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Abstract

Microarray gene expressions provide new opportunitiesrfolecular classification of heteroge-
neous diseases. Although various reported classificatbernses show impressive performance,
most existing gene selection methods are suboptimal anbaveell-matched to the unique charac-
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teristics of the multicategory classification problem. blegd design of the gene selection method
and a committee classifier is needed for identifying a sneatbsgene markers that achieve accurate
multicategory classification while being both statistigaéproducible and biologically plausible.
We report a simpler and yet more accurate strategy thanqueworks for multicategory classifi-
cation of heterogeneous diseases. Our method selectsitireaiione-versus-everyone (OVEhe-
notypic up-regulategienes (PUGs) and matches this gene selection with a onesverst support
vector machine (OVRSVM). Our approach provides even-hdigéae resources for discriminating
both neighboring and well-separated classes. Consisténthe OVRSVM structure, we evaluated
the fold changes of OVE gene expressions and found that @rhad number of high-ranked genes
were required to achieve superior accuracy for multicategassification. We tested the proposed
PUG-OVRSVM method on six real microarray gene expressiada sits (five public benchmarks
and one in-house data set) and two simulation data setsiviiggsignificantly improved perfor-
mance with lower error rates, fewer marker genes, and higlsdormance sustainability, as com-
pared to several widely-adopted gene selection and clzesiin methods. The MATLAB toolbox,
experiment data and supplement files are available at/hitpw.cbil.ece.vt.edu/software.htm.
Keywords: microarray gene expression, multiclass gene selecti@ngtiipic up-regulated gene,
multicategory classification

1. Background

The rapid development of gene expression microarrays providespamtopity to take a genome-
wide approach for disease diagnosis, prognosis, and predictiorrapthgic responsiveness (Clarke
et al., 2008; Wang et al., 2008). When the molecular signature is analyitegattern recognition
algorithms, new classes of disease are identified and new insights intoediseakanisms and di-
agnostic or therapeutic targets emerge (Clarke et al., 2008). For exangplg studies demonstrate
that global gene expression profiling of human tumors can provide motedaksifications that
reveal distinct tumor subtypes not evident by traditional histopathologieshods (Golub et al.,
1999; Ramaswamy et al., 2001; Shedden et al., 2003; Wang et al., 2006).

While molecular classification falls neatly within supervised pattern recognhigh,gene di-
mensionality and paucity of microarray samples pose challenges for, grickimovel develop-
ments in classifier design and gene selection methodologies (Wang et a)., 2OOBulticategory
classification using gene expression data, various classifiers havetmmsed and have achieved
promising performance, including k-Nearest Neighbor Rule (KNN) (6@tal., 1999), artificial
neural networks (Wang et al., 2006), Support Vector Machine (S{R&maswamy et al., 2001),
Naive Bayes Classifier (NBC) (Liu et al., 2002), Weighted Votes (Tibshieaal., 2002), and Lin-
ear Regression (Fort and Lambert-Lacroix, 2005). Many comparstiwdies show that SVM based
classifiers outperform other methods on most bench-mark microarrayseestdLi et al., 2004;
Statnikov et al., 2005).

An integral part of classifier design is gene selection, which can improtle dassification
accuracy and diagnostic economy (Liu et al., 2002; Shi et al., 2008gWhaal., 2008). Many
microarray-based studies suggest that, irrespective of the classificatithod, gene selection is
vital for achieving good generalization performance (Statnikov et al52®dr multicategory clas-
sification using gene expression data, the criterion function for genetiselshould possess high
sensitivity and specificity, well match the specific classifiers used, antfiglgane markers that are
both statistically reproducible and biologically plausible (Shi et al., 2008;0/¢aml., 2008). There
are limitations associated with existing gene selection methods (Li et al., 20@dik8taet al.,
2005). While wrapper methods consider joint discrimination power of a gebset, complex clas-
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sifiers used in wrapper algorithms for small sample size may overfit, pragincin-reproducible
gene subsets (Li et al., 2004; Shi et al., 2008). Moreover, discerrwhthe (biologically plausible)
gene interactions retained by wrapper methods is often difficult due to tble bt nature of most
classifiers (Shedden et al., 2003).

Conversely, most filtering methods for multicategory classification are stfaigtard exten-
sions of binary discriminant analysis. These methods are devised withduthatehing to the
classifier that is used, which typically leads to suboptimal classification npesfuce (Statnikov
et al., 2005). Popular multicategory filtering methods (which are extensiamgetlass methods)
include Signal-to-Noise Ratio (SNR) (Dudoit et al., 2002; Golub et al., ), 9@dent’s t-statistics
(Dudoit et al., 2002; Liu et al., 2002), the ratio of Between-groups to Wighoups sum of squares
(BW) (Dudoit et al., 2002), and SVM based Recursive Feature ElimingdR&E) (Li and Yang,
2005; Ramaswamy et al., 2001; Zhou and Tuck, 2007). However, iatedoout by Loog et al.
(2001) in proposing their weighted Fisher criterion (WFC), simple extensibismary discriminant
analysis to multicategory gene selection are suboptimal because they okastrepgarge between-
class distances, that is, these methods choose gene subsets thaeghesdistances of (already)
well-separated classes, without reducing (and possibly with increasieeitgrge overlap between
neighboring classes. This observation and the application of wFC to multicgtelgssification
are further evaluated experimentally by Wang et al. (2006) and Xudn(20a7).

The work most closely related to our gene selection scheme is that of $hetlde (2003).
These investigators focused on marker genes that are highly exghiessee phenotype relative
to one or more different phenotypes and proposed a tree-lbasedersus-reqiOVR) fold change
evaluation between mean expression levels. The potential limitation here isdlaiténion func-
tion considers the “rest of the classes” as a “super class”, and thusetent genes that can distin-
guish a single class from the remaining super class, yet without givingemsfit in discriminating
between classes within the super class. Such genes may compromise multjcekegsification
accuracy, especially when a small gene subset is chosen.

Itis also important to note that, while univariate or multivariate analysis metrgidg acomplex
criterion functions may reveal subtle marker effects (Cai et al., 2007etal., 2005; Xuan et al.,
2007; Zhou and Tuck, 2007), they are also prone to overfitting. Retedies have found that for
small sample sizes, univariate methods fared comparably to multivariate m¢tlaoes al., 2006;
Shedden et al., 2003) and simple fold change analysis produced moodueible marker genes
than significance analysis of variance-incorporated t-tests (Shi e0@B)2

In this paper, we propose matched design of the gene selection mechamissmcammittee
classifier for multicategory molecular classification using microarray gepeesgion data. A key
feature of our approach is to match a simpie-versus-everyor{f®VE) gene selection scheme to
the OVRSVM committee classifier (Ramaswamy et al., 2001). We focus on ngekes that are
highly expressed in one phenotype relative to each of the remaining tybpespnamely Phenotypic
Up-regulated Genes (PUGSs). PUGs are identified using the fold chatigeemputed between the
specified phenotype mean and each of the remaining phenotype measswe&htonsider a gene
to be a marker for the specified phenotype if the average expressimsiaed with this phenotype
is high relative to the average expressions in each of the other phesofipassure evenhanded
resources for discriminating both neighboring and well-separated slasseuse a fixed number
of PUGs for each phenotypic class and pool all phenotype-specifigsRtgether to form a gene
marker subset used by the OVRSVM committee classifier. All PUGs refeddng the committee
classifier are individually interpretable as potential markers for phemotyasses, allowing each
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gene to inform the classifier in a way that is consistent with its mechanistic rbég{fen, et al.,
2003). Since PUGs are the union of subPUGs selected by simple univandefold change

analysis, they are expected to be statistically reproducible (Lai et al., Sb@iden et al., 2003;
Shi et al., 2008).

