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Abstract

We describe a class of sparse latent factor models, calkgshgral factor models (GFMs), and
relevant sparse learning algorithms for posterior modienesion. Linear, Gaussian GFMs have
sparse, orthogondiactor loadings matrices, that, in addition to sparsityhaf implied covariance
matrices, also induce conditional independence strustugezeros in the implied precision ma-
trices. We describe the models and their use for robust astmof sparse latent factor structure
and data/signal reconstruction. We develop computatialgarithms for model exploration and
posterior mode search, addressing the hard combinatgtiahiaation involved in the search over
a huge space of potential sparse configurations. A meanvigildtional technique coupled with
annealing is developed to successively generate “artifipissterior distributions that, at the limit-
ing temperature in the annealing schedule, define requvetépor modes in the GFM parameter
space. Several detailed empirical studies and comparisorelated approaches are discussed,
including analyses of handwritten digit image and canceegxpression data.

Keywords: annealing, graphical factor models, variational meamtiréthod, MAP estimation,
sparse factor analysis, gene expression profiling

1. Introduction

Bayesian sparse modelling in multivariate analysis is of increasing interggtlications as diverse
as life science, economics and information science, and is driving a oeeffidctive computational
methods for learning model structure, that is, sparse configuratioredlePdevelopments of sparse
latent factor models (e.g., West, 2003; Griffiths and Ghahramani, 20@&sLet al., 2006; Wang
et al., 2007; Archambeau and Bach, 2009; Carvalho et al., 2008; &ua&rDy, 2009; Rai and
Daung, 2009) and inherently sparsely structured graphical models (e dan]dr999, 2004; Dobra
et al., 2004; Jones et al., 2005; Carvalho and West, 2007) have eadayesian computations
using a range of stochastic and deterministic search methods. With a viewihg soehigher di-
mensions and identification of regions of interest in model structure sp#ment and effective
computation remains a challenge. We describe a previously undevelosdotlaparse graphi-
cal factor models (GFMs)—a subclass of linear, Gaussian latent factbelmwith sparse factor
loadings that also induce sparse conditional independencies. In thextome develop a compu-

(©2010 Ryo Yoshida and Mike West.



Y OSHIDA AND WEST

tational technique for posterior mode evaluation using a hybrid of varidtimean-field method
(Attias, 1999; Wainwright and Jordan, 2008) and annealing-basédiagtion.

As a previously unexplored class of sparse (linear, Gaussian) fackdels, the intrinsic graph-
ical structure of the GFM arises from use of an orthogonal factor lgadimatrix and appropriate
scaling of its columns, together with the usual diagonal covariance matiixtést factors (with no
loss of generality). We show that this generally induces zero elements indtigipn matrix of the
GFM, as well as the covariance matrix. Particularly, the zero entries in tfsgiaace matrix have
corresponding zeros in the precision matrix. We also show that covariaatrices of fitted values
(i.e., “data reconstructions”) from such a model have the same spanstust;, and demonstrate
aspects of robustness of the model in inferring variable-latent fadatiaeships in the presence
of outliers. These properties are not shared in general by spatee fiaodels that lack the graph-
ical structure on variables, nor of course by non-sparse appmsadhese intrinsic properties of
the GFM, along with relationships with earlier studies on sparse factor @salsige discussed in
Section 2.

Ourvariational mean-field annealing algorithm (VMAJldresses the combinatorial optimiza-
tion involved in aiming to compute approximate posterior modes for GFM paranetéescontext
of the huge space of zero/non-zero potential patterns in factor loadilsgzg a prescribed schedule
of decreasing temperatures, VMA2 successively generates tempetiidial” posteriors that, at
the limiting zero temperature, yield posterior modes for both GFM parametethe®dl loadings
indicators. Defined via an artificial, dynamic regularization on the posteniwoy of configured
sparse structures, VMA2 is developed in Section 3.

Section 4 provides additional algorithmic details, including prior modelling foluewisg de-
gree of sparseness, and a stochastic variant of VMAZ for higherrdiiomal problems is described
in Section 5. Performance and comparisons on artificial data appeatrtiarB@cSection 7 summa-
rizes extensive, detailed empirical comparisons with related approacaealyses of hand-written
digit images and cancer gene expression data. Section 8 concludesiefigdoiitional comments.
A range of detailed supplementary materials, extended discussion on thexenmession studies
andR code, is accessible frohttp://daweb.ism.ac.jp/ ~ yoshidar/anneals/

2. Sparse Graphical Factor Models

We describe the GFM with some intrinsic graphical properties, followed bypections to previ-
ously developed classes of sparse latent factor analyses.

2.1 GFM Form

Observed sample vectoxks € RP in p dimensional feature space are each linearly related to in-
dependent, unobserved Gaussian latent factor vestarR¥ with additional Gaussian noise. We
are interested in sparse variable-factor relationships so that the biparfipgnga — x is sparse,
with the underlyingp x k matrix of coefficients—thdactor loadings matrix-having a number of
zero elements; thp x k binary matrixZ defines thisonfigured sparsity patteriWe use a sparse,
orthogonal loading matrix and diagonal covariance matrices for both l&tetars and residuals;
the model is mathematically identified in the usual sense in factor analysis @mj&003).
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GRAPHICAL FACTOR MODELS AND VARIATIONAL MEAN-FIELD ANNEALING

With Z as thep x k binary matrix with elementgy; such that variablg is related to factoy if
and only ifzg; = 1, the GFM is

% = WY2mN +vi  with \j ~ AL(Ai|0,A) and v; ~ AL(vi|0, W)

where: (a) the factor loading matri¥?/?d; has®; = ® o Z with o representing element-wise
product;(b) @z is orthogonal, that isp,®; = Iy; (c) the factors have diagonal covariance matrix
A = diag(dy, ..., 0); and(d) the idiosyncratic Gaussian noise (or residwel)s independent ok;
and has covariance matrik = diag(y1,...,yp). The implied covariance matrix of the sampling
model,Z, and the correspondingrecision matrix> 1, are

> =WV2{ L 0,A0 W2 and Tl =w Y2 o, T, w2 (1)

whereT = diag(Ty,...,Tk) with T = 8;/(1+ ;) (j = 1:k). In general, sparse loading matrices
induce some zero elements in the covariance matrix whether or not theyttzoganral, bunotin
the implied precision matrix. In the GFM here, however, a sparse factor Inatsteinduces off-
diagonal zeros iZ 1. Zeros in the precision matrix defines a conditional independence origahph
model, hence the GFM terminology. In (1), the pattern of sparsity (locati@erf entries) in the
covariance and precision matrices are the same. The set of varialdesgsess$ with one specific
factor forms a clique in the induced graphical model, with sets of variabléshthe non-zero
loadings on any two factors lying in the separating subgraph between ttresgonding cliques.
Hence, we have a natural and appealing framework in which sparse faodels and graphical
models are reconciled and consistent.

2.2 Some Model Attributes
In general, a non-orthogonal factor model with the sparse loading nvitriba sparse extension of
probabilistic PCA (Bishop, 1999, 2006)—has the form

Xi = WA +v; with Aj ~ N(0,1) andv; ~ N(0,¥).

