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Abstract

We consider the estimation of regression coefficients in a high-dimensional linear model. For re-
gression coefficients inℓr balls, we provide lower bounds for the minimaxℓq risk and minimax
quantiles of theℓq loss for all design matrices. Under anℓ0 sparsity condition on a target coeffi-
cient vector, we sharpen and unify existing oracle inequalities for the Lasso and Dantzig selector.
We derive oracle inequalities for target coefficient vectors with many small elements and smaller
threshold levels than the universal threshold. These oracle inequalities provide sufficient conditions
on the design matrix for the rate minimaxity of the Lasso and Dantzig selector for theℓq risk and
loss inℓr balls, 0≤ r ≤ 1≤ q≤ ∞. By allowingq= ∞, our risk bounds imply the variable selection
consistency of threshold Lasso and Dantzig selectors.

Keywords: variable selection, estimation, oracle inequality, minimax, linear regression, penalized
least squares, linear programming

1. Introduction

As modern information technologies relentlessly generate voluminous and complex data, penalized
high-dimensional regression methods have been a focus of intense research activities in machine
learning and statistics in recent years. In many statistical and engineering applications, the number
p of design variables (features, covariates) can be larger or even of larger order than the sample size
n, but the number of important variables may still be smaller than the sample size. Insuch cases,
one seeks a parsimonious model that fits the data well. In linear regression,a popular approach for
achieving this goal is to impose a suitable penalty on the empirical loss.

This paper considers the estimation of a sparse vector of regression coefficients in a linear model.
Specifically, we are interested in the rate minimaxity of the Lasso and Dantzig selector under the
ℓq loss for the estimation of regression coefficients inℓr balls. This requires lower bounds of the
minimaxℓq risk and minimax quantiles of theℓq loss over all estimators as well as matching upper
bounds for the Lasso and Dantzig selector.

c©2010 Fei Ye and Cun-Hui Zhang.



YE AND ZHANG

Let y ∈ R
n be a response vector andX = (x1, . . . ,xp) ∈ R

n×p be a design matrix. The Lasso
(Tibshirani, 1996) is theℓ1-penalized estimator

β̂
(L)

(λ) = argmin
b

{
‖y−Xb‖2/(2n)+λ‖b‖1

}
(1)

for the regression coefficients. In the signal processing literature, theLasso is known as basis pursuit
(Chen and Donoho, 1994). The Lasso has the interpretation as boosting(Freund and Schapire, 1996;
Friedman, Hastie, and Tibshirani, 2000) and is computationally feasible for high-dimensional data
(Osborne, Presnell, and Turlach, 2000a,b; Efron, Hastie, Johnstone, and Tibshirani, 2004). More
recently, Candes and Tao (2007) proposed anℓ1-minimization method called the Dantzig selector,

β̂
(D)

(λ) = argmin
b

{
‖b‖1 : |x′j(y−Xb)/n| ≤ λ,∀ j

}
. (2)

A focus of recent studies of high-dimensional linear regression has been on the performance of
the Lasso and Dantzig selector for the estimation of the regression coefficients. Candes and Tao
(2007) derived an elegant probabilistic upper bound for theℓ2 loss of the Dantzig selector under a
condition on the number of nonzero coefficients and a uniform uncertaintyprinciple on the Gram
matrix. Efron, Hastie, and Tibshirani (2007) questioned whether a similar performance bound holds
for the Lasso estimator as well. Upper bounds for theℓq loss of the Lasso estimator has being studied
by Bunea, Tsybakov, and Wegkamp (2007) and van de Geer (2008) for q = 1, Zhang and Huang
(2008) forq ∈ [1,2], Meinshausen and Yu (2009) forq = 2, Bickel, Ritov, and Tsybakov (2009)
for q∈ [1,2] with a parallel analysis of the Dantzig selector, and Zhang (2009b) forq≥ 1. Under
different sets of regularity conditions on the Gram matrix and the sparsity ofregression coefficients
β ∈ R

p, these results provide error bounds of the form‖β̂−β‖q ≤ O(k1/qλ), wherek is the number
of nonzero entries of a target vector of regression coefficients or anintrinsic dimensionality of the
sparse estimation problem. ForN(0,σ2) errors and standardized designs with‖x j‖ =

√
n, these

studies require a universal penalty levelλuniv = σ
√
(2/n) logp or greater for the Dantzig selector

and a penalty levelλ greater by a constant factor thanλuniv for the Lasso. Different sets of regularity
conditions lead to different forms of constant factors in the error bounds so that the existing error
bounds are typically not directly comparable mathematically.

This paper contributes to high-dimensional regression in several ways.We provide lower bounds
for the minimaxℓq risk in ℓr balls and the minimax quantiles of theℓq loss for all designsX. We
derive sufficient conditions onX for the Lasso and Dantzig selector to attain the rate of the minimax
ℓq risk and the minimax quantiles of theℓq loss. We provide oracle inequalities for theℓq loss of
the Lasso and Dantzig selector which sharpen, unify and extend the existing results and allow the
penalty levelλ to be of smaller order than the universal penalty level.

The rest of the paper is organized as follows. In Section 2, we describelower bounds for the
minimax risk and loss inℓr balls. In Section 3, we provide oracle inequalities for the Lasso and
Dantzig selector under theℓ0 sparsity of regression coefficients. We compare these oracle inequal-
ities with existing ones and describe their implications in variable selection and rateminimaxity in
ℓ0 balls. In Section 4, we provide more general oracle inequalities to allow many small regression
coefficients and penalty levels of smaller order thanσ

√
(2/n) logp. These oracle inequalities are

used to establish the rate minimaxity for theℓq loss inℓr balls. In Section 5, we make a few remarks.
An appendix contains all proofs.
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We use the following notation throughout the paper. For vectorsv= (v1, . . . ,vp)
′, ‖v‖0 = #{ j :

v j 6= 0} and‖v‖q = (∑ j |v j |q)1/q is theℓq norm with the special‖v‖= ‖v‖2 and the usual extension
to q= ∞. Functions are applied to vectors in individual components,f (v) = ( f (v1), . . . , f (vp))

′. For
matricesM and 0≤ a,b≤ ∞, ‖M‖a,b = max{‖Mv‖b : ‖v‖a = 1} is the operator norm fromℓa to ℓb.
For subsetsA andB of {1, . . . , p}, XA = (x j , j ∈ A), ΣA,B = X′

AXB/n, ΣA,∗ = X′
AX/n, ΣA = ΣA,A, and

PA is the projection fromRn to the linear span of{x j : j ∈ A}. For realx, x+ = max(x,0), 1/x+ = ∞
for x≤ 0, and⌈x⌉ is the largest integer upper bound ofx. For real numbersan andbn, an ≈ bn means
an = (1+o(1))bn, an / bn meansan ≤ (1+o(1))bn, andan . bn meansan = O(bn). For simplicity,
the dependence of estimators on the penalty levelλ is suppressed unless otherwise stated.

2. Lower Bounds for the Estimation Risk and Loss

Consider the linear model

y= Xβ+ ε =
p

∑
j=1

β jx j + ε. (3)

Throughout the sequel,Pβ,X is the probability measure given{β,X} under whichε ∼ N(0,σ2In).
For simplicity, we also assume‖x j‖2 = n wheneverPβ,X is referred to. Define

Θr,R = {v∈ R
p : ‖v‖r ≤ R}, r > 0, Θ0,k = {v∈ R

p : ‖v‖0 ≤ k}, (4)

as theℓr andℓ0 balls respectively. Letσn = σ/
√

n and

λuniv = σn

√
2logp, λmm= σn

{
2log

(σr
np

Rr

)}1/2
, λmm= σn

√
2log(p/k), (5)

be respectively the universal (univ) penalty level (Donoho and Johnstone, 1994) and the minimax
(mm) penalty levels for theℓr andℓ0 balls. The dependence ofλmmon{r,R} or {0,k} is suppressed
sinceλmm is always used in association with a specific ball in (4).

Donoho and Johnstone (1994) proved that for 0< r < q and based on ap-vector̃y∼N(β,σ2
nI p),

the minimaxℓq risk in theℓr ball Θr,R is approximately

inf
δ

sup
β∈Θr,R

Eβ,X
∥∥δ(ỹ)−β

∥∥q
q = (1+o(1))Rrλq−r

mm

and is achieved within an infinitesimal fraction by threshold estimators at the threshold levelλmm,
provided thatλmm/σn → ∞ andRr/λr

mm→ ∞. Here the infimum is taken over all Borel mappings
δ of proper dimensions. The following theorem extends their result to the estimation of regres-
sion coefficients underPβ,X. For any class of vectorsΘ ⊂ R

p, the minimaxℓq risk is Rq(Θ;X) =
infδ supβ∈Θ Eβ,X‖δ(X,y)−β‖q

q.

Theorem 1 Let Θr,R and Θ0,k be as in (4) andλmm as in (5) with R> 0 and q≥ r > 0. Suppose
Rr/λr

mm→ ∞, k→ ∞ andλmm/σn → ∞. Then,

Rq(Θr,R;X)

Rrλq−r
mm

≥ (1+o(1)),
Rq(Θ0,k;X)

kλq
mm

≥ (1+o(1)). (6)

Moreover, for eitherΘ = Θr,R with k= Rr/λr
mm or Θ = Θ0,k,

inf
X

inf
δ

sup
β∈Θ

Pβ,X

{
‖δ(X,y)−β‖q

q ≥ (1− ε)kλq
mm

}
≥ ε+o(1)

3q , 0< ε < 1. (7)
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Remark 2 The value k in (7) can be viewed as an intrinsic lower bound for the number of param-
eters to be estimated for the minimaxity under theℓq loss. By (5),λmm≤ λuniv iff R≥ σn for r > 0.
For λuniv ≍ λmm and respectively for r= 0 and0< r ≤ 1, Corollary 4 in Section 3.1 and Theorem
17 in Section 4.2 provide conditions on X for the Lasso and Dantzig selector to match the rate of
the minimax lower bound kλq

mm in (7). For λmm≪ λuniv, Theorem 19 in Section 4.2 gives the rate
minimaxity of the Lasso.