We tested PUG-OVRSVM on five publicly available benchmarks and oneusémicroarray
gene expression data set and on two simulation data sets, observing aiglyifimproved perfor-
mance with lower error rates, fewer marker genes, and higher pericarsability, as compared
to several widely-adopted gene selection and classification methodsefBnence gene selection
methods are OVRSNR (Golub et al., 1999), OVRt-stat (Liu et al., 2002)epdBW (Dudoit et al.,
2002), and OVRSVM-RFE (Guyon et al., 2002), and the referenasifiers are kNN, NBC, and
one-versus-one (OVO) SVM. With accuracy estimated by leave-oheross-validation (LOOCV)
(Hastie et al., 2001), our experimental results show that PUG-OVRSMbEediorms all combina-
tions of the above referenced gene selection and classification methodstimotsimulation data
sets and 5 out of the 6 real microarray gene expression data setgoaiidgs comparable perfor-
mance on the one remaining data set. Specifically, tested on the widely-ussuhizek microarray
gene expression data set “multicategory human cancers data” (GCMjag@Ramy et al., 2001,
Statnikov et al., 2005), PUG-OVRSVM produces a lower error rate dd3% (88.95% correct
classification rate) than the best known benchmark error rate of 16.32%806 correct classifica-
tion rate) (Cai et al., 2007; Zhou and Tuck, 2007).

2. Methods

In this section, we first discuss multicategory classification and assocéttdd selection, with an
emphasis on OVRSVM and application to gene selection for the microarrayinlofhtas discussion
then naturally leads to our proposed PUG-OVRSVM scheme.

2.1 Maximum a Posteriori Decision Rule

Classification of heterogeneous diseases using gene expressioamlsia considered a Bayesian
hypothesis testing problem (Hastie et al., 2001).X.et [X1, ..., X, ..., Xd] be the real-valued gene
expression profile associated with samipderossd genes foi = 1,...,Nandj=1,...,d. Assume

that the sample pointg come fromM classes, and denote the class conditional probability density
function and class prior probability bg(x; | wx) and P (wx), respectively, fok = 1,...,M. To
minimize the Bayes risk averaged over all classes, the optimum classifiethesesell-known
maximuma posteriori (MAP) decision rule (Hastie et al., 2001). Based on Baysés, the class
posterior probability for a given samplgis

P (o) p(Xi | o)
Y1 P (o) p(Xi | wx)

P (x| xi) =
and is used to (MAP) classify; to wx when
P(ux [ xi) > P(o | xi) D
forall | # k.
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2.2 Supervised Learning and Committee Classifiers

Practically, multicategory classification using the MAP decision rule can beorippated using
parameterized discriminant functions that are trained by supervisedrigarbet fy (x;,0), k =
1,2,...,M, be theM outputs of a machine classifier designed to discriminate betieelasses
(>2), wheref represents the set of parameters that fully specify the classifier, andheithutput
values assumed to be in the raff@gl]. The desired output of the classifier will be “1” for the class
to which the sample belongs and “0” for all other classes. Suppose thelagsifier parameters
are selected based on a training set so as to minimize the mean square¥&Eybetween the
outputs of the classifier and the desired (class target) outputs,
1 M
MSE= =3 3 [[f(.8) =17+ ¥, 72(x.6)]. )
k=1Xj€tx

Then, it can be shown that the classifier is being trained to approximateste¥ipo probability
for classux given the observes;, that is, the classifier outputs will converge to the true posterior
class probabilities
f (%i,0) = P(ox | Xi)

if we allow the classifier to be arbitrarily complex andNfis made sufficiently large. This result
is valid for any classifier trained with the MSE criterion, where the paramefdt® classifier are
adjusted to simultaneously approximdediscriminant functiondy (x;, 8) (Gish, 1990).

While there are numerous machine classifiers that can be used to implemerAkhdddision
rule (1) (Hastie et al., 2001), a simple yet elegant way of discriminating leetiMeclasses, and
which we adopt here, is based on an OVRSVM committee classifier (Ramasetaahy 2001;
Rifkin and Klautau, 2002; Statnikov et al., 2005). Intuitively, each term iwithe sum ovek
in (2) corresponds to an OVR binary classification problem and canfeetigély minimized by
suitable training of a binary classifier (discriminating clagsom all other classes). By separately
minimizing the MSE associated with each term in (2) via binary classifier trainidgthans, effec-
tively minimizing the total MSE, a set of discriminant functiopf (x;, 6k C 8) } can be constructed
which, given a new sample point, apply the decision rule (1), but Wtl;, 8) playing the role of
the posterior probability.

Among the great variety of binary classifiers that use regularization tvaidhe capacity of
the function spaces they operate in, the best known example is the SVMe(idaal., 2001; Vap-
nik, 1998). To carry over the advantages of regularization appesdti binary classification tasks
to multicategory classification, the OVRSVM committee classifier Wedifferent SVM binary
classifiers, each one separately trained to distinguish the samples in a $asgléram the sam-
ples in all remaining classes. For classifying a new sample pointMti&/Ms are run, and the
SVM that produces the largest (most positive) output value is chosie &xinner” (Ramaswamy
et al., 2001). For more detailed discussion, see the critical review ardiesgntal comparison by
Rifkin and Klautau (2002). Figure 1 shows an illustrative OVRSVM committessifi@r for three
classes. The OVRSVM committee classifier has proved highly successfuilicategory classifi-
cation tasks involving finite or limited amounts of high dimensional data in real-vequbdications.
OVRSVM produces results that are often at least as accurate as otheeicoroplicated methods
including single machine multicategory schemes (Statnikov et al., 2005). g3ari@e importantly
for our purposes, the OVR scheme can be matched with an OVE gene seleeibod, as we
elaborate next.
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Figure 1: Conceptual illustration of OVR committee classifier for multicategorysifieation
(three classes, in this case). The dotted lines are the decision hyperatsoeiated with
each of the component binary SVMs and the bold line-set representsai#halicision
boundary after the winner-take-all classification rule is applied.

2.3 One-Versus-Everyone Fold-change Gene Selection

While gene selection is vital for achieving good generalization perform@aagon et al., 2002;
Statnikov et al., 2005), perhaps even more importantly, the identified gémstatistically repro-
ducible and biologically plausible, are “markers”, carrying informationaltloe disease phenotype
(Wang et al., 2008). We will propose two novel, effective gene seleatietihhods for multicategory
classification that are well-matched to OVRSVM committee classifiers, namely, @\ROVE
fold-change analyses.

OVR fold-change based PUG selection follows directly from the OVRSVMeBte. LetNk be
the number of sample points belonging to phenotygbe geometric mean of the expression levels
(on the untransformed scale) for gepender phenotypkis

M (K) = [ Ticen Xi

j=1,...,d;k=1...,M. Then, we define the OVRPUGSs as:

Tvae UTust = U100 @)
PUG = PUG(K) = Maim ~ 'k

k=1 1 U]V Tk (D
where{t} are pre-defined thresholds chosen so as to select a fixed (equalgnafBUGs for
each phenotypk. This PUG selection scheme (3) is similar to what has been previously mwpos
by Shedden et al. (2003):

JPUG:CAJJPUG(k):L'\_AJ{j NNuj(k)ETk}. (4)
k=1 k1 v [igon Xij

The critical difference between (3) and (4) is that the denominator ter/)iis ¢he overall geo-
metric center of the “geometric centers” associated with each of the remainerptypes while
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the denominator term in (4) is the geometric center of all sample points belonding temaining
phenotypes. WhekiNk} are significantly imbalanced for differekt the denominator term in (4)
will be biased toward the dominant phenotype(s).

However, a problem associated with both PUG selection schemes spegifigdand (4) (and
with the OVRSNR criterion Golub et al., 1999) is that the criterion function icans the remaining
classes as a single super class, which is suboptimal because it igneressaaility to discriminate
between classesithin the super class.

