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Abstract
We describe a class of sparse latent factor models, called graphical factor models (GFMs), and
relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have
sparse, orthogonalfactor loadings matrices, that, in addition to sparsity of the implied covariance
matrices, also induce conditional independence structures via zeros in the implied precision ma-
trices. We describe the models and their use for robust estimation of sparse latent factor structure
and data/signal reconstruction. We develop computationalalgorithms for model exploration and
posterior mode search, addressing the hard combinatorial optimization involved in the search over
a huge space of potential sparse configurations. A mean-fieldvariational technique coupled with
annealing is developed to successively generate “artificial” posterior distributions that, at the limit-
ing temperature in the annealing schedule, define required posterior modes in the GFM parameter
space. Several detailed empirical studies and comparisonsto related approaches are discussed,
including analyses of handwritten digit image and cancer gene expression data.
Keywords: annealing, graphical factor models, variational mean-field method, MAP estimation,
sparse factor analysis, gene expression profiling

1. Introduction

Bayesian sparse modelling in multivariate analysis is of increasing interest in applications as diverse
as life science, economics and information science, and is driving a need for effective computational
methods for learning model structure, that is, sparse configurations. Parallel developments of sparse
latent factor models (e.g., West, 2003; Griffiths and Ghahramani, 2006; Lucas et al., 2006; Wang
et al., 2007; Archambeau and Bach, 2009; Carvalho et al., 2008; Guanand Dy, 2009; Rai and
Dauḿe, 2009) and inherently sparsely structured graphical models (e.g., Jordan, 1999, 2004; Dobra
et al., 2004; Jones et al., 2005; Carvalho and West, 2007) have explored Bayesian computations
using a range of stochastic and deterministic search methods. With a view to scaling to higher di-
mensions and identification of regions of interest in model structure space,efficient and effective
computation remains a challenge. We describe a previously undeveloped class of sparse graphi-
cal factor models (GFMs)—a subclass of linear, Gaussian latent factor models with sparse factor
loadings that also induce sparse conditional independencies. In this context, we develop a compu-
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tational technique for posterior mode evaluation using a hybrid of variational mean-field method
(Attias, 1999; Wainwright and Jordan, 2008) and annealing-based optimization.

As a previously unexplored class of sparse (linear, Gaussian) factormodels, the intrinsic graph-
ical structure of the GFM arises from use of an orthogonal factor loadings matrix and appropriate
scaling of its columns, together with the usual diagonal covariance matrix forlatent factors (with no
loss of generality). We show that this generally induces zero elements in the precision matrix of the
GFM, as well as the covariance matrix. Particularly, the zero entries in the covariance matrix have
corresponding zeros in the precision matrix. We also show that covariance matrices of fitted values
(i.e., “data reconstructions”) from such a model have the same sparse structure, and demonstrate
aspects of robustness of the model in inferring variable-latent factor relationships in the presence
of outliers. These properties are not shared in general by sparse factor models that lack the graph-
ical structure on variables, nor of course by non-sparse approaches. These intrinsic properties of
the GFM, along with relationships with earlier studies on sparse factor analyses, are discussed in
Section 2.

Ourvariational mean-field annealing algorithm (VMA2)addresses the combinatorial optimiza-
tion involved in aiming to compute approximate posterior modes for GFM parametersin the context
of the huge space of zero/non-zero potential patterns in factor loadings. Using a prescribed schedule
of decreasing temperatures, VMA2 successively generates tempered “artificial” posteriors that, at
the limiting zero temperature, yield posterior modes for both GFM parameters andthe 0/1 loadings
indicators. Defined via an artificial, dynamic regularization on the posterior entropy of configured
sparse structures, VMA2 is developed in Section 3.

Section 4 provides additional algorithmic details, including prior modelling for evaluating de-
gree of sparseness, and a stochastic variant of VMA2 for higher-dimensional problems is described
in Section 5. Performance and comparisons on artificial data appear in Section 6. Section 7 summa-
rizes extensive, detailed empirical comparisons with related approaches inanalyses of hand-written
digit images and cancer gene expression data. Section 8 concludes with brief additional comments.
A range of detailed supplementary materials, extended discussion on the gene expression studies
andR code, is accessible fromhttp://daweb.ism.ac.jp/ ˜ yoshidar/anneals/ .

2. Sparse Graphical Factor Models

We describe the GFM with some intrinsic graphical properties, followed by connections to previ-
ously developed classes of sparse latent factor analyses.

2.1 GFM Form

Observed sample vectorsxi ∈ R
p in p dimensional feature space are each linearly related to in-

dependent, unobserved Gaussian latent factor vectorsλi ∈ R
k with additional Gaussian noise. We

are interested in sparse variable-factor relationships so that the bipartite mappingλ→ x is sparse,
with the underlyingp× k matrix of coefficients—thefactor loadings matrix—having a number of
zero elements; thep× k binary matrixZ defines thisconfigured sparsity pattern. We use a sparse,
orthogonal loading matrix and diagonal covariance matrices for both latentfactors and residuals;
the model is mathematically identified in the usual sense in factor analysis (Anderson, 2003).
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With Z as thep×k binary matrix with elementszg j such that variableg is related to factorj if
and only ifzg j = 1, the GFM is

xi = Ψ1/2ΦZλi +νi with λi ∼N (λi |0,∆) and νi ∼N (νi |0,Ψ)

where: (a) the factor loading matrixΨ1/2ΦZ hasΦZ ≡ Φ ◦ Z with ◦ representing element-wise
product;(b) ΦZ is orthogonal, that is,Φ′ZΦZ = Ik; (c) the factors have diagonal covariance matrix
∆ = diag(δ1, . . . ,δk); and(d) the idiosyncratic Gaussian noise (or residual)νi is independent ofλi

and has covariance matrixΨ = diag(ψ1, . . . ,ψp). The implied covariance matrix of the sampling
model,Σ, and the correspondingprecision matrix, Σ−1, are

Σ = Ψ1/2{I +ΦZ∆Φ′Z}Ψ
1/2 and Σ−1 = Ψ−1/2{I −ΦZTΦ′Z}Ψ

−1/2 (1)

whereT = diag(τ1, . . . ,τk) with τ j = δ j/(1+ δ j) ( j = 1 : k). In general, sparse loading matrices
induce some zero elements in the covariance matrix whether or not they are orthogonal, butnot in
the implied precision matrix. In the GFM here, however, a sparse factor model also induces off-
diagonal zeros inΣ−1. Zeros in the precision matrix defines a conditional independence or graphical
model, hence the GFM terminology. In (1), the pattern of sparsity (location ofzero entries) in the
covariance and precision matrices are the same. The set of variables associated with one specific
factor forms a clique in the induced graphical model, with sets of variables that have non-zero
loadings on any two factors lying in the separating subgraph between the corresponding cliques.
Hence, we have a natural and appealing framework in which sparse factor models and graphical
models are reconciled and consistent.

2.2 Some Model Attributes

In general, a non-orthogonal factor model with the sparse loading matrixW—a sparse extension of
probabilistic PCA (Bishop, 1999, 2006)—has the form

xi =Wλi +νi with λi ∼ N(0, I) andνi ∼ N(0,Ψ).