During the revision of this paper, we became aware of the technical report of Raskutti, Wain-
wright, and Yu (2009). The lower bounds in Theorem 1 are identical forall design matricesX and
thus are sharp only up to a constant factor under certain conditions onX. For example, the minimax
risk in a parameter classΘ∋ 0 is no smaller than the radius of the null setΘ∩{b : Xb= 0}. This and
some other aspect of the design matrix have been used to derive sharperlower bounds in Raskutti,
Wainwright, and Yu (2009). In our technical report (Ye and Zhang, 2009) and in Zhang (2009a),
Theorem 1 only covers the caser > 0.

3. Oracle Inequalities under ℓ0 Sparsity and Variable Selection

We discuss in three subsections oracle inequalities for theℓq loss, related work, and variable selec-
tion. We focus on coefficient vectors with a relatively small number of nonzero entries here. The
more complicatedℓr -sparse case will be considered in Section 4.

3.1 Oracle Inequalities and Rate Minimaxity under ℓ0 Sparsity

For ξ ≥ 0 andJ ⊂ {1, . . . , p}, define cone invertibility factors (CIF)

CIFq,ℓ(ξ,J) = inf
{ |J|1/q‖Σu‖∞

‖uA‖q
: u∈ C (ξ,J), |A\J| ≤ ℓ

}
(8)

with conesC (ξ,J)= {u : ‖uJc‖1 ≤ ξ‖uJ‖1 6= 0}. Note thatCIFq,ℓ(ξ,J)=CIFq,p−|J|(ξ,J) for ℓ≥ p−
|J| and since the infimum is attained whenuA takes theℓ largest elements ofu outsideJ, CIFq,ℓ(ξ,J)
is decreasing inℓ. Similarly, define sign-restricted cone invertibility factors (SCIF)

SCIFq,ℓ(ξ,J) = inf
{ |J|1/q‖Σu‖∞

‖uA‖q
: u∈ C−(ξ,J), |A\J| ≤ ℓ

}
. (9)

with sign-restricted conesC−(ξ,J) = {u ∈ C (ξ,J) : u jΣ j,∗u ≤ 0 ∀ j 6∈ J}. We first present oracle
inequalities in terms of the (sign-restricted) CIF.

Theorem 3 Let β̂
(D)

andβ̂
(L)

be the Lasso and Dantzig selector in (1) and (2),1≤ q≤ ∞, β∗ ∈R
p,

J = { j : β∗
j 6= 0} and z∗∞ = ‖X′(y−Xβ∗)/n‖∞.

(i) Let CIFq,ℓ(1,J) and SCIFq,ℓ(ξ,J) be as in (8) and (9). In the event z∗
∞ ≤ λ,

‖β̂
(D)

−β∗‖q ≤
|J|1/q(λ+z∗∞)
CIFq,p(1,J)

≤ 2|J|1/qλ
CIFq,p(1,J)

, (10)

and in the event z∗∞ ≤ λ(ξ−1)/(ξ+1)

‖β̂
(L)

−β∗‖q ≤
|J|1/q(λ+z∗∞)
SCIFq,p(ξ,J)

≤ {2ξ/(ξ+1)}|J|1/qλ
SCIFq,p(ξ,J)

. (11)
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(ii) For λ = σ
√
(2/n) log(p/ε) and λ = σ

√
(2/n) log(p/ε)(ξ+1)/(ξ−1) respectively, (10) and

(11) hold withβ∗ = β and at least probability1− ε/
√

π log(p/ε) under Pβ,X.

Theorem 3 immediately provides a sufficient condition on the designX for the rate minimaxity
of the Lasso and Dantzig selector in the quantiles of theℓq loss inℓ0 balls, in the sense of (7) of
Theorem 1. We state this result as the following corollary. Define

CIF∗
q (ξ,k) = inf

{
k1/q‖Σu‖∞/‖u‖q : 0< ‖u‖1 ≤ (1+ξ)max

|J|=k
‖uJ‖1

}
. (12)

Corollary 4 Suppose k∧ (p/k)→ ∞ for certain(p,k) = (pn,kn).

(i) Suppose M(D)
q,k = 2

√
logp/{

√
log(p/k)CIF∗

q (1,k)} ≤ M∗ < ∞. Then, the Dantzig selector̂β =

β̂
(D)

with λ = λuniv in (5) is rate minimax in the sense of

sup
β∈Θ0,k

Pβ,X
{
‖β̂−β‖q ≥ M∗k

1/qλmm
}
→ 0. (13)

(ii) Suppose M(L)q,k,ξ = max|J|≤k 2{ξ/(ξ− 1)}√logp/{
√

log(p/k)SCIFq,p(ξ,J)} ≤ M∗ < ∞. Then,

(13) holds for the Lassôβ = β̂
(L)

with λ = λuniv(ξ+1)/(ξ−1).

The proof of Theorem 3 is simple since the (sign-restricted) CIF are exactly what we need. Let
h(D) = β(D)(λ)−β∗, h(L) = β(L)(λ)−β∗ andh= h(D) or h(L) throughout the sequel. It follows from
the feasibility ofβ∗ for the constraint in (2) and the Karush-Kuhn-Tucker conditions for the Lasso
(1) respectively that forz∗∞ ≤ λ,

h(D) ∈ C (1,J), v′Σh(L) ≤ (z∗∞ +λ)‖vJ‖1+(z∗∞ −λ)‖vJc‖1, (14)

for all vectorsv satisfying sgn(vJc) = sgn(h(L)Jc ). With v = h(L) or vJ = 0 in (14), it follows that
h(L) ∈ C−(ξ,J) for ξ ≥ (λ+z∗∞)/(λ−z∗∞). Theorem 3 then follows from

‖Σh‖∞ ≤ z∗∞ +λ. (15)

The lower bounds for the (sign-restricted) CIF in the following propositionfacilitate more ex-
plicit results and connections to existing approaches. For given{J, ℓ} define

φq,ℓ(u,A, r,w,B;ξ,J) = 1−ξ|J|1−1/q(ar/ℓ)
1−1/r‖ΣB,AwA‖r/(r−1) (16)

in the following domain:u∈ C (ξ,J), A= argmax|B\J|≤ℓ ‖uB‖1 (determined byu up to ties),r ≥ 1,

w′
AΣAuA = ‖uA‖q, B∩A= /0, |B|= ⌈ℓ/ar⌉ andar = (1−1/r)/r1/(r−1).

Proposition 5 Let{ξ,q, r} ⊂ [1,∞], 1≤ s≤ q and0< ℓ≤ p−|J|. Then,

max
{CIFq,ℓ(ξ,J)

CIFs,p(ξ,J)
,
SCIFq,ℓ(ξ,J)
SCIFs,p(ξ,J)

}
≤Cs,q(ξ, |J|/ℓ), (17)

where Cs,q(ξ, t) = (1+ξ)(1/s−1/q)/(1−1/q){1+ξq(aqt)q−1}(1−1/s)/(q−1);

CIFq,ℓ(ξ,J) = inf
u∈C (ξ,J)

inf
|A\J|=ℓ

sup
v6=0

|J|1/qv′Σu
‖v‖1‖uA‖q

≥ φ∗
q,ℓ(ξ,J), (18)
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whereφ∗
q,ℓ(ξ,J) = minu,A maxr,w minB φq,ℓ(u,A, r,w,B;ξ,J)|J|1/q/‖wA‖1; and

SCIFq,ℓ(ξ,J)≥ inf
u∈C−(ξ,J)

inf
|A\J|=ℓ

sup
v∈Q(u,J)

|J|1/qv′Σu
‖vJ‖1‖uA‖q

≥ φ∗∗
q,ℓ(ξ,J), (19)

where φ∗∗
q,ℓ(ξ,J) = minu,A maxr,w minB φq,ℓ(u,A, r,w,B;ξ,J)|J|1/q/‖wJ‖1 with Q(u,J) =

{v : sgn(vJc) = sgn(uJc)} and vectors u∈ C−(ξ,J) and w∈ Q(u,J).

Remark 6 Taking w= u‖uA‖/(u′AΣAuA) in (16) for theℓ2 loss, we find

φ̃∗
2,ℓ(ξ,J) = min

u,A
max

r
min

B

{
u′AΣAuA−ξ|J|1/2(ar/ℓ)

1−1/r‖ΣB,AuA‖r/(r−1)
}
,

≤ min
{

φ∗∗
2,ℓ(ξ,J),{(1+ ℓ/|J|)1/2∧ (1+ξ)}φ∗

2,ℓ(ξ,J)
}

(20)

with ‖uA‖ = 1 and{A, r,B} in (16), due to‖uA‖1 ≤ {(1+ ℓ/|J|)1/2∧ (1+ ξ)}|J|1/2 and‖wJ‖1 ≤
|J|1/2/(u′AΣAuA). However, for q> 2, w ∝ u in (16) does not lead to a right normalization since
‖uA‖/|A|1/2 does not control ‖uA‖q/|A|1/q. For general q∈ [1,∞], ‖ΣAwA‖q/(q−1) =
w′

AΣAuA/‖uA‖q = 1 gives a properly length normalized lower bound:

φ∗
q,ℓ(ξ,J)≥ min

A,B

{
1−ξ|J|1−1/q(ar/ℓ)

1−1/r‖Σ−1
A ΣA,B‖r,q

}
|J|1/q/‖Σ−1

A ‖∞,q. (21)

For (|A|, |B|,‖u‖,‖v‖r) = (⌈a⌉,⌈b⌉,1,1) with A∩B= /0, define

δ±a = max
A,u

{
±
(
‖ΣAu‖−1

)}
, δa = δ+a ∨δ−a , θ(r)

a,b = max
A,B,u,v

v′ΣA,Bu. (22)

Oracle inequalities for theℓq loss, 1≤ q≤ 2, have been given in terms of the quantities in (22). The
quantities 1± δ±a give the maximum and minimum sparse eigenvalues of the Gram matrixΣ up to

dimension⌈a⌉. For‖uA‖= 1, we haveu′AΣAuA ≥ 1−δ−|A|, ‖ΣB,AuA‖r/(r−1) ≤ θ(r)
|B|,|A| and‖ΣB,AuA‖2 ≤

(1+δ+|B|)u
′
AΣAuA. Thus, Theorem 3, (17) withCq,2(ξ,k/ℓ) = (1+ξ)2/q−1{1+ξ2k/(4ℓ)}1−1/q, and

(20) with r ∈ {2,∞} yield the following corollary.