The GFM arises when a singular value decomposition is applied to the sealed{bading matrix
Y-\ = d,AY?R with ak x k orthogonal matrixR being removed. This non-orthogonal model
defines a Bayes optimal reconstruction of the data via the fitted valuest(actexd signal)

X(%) = WEN %] = WW (WW + W)~ 1x;.

Then, asymptotically,

i)‘((xi )R(x) —5 Cov[R(X)] = WW (WW + W)~ 2ww

and this is generally a non-sparse matrix (no zero entries) even tN@igjbparse. This is an incon-
sistency in the sense that data reconstructions should be expectedetthehdominant patterns of
covariance sparsity evident in the original covariance métaxx;| = WW + W¥. In the GFM, how-
ever, Covi(x)] = W20, GP, W2 whereG is diagonal with entrie$?/(1+ ). In such cases,
CoviX(x)] is sparse and shares the same 0 elemerfogs; |.

Another feature of the GFM is related to a robust property acquired binthked graphical
structure. Consider an example of 4 varials-= (i1, X2, X3, Xia) and 2 factors\i’ = (Ai1,Ai2)
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Directed graph of sparse factor models Conditional independence graph
induced from the GFM
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Figure 1: Graphical model structure of an example GFM.

with two cliques in the conditional independence grapki,Xi2, iz} < Aix and {2, Xi3, Xia} <

Ai2 (see Figure 1). The graph defines the decomposition of the joint demsity Xi2, Xi3, Xia) =
P(Xi1|Xi2, Xi3) P(Xi2, Xi3|Xia) P(Xia) OF P(Xi1,Xi2,Xi3,Xia) = P(Xia|Xi2,Xi3) P(Xi2, Xi3[Xi1) P(Xi1). This im-
plies that presence of one or more outliers in the isolated feature variadlas,th1 or xi4, asso-
ciated with a single factor clique, has no effect on the variabdgr x;1, once the intermediate
variablesx;; andx;z are given. Then, the parameters involveditii) or p(xs), for instance, the
loading components and the noise variances corresponding to the is@dtdale; can be estimated
independently of the impact of outliersxp or Xi1. The numerical experiment shown in Section 7.1
highlights this robustness property in terms of data compression/restoratian with comparison
to other sparse factor models.

2.3 Likelihood, Priors and Posterior

Denote by© the full set of parameter® = {®,A,W}. Our computations aim to explore model
structuresZ and corresponding posterior modes of parame®isnder the posteriop(Z,0|X)
using specified priors and based on thebservations forming the columns of thex n data matrix
X.

2.3.1 LKELIHOOD FUNCTION

The likelihood function is
p(X|Z,0) O |W|~v2|I - T|"2etr(—Sw1/24+ W Y250-120, T, /2) ()
where etfA) = exp(tracgA)) for any square matrid, andS s the sample sum-of-square matrix

S= XX’ with elementssgh. In (2), the factor loadings appear only in the last term and form the
important statistic

k
tracdW 128w 20, Tay) = 5 1iq, W 28w Y2,
=1

whereq,; is columnj of @z, or @,; = @; o z; whereg; is columnj of @ andz; is columnj of Z.
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2.3.2 RRIORSONO® AND Z

Priors over non-zero factor loadings may reflect substamtipeiori knowledge if available, and
will then be inherently context specific. For examples here, howevense@niform priorp(©|2)
for exposition. Note that, on the critical factor loadings elemeahtshis involves a uniform on
the hypersphere defined by the orthogonality constraint that is then simptitioned (by setting
implied elements ofb to zero) as we move across candidate models

Concerning the sparse structutewe adopt independent priors on the binary variaggsvith
logit(Pr(zgj = 1/{gj)) = —Cgj/2 where logitp) = log(p/(1— p)) and the parametei,; are as-
signed hyperpriors and included in the overall parameter set in later. pBieta are obvious al-
ternatives to this; the logit leads to a minor algorithmic simplification, but otherwiselioice
is arbitrary. Using beta priors can be expected to lead to modest difesreiiany of practical
relevance, in many cases, and users are free to explore variantsrifided point is that includ-
ing Bayesian inference on thepe k sparsity-determining quantities leads to “self-organization” as
their posterior distributions concentrate on larger or smaller values. Examgection 6 highlight
this.

2.4 MAP Estimation for (©,Z) in GFMs

Conditional on thep x k matrix of sparsity control hyperparametérsvhose elements are tidg;,
it follows that posterior mode&Z, ©) maximize

P k p
2logp(Z,0X,0) = 2logp(IZ) — Y Y zilgj— Y (nlogWg+ sty ’)
g=1j=1 g=1

K
+Z(nlog(l—rj)+Tj<ijW_l/25W—l/2(sz)- (3)
=

The first two terms in (3) arise from the specified priors@®andZ, respectively. The quadratic
form in the last term i), W ~Y/29W~2q,; = ¢, (z;, W), for eachj, where the keyp x p matrices
S(zj,¥) have elementtS(z;, W)y, given by

(S(Zj ) LIJ))gh = Znghngh(ngq,lh)_l/z, forg,h=1:p. (4)

The (relative) signal-to-noise ratiag = d; /(1+ d;) control the roles played by the last termin (3).

Optimizing (3) over® andZ involves many discrete variables and the consequent combina-
torial computational challenge. Greedy hill-climbing approaches will geksatiemproper local
solutions, often and quickly. The VMA2 method in Section 3 addresses this.

2.5 Links to Previous Sparse Factor Modelling and Learning

In the MAP estimation defined by (3), there are evident connections withiitnaal sparse princi-
pal component analyses (sparse PCA; Jolliffe et al., 2003, Zou e08b, @nd d’Aspremont et al.,
2007). IfWY =1 andA =1, the latter likelihood component in (3) is the pooled-variance of pro-
jections, that is,z'j‘zlqﬁS(zj,l)cpj, constructed by th& sparse loading vectors. This is the central
statistic optimized in many sparse PCAs. Differences among existing spafsedpi€e in the way
they regulate degrees of sparseness and whether or not orthogamaitposed on the loading
vectors.
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The direct sparse PCA of d’Aspremont et al. (2007) imposes an tpperdd > 0 on the
cardinality ofz; (the number of non-zero elements), with a resulting semidefinite programming of
computational complexit®(p*+/log(p)). The applicability of that approach is therefore limited to
problems withp rather small. Such cardinality constraints can be regarded as suggéstineture
for the prior distribution or{ in our model.