The GFM arises when a singular value decomposition is applied to the scaled-factor loading matrix
Ψ−1/2W = ΦZ∆1/2R with a k× k orthogonal matrixR being removed. This non-orthogonal model
defines a Bayes optimal reconstruction of the data via the fitted values (or extracted signal)

x̂(xi) :=WE[λi |xi ] =WW′(WW′+Ψ)−1xi .

Then, asymptotically,

1
n

n

∑
i=1

x̂(xi)x̂(xi)
′ p
−→ Cov[x̂(xi)] =WW′(WW′+Ψ)−1WW′

and this is generally a non-sparse matrix (no zero entries) even thoughW is sparse. This is an incon-
sistency in the sense that data reconstructions should be expected to share the dominant patterns of
covariance sparsity evident in the original covariance matrixCov[xi ] =WW′+Ψ. In the GFM, how-
ever,Cov[x̂(xi)] = Ψ1/2ΦZGΦ′ZΨ1/2 whereG is diagonal with entriesδ2

j/(1+ δ j). In such cases,
Cov[x̂(xi)] is sparse and shares the same 0 elements asCov[xi ].

Another feature of the GFM is related to a robust property acquired by theimplied graphical
structure. Consider an example of 4 variablesx′i = (xi1,xi2,xi3,xi4) and 2 factorsλ′i = (λi1,λi2)
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Figure 1: Graphical model structure of an example GFM.

with two cliques in the conditional independence graph;{xi1,xi2,xi3} ← λi1 and{xi2,xi3,xi4} ←
λi2 (see Figure 1). The graph defines the decomposition of the joint densityp(xi1,xi2,xi3,xi4) =
p(xi1|xi2,xi3)p(xi2,xi3|xi4)p(xi4) or p(xi1,xi2,xi3,xi4) = p(xi4|xi2,xi3)p(xi2,xi3|xi1)p(xi1). This im-
plies that presence of one or more outliers in the isolated feature variable, that is,xi1 or xi4, asso-
ciated with a single factor clique, has no effect on the variables,xi4 or xi1, once the intermediate
variablesxi2 andxi3 are given. Then, the parameters involved inp(xi1) or p(xi4), for instance, the
loading components and the noise variances corresponding to the isolated variable, can be estimated
independently of the impact of outliers inxi4 or xi1. The numerical experiment shown in Section 7.1
highlights this robustness property in terms of data compression/restoration tasks, with comparison
to other sparse factor models.

2.3 Likelihood, Priors and Posterior

Denote byΘ the full set of parametersΘ = {Φ,∆,Ψ}. Our computations aim to explore model
structuresZ and corresponding posterior modes of parametersΘ under the posteriorp(Z,Θ|X)
using specified priors and based on then observations forming the columns of thep×n data matrix
X.

2.3.1 LIKELIHOOD FUNCTION

The likelihood function is

p(X|Z,Θ) ∝ |Ψ|−n/2|I −T|n/2etr(−SΨ−1/2+Ψ−1/2SΨ−1/2ΦZTΦ′Z/2) (2)

where etr(A) = exp(trace(A)) for any square matrixA, andS is the sample sum-of-square matrix
S= XX′ with elementssgh. In (2), the factor loadings appear only in the last term and form the
important statistic

trace(Ψ−1/2SΨ−1/2ΦZTΦ′Z) =
k

∑
j=1

τ jφ′z jΨ
−1/2SΨ−1/2φz j

whereφz j is column j of ΦZ, or φz j = φ j ◦zj whereφ j is column j of Φ andzj is column j of Z.

1774



GRAPHICAL FACTOR MODELS AND VARIATIONAL MEAN-FIELD ANNEALING

2.3.2 PRIORS ONΘ AND Z

Priors over non-zero factor loadings may reflect substantivea priori knowledge if available, and
will then be inherently context specific. For examples here, however, weuse uniform priorsp(Θ|Z)
for exposition. Note that, on the critical factor loadings elementsΦ, this involves a uniform on
the hypersphere defined by the orthogonality constraint that is then simply conditioned (by setting
implied elements ofΦ to zero) as we move across candidate modelsZ.

Concerning the sparse structureZ, we adopt independent priors on the binary variateszg j with
logit(Pr(zg j = 1|ζg j)) = −ζg j/2 where logit(p) = log(p/(1− p)) and the parametersζg j are as-
signed hyperpriors and included in the overall parameter set in later. Betapriors are obvious al-
ternatives to this; the logit leads to a minor algorithmic simplification, but otherwise the choice
is arbitrary. Using beta priors can be expected to lead to modest differences, if any of practical
relevance, in many cases, and users are free to explore variants. Thecritical point is that includ-
ing Bayesian inference on thesep×k sparsity-determining quantities leads to “self-organization” as
their posterior distributions concentrate on larger or smaller values. Examples in Section 6 highlight
this.

2.4 MAP Estimation for (Θ,Z) in GFMs

Conditional on thep× k matrix of sparsity control hyperparametersζ whose elements are theζg j,
it follows that posterior modes(Z,Θ) maximize

2logp(Z,Θ|X,ζ) = 2logp(Θ|Z)−
p

∑
g=1

k

∑
j=1

zg jζg j−
p

∑
g=1

(nlogψg+sggψ−1
g )

+
k

∑
j=1

(nlog(1− τ j)+ τ jφ′z jΨ
−1/2SΨ−1/2φz j). (3)

The first two terms in (3) arise from the specified priors forΘ andZ, respectively. The quadratic
form in the last term isφ′z jΨ

−1/2SΨ−1/2φz j = φ′jS(zj ,Ψ)φ j for eachj, where the keyp× p matrices
S(zj ,Ψ) have elements(S(zj ,Ψ))gh given by

(S(zj ,Ψ))gh = zg jzh jsgh(ψgψh)
−1/2, for g,h= 1 : p. (4)

The (relative) signal-to-noise ratiosτ j = δ j/(1+δ j) control the roles played by the last term in (3).
Optimizing (3) overΘ andZ involves many discrete variables and the consequent combina-

torial computational challenge. Greedy hill-climbing approaches will get stuck at improper local
solutions, often and quickly. The VMA2 method in Section 3 addresses this.

2.5 Links to Previous Sparse Factor Modelling and Learning

In the MAP estimation defined by (3), there are evident connections with traditional sparse princi-
pal component analyses (sparse PCA; Jolliffe et al., 2003, Zou et al., 2006 and d’Aspremont et al.,
2007). If Ψ = I and∆ = I , the latter likelihood component in (3) is the pooled-variance of pro-
jections, that is,∑k

j=1 φ′jS(zj , I)φ j , constructed by thek sparse loading vectors. This is the central
statistic optimized in many sparse PCAs. Differences among existing sparse PCAs arise in the way
they regulate degrees of sparseness and whether or not orthogonalityis imposed on the loading
vectors.
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The direct sparse PCA of d’Aspremont et al. (2007) imposes an upper-boundd > 0 on the
cardinality ofzj (the number of non-zero elements), with a resulting semidefinite programming of
computational complexityO(p4

√

log(p)). The applicability of that approach is therefore limited to
problems withp rather small. Such cardinality constraints can be regarded as suggestiveof structure
for the prior distribution onζ in our model.

