | — Ziﬁizjfipu is a scalarfj) =2~ ;Zj;is ap— 1 dimensional vector angl ~
N(0, % — Zi7_i2ji17,i2_i,i) is independent oK_;. WhenX follows a more general distribution,
similar relationship holds in that; +X’_i9(i) is the best linear unbiased estimateXpfgiven X_;

whereas Vagi) = % — % 24 . ;.

-1
—i,—
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Now by the inverse formula for block matrice®,:= > is given by

Qi1
-1
211 217_1 - =) i
<zlvl zll) - (211_217112_1—12171) —91121,712_1,_1
—277 1211011 "

More generally, théth column ofQ can be written as

Qi = (zii_zifiz:i]:,izfi,o_l;
Qi = —<Zii—Zi7—iz:%_iz—i,i)_12:%_iz—i,i-
This immediately connects with (1):
Qi = (Var(g) h
Qi = —(Var(g)) 8.

Therefore, an estimate 61 can potentially be obtained by regressgverX_; fori=1,...,p.
Furthermore, the sparsity in the entrie<b€an be translated into sparsity in regression coefficients
G(i)s.

2.2 Initial Estimate

From the aforementioned relationship, a zero entry onitth&olumn of the inverse covariance
matrix implies a zero entry in the regression coefficiptand vice versa. This property is exploited
by Meinshausen andiBlmann (2006) to identify the zero pattern of the inverse covariance matrix.
Specifically, in the so-called neighborhood selection method, the zeroseatribeith column of
Qg are identified by doing variable selection when regresXngver X_;. More specifically, they
suggest to use Lasso (Tibshirani, 1996) for the purpose of varialgeton.

Our goal here, however, is rather different. Instead of identifyingcivkentries ofQq are zero,
our focus is on estimating it. The distinction is apparent w&gris only “approximately” sparse
instead of having a lot of zero entries. Ever()§ indeed has lot of zeros, the two tasks can still
be quite different in high dimensional problems. For example, in identifyingitimzero entries of
Qp, it is necessary to assume that all nonzero entries are sufficientlyeditfesom zero (see, e.g.,
Meinshausen andiBiimann, 2006). Such assumptions may be unrealistic and can be relax@d if th
purpose is to estimate the covariance matrix. With such a distinction in mind, théogquesw
is whether or not similar strategies of applying sparse multivariate lineagsgign to recover the
inverse covariance matrix remains useful. The answer is affirmative.

To this end, we consider estimatifly as follows:

Qi = (\75r(si )) - :
~1,

A = —(\75r(€i)) 8i).

where\7§r(si) andé(i) are estimated from regressiXgover X_;. In particular, we suggest to use
the so-called Dantzig selector (Carsdand Tao, 2007) for estimating the regression coefficients. We
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begin by centering each variabeto eliminate the interceqt; in (1). Denote byZ; = X — X; where
X is the sample average ¥f. The Dantzig selector estimate @f, is the solution to

min subject to||En [ (Z —Z"iB) Z_i <d

BGRp_l,B()ERHBHZl | H n [( i —|B) '] wa =

whereE, represents the sample average, and0 is a tuning parameter. Recall tig4z;Z; = §;.
The above problem can also be written in term&.of

L IBlle,  subjecttd|S.ii—S.i B, <8 (2)
The minimization of the; norm of the regression coefficient reflects our preference tovepase
models which is particularly important when dealing with high dimensional problgbre an
estimate of ;) is obtained, we can then estimate the variancg by the mean squared error of the
residuals: - A
Var(gj) = En (X — X6 ) =S — 26 S +6’( 1S, _.9

We obtainQ) by repeating this procedure foe=1,..., p.

We emphasize that for practical purposes, one can also use the Lgdascerof the Dantzig
selector for constructin@. The choice of Dantzig selector is made for the sake of our further
technical developments. In the light of the results of Bickel, Ritov and Tieyb&2009), similar
performance can be expected with either the Lasso or the Dantzig seléuborgh a more rigorous
proof when using the Lasso is beyond the scope of the current paper.

2.3 Symmetrization

Q is is usually dismissed as an estimatebfor it is not even symmetric. In fact, it is not obvi-
ous thatQ is in any sense a reasonable estimat®g@f But a more careful examination suggests
otherwise. It reveals th& could be a good estimate in a certain matrix operator norm.

The matrix operator norm is a class of matrix norms induced by vector noret§x |, be the
{q norm of anp dimensional vectox = (xy,...,Xp)’, that is,

Xlleq = (xal .+ [xpl S
Then the matrixq norm for anp x p square matriXA = (&jj )1<i j<p iS given by

[|AX ||fq

In the case of) = 1 andq = «, the matrix norm can be given more explicitly as

1Alleq = sup

p
Alle, = 1@@;_2\%};
Al = {g@;Z\a«J

Whenq = 2, the matrix operator norm ok amounts to its leading singular value, and is often
referred to as the spectral norm.
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A careful study shows th&d can be a good estimate 6 in terms of the matrix; norm in
sparse circumstances. It is therefore of interest to consider imprgtietbges fron that inherits
this property. To this end, we propose to adjQsby seeking a symmetric matr that is the the
closest taQ in the sense of the matrg¢ norm, that is, it solves the following problem:

min  [|Q—Q,. (3)

Q is symmetric

Recall that
- P -
HQ—QH(l = max Zl‘Qij —Qij ’

1<j<p;

Problem (3) can therefore be re-formulated as a linear program jushékeomputation o).
To sum up, our estimate of the inverse covariance matrix is obtained in the ifujjaieps:

ALGORITHM FOR COMPUTING Q
Input: Sample covariance matrixS; tuning parameter 8.
Output: An estimate of the inverse covariance matri—
e Construct Q
fori=1top
— Estimated;;) by 85, the solution to

Bgﬁiﬂlm”fl subject to]|S.i; — S.i _iB||,_ <8.