The SCoTLASS algorithm of Jolliffe et al. (2003) usésregularization on loading vectors,
later extended to SPCA using elastic nets by Zou et al. (2006). RecentiyalMa al. (2009)
presented &:-based dictionary learning for sparse coding in which the method aims torexplo
sparsity on factor-sample mapping rather than that on factor-variabterelaSetting Laplace-like
prior distributions on scale loadings is a counterpart;elbased penalization (Jolliffe et al., 2003;
Zou et al., 2006). However, our model-based perspective aims forapnababilistic analysis, with
advantages in probabilistic assessment of appropriate dimension of thieféaten space as well
as flexibility in the determination of effective degrees of sparseness viad#lional parameters
. Other than the preceding studiég;regularizations have widely been employed to make sparse
latent factor analyses. Archambeau and Bach (2009) developedesayetass of sparse latent
factor analyses involving sparse probabilistic PCA (Guan and Dy, 20@®)yasparse variant of
probabilistic canonical correlation analysis. A key idea of ArchambedBach (2009) is to place
the automatic relevance determination (ARD) prior of Mackay (1995) oh kacling component,
and to apply a variational mean-field learning method.

Key advances in Bayesian sparse factor analysis build on non-pai@Beesian modelling in
Griffiths and Ghahramani (2006) and Rai and D&u{2009), and developments in Carvalho et al.
(2008) stemming from the original sparse Bayesian models in West (20@8)alho et al develop
MCMC and stochastic search methods for posterior exploration. MCM@&possampling can be
effective but is hugely challenged as the dimensions of data and faciables increase. Our focus
here is MAP evaluation with a view to scaling to increasingly large dimensionsyanéave open
the opportunities for future work on MCMC methods in GFMs.

Most importantly, as remarked in Section 2.2, the GFM differs from some dbtigeing mod-
els in the conditional independence graphical structures induced. fduiaateristic contributes to
preserving sparse structure in the data compression/reconstructmgsgrand also to the outlier
robustness issue. We leave further comparative discussion to Sectjavhérke we evaluate some
of the foregoing methods relative to the sparse GFM analysis in an imagesgiog study.

3. Variational Mean-Field Annealing for MAP Search

Finding MAP estimates of the augmented posterior distribution (3) involves macretk variables

Zgj- Then, commonly applied search methods such as greedy hill-climbing algaftémget stuck

in improper local solutions. Here, we present a general frameworlA%/enabling us to escape
local mode traps by exploiting annealing.

3.1 Basic Principle

Relative to (3), consider the class of extended objective functions

Gr(©,w) = Y w(Z)logp(X,Z,0[)-T 3 w(Z)logw(Z) (5)
VASK 2 yASK 4
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wherew(Z)—the sparsity configuration probability-representany distributionoverZ € % that
may depend oriX,©,{), and whereT > 0. This modifies the original criterion (3) by taking the
expectation op(X, Z,©|¢) with respect tay(Z)—the expected complete data log-likelihood in the
context of EM algorithm—and by the inclusion of Shannon’s entropy(@) with thetemperature
multiplier T.

Now, view (5) as a criterion to maximize ové®, w) jointly for any givenT. The following is a
key result:

Proposition 1 For any given parameter® and temperature T, (5) is maximized with respeabto
at

wr(Z) 0 p(Z|X,0,0)YT. (6)

Proof See the Appendix. |

For any given®, a largeT leads towr (Z) being rather diffuse over sparse configuratidrso that
iterative optimization—alternating betweéh and w—uwill tend to move more easily and freely
around the high-dimensional spageThis suggests annealing beginning with the temperafure
large and successively reducing towards zero. We note that:

e AsT — 0, wr(Z) converges to a distribution degenerate at the conditional ¢@el) of
p(Z|X,0,Q), so that

e joint maximization ofGr (©,w) would approach thglobal maximum of the exact posterior
p(©,Z|X,{) asT — 0.

The notion of the annealing operation is to realize a gradual move of Sinelgsgenerated solu-
tions for® andwr(Z), and to escape local mode traps by exploiting annealing. Note that, for any
given tempered posterior (6), the expectation in the first term of (5) isaliytimpossible to be
taken due to the combinatorial explosion. In what follows, we introduce ¥MA& a mean-field
technique coupled with the annealing-based optimization to overcome thislaarrputational
difficulty.

3.2 VMAZ2 based on Factorized, Tempered Posteriors

To define and implement a specific algorithm, we constrain the otherwise arbaréficial con-
figuration probabilities” w, and do so using a construction that induces analytic tractability. We
specify the simplest, factorized form

=ﬁﬁww:%rp@1wﬁ@

in the same way as conventional Variational Bayes (VB) proceduretndbis GFM context, the
resulting optimization is eased using this independence relaxation as it gigds tractability in
computing the conditional expectation in the first term of (5).

If T =1, and given the factorizea, the objective functionj; exactly agrees with th&ee
energy which bounds the posterior marginal as

log 3 P(X,0,Z[7) > 61(©,0).
e¥
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The lower-boundyj; is the criterion that the conventional VB methods aim to maximize (Wainwright
and Jordan, 2008). This indicates that any solutions corresponding tdBhinference can be
obtained by stopping the cooling schedulélat 1 in our method. Similar ideas have, of course,
been applied in deterministic annealing EM and annealed VB algorithms (e.qq,dheldNakano,
1998). These methods exploit annealing schemes to escape from lpsaltiring coordinate-basis
updates in aiming to define variational approximations of posteriors.

Even with this relaxation, maximization oveZ) cannot be done for all elementsosimulta-
neously and so is approached sequentially—sequencing throughgéantiurn while conditioning
the others. For any given this yields the optimizing value given by

1
woi(T) Dep{Z Y [ [ @@)100p(zs; = 1X.Ze\ 0. 0.0} )
Ze\(giy N£91#]

where(C denotes the collection of all indicég, j) for the p features andét factor variablesC\ {g, j }
is the set of the paired indicéh, |) such that(h,1) # (g, j), and 2 (¢ j stands for the set s
other thary;.

Starting withwgj ~ 1/2 at an initial large value of, (7) gradually concentrates to the point
mass ag decays to zero slowly:

1.X,Z C]
(2 Iog P(zgj = Mgt ©:0)

Zgj = lim ooy (T) = { PTo 1) WAG 1) P(Zgj = 0.X.Zc\(g1:©:0)
0, otherwise

>0,

It remains true that, at the limiting zero temperature, the global maximugh @, w) is the set
of p x k point masses at the global posterior mode@, Z|X,{). This is seen trivially as follows:
() As T — 0, and with the non-factorized in (5), we have limiting value

sup logp(X,0,Z[() = sup Go(©,w) (8)

with the point massn(Z) = &;(Z) at the location of the global maximuiiZ)qj = 2. Further,
(i) any point mas;(Z) is representable by a fully factorizgux k point masses a8;(Z) =
Mg, O (Zgj)-

It is stressed that the coordinate-basis updates (7) cannot, of cguesantee convergence to
the global optimum even with prescribed annealing. Nevertheless, VMA2 repreaesubstantial
advance in its ability to move more freely and escape local mode traps. Weotdstha generality
of the idea, beyond factor models and also potentially using penalty functibasthan entropy.

4. Sparse Learning in Graphical Factor Models
We first provide a specific form of VMA2 for the GFM, and then addrémssissue of evaluating
relevant degrees of sparseness.

