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Abstract

We consider regularized stochastic learning and online optimization problems, where the objective
function is the sum of two convex terms: one is the loss function of the learning task, and the other
is a simple regularization term such asℓ1-norm for promoting sparsity. We develop extensions of
Nesterov’s dual averaging method, that can exploit the regularization structure in an online setting.
At each iteration of these methods, the learning variables are adjusted by solving a simple mini-
mization problem that involves the running average of all past subgradients of the loss function and
the whole regularization term, not just its subgradient. Inthe case ofℓ1-regularization, our method
is particularly effective in obtaining sparse solutions. We show that these methods achieve the op-
timal convergence rates or regret bounds that are standard in the literature on stochastic and online
convex optimization. For stochastic learning problems in which the loss functions have Lipschitz
continuous gradients, we also present an accelerated version of the dual averaging method.

Keywords: stochastic learning, online optimization,ℓ1-regularization, structural convex optimiza-
tion, dual averaging methods, accelerated gradient methods

1. Introduction

In machine learning, online algorithms operate by repetitively drawing random examples, one at a
time, and adjusting the learning variables using simple calculations that are usually based on the
single example only. The low computational complexity (per iteration) of online algorithms is often
associated with their slow convergence and low accuracy in solving the underlying optimization
problems. As argued by Bottou and Bousquet (2008), the combined low complexity and low accu-
racy, together with other tradeoffs in statistical learning theory, still make online algorithms favorite
choices for solving large-scale learning problems. Nevertheless, traditional online algorithms, such
as stochastic gradient descent, have limited capability of exploiting problem structure in solving
regularizedlearning problems. As a result, their low accuracy often makes it hard to obtain the
desired regularization effects, for example, sparsity underℓ1-regularization.

In this paper, we develop a new class of online algorithms, theregularized dual averaging
(RDA) methods, that can exploit the regularization structure more effectively in an online setting.
In this section, we describe the two types of problems that we consider, andexplain the motivation
of our work.

c©2010 Lin Xiao.
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1.1 Regularized Stochastic Learning

The regularized stochastic learning problems we consider are of the following form:

minimize
w

{

φ(w), Ez f (w,z)+Ψ(w)
}

(1)

wherew∈ Rn is the optimization variable (often calledweightsin learning problems),z= (x,y) is
an input-output pair of data drawn from an (unknown) underlying distribution, f (w,z) is the loss
function of usingw and x to predicty, andΨ(w) is a regularization term. We assumeΨ(w) is
a closed convex function (Rockafellar, 1970, Section 7), and its effective domain, domΨ = {w ∈
Rn |Ψ(w)<+∞}, is closed. We also assume thatf (w,z) is convex inw for eachz, and it is subdif-
ferentiable (a subgradient always exists) on domΨ. Examples of the loss functionf (w,z) include:

• Least-squares:x∈ Rn, y∈ R, and f (w,(x,y)) = (y−wTx)2.

• Hinge loss:x∈ Rn, y∈ {+1,−1}, and f (w,(x,y)) = max{0,1−y(wTx)}.

• Logistic regression:x∈ Rn, y∈{+1,−1}, and f (w,(x,y)) = log
(

1+exp
(

−y(wTx)
))

.

Examples of the regularization termΨ(w) include:

• ℓ1-regularization:Ψ(w) = λ‖w‖1 with λ > 0. With ℓ1-regularization, we hope to get a rela-
tively sparse solution, that is, with many entries of the weight vectorw being zeroes.

• ℓ2-regularization:Ψ(w) = (σ/2)‖w‖2
2, with σ > 0. Whenℓ2-regularization is used with the

hinge loss function, we have the standard setup of support vector machines.

• Convex constraints:Ψ(w) is the indicator function of a closed convex setC , that is,

Ψ(w) = IC (w),

{

0, if w∈ C ,
+∞, otherwise.