— Set
. . . ]
Qji = (Si —26;)S.i; +9(i)s_i,—ie(i)) :
— Set
Q ii=-Qib.

end

e Construct Q

— SetQ as the solution to
min  ||Q—Q]l,.

Q is symmetric

It is worth pointing out that that proposed method depends on the data oolgththe sample
covariance matrix. This fact is of great practical importance since itestgghat a large sample
size will not affect the computational complexity in calculatiﬁgnore than the evaluation &
Furthermore, only linear programs are involved in the computatidh efhich makes the approach
appealing when dealing with very high dimensional problems.
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3. Theory

In what follows, we shall assume that the componenis afe uniformly sub-gaussian, that is, there
exist constantsp > 0, andT > O such that for anjt| < T

EeX < o, i=12...,p.

This condition is clearly satisfied whefifollows a multivariate normal distribution. It also holds
true whenX;s are bounded.

3.1 Oraclelnequality

Our main tool to study the theoretical propertiesfbﬁs an oracle type of inequality regarding
the estimation errofQ — Qo|¢,. To this end, we introduce the following set of “oracle” inverse
covariance matrices:

V1 < Amin(Q) < Amax(Q) < v (Bounded Eigenvalugs
ov,N,T)=qQ>0: [[Z20Q—1]lmax<n (“Good” Approximation)
1Q[, <T (Sparsity

whereA > 0 indicates that a matri& is symmetric and positive definite;> 1,1 > 0, andn > 0 are
parametersimin andAmax represent the smallest and largest eigenvalue respectively|| -aigx
represents the entry-wigg norm, that is,

|Allmax=_max |aj|.
1<i,j<p

We refer toO(v,n,T) as an “oracle” set because its definition requires the knowledge of the tru
covariance matrizo. Every member oD(v,n,1) is symmetric, positive definite with eigenvalues
bounded away from 0 and, and belongs to af ball. Moreover,0(v,n,T) consists of matrices
that approximat®g well. It is worth noting that different from the usual vector case, theéashof
metric is critical when evaluating approximating error for matrices. In partidolaour purpose,
the approximation error is measured 3Q — | ||max, Which vanishes if and only 2 = Qp. We

are now in position to state our main result.

Theorem 1 There exist constants;(C, depending only ow, T, Amin(Qo0) and Amax(Qo), and G
depending only ongcsuch that, for any A> 0, with probability at leastL — p~4,

|&- |, <C1_inf (oo, +deg@)3). (a)
provided that
i, (120, o) <c. g
and
8 > vn +CaviA, 1 (Qo) ((A+1)ntlog p) /2, (6)

wheredeg Q) = max 5 ; 1(Qjj # 0).
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We remark that the oracle inequality given in Theorem 1 is of probabilisticc@and non-
asymptotic. However, (4) holds with overwhelming probability as we are istedein the case
when p is very large. The requirement (5) is in place to ensure that the true éersariance
matrix is indeed “approximately” sparse. Another note is on the choice of thiegyarameter
0. To ensure an tight upper bound in (4), smafBerare preferred. On the other hand, Condition
(6) specifies how small they can be. For simplicity, we have used the samg parameted for
estimating alb;)s. In practice, it may be beneficial to use differdsffor differentd;)s. Following
the same argument, it can be shown that the statement of Theorem 1 contiralé ifoall tuning
parameters used satisfy Condition (6).

Recall that for a symmetric matri, ||Al|., = ||All¢, and

1/2
1A, < (1Al |Ale) Y2 = |Alle,.

A direct consequence of Theorem 1 is that the same upper bound hadsier matri¥. and/,
norms.

Corollary 2 There exist constants; (I, depending only o, T, Amin(Qo) and Amax(Qo), and G
depending only ongcsuch that, for any A- 0, with probability at leastL — p~4,

|©-all,. |@- ol <C:_int (|0~ +deg)3).

provided that

ol (19250l ) <

and
3> vn 4G, L (Qo) ((A+1)n~tlogp) V2.

The bound on the matrié has great practical implications when we are interested in estimating
the covariance matrix or need to a positive definite estimat@.ofThe proposed estima®@ is
symmetric but not guaranteed to be positive definite. However, Corollaayggests that with
overwhelming probability, it is indeed positive definite provided that the uppand is sufficiently
small because

)\min(é) > )\min(QO) - HQ - QOHEZ‘

Moreover, a positive definite estimate @f can always be constructed by replacing its negative
eigenvalues witld. Denote the resulting estimate @y By Corollary 2, it can be shown that

Corollary 3 There exist constants; (I, depending only o, T, Amin(Qo) and Amax(Qo), and G
depending only ongsuch that, for any A- 0, with probability at leastL — p~,

|07 =]l |2~ Qoll,, <C1 inf (2o, +deg)3).
provided that
QEOIr(-]v]csﬂ7T) (HQ a Qonl + degQ)é) <G

and
3> vn +CavtA-1 (Qo) ((A+1)n~tlogp)¥/2.

min
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When considering a particular class of inverse covariance matricesanvase the oracle in-
equalities established here with a proper choice of the oracle.s&ypically in choosing a good
oracle seD, we takev andt to be of finite magnitude whereas the approximation eyrsufficiently
small. To further illustrate their practical implications, we now turn to a couple akraoncrete
examples.