The SCoTLASS algorithm of Jolliffe et al. (2003) usesℓ1-regularization on loading vectors,
later extended to SPCA using elastic nets by Zou et al. (2006). Recently, Mairal et al. (2009)
presented aℓ1-based dictionary learning for sparse coding in which the method aims to explore
sparsity on factor-sample mapping rather than that on factor-variable relations. Setting Laplace-like
prior distributions on scale loadings is a counterpart ofℓ1-based penalization (Jolliffe et al., 2003;
Zou et al., 2006). However, our model-based perspective aims for a more probabilistic analysis, with
advantages in probabilistic assessment of appropriate dimension of the latent factor space as well
as flexibility in the determination of effective degrees of sparseness via theadditional parameters
ζ. Other than the preceding studies,ℓ1-regularizations have widely been employed to make sparse
latent factor analyses. Archambeau and Bach (2009) developed a general class of sparse latent
factor analyses involving sparse probabilistic PCA (Guan and Dy, 2009) and a sparse variant of
probabilistic canonical correlation analysis. A key idea of Archambeau and Bach (2009) is to place
the automatic relevance determination (ARD) prior of Mackay (1995) on each loading component,
and to apply a variational mean-field learning method.

Key advances in Bayesian sparse factor analysis build on non-parametric Bayesian modelling in
Griffiths and Ghahramani (2006) and Rai and Daumé (2009), and developments in Carvalho et al.
(2008) stemming from the original sparse Bayesian models in West (2003).Carvalho et al develop
MCMC and stochastic search methods for posterior exploration. MCMC posterior sampling can be
effective but is hugely challenged as the dimensions of data and factor variables increase. Our focus
here is MAP evaluation with a view to scaling to increasingly large dimensions, andwe leave open
the opportunities for future work on MCMC methods in GFMs.

Most importantly, as remarked in Section 2.2, the GFM differs from some of theforgoing mod-
els in the conditional independence graphical structures induced. This characteristic contributes to
preserving sparse structure in the data compression/reconstruction process and also to the outlier
robustness issue. We leave further comparative discussion to Section 7.1, where we evaluate some
of the foregoing methods relative to the sparse GFM analysis in an image processing study.

3. Variational Mean-Field Annealing for MAP Search

Finding MAP estimates of the augmented posterior distribution (3) involves many discrete variables
zg j. Then, commonly applied search methods such as greedy hill-climbing algorithmoften get stuck
in improper local solutions. Here, we present a general framework of VMA2 enabling us to escape
local mode traps by exploiting annealing.

3.1 Basic Principle

Relative to (3), consider the class of extended objective functions

GT(Θ,ω) = ∑
Z∈Z

ω(Z) logp(X,Z,Θ|ζ)−T ∑
Z∈Z

ω(Z) logω(Z) (5)
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whereω(Z)—thesparsity configuration probability—representsany distributionoverZ ∈ Z that
may depend on(X,Θ,ζ), and whereT ≥ 0. This modifies the original criterion (3) by taking the
expectation ofp(X,Z,Θ|ζ) with respect toω(Z)—the expected complete data log-likelihood in the
context of EM algorithm—and by the inclusion of Shannon’s entropy ofω(Z) with thetemperature
multiplier T.

Now, view (5) as a criterion to maximize over(Θ,ω) jointly for any givenT. The following is a
key result:

Proposition 1 For any given parametersΘ and temperature T , (5) is maximized with respect toω
at

ωT(Z) ∝ p(Z|X,Θ,ζ)1/T . (6)

Proof See the Appendix.

For any givenΘ, a largeT leads toωT(Z) being rather diffuse over sparse configurationsZ so that
iterative optimization—alternating betweenΘ and ω—will tend to move more easily and freely
around the high-dimensional spaceZ. This suggests annealing beginning with the temperatureT
large and successively reducing towards zero. We note that:

• As T → 0, ωT(Z) converges to a distribution degenerate at the conditional modeẐ(Θ,ζ) of
p(Z|X,Θ,ζ), so that

• joint maximization ofGT(Θ,ω) would approach theglobal maximum of the exact posterior
p(Θ,Z|X,ζ) asT→ 0.

The notion of the annealing operation is to realize a gradual move of successively-generated solu-
tions forΘ andωT(Z), and to escape local mode traps by exploiting annealing. Note that, for any
given tempered posterior (6), the expectation in the first term of (5) is virtually impossible to be
taken due to the combinatorial explosion. In what follows, we introduce VMA2 as a mean-field
technique coupled with the annealing-based optimization to overcome this central computational
difficulty.

3.2 VMA2 based on Factorized, Tempered Posteriors

To define and implement a specific algorithm, we constrain the otherwise arbitrary “artificial con-
figuration probabilities” ω, and do so using a construction that induces analytic tractability. We
specify the simplest, factorized form

ω(Z) =
p

∏
g=1

k

∏
j=1

ω(zg j) :=
p

∏
g=1

k

∏
j=1

ωzg j
g j (1−ωg j)

1−zg j

in the same way as conventional Variational Bayes (VB) procedures do.In this GFM context, the
resulting optimization is eased using this independence relaxation as it gives rise to tractability in
computing the conditional expectation in the first term of (5).

If T = 1, and given the factorizedω, the objective functionG1 exactly agrees with thefree
energy, which bounds the posterior marginal as

log ∑
Z∈Z

p(X,Θ,Z|ζ)≥ G1(Θ,ω).
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The lower-boundG1 is the criterion that the conventional VB methods aim to maximize (Wainwright
and Jordan, 2008). This indicates that any solutions corresponding to the VB inference can be
obtained by stopping the cooling schedule atT = 1 in our method. Similar ideas have, of course,
been applied in deterministic annealing EM and annealed VB algorithms (e.g., Ueda and Nakano,
1998). These methods exploit annealing schemes to escape from local traps during coordinate-basis
updates in aiming to define variational approximations of posteriors.

Even with this relaxation, maximization overω(Z) cannot be done for all elements ofZ simulta-
neously and so is approached sequentially—sequencing through eachωg j in turn while conditioning
the others. For any givenT this yields the optimizing value given by

ωg j(T) ∝ exp
{ 1

T ∑
ZC\{g, j}

∏
h6=g

∏
l 6= j

ω(zhl) logp(zg j = 1|X,ZC\{g, j},Θ,ζ)
}

(7)

whereC denotes the collection of all indices(g, j) for thep features andk factor variables,C \{g, j}
is the set of the paired indices(h, l) such that(h, l) 6= (g, j), andZC\{g, j} stands for the set ofzhls
other thanzg j.

Starting withωg j ≃ 1/2 at an initial large value ofT, (7) gradually concentrates to the point
mass asT decays to zero slowly:

ẑg j := lim
T↓0

ωg j(T) =

{

1, if ∑
ZC\{g, j}

∏
h6=g

∏
l 6= j

ω(zhl) log
p(zg j = 1,X,ZC\{g, j},Θ,ζ)
p(zg j = 0,X,ZC\{g, j},Θ,ζ)

> 0,

0, otherwise.

It remains true that, at the limiting zero temperature, the global maximum ofGT(Θ,ω) is the set
of p×k point masses at the global posterior mode ofp(Θ,Z|X,ζ). This is seen trivially as follows:
(i) As T→ 0, and with the non-factorizedω in (5), we have limiting value

sup
Z

logp(X,Θ,Z|ζ) = sup
ω

G0(Θ,ω) (8)

with the point massω(Z) = δẐ(Z) at the location of the global maximum(Ẑ)g j = ẑg j. Further,
(ii) any point massδẐ(Z) is representable by a fully factorizedp× k point masses asδẐ(Z) =
∏g, j δẑg j(zg j).

