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Abstract

We consider the estimation of regression coefficients irga-dimensional linear model. For re-
gression coefficients if; balls, we provide lower bounds for the miniméxrisk and minimax
quantiles of the/y loss for all design matrices. Under &nsparsity condition on a target coeffi-
cient vector, we sharpen and unify existing oracle inegjealfor the Lasso and Dantzig selector.
We derive oracle inequalities for target coefficient vestaith many small elements and smaller
threshold levels than the universal threshold. These®maehualities provide sufficient conditions
on the design matrix for the rate minimaxity of the Lasso amaht2ig selector for thé risk and
loss in/; balls, 0<r <1 < g < . By allowingq = o, our risk bounds imply the variable selection
consistency of threshold Lasso and Dantzig selectors.

Keywords: variable selection, estimation, oracle inequality, miakplinear regression, penalized
least squares, linear programming

1. Introduction

As modern information technologies relentlessly generate voluminous andecodata, penalized
high-dimensional regression methods have been a focus of intensectesetivities in machine
learning and statistics in recent years. In many statistical and enginepptigations, the number
p of design variables (features, covariates) can be larger or evergef larder than the sample size
n, but the number of important variables may still be smaller than the sample sizachrcases,
one seeks a parsimonious model that fits the data well. In linear regreagiopular approach for
achieving this goal is to impose a suitable penalty on the empirical loss.

This paper considers the estimation of a sparse vector of regressitinients in a linear model.
Specifically, we are interested in the rate minimaxity of the Lasso and Dantzigiaelmder the
{4 loss for the estimation of regression coefficientdyirballs. This requires lower bounds of the
minimax{q risk and minimax quantiles of th&, loss over all estimators as well as matching upper
bounds for the Lasso and Dantzig selector.
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Lety € R" be a response vector ad= (x1,...,Xp) € R™P be a design matrix. The Lasso
(Tibshirani, 1996) is thé;-penalized estimator

o~

B (8) = argmin{ [y~ Xbl/(2n) + Aol &)

for the regression coefficients. In the signal processing literaturéatbso is known as basis pursuit
(Chen and Donoho, 1994). The Lasso has the interpretation as ba@stgd and Schapire, 1996;
Friedman, Hastie, and Tibshirani, 2000) and is computationally feasiblégbrdimensional data
(Osborne, Presnell, and Turlach, 2000a,b; Efron, Hastie, Joleysaowd Tibshirani, 2004). More
recently, Candes and Tao (2007) proposed;aminimization method called the Dantzig selector,

A~

B (8) = argmin{ o] (v~ XB)/n| < 2.} )

A focus of recent studies of high-dimensional linear regression rers dve the performance of
the Lasso and Dantzig selector for the estimation of the regression caeffic€andes and Tao
(2007) derived an elegant probabilistic upper bound for/thiess of the Dantzig selector under a
condition on the number of nonzero coefficients and a uniform uncertpiirigiple on the Gram
matrix. Efron, Hastie, and Tibshirani (2007) questioned whether a singt&mmnance bound holds
for the Lasso estimator as well. Upper bounds forffiess of the Lasso estimator has being studied
by Bunea, Tsybakov, and Wegkamp (2007) and van de Geer (2008 1, Zhang and Huang
(2008) forq € [1,2], Meinshausen and Yu (2009) fgr= 2, Bickel, Ritov, and Tsybakov (2009)
for q € [1,2] with a parallel analysis of the Dantzig selector, and Zhang (2009k) fod. Under
different sets of regularity conditions on the Gram matrix and the sparsiggoéssion coefficients
B € RP, these results provide error bounds of the fc1)|tf|>‘nr Bllq < O(kY9\), wherek is the number
of nonzero entries of a target vector of regression coefficients artansic dimensionality of the
sparse estimation problem. Fhi(0,02) errors and standardized designs wjt|| = \/n, these
studies require a universal penalty lesghy = 01/(2/n)logp or greater for the Dantzig selector
and a penalty level greater by a constant factor thag,;, for the Lasso. Different sets of regularity
conditions lead to different forms of constant factors in the error bswadhat the existing error
bounds are typically not directly comparable mathematically.

This paper contributes to high-dimensional regression in several Wéyprovide lower bounds
for the minimax/q risk in /; balls and the minimax quantiles of tlig loss for all designx. We
derive sufficient conditions oX for the Lasso and Dantzig selector to attain the rate of the minimax
{q risk and the minimax quantiles of thfg loss. We provide oracle inequalities for theloss of
the Lasso and Dantzig selector which sharpen, unify and extend the gxistinlts and allow the
penalty level to be of smaller order than the universal penalty level.

The rest of the paper is organized as follows. In Section 2, we dedorxilsz bounds for the
minimax risk and loss irf; balls. In Section 3, we provide oracle inequalities for the Lasso and
Dantzig selector under thig sparsity of regression coefficients. We compare these oracle inequal-
ities with existing ones and describe their implications in variable selection anthiait@axity in
£p balls. In Section 4, we provide more general oracle inequalities to allow nmaal} segression
coefficients and penalty levels of smaller order tlway(2/n)logp. These oracle inequalities are
used to establish the rate minimaxity for thdoss in/; balls. In Section 5, we make a few remarks.
An appendix contains all proofs.

3520



RATE MINIMAXITY OF ¢4 METHODS

We use the following notation throughout the paper. For veatesgvy,...,vp), [Vlo =#{] :
vj # 0} and||v||q = (3 |v;|9) Y9 is thelq norm with the specialv|| = ||v||> and the usual extension
to g = . Functions are applied to vectors in individual componeftts) = (f (v1),..., f(vp))’. For
matricesM and 0< a,b < oo, ||[M||ap = max{||Mv||, : ||v|a = 1} is the operator norm frorty to (.
For subset&\andB of {1,...,p}, Xa= (Xj,] € A), Zag = XpXg/N, Za« = XpX/N, Zo = Zpa, and
Pa is the projection fronR" to the linear span ofx; : j € A}. For realx, x; = max(x,0), 1/x; = o
for x <0, and[x] is the largest integer upper boundxofor real numbera, andb,, a, ~ b, means
an = (1+0(1))bn, an < bh meansa, < (1+0(1))bn, anda, < by meansa, = O(by). For simplicity,
the dependence of estimators on the penalty evelsuppressed unless otherwise stated.

2. Lower Boundsfor the Estimation Risk and L oss

Consider the linear model

p

y:XB—i—SZZBij-l-E. 3)
=1

Throughout the sequeR; x is the probability measure givef, X} under whiche ~ N(O, a?lp).

For simplicity, we also assunjg;||> = n wheneveP; x is referred to. Define

Or={VeRP: |V <R}, r>0, Oox={veRP:|v|]o<k}, (4)
as the/, and/, balls respectively. Let, = 0//nand

e opp\ ) 1/2 o

be respectively the universal (univ) penalty level (Donoho anastmme, 1994) and the minimax
(mm) penalty levels for thé and/g balls. The dependence ®f,mon {r,R} or {0,k} is suppressed
sinceAmmis always used in association with a specific ball in (4).