4.1 MAP Algorithm

Computations alternate between conditional maximization steps famd © while reducing the
temperaturel . At each step, the value of the objective function (5) is kept to refine cotiver-
gence where the temperature reaches to zero. Specifically:
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Set a cooling schedul& = {T,..., Tq} of lengthd whereTq = 0;
Set(;

Initialize ©;

Initialize w(Z);

i < 0;
while  ({the loop is not convergeph{i < d})

i<—i+1;

Compute configuration probabilitieg,;(Ti);

Optimize with respect to each colung (j =1 :k) of @ in turn under full-
conditioning;
10: Optimize with respect t& under full-conditioning;
11: Optimize with respect t& under full-conditioning;
12:  Optimize with respect t@ under full-conditioning;
13: end while

© OoNoa R R

We now summarize key components in the iterative, annealed computatiordcfione.

4.2 Sparse Configuration Probabilities

First consider maximization with respect to each sparse configuratiomipfity wy; conditional
on all others. We note that the first term in (5) involves the expectationdwvéth respect to the
probabilitiesw, denoted byEy|-]. Accordingly, for the key term§(z;, W) we have

Ew[S(zj,W)] = Q) o (W~ Y23W~Y2) with (Q})gh = { wgj,  ifg=h, ©)

Wyjwnj, Otherwise

Introduce the notatio Y2512 = (5 (W), ... ,Sp(¥)) to represent the columns of the scaled-
sample sum-of-square matrix here, and defineptheector

G = (W, -, g1, L, Wgy1js -, Wpj) -
Then, the partial derivative of (5) with respectwg; conditional on© and the other configuration
probabilities leads to
logit(wgj(T)) = Hgj(lgj)/T wWhere Hg;j(lgj) := Tj@yj(®; o Qj)'sg(¥) — Lgj-

This directly yields the conditional maximizer foiy; in terms of the tempered negative energy
Hgj(lgj)/T. As the temperaturg is reduced towards zero, the resulting estimate tends towards 0
or 1 according to the sign ¢ig;(Lg)).

4.3 Conditional Optimization over ®

The terms in (5) that involve are simply the expectation of the quadratic forms in the last term
of (3), with the term for each columg; involving the key matrice§(z;, W) defined in (4), for
eachj = 1:k. At each step through the overall optimization algorithm in Section 4.1, we segque
through these columns of the loadings matrix in turn conditioning on the prdyiopsimized
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values of all other columns. In the context of the overall iterative MAPrélgm, this yields global
optimization overd asT — 0.

Conditional optimization then reduces to the following: for edch 1 : k, sequence through
each columnyp; in turn and at each step

maximize  @Eq[S(zj,W)]o,
o

subjectto  ¢fg,=1 and ¢, =0form#jm=1:k (10)

The optimization conditions on the most recently updated values of all othennsha+# | at each
step, and is performed as one sweep as thédlinghe algorithm of Section 4.1. Column order can
be chosen randomly or systematically each time while still maintaining convergbmtas step,
we stress that the original orthogonality condition is modified®jeb; =1 — ®Td =1 in (10). It
remains the case that iteratively refined estimates obtained from (10) sh&sfyiginal condition
at the limiting zero temperature, yielding sparsity y[S(z;, V)], as detailed in the mathematical
derivations in supplementary material.

The specific computations required for the conditional optimization in (1Gsfellows (with
supporting details in the Appendix). Note that the central matiig$(z;, W)] required here are
trivially available from Equation (9).

1: Compute thep x (k— 1) matrix ®_j) = {@n}mzj by simply deleting columrj
from &;

2. Compute thg x p projection matrixN; =1, — db(,j)dn’(_j);

3: Compute the eigenvectdr; corresponding to the most dominant eigenvalue of
NjEo[S(zj, W)INj;

4: Compute the required optimal vectpr= N;b; /[[N;b;||.

This procedure solves (10) by optimizing over an eigenvector alreattreoned by the orthogonal-
ity conditions. HereN;j spans the null space of the currekit- 1 columns of ®_;), so
N;Ey[S(zj,W)|N; defines the projection di,[S(zj, W)] onto the orthogonal space and eigenvec-
tors¢; lie in the null space. It remains to ensure that the computed gligeof unit length, which
involves the normalization in the final step in part 4. Selecting the eigenvedtiormmaximum
eigenvalue ensures the conditional maximization in (10).

4.4 Conditional Optimization over A

The variance$; of the latent factors appear in Equations (3) and (5) in the sum jovet : k of
terms

—nbgﬂrFQ)+5K1+5D‘MQ&ASAwWﬂ%u
This is unimodal id; with maximizing value
6j = max{0, N ¢{ Eo[S(zj, W)]g; ~ 1}, (12)

and so the update at the 1ii® of the MAP algorithm of Section 4.1 computes these values in
parallel for each factoj = 1 : k. Note that this may generate zero values, indicating the removal of
the corresponding factors from the model, and so inducing an intrinsic aoilgyune the number
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of factors as being redundant in a model specified initially with a largeprapassing value of
k. The configured sparse structure drives this pruning; any spedifiorfathat is inherently very
sparse generates a smaller value of the projected “variance explqifﬁg[S(zj ,¥)]@;, and so can

lead ton =0asaresult.

4.5 Conditional Optimization over W

The diagonal noise covariance mattxappears in the objective function of Equation (5) in terms
that can be re-expressed as

K
—nlog|W| —tracgS¥ 1) + ZTﬂrace{cpM Y-12(Q 0 w12
=

wheret; = 3;/(1+ ;) for eachj. Differentiating this with respect t&~/2

equation:

yields the gradient

k
ndiag 1 (WY/?) — diag 1 (SW~Y?) + S tidiag ()¢ Y=12(Q;09)) =0,
=1

where diag'(A) denotes the vector of the diagonal elementé.interative solution of this non-
linear equation i can be performed via the reduced implicit equation

diag (W) = n~tdiag *({lp, - i (9, ¢) 0 (W-Y2Q,w¥2)19).
=1

4.6 Degrees of Sparseness

The prior over the logistic hyperparametérs: {{4;} defining the Bernoulli probabilities for tg;

is important in encouraging relevant degrees of sparseness. Exgeéhdimodel via an hierarchical
prior for these parameters enables adaptation to data in evaluating relegaeés of sparseness.
One first class of priors is used here, takingghgeto be conditionally independent and drawn from
the prior with positive part Gaussian distributidh) ({4;|p,0) for some specified mean and vari-
ance(y, o). The annealing search can now be extended to indudienply embedding conditional
optimization of (5) under this prior within each step of the iterative search.cbhditional indepen-
dence structure of the model easily yields unique solutions for each &fthe parallel as values
satisfying

o exp—Ggj/2)  Lgi—M
" lvexp(—4gj/2) 20

(12)

Solutions to (12) are trivially, iteratively computed. Evidentlyoag approaches 0 or 1, the solution
for gj is shifted to the corresponding boundaty; as a function otuy; for several values afy, 0).