It is stressed that the coordinate-basis updates (7) cannot, of course, guarantee convergence to
theglobal optimum even with prescribed annealing. Nevertheless, VMA2 representsa substantial
advance in its ability to move more freely and escape local mode traps. We also note the generality
of the idea, beyond factor models and also potentially using penalty functionsother than entropy.

4. Sparse Learning in Graphical Factor Models

We first provide a specific form of VMA2 for the GFM, and then addressthe issue of evaluating
relevant degrees of sparseness.

4.1 MAP Algorithm

Computations alternate between conditional maximization steps forω andΘ while reducing the
temperatureT. At each step, the value of the objective function (5) is kept to refine untilconver-
gence where the temperature reaches to zero. Specifically:
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1: Set a cooling scheduleT = {T1, . . . ,Td} of lengthd whereTd = 0;

2: Setζ;
3: Initialize Θ;
4: Initialize ω(Z);
5: i← 0;
6: while ({the loop is not converged}∧{i ≤ d})
7: i← i+1;
8: Compute configuration probabilitiesωg j(Ti);

9: Optimize with respect to each columnφ j ( j = 1 : k) of Φ in turn under full-
conditioning;

10: Optimize with respect to∆ under full-conditioning;
11: Optimize with respect toΨ under full-conditioning;

12: Optimize with respect toζ under full-conditioning;
13: end while

We now summarize key components in the iterative, annealed computation defined above.

4.2 Sparse Configuration Probabilities

First consider maximization with respect to each sparse configuration probability ωg j conditional
on all others. We note that the first term in (5) involves the expectation overZ with respect to the
probabilitiesω, denoted byEω[·]. Accordingly, for the key termsS(zj ,Ψ) we have

Eω[S(zj ,Ψ)] = Ω j ◦ (Ψ−1/2SΨ−1/2) with (Ω j)gh =

{

ωg j, if g= h,
ωg jωh j, otherwise.

(9)

Introduce the notationΨ−1/2SΨ−1/2 = (s1(Ψ), . . . ,sp(Ψ)) to represent thep columns of the scaled-
sample sum-of-square matrix here, and define thep−vector

ω̃g j = (ω1 j , . . . ,ωg−1, j ,1,ωg+1, j , . . . ,ωp j)
′.

Then, the partial derivative of (5) with respect toωg j conditional onΘ and the other configuration
probabilities leads to

logit(ωg j(T)) = Hg j(ζg j)/T where Hg j(ζg j) := τ jφg j(φ j ◦ ω̃g j)
′sg(Ψ)−ζg j.

This directly yields the conditional maximizer forωg j in terms of the tempered negative energy
Hg j(ζg j)/T. As the temperatureT is reduced towards zero, the resulting estimate tends towards 0
or 1 according to the sign ofHg j(ζg j).

4.3 Conditional Optimization over Φ

The terms in (5) that involveΦ are simply the expectation of the quadratic forms in the last term
of (3), with the term for each columnφ j involving the key matricesS(zj ,Ψ) defined in (4), for
each j = 1 : k. At each step through the overall optimization algorithm in Section 4.1, we sequence
through these columns of the loadings matrix in turn conditioning on the previously optimized
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values of all other columns. In the context of the overall iterative MAP algorithm, this yields global
optimization overΦ asT→ 0.

Conditional optimization then reduces to the following: for eachj = 1 : k, sequence through
each columnφ j in turn and at each step

maximize
φ j

φ′jEω[S(zj ,Ψ)]φ j

subject to φ′jφ j = 1 and φ′mφ j = 0 for m 6= j,m= 1 : k. (10)

The optimization conditions on the most recently updated values of all other columnsm 6= j at each
step, and is performed as one sweep as the line9 in the algorithm of Section 4.1. Column order can
be chosen randomly or systematically each time while still maintaining convergence. In this step,
we stress that the original orthogonality condition is modified toΦ′ZΦZ = I → ΦTΦ = I in (10). It
remains the case that iteratively refined estimates obtained from (10) satisfythe original condition
at the limiting zero temperature, yielding sparsity forEω[S(zj ,Ψ)], as detailed in the mathematical
derivations in supplementary material.

The specific computations required for the conditional optimization in (10) areas follows (with
supporting details in the Appendix). Note that the central matricesEω[S(zj ,Ψ)] required here are
trivially available from Equation (9).

1: Compute thep× (k−1) matrix Φ(− j) = {φm}m6= j by simply deleting columnj
from Φ;

2: Compute thep× p projection matrixN j = I p−Φ(− j)Φ′(− j);

3: Compute the eigenvectorϕ j corresponding to the most dominant eigenvalue of
N jEω[S(zj ,Ψ)]N j ;

4: Compute the required optimal vectorφ j = N jϕ j/‖N jϕ j‖.

This procedure solves (10) by optimizing over an eigenvector already constrained by the orthogonal-
ity conditions. HereN j spans the null space of the currentk− 1 columns of Φ(− j), so
N jEω[S(zj ,Ψ)]N j defines the projection ofEω[S(zj ,Ψ)] onto the orthogonal space and eigenvec-
torsϕ j lie in the null space. It remains to ensure that the computed valueφ j is of unit length, which
involves the normalization in the final step in part 4. Selecting the eigenvector with maximum
eigenvalue ensures the conditional maximization in (10).

4.4 Conditional Optimization over ∆

The variancesδ j of the latent factors appear in Equations (3) and (5) in the sum overj = 1 : k of
terms

−nlog(1+δ j)+δ j(1+δ j)
−1φ′jEω[S(zj ,Ψ)]φ j .

This is unimodal inδ j with maximizing value

δ̂ j = max{0, n−1φ′jEω[S(zj ,Ψ)]φ j −1}, (11)

and so the update at the line10 of the MAP algorithm of Section 4.1 computes these values in
parallel for each factorj = 1 : k. Note that this may generate zero values, indicating the removal of
the corresponding factors from the model, and so inducing an intrinsic abilityto prune the number
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of factors as being redundant in a model specified initially with a larger, encompassing value of
k. The configured sparse structure drives this pruning; any specific factor j that is inherently very
sparse generates a smaller value of the projected “variance explained”φ′jEω[S(zj ,Ψ)]φ j , and so can

lead toδ̂ j = 0 as a result.

4.5 Conditional Optimization over Ψ

The diagonal noise covariance matrixΨ appears in the objective function of Equation (5) in terms
that can be re-expressed as

−nlog|Ψ|− trace(SΨ−1)+
k

∑
j=1

τ j trace(φ jφ
′
jΨ
−1/2(Ω j ◦S)Ψ−1/2)

whereτ j = δ j/(1+ δ j) for each j. Differentiating this with respect toΨ−1/2 yields the gradient
equation:

ndiag−1(Ψ1/2)−diag−1(SΨ−1/2)+
k

∑
j=1

τ jdiag−1(φ jφ
′
jΨ
−1/2(Ω j ◦S)) = 0,

where diag−1(A) denotes the vector of the diagonal elements inA. Iterative solution of this non-
linear equation inΨ can be performed via the reduced implicit equation

diag−1(Ψ) = n−1diag−1({I p−
k

∑
j=1

τ j(φ jφ
′
j)◦ (Ψ

−1/2Ω jΨ1/2)}S).