Donoho and Johnstone (1994) proved that feri0< g and based on p-vectory ~ N(B, 62l p)
the minimax{q risk in the/, ball ©;r is approximately

inf sup Egx||3(y) - Bllq = (1+0(1))R A%,
Beer.R

and is achieved within an infinitesimal fraction by threshold estimators at thehticklevelA
provided thatmm/0n — 0 andR' /A, — . Here the infimum is taken over all Borel mappings
0 of proper dimensions. The following theorem extends their result to the amtimaf regres-
sion coefficients undefs x. For any class of vectol® C RP, the minimax/q risk is Z4(0; X) =

infs Sus.o Eg x[18(X,y) — Bll3-

Theorem 1 Let©;r andOg be as in (4) and\mm as in (5) with R> 0 and q>r > 0. Suppose
R /Apm— ®, k— 0 andAmm/0n — . Then,

TR > (1+0(1), S > (140(2)). 6
Moreover, for eithel® = O, g with k= R’ /A[,,,0r © = Oq,
o €+0(1)
—_BlII9>(1— q > .
ot inf supPyc{[80X.) =Bl = (1 =€)} > =, 0 < e <1 ™
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Remark 2 The value k in (7) can be viewed as an intrinsic lower bound for the nunflgaram-
eters to be estimated for the minimaxity under péss. By (5)Amm < Auniv iff R > 0, for r > 0.

For Auniv < Amm and respectively for &=0and0 < r < 1, Corollary 4 in Section 3.1 and Theorem
17 in Section 4.2 provide conditions on X for the Lasso and Dantzig selectaatthrihe rate of
the minimax lower boundNghm in (7). For Amm < Auniv» Theorem 19 in Section 4.2 gives the rate
minimaxity of the Lasso.

During the revision of this paper, we became aware of the technicaltrepBaskutti, Wain-
wright, and Yu (2009). The lower bounds in Theorem 1 are identicalfatesign matriceX and
thus are sharp only up to a constant factor under certain conditiods Bar example, the minimax
risk in a parameter clag3> 0 is no smaller than the radius of the null &t {b: Xb= 0}. This and
some other aspect of the design matrix have been used to derive doarpebounds in Raskultti,
Wainwright, and Yu (2009). In our technical report (Ye and Zhar@)9 and in Zhang (2009a),
Theorem 1 only covers the case- 0.

3. OracleInequalitiesunder /g Sparsity and Variable Selection

We discuss in three subsections oracle inequalities fofhess, related work, and variable selec-
tion. We focus on coefficient vectors with a relatively small number of eamentries here. The
more complicated,-sparse case will be considered in Section 4.

3.1 Oraclelnequalitiesand Rate Minimaxity under ¢o Sparsity

For§ >0andJ C {1,..., p}, define cone invertibility factors (CIF)

919 12U
[Uallq

with coness’(&,J) = {u: [|uyel1 < &||uy||1 # O}. Note thaClFq,(€,J) =ClFy ,_3(&,J) for £ > p—
|J| and since the infimum is attained whextakes the largest elements afoutsidel, ClFq (&, J)
is decreasing id. Similarly, define sign-restricted cone invertibility factors (SCIF)

ClFq(,J) = inf{ ueF(E,d), A\ < e} 8)

919 zules

scu:q,g(a,J):inf{ el

ue - (§3),A\I < ¢}, )

with sign-restricted cone®’_(§,J) = {ue € (§,J) : u;Zj.u<0Vj ¢&J}. We first present oracle
inequalities in terms of the (sign-restricted) CIF.

Theorem 3 LetE(D) andﬁ(L) be the Lasso and Dantzig selector in (1) and 2% q < «, B* € RP,
J={j:Bj#0} and z, = [|X'(y — XB") /N|eo.
(i) Let ClFRy,(1,J) and SCIg(&,J) be asin (8) and (9). In the everii ¥ A,

DM +zZ) _ 299N

50 .
B =Pl < ClFgp(1,J) ~ ClFgp(1,3)’ (10
and in the eventiz< A(§—1)/(§+1)
~ / /
BY g < DA Z) {28/ E 1Y 1)

SCIRp(€,J) =  SClRyp(€,J)
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(i) For A = o0y/(2/n)log(p/€) and A = 6/ (2/n)log(p/e)(& +1)/(§ — 1) respectively, (10) and
(11) hold withp* = B and at least probability. —/+/mlog(p/€) under B x.

Theorem 3 immediately provides a sufficient condition on the dexsifpr the rate minimaxity
of the Lasso and Dantzig selector in the quantiles oféthiess in/q balls, in the sense of (7) of
Theorem 1. We state this result as the following corollary. Define

CIFg (&.k) = inf {I/%2ul/ g :0 < ulls < (1+8) max|us . (12)

Corollary 4 Suppose k (p/k) — o for certain (p,K) = (pn, kn).
(i) Suppose I\%ﬁ() = 2y/logp/{+/10g(p/K)CIF; (1,k)} <M, < . Then, the Dantzig selectfr=

~(D
B8 With A = Ay in (5) i rate minimax in the sense of

sup PB*,X{H/B\_ BHq > M*kl/q}\mm} — 0. (13)

BeGok

(ii) Suppose Nf;, = maxy < 2{&/(€ — 1)}v/109p/{+/10g(p/K)SCIF p(E,J)} < M. < 0. Then,
(13) holds for the LassP = B with A = Auniv(E +1)/(E — 1).

The proof of Theorem 3 is simple since the (sign-restricted) CIF ardlgxalcat we need. Let
h®) =P ) —p*, hY) = BB (A) — B* andh = h® or h™ throughout the sequel. It follows from
the feasibility of3* for the constraint in (2) and the Karush-Kuhn-Tucker conditions ferlthsso
(1) respectively that foz, <A,

h® e ¢(1,9), VZh') < (2 + ) [vall + (Z = A) [vae] . (14)

for all vectorsv satisfying sgivye) = sgn(h{s)). With v=h® or vy = 0 in (14), it follows that
hY) e ¢_(8,3) for € > (A+2.) /(A — ;). Theorem 3 then follows from

1Zhle < Z, +A. (15)

The lower bounds for the (sign-restricted) CIF in the following propositamilitate more ex-
plicit results and connections to existing approaches. For diwgf} define

Pg.e (WA T W,B;E,J) = 1— &I a /0)"Y"|| 25 AWallr/(r—1) (16)

in the following domainu € ¢'(§,J), A= arg Mag, </ U2 (determined by up to ties)y > 1,
WoZaUa = [[Uallg, BNA=0, |B| = [¢/a,] anda, = (1—1/r)/r}/(=D.

Proposition 5 Let{¢,q,r} C [1,0],1<s<gand0< ¢ < p—|J|. Then,

(§,9) SClIR(&,J)
(£,J)" SCIRp(E,J)

X{CIFq.g

CIF., } < Caal® 191/0), 17)

where G4(&,t) = (1+ §)(1/s-1/9)/(1-1/q) {1+ EQ(aqt)qfl}(lfl/S)/(qfl);

/4
ClFge(§,d)= inf inf JMvsu
ue?'(€,9) IAJ|=C v2o || V][1]|uallg

> @ (&,9), (18)
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whereq ,(§,J) = minga max, ming @ ¢(U,A,r,w, B; &,3)|9)%/9/||wal|1; and

SCIR(§,3)> inf inf sup HE/RALLTINS £ (8, 9) (19)
48D 2 e M0t e oy Vol Tuallg = 5

where @ (&,J) = minya maxw ming @y e(u,A,r,w, B;&,J)|JY9/|wyllz  with 2(u,Jd) =
{v:sgnvy) =sgnuy)} and vectors « ¢_(&,J) and we 2(u,J).