Corollary 7 Let‖β∗‖0 = |J|= k and1≤ q≤ 2. Then, for z∗∞ = ‖X′(y−Xβ∗)/n‖∞ ≤ λ,

‖β̂
(D)

(λ)−β∗‖q ≤
2|J|1/qλ

CIFq,p(1,J)
≤ 22/q(1+k/(4ℓ))1−1/q(2∧

√
1+ ℓ/k)k1/qλ

(1−δ−k+ℓ)+{1−min(F̃1, F̃2, F̃3)}+
, (23)

where1≤ ℓ≤ p−k, F̃1 = (k1/2/ℓ)θ(∞)
ℓ,k+ℓ/(1−δ−k+ℓ)+, F̃2 =

√
k/(4ℓ)θ(2)

4ℓ,k+ℓ/(1−δ−k+ℓ)+ andF̃3 =

{(k/(4ℓ))(1+δ+4ℓ)/(1−δ−k+ℓ)+}1/2. Moreover, for z∗∞ ≤ λ(ξ−1)/(ξ+1),

‖β̂
(L)

(λ)−β∗‖q ≤
{2ξ/(ξ+1)}|J|1/qλ

SCIFq,p(ξ,J)
≤ (1+ξ)2/q−2(1+ξ2k/(4ℓ))1−1/q2ξk1/qλ

(1−δ−k+ℓ)+{1−ξmin(F̃1, F̃2, F̃3)}+
. (24)
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3.2 Related Work

Here we discuss the connections between the results in Section 3.1 and related work. We show that
the (sign-restricted) CIF-based oracle inequalities in Theorem 3 and Corollary 7 sharpen, unify and
extend existing performance bounds and offer a clear explanation of thedifferences among existing
analyses.

The CIF and SCIF in (8) and (9) are related to the restricted eigenvalues (RE)

REq,ℓ(ξ,J) = inf
{ |J|1/q‖Xu‖
|nJ|1/2‖uA‖q

: u∈ C (ξ,J), |A\J| ≤ ℓ
}
, (25)

since they all conveniently provide factors required in proofs of the sametype of oracle inequalities.
The quantity (25) includes as special cases theℓ2 versionRE2,p(ξ,J) of Bickel, Ritov, and Tsybakov
(2009) and Koltchinskii (2009) and the constant factorRE1,0(3,J) for the compatibility condition
of van de Geer (2007). van de Geer and Bühlmann (2009) calledRE1,0(ξ,J) the restrictedℓ1-
eigenvalue.

Both types of quantities in (8), (9) and (25) involve minimum ratios of seminorms over cones.
The main differences between them are the quantities used to bound the estimation error and the
sign-restriction forSCIFq,ℓ(ξ,J). Let {h(L),h(D),h} be as in (14) and (15). While the RE in (25)
uses the prediction regreth′Σh to bound the estimation errorh, the (sign-restricted) CIF in (8) and
(9) uses theℓ∞ norm of the gradient to bound the estimation error via (15). The use of the gradient
bound in (8) and (9) provides sharper oracle inequalities by allowing the flexibility with the choice
of v in (18) and (19).

For theℓ2 loss of the Dantzig selector, the oracle inequality of Bickel, Ritov, and Tsybakov
(2009) and Theorem 3 can be compared as follows: forz∗ ≤ λ

‖h(D)‖ ≤ 2|J|1/2λ
CIF2,p(1,J)

≤ 4|J|1/2λ
RE1,0(1,J)RE2,p(1,J)

≤ 4(1+
√
|J|/ℓ)|J|1/2λ

RE2
2,ℓ(1,J)

. (26)

The right-hand side of (26) is the upper bound in (7.6) of Theorem 7.1 ofBickel, Ritov, and Tsy-
bakov (2009). An application of the upper bound of van de Geer and Bühlmann (2009) on‖h(D)

J ‖1

in a modification of the proof of Bickel, Ritov, and Tsybakov (2009) yields the intermediate upper
bound. Theorem 3 provides the sharpest upper bound in (26). The second inequality in (26) fol-
lows from (18) with{ℓ,v} = {p− |J|,u}. The third inequality in (26) follows fromRE1,0(ξ,J) ≥
RE2,ℓ(ξ,J) as in van de Geer and Bühlmann (2009) and(1+ξ|J|/ℓ)1/2RE2,p(ξ,J)≥ RE2,ℓ(ξ,J) by
the shifting inequality in Candes and Tao (2007). The shifting inequality of Cai, Wang, and Xu
(2010) can be used to reduce the factor(1+

√
|J|/ℓ) to

√
1+ |J|/(4ℓ) in (26), but (26) still holds.

Similarly, for z∗ ≤ λ/2,

‖h(L)‖ ≤ (3/2)|J|1/2λ
SCIF2,p(3,J)

≤ (3/2)|J|1/2λ
RE1,0(3,J)RE2,p(3,J)

≤ 4(1+3
√
|J|/ℓ)|J|1/2λ

RE2
2,ℓ(3,J)

, (27)

with (7.10) of Theorem 7.2 of Bickel, Ritov, and Tsybakov (2009) on the right-hand side. The
differences of the upper bounds in (26) and (27) could be nontrivialsince van de Geer and Bühlmann
(2009) showed by example the possibility ofRE2,0(ξ,J)/RE1,0(ξ,J)→ 0.

A significant difference between the (sign-restricted) CIF- and RE- based oracle inequalities is
their relationships to the oracle inequalities of Candes and Tao (2007) and Zhang (2009b). While
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Theorem 3 is sharper than these inequalities, the RE-based oracle inequalities seem not to have this
property.

The flexibility with the choice ofv in (18) and (19) is a significant advantage for (8) and (9). The
square of the potentially small(‖Σ1/2

A uA‖−‖Σ1/2
Ac uAc‖)+ has been used to boundu′Σu= ‖Xu‖2/n

from below in the proofs of RE-based oracle inequalities. This is not needed in Candes and Tao
(2007) and Zhang (2009b) since their arguments correspond to using vectorsv with vAc = 0 in (18)
and (19). For example, (23) with̃F3 is at least by a factor{1−min(F̃1, F̃2, F̃3)}+ sharper than
inserting Lemma 4.1 (ii) into (7.6) in Bickel, Ritov, and Tsybakov (2009), evenafter an application
of sharper shifting inequalities to their Lemma 4.1 (ii). Forq> 2, the ratio in (18) is not properly
length normalized withv= u, as discussed in Remark 6. Thus, direct extensions of (25) withu′Σu
in the numerator may not yield performance bounds of the right order.

Corollary 7 sharpens the oracle inequality of Candes and Tao (2007). The upper bound (23)
with F̃1 is of the sharpest form among the three for largeℓ due to the factor 1/ℓ, compared with√

1/(4ℓ) for F̃2 andF̃3. Forℓ= k/4 andq= 2, (23) withF̃2 yields

z∗ ≤ λ ⇒ ‖β̂
(D)

(λ)−β∗‖ ≤ 2
√

kλ
CIF2,p(1,J)

≤
√

10kλ

(1−δ−1.25k−θ(2)
k,1.25k)+

, (28)

a slightly sharper version of Cai, Wang, and Xu (2010) improvement of Candes and Tao (2007)
result due toδ−1.25k ≤ δ1.25k. Similarly, (24) withξ =

√
2 andℓ= k/2 yields

z∗ ≤ λ ⇒ ‖β̂
(L)(

(1+
√

2)2λ
)
−β∗‖ ≤ (1+

√
2)
√

8kλ
SCIF2,p(

√
2,J)

≤ (1+
√

2)4
√

kλ

(1−δ−1.5k−θ(2)
2k,1.5k)+

. (29)

The right-hand sides of (28) and (29) are directly comparable with the Candes and Tao (2007)

inequality‖β̂
(D)

(λ)−β∗‖ ≤ 4
√

kλ/(1−δ2k−θ(2)
k,2k)+ in the same event.