4.6 Degrees of Sparseness

The prior over the logistic hyperparametersζ = {ζg j} defining the Bernoulli probabilities for thezg j

is important in encouraging relevant degrees of sparseness. Extending the model via an hierarchical
prior for these parameters enables adaptation to data in evaluating relevantdegrees of sparseness.
One first class of priors is used here, taking theζg j to be conditionally independent and drawn from
the prior with positive part Gaussian distributionN+(ζg j|µ,σ) for some specified mean and vari-
ance(µ,σ). The annealing search can now be extended to includeζ, simply embedding conditional
optimization of (5) under this prior within each step of the iterative search. The conditional indepen-
dence structure of the model easily yields unique solutions for each of theζg j in parallel as values
satisfying

ωg j =
exp(−ζg j/2)

1+exp(−ζg j/2)
−

ζg j−µ

2σ
. (12)

Solutions to (12) are trivially, iteratively computed. Evidently, asωg j approaches 0 or 1, the solution
for ζg j is shifted to the corresponding boundary.ζg j as a function ofωg j for several values of(µ,σ).

As mentioned earlier, the choice of this logit/truncated normal prior is a subjective preference
and could be replaced by others, such as beta priors. Again, we expect that this would typically lead
to modest differences, if any of practical relevance, in many cases.
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5. A Stochastic Search Variant for Largep

In problems with larger numbers of variables, the computations quickly becomechallenging, espe-
cially in view of the repeated eigen-decompositions required for updating factor loading matrix. In
our examples and experiments, analysis with dimensionsp∼ 500 would be feasible using our own
R code (vma2gfm() available from the supplementary web site), but computation time then rapidly
increases with increasingp. More efficient low level coding will speed this, but nevertheless it is of
interest to explore additional opportunities for increasing the efficiency of the MAP search.

To reduce the computational time, we explore a stochastic variant of the original deterministic
VMA2 that uses realizedZ matrices from current, conditional configuration probabilitiesωg j(T) at
each stage of the search process. The realized binary matrixZ = [z1, . . . ,zk] replaces the full matrix
Eω[S(zj ,Ψ)] with a sparse alternativeS(zj ,Ψ). In larger, very sparse problems, this will enable us
to greatly reduce the computing time as each eigen-decomposition can be computed based only on
the components related to non-zerozg j values. This leads to a stochastic annealing search with all
other steps unchanged. We also have the additional benefit of the introduced randomness aiding in
potentially moving away from the stuck in suboptimal solutions. It should be stressed that this is an
optional complement to the deterministic algorithm and one that may be used for aninitial period
of time prior to enable swifter initial iterations from arbitrary initial values, priorto switching to the
deterministic annealing once in the region of a posterior mode.

The modified search procedure overφ j in Equation (10) is:

1. Draw a set of binary values ˆzg j, g= 1, . . . , p, according to the current configuration
probabilitiesωg j(T);

2. Define the set ofactive variablesbyA j = {g|g∈ 1 : p, ẑg j = 1}; denote byφ j,{A j}

the sub-vector ofφ j for only the active variables, andS{A j}(zj ,Ψ) the submatrix
of S(zj ,Ψ) whose rows and columns correspond to only the active variables;

3. Solve the reduced optimization conditional on theA j , via:

maximize
φ j,{A j }

φ′j,{A j}
S{A j}(ẑj ,Ψ)φ j,{A j}

subject to ‖φ j,{A j}
‖2 = 1 and φ′m,{A j}

φ j,{A j}
= 0 for m 6= j.

4. Update the fullp−vectorφ j with elementsφ j,{A j}
for the active variables and all

other elements zero.

For example, in a problem withp = 5000 but sparseness of the order of 5%, theA j will involve
a few hundred active variables, and eigenvalue decomposition will then beperformed on matrices
of that order rather than 5000×5000. We note also that this strategy requires a modification to the
update operation for the configuration probabilities: theωg j will be updated at any one step only for
the current indicesg∈ A j , keeping the remainingzg j at values previously obtained.

6. Experimental Results on Synthetic Data

Performance and comparisons on artificial data are shown to highlight somelearning properties of
the GFM.
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Figure 2: Display of evolvingGT(Θ̂,ω) in the annealing process (fromT = 2 toT = 0) with contour
plots. The black circle in each panel indicates the maximum point, and that corresponding
to T = 0 in the panel on the bottom-right corner indicates the optimal sparse structure.
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6.1 Visual Tracking of Annealing Process with a Toy Problem

The first experiment shows how the VMA2 method can solve the combinatorialoptimization. Con-
sider 3 variables and 1 factor, so thatxi = (φ1 ·z1)λ1i +νi where all parameters exceptφ1 are fixed
asΨ = I and∆ = I . The likelihood function in (2) is thenp(X|Z,Θ) ∝ exp(φ′z1

Sφz1
/2). Assume that

true edge onz31= 1, indicatingxi3← λi1, is known, butz11= 1 andz21= 0 are treated as unknown.
Then, with the prior forz11 andz21 as logit(Pr(z11 = 1)) = logit(Pr(z21 = 1)) =−1.5, we explored
values forφ1 andωg1, g= 1,2, based on an artificial data set drawn from the GFM, so as to refine
GT(Θ,ω) under the factorizedω(Z) = ω(z11)ω(z21).

We can map the surfaceGT(Θ,ω) over (ω11,ω21) when Θ is set at the optimized valuêΘ
for each(ω11,ω21). Figure 2 on the bottom-right corner displays a contour plot ofG0(Θ̂,ω). The
maximum point lies in one of the four corners corresponding toωg1 ∈ {0,1} and the global MAP
estimate hasω11 = 1 andω21 = 0.

Figure 2 also shows a tracking result of the VMA2 search process starting fromT = 2 and stop-
ping atT = 0. The change inGT(Θ̂,ω) and the corresponding maximizing values of(ω11,ω21) can
be monitored through the contour plots at selected temperatures. Starting fromthe initial values,
ω11≈ 0.5 andω21≈ 0.5, at the highest temperature, the successively-generated maximum points
gradually come closer to the global optimum (ω11 = 1 andω21 = 0) as the annealing process pro-
ceeds. At higher temperatures,GT(Θ̂,ω) is unimodal. In the overall search, the tempered criterion
begins to become bimodal after the trajectory moves into regions close to the global maximum.

This simple illustrative example highlights the key to success in the search: movingthe trajec-
tory of solutions closer to the global maximum in earlier phases of the cooling schedule, before
the tempered criterion function exhibits substantial multimodality. Looking ahead, we may be able
to raise the power of the annealing search by, for example, using dynamic control of the cooling
schedule or more general penalty functions forω.

6.2 Snapshot of Algorithm with 30 Variables and 4 Factors

In what follows, we will show some simulation studies to provide insights and comparisons. The
data sets haven= 100 data points drawn from the GFM withp= 30 andktrue= 4, and withΨ =
0.05I and∆ = diag(1.5,1.2,1.0,0.8). The zg j were independently generated with Pr(zg j = 1) =
0.3, yielding roughly 70% sparsity; then, non-zero elements ofΦ where generated as independent
standard normal variates, following whichΦZ was constrained to orthogonality.

To explore sensitivity to the chosen temperature schedule for annealing, experiments were run
using three settings:

• (Log-inverse decay)Ti = 3/log2(i+1) for i = 1, . . . ,6999, andT7000= 0

• (Linear decay) Ti = 3−6×103× (i−1) for i = 1, . . . ,1999, andT2000= 0

• (Power decay)Ti = 3×0.99−(i−1) for i = 1, . . . ,1999, andT2000= 0

For each, we evaluated the resulting MAP search in terms of comparison with the true model and
computational efficiency, in each case using a model with redundant factor dimensionk= 8.