Remark 6 Taking w= ul|ua||/(UxZaUa) in (16) for thels loss, we find

®Ed) = rmpmraxmm{uAZAuA &191Y2(ar /)" Z5 AUA /-1 }
< min{@7(&,3), {(1+£/]1I)Y* A (1+8)}g5,(8,9)} (20)

with [|ua]| = 1 and {A,r,B} in (16), due tofjual1 < {(1+£/[IDY? A (1 +&)}I¥2 and |jw; |1 <
19]%/2/(UyZaua). However, for g> 2, wO u in (16) does not lead to a right normalization since
luall/IA|¥2 does not control [[uallq/|AY9.  For general g€ [1,], [ZaWallq/q-1) =
Wa>aUa/|uallq = 1 gives a properly length normalized lower bound:

%(8:9) = min{1- &I Y@/ IZa 2 g 1Y/ I8 g (21)

For (|Al, B, |Jull, IV]lr) = ([a], [b],1,1) with ANB = 0, define

5, = max{ & (|IZaul 1) }. 8 =55 V5. 7, = maxvseu. (22)

a

Oracle inequalities for thé, loss, 1< g < 2, have been given in terms of the quantities in (22). The
quantities 185 give the maximum and minimum sparse eigenvalues of the Gram nIatixto

dimensionfa]. For||ua|| = 1, we havas,Zaua > 1-0,, IZ8.AUAllr/(r-1) < efQHA‘ and||Zg aual|? <
(1+ 85 )UaZaUa. Thus, Theorem 3, (17) witq2(8,k/¢) = (1+&)%9H{1+&%/(40)}* /9, and
(20) withr € {2,} yield the following corollary.

Corollary 7 Let||B"|jo= |3 =k and1 < g < 2. Then, for = || X'(y— XB") /N[l <A,

2|J|Yax - 22/9(1+k/(40))2 V2 A /T4 £/K)KY I\

Vo : 23
ClFgp(L,d) = (1-8,)+{1—min(F, R, R)}. @3)

1870 =Bl <
wherel < £ < p—k, Fr = (KY2/0)8)7, ,/(1— 8, )+ Fa = /K[ (40) 8,1/ (1~ By )+ andFg =
{(k/(4£))(1+6@)/(1—6k+6) }1/2 Moreover, forz <A(E—1)/(§+1),

{28/(E+ 1IN _ (A48T 2(1+ 8%/ (40)) /928K I
SCIRp(EJ) = (1-8, )+ {1-&min(F, R, R)}s

BY 0 - plle< (24)
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3.2 Related Work

Here we discuss the connections between the results in Section 3.1 and weddte We show that
the (sign-restricted) CIF-based oracle inequalities in Theorem 3 aral&ygr7 sharpen, unify and
extend existing performance bounds and offer a clear explanation diftbeences among existing
analyses.

The CIF and SCIF in (8) and (9) are related to the restricted eigenvdRigs (

19X v
[nJM2]|uallq

REy(£,3) = inf { uEE(E), 1A\ < 1}, (25)
since they all conveniently provide factors required in proofs of the sgpeeof oracle inequalities.
The quantity (25) includes as special casegsheersionRE; p(&, J) of Bickel, Ritov, and Tsybakov
(2009) and Koltchinskii (2009) and the constant fad&; o(3,J) for the compatibility condition
of van de Geer (2007). van de Geer andhBnann (2009) calledRE; o(§,J) the restricted/-
eigenvalue.

Both types of quantities in (8), (9) and (25) involve minimum ratios of seminowas cones.
The main differences between them are the quantities used to bound the estienedgioand the
sign-restriction forSCIR; ((£,J). Let {h®) h(®) h} be as in (14) and (15). While the RE in (25)
uses the prediction regrbf=h to bound the estimation errdx the (sign-restricted) CIF in (8) and
(9) uses thé., norm of the gradient to bound the estimation error via (15). The use ofrdukemt
bound in (8) and (9) provides sharper oracle inequalities by allowingekility with the choice
of vin (18) and (19).

For the/, loss of the Dantzig selector, the oracle inequality of Bickel, Ritov, and Tksyba
(2009) and Theorem 3 can be compared as followszfet A

2|J|Y/2) VRIEEN 41+ /131/0)13|1Y 2\
I < J] < N < ( |2|/ )9 ' (26)
CIF2p(1,J) ~ REL0(1,J)RE p(1,d) REZ,(1,9)

The right-hand side of (26) is the upper bound in (7.6) of Theorem 7Hiakel, Ritov, and Tsy-
bakov (2009). An application of the upper bound of van de Geer drndnBann (2009) orﬂhSD) |1
in a modification of the proof of Bickel, Ritov, and Tsybakov (2009) yieldsititermediate upper
bound. Theorem 3 provides the sharpest upper bound in (26). eduad inequality in (26) fol-
lows from (18) with{¢,v} = {p—|J|,u}. The third inequality in (26) follows fronRE; o(§,J) >
RE/(&,J) as in van de Geer andilmann (2009) andl + &|J|/¢)Y/?RE p(€,J) > RE (&, J) by
the shifting inequality in Candes and Tao (2007). The shifting inequality af Wang, and Xu
(2010) can be used to reduce the fadtb# \/|J]/¢) to /14 (3] /(4¢) in (26), but (26) still holds.
Similarly, forz* <A/2,

(3/2112N _ 3/ _ 4(1+3V/[II/OPIMAN

hb|| <
NI SCIR,(3,9) = RE0B.IRE,E,J) REZ,(3J)

(27)

with (7.10) of Theorem 7.2 of Bickel, Ritov, and Tsybakov (2009) on thétrhand side. The
differences of the upper bounds in (26) and (27) could be nontdiniak van de Geer andiBImann
(2009) showed by example the possibilityRE o(€,J) /RE10(€,J) — 0.

A significant difference between the (sign-restricted) CIF- and REetb@racle inequalities is
their relationships to the oracle inequalities of Candes and Tao (2007)kam42009b). While
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Theorem 3 is sharper than these inequalities, the RE-based oraclelitiesjgaem not to have this
property.

The flexibility with the choice o in (18) and (19) is a significant advantage for (8) and (9). The
square of the potentially sma(l||Zl/ZuAH - HZ%ZUNH)Jr has been used to boumtEu = || Xu||?/n
from below in the proofs of RE-based oracle inequalities. This is noteteedCandes and Tao
(2007) and Zhang (2009b) since their arguments correspond to wstthgysv with vac = 0 in (18)
and (19). For example, (23) withks is at least by a factof1 — mln(Fl,Fg F3)}+ sharper than
inserting Lemma 4.1 (ii) into (7.6) in Bickel, Ritov, and Tsybakov (2009), exiéer an application
of sharper shifting inequalities to their Lemma 4.1 (ii). Fpr 2, the ratio in (18) is not properly
length normalized witlv = u, as discussed in Remark 6. Thus, direct extensions of (25)uA¥ti
in the numerator may not yield performance bounds of the right order.