3.2 Sparse Models

We begin with a class of matrix models that are closely connected with graphazidls. When

X follows a multivariate normal distribution, the sparsity of the entries of the $mvepvariance
matrix relates to the notion of conditional independence:(ithg entry of Qg being zero implies
thatX is independent oX; conditional on the remaining variables and vice versa. The conditional
independence relationships among the coordinates of the GaussiamraeckorX can be repre-
sented by an undirected gra@h= (V, E), often referred to as a Gaussian graphical model, wiere
containsp vertices corresponding to thecoordinates and the edge betweg¢mandX; is present if

and only ifX; andX; are not independent conditional on the others. The complexity of aigadph
model is commonly measured by its degree:

degG) = max ; CTE

whereeg;j = 1 if there is an edge betweefy andX; and O otherwise. Gaussian graphical models
are an indispensable statistical tool in studying communication networks aeggthways among
many other subjects. The readers are referred to Whittaker (199@jtdem (1996) and Edwards
(2000) for further details.

Motivated by this connection, we consider the following class of inversar@nce matrices:

M (T0,V0,d) = {A= 0 ||Allry, < To,Vg ™ < Amin(A) < Amax(A) < Vo,degA) < d},

whereto,vo > 1, and degA) = max 3 I(Ajj # 0). In this case, taking an oracle set such that
Qo € O yields the following result:

Theorem 4 Assume that gh~*logp)¥/? = o(1). Then
N lo
sup  [|Q—Qqf|, =0pdy/ 2P, )
Qoe%(‘[o,\)o,d) q n
provided tha®® = C(n~logp)/? and C is large enough.

Theorem 4 follows immediately from Theorem 1 and Corollary 2 by takirg0, T = ||Qo||¢,,
andv = max{A .} (Qo), Amax(Qo) }, Which ensures tha®y € O(v,n,T). We note that the rate of

min
convergence given by (7) is also optimal in the minimax sense when coingjaeatrix /1 horm.

Theorem 5 Assume that th~tlogp)/? = o(1). Then there exists a constantQ0 depending only
onTg, andvg such that

it sup PG, >cd/ 2P0,
Q QoEMl(To,\)o,d) 1 n

where the infimum is taken over all estim&@ebased on observations, ..., XM,
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Theorem 5 indicates that the estimability of a sparse inverse covariance indaGtated by its
degree as opposed to the total number of nonzero entries. This diegiges a plausible expla-
nation on why the usuah penalized likelihood estimate (see, e.g., Yuan and Lin, 2007; Banarjee,
El Ghaoui and d’Aspremont, 2008) may not be the best to exploit this tiypparsity because the
penalty employed by these methods is convex relaxations of the constrantabmumber of edges
in a graphical model instead of its degree.

It is also of interest to compare our results with those from MeinshauskBi#nmann (2006).
As mentioned before, the goal of the neighborhood selection from Mairsgm and Bhimann
(2006) is to select the correct graphical model whereas our focasden estimating the covariance
matrix. However, the neighborhood selection method can be followed by tkienma likelihood
estimation based on the selected graphical model to yield a covariance métriates Clearly
the success of this method hinges upon the ability of the neighborhood selectiooose a correct
graphical model. It turns out that selecting the graphical model can bedificult than estimating
the covariance matrix as reflected by the more restrictive assumptions madsrgahglusen and
Buhlmann (2006). In particular, to be able to identify the nonzero entriesedhtierse covariance
matrix, it is necessary that they are sufficiently large in magnitude whetsdsrequirement is
generally not needed for the purpose of estimation. Moreover, Maisshaand Bhimann (2006)
only deals with the case when the dimensionality is of a polynomial order of thpleaize, that
is, p= O(nY) for somey > 0.

3.3 Approximately Sparse Models

In many applications, the inverse covariance matrix is only approximatelgepér popular way
to model this class of covariance matrix is to assume that its rows or columnglielan/, ball
O<a<l):

p
Mz (To,vo, 0, M) = {A> 0: A |, < To,Vo" < Amin(A) < Amax(A) < Vo, Y |Aj|" < M},
=1

wheretp,vp > 1 and O< a < 1. M, can be viewed as a natural extension of the sparse model
M. In particular,; can be viewed as the limiting case ®f, whena approaches 0. By relaxing

a, M, includes matrices that are less sparse than those includ@d.inThe particular class of
matrices were first introduced by Bickel and Levina (2008b) who invatgithe case whek €
M>(To,V0,0,M). We note that their setting is different from ours®6 is not closed with respect

to inversion. An application of Theorem 1 and Corollary 2 yields:

Theorem 6 Assume that Mn~*log p)LTu =0(1). Then

1-a
~ lo 2
sup ||Q—QO||zq=Op<M(gp> ) ®
Qo M>(To,vo,0,M) n

provided tha® = C(n~tlogp)¥/? and C is sufficiently large.