6.3 Annealing with Fixed Hyper-parameters

First analyses fixedζg j = c and was run repeatedly across some grid points ofc ∈ [0,5]. Figure
3 summarizes the evaluation of the receiver operating characteristics (ROC) for the three cooling
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Figure 3: ROC for threshold PCA assuming a known, truek= 4 factors (left), compared to VMA2
estimation of the GFM under the three cooling schedules and withk = 8 (right). TPR
(vertical) and FPR (horizontal) were calculated according to TP/P and FP/N where P
and N denote the numbers of non-zero and zero elements in true loadings, TP and FP are
the numbers of true positives and false positives, respectively.

schedules. The true positive (TPR) and false positive rates (FPR) were computed based on the
correspondences between estimated and true values of thezg j. For comparison, we used standard
PCA, extracting the dominant 4 eigenvectors and setting entries below a threshold (in absolute
value) to zero; sliding the threshold towards zero gives a range of truncated loadings vectors in the
PCA that define the ROC curve for this approach. The resulting ROC curve, shown in the left panel,
is very near to the 45◦ line, comparing very poorly with the annealed GFM; for the latter, each ROC
curve indicates rather accurate identification of the sparse structure andthe curves differ in small
ways only as a function of cooling schedule. The choice of cooling schedule can, however, have a
more marked influence on results if initialized at temperatures that are too low.

6.4 Inference on Degrees of Sparseness

A second analysis uses the sparsity priorp(ζg j) = N+(ζg j|µ,σ) with µ= 3 andσ = 6, and adopts
the log-inverse cooling schedule. As shown in the right panel of Figure 4, the analysis realized
a reasonable control of FNR (15.4%) and FPR (0%), inducing a slightly less sparse solution than
the true structure. The GFM analysis automatically prunes the redundant factors, identifying the
true model dimension. Figure 5 displays a snapshot of evolving configuration probabilitiesωg j and
hyper-parametersζg j during the annealing schedule, demonstrating convergence over 2000 steps.
At aroundTi ≃ 0.45, all the configuration probabilities corresponding to the redundant four factors
reached to zero.

We further evaluated sensitivity to the choice of cooling schedules; in addition to the previous
three cooling schedules, we compared with:
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Identified precision matrix Identified loading matrix 
(k=8)

Precision matrix of 
artificial data

True loading matrix 
(ktrue=4)

Figure 4: Result of the VMA2 estimation using the log-inverse rate cooling in analysis of synthetic
data. (Left) Precision and factor loadings matrix used for generating the synthetic data
(p = 30, ktrue = 4). Non-zero elements are colored black. (Right) Estimated precision
and factor loadings matrix (k = 8); note that the MAP estimate sets the last four loading
vectors to zero and so identifies the true number of factors automatically.

• (Log-inverse decay)Ti = 0.7/log2(i+1) for i = 1, . . . ,6999 and, T7000= 0

• (Linear decay)Ti = 0.7−6×103× (i−1) for i = 1, . . . ,1999 and, T2000= 0

• (Power decay)Ti = 0.7×0.99−(i−1) for i = 1, . . . ,1999 and, T2000= 0

The initial temperatures are reduced from 3 to 0.7. Figure 6 shows the variations of TPR and FPR
in the use of the six cooling schedules, evaluated in 20 analyses with replicated synthetic models
and data sets. The left and center panels indicate significant dominance ofthe annealing starting
from the higher initial temperatures. Performance in identifying model structure seriously degrades
when using a temperature schedule that starts too low, and the sensitivity to schedule is very limited
when beginning with reasonably high initial temperatures.

The right panel in Figure 6 shows TPR and FPR for the sparse PCA (SPCA) proposed by
Zou et al. (2006), evaluated on the same 20 data sets using theR codespca() available at CRAN
(http://cran.r-project.org/ ). With spca() , we can specify the number of nonzero elements
(cardinality) in each column of the factor loading matrix. We executedspca() after the assignment
of the true cardinality as well as the known factor dimensionktrue = 4. The figure indicates a
better performance of GFM annealed with high initial temperature than the sparse PCA, and this
is particularly notable in that the GFM analysis usesk = 8 and involves noa priori knowledge on
the degree of sparseness. It is important to see that the conducted comparison is biased since the
data were drawn from the GFM with the orthogonal loading matrix where SPCAdoes not make
orthogonality assumptions. In Section 7.1, we provide deeper comparisonsamong several existing
sparse factor analyses based on image processing in hand-written digits recognition.

6.5 Computing Time Questions

Figure 7 shows the CPU times required for the execution of the GFM analysesas above, repeated
with increasing dimensionp∈ {100,200,300,500,700,1000}. The data sets were again generated
from GFMs with 4 factors and roughly 70% sparseness. We then performed the VMA2 using a
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Figure 5: Convergence trajectories of theζg j (upper) andωg j (lower) in analysis of synthetic data
over 2000 steps of annealed MAP estimation.

linear decay cooling of length 2000, and using both deterministic and stochastic annealing in a
model withk= 8. The deterministic algorithm was not used forp≥ 500 due to substantial increase
in CPU times; this was eased via use of the stochastic search algorithm.
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Figure 6: Performance tests on 20 synthetic data sets for different coolingschedules and compari-
son between the GFM and a sparse PCA (SPCA). For each panel, TPR (black) and FPR
(blue) are plotted (vertical axis) against the 20 replicate simulations of artificial data.
The results of annealing with the higher and lower initial temperatures are shown in the
left and center panels respectively where the rates of cooling with log-inverse, linear and
power decays are denoted by box, diamond and circle, respectively. The right panel shows
the results of SPCA.

7. Real Data Applications

Experimental results on image analyses of hand-written digits (Section 7.1) and breast cancer gene
expression data (Section 7.2) are shown to demonstrate practical relevance of the GFMs in analyses
of high dimensional data.

7.1 Application: Hand-written Digit Recognition

We evaluate GFM in pattern recognition analyses of hand-written digit images,and make compar-
isons to three existing methods; (i) SPCA (Zou et al., 2006), (ii) sparse probabilistic PCA with
ARD prior (Archambeau and Bach, 2009), and (iii) MCMC-driven sparse factor analysis (West,
2003; Carvalho et al., 2008). These three methods are all based on modelswith non-orthogonal
sparse loading matrices. The training data set was made from 16×16 gray-scale images of 100 dig-
its (i.e.,n= 100,p= 256) of ‘3’ that were randomly drawn from the postal zip code data available
at http://www-stat.stanford.edu/ ˜ tibs/ElemStatLearn/ (Hastie et al., 2001). To evaluate
robustness of the four approaches, we added artificial outliers to 15 pixels (features) for about 5%
of the original 100 images. Some of the contaminated images are shown in the top-left panels of
Figure 8.