Corollary 7 sharpens the oracle inequality of Candes and Tao (2008.upper bound (23)
with Fy is of the sharpest form among the three for lafgiue to the factor A, compared with
\/1/(40) for & andFs. For/ = k/4 andq = 2, (23) withF yields

2VkA - V10KA

~(D)
Z<A= IBN)-B < = ’
CIFp(19) = (1- 87 g — 62 pa0)+

(28)
a slightly sharper version of Cai, Wang, and Xu (2010) improvement od€s and Tao (2007)

result due tad; ,5 < 01.25. Similarly, (24) withg = V2 andl = k/2 yields

(1+v/2)v/8KA _(ar V2)4V/kA
SCIRp(v2,9) ~ (1-87g— 621 )+

7 <A = B (1+v2N) - B < (29)

The right-hand sides of (28) and (29) are directly comparable with thel€saand Tao (2007)
~(D
inequality||[3( )()\) — B <4VKA/(1— Ok — e,(fgk)+ in the same event.
Another option is to apply (17), (18) and (21) withs) = (,q) to (10), resulting in

~(D) § 2|J|%/ax 2N 25 | (14 (Bgk/€)9—1)Y/a
B 00— Bl < g s < a2 LGt (20T
ap(LJd) 7 AB {1 (K-Y9/0) (|25 ZaBllwg} +

(30)

for all 1 < q < o« in the eventz, < A, wherek = |J| andA andB are as in (16). Inequality (30)
and the combination of (11) and (19) with [ sgn(ua)|ua|9~* are related to the results of Zhang
(2009b). Foii|B*|lo = k, his oracle inequality for the Lasso can be written as

2(1+F*)G*

5L
B o) -8, = B

forz, <A, 1<gq< o, £>Kk, (31)

with F* = manB,W(klfl/q||ZB,AWA||1/€), G" = 6)\(k + E)l/q maxA,W||wA||q/(q,1) for

w O T2 sgr(ua)|ual 92, G* = CAKY I maxaw [[Wallq/(q_1) for wa O sgrua)|ua®t, C = (1+1/t*)
andt* = (1-F*)/{4(14+F*)}, wherew,2aua = ||ual|q = 1 and{A,B,ua} are as in (16). It turns
out that the combination of (11) and (19) with the same choiceafd(r,a;) = (0, 1) is at least by

a factor of 512 sharper than (31), even with the subopti@g 1. For smalk/¢, Zhang (2009b)
pointed out the smaller ordé/9\ of G* for wa O sgr(ua)|ua|9~! as an advantage of the Lasso,
compared with the ordeik 4 ¢)2/9\. The cost of this advantage is the squarélof F*), in the
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denominator of (31), compared with (23) and (30) for the Dantzig seledfiareover, the error
bound in (23) for the Dantzig selector is also of the orkléfi\ for q < 2 with much smaller con-
stant factors, and the difference betwd and(k+ ¢)/9 diminishes for large as in Theorem 8.
Thus, the advantage of the Lasso in this aspect has some limitations.

We have proved that Theorem 3 sharpens and unifies a number of @xisttie inequalities for
the Lasso and Dantzig estimators, so that they can all be viewed as (paasitdyexplicit) upper
bounds for the right-hand sides of (10) and (11). The choieec in (16), and consequently in (18),
(19), (20) and (21), typically gives oracle inequalities of the sharfpest involving the dimension-
normalized| - ||, Norm as in (30), compared with the typidgl|qq norm in the literature. Oracle
inequalities for3}c # 0 are given in Section 4. Although (10) and (11) are of the same format, the
Dantzig selector requires smallerand smalle€ = 1. This theoretical advantage of the Dantzig

selector forz:, < A reverses iﬂﬁ(m(?\)\ll < ||B*||1 is replaced by]ﬁ(D) A)1 < Hﬁ(L) (N)||1 for z;, >
A.

3.3 Vaiable Selection

Variable selection is fundamental for the interpretation of models with hign-dioesisiata. Mein-
shausen andihimann (2006), Tropp (2006), Zhao and Yu (2006), and Wainwi{@®®9) proved
that the Lasso is variable selection consistent under a strong irref@elsenondition and some
other regularity conditions oK andf. Candes and Plan (2009) proved the selection consistency
of the Lasso under random permutation and sign-change of regresstiitients and a mild con-
dition on the maximum absolute correlation among design vectors. Consistatti®aelection in
linear regression can be achieved with a concave penalty (Fan andili, 2Bang, 2010) or adap-
tive Lasso (Zou, 2006; Huang, Ma, and Zhang, 2008), withoutiregythe strong irrepresentable
condition.

The /« error bounds in Theorem 3 (i) and their more explicit versions, for exant®0) with
g = oo, naturally lead to variable selection by thresholding the Lasso or Dantzigiselgve focus
on the Dantzig selector here although parallel results can be obtaineeé foangko in the same way.
Zhang (2009b) studied the selection consistency of thresholding the ttassigh his upper bounds

for \|[A3(L) —B*||». Lounici (2008) considered thresholding either the Lasso or the Dasétégtor
under the stronger condition max (%) k| < 1/{a(1+42&)[J|} witha > 1,(Z)j; =1,& =3 forthe
Lasso, and = 1 for the Dantzig selector.

Candes and Tao (2007) considered the Gauss-Dantzig selector

~(GD) , -~ .~ (D)
B —argmin{ |y Xb]: [B| <X = b =0, B=B ()} (32)

For threshold functiongx; A) satisfying{x:t(x;A) = 0} = {x: |x| <A} andxt(x;A) > 0, define the
threshold Dantzig selector as

~(D)

B =t(B (AsN). (33)
This includes the hart(x;A) = xI{|x| > A} and the soft(x;A) = sgn(x)(|x| — ). Define
~(oracle) . i
B :argrrgm{Hy—XbH:Bj:O:> bjIO,Vj}.
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~(G ~
Theorem 8 Suppose (3) holds with3 {j : B; # 0}. LetB~ andB "~ be as in (32) and (33)
respectively with the universal penalty levek Ayniy = 04/(2/n)logp and a threshold level
satisfying2\univ/ClFw p(1,J) <A < ming, 40|Bj|/2. Then,

Pox{sar® ) # sor() or B # B} < 1/\/mlogp 0. (34)

Remark 9 If we use (21) in Theorem 8,|/¢) maxa g || =5 *Za 8|l < 1 becomes a basic condition
for (34). Meanwhile, the strong irrepresentable condition for the selectimsistency of the Lasso
without post-thresholding iﬁZJc,JZjluoo,m < 1. Compared with Lounici (2008), we improve the
factor1+2¢ to 1+¢& via

CIFp(8.3) = min(z); — (3] ~ 1+ &3)) max (D).

4. Upper Boundsfor the /g Lossin ¢, Balls

We divide this section into two subsections. The first subsection provioleprobabilistic oracle
inequalities: conditions on the datX,y) and a target coefficient vect@" for upper bounds of

HE— B*||q for the Lasso and Dantzig selector. The second subsection proviffiegesticondition
on the desigiX for the rate minimaxity for thé, loss in/, balls undePg .
4.1 Oraclelnequalities

The oracle inequalities here differ from Theorem 3 (i) by allowing targetars with many small
entries and smaller penalty levels.

Our first theorem deals with the usual> z;, and allows targetf” with small ||B}||1 for a
certain set) C {1,..., p}. The effect of the elements @f in J®is controlled by

Ma(Ap) = sup{ [lulq  [I2ull < A [lull2 < p}. (35)

Theorem 10 LetP* be a target vector, g [1,%], JC {1,...,p} andpy = ||B}||1- Then,

ZINIE)N
ClFqp(E,J)

in the eventz = || X'(y—XB")/n||« < A. Moreover, for z <A(§o—1)/(§o+1),

E+1

D) .
B =B llq < max{ Mg(h =7

pJ) } VES1, (36)

Ely\],l/q)\
ClFgp(§,J)

where Clfg(§,J) isasin (8).§1 = 280/ (o +1) and&z = (1+&0)(1+&)/(§ — &o)-

1B~ B g < max{ Mq (€17, 202) }, VE > o (37)

Remark 11 The first component of (36) and (37) can be viewed as the costimia¢ing the large
componentg” in J without knowing J, and the second component the cost of havingtiadiie
many small elements @f in J°. Since M(A,p) < p for g > 1, B} does not contribute to the order
of the error bounds in (36) and (37) when < |J|Y/9\/CIF, p(€,J). In Proposition 15 below, we
provide conditions for M\, p) <A (p/M)Y9, asifz =1.
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Our next theorem deals with smaller penalty levels satisfging< A < z,, where