Assuming thaky € M>, Bickel and Levina (2008b) study thresholding estimator of the covari-
ance matrix. Their setting is different from ours becafgeis not closed under inversion. It is
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however interesting to note that Bickel and Levina (2008b) show thagtbtding the sample co-
variance matriXS at an appropriate level can achieve the same rate given by right handf<igl).
The coincidence should not come as a surprise despite the differenmiblam setting because the
size of the parameter space in both problems are the same. Moreoveldwafptheorem shows
that in both settings, the rate is optimal in the minimax sense.

1-a
Theorem 7 Assume that Mn~tlogp) > = o(1). Then there exists a constant€0 depending
only ontg, andvg such that

inf sup {HQ QOH@ >CM<|ng> }>0, 9)

Q Qo€ Mo (T0,V0,0,M)

and

inf sup {HZ ZoHé >CM<Iogp> }>O, (10)
)

2 30€9(To,vo,0,M

where the infimum is taken over all estima®eor =, based on observationsX, ..., X0,

4. Numerical Experiments

To illustrate the merits of the proposed method and compare it with other pojtalaratives, we
now conduct a set of numerical studies. Specifically, we generated0 observations from a
multivariate normal distribution with mean 0 and variance covariance matrix giy&; = pl'~!

for somep # 0. Such covariance structure corresponds to an AR(1) model. Its @gevariance
matrix is banded with the magnitude pfdetermining the strength of the dependence among the
coordinates. We consider combinations of seven different valugs®i, 0.2,..., 0.7 and four val-
ues of the dimensionalityg = 25, 50, 100 or 200. Two hundred data sets were simulated for each
combination. For each simulated data set, we ran the proposed method toicoestimate of the
inverse covariance matrix. As suggested by the theoretical developmwergsfd = (2n~1logp)~*
throughout all simulation studies. For comparison purposes, we includedpde of popular alter-
native covariance matrix estimates in the study. The first ig{fpenalized likelihood estimate of
Yuan and Lin (2007). As suggested by Yuan and Lin (2007), the Bit€rgyn was used to choose
the tuning parameter among a total of 20 pre-specified values. The ss@mdriant of the neigh-
borhood selection approach of Meinshausen aialdliBann (2006). As pointed out earlier, the goal
of the neighborhood selection is to identify the underlying graphical modetirahan estimating
the covariance matrix. We consider here a simple two-step procedure wWegemaximum likeli-
hood estimate based on the selected graphical model is employed. Astadviogdeinshausen
and Bihimann (2006), the level of significance is settat 0.05 in identifying the graphical model.
Figure 1 summarizes the estimation error measured by the spectral norm, {ati€||.,, for the
three methods, averaged over two hundred runs.

A few observations can be made from Figure 1. We first note that th@peojmethod tends to
outperform the other two methods wheiis small and the advantage becomes more evident as the
dimensionality increases. On the other hand, the advantage over the orbigbi selection based
method gradually vanishes péncreases yet the proposed method remains competitive. A plausible
explanation is the distinction between estimation and selection in high dimensiaidémps as
pointed out earlier. The success of the neighbor selection based meatged bpon a good selection
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Figure 1: Estimation error of the proposed method (black solid lines)itipenalized likelihood
estimate (red dashed lines) and the maximum likelihood estimate based on thearaph
model selected through neighborhood selection (green dotted lines). paael corre-
sponds to a different value of the dimensionality. X-axes representaioe wfp. The
estimation errors are averaged over two hundred runs.

of the graphical model. Recall that the inverse covariance matrix is bamdledionzero entries
increasing in magnitude witp. For large values of, the task of identifying the correct graphical
model is relatively easier. With a good graphical model chosen, refittingtlit tive maximum
likelihood estimator could reduce biases often associated with regularizgtppoaehes. Such
benefit diminishes for small values pfas identifying nonzero entries in the inverse covariance
matrix becomes more difficult.

At last, we note that all three methods are relatively efficient to computeeXample, when
p= 200 andp = 0.5, the averaged CPU time for thigpenalized likelihood estimate is3B seconds,
for the neighborhood selection based method42 keconds, and for the proposed method24 3
seconds. Both thé; penalized likelihood estimate and the neighborhood selection based method
are computed using the graphical Lasso algorithm of Friedman, Hastidlzstdrani (2008) which
iteratively solves a sequence pfLasso problems using a modified Lars algorithm (Efron et al.,
2004). The algorithm is specially developed to take advantage of theespaitge of the problem
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and available in thgl asso package in R. The proposed method is implementedaAnLAB using
its general purpose interior-point algorithm based linear programmingrsahd could be further
improved using more specialized algorithms (see, e.g., Asif, 2008).

5. Discussions

High dimensional (inverse) covariance matrix estimation is becoming more arelgoormon in
various scientific and technological areas. Most of the existing metheddemigned to benefit
from sparsity of the covariance matrix, and based on banding or tHdastpahe sample covari-
ance matrix. Sparse models for the inverse covariance matrix, despitedtic@rappeal and close
connection to graphical modeling, are more difficult to be taken advanfalyedo heavy computa-
tional cost as well as the lack of a coherent theory on how such speasitye effectively exploited.
In this paper, we propose an estimating procedure that addresseshbtémges. The proposed
method can be formulated using linear programming and therefore compuedffieiently. We
also show that the resulting estimate enjoys nice probabilistic properties, waiddtates to sharp
convergence rates in terms of matrix operator norms under a couple of qosatimgs.