For the non-probabilistic method, that is, (i) SPCA, we performed data reconstruction in the
standard manner;x(xi) = WW′xi with W the matrix of sparse, non-orthogonal loading vectors. In
applications of (ii) and (iii) that are inherently driven by probabilistic models, data reconstruction
was made via the posterior meanx(xi) =WE[λi |xi ] using obtained sparse loading matrixW. For all
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Figure 7: (Left) CPU times (in seconds; Intel(R) Core(TM)2 Duo processor, 2.60Ghz) versus model
dimensionp for the stochastic VMA2. For the deterministic VMA2, we terminated the
tests with the data larger thanp= 300. Execution times for the deterministic algorithm
were approximately 468, 812 and 1100 sec forp= 100, 200 and 300. (Right) Identified
sparse loadings matrix, displayed as transpose, for the case ofp= 1000 where the MAP
estimation achieved FPR= 12.0% and FNR= 18.4%.

the methods, setting factor dimensions tok = 10, we explored sparse estimates so that the degrees
of sparseness become approximately 30% (see Figure 8). For SPCA, weuse the same number of
non-zero elements in each loading vector as in the estimated GFM. The GFM wasestimated using
VMA2 with a fixed value forζ and a linear cooling schedule of length 2000.

A set of 100 test data samples was created from the 100 samples above by adding outliers
drawn from a uniform distribution to randomly-chosen pixels with probability 0.2. Performance
of the four approaches to data compressions/reconstruction were assessed via mean square error
(MSE) betweenx(xi)s and the true, original test images without the outliers. The right four panels
in Figure 8 show some digit images reconstructed by each method with the corresponding origi-
nal/contaminated test data. The reconstruction errors for the training and test instances are also sum-
marized in the figure. For the results on (ii) and (iii)—the non-orthogonal probabilistic analyses—
the reconstructed digits were vaguely-outlined. Such poor reconstructions arise partly from effects
of the outliers spread from pixel to pixel along the complete graph defined by non-sparse preci-
sion matrix. This empirical result indicates the vulnerability issue of non-restricted sparse factor
models in presence of outliers. In the reconstructions of the test instances, the GFM could capture
characteristics of original digits with the highest accuracy among the methods. SPCA attained the
second highest accuracy in terms of MSE. These observations highlightthe substantial merit of us-
ing sparse linear mapping in data reconstructions. The GFM and SPCA limit the propagations of
outliers within some factor cliques, as most pixel images in the other isolated, non-adjacent factor
cliques could be restored clearly.
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Example of test instances with outliers Reconstructed digits: GFM (d.s.≈0.306)

Mean squared errors in data reconstruction Reconstructed digits: ARD-PPCA
Circle→ Training error, Square→ Test error (d.s.≈0.293)
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Figure 8: Comparison between GFM and the three alternative methods ((i)-(iii)) in the data
reconstruction of outlier hand-written digit images. For the implementation of
the sparse probabilistic PCA with ARD prior (ARD-PPCA), we prepared our own
R function which is available at Supplementary web site. In the application
of the MCMC-based sparse factor analysis, we used BFRM 2.0 distributedat
http://www.stat.duke.edu/research/software/west/bfrm/. In the four panels onthe bottom-
right, d.s.denotes the degree of sparseness.

7.2 Application: Breast Cancer Gene Expression Study

Latent factor models are being more used in microarray-based gene expression studies in both basic
biological and clinical studies, such as cancer genomics. An example in breast cancer gene expres-
sion study here further illustrates the practical relevance of GFM structure and adds to comparisons
with other approaches. In addition to the summary details below, a much extended discussion of
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Figure 9: Identified factor probes (left) and sparse structure (right; binary matrix). In each image of
the left panel, expression signatures of the probes associated with eachfactor are depicted
across 138 samples (ordered along horizontal axis).

both statistical and biological aspects is available in supporting material at the first author’s web site
(see link below).

Among the goals of most such studies are identification of multiple factors that mayrepresent
underlying activity of biological pathways and provide opportunities for improved predictive mod-
els with estimated latent factors for physiological and clinical outcomes (e.g., Carvalho et al., 2008;
Chang et al., 2009; Hirose et al., 2008; Lucas et al., 2006, 2009; West,2003; Yoshida et al., 2004,
2006). Here we discuss an example application of our sparse GFM in analysis of data from previ-
ously published breast cancer studies (Cheng et al., 2006; Huang et al., 2003; Pittman et al., 2004;
West et al., 2001).

The GFM approach was applied to a sample of gene expression microarraydata collected in the
CODeX breast cancer genomics study (Carvalho et al., 2008; Pittman et al.,2004; West et al., 2001)
at the Sun-Yat Sen Cancer Center, Taipei, during 2001-2004. In addition to summary expression
indices from Affymetrix Human Genome U95 arrays, the data set includes immunohistochemistry
(IHC) test for key hormonal receptor proteins in clinical prognostics; ERBB2 (Her2) and estrogen
(ER). The IHC measures are discrete: ER negative (ER=0), ER positive with low/high-level expres-
sion (ER=1 and ER=2), Her2 negative (Her2=0), and Her2 positive with low/high-level (Her2=1
and Her=2). We performed analysis ofp = 996 genes with the expression levels that, on a log2
(fold change) scale, exceed a median level of 7 and a range of at least3-fold changes across the
tumors. The data set, including the expression data and the IHC hormonal measures, are available
on-line as supplementary material.

The annealed estimation of GFM was run withk= 25,µ= 7 andσ = 10. The cooling schedule
was prescribed by a linearly-decreasing sequence of 2000 temperatures under which the decay rate
and initial temperature were set to 0.006 and 3, respectively. The applied GFM identified 19 factors,
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pruning from the model maximumk= 25. Heatmaps of gene expression for genes identified in each
of the factors appear in Figure 9 with the identified sparse pattern of the loadings matrix.

Evaluation and Annotation of Inferred Factors:To investigate potential biological connections
of the factors, we evaluated enrichment of the functional annotations shared by genes in each factor
through the Gene Ontology (GO). This exploration revealed associations between some factors and
GO biological processes; the complete and detailed results, including tables of the GO enrichment
analyses for each factor and detailed biological descriptions, are available from the web site of
supporting information.

Factors Related to ER:Figure 10 displays boxplots of fitted values of the factor scores for
each sample, plotted across all 19 factors and stratified by levels of each of the clinical ER and
Her2 (0/1/2) categories. For each samplei, the posterior mean of the factor vector, namelyλ̂i =
(Ik+∆)−1∆Φ′ZΨ−1/2xi , is evaluated at the estimated model, providing the fitted values displayed.
We note strong association of ER status to factors 8 (GO: hormone metabolic process), 9 (GO:
glucose metabolic process, negative regulation of MAPK activity), 12 (GO: C21-steroid hormone
metabolic process), 14 (GO: apoptotic program, positive regulation of caspase activity), 18 (GO:
M phase of meiotic cell cycle) and 19 (GO: regulation of Rab protein signal transduction). These
clear relationships of ER status to multiple factors with intersecting but also distinct biological
pathway annotations is consistent with the known complexity of the broader ERnetwork, as estro-
gen receptor-induced signaling impacts multiple cellular growth and developmentally related down-
stream target genes and strongly defines expression factors linked to breast cancer progression.