%o = Maxzga Za=[IXa(y = XB)/nllo/ IS, 2 =25 (38)
Sincez, 4 is the length normalizedq norm of thed largest absolute values of the elements of
z=X'(y—XB")/n, Z\d is increasing iy and decreasing id, andz;;’d <Z. Let

Groe€,.0) = {U Jury <& max [} (39)

as a relaxed cone, and define the corresponding relaxed CIF as

CIFq7re|ax(E7\]7 d) = |nf

{ dY9Za.u .
U Hraan(E.1.0)

: A= argmax||ug|| ¢. (40)
d¥/2]|ullq |B]=d,B2J }

The following quantity plays the role of (35) for relaxed cones:

Ma.reiax(\,P.3.0) = sup {ullq: [|Za.ul < d*/?N,A= argmaxug] |- (42)
lull1<p |B|=d,B2J

Since||uy |1 < |A/Y2||ua|| for AD J, the relaxed cone (39) is larger than the cone in (8). Moreover,
since||Za . ul|/|AY2 < ||Zul

(e X

CIFq,r(ilaX(E?‘]ad) S (d/|‘]|)l/qC|qu(Ea‘])a Mq,relax()\,paJad) Z Mq()\vp)

Theorem 12 Let " be a target vector, @ [1,]|, J C {1,...,p} with (4J]/3)v1i<d<p,p;=
|B3[l1 and 2 4 be as in (38). Then, foryz; <A(&o—1)/(§0+1),

5(b) X £1d/a)
— <
HB B ||q > maX{C|Fq7re|aX(E,J,d)’MqJeIaX(El}\’EZPJ,J,d)}, (42)

where€; =280/(§o+1) and&2 = (§o+1)(§+1)/(§ —&o).

Remark 13 By (22) and (38),(z;4)?/{0%(1+ &)} is no greater than the maximum ¢f) x3
variables under P  in (3), so that for certaih < o{(1+ 8;)(2/n)log(p/d)}*/?, 4 < A(& —
1)/(§o+ 1) with large probability. Thus, fofJ| = k < d andlog(p/d) < logp, Theorem 12 allows

A < Auniv = 0{(2/n)logp}*?. Zhang (2010) derived similar oracle inequalities for the Lasso,
MC+, and other concave penalized least squares estimators at the sameer the sparse Riesz
condition|J| <d/{(1+8§)/(1—-385)+1/2}.

Remark 14 Sincel|ua||/d*/? does not control|ua||q/dY/9 for g > 2 and large|A| = d, the relaxed
constant factors in (40) and (41) are not properly normalized for g and% = I. Thus, Theorem
12 is most useful wheh< g < 2, although it is valid for alll < q < oo,

We use the following quantities to bound the constant factors in TheoremsdlTRa

Naa = MaxX|Zxtea/d", Nga =Max|Z3 o (43)
Kqde = maxminmax/*~Y9(a /0)21"z,1% :
ad¢ = maxminmaxt @ /0T [Za 2 Al
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Proposition 15 Let CIFy relax(€,J,£), Mg(A,p) and My reiax(A, p,J,¢) be as in (40), (35) and (41)
respectively. Lefngad, N, 4 Kqd.c} be asin (43) and @= (1-1/q)/q"/4Y. Then,
Mg(A,p) < Nqik™ N+ (kg +ad 1)K p, Vk>1,1<q< o, (44)
Mq, relax()\a pv‘]v d) S n;,ddl/q)‘ + {(d/g)l_q/ng,d,é + ag—l}l/qﬂ/q—lQ 1 S q S 27 (45)

with £ = d — |J], and with G »(&,t) and(Npr;’é(E,J) asin (17) and (20),

(d/|3pYea-22gs ,(€\/d/[3],9)
Ca2(E(d/3))2,13[2/(dE))

Remark 16 Suppose that the quantities in (43) are bounded whenever invokeg/Kot k < ¢,

(44) and (45) give the rate MA,p) < p(A/p) Y9 and Myreiax(A, p,J,d) < p(A/p)t~Y9, the same

as the simplest cage= 1. Since (46) is of the form (20), Corollary 7 can be automatically extended
under the setting of Theorem 12.

CIF%P(E’J) > C”:q,relax(za\])g) > (46)

4.2 Rate/q Minimax Estimation in ¢, Balls

We present sufficient conditions for the rate minimaxity of the Lasso antzidgeselector ir¢; balls
in (4) in the sense of (6) and (7). L&tny andAmm be as in (5). We first consider tlig risk.

Theorem 17 Let g> 1> r > 0. Supposglogp)/n= 0O(1) and R/A],,=<d < nA p for some
integer d— oo satisfying(logd)/logp <cgp < 1. LetO<ag< 1 andﬁ be either the Lasso or
Dantzig selector with = Auniv/0o. Suppose J(@2/00)* (nd /d +d9/" 1) < 1 and p-=(@/a@0)*ga/r—a <
1 for certain {a,a1} C (ap,1). For the Dantzig selector, | > 1, §* =1forr=1and&* =
(&+1)/(§—1) forr < 1. For the Lasso, le§ > (1+a)/(1—a) & =1/(1—aq) forr =1 and

&=E&+1)/{€-1-a(E+1)}forr <1 Then,

< [re{Crca cMlamann)l] @

SURsce,  Epx /1B —BIld
R Afhm
where G = 2(dAj,/R)Y9/(aov/I=Co), Cz = tlov/IT—CoR/(dY Amm), CIF; (€,d) is as in (12)

and My(A, p) is as in (35). Consequently, if eithggd +Kqd.d = O(1) with the{nqd,Kqd.d} in (43)
or Mq(d~%9,d-%9) 4+ 1{r < 1} /CIF;(€,d) = O(1), then

sup Egx[[B— Pl < inf sup Egx||8(X.y) — B|% (48)
IBllr<R 3 |IpIk<R

Remark 18 For =2, ngx+Kqkk = O(1) for some k= d if the sparse Riesz condition holds Zhang
and Huang (2008), that isl,/(1— &5) + 8] = O(1) for the &5 in (22). For p>> n, random matrix
theory can be applied to validate such conditions up te d/log(p/n).

Theorem 17 differs from existing results by directly comparing/thiesk of estimators with the
minimax risk, instead of finding upper bounds for theloss. It is based on the oracle inequality
for A > Auniv In Theorem 10. However, in practice, a penalty levet Ay is often empirically
the best choice. As we mentioned in RemarR2m < Auniv iff R> 0/+/N. FOr Amm/Auniv = 0(1),
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oracle inequalities requiring penalty levals> Ayniy do not match the order of the minimax lower
bounds in Theorem 1. For example, whes nlognandd =< R /A},,,,=< n/loglogn, Amm/Auniv — 0
asn — oo and the regularity conditions ok may still hold. Theorem 19 below closes this gap by
providing the rate minimaxity of the Lasso in the quantiles oféh#ss withA =< Aym= 0(Auniv)-
Define

. d¥/||Za . ull
CIF* k.d — . ¢ di/2 49
q,relax(Ev ) ) A d{ dl/2||UH |A\~]‘ HUJ ||1<E HUAH} ( )
grelax(A; p,k,d) = su {HUHq [ Zaul < dY2A, " \r?m |!ch|!1<9} (50)

|A|=d
Theorem 19 LetA = min (Auniv, (1+€0) (1487 )Y?Amm) /& With 0 < €5 < & < 1 and{Amm, Aunivs 8§ }

in (5) and (22). Let0<r <1<q<2 Suppose np>dxR/\,,— o, & =O(1) and
AmmnY/2/0 — 0. Suppose that for certaink ¢ = d with k= ¢,

max{l/CI reIax(E k d) qrelax(d_l/27dl/27kvd)} = O(l)-

Then, the Lasso is rate minimaxdnballs in the sense that for adl > 0,

inf [t : sup P81X{||E(L) —Bllg > thr)\ﬂ{nﬁ} < s} (51)
Bl <R
< inf [t nngBsHup PBX{||6(X y)—BIld thRr)\ﬂ;nﬁ} < e} < 00,
<R

In particular, (51) holds ifl/(1— ;) + 8, = O(1) as in Remark 18.