We therefore propose OVE fold-change based PUG selection to fullyosughe objective of
multicategory classification. Specifically, the OVEPUGs are defined as:

H; (k)
madi i {1 (1) } g Tk} ©

M M
Jpue=J Jpuc(k) = | J {j
k=1

= k=1

where the denominator term is the maximum phenotypic mean expression levéhevemaining
phenotype classes. This seemingly technical modification turns out to hasgt@miconsequences
since it assures that the selected PUGs are highly expressed in omn¢ypleerelative teachof the
remaining phenotypes, that is, “high” (up-regulated) in phenotyped “low” (down-regulated)

in all phenotypes # k. In our experimental results, we will demonstrate that (5) leads to better
classification accuracy than (4) on a well-known multi-class cancer domain.

Adopting the same strategy as in Shedden et al. (2003), to assure aveedhgene resources
for discriminating both neighboring and well-separated classes, we adlget (common) number
of top-ranked phenotype-specific subPUGs for each phenotypés théeuc(K) || = Nsubpucfor all
k, and pool all these subPUGs together to form the final gene markestJpbs for the OVRSVM
committee classifier. In our experiments, the optimum number of PUGs pertypenss,ppuc is
determined by surveying the curve of classification accuracy vé\sysucand selecting the num-
ber that achieves the best classification performance. More genémghisactice,Nsypbpuccan be
chosen via a cross validation procedure. Figure 2 shows the geometributisn of the selected
PUGs specified by (5), where the PUGs (highlighted data points) constitutaetéral-edge points
of the convex pyramid defined by the scatter plot of the phenotypic meaassipns (Zhang et al.,
2008). Different from the PUG selection schemes given by (3) andt{é)PUGs selected based
on (5) are most compact yet informative, since the down-regulatedgdikatare not differentially
expressed between the remaining phenotypes (the genes on the latesalffthe scatter plot con-
vex pyramid) are excluded. From a statistical point of view, extensiwdietwon the normalized
scatter plot of microarray gene expression data by many groups incladirayvn indicate that the
PUGs selected by (5) approximately follow an independent multivariate-$kgessian distribution
(Zhao et al., 2005) where subPUGs are mutually exclusive and phéngspe expression patterns
defined over the PUGs are statistically independent (Wang et al., 2003).

It is worth noting that the PUG selection by (5) also adopts a univariatectudahge evaluation
that does not require calculation of either expression variance oradlation between genes (Shi
et al., 2008). For the small sample size case typical of microarray data, aniaitev gene selec-
tion schemes may introduce additional uncertainty in estimating the correlatiotus&r(Lai et al.,
2006; Shedden et al., 2003) and thus may fail to identify true gene mgikérsg et al., 2008).
The exclusion of the variance in our criterion is also supported by thengristabilization the-
ory (Durbin et al., 2002; Huber et al., 2002), because the geometric im¢anis equivalent to the
arithmetic mean after logarithmic transformation and the gene expression ghethmic transfor-
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Figure 2: Geometric illustration of the selected one-versus-everyomopipec upregulated genes
(OVEPUGS) associated with three phenotypic classes. Three-dimelrgimmaetric dis-
tribution (on the untransformed scale) of the selected OVEPUGSs, whiaterasound

the lateral-edges of the phenotypic gene expression scatter plot qoymaenid, is shown
in the left subfigure. A projected distribution of the selected OVEPUGs tegetith
OVEPDGsSs is shown in the right cross-sectional plot, where OVEPDGdea@dong the
face-edges of the cross-sectional triangle.

mation approximately has the equal variance across different gepesjadly for the up-regulated

genes.
Corresponding to the definition of OVEPUGSs, the OVEPDGs (which arenelegulated in one

class while being up-regulated in all other classes) can be defined ylitheihg criterion:

miny {1y (1) }
MG Tk}' ©)

Furthermore, the combination of PUGs and PDGs can be defined as:

M M
Jroe = |JIpoe(k) = | J {j

k=1 k=1

" ey b (K) min_ac{p (1) }

Purely from the machine learning view, PDGs have the theoretical capaliilitging as dis-
criminating as PUGs. Thus, PDGs merit consideration as candidate gewegevét, there are
several critical differences, with consequential implications, betweetylexpressed genes and
highly-expressed genes, such as the extraordinarily large propamidmelatively large noise of
the lowly-expressed genes. We have evaluated the classificationmanice of PUGs, PDGs, and
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PUGs+PDGs, respectively. Experimental results show that PDGs teveikeriminatory power
than PUGs and the inclusion of PDGs actually worsens classification agcoemnpared to just
using PUGs. Experiments and further discussion will be given in the resdtmon.

2.4 Review of Relevant Gene Selection Methods

Here we briefly review four benchmark gene selection methods that le@vegdseviously proposed
for multicategory classification, namely, OVRSNR (Golub et al., 1999), Ogttistic (OVRt-stat)
(Liu et al., 2002), BW (Dudoit et al., 2002), and SVMRFE (Guyon et &02).

Let yj k and ; .k be the arithmetic means of the expression levels of geassociated with
phenotypek and associated with the super class of remaining phenotypes, respediivelye
log-transformed scale, witlrj x and g « the corresponding standard deviations. OVRSNR gene
selection for multicategory classification is given by:

M M
J =JJ k) = '
OVRSNR U ovrsNR(K) U {J Oik+ )«

k=1 k=1
wheretg is a pre-defined threshold (Golub et al., 1999). To assess the statigjitiéitance of the
difference betweenp, x andy; «, OVRt-stat applies a test of the null hypothesis that the means of
two assumed normally distributed measurements are equal. Accordingly, dtRfene selection

is given by Liu et al. (2002):

sty o] >rk}, ®)

M L
JOVRt—stat:UJOVRt_sta[(k “‘lhk UJ,-k‘

M
- :
k=1 kL:Jl | \/sz,k/NkJFsz,-k/(N —Ny)

where the p-values associated with each gene may be estimated. As atizastkrone limitation
of the gene selection schemes (8) and (9) is that the criterion functiodeomghe remaining
classes as a single group. Another is that they both require variancetestima

Dudoit et al. (2002) proposed a pooled OVO gene selection method basheé BW sum of
squares across all paired classes. Specifically, BW gene selectiatifiegpby

N <M ; )2
Tew = {J ‘ Z.N:1 Z;;l 1o, (l) (Uj,k P—J) S >1 } , (10)
Yt Yier e (1) (%) — Kik)

wherey; is the global arithmetic center of gef@ver all sample points antl,, (i) is the indicator
function reflecting membership of sampla classk. As pointed out by Loog et al. (2001), BW gene
selection may only preserve the distances of already well-separategsctaiser than neighboring
classes.

From a dimensionality reduction point of view, Guyon et al. (2002) predasfeature subset
ranking criterion for linear SVMs, dubbed the SVMRFE. Here, one fiieshs a linear SVM classi-
fier on the full feature space. Features are then ranked based ongh#éude of their weights and
are eliminated in the order of increasing weight magnitude. A widely adoptieattien strategy is
to eliminate a fixed or decreasing percentage of features correspdodhegbottom portion of the
ranked weights and then to retrain the SVM on the reduced feature #ggulécation to microarray
gene expression data shows that the genes selected matter more tharstfierslagth which they
are paired (Guyon et al., 2002).

> Tk g, 9)
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3. Results

We tested PUG-OVRSVM on five benchmarks and one in-house real migya#ata set, and com-
pared the performance to several widely-adopted gene selection asificiion methods.

3.1 Description of the Real Data Sets

The numbers of samples, phenotypes, and genes, as well as the naigmatiorms used to gener-
ate these gene expression data sets, are briefly summarized in Supplgeblas 1-7. The six
data sets are the MIT 14 Global Cancer Map data set (GCM) (Ramaswaahy 2201), the NCI
60 cancer cell lines data set (NCI60) (Staunton et al., 2001), the tditiwef Michigan cancer data
set (UMich) (Shedden et al., 2003), the Central Nervous System twtataisset (CNS) (Pomeroy
et al., 2002), the Muscular Dystrophy data set (MD) (Bakay et al., R@0&l the Norway Ascites
data set (NAS). To assure a meaningful and well-grounded compavisemphasized data quality
and suitability in choosing these test data sets. For example, the data setisbzatoo “simple” (if
the classes are well-separated, all methods perform equally well) oraagglex” (no method will
then perform reasonably well), and each class should contain suffgdaemples to support some
form of cross-validation assessment.