Her2 Status and Oncogenomic Recombination Hotspot on 17q12:Figure 10 indicates factor 16
as strongly associated with Her2 status(0,1) versus 2. Factor 16 significantly loads on only 7 genes
that include STARD3, GRB7 and two probe sets on the locus of ERBB2 (which encodes Her2).
This is consistent with earlier gene expression studies that have consistently identified a single ex-
pression pattern related to Her2 and a very small number of additional genes, and that have found
the “low Her2 positives” level(1) to be generally comparable to negatives.Interestingly, we note
that STARD3, GRB7 and ERBB2 are all located on the same chromosomal locus 17q12, which
is known as PPP1R1B-STARD3-TCAP-PNMT-PERLD1-ERBB2-MGC14832-GRB7 locus. This
locus has been reported in many studies (e.g., Katoh and Katoh, 2004) as an oncogenomic recombi-
nation hotspot which is amplified frequently in breast tumor cells, and the purely exploratory (i.e.,
unsupervised) GFM analysis clearly identifies the “Her2 factor” as strongly reflective of increased
expression of genes in this hotspot, consistent with the amplification inducing Her2 positivity.

Comparison to Non-sparse Analysis:Finally, we show a comparison to non-sparse traditional
PCA. Supplementary Fig.1 and 2 show the estimated factors (principal components) corresponding
to the most dominant 19 eigenvalues, stratified by the levels of ER and Her2. The PCA failed to
capture the existing factor relevant to Her2-specific phenotypes in the analysed data. Note that the
foregoing sparse analysis identified the Her2-relevant factor only through the 7 non-zero loadings.
Indeed, our post-analysis has found that the data set contains very few genes exhibiting significant
fold change across the Her2 phenotypes. The non-sparse analysis would capture many irrelevant
features through too redundant non-zero loadings. The failure of PCA signifies the importance of
sparse modelling in handling high-dimensional data having inherently sparsestructure.
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Figure 10: Boxplots of fitted values of breast tumor-specific factor scores, stratified by protein IHC
determinations of clinical ER status (upper) and Her2 status (lower) in their 0/1/2 cate-
gories.

8. Additional Comments

The novel graphical property of GFMs provides a nice reconciliation ofsparse covariance mod-
els with sparse precision models—sparse latent factor analysis and graphical models, respectively.
Some of the practical benefits of this arise from the ability of GFM to define datareconstructions
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exhibiting the same patterns of covariances as the model/data predict, and the potential to induce
robustness to outliers relative to non-graphical factor models, whether sparse or not. Some theoret-
ical questions remain about precise conditions under which the sparsity patterns of covariance and
precision matrices are guaranteed to agree in general sparse Gaussianfactor models other than the
GFM form. Additionally, extensions to integrate non-parametric Bayesian model components for
factors, following Carvalho et al. (2008), are of clear future interest.

The ability of the VMA2 to aid in the identification of model structure in sparse GFM, and to
provide an additional computational strategy and tools to address the inherently challenging com-
binatorial optimization problem, has been demonstrated in our examples. Scalingto higher di-
mensional models is enabled by relaxation of the direct deterministic optimization viewpoint, with
stochastic search components that promote greater exploration of model space and can speed up
search substantially. Nevertheless, moving to higher dimensions will requirenew, creative compu-
tational implementations, such as using distributed computing, that will themselves require novel
methodological concepts.

The annealed search methodology evidently will apply in other contexts beyond factor models.
At one level, sparse factor models are an instance of problems of variableselection in multivari-
ate regression, in which the regression predictors (feature variables)are themselves unknown (i.e.,
are the factors). The annealed entropy approach is therefore in principle applicable to problems
involving regression model search and uncertainly in general classes of linear or nonlinear mul-
tivariate regression with potentially many predictor variables. Beyond this, the same can be said
about potential uses in other areas of graphical modelling involving structural inference of directed
or undirected graphical models, and also in multivariate time series problems where some of the
sparse structure may relate to relationships among variables over time.

We also remark on generalization of the basic form of VMA2 here that might use penalty func-
tions other than the Shannon’s entropy used here. The central idea of the VMA2 is the design
of a temperature-controlled iterative optimization that converges to the joint posterior distribution
of model parameters and sparse structure indicators. The entropy formulation used in our GFM
context was inspired by the form of the posterior itself, but similar algorithms—with the same con-
vergent property—could be designed using other forms. This, along withcomputational efficiency
questions and applications in models beyond the sparse GFM framework, and also potential ex-
tensions to consider heavy-tailed or Bayesian nonparametric distributions for latent factors and/or
residuals (e.g., Carvalho et al., 2008), are open areas for future research.
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Appendix A.

We present a proof of Proposition 1 and a derivation of optimization overΦ.

A.1 Proof of Proposition 1

Replace the objective function of (5) by multiplying by inverse temperature 1/T:

1
T
GT(Θ,ω) = ∑

Z∈Z

ω(Z) logp(X,Z,Θ|ζ)1/T − ∑
Z∈Z

ω(Z) logω(Z).

An upper-bound of this modified criterion is derived as follows:

1
T
GT(Θ,ω) = ∑

Z∈Z

ω(Z) log
p(Z|X,Θ,ζ)1/T p(X,Θ|ζ)1/T

ω(Z)

= ∑
Z∈Z

ω(Z) log
p(Z|X,Θ,ζ)1/T

ω(Z) ∑
Z′∈Z

p(Z′|X,Θ,ζ)1/T
+K0

≤ K0.

In the second equality, the terms irrelevant toω(Z) are included inK0 = logp(X,Θ|ζ)1/T+
log∑Z′∈Z p(Z′|X,Θ,ζ)1/T . The first term in the second line is the negative of the Kullback-Leibler
divergence betweenω(Z) and the normalized tempered posterior distribution. The lower-bound of
the Kullback-Leibler divergence is attained if and only if

ω(Z) =
p(Z|X,Θ,ζ)1/T

∑Z′∈Z p(Z′|X,Θ,ζ)1/T
,

as required.

A.2 Derivation: Optimization over Φ

Let ρ j , j ∈ {1, . . . ,k} be the Lagrange multipliers to ensure the restrictions in (10). We now write
down the Lagrange function:

φ′jEω[S(zj ,Ψ)]φ j −ρ j(‖φ j‖
2−1)− ∑

m6= j

ρmφ′mφ j . (13)

Differentiation of (13) with respect toφ j yields

Eω[S(zj ,Ψ)]φ j −ρ jφ j − ∑
m6= j

ρmφm = 0. (14)

In order to solve this equation, the first step to be addressed is to find the closed form solution for the
vector of the Lagrange multipliers,ρ(− j) = {ρm}m6= j ∈ R

k−1. Multiplying (14) by eachφ′m, m 6= j,
from the left, we have thek−1 equations as follows:

φ′mEω[S(zj ,Ψ)]φ j − ∑
m6= j

ρmφ′mφ j = 0 for m s.t. m 6= j.
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This yields the matrix representation

Φ′(− j)Eω[S(zj ,Ψ)]φ j −Φ′(− j)Φ(− j)ρ(− j) = 0,

which in turn leads to the solution forρ(− j) as

ρ(− j) = (Φ′(− j)Φ(− j))
−1Φ′(− j)Eω[S(zj ,Ψ)]φ j .

Substituting this into the original Equation (14) yields the eigenvalue equation

N jEω[S(zj ,Ψ)]φ j −ρ jφ j = 0 with Nj = I −Φ(− j)Φ′(− j). (15)

Now consider the alternative, symmetrized eigenvalue equation

N jEω[S(zj ,Ψ)]N jϕ j −ρ jϕ j = 0. (16)

SinceN j is idempotent, left-multiplication of (16) byN j yields

N jEω[S(zj ,Ψ)]N jϕ j −ρ jN jϕ j = 0.

which is equivalent to the required Equation (15) whenφ j = N jϕ j .
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