The quantities (8), (12), (35), (40), (41), (49) and (50) are bederstood by comparisons with
functions of (22) and (43) via Propositions 5 and 15. These quantitiedadgitate comparisons
between our and existing upper bounds on the loss as in the derivatioorofiaCy 7. In such
comparisons, the élder inequality and (22) give

Ngd < r]a,m Kgds < Kad,ey N2d=1/(1-8y), Ksgs < 8dsN24;

1/q

wherex;, 4 , = ag maxag =5 Sasllqq With |A =d, |B| = £ andANB = 0.

5. Discussion

Although this paper focuses on the estimation of regression coefficieet®stimation ofX3*
(prediction) is an important problem (Greenshtein and Rotiv, 2004). Simailtre proof of (11),
(9), (14) and (15) imply

{28/(E+1)}I|A?
SCIFLO(E,J)

in the eveniz, = [|X'(y — XB")/nllo < A(§ —1)/(§+1). SinceSCIRo(§,J) > RE0(&,J), (52)
implies Lemma 2.1 of van de Geer andfBmann (2009) fofz;,§) = (0,1).

IXB = XB*12/n+ 27| (B— B )sll1/(E+1) <

(52)
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As we have explained in Section 3.2, the usé| Bl in the numerator of (8) and (9) seems
necessary to ensure the dominance of Theorem 3 over the oraclelitiegofthe type (30). How-
ever, if we make the numerator quadraticuinCorollary 7 still holds up to a constant factor with
the following weak CIF:

qe(&J) = inf 7 UpZA U

. AECTAIN
’ SCIF(;]NZ(E’J) —_ |nf | | uA A, u
ue?'(8.9) ||Us]1]|uallq ’

e (53)
ue?-(83) [[usllzluallq

whereA = argmaxy j<¢ |luall. For example, (26), (27) and (28) are still consequences of Theore
3 when (53) is used instead of (8) and (9).

Since the oracle inequalities in this paper apply directly to data po¥tg and target vectors
B*, the normality assumption on the error in (3) is not crucial for the uppend®for the estimation
risk and loss (not even the conditidi xy = XB). For example, for the estimation of a targit

~(L
with X" ~ Ey, the upper bounds in Theorem 19 are valid \fﬁ§ I [3*\\3 with large probability
underP ando = 01 + 0>, provided that

{Eexp(\/x (y—Ey)) < exp(—no2V'5v/2),
maxa— [|Pa(Ey—XPB*)|| < 021/2¢log(p/¢).

For design matriceX with iid sub-Gaussian rows, our results can be extend@dnc/, balls with
1<r < 2due tooy < O(||Byel|) for B; =B, andBi =0

The proofs in this paper do not completely deal with the most difficult cage>02 andAym=
o(Auniv). For example, an extension of Theorem 12jto 2 seems to require sharp upper bounds
for Zyd in (38).

For A < Auniv, the proof of Theorem 12 can be extended to the Dantzig selector withdhie fe
bility of B* replaced by the feasibility cﬁ(L). This would yield slightly worse error bounds than
those in Theorem 12. However, if we modify the Dantzig selector as

B= argmm{”le ‘m‘ngx’ L (y— Xb)H<f)\} (54)

the feasibility of3* would be guaranteed in the evezg{]| < A even forA = o(Ayniv) as in Theorems

12 and 19. This will provide sharper error bounds for the smallandg < 2. We omit this
modification since the computational issues with (54) is not clead forl.
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Appendix A. Proofs

We provide all the proofs here. Lemms are stated and proved as needed.
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Proof of Theorem 1. Let © = ©,g andk = R' /A, for r > 0 and® = ©gy for r = 0. By (5),
Amm/On = /210g(p/K) — 1 10g(Amm/0n) for r > 0. Smce)xmm/on — o,

Amm= (14+0(1))ony/2log(p/k), min(k, p/k) — 0, Vr >0. (55)
Let B, be a (prior) probability distribution under whigla;, ;) are iid vectors with

zj|Bj ~ N(Bj,03), Puw{Bj =} =w=1—Pyu{B; =0},

wherep = Amm(1—€) andw = (1—¢€)k/p. Sincezj = xj(y— Jij Bixi)/nis sufficient forB; given
(X,y,B;,i # ) andz;|B ~ z;|B, the minimum Bayes rlsk is bounded by

~ p i
i%fEu,WEB.,XHB—BHg > Byw ) minEgx | [t—Bj* X,y}
=1 -
p i
> Euw ) minEgx |[t—Bj[*|X,y,Bii # J'}
=i -

p _
= Buw) minEgx t—B;|° zj}
=1 )

= (14 0(1)) kA, (56)

askA (p/k) — o and there — 0. The last step above is by Donoho and Johnstone (1994).
LetN = #{j : Bj # 0}. UnderP.w, ||B[l} = Ni and||B||d = N}#, so that

BeO & N<k/(1-¢) = |Bll§ <kA\}m VT >0, (57)
due toR' /i =k/(1—¢)" and{k/(1—&)" }uP/Ahm=k(1—g)4 " < kforr > 0. Let

8 = arg minE, p x [18(X,y) —Bllg[X,y,B € ©].

Since the conditional Bayes risk &f is no greater than the minimax risk @,

(1+0(1)) KA\
EuwEpx [[18"—BIIJ|B € ©] +EpwEpx I8 —BlIJI{B ¢ ©}
Z(0;X) + 20 DBy Epx (1|81 + 1BI) 1{B ¢ ©}. (58)

IAIA

SinceE,Epx[[15° — B3 X.y,B € ©] < EuullIBl§X,y. B € O] < khhmby (57),|5" (1§ < 201+ ki
a.s. Thus, sinchl ~ Binomial(p, w) with pw= (1— €)k — oo,

EuwEpx (/137113 + 1BIS)1{B ¢ ©}
< 29V Puw{N > wp/ (1)} + PELWNI{N > wp/(1-¢)}
= 0o(DkAdm (59)

by (57). The combination of (58) and (59) gives (6).
Now consider the losk(8,B) = 1 {[|&— B]|q > ck9Amm} in (7). Define

B=80 31 {1804l < (1 D).
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By (57),B € © implies||B||d < k\mhmand
BBl < bl {115 Bllg < KA}
+(IBllg-+ (1 k) 118~ Bl > oK/}
Since||B||d = N < NARm, it follows that
EunBax [B—Bl§ < WG (20 KNI mmaEaxL(3(X.Y), B

+2% N (N + (1 0)%) 1 {B ¢ ©}. (60)

SinceEu_,W(N (1t c)qk) 1{B ¢ ©} = o(1)k by (57), (56) and (60) yield

1-c940(1)
SUpEg x L(&(X >
Bg@p 3,X ( ( 7y)7B)— (2+C)q
Since theo(1) is uniform in the choice 0d(X,y), we find

e+0(1)
3¢

inf supPy x { 50X, Y) ~ Bllg > (1 €)kAym } > ,Wo<e<l.
3 peo

This gives (7) and completes the proof. [ |
Proof of Theorem 3. Part (i) follows from (14) and (15) as briefly explained in the paragtagdow
the statement of the theorem. For the Dantzig selegtot, A implies (15) and the feasibility 3"

for the /., constraint in (2), and the feasibility @ implies (14). For the Lasso estimator, (14) and
(15) follow from the Karush-Kuhn-Tucker conditions

Ixi(y—XB)/Nll <A, Bj#0 = xj(y—XB)/n=sgn(Bj)A.