As mentioned earlier, the choice of this logit/truncated normal prior is a swegateference
and could be replaced by others, such as beta priors. Again, wetéatihis would typically lead
to modest differences, if any of practical relevance, in many cases.
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5. A Stochastic Search Variant for Largep

In problems with larger numbers of variables, the computations quickly becbaikenging, espe-
cially in view of the repeated eigen-decompositions required for updatotgrfipading matrix. In

our examples and experiments, analysis with dimengior$b00 would be feasible using our own

R code ¢ma2gfm() available from the supplementary web site), but computation time then rapidly
increases with increasing More efficient low level coding will speed this, but nevertheless it is of
interest to explore additional opportunities for increasing the efficiehttlygoOMAP search.

To reduce the computational time, we explore a stochastic variant of theadrigterministic
VMAZ2 that uses realized matrices from current, conditional configuration probabilitigg(T) at
each stage of the search process. The realized binary rdatrijzs, . . ., z] replaces the full matrix
Ew[S(zj,W)] with a sparse alternativl(z;, W). In larger, very sparse problems, this will enable us
to greatly reduce the computing time as each eigen-decomposition can be coivgsdd only on
the components related to non-zegp values. This leads to a stochastic annealing search with all
other steps unchanged. We also have the additional benefit of the iretbcreddomness aiding in
potentially moving away from the stuck in suboptimal solutions. It should besstkthat this is an
optional complement to the deterministic algorithm and one that may be used ifttianperiod
of time prior to enable swifter initial iterations from arbitrary initial values, ptaswitching to the
deterministic annealing once in the region of a posterior mode.

The modified search procedure oggrin Equation (10) is:

1. Draw a setof binary valuegj; g=1,..., p, according to the current configuration
probabilitieswg;(T);

2. Define the set ddctive variabledy 4; = {g|g € 1: p,Z; = 1}; denote byp; 12,y
the sub-vector of; for only the active variables, arff 4, (zj, W) the submatrix
of §(zj, W) whose rows and columns correspond to only the active variables;

3. Solve the reduced optimization conditional on e via:
maximize qv{ﬂj}s{ﬂj}(zj,%(pj’mj}
LRED
subjectto  [[@j 41> =1 and @, 4,@; (4, =0 form# j.

4. Update the fulp—vectorg; with elements{pj,{ﬂj} for the active variables and all
other elements zero.

For example, in a problem with = 5000 but sparseness of the order of 5%, #hewill involve

a few hundred active variables, and eigenvalue decomposition will theetiermed on matrices

of that order rather than 50005000 We note also that this strategy requires a modification to the
update operation for the configuration probabilities: digewill be updated at any one step only for
the current indiceg € 4;, keeping the remaining;; at values previously obtained.

6. Experimental Results on Synthetic Data

Performance and comparisons on artificial data are shown to highlightlsanméng properties of
the GFM.
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Figure 2: Display of evolvingsr (é, w) in the annealing process (from= 2 to T = 0) with contour
plots. The black circle in each panel indicates the maximum point, and thasponging

to T =0 in the panel on the bottom-right corner indicates the optimal sparse s&uctur

1783



Y OSHIDA AND WEST

6.1 Visual Tracking of Annealing Process with a Toy Problem

The first experiment shows how the VMA2 method can solve the combinatqtiahization. Con-
sider 3 variables and 1 factor, so thxat= (@, - z1)A1; + v where all parameters except are fixed
asW =1 andA = 1I. The likelihood function in (2) is thep(X|Z,©) O exp(¢,, Sy, /2). Assume that
true edge oz = 1, indicatingxiz < Aj1, is known, butz;; = 1 andz1 = 0 are treated as unknown.
Then, with the prior fozy; andz; as logi{Pr(z;; = 1)) = logit(Pr(z1 = 1)) = —1.5, we explored
values forg, andwyg, g = 1,2, based on an artificial data set drawn from the GFM, so as to refine
G1(0©,w) under the factorized)(Z) = w(z11)W(221).

We can map the surfacgr(0©,w) over (wi1,001) When© is set at the optimized valu®
for each(w1, p1). Figure 2 on the bottom-right corner displays a contour plog@(fé, w). The
maximum point lies in one of the four corners correspondinggpe {0,1} and the global MAP
estimate hasy; = 1 andw,; = 0.

Figure 2 also shows a tracking result of the VMAZ2 search process gtémim T = 2 and stop-
ping atT = 0. The change irgr(é), w) and the corresponding maximizing valueq @f 1, wy1) can
be monitored through the contour plots at selected temperatures. Startinghfdnitial values,
w11 ~ 0.5 andwy; ~ 0.5, at the highest temperature, the successively-generated maximum points
gradually come closer to the global optimuoy{ = 1 andw,1 = 0) as the annealing process pro-
ceeds. At higher temperature@;(é, w) is unimodal. In the overall search, the tempered criterion
begins to become bimodal after the trajectory moves into regions close to tta glakimum.

This simple illustrative example highlights the key to success in the search: mbeitigjec-
tory of solutions closer to the global maximum in earlier phases of the coolimgdsée, before
the tempered criterion function exhibits substantial multimodality. Looking aheadyay be able
to raise the power of the annealing search by, for example, using dynamimlkcof the cooling
schedule or more general penalty functionsdor

6.2 Snapshot of Algorithm with 30 Variables and 4 Factors

In what follows, we will show some simulation studies to provide insights and ecsgns. The
data sets have = 100 data points drawn from the GFM with= 30 andkiye = 4, and withW¥ =
0.05 andA = diag(1.5,1.2,1.0,0.8). Thezy; were independently generated with(®f = 1) =
0.3, yielding roughly 70% sparsity; then, non-zero element® efhere generated as independent
standard normal variates, following whidly was constrained to orthogonality.

To explore sensitivity to the chosen temperature schedule for anneatpgyjraents were run
using three settings:

e (Log-inverse decay)T; = 3/log,(i+ 1) fori =1,...,6999, andl7opo= 0
e (Lineardecay) TT=3-6x10°x (i—1) fori=1,...,1999, andlpp= 0
e (Power decay)Ti =3x0.99 (- fori=1,...,1999, andlrggo= 0

For each, we evaluated the resulting MAP search in terms of comparison witruhmodel and
computational efficiency, in each case using a model with redundant tiotensionk = 8.

6.3 Annealing with Fixed Hyper-parameters

First analyses fixedgj = ¢ and was run repeatedly across some grid points ®f{0,5]. Figure
3 summarizes the evaluation of the receiver operating characteristics) lROGe three cooling

1784



GRAPHICAL FACTOR MODELS AND VARIATIONAL MEAN-FIELD ANNEALING

SO <00 € 0 DpOoICmO O O O

1.0
1.0

0.8
1
o

00

0.8

1

X A
bt

2 i)
© ©
%ﬁ) © . °o° % © ‘%oo
i ) b3
2z ° o 2z ° o
= o = &®
2 § 2 .| %°
o
o3 o a <] °°
(=]

() ()
= S = N
= oo°d) —

o~ o~ .