We can also consider mixed regularizations such asΨ(w) = λ‖w‖1+(σ/2)‖w‖2
2. These examples

cover a wide range of practical problems in machine learning.
A common approach for solving stochastic learning problems is to approximate the expected

loss functionφ(w) by using a finite set of independent observationsz1, . . . ,zT , and solve the follow-
ing problem to minimize the empirical loss:

minimize
w

1
T

T

∑
t=1

f (w,zt)+Ψ(w). (2)

By our assumptions, this is a convex optimization problem. Depending on the structure of particular
problems, they can be solved efficiently by interior-point methods (e.g., Ferris and Munson, 2003;
Koh et al., 2007), quasi-Newton methods (e.g., Andrew and Gao, 2007),or accelerated first-order
methods (Nesterov, 2007; Tseng, 2008; Beck and Teboulle, 2009). However, thisbatch optimization
approach may not scale well for very large problems: even with first-order methods, evaluating one
single gradient of the objective function in (2) requires going through thewhole data set.

In this paper, we consideronline algorithmsthat process samples sequentially as they become
available. More specifically, we draw a sequence of i.i.d. samplesz1,z2,z3, . . ., and use them to
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calculate a sequencew1,w2,w3, . . .. Suppose at timet, we have the most up-to-date weight vectorwt .
Wheneverzt is available, we can evaluate the lossf (wt ,zt), and also a subgradientgt ∈ ∂ f (wt ,zt)
(here∂ f (w,z) denotes the subdifferential off (w,z) with respect tow). Then we computewt+1 based
on these information.

The most widely used online algorithm is thestochastic gradient descent(SGD) method. Con-
sider the general caseΨ(w) = IC (w)+ψ(w), whereIC (w) is a “hard” set constraint andψ(w) is a
“soft” regularization. The SGD method takes the form

wt+1 = ΠC

(

wt −αt (gt +ξt)
)

, (3)

whereαt is an appropriate stepsize,ξt is a subgradient ofψ at wt , andΠC (·) denotes Euclidean
projection onto the setC . The SGD method belongs to the general scheme ofstochastic approxima-
tion, which can be traced back to Robbins and Monro (1951) and Kiefer andWolfowitz (1952). In
general we are also allowed to use all previous information to computewt+1, and even second-order
derivatives if the loss functions are smooth.

In a stochastic online setting, each weight vectorwt is a random variable that depends on
{z1, . . . ,zt−1}, and so is the objective valueφ(wt). Assume an optimal solutionw⋆ to the prob-
lem (1) exists, and letφ⋆ = φ(w⋆). The goal of online algorithms is to generate a sequence{wt}∞

t=1
such that

lim
t→∞

Eφ(wt) = φ⋆,

and hopefully with reasonable convergence rate. This is the case for theSGD method (3) if we
choose the stepsizeαt = c/

√
t, wherec is a positive constant. The corresponding convergence

rate isO(1/
√

t), which is indeed best possible for subgradient schemes with ablack-boxmodel,
even in the case of deterministic optimization (Nemirovsky and Yudin, 1983). Despite such slow
convergence and the associated low accuracy in the solutions (comparedwith batch optimization
using, for example, interior-point methods), the SGD method has been verypopular in the machine
learning community due to its capability of scaling with very large data sets and good generalization
performances observed in practice (e.g., Bottou and LeCun, 2004; Zhang, 2004; Shalev-Shwartz
et al., 2007).

Nevertheless, a main drawback of the SGD method is its lack of capability in exploiting prob-
lem structure, especially for problems with explicit regularization. More specifically, the SGD
method (3) treats the soft regularizationψ(w) as a general convex function, and only uses its sub-
gradient in computing the next weight vector. In this case, we can simply lumpψ(w) into f (w,zt)
and treat them as a single loss function. Although in theory the algorithm converges to an optimal
solution (in expectation) ast goes to infinity, in practice it is usually stopped far before that. Even
in the case of convergence in expectation, we still face (possibly big) variations in the solution due
to the stochastic nature of the algorithm. Therefore, the regularization effect we hope to have by
solving the problem (1) may be elusive for any particular solution generated by (3) based on finite
random samples.