The choice of the tuning paramet®iis of great practical importance. Our theoretical devel-
opments have suggested reasonable choices of the tuning parametesesmstto work well in
the well-controlled simulation settings. In practice, however, a data-ddbeite such as those
determined by multi-fold cross-validation may yield improved performance.

We also note that the method can be easily extended to handle prior informagemaing the
sparsity patterns of the inverse covariance matrices. Such situationsofieim the context of, for
example, genomics. In a typical gene expression experiment, tens oatiususf genes are often
studied simultaneously. Among these genes, there are often known patiwvienh corresponding
to conditional (in)dependence among a subset of the genes, or in @ionovariables. This can
be naturally interpreted as some of the entrieQgbeing known to be nonzero or zero. Such prior
information can be easily incorporated in our procedure. In particulayffices to set some of
the entries of3 to be exact zero apriori in (2). Likewise, if a particular entryBaf known to be
nonzero, we can also opt to minimize thenorm of only the remaining entries.

6. Proofs

We now present the proofs to Theorems 1, 5, 6 and 7.

6.1 Proof of Theorem 1

We begin by comparin@(i) with 8(;). For brevity, we shall abbreviate the subscrigtin what
follows when no confusion occurs. Recall tigat —Q°;;/Qf and

6 = argmin| ||,
BeF

whereF = {B:||S.i; —S.i-iB|le, < d}. ForagiverQ € O(v,n,1), letQ € O andy=—Q_;;/Qj.
We first show thay € F.

Lemma 8 Under the event thatS— o|.ax < CoAmax(Zo0) ((A+ 1)n~tlog p)¥/2,
1S-ii —S-i-ivll,, <9,
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provided that
3 > NV +CotVAmax(Zo) (A+ 1)n~tlog p)¥/2.

Proof By the definition ofO(v,n, 1), for anyj #1i,
20 Qi = Qi [=§ ~ 20 1] < Z0Q ~ Himax< .
which implies that
2% — zgi,—in/zm = r?gx\z?i —20 4y Qi <A (Q)n <nv.
An application of the triangular inequality now yields

1Sai—Sai-ivll,, < |ISaii—22; [ +[[(Si-i = =2 0) v, + 122 =22 v,
< [IS—Zollmax+ IS Zol[max|[Vll e, + 1V
1S— Zolmaxl|Qiille, /Qii + NV

0

The claim now follows. [ |

Now thaty € 7, by the definition 08,
18], < IIVlle < Qi 1Qilley = L < Agin(@) QI —L < vT—1. (11)

Write 7 = {j :y; # 0}. Denote byd; = card 7). Itis clear thad,; < deg Q). From (11),

O < IVlley = 18lley <1185 = Vo lley — 11856l

Thus,
(R ||ég—w\|el+\|éycllz1
< 265 —vslley
< 2d7%185 - vy e,
< 2d7 %8y,
_ - . 1/2
< 20y Ak (22 ) [(0- )2 (0-v)
_ A . 1/2
= ZAmiln(ZO)d;/z [(e_y)/zgi,—i (9—\’)]
~ N 1/2
- ZAmaX(QO)dJl/Z[(e—y)lzgi,fi (e—V)} .
Observe that i / ) ) )
(6-v)'=% i (B—y) < 18—l =% i BV, -
Therefore,
5 0 A 1/2
18Vl < PrmaQ0)dy 18- i 20, (B-V)[I}*,
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which implies that A A
16—Vl < ANFax(Qo)dy |22 (B-V) .- (12)

We now set up to further bound the last term on the right hand side. Weahfipthe following
result.

Lemma9 Under the event thatS— o|| .. < CoAmax(Zo0) ((A+1)n~tlog p)*/2, we have
=2 (0-v)[l,, <25

provided that
8 > NV + CoTVAmax(Zo) ((A+1)n"log p)¥/2.

Proof By triangular inequality,
122 G-, <[22 ®=W), +[I2% - (68, - (13)
We begin with the first term on the right hand side. Recall that

20,90 +3% Q% =0

which implies that
Zo_i7_ie - zo—i,i' (14)

Hence,
=% (G—Y)ng =[|=%; - Zgi,fingm =022, Qi + 22 Qi ng <vn.
We now turn to the second term on the right hand side of (13). Again bygulaninequality

2% i (6-0)|,. <||(S:i-i—2% )8, +]/Si-16-2% 8], -

I,
To bound the first term on the right hand side, note that
H (S—i,—i - z9i,—i) éHgm < Hs—i,—i - zgi,fi HmaXHéHfl <|S- zo”maXHéHfl'
Also recall that A
|S.ii—S.i-i8], <8,
andz®; ;6 =22 ;. Therefore, by triangular inequality and (14),

[Si-8—22 0], <8+(12%; —Siiille <8+ S~ Zollmax-

To sum up,

5+Vn + ||Sf zO||max7L HS* zOHmaxHéHfl
3+ VN + [IS— Zol|max (14 IVlley)

3+vN + [[S— Zol|max | 2l ea / Qi

84N +[|S— Zo|pax |2l Ain(Q)
O+VN+1V||S— Zolmax:

122 - (8-V)]l,,

VAN VAN VANRR VARSI VAN
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which, under the event thd8— Zo|| .2« < CoAmax(Zo) (A+ 1)n~tlog p)*/2, can be further bounded
by 26 by Lemma 8. |

Together with (12), Lemma 9 implies that for ak=1,.... p
16— Vlley < 8N ax(Q0)d53,

if ||S— 20|l max < CoAmax(Zo) ((A+ 1)n~tlog p)l/2 We are now in position to bountfd — Qo).
We begin with the diagonal elemen(g; — Q7).