Another option is to apply (17), (18) and (21) with(r,s) = (∞,q) to (10), resulting in

‖β̂
(D)

(λ)−β∗‖q ≤
2|J|1/qλ

CIFq,p(1,J)
≤ max

A,B

2λ‖Σ−1
A ‖∞,q(1+(aqk/ℓ)q−1)1/q

{1− (k1−1/q/ℓ)‖Σ−1
A ΣA,B‖∞,q}+

(30)

for all 1 ≤ q ≤ ∞ in the eventz∗∞ ≤ λ, wherek = |J| andA andB are as in (16). Inequality (30)
and the combination of (11) and (19) withwA ∝ sgn(uA)|uA|q−1 are related to the results of Zhang
(2009b). For‖β∗‖0 = k, his oracle inequality for the Lasso can be written as

∥∥β̂
(L)

(λ/t∗)−β∗∥∥
q ≤

32(1+F∗)G∗

C̃(1−F∗)2
+

for z∗∞ ≤ λ, 1≤ q≤ ∞, ℓ≥ k, (31)

with F∗ = maxA,B,w(k1−1/q‖ΣB,AwA‖1/ℓ), G∗ = C̃λ(k + ℓ)1/qmaxA,w‖wA‖q/(q−1) for

w ∝ Σ−1
A sgn(uA)|uA|q−1, G∗ = C̃λk1/qmaxA,w‖wA‖q/(q−1) for wA ∝ sgn(uA)|uA|q−1, C̃ = (1+1/t∗)

andt∗ = (1−F∗)/{4(1+F∗)}, wherew′
AΣAuA = ‖uA‖q = 1 and{A,B,uA} are as in (16). It turns

out that the combination of (11) and (19) with the same choice ofw and(r,ar) = (∞,1) is at least by
a factor of 5/12 sharper than (31), even with the suboptimalaq = 1. For smallk/ℓ, Zhang (2009b)
pointed out the smaller orderk1/qλ of G∗ for wA ∝ sgn(uA)|uA|q−1 as an advantage of the Lasso,
compared with the order(k+ ℓ)1/qλ. The cost of this advantage is the square of(1−F∗)+ in the

3526



RATE M INIMAXITY OF ℓ1 METHODS

denominator of (31), compared with (23) and (30) for the Dantzig selector. Moreover, the error
bound in (23) for the Dantzig selector is also of the orderk1/qλ for q≤ 2 with much smaller con-
stant factors, and the difference betweenk1/q and(k+ ℓ)1/q diminishes for largeq as in Theorem 8.
Thus, the advantage of the Lasso in this aspect has some limitations.

We have proved that Theorem 3 sharpens and unifies a number of existing oracle inequalities for
the Lasso and Dantzig estimators, so that they can all be viewed as (possiblymore explicit) upper
bounds for the right-hand sides of (10) and (11). The choicer = ∞ in (16), and consequently in (18),
(19), (20) and (21), typically gives oracle inequalities of the sharpestform involving the dimension-
normalized‖ · ‖∞,q norm as in (30), compared with the typical‖ · ‖q,q norm in the literature. Oracle
inequalities forβ∗

Jc 6= 0 are given in Section 4. Although (10) and (11) are of the same format, the
Dantzig selector requires smallerλ and smallerξ = 1. This theoretical advantage of the Dantzig

selector forz∗∞ ≤ λ reverses if‖β̂
(D)

(λ)‖1 ≤ ‖β∗‖1 is replaced by‖β̂
(D)

(λ)‖1 ≤ ‖β̂
(L)

(λ)‖1 for z∗∞ >
λ.

3.3 Vaiable Selection

Variable selection is fundamental for the interpretation of models with hign-dimensional data. Mein-
shausen and B̈uhlmann (2006), Tropp (2006), Zhao and Yu (2006), and Wainwright(2009) proved
that the Lasso is variable selection consistent under a strong irrepresentable condition and some
other regularity conditions onX andβ. Candes and Plan (2009) proved the selection consistency
of the Lasso under random permutation and sign-change of regressioncoefficients and a mild con-
dition on the maximum absolute correlation among design vectors. Consistent variable selection in
linear regression can be achieved with a concave penalty (Fan and Li, 2001; Zhang, 2010) or adap-
tive Lasso (Zou, 2006; Huang, Ma, and Zhang, 2008), without requiring the strong irrepresentable
condition.

The ℓ∞ error bounds in Theorem 3 (i) and their more explicit versions, for example, (30) with
q= ∞, naturally lead to variable selection by thresholding the Lasso or Dantzig selector. We focus
on the Dantzig selector here although parallel results can be obtained for the Lasso in the same way.
Zhang (2009b) studied the selection consistency of thresholding the Lasso through his upper bounds

for ‖β̂
(L)

−β∗‖∞. Lounici (2008) considered thresholding either the Lasso or the Dantzigselector
under the stronger condition maxj 6=k |(Σ) jk| ≤ 1/{α(1+2ξ)|J|} with α > 1, (Σ) j j = 1, ξ = 3 for the
Lasso, andξ = 1 for the Dantzig selector.

Candes and Tao (2007) considered the Gauss-Dantzig selector

β̂
(GD)

= argmin
b

{
‖y−Xb‖ : |β̂ j | ≤ λ′ ⇒ b j = 0,∀ j, β̂ = β̂

(D)
(λ)

}
. (32)

For threshold functionst(x;λ) satisfying{x : t(x;λ) = 0}= {x : |x| ≤ λ} andxt(x;λ)≥ 0, define the
threshold Dantzig selector as

β̂
(TD)

= t
(
β̂
(D)

(λ);λ′ ). (33)

This includes the hardt(x;λ) = xI{|x|> λ} and the softt(x;λ) = sgn(x)(|x|−λ)+. Define

β̂
(oracle)

= argmin
b

{
‖y−Xb‖ : β j = 0⇒ b j = 0,∀ j

}
.
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Theorem 8 Suppose (3) holds with J= { j : β j 6= 0}. Let β̂
(GD)

and β̂
(TD)

be as in (32) and (33)
respectively with the universal penalty levelλ = λuniv = σ

√
(2/n) logp and a threshold levelλ′

satisfying2λuniv/CIF∞,p(1,J)≤ λ′ < minβ j 6=0 |β j |/2. Then,

Pβ,X

{
sgn(β̂

(TD)
) 6= sgn(β) or β̂

(GD)
6= β̂

(oracle)}
≤ 1/

√
π logp→ 0. (34)

Remark 9 If we use (21) in Theorem 8,(|J|/ℓ)maxA,B‖Σ−1
A ΣA,B‖∞,∞ < 1 becomes a basic condition

for (34). Meanwhile, the strong irrepresentable condition for the selection consistency of the Lasso
without post-thresholding is‖ΣJc,JΣ−1

J ‖∞,∞ < 1. Compared with Lounici (2008), we improve the
factor1+2ξ to 1+ξ via

CIF∞,p(ξ,J)≥ min
j∈J

(Σ) j j − (|J|−1+ξ|J|)max
j 6=k

|(Σ) jk|.

4. Upper Bounds for the ℓq Loss in ℓr Balls

We divide this section into two subsections. The first subsection provides non-probabilistic oracle
inequalities: conditions on the data(X,y) and a target coefficient vectorβ∗ for upper bounds of
‖β̂−β∗‖q for the Lasso and Dantzig selector. The second subsection provides sufficient condition
on the designX for the rate minimaxity for theℓq loss inℓr balls underPβ,X.

4.1 Oracle Inequalities

The oracle inequalities here differ from Theorem 3 (i) by allowing target vectors with many small
entries and smaller penalty levels.

Our first theorem deals with the usualλ ≥ z∗∞ and allows targetsβ∗ with small ‖β∗
Jc‖1 for a

certain setJ ⊂ {1, . . . , p}. The effect of the elements ofβ∗ in Jc is controlled by

Mq(λ,ρ) = sup
{
‖u‖q : ‖Σu‖∞ ≤ λ,‖u‖1 ≤ ρ

}
. (35)

Theorem 10 Let β∗ be a target vector, q∈ [1,∞], J⊂ {1, . . . , p} andρJ = ‖β∗
Jc‖1. Then,

‖β̂
(D)

−β∗‖q ≤ max
{ 2|J|1/qλ

CIFq,p(ξ,J)
,2Mq

(
λ,

ξ+1
ξ−1

ρJ

)}
, ∀ξ > 1, (36)

in the event z∗∞ = ‖X′(y−Xβ∗)/n‖∞ ≤ λ. Moreover, for z∗∞ ≤ λ(ξ0−1)/(ξ0+1),

‖β̂
(L)

−β∗‖q ≤ max
{ ξ1|J|1/qλ

CIFq,p(ξ,J)
,Mq

(
ξ1λ,ξ2ρJ

)}
, ∀ξ > ξ0, (37)

where CIFq,ℓ(ξ,J) is as in (8),ξ1 = 2ξ0/(ξ0+1) andξ2 = (1+ξ0)(1+ξ)/(ξ−ξ0).

Remark 11 The first component of (36) and (37) can be viewed as the cost of estimating the large
componentsβ∗ in J without knowing J, and the second component the cost of having potentially
many small elements ofβ∗ in Jc. Since Mq(λ,ρ)≤ ρ for q≥ 1, β∗

Jc does not contribute to the order
of the error bounds in (36) and (37) whenρJ . |J|1/qλ/CIFq,p(ξ,J). In Proposition 15 below, we
provide conditions for Mq(λ,ρ). λ(ρ/λ)1/q, as ifΣ = I.
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Our next theorem deals with smaller penalty levels satisfyingz∗2,d ≤ λ < z∗∞, where

z∗q,d = max
|A|=d

z∗q,A, z∗q,A = ‖X′
A(y−Xβ∗)/n‖q/|A|1/q, z∗∞ = z∗∞,1. (38)

Sincez∗q,d is the length normalizedℓq norm of thed largest absolute values of the elements of
z= X′(y−Xβ∗)/n, z∗q,d is increasing inq and decreasing ind, andz∗q,d ≤ z∗∞. Let

Crelax(ξ,J,d) =
{

u : ‖uJc‖1 ≤ ξd1/2 max
|A|=d,A⊇J

‖uA‖
}

(39)

as a relaxed cone, and define the corresponding relaxed CIF as

CIFq, relax(ξ,J,d) = inf
u∈Crelax(ξ,J,d)

{d1/q‖ΣA,∗u‖
d1/2‖u‖q

: A= argmax
|B|=d,B⊇J

‖uB‖
}
. (40)

The following quantity plays the role of (35) for relaxed cones:

Mq, relax(λ,ρ,J,d) = sup
‖u‖1≤ρ

{
‖u‖q : ‖ΣA,∗u‖ ≤ d1/2λ,A= argmax

|B|=d,B⊇J
‖uB‖

}
. (41)

Since‖uJ‖1 ≤ |A|1/2‖uA‖ for A⊇ J, the relaxed cone (39) is larger than the cone in (8). Moreover,
since‖ΣA,∗u‖/|A|1/2 ≤ ‖Σu‖∞,

CIFq, relax(ξ,J,d)≤ (d/|J|)1/qCIFq,p(ξ,J), Mq, relax(λ,ρ,J,d)≥ Mq(λ,ρ).