We also performed several important pre-processing steps widelyeatlop other researchers
(Guyon et al., 2002; Ramaswamy et al., 2001; Shedden et al., 2003; Statni&l., 2005). When
the expression levels in the raw data take negative values, probably dimbtd probe-set calls
and/or data normalization procedures, these negative values aresteplaa fixed small quantity
(Shedden et al., 2003). On the log-transformed scale, we furtheuctetta variance-based unsu-
pervised gene filtering operation to remove the genes whose expressidarsl deviations (across
all samples) were less than a pre-determined small threshold; this effectideces the number of
genes by half (Guyon et al., 2002; Shedden et al., 2003).

3.2 Experiment Design

We decoupled the two key steps of multicategory classification: 1) selectimjaamative subset
of marker genes and then 2) finding an accurate decision function. €articial first step we
implemented five gene selection methods, including OVEPUG specified by(RSER specified
by (8), OVRt-stat specified by (9), pooled BW specified by (10), awitMBFE described in Ra-
maswamy et al. (2001). We applied these methods to the six data sets, aadtiatata set, we
selected a sequence of gene subsets with varying sizes, indekig pys the number of genes per
class. In our experiments, this number was increased from 2 up to 1@de &he several reasons
why we do not go beyond 100 subPUGs per class. First, classificatbomeay may be either flat
or monotonically decreasing as the number of features increases beyenthin point, due to the
theoretical bias-variance dilemma. Second, even in some cases whigperi@snance is achieved
using all the gene features, the idea of feature selection is to find the minimuivenwf features
needed to achieve good (near-optimal) classification accuracy. THiehMppuc= 100, the total
number of genes used for classification is already quite large (this numineixisized if the sets
Jpuc(k) are mutually exclusive, in which case iths ppuctimes the number of classes). Fourth,
but not least important, a large feature reduction may be necessarylgatamplexity-wise, but
also for interpreting the biological functions and pathway involvement viheselected PUGs are
most relevant and statistically reproducible.
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The quality of the marker gene subsets was then assessed by predicfampace on four
subsequently trained classifiers, including OVRSVM, kNN, NBC, and GVM. In relation to
the proposed PUG-OVRSVM approach, we evaluated all combinationg®é flour different gene
selection methods and three different classifiers on all six benchmarkamiayogene expression
data sets.

To properly estimate the accuracy of predictive classification, a validatimredure must be
carefully designed, recognizing limits on the accuracy of estimated perfeemanparticular for
small sample size. Clearly, classification accuracy must be assessecibedaamples ‘unseen’
during training. However, for multicategory classification based on smalisétabalanced data
sets, single batch held-out test data may be precluded, as there will Heeiestisamples for both
accurate classifier training and accurate validation (Hastie et al., 200fp)acdical alternative is
a sound cross-validation procedure, wherein all the data are usbdtfotraining and testing, but
with held-out samples in a testing fold not used for any phase of class#ieiny, including gene
selection and classifier design (Wang et al., 2008). In our experimeatshose LOOCYV, wherein
a test fold consists of a single sample; the rest of the samples are placedraminiry set. Using
only the training set, the informative genes are selected and the weightsliokEifileOVRSVM are
fit to the data (Liu et al., 2005; Shedden et al., 2003; Yeang et al., 20015 .worth noting that
LOOCYV is approximately unbiased, lessening the likelihood of misestimating tlkcpoz error
due to small sample size; however, LOOCV estimates do have considerableceaBraga-Neto
and Dougherty, 2004; Hastie et al., 2001). We evaluated both the losgstiainable” prediction
error rate and the lowest prediction error rate, where the sequerstestafinable prediction error
rates were determined based on a moving-average of error rates asgyvhy axis of the number
of genes used for each cladg,rpus With a moving window of width 5. We also report the number
of genes per class at which the best sustainable performance wasedbtain

While the error rate is estimated through LOOCYV and the optimum number of PEkglsper
class is obtained by the aforementioned surveying strategy, we shouldgooithat a two-level
LOOCYV could be applied to jointly determine the optimiNg.Lpucand estimate the associated
error rate; however, such an approach is computationally expei@&amikov et al., 2005). For the
settings of structural parameters in the classifiers, we Gsed..0 in the SVMs for all experiments
(Vapnik, 1998), and chose= 1,2, 3 in kNNs under different training sample sizes per class, as
recommended by Duda et al. (2001).

3.3 Experimental Results

Our first comparative study focused on the GCM data widely used fduawvag multicategory
classification algorithms (Cai et al., 2007; Ramaswamy et al., 2001; Shetale?€03; Zhou and
Tuck, 2007). The performance curves of OVRSVM committee classifigirsetl on the commonly
pre-processed GCM data using the five different gene selection met@MsPUG, OVRSNR,
OVRt-stat, BW, and SVMRFE) are detailed in Figure 3. It can be seen thigiroposed OVEPUG
selection significantly improved the overall multicategory classification whegusfferent num-
bers of marker genes, as compared to the results produced by theofopeting gene selection
methods. For example, using as few as 9 genes per phenotypic class Z@ithistinct genes in
total, that is, mutually exclusive PUGs for each class), we classified 169®{86.32%) of the
tumors correctly. Furthermore, using LOOCV on the GCM data set of 1i@@apy malignant tu-
mors, and using the optimal number of genes (61 genes per phenotyoclas9 unique genes
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in total), we achieved the best (88.95% or 169 of 190 tumors) sustainatskectpredictions. In
contrast, at its optimum performance, OVRSNR gene selection achievet?8Si3stainable cor-
rect predictions using 25 genes per phenotypic class, OVRt-stat géawien achieved 84.53%
sustainable correct predictions using 71 genes per phenotypic cNégeBe selection achieved
80.53% sustainable correct predictions using 94 genes per phenolggsc and SVMRFE gene
selection achieved 84.74% sustainable correct predictions using 96 genphenotypic class. In
our comparative study, instead of solely comparing the lowest erroraelbésved by different gene
selection methods, we also emphasized the sustainable correct predigrasgpotential overfit-
ting to the data may produce an (unsustainably) good prediction perfoemBacour experiments
in Figure 3, based on the realistic assumption that the probability of gooitpoed purely “by
chance” over a sequence of consecutive gene numbers is low, wedldfie sustainable predic-
tion/error rates based on the moving-averaged prediction/error ra¢es ev5 consecutive gene
numbers. Here) gives the sustainability requirement.

0.45 |
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0.4- % --=SNR+SVM | |
% 5 ---t-Stat+SVM
° + BW + SVM
O 0.35r |’:‘* ------ RFE+SVM | -
do b
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Figure 3: Comparative study on five gene selection methods (OVEPUGS®RROVRt-stat, BW,
and SVMRFE) using the GCM benchmark data set. The curves of clatisificaror
rates were generated by using OVRSVM committee classifiers with varyingptthe
input gene subset.