Part (i) follows fromP; x {z, > ta//n} < 2pP{N(0,1) > t}. [

In this paper and those cited in Section 3.2, taildphorms or inner products are bounded
by shifting inequalities (Candes and Tao, 2007, Lemma 3.1). The following lecom&ines and
extends the sharp shifting inequalities of Cai, Wang, and Xu (2010j fer2 and Ye and Zhang
(2009) forw’h with g = co.

Lemma20 Letl<qg<wand a=(1-1/q)/q%@ Y with a, = 1. Lethe RP, JC {1,...,p}

and A be the union of J and the indices of thiargest |h;| with j ¢ J, 1 < ¢ < p—|J|. Then,
[has|lg < (8g/€)*~Y/9||hyc||1. Moreover, for any vector v RP,

a 1-1/q
gwjhj < ||hJc||1(Zv%) max{HWBHq/(q_l):BmA:(l),\B| < Wa}}. (61)
JEA

Proof. We first prove that for all decreasing functiamg) > O,

00

(+(m+1)¢/a 1/q 11 al-1v/a pe
( /g hi(t)dt) " < max{1, (aq/a) g S /O h(t)dt. (62)

=0 +ml/a
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With x = at/¢ —mand possibly different | 0, the above inequality is a consequence of

max{ /Hahq(x)dx: /01 h(x)dx= 1} < max{1, (ag/a)% '} (63)

It suffices to consider & a < a. Sincef1+ahq( x)dxis convex inh, it suffices to considen(x) =
v+ (u—Vv)I{x < w} for certainu>1>vanda<w<1. Sincefol h(x)dx=1,v=(1—uw)/(1—w).
Thus, for fixedw, f”ahq( x)dx is convex inu, and its maximum is attained at the extreme points
ue {1,1/w}. Foru=1/w, we havev =0 and [1"®hd(x)dx= u?~1 — auf, so that the optimal
satisfiesau= (q— 1)/q, resulting in the maximunf(q—1)/(qa)}9-1/q = (ag/@)%"1. This yields
(63) sincef1 "*hd(x)dx= 1 at the other extreme= 1. Thus,||hac||q < (aq/¢)*Y/9||hs||1 by (62),

and (61) follows with an application of thedttler inequality toffjwn}zl oy w(t)h(t)dt. [ |
Proof of Proposition 5. Letk = |J|. Since||uac|lq < (8q/¢)*9||use |1 by Lemma 20 andjuye||; <
Elwls < EK-Yualg, [ulq < CoalEk/Oual. By the Hbider inequality

1/s-1 1-1 1-1 1-1 1 1-1 .
Julls < ully? /DY g9 AT — /g™ with sy = (1-1/a)/(1/s—1/0) >
s. Since|ulls < (14 &) ulls < (1+ &)Y uallg,

lullskM 52/ [Juallq < (1+&)M/*Cqq™ ™ (€ k/€) = Csq(&,k/0).

This gives (17). Sinc&cZy .u<0forue ¢_(&,J) andv e 2(u,J), the first parts of (18) and (19)
follow from (8) and (9). Foh = u and the choice oA in Lemma 20, an application of (61) with
W= (Vp2a.) yields

\/AZA7*U V,AZAUA + \/AZAACUAC

> VpZaUa— max(|Zg aVallr/(r—1) (a /0" Juge] 1. (64)

Since||ue||1 < &||uy]|1 < EKEYY||uallq, (64) and (16) imply

VaZasU VAZAUA — &||uallgk™9(ar /)Y masg || Zp AVl r 1)

[Valllluallq/kYa = [[Vall][ual|q/kYd
= Que(U,A LW, B;E J)KY/||wal1

with w=Vl||ua||lq/(VaZaUa). This gives the second parts of (18) and (19). [ |
Proof of Theorem 8. This theorem is a direct consequence of (10) wijth oo, since|| — o <
N < ming, 4|Bj|/2 guarantee$; : [Bj| > A"} = {j : Bj # O} |
Proof of Theorem 10. Leth = 3 — " for either estimator. As in (14) and (15),

1Zh[Je < &N, |Ihae][2 < &ol[hal[2 4 (§o+1)py, (65)

in the given events, witk&o,&1} = (1,2) for the Dantzig selector and tH&, &1} in (37) for the
Lasso. It follows from Theorem 3 that (36) and (37) hold fibge||1 < &|/hy||1, or equivalently
he ¢(€,J). By (65), it remains to consider

&llhsl2 < [Ihgel]2 < &ollhs |1+ (Eo +1)pa-

Since€ > &p, ||hy|l1 < (&o+1)ps/ (& — &) in this case, so thalh||; < (1+&o)||hy|l1+ (Eo+1)ps <
Pa(1+8&0)(1+8)/ (& —&o) = &2py. Thus, (35) givegih|jq < Mq(&1A,&2py). u
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Proof of Theorem 12. Let h = B - B, X'(y—XpB*)/n, k=1]J], £ =d—-k, and
A = argmaxg_qg-;||Ihel| @s in (40). Sincek g 3d/4 4 >d. Lemma 20 with{w,q,aq} =
{Z, 2, 1/4} yieIdSth\cZAc < HhJCH]-Z;AK < HhJCH]-ZE,d’ so that

2 / / V2] (L)
IXh[[“/n = haza+hpczas =X (y — XB )({;‘
< Vd|[hallZg+ Iz, = MIB [l +AllB -
. (L) *
Since—A[B " [[1+Al[B"[l2 < —Allhgell2+ Allhy]l2 + 2Apy and|[hy[|1 < +/3d/4][hal|,
IXHI?/n+ (A =2 g)llhxell < (A + 25 ¢) V| hal + 2Ap,.
SinceZa.h= zA—X’A(y—XE(L))/n, |Zah]| < (z5,4+A)Vd. Thus, as in (65),
[ Zahl] < &1VdA, [[hye]l1 < EoVd||hall + (§o+1)py. (66)
For ||hse||1 < &v/d||hal|, (42) follows from
d/2 ||| (CIFg retax(€, 3, d) < [|Za.chi| < &1V/dA.

For&+/d||ha|| < ||hs||1, the second inequality of (66) give&d||hal| < (E0+ 1)ps/ (& —&o) and then
Ihll1 < (1+&0)(v/d|[hal| + p3) < &2ps. Thus,||hllq < Mg relax(&1), €2p5,3,d) by (41), in view of

the first inequality of (66). |
Proof of Proposition 15. Let A be the index set of thie largestu; andw satisfy||Zawal|q/q-1) =
WaZala/|Uallq = 1. By Lemma 20, WySaacUas < Kqrkk/91p, so that ||uallq =

WySaUA < [[Wal[1]Zulfe + Kqiik¥ @ 2p < ik’ + Kqiik4Tp. This and||ulq < ([uall§+
(ag/K)%1p%)Y/9 from Lemma 20 yields (44).