Theorem 12 Let β∗ be a target vector, q∈ [1,∞], J ⊂ {1, . . . , p} with (4|J|/3)∨1≤ d ≤ p, ρJ =
‖β∗

Jc‖1 and z∗2,d be as in (38). Then, for z∗2,d ≤ λ(ξ0−1)/(ξ0+1),

‖β̂
(L)

−β∗‖q ≤ max
{ ξ1d1/qλ

CIFq, relax(ξ,J,d)
,Mq, relax

(
ξ1λ,ξ2ρJ,J,d

)}
, (42)

whereξ1 = 2ξ0/(ξ0+1) andξ2 = (ξ0+1)(ξ+1)/(ξ−ξ0).

Remark 13 By (22) and (38),(z∗2,d)
2/{σ2(1+ δ+d )} is no greater than the maximum of

(p
d

)
χ2

d

variables under Pβ∗,X in (3), so that for certainλ ≍ σ{(1+ δ+d )(2/n) log(p/d)}1/2, z∗2,d ≤ λ(ξ0−
1)/(ξ0+1) with large probability. Thus, for|J|= k≍ d andlog(p/d)≪ logp, Theorem 12 allows
λ ≪ λuniv = σ{(2/n) logp}1/2. Zhang (2010) derived similar oracle inequalities for the Lasso,
MC+, and other concave penalized least squares estimators at the sameλ under the sparse Riesz
condition|J| ≤ d/{(1+δ+d )/(1−δ−d )+1/2}.

Remark 14 Since‖uA‖/d1/2 does not control‖uA‖q/d1/q for q> 2 and large|A|= d, the relaxed
constant factors in (40) and (41) are not properly normalized for q> 2 andΣ = I. Thus, Theorem
12 is most useful when1≤ q≤ 2, although it is valid for all1≤ q≤ ∞.

We use the following quantities to bound the constant factors in Theorems 10 and 12:

ηq,d = max
|A|=d

‖Σ−1
A ‖∞,q/d1/q, η∗

q,d = max
A

‖Σ−1
A ‖q,q, (43)

κq,d,ℓ = max
|A|=d

min
r≥1

max
|B|=ℓ

ℓ1−1/q(ar/ℓ)
1−1/r‖Σ−1

A ΣA,B‖r,q.
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Proposition 15 Let CIFq, relax(ξ,J, ℓ), Mq(λ,ρ) and Mq, relax(λ,ρ,J, ℓ) be as in (40), (35) and (41)
respectively. Let{ηq,d,η∗

q,d,κq,d,ℓ} be as in (43) and aq = (1−1/q)/q1/(q−1). Then,

Mq(λ,ρ)≤ ηq,kk
1/qλ+(κq

q,k,k+aq−1
q )1/qk1/q−1ρ, ∀ k≥ 1,1≤ q≤ ∞, (44)

Mq, relax(λ,ρ,J,d)≤ η∗
2,dd1/qλ+{(d/ℓ)1−q/2κq

2,d,ℓ+aq−1
q }1/qℓ1/q−1ρ, 1≤ q≤ 2, (45)

with ℓ= d−|J|, and with Cq,2(ξ, t) and φ̃∗
2,ℓ(ξ,J) as in (17) and (20),

CIFq,p(ξ,J)≥CIFq, relax(ξ,J, ℓ)≥
(d/|J|)1/q−1/2φ̃∗

2,ℓ(ξ
√

d/|J|,J)
Cq,2

(
ξ(d/|J|)1/2, |J|2/(dℓ)

) . (46)

Remark 16 Suppose that the quantities in (43) are bounded whenever invoked. Forρ/λ ≍ k ≍ ℓ,
(44) and (45) give the rate Mq(λ,ρ). ρ(λ/ρ)1−1/q and Mq,relax(λ,ρ,J,d). ρ(λ/ρ)1−1/q, the same
as the simplest caseΣ = I. Since (46) is of the form (20), Corollary 7 can be automatically extended
under the setting of Theorem 12.

4.2 Rate ℓq Minimax Estimation in ℓr Balls

We present sufficient conditions for the rate minimaxity of the Lasso and Dantzig selector inℓr balls
in (4) in the sense of (6) and (7). Letλuniv andλmm be as in (5). We first consider theℓq risk.

Theorem 17 Let q≥ 1 ≥ r > 0. Suppose(logp)/n = O(1) and Rr/λr
mm≍ d ≤ n∧ p for some

integer d→ ∞ satisfying(logd)/ logp ≤ c0 < 1. Let 0 < α0 < 1 and β̂ be either the Lasso or
Dantzig selector withλ= λuniv/α0. Suppose p1−(α1/α0)

2
(nq/d+dq/r−1)≤ 1 and p1−(α/α0)

2
dq/r−q ≤

1 for certain {α,α1} ⊂ (α0,1). For the Dantzig selector, letξ > 1, ξ∗ = 1 for r = 1 and ξ∗ =
(ξ+1)/(ξ−1) for r < 1. For the Lasso, letξ > (1+α)/(1−α) ξ∗ = 1/(1−α1) for r = 1 and
ξ∗ = (ξ+1)/{ξ−1−α(ξ+1)} for r < 1. Then,

supβ∈Θr,R
Eβ,X‖β̂−β‖q

q

Rrλq−r
mm

/
[

max
{C1I{r < 1}

CIF∗
q (ξ,d)

,C1Mq

( 1

d1/q
,

ξ∗C2

d1/q−1

)}]q
, (47)

where C1 = 2(dλr
mm/Rr)1/q/(α0

√
1−c0), C2 = α0

√
1−c0R/(d1/rλmm), CIF∗

q (ξ,d) is as in (12)
and Mq(λ,ρ) is as in (35). Consequently, if eitherηq,d+κq,d,d = O(1) with the{ηq,d,κq,d,d} in (43)
or Mq(d−1/q,d1−1/q)+ I{r < 1}/CIF∗

q (ξ,d) = O(1), then

sup
‖β‖r≤R

Eβ,X‖β̂−β‖q
q . inf

δ
sup

‖β‖r≤R
Eβ,X‖δ(X,y)−β‖q

q. (48)

Remark 18 For q= 2, ηq,k+κq,k,k =O(1) for some k≍ d if the sparse Riesz condition holds Zhang
and Huang (2008), that is,1/(1− δ−d )+ δ+d = O(1) for theδ±d in (22). For p≫ n, random matrix
theory can be applied to validate such conditions up to d≍ n/ log(p/n).

Theorem 17 differs from existing results by directly comparing theℓq risk of estimators with the
minimax risk, instead of finding upper bounds for theℓq loss. It is based on the oracle inequality
for λ > λuniv in Theorem 10. However, in practice, a penalty levelλ < λuniv is often empirically
the best choice. As we mentioned in Remark 2,λmm< λuniv iff R> σ/

√
n. For λmm/λuniv = o(1),
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oracle inequalities requiring penalty levelsλ ≥ λuniv do not match the order of the minimax lower
bounds in Theorem 1. For example, whenp= nlogn andd≍Rr/λr

mm≍ n/ log logn, λmm/λuniv→ 0
asn→ ∞ and the regularity conditions onX may still hold. Theorem 19 below closes this gap by
providing the rate minimaxity of the Lasso in the quantiles of theℓq loss withλ ≍ λmm= o(λuniv).
Define

CIF∗
q,relax(ξ,k,d) = inf

|A|=d

{d1/q‖ΣA,∗u‖
d1/2‖u‖q

: min
|A\J|=d−k

‖uJc‖1 < ξd1/2‖uA‖
}
, (49)

M∗
q,relax(λ,ρ,k,d) = sup

|A|=d

{
‖u‖q : ‖ΣA,∗u‖ ≤ d1/2λ, min

|A\J|=d−k
‖uJc‖1 ≤ ρ

}
. (50)

Theorem 19 Letλ=min
(
λuniv,(1+ε0)(1+δ+d )

1/2λmm
)
/α with0< ε0≤α< 1and{λmm,λuniv,δ+d }

in (5) and (22). Let0 < r ≤ 1 ≤ q ≤ 2. Suppose n∧ p ≥ d ≍ Rr/λr
mm → ∞, δ+d = O(1) and

λmmn1/2/σ → ∞. Suppose that for certain k+ ℓ= d with k≍ ℓ,

max
{

1/CIF∗
q,relax(ξ,k,d),M

∗
q,relax(d

−1/2,d1/2,k,d)
}
= O(1).

Then, the Lasso is rate minimax inℓr balls in the sense that for allε > 0,

inf
[
t : sup

‖β‖r≤R
Pβ,X

{
‖β̂

(L)
−β‖q

q ≥ tqRrλq−r
mm

}
≤ ε

]
(51)

. inf
[
t : inf

δ
sup

‖β‖r≤R
Pβ,X

{
‖δ(X,y)−β‖q

q ≥ tqRrλq−r
mm

}
≤ ε

]
< ∞.

In particular, (51) holds if1/(1−δ−d )+δ+d = O(1) as in Remark 18.