For the purpose of information sharing with readers, based on publjpbyterd optimal results
for different methods, we have summarized in Table 1 the comparativerpenfice achieved by
PUG-OVRSVM and eight existing/competing methods on the benchmark GCMsdatalong
with the gene selection methods used, the chosen classifiers, sample rsizés ahosen cross-
validation schemes. Obviously, since the reported prediction error ratesgenerated by different
algorithms and under different conditions, any conclusions based onegitinpct comparisons of
the reported results must be carefully drawn. We have chosen not fmeindently reproduce results
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by re-implementing the methods listed in Table 1, firstly because we typically dwametaccess to
public domain code implementing other authors’ methods and secondly begadsel that high
reproducibility of previously published results may not be expected withooiving some likely
undeclared optimization steps and/or additional control parameters used actinal computer
codes. Nevertheless, many reported prediction error rates on the @@Met were actually based
on the same/similar training sample set (£44.90 primary tumors) and the LOOCV scheme used
in our PUG-OVRSVM experiments; furthermore, it was reported that tleeliption error rates
estimated by LOOCV and 144/54 split/held-out test were very similar (Ramaswaaly 2001).
Specifically, the initial work on GCM by Ramaswamy et al. (2001) reportedcimeved 77.78%
prediction rate, and some improved performance was later reported bg ¥éal. (2001) and Liu
et al. (2002), achieving 81.75% and 79.99% prediction rates, resplyctinr the work most closely
related to our gene selection scheme by Shedden et al. (2003), usingtadd\tlassifier and using
OVR fold-change based gene selection specified by (4), a predict®onf82.63% was achieved.
In relation to these reported results on GCM, as indicated in Table 1, opoged PUG-OVRSVM
method produced the best sustainable prediction rate of 88.95%.

References Gene-select Classifier | Sample | CV scheme Error rate
Ramaswamy et al. (2001)) OVRSVM RFE OVRSVM | 144&198 | LOOCV 144/54 | 22.22%
Yeang et al. (2001) N/A OVRSVM | 144 LOooCv 18.75%
Ooi and Tan (2003) Genetic algorithm| MLHD 198 144/54 18.00%
Shedden et al. (2003) OVR fold-change | kNN Tree | 190 LOOCV 17.37%
Liu et al. (2005) Genetic algorithm| OVOSVM | N/A LOOCV 20.01%
Statnikov et al. (2005) No gene selection CS-SVM | 308 10-fold 23.40%
Zhou and Tuck (2007) CS-SVM RFE OVRSVM | 198 4-fold 16.72%
Cai et al. (2007) DISC-GS kNN 190 144/46 21.74%
PUG-OVRSVM PUG OVRSVM | 190 Loocv 11.05%

Table 1: Summary of comparative performances by OVEPUG-OVRSVM eglt competing
methods (based on publicly reported optimum results) on the GCM benchmaarket.

A more stringent evaluation of the robustness of a classification method igrio s the
predictions on multiple data sets and then assess the overall performaairek(® et al., 2005).
Our second comparative study evaluated the aforementioned five deatosemethods using the
six benchmark microarray gene expression data sets. To determine wthethgenes selected
matter more than the classifiers used (Guyon et al., 2002), we used a conrMR@VOI committee
classifier and LOOCV scheme in all the experiments, and summarized thepmamcéng results in
Table 2. For each experiment that used a distinct gene selection schglied &pa distinct data set,
we reported both sustainable (with sustainability requirerdenb) and lowest (within parentheses)
prediction error rates, as well as the number of genes per class thatused to produce these
results. Clearly, the selected PUGs based on (5) produced the higkesit sustainable prediction
rates as compared to the other four competing gene selection methods. c8fecRUG is the
consistent winner in 22 of 24 competing experiments (combinations of four gglection schemes
and six testing data sets). It should be noted that although BW and OVR&N&ad comparably
low prediction error rates on the CNS data set (with relatively balanced raigiatributions), they
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also produced high prediction error rates on the other testing data setght#recompeting gene
selection methods also show some level of performance instability acrossetsta

Gene-select GCM NCI60 UMich CNS MD NAS
OVE PUG 11.05% 27.33% 1.08% 7.14% 19.67% 13.16%
(11.05%) (26.67%) (0.85%) (7.14%) (19.01%) (13.16%)
[61 g/class]| [52 g/class]| [26 g/class]| [71 g/class]| [46 g/class]| [42 g/class]
OVR SNR 14.63% 31.67% 1.42% 7.14% 23.97% 16.32%
(13.68%) (31.67%) (1.42%) (7.14%) (23.97%) (15.79%)
[25 g/class]| [58 g/class]| [62 g/class]| [57 g/class]| [85 g/class]| [54 g/class]
OVR t-stat 15.47% 31.67% 1.70% 7.62% 23.47% 15.79%
(15.26%) (31.67%) (1.70%) (7.14%) (22.31%) (15.79%)
[71 g/class]| [56 g/class]| [45 g/class]| [92 g/class]| [56 g/class]| [74 g/class]
BW 19.47% 31.67% 1.30% 7.14% 19.83% 21.05%
(18.95%) (31.67%) (1.13%) (7.14%) (19.01%) (21.05%)
[94 g/class]| [55 g/class]| [92 g/class] | [56 g/class]| [71 g/class]| [65 g/class]
SVM RFE 15.26% 29.00% 1.13% 14.29% 29.09% 32.11%
(14.21%) (28.33%) (1.13%) (14.29%) (28.10%) (31.58%)
[96 g/class]| [81 g/class]| [58 g/class]| [53 g/class]| [73 g/class]| [94 g/class]

Table 2: Performance comparison between five different gene seleuitimods tested on six
benchmark microarray gene expression data sets, where the prediasisgication error
rates for all methods were generated based on OVRSVM committee clasgifiaatican
LOOCV scheme. Both sustainable and lowest (within parentheses) atesrare reported
together with number of genes used per class.

To give more complete comparisons that also involved different class{fasnikov et al.,
2005), we further illustrate the superior prediction performance of themedt©®VEPUG selection
and OVRSVM classifier as compared to the best results produced by catiobmof three different
classifiers (OVOSVM, kNN, NBC) and four gene selection methods (FOMRSNR, OVRt-stat,
pooled BW). The optimum experimental results achieved over all combinatioiese methods
on the six data sets are summarized in Table 3, where we report both shistgirediction error
rates and the corresponding gene selection methods. Again, PUG-QWR&gerformed all other
methods on all six data sets and was a clear winner in all 15 competing expexii@en compara-
tive studies also reveal that although gene selection is a critical step of ntelgiecg classification,
the classifiers used do indeed play an important role in achieving gootfiwagerformance.

3.4 Comparison Results on the Realistic Simulation Data Sets

To more reliably validate and compare the performance of the differemetggdaction methods, we
have conducted additional experiments involving realistic simulations. Trentalye of using syn-
thetic data is that, unlike the real data sets often with small sample size and with\.@&@e only
applicable validation method, large testing samples can be generated to allcaugata and reli-

able assessment of a classifier's generalization performance. Tweediffsimulation approaches
were implemented. In both, we modeled the joint distribution for microarray detarieach class

and generatedi.d. synthetic data sets consistent both with these distributions and with assumed
class priors. In the first approach, we chose the class-conditionalsoohsistent with commonly

2154



PUG-OVRSVM

GCM NCI60 UMich CNS MD NAS
OVRSVM | 11.05% 27.33% 1.08% 7.14% 19.67% 13.16%
(OVEPUG) | (OVEPUG) | (OVEPUG) | (OVEPUG) | (OVEPUG) | (OVEPUG)

OVOSVM | 14.74% 33.33% 1.70% 9.52% 19.83% 16.32%
(OVEPUG) | (OVRSNR) | (OVEPUG) |  (BW) (BW) (OVRSNR)

kNN 21.05% 31.67% 2.27% 13.33% 21.81% 13.68%
(OVEPUG) | (OVRt-stat) | (OVEPUG) | (OVEPUG) |  (BW) (OVRt-stat)

NBC 36.00% 51.67% 2.83% 37.62% 37.69% 34.21%
(OVRSNR) | (OVRSNR) | (OVRt-stat)|  (BW) (BW) (OVEPUG)

Table 3: Performance comparison based on the lowest predictive dassifierror rates produced
by OVEPUG-OVRSVM and the optimum combinations of five different gerecten
methods and three different classifiers, tested on six benchmark mayagne expres-
sion data sets and assessed via the LOOCV scheme.

accepted properties of microarray data (few discriminating features, namgiscriminating fea-
tures, and with small sample size) (Hanczar and Dougherty, 2010; Wahg2002). In the second
approach, we directly estimated the class-conditional models based ohraicezarray data set
and then generated thed. samples according to the learned models.