Lemma 10 Assume thatS— Zo|[nayx < CoAmax(Zo) ((A+ 1)n~log p)Y/? and
SAmax(Q0) (VT +8AZax(Q0)A i (Q0)d7) +VTAmax(Q0)Arin(Q0) 12 — Qolle; < co

for some numerical constafit< ¢y < 1. Then

1
|Q Qll | < S (6Aﬁ1ax(90) (VT + 8)‘max(QO)d])\m|n(QO)) +VT7\m|n(QO))\ﬁﬁax(QO)HQ - QOH&) )

provided that
3 > NV +CotVAmax(Zo) (A+ 1)n~tlog p)¥/2.
Proof Recall thatt?;; ==°; ;6. Therefore

Q0= (29-25° 04030 _8) = (05 0) .

Because . o 1
Qi=(Si—25-6+6S,_6) ",

we have i ) ) )
‘Q (@f) \ < IS - 20|+ |0'S.i-i8-S-i6| +|5-6-Z_8]. (15)

We now bound the three terms on the right hand side separately. It is chednefirst term can be
bounded by|S— Zo||max. Recall tha® € F. Hence the second term can be bounded as follows:

0/S.i 656 < HSLi,fié—&i,ngw 18]/, < 3|8,
The last term on the right hand side of (15) can also be bounded similarly.
S 0-20 < [(S-i-20)8+ [z (6-0)
15— Zollmaxl1®lle, + [12_ille.. |8 — By
1S— Zollmax!1®ll ¢, +Amax(Z0) (18— Vile, + [V —6llz,)
15— Zollma Bl +Ain(Q0) (18— Vlle, + [[Y—8ll2,) -

IAN N IA

In summary, we have
1S— Zollmax+ 8l[8]l, + [S— Zollmax Bl

A (Q0) (10—l + [ly—6lley)
VT||S— Zollmax+ 8][8le; + A (Q0) (BAzax(Q0)ds S+ [[y— |,
0 (VT + 8)‘r2nax(QO))‘min(Qo)d7) + )‘r?l%n(QO) HV_ erlv

&t (@)

IN

IN A
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provided that]|S— Zo||,nax < Cormax(Zo) ((A+ 1)n~tlogp)¥/2. Together with the fact tha®} <

QO
\u' - 1\ < Bhmax(Q0) (VT + B2 Qo)A (Q0)ds) + Amax( Qo)A (Q0) [y 6]

Moreover, observe that

-1 _ -1
ly=6ll, < (QF) 1195 — Q%illey + 4 (QF) T 1Qi — QRNQilley
< Ain(Q0)[1Q — Qolle, + A (Q0) 1Q — Qo |, (VT — 1)
< VT)\mln(QO)HQ_QOHZr
Therefore,

QO
\ﬂ—l'saxmaxmo) (VT + 8N Q)M (Q0)dy) + VTAma QA2 (Q0)]|Q — Qolln, (16)

which implies that

Subsequently,

Together with (16), this implies

~ ~ | Q9
Q- Qi| < Qii‘~“— ‘

IA

1_76)‘2 (QO) (VT + SA%ax(QO)}‘mln(QO)d])

1
+1- Covr)\mm(Qo))\rznax(Qo) 19— Qo[ ¢,

We now turn to the off-diagonal entries 6f— Q.

Lemma 11 Under the assumptions of Lemma 10, there exist positive constai@s &d G de-
pending only oV, T, Amin(Qo) andAmax(Qo) such that

1Q-i. — Q% [l < (CL+Cady)d+Cal|Q — Qollr,.
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Proof Note that
19 0%l = [|Qi6—Qfel,

< OF)8—8lle, + |Qi — Q] [18]l,
< An(Qo) (/18- vaLHV 8lr,)
VT —
+1_ 6)‘rznax( )(VT+8)\max(QO)dJ)‘m|n( ))
vi—1
+1_ VT}‘mln( ))‘rznaxQO)HQ_QOHQ
< 8V2d])\m|n(90)6+vr)‘m|n(Q0)HQ Q0||€1
VT
1_ 6)‘%1ax(90) (VT + 8}‘max(QO>dJ}‘m|n(QO))
VT l
t1 COVT)‘mln(QO))\ﬁﬁaX(QO) 1Q—Qolls,.
Therefore,
195 —Q% lly = Q7 — Qi + 191 — Q%
1
< 6(1_COVZTZ)\?nao((QO)"‘8<1"’ CO>7\r2nax(QO)dJ)\m|n(QO)>

Y
(14 17 Ml 0) ) Vo (o) [ Dol
|
From Lemma 11, it is clear that under the assumptions of Lemma 10,
1Q-Q%, <C_inf (||Q— Qolle, +degQ)3), (17)
QeOo(v,n,1)

whereC = maX{Cl,E:z,C;g} is a positive constant depending only IT, Amin(Q0) andAmax(Qo).
By the definition ofQ,

1Q—Qlle, <[Q—Qoll, <C __inf (|| Q—Qolls, +deg Q)3).
QeOo(v,n,1)

An application of triangular inequality immediately gives

1Q—Qoll, < 1Q-Qlle, +1Q—Qolley

< 2C inf Q-Q deg Q)o).
< 2 inf (|2~ Qoll; +degQ)?)