An important example and main motivation for this paper isℓ1-regularized stochastic learn-
ing, whereΨ(w) = λ‖w‖1. In the case of batch learning, the empirical minimization problem (2)
can be solved to very high precision, for example, by interior-point methods. Therefore simply
rounding the weights with very small magnitudes toward zero is usually enoughto produce desired
sparsity. As a result,ℓ1-regularization has been very effective in obtaining sparse solutions using
the batch optimization approach in statistical learning (e.g., Tibshirani, 1996) and signal processing
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(e.g., Chen et al., 1998). In contrast, the SGD method (3) hardly generates any sparse solution,
and its inherent low accuracy makes the simple rounding approach very unreliable. Several prin-
cipled soft-thresholding or truncation methods have been developed to address this problem (e.g.,
Langford et al., 2009; Duchi and Singer, 2009), but the levels of sparsity in their solutions are still
unsatisfactory compared with the corresponding batch solutions.

In this paper, we developregularized dual averaging(RDA) methods that can exploit the struc-
ture of (1) more effectively in a stochastic online setting. More specifically,each iteration of the
RDA methods takes the form

wt+1 = argmin
w

{

1
t

t

∑
τ=1

〈gτ,w〉+Ψ(w)+
βt

t
h(w)

}

, (4)

whereh(w) is an auxiliary strongly convex function, and{βt}t≥1 is a nonnegative and nondecreas-
ing input sequence, which determines the convergence properties of thealgorithm. Essentially, at
each iteration, this method minimizes the sum of three terms: a linear function obtained by aver-
aging all previous subgradients (the dual average), the original regularization functionΨ(w), and
an additional strongly convex regularization term(βt/t)h(w). The RDA method is an extension of
the simple dual averagingscheme of Nesterov (2009), which is equivalent to lettingΨ(w) be the
indicator function of a closed convex set.

For the RDA method to be practically efficient, we assume that the functionsΨ(w) andh(w) are
simple, meaning that we are able to find a closed-form solution for the minimization problem in (4).
Then the computational effort per iteration is onlyO(n), the same as the SGD method. This assump-
tion indeed holds in many cases. For example, if we letΨ(w) = λ‖w‖1 andh(w) = (1/2)‖w‖2

2, then
wt+1 has an entry-wise closed-from solution. This solution uses a much more aggressive truncation
threshold than previous methods, thus results in significantly improved sparsity (see discussions in
Section 5).

In terms of iteration complexity, we show that ifβt = Θ(
√

t), that is, with order exactly
√

t, then
the RDA method (4) has the standard convergence rate

Eφ(w̄t)−φ⋆ ≤ O

(

G√
t

)

,

wherew̄t = (1/t)∑t
τ=1wτ is theprimal average, andG is a uniform upper bound on the norms of

the subgradientsgt . If the regularization termΨ(w) is strongly convex, then settingβt ≤ O(ln t)
gives a faster convergence rateO(ln t/t).

For stochastic optimization problems in which the loss functionsf (w,z) are all differentiable
and have Lipschitz continuous gradients, we also develop an acceleratedversion of the RDA method
that has the convergence rate

Eφ(wt)−φ⋆ ≤ O(1)

(

L
t2 +

Q√
t

)

,

whereL is the Lipschitz constant of the gradients, andQ2 is an upper bound on the variances of
the stochastic gradients. In addition to convergence in expectation, we show that the same orders of
convergence rates hold with high probability.
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1.2 Regularized Online Optimization

In online optimization, we use an online algorithm to generate a sequence of decisionswt , one at
a time, fort = 1,2,3, . . .. At each timet, a previously unknown cost functionft is revealed, and
we encounter a lossft(wt). We assume that the cost functionsft are convex for allt ≥ 1. The
goal of the online algorithm is to ensure that the total cost up to each timet, ∑t

τ=1 fτ(wτ), is not
much larger than minw ∑t

τ=1 fτ(w), the smallest total cost of any fixed decisionw from hindsight.
The difference between these two cost is called theregretof the online algorithm. Applications of
online optimization include online prediction of time series and sequential investment (e.g., Cesa-
Bianchi and Lugosi, 2006).

In regularized online optimization, we add a convex regularization termΨ(w) to each cost
function. The regret with respect to any fixed decisionw∈ domΨ is

Rt(w),
t

∑
τ=1

(

fτ(wτ)+Ψ(wτ)
)

−
t

∑
τ=1

(

fτ(w)+Ψ(w)
)

. (5)

As in the stochastic setting, the online algorithm can query a subgradientgt ∈ ∂ ft(wt) at each step,
and possibly use all previous information, to compute the next decisionwt+1. It turns out that the
simple subgradient method (3) is well suited for online optimization: with a stepsizeαt = Θ(1/

√
t),

it has a regretRt(w) ≤ O(
√

t) for all w ∈ domΨ (Zinkevich, 2003). This regret bound cannot be
improved in general for convex cost functions. However, if the cost functions are strongly convex,
say with convexity parameterσ, then the same algorithm with stepsizeαt = 1/(σt) gives anO(ln t)
regret bound (e.g., Hazan et al., 2006; Bartlett et al., 2008).