3.4.1 DESIGNI

We simulated 5000 genes, with 90 “relevant” and 4910 “irrelevant” gelmsgired by gene clus-
tering concept in modelling local correlations, we divided the genes int® bicks of size five,
each containing exclusively either relevant or irrelevant genes. Witih block the correlation
coefficient is 0.9, with zero correlation across blocks. Irrelevantegeare assumed to follow a
(univariate) standard normal distribution, for all classes. Relevarggalso follow a normal distri-
bution with variance 1 for all classes. There are three equally likely dags@® and C. The mean
vectors of the 90 relevant genes under each class are shown in Table4neans were chosen
to make the classification task neither too easy nor too difficult and to simulatgiaingistances
between the classes—A and B are relatively close, with C more distant fstmAband B.

The mean vecton for each class

Ma | [2.82.82.82.82811111222220505050505000002222222111
112222233333222222222222222050505050500000113 1
33330.10.10.10.10.1]

Mg | [111112828282828222220505050505000002222222111
112222233333222222222222222050505050500000113 1
33330.10.10.10.10.1]

Mc [[111111111114414.414414414.48.5858.58.58.588 8381 101010 1q
1010101010999991010101010333331010101010101010 101010
10858.58.58585888889999911111111117.17.17.17]17.

Table 4: The mean vectors of the 90 relevant genes under each ofeébecthsses.

We randomly generated 100 synthetic data sets, each partitioned into a smilytezt of 60
samples (20 per class) and a large testing set of 6000 samples.
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3.4.2 DESIGNII

The second approach models each class as a more realistic multivariatédistrifutionN (L, %),
with the class’s mean vectgrand covariance matriX directly learned from the real microarray
data set GCM. Estimation of a covariance matrix is certainly a challenging taskifisally due
to the very high dimensionality of the gene spape=(15,927 genes in the GCM data) and only
a few dozen samples available for estimatjpigp — 1) /2 free covariate parameters per class. It is
also computationally prohibitive to generate random vectors based omfalliances on a general
desktop computer. To address both of these problems, we applied arfasrdet (McLachlan and
Krishnan, 2008), which can significantly reduces the number of freenpeters to be estimated
while capturing the main correlation structure in the data.

In factor analysis, the observeguk 1 vectort is modeled as

t=p+Wx+g,

wherep is the mean vector of observationW is a p x g matrix of factor loadingsx is theq x 1
latent variable vector with standard normal distributi¥i0, ) and € is noise with independent
multivariate normal distributioN (0, V), W = diag (o%, ... ,0%). The resulting covariance matri
is

T=WWT+y.

Estimation ofZ reduces to estimating/ and¥, totalingp(g+ 1) parameters. Usually, we have
g much less thamp. The factor model is learned via the EM algorithm (McLachlan and Krishnan
2008), initialized by probabilistic principal component analysis (Tipping Bistiop, 1999).

In our experiments, we sgt= 5, which typically accounted for 60% of the energy. We also tried
g= 3 and 7 and observed that the relative performance remained unchafiyeugh the absolute
performance of all methods does change wjith

Five phenotypic classes were used in our simulation: breast cancehdynap bladder cancer,
leukemia and CNS. 100 synthetic data sets were generated randomlyiagcorthe learned class
models from the real data of these five cancer types. The dimensiondorseaple is 15,927.
For each data set, the training sample size was the same as used in the regpedtaents, with
11, 22, 11, 30, and 20 samples in the five respective classes; andtthg $et consisted of 3,000
samples, 600 per class.

3.5 Evaluation of Performance

For a given gene-selection method and for each data set (indexed hy. ., 100), the classifiel
is learned. We then evaludteon thei-th testing set, and measure the error eat&ince the testing
set has quite large sample size, we would expetct be close to the true classification error rate for
F. Over 100 simulation data sets, we then calculated both the average cléiesifiteore and the
standard deviatio.

Furthermore, let; pyc denote the error rate associated with PUGs on testinigaed similarly,
let € snr Eit-stan € ,Bw and € symrre denote the error rates associated with the four peer gene
selection methods. The error rate difference between two methods dmpéx, PUG and SNR, is
defined by

Di (PUG,SNR = & puc — &i sNR
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For each synthetic data set, we define the “winner” as the one with the Istisgterror rate.
For each method, the mean and standard deviation of the error rate arebjilnerfcy of winning are
examined for performance evaluation. In addition, the histogram of eaterdifferences between
PUG and peer methods are provided.

3.6 Experimental Results on the Simulation Data Sets

We tested all gene selection methods using the common OVRSVM classifier. Adkpegiments
were done using the same procedure as on the real data sets, exca@@@i@V error estimation
replaced by the error estimation using large size independent testing dgtae B, analogous
to Figure 3 while on the realistic synthetic data whose model was estimated fravhda set
(simulation data under design Il), shows the comparative study on five gellection methods
(OVEPUG, OVRSNR, OVRt-stat, BW, and SVMRFE). Tables 5 and 6 shavatierage error,
standard deviation, and frequency of winning, estimated based on theih@tation data sets.
PUG has the smallest average error over all competing methods. PUG alsorsogt stable
method (with the smallest standard deviation). Tables 7 and 8 provide the isampeesults of
the five competing methods on the first ten data sets.

Figures 5 and 6 show histograms of the error difference between PUGtlagr methods, where
a negative value of the difference indicates better performance by Fb&red bar shows the
position where the two methods are equal. We can see that the vast majorififedrates are
negative. Actually, as indicated in Tables 5 and 6, there is no positiveetiffe in the subfigures of
Figure 5 and at most one positive difference in the subfigures of F&ure

PUG | SNR | t-stat BW | SVMRFE

mean 0.0724| 0.1129| 0.1135| 0.1165| 0.1203

std deviation 0.0052| 0.0180| 0.0188| 0.0177| 0.0224
frequency of ‘winner’| 100 0 0 0 0

Table 5: The mean and standard deviation of classification error ancetigeficy of winner based
on 100 simulation data sets with design I.

PUG | SNR | t-stat BW | SVMRFE
mean 0.0712| 0.1311| 0.1316| 0.2649| 0.0910
std deviation 0.0201| 0.0447| 0.0449| 0.0302| 0.0244
frequency of ‘winner’| 99 0 0 0 1

Table 6: The mean and standard deviation of classification error ancetiugefncy of winner based
on 100 simulation data sets with design II.

3.7 Comparison Between PUGs and PDGs

In this experiment, we selected PDGs according to the definition given im(beealuated gene
selection based on PUGs, PDGs, and based on their union, as givénAgém, all gene selection
methods were coupled with the OVRSVM classifier. Table 9 shows classifiga¢gidormance for
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Figure 4: Comparative study on five gene selection methods (OVEPUGSRYRROVRt-stat, BW,
and SVMRFE) on one simulation data set under design Il. The curvelsssification
error rates were generated by using OVRSVM committee classifiers witigasize of
the input gene subset.

siml | sim2 | sim.3 | sim4 | sim5 | sim6 | sim7 | sim8 | sim9 | sim.10
PUG 0.0864| 0.0773| 0.0697| 0.0681| 0.0740| 0.0761| 0.0740| 0.0721| 0.0666| 0.0758
SNR 0.1078| 0.1092| 0.1028| 0.1279| 0.1331| 0.1004| 0.1011| 0.1253| 0.0817| 0.0838
t-stat | 0.1109| 0.1089| 0.1022| 0.1251| 0.1333| 0.0991| 0.1016| 0.1268| 0.0823| 0.0832
BW 0.1127| 0.0995| 0.1049| 0.1271| 0.1309| 0.1107| 0.1044| 0.1291| 0.0903| 0.0845
SVMRFE | 0.1030| 0.1009| 0.0967| 0.1219| 0.1248| 0.1016| 0.1107| 0.1191| 0.1198| 0.0933

Table 7: Comparison of the classification error for the first ten simulationsgasavith design I.