The quantities (8), (12), (35), (40), (41), (49) and (50) are bestunderstood by comparisons with
functions of (22) and (43) via Propositions 5 and 15. These quantities also facilitate comparisons
between our and existing upper bounds on the loss as in the derivation of Corollary 7. In such
comparisons, the Ḧolder inequality and (22) give

ηq,d ≤ η∗
q,d, κq,d,ℓ ≤ κ∗

q,d,ℓ, η∗
2,d = 1/(1−δ−d ), κ∗

2,d,ℓ ≤ θd,ℓη∗
2,d,

whereκ∗
q,d,ℓ = a1−1/q

q maxA,B‖Σ−1
A ΣA,B‖q,q with |A|= d, |B|= ℓ andA∩B= /0.

5. Discussion

Although this paper focuses on the estimation of regression coefficients, the estimation ofXβ∗

(prediction) is an important problem (Greenshtein and Rotiv, 2004). Similarto the proof of (11),
(9), (14) and (15) imply

‖Xβ̂
(L)

−Xβ∗‖2/n+2λ‖(β̂−β∗)J‖1/(ξ+1)≤ {2ξ/(ξ+1)}|J|λ2

SCIF1,0(ξ,J)
(52)

in the eventz∗∞ = ‖X′(y−Xβ∗)/n‖∞ ≤ λ(ξ− 1)/(ξ+ 1). SinceSCIF1,0(ξ,J) ≥ RE1,0(ξ,J), (52)
implies Lemma 2.1 of van de Geer and Bühlmann (2009) for(z∗∞,ξ) = (0,1).
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As we have explained in Section 3.2, the use of‖Σu‖∞ in the numerator of (8) and (9) seems
necessary to ensure the dominance of Theorem 3 over the oracle inequalities of the type (30). How-
ever, if we make the numerator quadratic inu, Corollary 7 still holds up to a constant factor with
the following weak CIF:

CIFw
q,ℓ(ξ,J) = inf

u∈C (ξ,J)

|J|1/qu′AΣA,∗u
‖uJ‖1‖uA‖q

, SCIFw
q,ℓ(ξ,J) = inf

u∈C−(ξ,J)

|J|1/qu′AΣA,∗u
‖uJ‖1‖uA‖q

, (53)

whereA= argmax|A\J|≤ℓ ‖uA‖. For example, (26), (27) and (28) are still consequences of Theorem
3 when (53) is used instead of (8) and (9).

Since the oracle inequalities in this paper apply directly to data points(X,y) and target vectors
β∗, the normality assumption on the error in (3) is not crucial for the upper bounds for the estimation
risk and loss (not even the conditionEβ,Xy = Xβ). For example, for the estimation of a targetβ∗

with Xβ∗ ≈ Ey, the upper bounds in Theorem 19 are valid for‖β̂
(L)

−β∗‖q
q with large probability

underP andσ = σ1+σ2, provided that

{
Eexp(v′X′(y−Ey))≤ exp(−nσ2

1v′Σv/2),

max|A|=ℓ ‖PA(Ey−Xβ∗)‖ ≤ σ2
√

2ℓ log(p/ℓ).

For design matricesX with iid sub-Gaussian rows, our results can be extended toβ in ℓr balls with
1< r ≤ 2 due toσ2 ≤ O(‖βJc‖) for β∗

J = βJ andβ∗
Jc = 0.

The proofs in this paper do not completely deal with the most difficult case ofq> 2 andλmm=
o(λuniv). For example, an extension of Theorem 12 toq> 2 seems to require sharp upper bounds
for z∗q,d in (38).

For λ < λuniv, the proof of Theorem 12 can be extended to the Dantzig selector with the feasi-

bility of β∗ replaced by the feasibility of̂β
(L)

. This would yield slightly worse error bounds than
those in Theorem 12. However, if we modify the Dantzig selector as

β̃ = argmin
b

{
‖b‖1 : max

|A|=d
‖X′

A(y−Xb)‖ ≤
√

dλ
}
, (54)

the feasibility ofβ∗ would be guaranteed in the eventz∗2,d ≤ λ even forλ = o(λuniv) as in Theorems
12 and 19. This will provide sharper error bounds for the smallerλ and q ≤ 2. We omit this
modification since the computational issues with (54) is not clear ford > 1.
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Appendix A. Proofs

We provide all the proofs here. Lemms are stated and proved as needed.
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Proof of Theorem 1. Let Θ = Θr,R andk = Rr/λr
mm for r > 0 andΘ = Θ0,k for r = 0. By (5),

λmm/σn =
√

2log(p/k)− r log(λmm/σn) for r > 0. Sinceλmm/σn → ∞,

λmm= (1+o(1))σn

√
2log(p/k), min(k, p/k)→ ∞, ∀ r ≥ 0. (55)

Let Pµ,w be a (prior) probability distribution under which(zj ,β j) are iid vectors with

zj |β j ∼ N(β j ,σ2
n), Pµ,w{β j = µ}= w= 1−Pµ,w{β j = 0},

whereµ= λmm(1− ε) andw= (1− ε)k/p. Sincez̃j = x′j(y−∑i 6= j βixi)/n is sufficient forβ j given
(X,y,βi , i 6= j) andz̃j |β ∼ zj |β, the minimum Bayes risk is bounded by

inf
β̂

Eµ,wEβ,X‖β̂−β‖q
q ≥ Eµ,w

p

∑
j=1

min
t

Eβ,X

[
|t −β j |q

∣∣∣X,y
]

≥ Eµ,w

p

∑
j=1

min
t

Eβ,X

[
|t −β j |q

∣∣∣X,y,βi , i 6= j
]

= Eµ,w

p

∑
j=1

min
t

Eβ,X

[
|t −β j |q

∣∣∣zj

]

= (1+o(1))kλq
mm (56)

ask∧ (p/k)→ ∞ and thenε → 0. The last step above is by Donoho and Johnstone (1994).
Let N = #{ j : β j 6= 0}. UnderPµ,w, ‖β‖r

r = Nµr and‖β‖q
q = Nµq, so that

β ∈ Θ ⇔ N ≤ k/(1− ε)r ⇒ ‖β‖q
q ≤ kλq

mm, ∀ r ≥ 0, (57)

due toRr/µr = k/(1− ε)r and{k/(1− ε)r}µp/λp
mm= k(1− ε)q−r ≤ k for r > 0. Let

δ∗ = argmin
δ

Eµ,wEβ,X
[
‖δ(X,y)−β‖q

q

∣∣X,y,β ∈ Θ
]
.

Since the conditional Bayes risk ofδ∗ is no greater than the minimax risk inΘ,

(1+o(1))kλq
mm

≤ Eµ,wEβ,X
[
‖δ∗−β‖q

q

∣∣β ∈ Θ
]
+Eµ,wEβ,X‖δ∗−β‖q

qI{β 6∈ Θ}
≤ R(Θ;X)+2(q−1)+Eµ,wEβ,X

(
‖δ∗‖q

q+‖β‖q
q

)
I{β 6∈ Θ}. (58)

SinceEµ,wEβ,X[‖δ∗−β‖q
q
∣∣X,y,β∈Θ

]
≤Eµ,w[‖β‖q

q
∣∣X,y,β∈Θ

]
≤ kλq

mmby (57),‖δ∗‖q
q≤ 2(q−1)+kλq

mm

a.s. Thus, sinceN ∼ Binomial(p,w) with pw= (1− ε)k→ ∞,

Eµ,wEβ,X
(
‖δ∗‖q

q+‖β‖q
q

)
I{β 6∈ Θ}

≤ 2(q−1)+kλq
mmPµ,w{N > wp/(1− ε)}+µqEµ,wNI{N > wp/(1− ε)}

= o(1)kλq
mm (59)

by (57). The combination of (58) and (59) gives (6).
Now consider the lossL(δ,β) = I{‖δ−β‖q > ck1/qλmm} in (7). Define

β̂ = δ(X,y)I
{
‖δ(X,y)‖q ≤ (1+c)k1/qλmm

}
.
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By (57),β ∈ Θ implies‖β‖q
q ≤ kλq

mm and

‖β̂−β‖q
q ≤ cqkλq

mmI
{
‖δ−β‖q ≤ ck1/qλmm

}

+
(
‖β‖q+(1+c)k1/qλmm

)q
I
{
‖δ−β‖q > ck1/qλmm

}
.

Since‖β‖q
q = Nµq ≤ Nλq

mm, it follows that

Eµ,wEβ,X‖β̂−β‖q
q ≤ cqkλq

mm+(2+c)qkλq
mmmax

β∈Θ
Eβ,XL(δ(X,y),β)

+2q−1λq
mmEµ,w

(
N+(1+c)qk

)
I{β 6∈ Θ}. (60)

SinceEµ,w

(
N+(1+c)qk

)
I{β 6∈ Θ}= o(1)k by (57), (56) and (60) yield

sup
β∈Θ

Eβ,XL(δ(X,y),β)≥ 1−cq+o(1)
(2+c)q .

Since theo(1) is uniform in the choice ofδ(X,y), we find

inf
δ

sup
β∈Θ

Pβ,X

{
‖δ(X,y)−β‖q

q > (1− ε)kλq
mm

}
≥ ε+o(1)

3q , ∀0< ε < 1.

This gives (7) and completes the proof.
Proof of Theorem 3. Part (i) follows from (14) and (15) as briefly explained in the paragraphbelow
the statement of the theorem. For the Dantzig selector,z∗ ≤ λ implies (15) and the feasibility ofβ∗

for theℓ∞ constraint in (2), and the feasibility ofβ∗ implies (14). For the Lasso estimator, (14) and
(15) follow from the Karush-Kuhn-Tucker conditions

‖x j(y−Xβ̂)/n‖∞ ≤ λ, β̂ j 6= 0 ⇒ x j(y−Xβ̂)/n= sgn(β̂ j)λ.