LetAbe asin (41) andin = 2, ua/||ua||. For||Za.ul < +/dA and||ulj1 < p, ||ual| = WpZaUa <
[Wal|dY/2N + WaZaactae < N3 4dY2N + Koa 0l H?p, so that (45) follows from |juflq <
(@49 2/2])ua][ )9+ (2/0)% 10,

Let u andA be as in (40) and = |J|. Similar to the proof of Proposition 5, we haya||? <
{1+&%/(40)}|uall? and lully < VK[uall + ux]ls < (1+&/d/k)k?|ua||. Thus, for 1< g <2,
Jullg < [1ully"ul~29 < Cqa(€(d/K) /2 K/ (de) K2 |un]|. Since|ux|s < Ed*/2|lua]| and
(64) holds forv = u, UpZa .U > @ (u,A,1,w,B; &', J)/||wal| for |lua| = 1, whereg’ = &,/d/k and
w = u/(UpyZaua). Thus, (20) gives (46). [ |

The proof of Theorem 17 requires the following lemma.

Lemma 2l Letﬁ be either the Dantzig or the Lasso estimator at penalty Ikv&8upposép||; <R
with0 < rv 1< q. Forany evenfo with t, = /210og(1/Ps x(Qo)) > 1,

-~ MN2q+1
ol -Blfin, < 2 Ry { A e (M w0 ) o)

In particular, if (logp)/n+a2/(MA?) +R"/(n\") +-A" /R = O(1), then
Ep.x|B — Blldla, = o HRAT, (68)

provided that Rx (Qo) (A" /R'){(a/A)2 + pd3=2/1)+(R/A)9} = o(1).
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Remark 22 Since the unit sphere'S' ¢ R"is covered by2/e+1)" e-balls for all € > 0, a certain
€ ball contains at least m unit vectors A|x;|| for € = (log(p/m))/(2n). It follows that the set of
design vectors jxcontains some highly correlated clusters wiigag p) /n > 2. Thus, the condition
(logp)/n= 0O(1) is natural for the estimation d.

Proof. Letﬁ be the Lasso estimator. Sinﬁeminimizes the penalized Iosh[|§||1 < [lell?/(2n) +
A||Bl|1, so that

o Uell/o-t - vi)E  (t.+vn)?

(1-1+R
nA /0?2 nA /o2

N 2
Bl 18l < o 4 2 <

+2p

Sincelle/o|| is a Lipschitz(1) function of /o ~ N(0, In) andEg x ||€|| /0 < /N, the Gaussian isoperi-
metric theorem giveBg x {||€]| /0 — /N >t} < e /2, so that

Epx([le]l /o —t. — v)?

IN

/O Psx{llell/o—t. — /N > t}dt™
S /0 e—tf/z—t*tdtzq — PB,X(QO)F(2q+ 1)/t3q

The above inequalities yield (67) duelt— |3 < (||B||1 + ||B||)% for g > 1.
It follows from (67) that

Epx|[B—Bldias/ {RA}
= O\ /R)Pax(Q0){O(1) + (t2/n+1)%a/N) X+ pit- R A%},

Since the right-hand side is of no greater order #ag(Qo){ (t2+n)9-+ pn¥ '} = o(1) fort2/(nv
logp) — oo, it suffices to consider the casg/n = O(1). Hence, (68) holds under the specified

~(D ~(L
conditions. The same conclusions hold for the Dantzig selector, m}gc)d!l < HB( )”1- [ |
Proof of Theorem 17. We first boundAyniv/Amm and the expected loss for largg = ||X'e/n||«.
Leto, =a/+/n. SinceR /A< d, (5) and (55) give

207l0g(p/d) ~ Ay, (69)
Since(logd)/logp < ¢, (1—co)AZ,;, = (1—co)202log p < 202log(p/d) ~ A2, and
C1 ~ C; = 2(A/Amm) (AA\/RDYY, C = C5 = R/(AdYT).

Let Qo = {Z,/A > a1}. Sincez, is the maximum ofp variables fromN(0,02), Pz x{Qo} <

pexp(—n(a1))?/(202)) < pt~(@1/90)* for largen. Thus, due td2/02 < logpandn>d =R /Al =
R /A" — oo, we have

Psx (Qo)(N"/R){(0/A)23+ (R/A)%} = o(2)p'~ (/90 (n%/d + d¥" 1) = o(1).

Since O< r < 1, Lemma 21 give&p x||h[|31{z,/A > a1} = o(R Afm), whereh = B —B.
Next we proveEg x [|h|dl {Z; /A < a1} = O(R'A\hm). Considerz;, < aiA. By (65) withJ = 0,
1hllq < 2Mq(A,&'||B]|1) with § = &* for r = 1. SinceMq(A,p) = cMqy(A/c,p/c),

Ihllg/ (R %) < CiMg(d /9, E5C5dM/ /).
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This gives (47) for = 1 andEg x||h[| 3l {a\ < Z, < asA} = o( pt~(@/@0)*da/™=1) — o(1) for r < 1.
Let J = argmaXa_qg||Ballz  For B € Or [Byll= < (R/d)Y, so that pj/(Ad) <
(R'/d)X-N/TR"/(Ad) = C5 . Thus, in the evert, < aA, Theorem 10 gives

1hllq/ (R %A r/a <max{CI/CIFq*(E,d)7C{Mq(d‘1/q,E*Cz*dl‘l/q)}, r<i.

It remains to prove (48) undafqg + Kqdd = O(1). In fact, by (44) it suffices to prove
1/CIF§ (&,k) = O(1) for anyk+ ¢ = d with k < d. This follows from (21), sinc€IFqp(€, J|) 2
{1-&(k/0)Y"Y%qad}/Ngd > O uniformly for |J| = k and smalk/. u

The proof of Theorem 19 requires the following simpler version of Lemmazhang (2010).

Lemma 23 Let p; be the positive number satisfyirtjogp; — 1 — log(2logp,) = (2/¢)log (?).
Suppose ~ N(0,0?l,,) under probability P. Then,

P{ max||PAs|\ >0/ 2llog pg}

1 1
< T =
2,/logp; ~ V2
where R = Xa(X,Xa)1X}, is the projection to the linear span ¢%;, j € A}.

Proof of Theorem 19. Letyy = (1+6d+)1/2 There are two cases. We omit the proof in the case of
A = Auniv/0 since itis identical to the second half of the proof of Theorem 17. It resrtainonsider
the case\ < Ayniv/Q, that is,(14 €)YaAmm < Auniv-

For |Al =d, || XA&/n|| < va||Pagl|/+/n, so that by (38) and Lemma 23

Pax {74 < Ya0\/(2/n)logPs } > 1-1/(2y/logPpa) — 1

SinceR /AL, =< d and Ammn/2/0 — ©, Amm = (1+0(1))0+/(2/n)log(p/d) by (69). By Stir-
ling, log(§) = (14 0o(1))dlog(p/d) for p/d — e, SO that)\mm_ (1+0(1)o a/(2/n) logpg. Thus,
Yao+/(2/n)logPa < oA andPs x{Z 4 < OA} — 1.

Consider the evert; ; < aA. Since& > (1+a)/(1—a), Theorem 12 asserts that for=
argmaxa i [|Ball1 and certain constan{€1, &5},

g1d/a)
< :
Il < max{ 2 = Ma e (£ 8209.9.0) |
The rest of the proof is similar to the proof of Theorem 17 and omitted. |
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