PUGs, PDGs and PUGs+PDGs. Clearly, PDGs have less discriminatogy guam PUGSs, and the
inclusion of PDGs (generally) worsens classification accuracy, cadpaith just using PUGSs.

sim.l | sim2 | sim.3 | sim4 | sim5 | sim6 | sim.7 | sim8 | sim9 | sim_.10
PUG 0.0694| 0.0610| 0.0748| 0.0675| 0.0536| 0.0474| 0.0726| 0.0818| 0.0560| 0.0700
SNR 0.1559| 0.0659| 0.1142| 0.1211| 0.0508| 0.1937| 0.1568| 0.1464| 0.0797| 0.0711
t-stat | 0.1559| 0.0659| 0.1142| 0.1210| 0.0508| 0.1939| 0.1568| 0.1464| 0.0797| 0.0712
BW 0.2373] 0.2698| 0.2510| 0.2650| 0.3123| 0.2464| 0.3070| 0.2236| 0.2800| 0.3055
SVMRFE | 0.0906| 0.0739| 0.0864| 0.0852| 0.0426| 0.0776| 0.0863| 0.0973| 0.0655| 0.0730

Table 8: Comparison of the classification error for the first ten simulationsgdsavith design 1.
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Figure 5: Histogram of the error difference between PUG and other ethith design I.

Error Rate | GCM NCI60 | UMich CNS MD NAS
PUG 11.05% | 27.33% | 1.08% | 7.14% | 19.67% | 13.16%
PDG 17.58% | 30.33% | 1.98% | 9.52% | 26.28% | 25.79%

PUG+PDG| 14.53% | 30.67% | 1.13% | 7.14% | 23.14% | 15.79%

Table 9: Classification comparison of PUG and PDG on the six benchmarketata

There are several potential reasons that may jointly explain the norildirtg or even nega-
tive role of the included PDGs. First, the number of PDGs are much less thaoftRUGS, that
is, PUGs represent the significant majority of informative genes whenskRa@ PDGs are jointly
considered, as shown in Table 10 (Top PUG+PDGs were selected wittnB3 ger class and we
counted how many PUGs are included in the total). Second, PDGs areliabterthan PUGs due
to the noise characteristics of gene expression data, that is, low gemssgps contain relatively
large additive noise after log-transformation (Huber et al., 2002; RankeDurbin, 2001). This is
further exacerbated by the follow-up one-versus-rest classifteuse there are many more samples
in the ‘rest’ group than in the ‘one’ group. This practically increases dtegive noise/variability
associated with PDGs in the ‘one’ group. In addition, PUGs are consisfémthe practice of
molecular pathology and thus may have broader clinical utility, for examplet, coosently avail-
able disease gene markers are highly expressed (Shedden et al., 2003
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Figure 6: Histogram of the error difference between PUG and other methith design I1.

GCM NCI60 | UMich CNS MD NAS
No. of PUG 113 76 56 33 76 65
No. of PUG+PDG| 140 90 60 50 130 70
% of PUG 80.71% | 84.44% | 93.33% | 66.00% | 58.46% | 92.86%

Table 10: Classification comparison of PUG and PDG on the six benchmizarkels.

3.8 Marker Gene Validation by Biological Knowledge

We have applied existing biological knowledge to validate biological plausibifitthe selected
PUG markers for two data sets, GCM and NAS. The full list of genes moshyhégisociated with
each of the 14 tumor types in the GCM data set are detailed in the Supplemeattéag 8 and 9.

3.8.1 BOLOGICAL INTERPRETATION FORGCM DATA SET

Prolactin-induced protein, which is regulated by prolactin activation of @sptors, ranks highest
among the PUGs associated with breast cancer. Postmenopausataneastrisk is strongly asso-
ciated with elevated prolactin levels (PubMed IDs 15375001, 12373&2D3P83). Interestingly,
prolactin release proportionally increases with increasing central fdigaeowomen (PubMed ID
15356045) and women with this pattern of obesity have an increased tiskadt cancer mortality
(PubMed ID 14607804). Other genes of interest that rank among tHétbpeast cancer PUGs in-
clude CRABP2, which transports retinoic acid to the nucleus. Retinoids amtiamp regulators of
breast cell function and show activity as potential breast cancer girenentive agents (PubMed
IDs 11250995, 12186376). Mammglobin is primarily expressed in nornegdbrepithelium and
breast cancers (PubMed ID 12793902). Carbonic anhydrasis ¥kpressed in breast cancers and
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is generally considered a marker of a good prognosis (PubMed IDLT2®J. The selective expres-
sion and/or function of these genes in breast cancers are consigtettieir selection as PUGs in
the classification scheme.

The top 10 PUGs associated with prostate cancer include several desregysassociated
with the prostate including prostate specific antigen (PSA) and its alternaspktyd form 2, and
prostatic secretory protein 57. The role of PSA gene KLK3 and KLK1 hmmarker of prostate
cancer is well established (PubMed ID 19213567). Increased NpKession is associated with
high-grade prostatic intraepithelial neoplasia and poor prognosis imapecsancers (PubMed ID
10561252). ACPP is another prostate specific protein biomarker (RliliM8244395). The strong
representation of genes that show clear selectivity for expression wlihiprostate illustrates the
potential of the PUGs as bio-markers linked to the biology of the underlyinggsss

Several of the selected PUG markers for uterine cancer fit very wellouiticurrent biological
understanding of this disease. It is well-established that estrogerioeagha (ESR1) is expressed
or amplified in human uterine cancer (PubMed IDs 18720455, 17911(¥PA/1938), while the
Hox7 gene (MSX1) contributes to uterine function in cow and mouse modelsciedly at the onset
of pregnancy (PubMed IDs 7908629, 14976223, 19007558). Mayiwiia 2 (SCGB2A1) is highly
expressed in a specific type of well-differentiated uterine cancer (eatl@l cancers) (PubMed ID
18021217), and PAM expression in the rat uterus is known to be redudgtestrogen (PubMed IDs
9618561, 9441675). Other PUGs provide novel insights into uterineecdhat are deserving of
further study. Our PUG selection ranks HE4 higher than the well-estatlliS8A&25 marker, which
may suggest HE4 as a promising alternative for the clinical managemerdahetrial cancer. One
recent study (PubMed ID 18495222) shows that, at 95% specificitgeigtivity of differentiating
between controls and all stages of uterine cancer is 44.9% using HEA&F2% using CA125 (p
=0.0001).

Osteopontin (OPN) is an integrin-binding protein that is involved in tumorigeragsl metas-
tasis. OPN levels in the plasma of patients with ovarian cancer are much highpeid with
plasma from healthy individuals (PubMed ID 11926891). OPN can isertiee survival of ovarian
cancer cells under stress conditions in vitro and can promote the late gsmgref ovarian cancer
in vivo, and the survival-promoting functions of OPN are mediated thréglactivation (PubMed
ID 19016748). Matrix metalloproteinase 2 (MMP2) is an enzyme degradiltggen type 1V and
other components of the basement membrane. MMP-2 is expressed by titetastaan cancer
cells and functionally regulates their attachment to peritoneal surfacédi@grlID 18340378).
MMP?2 facilitates the transmigration of human ovarian carcinoma cells acrdsghatial extracel-
lular matrix (PubMed ID 15609323). Glutathione peroxidase 3 (GPX3) ésafrseveral isoforms
of peroxidases that reduce hydroperoxides to the correspondinigoddcby means of glutathione
(GSH) (PubMed ID 17081103). GPX3 has been shown to be highlyeegpd in ovarian clear cell
adenocarcinoma. Moreover, GPX3 has been associated with low cis@asitigty (PubMed ID
19020706).