To complete the proof, we appeal to the following lemma showing that

/t+lo
||S_ zOHmaXS CO)\max(ZO) ngpa

for a numerical constaiiy > 0, with probability at least 2 e~!. Takingt = Alogp yields

P{ 1S Zollmax < Cohmax(Zo) (A+ 1)nLlogp)/2} > 1 p~*

2278



COVARIANCE MATRIX ESTIMATION

Lemma 12 Assume that there exist constangs>c0, and T > 0 such that for anyt| <T
EeX’ < co, i=12,...,p.
Then there exists a constant€0 depending ongand T such that

t+logp

||S_20”max§C n

with probability at leastL — et for all t > 0.

Proof Observe thaSis invariant toEX. We shall assume th&tX = 0 without loss of generality.
Note that§; = EnXX; — EnXEnX;. We have

|S) — 2R | < [BaXXj — EXiXj| + [EnXi|[EnX;| =: Ay + A2

We begin by bounding;.

|(Ea—E)XXj| = Z[Ba—E)((X+X)>— (X —X))?)]

<

NN

(Ba—E)OG+5)°] + 5| (En—E)O§ ~ X))

The two terms in the upper bound can be bounded similarly and we focusmtie dirst term. By
the sub-Gaussianity of andX;, for any|t| < T/4,

Edi+X))? < Ee2X° 2%} < /24X p1/28XF <co
In other words{X; + X; : 1 <i, j < p} are also sub-Gaussian. Observe that
In (Eet[(NJer)z—]E()jo)Z]) = InEXHX) (X +Xj)?
< B[S0 t0q4 )2 - 1],

where we used the fact thatun< u— 1 for allu > 0. An application of the Taylor expansion now
yields that there exist constardg T, > 0 such that

In (Eet[(xi+xj)2_E(xi+Xj)2]) < C]_tz
for all |t| < Ty. In other words,
Eet[(xwx,-)LE(x&x,-)Z} < eclt2

for any|t| < T1. Therefore,
Eet[ (En—E)(%+X;)?] < bt /n

By Markov inequality

P{(Eq—E)(X + X)) > x} < & ¥ElEn-BX+%)] < exp(cyt?/n—tx) .
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Takingt = nx/2c; yields

P{(En—E)(X+Xj)?>x} < exp{—zzz}.

Similarly,

Therefore,

P{|(En—E)(X +Xj)?| >x} < 2exp] —

r—’H
§ %,
.

Following the same argument, one can show that

nx2
P Xj)| > xt <2expd —— 7.
{ ’ x' J ‘ X} Xp{ 4cy }
Note also that this inequality holds trivially whée- j. In summary, we have

P{A; > x} P {|(En—E)(X +Xj)?| > 2x} + P {|(Eq —E)(X — X})?| > 2x}

<
< dexp{—c;n¥}.
Now considei\,.

E&EXEX] < B1/2g2EnX g 1/262EnX] < max EeEnX

1<i<p

Following a similar argument as before, we can show that there exist ctsstal, > 0 such that
EeXEnX < ¢ cot?/n

for all |t| < T,. This further leads to, similar to before,

P{A; > x} < 2exp{—c; ¥} .

To sum up,
P{||S—Zolmax>x} < pP? max P{|S; - =3[ >x}
< PP (D1 > X/2) + P (B2 > %/2)]
< 4p?exp{—csn¥}.
for some constardz > 0. The claimed result now follows. ]
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6.2 Proof of Theorem 5
First note that the claim follows from

| _ |
inf  sup  E[Q-Qqf, >Cldy/ 2P (18)
Q Qoe(to,v0.d) ' n

for some constar®’ > 0. We establish the minimax lower bound (18) using the tools from Ko-
rostelev and Tsybakov (1993), which is based upon testing many hygestlas well as statistical
applications of Fano’s lemma and the Varshamov-Gilbert bound. Moréigpdly, it suffices to find

a collection of inverse covariance matricg§ = {Q,...,Qk 1} C M1(To,V0,d) such that

(a) for any two distinct membe®;, Qx € M’, | Q; — Qull¢, > Ad(n~tlog p)*/2 for some constant
A>0;

(b) there exists a numerical constant @y < 1/8 such that

K (P(Q),P(Qk+1)) < CologkK,

x|
M=

k=1

where X stands for the Kullback-Leibler divergence affdQ) is the probability measure
N(0,Q).

To constructM’, we assume that(n~tlogp)Y/? < 1/2, 1,vo > 2 without loss of generality.
As shown by Birg@ and Massart (1998), from the Varshamov-Gilbert bound, there isad Bmary
vectors of lengttp— 1, B = {by, ..., bk} C {0,1}P~1 such that (i) there are ones in a vectob; for
anyj=1,...,p—1; (ii) the Hamming distance betweepandby is at leastd/2 for any j # k; (iii)
logK > 0.233dlog(p/d). We now takeQ, for k=1,...,K as follows. It differs from the identity
matrix only by its first row and column. More specifical@, = 1, Q% ; = (Q% _,)’ = anb,

Q, _; =lp 1, thatis,
_( 1 ab
Q= ( abe | ;

wherea, = ag(n~tlogp)Y/? with a constant O< ag < 1 to be determined later. Finally, we take
Qg1 =1. Itis clear that Condition (a) is satisfied with this choiceMf andA = ay/2. It remains
to verify Condition (b). Simple algebraic manipulations yield that for ary L < K,

K (P(Q), P(Qus1)) = —g logde(Qy) = —g log(1— a2bjb).