S a® S OlLinear decay

o o OLog-inverse decay
{Exponential decay

)
B
0.0

1

0.0

T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate False Positive Rate

Figure 3: ROC for threshold PCA assuming a known, kue4 factors (left), compared to VMA2
estimation of the GFM under the three cooling schedules and kwitt8 (right). TPR
(vertical) and FPR (horizontal) were calculated according tgPrBnd FPPN where P
and N denote the numbers of hon-zero and zero elements in true loadihgadTFP are
the numbers of true positives and false positives, respectively.

schedules. The true positive (TPR) and false positive rates (FPR) seenputed based on the
correspondences between estimated and true values gfjtHeéor comparison, we used standard
PCA, extracting the dominant 4 eigenvectors and setting entries below adlt€m absolute
value) to zero; sliding the threshold towards zero gives a range ofareddoadings vectors in the
PCA that define the ROC curve for this approach. The resulting RO@gcsimown in the left panel,

is very near to the 49ine, comparing very poorly with the annealed GFM; for the latter, each ROC
curve indicates rather accurate identification of the sparse structurinamdrves differ in small
ways only as a function of cooling schedule. The choice of cooling stben, however, have a
more marked influence on results if initialized at temperatures that are too low.

6.4 Inference on Degrees of Sparseness

A second analysis uses the sparsity ppofg;) = AL ({gj|K, 0) with p= 3 ando = 6, and adopts
the log-inverse cooling schedule. As shown in the right panel of Figutbetanalysis realized
a reasonable control of FNR (#86) and FPR (0%), inducing a slightly less sparse solution than
the true structure. The GFM analysis automatically prunes the redunaaotsfaidentifying the
true model dimension. Figure 5 displays a snapshot of evolving configuiarobabilitieswyj and
hyper-parameter&y; during the annealing schedule, demonstrating convergence over &80 s
At aroundT; ~ 0.45, all the configuration probabilities corresponding to the redundamntéators
reached to zero.

We further evaluated sensitivity to the choice of cooling schedules; in adddithe previous
three cooling schedules, we compared with:
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Precision matrix of True loading matrix Identified precision matrix Identified loading matrix
artificial data (ktrue=4) (k=8)

Figure 4: Result of the VMA2 estimation using the log-inverse rate cooling ilysisaf synthetic
data. (Left) Precision and factor loadings matrix used for generatingytitbetic data
(p = 30, kyue = 4). Non-zero elements are colored black. (Right) Estimated precision
and factor loadings matriXk(= 8); note that the MAP estimate sets the last four loading
vectors to zero and so identifies the true number of factors automatically.

e (Log-inverse decay)li = 0.7/log,(i+1) fori=1,...,6999 and T;000= 0
e (Linear decay); = 0.7—-6x 10 x (i— 1) fori =1,...,1999 and Togo0= 0
e (Power decayY; = 0.7 x 0.99 (- fori=1,...,1999 and Toggo= 0

The initial temperatures are reduced from 3 to 0.7. Figure 6 shows th¢ieasi@af TPR and FPR
in the use of the six cooling schedules, evaluated in 20 analyses with reglsatthetic models
and data sets. The left and center panels indicate significant dominatioe afinealing starting
from the higher initial temperatures. Performance in identifying model steisteriously degrades
when using a temperature schedule that starts too low, and the sensitivihethugeis very limited
when beginning with reasonably high initial temperatures.

The right panel in Figure 6 shows TPR and FPR for the sparse PCAABP®posed by
Zou et al. (2006), evaluated on the same 20 data sets usiiydbwespca() available at CRAN
(http://cran.r-project.org/ ). With spca() , we can specify the number of nonzero elements
(cardinality) in each column of the factor loading matrix. We execaped() after the assignment
of the true cardinality as well as the known factor dimendign. = 4. The figure indicates a
better performance of GFM annealed with high initial temperature than theesp&A, and this
is particularly notable in that the GFM analysis ukes 8 and involves na priori knowledge on
the degree of sparseness. It is important to see that the conductedrismmps biased since the
data were drawn from the GFM with the orthogonal loading matrix where SB@% not make
orthogonality assumptions. In Section 7.1, we provide deeper compadswngg several existing
sparse factor analyses based on image processing in hand-writtenetigiggition.

6.5 Computing Time Questions

Figure 7 shows the CPU times required for the execution of the GFM anags&sove, repeated
with increasing dimensiop € {100 200, 300,500, 700,1000;. The data sets were again generated
from GFMs with 4 factors and roughly 70% sparseness. We then perdotimeVMA2 using a
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Figure 5: Convergence trajectories of fig (upper) andug; (lower) in analysis of synthetic data
over 2000 steps of annealed MAP estimation.

linear decay cooling of length 2000, and using both deterministic and stachasealing in a
model withk = 8. The deterministic algorithm was not used for 500 due to substantial increase
in CPU times; this was eased via use of the stochastic search algorithm.

1787



Y OSHIDA AND WEST

VMAZ2 starting from VMAZ2 starting from
high temperatures low temperatures SPCA

| VV/VVVJ
AN

5 10 15 20
Replication number of dataset

1.0
I
1.0
I

1.0

0.8
I
0.8
I

08

0.6
I
0.6
I

TPR and FPR
0.6

0.4
L
TPR and FPR

0.2
0.2 0.4
TPR and FPR
04

0.2

0.0
I
0.0
|

0.0
L

T T T T T T T
5 10 15 20 5 10 15 20
Replication number of dataset Replication number of dataset

Figure 6: Performance tests on 20 synthetic data sets for different caolglules and compari-
son between the GFM and a sparse PCA (SPCA). For each panel, T&R) @nd FPR
(blue) are plotted (vertical axis) against the 20 replicate simulations of aftifiaia.
The results of annealing with the higher and lower initial temperatures arenshave
left and center panels respectively where the rates of cooling with l@gsaylinear and
power decays are denoted by box, diamond and circle, respectivedyight panel shows
the results of SPCA.

7. Real Data Applications

Experimental results on image analyses of hand-written digits (Section dbreast cancer gene
expression data (Section 7.2) are shown to demonstrate practical reefdhe GFMs in analyses
of high dimensional data.

7.1 Application: Hand-written Digit Recognition

We evaluate GFM in pattern recognition analyses of hand-written digit imagdsnake compar-
isons to three existing methods; (i) SPCA (Zou et al., 2006), (ii) spardeapriisstic PCA with
ARD prior (Archambeau and Bach, 2009), and (iii) MCMC-driven spafactor analysis (West,
2003; Carvalho et al., 2008). These three methods are all based on maitierson-orthogonal
sparse loading matrices. The training data set was made fromi.@@ray-scale images of 100 dig-
its (i.e.,n =100, p = 256) of ‘3’ that were randomly drawn from the postal zip code data availa
at http://www-stat.stanford.edu/ ~ tibs/ElemStatLearn/ (Hastie et al., 2001). To evaluate
robustness of the four approaches, we added artificial outliers to g gfeatures) for about 5%
of the original 100 images. Some of the contaminated images are shown in tledttoanels of
Figure 8.