Part (ii) follows fromPβ,X{z∗∞ > tσ/
√

n} ≤ 2pP{N(0,1)> t}.
In this paper and those cited in Section 3.2, tails ofℓq norms or inner products are bounded

by shifting inequalities (Candes and Tao, 2007, Lemma 3.1). The following lemmacombines and
extends the sharp shifting inequalities of Cai, Wang, and Xu (2010) forq = 2 and Ye and Zhang
(2009) forw′h with q= ∞.

Lemma 20 Let 1 ≤ q ≤ ∞ and aq = (1−1/q)/q1/(q−1) with a∞ = 1. Let h∈ R
p, J ⊂ {1, . . . , p}

and A be the union of J and the indices of theℓ largest |h j | with j 6∈ J, 1 ≤ ℓ ≤ p− |J|. Then,
‖hAc‖q ≤ (aq/ℓ)

1−1/q‖hJc‖1. Moreover, for any vector w∈ R
p,

∑
j 6∈A

w jh j ≤ ‖hJc‖1

(a
ℓ
∨ aq

ℓ

)1−1/q
max

{
‖wB‖q/(q−1) : B∩A= /0, |B| ≤ ⌈ℓ/a⌉

}
. (61)

Proof. We first prove that for all decreasing functionsh(t)≥ 0,

∞

∑
m=0

(∫ ℓ+(m+1)ℓ/a

ℓ+mℓ/a
hq(t)dt

)1/q
≤ max

{
1,(aq/a)1−1/q}a1−1/q

ℓ1−1/q

∫ ∞

0
h(t)dt. (62)
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With x= at/ℓ−mand possibly differenth ↓ 0, the above inequality is a consequence of

max
{∫ 1+a

a
hq(x)dx :

∫ 1

0
h(x)dx= 1

}
≤ max

{
1,(aq/a)q−1} (63)

It suffices to consider 0< a≤ aq. Since
∫ 1+a

a hq(x)dx is convex inh, it suffices to considerh(x) =
v+(u−v)I{x≤w} for certainu≥ 1≥ v anda≤w≤ 1. Since

∫ 1
0 h(x)dx= 1,v= (1−uw)/(1−w).

Thus, for fixedw,
∫ 1+a

a hq(x)dx is convex inu, and its maximum is attained at the extreme points
u ∈ {1,1/w}. For u = 1/w, we havev = 0 and

∫ 1+a
a hq(x)dx= uq−1−auq, so that the optimalu

satisfiesau= (q−1)/q, resulting in the maximum{(q−1)/(qa)}q−1/q= (aq/a)q−1. This yields
(63) since

∫ 1+a
a hq(x)dx= 1 at the other extremeu= 1. Thus,‖hAc‖q ≤ (aq/ℓ)

1−1/q‖hJc‖1 by (62),

and (61) follows with an application of the Hölder inequality to
∫ ℓ+(m+1)ℓ/a
ℓ+mℓ/a w(t)h(t)dt.

Proof of Proposition 5. Let k= |J|. Since‖uAc‖q ≤ (aq/ℓ)
1−1/q‖uJc‖1 by Lemma 20 and‖uJc‖1 ≤

ξ‖uJ‖1 ≤ ξk1−1/q‖uA‖q, ‖u‖q ≤ Cq,q(ξ,k/ℓ)‖uA‖q. By the Ḧolder inequality

‖u‖s≤‖u‖(1/s−1/q)/(1−1/q)
1 ‖u‖(1−1/s)/(1−1/q)

q = ‖u‖1/s1
1 ‖u‖1−1/s1

q with s1 = (1−1/q)/(1/s−1/q)≥
s. Since‖u‖1 ≤ (1+ξ)‖uJ‖1 ≤ (1+ξ)k1−1/q‖uA‖q,

‖u‖sk
1/q−1/s/‖uA‖q ≤ (1+ξ)1/s1C1−1/s1

q,q (ξ,k/ℓ) =Cs,q(ξ,k/ℓ).

This gives (17). Sincev′JcΣJc,∗u≤ 0 for u∈ C−(ξ,J) andv∈ Q(u,J), the first parts of (18) and (19)
follow from (8) and (9). Forh = u and the choice ofA in Lemma 20, an application of (61) with
w= (v′AΣA,∗)′ yields

v′AΣA,∗u = v′AΣAuA+v′AΣA,AcuAc

≥ v′AΣAuA−max
B

‖ΣB,AvA‖r/(r−1)(ar/ℓ)
1−1/r‖uJc‖1. (64)

Since‖uJc‖1 ≤ ξ‖uJ‖1 ≤ ξk1−1/q‖uA‖q, (64) and (16) imply

v′AΣA,∗u

‖vA‖1‖uA‖q/k1/q
≥

v′AΣAuA−ξ‖uA‖qk1−1/q(ar/ℓ)
1−1/r maxB‖ΣB,AvA‖r/(r−1)

‖vA‖1‖uA‖q/k1/q

= φq,ℓ(u,A, r,w,B;ξ,J)k1/q/‖wA‖1

with w= v‖uA‖q/(v′AΣAuA). This gives the second parts of (18) and (19).

Proof of Theorem 8. This theorem is a direct consequence of (10) withq= ∞, since‖β̂−β‖∞ ≤
λ′ < minβ j 6=0 |β j |/2 guarantees{ j : |β̂ j |> λ′}= { j : β j 6= 0}.

Proof of Theorem 10. Let h= β̂−β∗ for either estimator. As in (14) and (15),

‖Σh‖∞ ≤ ξ1λ, ‖hJc‖1 ≤ ξ0‖hJ‖1+(ξ0+1)ρJ, (65)

in the given events, with{ξ0,ξ1} = (1,2) for the Dantzig selector and the{ξ0,ξ1} in (37) for the
Lasso. It follows from Theorem 3 that (36) and (37) hold for‖hJc‖1 ≤ ξ‖hJ‖1, or equivalently
h∈ C (ξ,J). By (65), it remains to consider

ξ‖hJ‖1 ≤ ‖hJc‖1 ≤ ξ0‖hJ‖1+(ξ0+1)ρJ.

Sinceξ > ξ0, ‖hJ‖1 ≤ (ξ0+1)ρJ/(ξ−ξ0) in this case, so that‖h‖1 ≤ (1+ξ0)‖hJ‖1+(ξ0+1)ρJ ≤
ρJ(1+ξ0)(1+ξ)/(ξ−ξ0) = ξ2ρJ. Thus, (35) gives‖h‖q ≤ Mq(ξ1λ,ξ2ρJ).

3535



YE AND ZHANG

Proof of Theorem 12. Let h = β̂
(L)

− β∗, z = X′(y − Xβ∗)/n, k = |J|, ℓ = d − k, and
A = argmax|B|=d,B⊃J‖hB‖ as in (40). Sincek ≤ 3d/4, 4ℓ ≥ d. Lemma 20 with{w,q,aq} =
{z,2,1/4} yieldsh′AczAc ≤ ‖hJc‖1z∗2,4ℓ ≤ ‖hJc‖1z∗2,d, so that

‖Xh‖2/n = h′AzA+h′AczAc −h′X′(y−Xβ̂
(L)

)/n

≤
√

d‖hA‖z∗2,d +‖hJc‖1z∗2,d −λ‖β̂
(L)

‖1+λ‖β∗‖1.

Since−λ‖β̂
(L)

‖1+λ‖β∗‖1 ≤−λ‖hJc‖1+λ‖hJ‖1+2λρJ and‖hJ‖1 ≤
√

3d/4‖hA‖,

‖Xh‖2/n+(λ−z∗2,d)‖hJc‖1 ≤ (λ+z∗2,d)
√

d‖hA‖+2λρJ.

SinceΣA,∗h= zA−X′
A(y−Xβ̂

(L)
)/n, ‖ΣA,∗h‖ ≤ (z∗2,d +λ)

√
d. Thus, as in (65),

‖ΣA,∗h‖ ≤ ξ1

√
dλ, ‖hJc‖1 ≤ ξ0

√
d‖hA‖+(ξ0+1)ρJ. (66)

For‖hJc‖1 ≤ ξ
√

d‖hA‖, (42) follows from

d1/2−1/q‖h‖qCIFq, relax(ξ,J,d)≤ ‖ΣA,∗h‖ ≤ ξ1

√
dλ.

Forξ
√

d‖hA‖ ≤ ‖hJc‖1, the second inequality of (66) gives
√

d‖hA‖ ≤ (ξ0+1)ρJ/(ξ−ξ0) and then
‖h‖1 ≤ (1+ ξ0)(

√
d‖hA‖+ρJ) ≤ ξ2ρJ. Thus,‖h‖q ≤ Mq, relax(ξ1λ,ξ2ρJ,J,d) by (41), in view of

the first inequality of (66).
Proof of Proposition 15. Let A be the index set of thek largestu j andw satisfy‖ΣAwA‖q/(q−1) =

w′
AΣAuA/‖uA‖q = 1. By Lemma 20, w′

AΣA,AcuAc ≤ κq,k,kk1/q−1ρ, so that ‖uA‖q =
w′

AΣAuA ≤ ‖wA‖1‖Σu‖∞ + κq,k,kk1/q−1ρ ≤ ηq,kk1/qλ + κq,k,kk1/q−1ρ. This and‖u‖q ≤ (‖uA‖q
q +

(aq/k)q−1ρq)1/q from Lemma 20 yields (44).
Let A be as in (41) andwA = Σ−1

A uA/‖uA‖. For‖ΣA,∗u‖≤
√

dλ and‖u‖1 ≤ ρ, ‖uA‖=w′
AΣAuA ≤

‖wA‖d1/2λ + wAΣA,AcuAc ≤ η∗
2,dd1/2λ + κ2,d,ℓℓ

−1/2ρ, so that (45) follows from ‖u‖q
q ≤

(d1/q−1/2‖uA‖)q+(aq/ℓ)
q−1ρq.