Recall thag2bj by = da2 < d?a2 < 1/4. Together with the fact that log(1—x) < log(1+ 2x) < 2x
for 0 < x< 1/2, we have

K (P(), P(Qk+1)) < nda.

By settingap small enough, this can be further bounded b®33cydlog(p/d) and subsequently
cologK. The proof is now completed.
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6.3 Proof of Theorem 6
We prove the theorem by applying the oracle inequality from Theorem 1hi$e@nd, we need to
find an “oracle” inverse covariance matfx Let

Qi =Qi1(|Q}| 27),

where > 0 is to be specified later. We now verify thate O(v,n, 1) with appropriate choices of
the three parameters.
First observe that

1Q—Qollr, < maxZ]Q 11(|Q%| <?)

1§i<p

< alei)éZ‘Q "1(|128] <)
< Zl o

Thus,
Val - le—a < Anin(Q) < Amax(Q) < vo+ le—a.

In particular, setting, small enough such thZ*~% < (2vg)~! yields
(2\)0)71 < )\min(Q) < Amax(Q) < 2VO-

We can therefore take= 2v.
Now consider the approximation errpEoQ — I ||max. Note that the(i, j) entry of ZoQ — | =
>0(Q — Qo) can be bounded as follows

> =att(ad <9| < 3 [sdllafi(ah <)
< oy R
= {l[Zoll-

This implies that
1Z0Q — |max < || Zol|¢; -

In other words, we can takg= {||Zo||¢,-
Furthermore, it is clear that we can tak@||,, < ||Qo||¢,. Therefore, by Theorem 1, there exist
constant€;,C, > 0 depending only ofiQol|¢,, ||Zo||¢,, @ndvg such that for any

62C1<Z+ Mmgp) (|:172)7p))

n

we have
1Q — Qolls, < C2 (MZ* +degQ)d)
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with probability at least - p~. Now note that

degQ) = ma>é 1(|Q | >7) <ML
e

The claimed the results then follows by takifg= C3((A+ 1)n—tlogp)¥/? for a small enough

constanCz > 0 such thaMZ!~% < (2vg) !

6.4 Proof of Theorem 7

Assume thaM (n~tlogp)~%/2 < 1/2, 19,V > 2 without loss of generality. Similar to Theorem
5, there eixs a collection of inverse covariance matrig€s= {Q;,...,Qx 1} C Mz such that

(a) for any two distinct member®;,Qx € M’, ||Qj — Qlls, > AM(n log p)t~®/2 for some
constantA > 0;

(b) there exists a numerical constant @y < 1/8 such that

K
=Y K (20, P(Q1) < Cologk.
k=1

To this end, we follow the same construction as in the proof of Theorem Kngta

d= {M ('ng> ZJ ,
n
and |x| stands for the integer part of First, we need to show tha¥/’ C M,. Because

d(n~tlogp)Y/2 < 1/2, it is clear that the bounded eigenvalue condition 46|, < To can en-
sured by settingg small enough. It is also obvious that

Z'Q | <M.
1<]<p

It remains to check that>||,, is bounded. By the block matrix inversion formula

1 b/
17a,%b{<bk 1 aﬁmbk
= ( —&_p | bib, )
- 17a,2]bf<bk k + 1— anb/ k
It can then be readily checked thigiy||,, can also be bounded from above by sett@ggsmall
enough.
Next we verify Conditions (a) and (b). It is clear that Condition (a) is §atiswith this choice

of M’ andA = ap/2. It remains to verify Condition (b). Simple algebraic manipulations yield that
forany 1< k<K,

K (P(Qu), (1)) = 5 log det Q) = — log(L - aZbiby).

Recall thaw2bj by = da2 < d?a2 < 1/4. Together with the fact that log(1—x) < log(1+2x) < 2x
for 0 < x< 1/2, we have
% (P(Qu), P(Qu11)) < Nl
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By settingap small enough, this can be further bounded b833codlog(p/d) and subsequently
cologK. The proof of (9) is now completed.
The proof of (10) follows from a similar argument. We essentially consthetsame subset

M’ but with
_( 1 ab
2= ( anb | )

The only difference from before is the calculation of Kullback-Leiblaredjence, which in this
caseis

n
K(P(2k), P(Zk+1)) = > (tracg Q) +logde(Zy) — p)
where
1 . an b/
1—a§b{(bk 1—aﬁb[<bk K
Qk:( & b 4G bb’>'
T 1mabp ¢ Tabh Pk

Therefore, tracgy) = p+ 2da2/(1—da2). Together with the fact that dgx) = 1 — da2, we
conclude that

K (P(2), P(Zk+1)) = g (f;'i%) +Iog<1—daﬁ)> < %ndaﬁ-

where we used the fact that Idg— x) < —x. The rest of the argument proceeds in the same fashion
as before.
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