3.8.2 BOLOGICAL INTERPRETATION FORNAS DATA SET

Several top-ranking gene products identified by our computational metnasldeen well estab-
lished as tumor-type specific markers and many of them have been useddaldiagnosis. For
example, mucin 16, also known as CA125, is a FDA-approved serum markeonitor disease
progression and recurrence in ovarian cancer patients (PubMe@oI2984). Likewise, kallikrein
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family members including KLK6 and KLK8 are known to be ovarian canceo@ated markers
which can be detected in body fluids in ovarian cancer patients (PubM£d308231). TITF1 (also
known as TTF1) has been reported as a relatively specific marker irtlergpcarcinoma (PubMed
ID 17982442) and it has been used to assist differential diagnosia@thncer from other types of
carcinoma. Fatty acid synthase (FASN) is a well-known gene that is ofteguiated in breast can-
cer (PubMed ID 17631500) and the enzyme is amenable for drug targsimg RASN inhibitors,
suggesting that it can be used as a therapeutic target in breast caheeabove findings indi-
cate the robustness of our computational method in identifying tumor-typédispearkers and in
classifying different types of neoplastic diseases. Such informatiold b@uwseful in translational
studies (PubMed ID 12874019). Metastatic carcinoma of unknown origirrédatively common
presentation in cancer patients and an accurate diagnosis of the tumortlypenatastatic diseases
is important to direct appropriate treatment and predict clinical outcome.diBtiactive patterns
of gene expression characteristic to various types of cancer may hblpqgists and clinicians to
better manage their patients.

3.9 Gene Comparisons Between Methods

It may be informative to provide some initial analysis on how the selected gengsare between
methods; however, without definitive ground truth on cancer markezsytility of this information
is somewhat limited and should, thus, be treated as anecdotal, rather titdust@n Specifically,
we have now done some assessment of how differentially these gentiogeteethods rank some
known cancer marker genes. The overlap rate is defined as the nuhgiesres commonly selected
by two methods over the maximum size of the two selected gene set&; laatd G, denote the
gene sets selected by gene selection methods 1 and 2, respectively] dedote the cardinality
(the size) of seG. The overlap rate betwedsy, andG; is

_ |Glﬂ62’
max(|Gy|,|G|)

Table 11 shows the overlap rate between methods on the top 100 genésspeNde can see
that the overlap rates between methods are generally low except foritlod $AIR and t-stat. BW
genes are quite different from the genes selected by all other methddsase only about 15%
overlap rate with PUG and SVMRFE. The relatively high overlap rate bet@&R and t-stat may
be expected since they use quite similar summary statistics in their selection criteria.

We have also examined a total of 16 genes with known associations with 4 tymeer ffhese 16
genes are well-known markers supported by current biological krnigeleThe rank of biomedical
importance of these genes produced by each method is summarized in TaMé&g a gene is
not listed in the top 100 genes by a wrapper method like SVMRFE, we simplynaisggank as
‘>100". Generally but not uniformly across cancer types, these validateller genes are highly
ranked in the PUGs list as compared to other methods, and thus will be saletyesl by PUG
criterion.

4. Discussion

In this paper, we address several critical yet subtle issues in multicategidecular classification
applied to real-world biological and/or clinical applications. We proposewelngene selection
methodology matched to the multicategory classification approach (potentially mithielanced
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Overlapping Ratel PUG SNR t-stat BW SVMRFE
PUG 1 0.4117 | 0.3053| 0.1450| 0.4057
SNR 0.4117 1 0.7439| 0.3307| 0.3841
t-stat 0.3053 | 0.7439 1 0.2907 | 0.3941
BW 0.1450| 0.3307 | 0.2907 1 0.1307
SVMRFE 0.4057 | 0.3841| 0.3941| 0.1307 1

Table 11: The overlapping rate between methods on the top 100 gendagser ¢

Breast Cancer Relevant Genes Prostate Cancer Relevant Genes
Rank Rank
Gene Symbot oG TSNR  t-stat] BW | SMRFE| S8"® SYMPOI 5 GTSNR t-stat] BW | SMRFE
PIP 1 |5745|6146|473| >100 KLK3 4 5 11 | 61 15
CRABP2 4 |5965| 6244|498 >100 KLK1 5 3 9 76 16
SCGB2A2 6 |6693| 6773|458 14 NPY 7 18 22 | 344 30
CA12 9 |6586|6647|518| >100 ACPP 3 4 8 71 12
Uterine Cancer Relevant Genes Ovarian Cancer Relevant Genes
Rank Rank
Gene Symbot 5 G TSNR| tstat] BW | SMRFE| 8" SYMPO 5 GGTSNR  t-stat| BW | SVMRFE
ESR1 1 2 16 | 130 5 OPN 15 | 334 | 517 | 371 63
Hox7 2 4 52 | 307 12 MMP2 42 | 2626| 3045|481 >100
SCGB2A1 8 3 19 | 190 4 GPX3 7 411 | 812 | 446| >100
PAM 10 | 83 | 281 | 365 71
HE4 3 1 3 99 5

Table 12: Detailed comparison between methods on several validated rparie.

mixture distribution) that is not a straightforward pooled extension of biftary-class) differential

analysis. We emphasize the statistical reproducibility and biological plausititineselected gene
markers under small sample size, supported by their detailed biologicalretegipns. We tested
our method on six benchmark and in-house real microarray gene sipretata sets and com-
pared its performance with that of several existing methods. We imposedraugyperformance
assessment where each and all components of the scheme includinglgetiersare subjected to

cross-validation, for example, held-out/unseen samples in a testing fotbawsed for any phase
of classifier training.

Tested on six benchmark real microarray data sets, the proposed RBSVM method out-
performs several widely-adopted gene selection and classification metftbdswer error rates,
fewer marker genes, and higher performance sustainability. Moreatde for some data sets,
the absolute gain in classification accuracy percentage of PUG-OVRSYIM dramatically large,
it must be recognized that the performance may be approaching the mininyes Baor rate, in
which case PUG-OVRSVM is achieving nearly all the improvement that is d¢ieally attainable.
Furthermore, the improved performance is achieved by correct classifis on some of the most
difficult cases, which is considered significant for clinical diagnosianiBswamy et al., 2001).
Lastly, although improvements will be data set-dependent, our multi-data ehée® shown that
PUG-OVRSVM is the consistent winner as compared to several peer methods
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We note that we have opted for simplicity as opposed to theoretical optimality igniteg our
method. Our primary goal was to demonstrate that a small number of refrtdpbenotypic-
dependent genes are sufficient to achieve improved multicategory dassifi that is, small sam-
ple sizes and a large number of classes need not preclude a high lpezf@inance. Our studies
suggest that using genes’ marginal associations with the phenotypioGasegs we do here has the
potential to stabilize the learning process, leading to a substantial reductierfammance variabil-
ity with small sample size; whereas, the current generation of complex gégatisn technigues
may not be stable or powerful enough to reliably exploit gene interactiot®avariations unless
the sample size is sufficiently large. We have not explored the full flexibilityttig method read-
ily allows, with different numbers of subPUGs used by different classifieresumably, equal or
better performance could be achieved with fewer genes if more markeessedected for the most
difficult classifications, involving the nearest phenotypes. Howewuet fexibility could actually
degrade performance in practice since it introduces extra design stasidethus, extra sources of
variation in classification performance. We may also extend our method targtdoo variation in
fold-changes, with the uncertainty estimated on bootstrap samples judicigumilcato eliminate
those PUGs with high variations.

Notably, multicategory classification is intrinsically a nonlinear classificatioblpro, and this
method (using one-versus-everyone fold-change based PUG seldoimar kernel SVMs, and
the MAP decision rule) is most practically suitable to discriminating unimodal dasEeture
work will be required to extend PUG-OVRSVM for multimodal class distributiods) elegant
yet simple strategy is to introduce unimodal pseudo-classes for the multi-itladaés via a pre-
clustering step, with the final class decision readily made without the neey degision combiner.
Specifically, for each (pseudo-class, super pseudo-class) garéwfor a pseudo-class originating
from classk, the paired super pseudo-class is the union of all pseudo-classafothat belong
to classk), a separating hyperplane is constructed. Accordingly, in selectingly@b for each
pseudo-class, the pseudo-classes originating from the same classtwifl considered.
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