For the non-probabilistic method, that is, (i) SPCA, we performed datansteation in the
standard mannex(x;) = WWx; with W the matrix of sparse, non-orthogonal loading vectors. In
applications of (ii) and (iii) that are inherently driven by probabilistic modeddadeconstruction
was made via the posterior meg(x;) = WE|A;|x] using obtained sparse loading matk For all
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Figure 7: (Left) CPU times (in seconds; Intel(R) Core(TM)2 Duo preoe2.60Ghz) versus model
dimensionp for the stochastic VMA2. For the deterministic VMA2, we terminated the
tests with the data larger thgn= 300. Execution times for the deterministic algorithm
were approximately 468, 812 and 1100 secge+ 100, 200 and 300. (Right) Identified
sparse loadings matrix, displayed as transpose, for the case A0D00 where the MAP
estimation achieved FPR 12.0% and FNR= 18.4%.

the methods, setting factor dimensionskte 10, we explored sparse estimates so that the degrees
of sparseness become approximately 30% (see Figure 8). For SPQisenke same number of
non-zero elements in each loading vector as in the estimated GFM. The GFbktiraated using
VMAZ2 with a fixed value for{ and a linear cooling schedule of length 2000.

A set of 100 test data samples was created from the 100 samples abodeibg autliers
drawn from a uniform distribution to randomly-chosen pixels with probabili®. (Performance
of the four approaches to data compressions/reconstruction wessadsga mean square error
(MSE) betweerx(x;)s and the true, original test images without the outliers. The right founpane
in Figure 8 show some digit images reconstructed by each method with themamdcéng origi-
nal/contaminated test data. The reconstruction errors for the trainingsinadi&ances are also sum-
marized in the figure. For the results on (ii) and (iii)—the non-orthogor@babilistic analyses—
the reconstructed digits were vaguely-outlined. Such poor reconsmaciise partly from effects
of the outliers spread from pixel to pixel along the complete graph defigetbh-sparse preci-
sion matrix. This empirical result indicates the vulnerability issue of nonicéstr sparse factor
models in presence of outliers. In the reconstructions of the test instdhe&SFM could capture
characteristics of original digits with the highest accuracy among the metlSgISA attained the
second highest accuracy in terms of MSE. These observations higthlggbtibstantial merit of us-
ing sparse linear mapping in data reconstructions. The GFM and SPCA limitdpagations of
outliers within some factor cliques, as most pixel images in the other isolatedhdjacent factor
cliques could be restored clearly.
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Figure 8: Comparison between GFM and the three alternative methods (fiHtiithe data
reconstruction of outlier hand-written digit images. For the implementation of
the sparse probabilistic PCA with ARD prior (ARD-PPCA), we prepared @un
R function which is available at Supplementary web site. In the application
of the MCMC-based sparse factor analysis, we used BFRM 2.0 distribated
http://www.stat.duke.edu/research/software/west/bfrm/. In the four pan#ie tittom-
right, d.s.denotes the degree of sparseness.

GFM -
ARD-PPCA -
BFRM2.0 -
SPCA

7.2 Application: Breast Cancer Gene Expression Study

Latent factor models are being more used in microarray-based geressixpr studies in both basic
biological and clinical studies, such as cancer genomics. An exampledstlm&ncer gene expres-
sion study here further illustrates the practical relevance of GFM steiana adds to comparisons
with other approaches. In addition to the summary details below, a much edtdisdeission of
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Figure 9: Identified factor probes (left) and sparse structure (righéyp matrix). In each image of
the left panel, expression signatures of the probes associated witfaetmtare depicted
across 138 samples (ordered along horizontal axis).

both statistical and biological aspects is available in supporting material atdhauihor’s web site
(see link below).

Among the goals of most such studies are identification of multiple factors thatepagsent
underlying activity of biological pathways and provide opportunities forrmpd predictive mod-
els with estimated latent factors for physiological and clinical outcomes (eagvalbo et al., 2008;
Chang et al., 2009; Hirose et al., 2008; Lucas et al., 2006, 2009; @33, Yoshida et al., 2004,
2006). Here we discuss an example application of our sparse GFM irs@afydata from previ-
ously published breast cancer studies (Cheng et al., 2006; Huahg2€Q8; Pittman et al., 2004;
West et al., 2001).

The GFM approach was applied to a sample of gene expression micrdateagollected in the
CODeX breast cancer genomics study (Carvalho et al., 2008; Pittman20@4;, West et al., 2001)
at the Sun-Yat Sen Cancer Center, Taipei, during 2001-2004. liticdtb summary expression
indices from Affymetrix Human Genome U95 arrays, the data set includes imimsinchemistry
(IHC) test for key hormonal receptor proteins in clinical prognostid®BB2 (Her2) and estrogen
(ER). The IHC measures are discrete: ER negative (ER=0), ER peosiitiki low/high-level expres-
sion (ER=1 and ER=2), Her2 negative (Her2=0), and Her2 posititle lw/high-level (Her2=1
and Her=2). We performed analysis pf= 996 genes with the expression levels that, on a log2
(fold change) scale, exceed a median level of 7 and a range of aBkalst changes across the
tumors. The data set, including the expression data and the IHC hormorsumegaare available
on-line as supplementary material.

The annealed estimation of GFM was run with: 25, 1= 7 ando = 10. The cooling schedule
was prescribed by a linearly-decreasing sequence of 2000 temgsranhder which the decay rate
and initial temperature were set to 0.006 and 3, respectively. The apgfieddentified 19 factors,
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pruning from the model maximuk= 25. Heatmaps of gene expression for genes identified in each
of the factors appear in Figure 9 with the identified sparse pattern of thimgsachatrix.

Evaluation and Annotation of Inferred Factor$o investigate potential biological connections
of the factors, we evaluated enrichment of the functional annotatiomsdhs genes in each factor
through the Gene Ontology (GO). This exploration revealed associattwedn some factors and
GO biological processes; the complete and detailed results, including télies®O enrichment
analyses for each factor and detailed biological descriptions, are ladeaftam the web site of
supporting information.

Factors Related to ERFigure 10 displays boxplots of fitted values of the factor scores for
each sample, plotted across all 19 factors and stratified by levels of édel dinical ER and
Her2 (0/1/2) categories. For each samplthe posterior mean of the factor vector, namgly=
(Ik+A)*1A<D’ZlP‘1/2xi, is evaluated at the estimated model, providing the fitted values displayed.
We note strong association of ER status to factors 8 (GO: hormone metabmdiesp), 9 (GO:
glucose metabolic process, negative regulation of MAPK activity), 12: (GZ1-steroid hormone
metabolic process), 14 (GO: apoptotic program, positive regulation pisasactivity), 18 (GO:

M phase of meiotic cell cycle) and 19 (GO: regulation of Rab protein sigaaktiuction). These
clear relationships of ER status to multiple factors with intersecting but also disiiological
pathway annotations is consistent with the known complexity of the broadeeE#rk, as estro-
gen receptor-induced signaling impacts multiple cellular growth and develdplyeelated down-
stream target genes and strongly defines expression factors linkezh&i bancer progression.