Let u andA be as in (40) andk = |J|. Similar to the proof of Proposition 5, we have‖u‖2 ≤
{1+ξ2k/(4ℓ)}‖uA‖2 and‖u‖1 ≤

√
k‖uA‖+‖uJc‖1 ≤ (1+ξ

√
d/k)k1/2‖uA‖. Thus, for 1≤ q≤ 2,

‖u‖q ≤ ‖u‖2/q−1
1 ‖u‖2−2/q ≤Cq,2(ξ(d/k)1/2,k2/(dℓ))k1/q−1/2‖uA‖. Since‖uJc‖1 ≤ ξd1/2‖uA‖ and

(64) holds forv= u, u′AΣA,∗u≥ φ2,ℓ(u,A, r,w,B;ξ′,J)/‖wA‖ for ‖uA‖ = 1, whereξ′ = ξ
√

d/k and
w= u/(u′AΣAuA). Thus, (20) gives (46).

The proof of Theorem 17 requires the following lemma.

Lemma 21 Let β̂ be either the Dantzig or the Lasso estimator at penalty levelλ. Suppose‖β‖r ≤ R
with 0< r ∨1≤ q. For any eventΩ0 with t∗ =

√
2log(1/Pβ,X(Ω0))≥ 1,

Eβ,X‖β̂−β‖q
qIΩ0 ≤ 2q−1Pβ,X(Ω0)

{ Γ(2q+1)
(t2∗nλ/σ2)q +

((t∗+
√

n)2

nλ/σ2 +2p(1−1/r)+R
)q}

. (67)

In particular, if (logp)/n+σ2/(nλ2)+Rr/(nλr)+λr/Rr = O(1), then

Eβ,X‖β̂−β‖q
qIΩ0 = o(1)Rrλq−r , (68)

provided that Pβ,X(Ω0)(λr/Rr){(σ/λ)2q+ pq(1−1/r)+(R/λ)q}= o(1).
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Remark 22 Since the unit sphere Sn−1 ⊂R
n is covered by(2/ε+1)n ε-balls for all ε > 0, a certain

ε ball contains at least m unit vectors xj/‖x j‖ for ε = (log(p/m))/(2n). It follows that the set of
design vectors xj contains some highly correlated clusters when(logp)/n≥ 2. Thus, the condition
(logp)/n= O(1) is natural for the estimation ofβ.

Proof. Let β̂ be the Lasso estimator. Sinceβ̂ minimizes the penalized loss,λ‖β̂‖1 ≤ ‖ε‖2/(2n)+
λ‖β‖1, so that

‖β̂‖1+‖β‖1 ≤
‖ε‖2

2nλ
+2‖β‖1 ≤

(‖ε‖/σ− t∗−
√

n)2
+

nλ/σ2 +
(t∗+

√
n)2

nλ/σ2 +2p(1−1/r)+R.

Since‖ε/σ‖ is a Lipschitz(1) function ofε/σ∼N(0, In) andEβ,X‖ε‖/σ≤√
n, the Gaussian isoperi-

metric theorem givesPβ,X{‖ε‖/σ−√
n> t} ≤ e−t2/2, so that

Eβ,X(‖ε‖/σ− t∗−
√

n)2q
+ ≤

∫ ∞

0
Pβ,X{‖ε‖/σ− t∗−

√
n> t}dt2q

≤
∫ ∞

0
e−t2

∗/2−t∗tdt2q = Pβ,X(Ω0)Γ(2q+1)/t2q
∗ .

The above inequalities yield (67) due to‖β̂−β‖q
q ≤ (‖β̂‖1+‖β‖1)

q for q≥ 1.
It follows from (67) that

Eβ,X‖β̂−β‖q
qIΩ0/{Rrλq−r}

= O(λr/Rr)Pβ,X(Ω0)
{

O(1)+(t2
∗/n+1)q(σ/λ)2q+ pq(1−1/r)+Rq/λq

}
.

Since the right-hand side is of no greater order thanPβ,X(Ω0){(t2
∗ +n)q+ pqnq/r}= o(1) for t2

∗/(n∨
logp) → ∞, it suffices to consider the caset2

∗/n = O(1). Hence, (68) holds under the specified

conditions. The same conclusions hold for the Dantzig selector, since‖β̂
(D)

‖1 ≤ ‖β̂
(L)

‖1.
Proof of Theorem 17. We first boundλuniv/λmm and the expected loss for largez∗∞ = ‖X′ε/n‖∞.
Let σn = σ/

√
n. SinceRr/λr

mm≍ d, (5) and (55) give

2σ2
n log(p/d)≈ λ2

mm. (69)

Since(logd)/ logp≤ c0, (1−c0)λ2
univ = (1−c0)2σ2

n logp≤ 2σ2
n log(p/d)≈ λ2

mm and

C1 ≈C∗
1 = 2(λ/λmm)(dλr

mm/Rr)1/q, C2 ≈C∗
2 = R/(λd1/r).

Let Ω0 = {z∗∞/λ > α1}. Sincez∗∞ is the maximum ofp variables fromN(0,σ2
n), Pβ,X{Ω0} ≪

pexp(−n(α1λ)2/(2σ2))≤ p1−(α1/α0)
2
for largen. Thus, due toλ2/σ2

n≍ logpandn≥ d≍Rr/λr
mm≍

Rr/λr → ∞, we have

Pβ,X(Ω0)(λr/Rr){(σ/λ)2q+(R/λ)q}= o(1)p1−(α1/α0)
2
(nq/d+dq/r−1) = o(1).

Since 0< r ≤ 1, Lemma 21 givesEβ,X‖h‖q
qI{z∗∞/λ > α1}= o(Rrλq−r

mm), whereh= β̂−β.
Next we proveEβ,X‖h‖q

qI{z∗∞/λ ≤ α1} = O(Rrλq−r
mm). Considerz∗∞ ≤ α1λ. By (65) with J = /0,

‖h‖q ≤ 2Mq(λ,ξ′‖β‖1) with ξ′ = ξ∗ for r = 1. SinceMq(λ,ρ) = cMq(λ/c,ρ/c),

‖h‖q/(R
r/qλ1−r/q

mm )≤C∗
1Mq(d

−1/q,ξ′2C
∗
2d1/r−1/q).
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This gives (47) forr = 1 andEβ,X‖h‖q
qI{αλ < z∗∞ ≤ α1λ}= o(p1−(α/α0)

2
dq(1/r−1)) = o(1) for r < 1.

Let J = argmax|A|=d ‖βA‖1. For β ∈ Θr,R, ‖βJc‖∞ ≤ (Rr/d)1/r , so that ρJ/(λd) ≤
(Rr/d)(1−r)/rRr/(λd) =C∗

2 . Thus, in the eventz∗∞ ≤ αλ, Theorem 10 gives

‖h‖q/(R
r/qλ1−r/q

mm )≤ max
{
C∗

1/CIF∗
q (ξ,d),C

∗
1Mq(d

−1/q,ξ∗C∗
2d1−1/q)

}
, r < 1.

It remains to prove (48) underηq,d + κq,d,d = O(1). In fact, by (44) it suffices to prove
1/CIF∗

q (ξ,k) = O(1) for anyk+ ℓ = d with k ≍ d. This follows from (21), sinceCIFq,p(ξ, |J|) &
{1−ξ(k/ℓ)1−1/qκq,d,d}/ηq,d > 0 uniformly for |J|= k and smallk/ℓ.

The proof of Theorem 19 requires the following simpler version of Lemma 2 inZhang (2010).

Lemma 23 Let p̃ℓ be the positive number satisfying2logp̃ℓ − 1− log(2logp̃ℓ) = (2/ℓ) log
(p
ℓ

)
.

Supposeε ∼ N(0,σ2In) under probability P. Then,

P
{

max
|A|=ℓ

‖PAε‖ ≥ σ
√

2ℓ log p̃ℓ
}
≤ 1

2
√

log p̃ℓ
≤ 1√

2
,

where PA = XA(X′
AXA)

−1X′
A is the projection to the linear span of{x j , j ∈ A}.

Proof of Theorem 19. Let γd = (1+δ+d )
1/2 There are two cases. We omit the proof in the case of

λ = λuniv/α since it is identical to the second half of the proof of Theorem 17. It remains to consider
the caseλ < λuniv/α, that is,(1+ ε0)γdλmm< λuniv.

For |A|= d, ‖X′
Aε/n‖ ≤ γd‖PAε‖/√n, so that by (38) and Lemma 23

Pβ,X

{
z∗2,d ≤ γdσ

√
(2/n) log p̃d

}
≥ 1−1/(2

√
log p̃d)→ 1.

SinceRr/λr
mm≍ d and λmmn1/2/σ → ∞, λmm= (1+ o(1))σ

√
(2/n) log(p/d) by (69). By Stir-

ling, log
(p

d

)
= (1+o(1))d log(p/d) for p/d → ∞, so thatλmm= (1+o(1))σ

√
(2/n) log p̃d. Thus,

γdσ
√
(2/n) log p̃d ≤ αλ andPβ,X{z∗2,d ≤ αλ}→ 1.

Consider the eventz∗2,d ≤ αλ. Sinceξ > (1+α)/(1−α), Theorem 12 asserts that forJ =
argmax|A|=k‖βA‖1 and certain constants{ξ1,ξ2},

‖h‖q ≤ max
{ ξ1d1/qλ

CIFq, relax(ξ,J,d)
,Mq, relax

(
ξ1λ,ξ2ρJ,J,d

)}
.

The rest of the proof is similar to the proof of Theorem 17 and omitted.
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