Her2 Status and Oncogenomic Recombination Hotspot on 1#j@Are 10 indicates factor 16
as strongly associated with Her2 statQsl) versus 2. Factor 16 significantly loads on only 7 genes
that include STARD3, GRB7 and two probe sets on the locus of ERBB2 fwdrnicodes Her2).
This is consistent with earlier gene expression studies that have cotigiglentified a single ex-
pression pattern related to Her2 and a very small number of additionas,geme that have found
the “low Her2 positives” level(1) to be generally comparable to negatiliggrestingly, we note
that STARD3, GRB7 and ERBB2 are all located on the same chromosomal 1a@i2, which
is known as PPP1R1B-STARD3-TCAP-PNMT-PERLD1-ERBB2-MGE832-GRB7 locus. This
locus has been reported in many studies (e.g., Katoh and Katoh, 200%dasaenomic recombi-
nation hotspot which is amplified frequently in breast tumor cells, and thdypexploratory (i.e.,
unsupervised) GFM analysis clearly identifies the “Her2 factor” as gtyareflective of increased
expression of genes in this hotspot, consistent with the amplification induciriypdsitivity.

Comparison to Non-sparse AnalysiBinally, we show a comparison to hon-sparse traditional
PCA. Supplementary Fig.1 and 2 show the estimated factors (principal cemisdcorresponding
to the most dominant 19 eigenvalues, stratified by the levels of ER and Hag2PTA failed to
capture the existing factor relevant to Her2-specific phenotypes in tilgsaal data. Note that the
foregoing sparse analysis identified the Her2-relevant factor onlygifrthe 7 non-zero loadings.
Indeed, our post-analysis has found that the data set contains wegefess exhibiting significant
fold change across the Her2 phenotypes. The non-sparse anatysis eapture many irrelevant
features through too redundant non-zero loadings. The failure Af $ighifies the importance of
sparse modelling in handling high-dimensional data having inherently spiansture.
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Figure 10: Boxplots of fitted values of breast tumor-specific factores;@tratified by protein IHC
determinations of clinical ER status (upper) and Her2 status (lower) in tHeR Gate-
gories.

8. Additional Comments

The novel graphical property of GFMs provides a nice reconciliatioapafrse covariance mod-
els with sparse precision models—sparse latent factor analysis andagdapbdels, respectively.
Some of the practical benefits of this arise from the ability of GFM to define r@atnstructions
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exhibiting the same patterns of covariances as the model/data predict, armtehggb to induce
robustness to outliers relative to non-graphical factor models, whegthesesor not. Some theoret-
ical questions remain about precise conditions under which the spartyrsaof covariance and
precision matrices are guaranteed to agree in general sparse Gdaskiamodels other than the
GFM form. Additionally, extensions to integrate non-parametric Bayesian hooteponents for
factors, following Carvalho et al. (2008), are of clear future interest.

The ability of the VMA2 to aid in the identification of model structure in sparse G&MI to
provide an additional computational strategy and tools to address thentilerigallenging com-
binatorial optimization problem, has been demonstrated in our examples. Stalgher di-
mensional models is enabled by relaxation of the direct deterministic optimizatiwpiiat, with
stochastic search components that promote greater exploration of madel &pd can speed up
search substantially. Nevertheless, moving to higher dimensions will regglivecreative compu-
tational implementations, such as using distributed computing, that will themselyese novel
methodological concepts.

The annealed search methodology evidently will apply in other contexts\ddgotor models.
At one level, sparse factor models are an instance of problems of vasieleletion in multivari-
ate regression, in which the regression predictors (feature variaslefiemselves unknown (i.e.,
are the factors). The annealed entropy approach is therefore iripieirapplicable to problems
involving regression model search and uncertainly in general clagdgear or nonlinear mul-
tivariate regression with potentially many predictor variables. Beyond tressdime can be said
about potential uses in other areas of graphical modelling involving stalétfierence of directed
or undirected graphical models, and also in multivariate time series problesrg wome of the
sparse structure may relate to relationships among variables over time.

We also remark on generalization of the basic form of VMAZ2 here that mig@apenalty func-
tions other than the Shannon’s entropy used here. The central idea ®MA2 is the design
of a temperature-controlled iterative optimization that converges to the jogtepar distribution
of model parameters and sparse structure indicators. The entropyldtionwsed in our GFM
context was inspired by the form of the posterior itself, but similar algorithm#h-the same con-
vergent property—could be designed using other forms. This, alongoaitiputational efficiency
guestions and applications in models beyond the sparse GFM framewadrlalssmpotential ex-
tensions to consider heavy-tailed or Bayesian nonparametric distributiofesént factors and/or
residuals (e.g., Carvalho et al., 2008), are open areas for futwaroks
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Appendix A.

We present a proof of Proposition 1 and a derivation of optimization @ver

A.1 Proof of Proposition 1
Replace the objective function of (5) by multiplying by inverse temperatyife 1

ZGr(0.0)= 3 0(2)logpX. 2,00~ 3 0(Z)logei?)

An upper-bound of this modified criterion is derived as follows:
P(ZX,0,0)"Tp(X,0[g)"T
w(2)
T
- 3 ofziig PEXOLM
Ze OJ(Z) Z p(z ‘X,O,Z)

ey

1
Z61(0,0) = 2)
FGr(O6) = 3 w2)log

< Ko.

In the second equality, the terms irrelevant@éZ) are included inKo = logp(X,©|0)YT+

logs zc » P(Z'|X,0,0)%T. The first term in the second line is the negative of the Kullback-Leibler
divergence betweew(Z) and the normalized tempered posterior distribution. The lower-bound of
the Kullback-Leibler divergence is attained if and only if

_p(Z|X,0,0)YT
ZZ/EQ‘; p(Z,’X76>Z)1/T’

w(Z)
as required.

A.2 Derivation: Optimization over ®

Letpj, j € {1,...,k} be the Lagrange multipliers to ensure the restrictions in (10). We now write
down the Lagrange function:

G Ea[S(z, W)]g, —pj(Hw,-Hz—l)—n; PP (13)
j
Differentiation of (13) with respect t; yields
Eo[S(z,W)lo; —pj@) — é Pmn = 0. (14)
i

In order to solve this equation, the first step to be addressed is to find #esldtarm solution for the
vector of the Lagrange multiplierp(fj) = {Pm}myj € R¥~1, Multiplying (14) by eachy,, m# j,
from the left, we have thk— 1 equations as follows:

#Ew[S(zj,W)]e;, - ; Pm@n@; =0 formst. m# j.
i
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This yields the matrix representation
q)/(,j)Ew[S(Zj W) — (szj)q)(—j)p(fj) =0,

which in turn leads to the solution f(pr(fj) as

P = (P ®j) P ElS(z, W)le;.
Substituting this into the original Equation (14) yields the eigenvalue equation
NjEw[S(zj, W)@, —pj@, =0 withN; =1 — dJ(,j)CDE_J-). (15)
Now consider the alternative, symmetrized eigenvalue equation
NjEw[S(zj, W)INjd; —pjd; = 0. (16)
SinceNj is idempotent, left-multiplication of (16) b\; yields
NjEq[S(zj, W)INjo; —pjN;¢; = 0.

which is equivalent to the required Equation (15) wiger= N;¢;.
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