Similar to the discussions on regularized stochastic learning, the online subgradient method (3)
in general lacks the capability of exploiting the regularization structure. In this paper, we show that
the same RDA method (4) can effectively exploit such structure in an online setting, and ensure
theO(

√
t) regret bound withβt = Θ(

√
t). For strongly convex regularizations, settingβt = O(ln t)

yields the improved regret boundO(ln t).
Since there is no specifications on the probability distribution of the sequenceof functions, nor

assumptions like mutual independence, online optimization can be considered as a more general
framework than stochastic learning. In this paper, we will first establish regret bounds of the RDA
method for solving online optimization problems, then use them to derive convergence rates for
solving stochastic learning problems.

1.3 Outline of Contents

The methods we develop apply to more general settings thanRn with Euclidean geometry. In
Section 1.4, we introduce the necessary notations and definitions associated with a general finite-
dimensional real vector space.

In Section 2, we present the generic RDA method for solving both the stochastic learning and
online optimization problems, and give several concrete examples of the method.

In Section 3, we present the precise regret bounds of the RDA method forsolving regularized
online optimization problems.

In Section 4, we derive convergence rates of the RDA method for solvingregularized stochastic
learning problems. In addition to the rates of convergence in expectation, wealso give associated
high probability bounds.
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In Section 5, we explain the connections of the RDA method to several relatedwork, and analyze
its capability of generating better sparse solutions than other methods.

In Section 6, we give an enhanced version of theℓ1-RDA method, and present computational
experiments on the MNIST handwritten data set (LeCun et al., 1998). Our experiments show that
the RDA method is capable of generate sparse solutions that are comparableto those obtained by
batch learning using interior-point methods.

In Section 7, we discuss the RDA methods in the context ofstructural convex optimizationand
their connections to incremental subgradient methods. As an extension, wedevelop an accelerated
version of the RDA method for stochastic optimization problems with smooth loss functions. We
also discuss in detail thep-norm based RDA methods.

Appendices A-D contain technical proofs of our main results.

1.4 Notations and Generalities

Let E be a finite-dimensional real vector space, endowed with a norm‖ · ‖. This norm defines a
systems of balls:B(w, r) = {u∈E |‖u−w‖ ≤ r}. LetE∗ be the vector space of all linear functions
onE , and let〈s,w〉 denote the value ofs∈ E∗ at w∈ E . The dual spaceE∗ is endowed with the
dual norm‖s‖∗ = max‖w‖≤1〈s,w〉.

A function h : E → R∪{+∞} is calledstrongly convexwith respect to the norm‖ · ‖ if there
exists a constantσ > 0 such that

h(αw+(1−α)u)≤ αh(w)+(1−α)h(u)− σ
2

α(1−α)‖w−u‖2, ∀w,u∈ domh.

The constantσ is called theconvexity parameter, or themodulusof strong convexity. Let rintC
denote therelative interiorof a convex setC (Rockafellar, 1970, Section 6). Ifh is strongly convex
with modulusσ, then for anyw∈ domh andu∈ rint(domh),

h(w)≥ h(u)+ 〈s,w−u〉+ σ
2
‖w−u‖2, ∀s∈ ∂h(u).

See, for example, Goebel and Rockafellar (2008) and Juditsky and Nemirovski (2008).
In the special case of the coordinate vector spaceE = Rn, we haveE = E∗, and the standard

inner product〈s,w〉 = sTw = ∑n
i=1s(i)w(i), wherew(i) denotes thei-th coordinate ofw. For the

standard Euclidean norm,‖w‖= ‖w‖2 =
√

〈w,w〉 and‖s‖∗ = ‖s‖2. For anyw0 ∈ Rn, the function
h(w) = (σ/2)‖w−w0‖2

2 is strongly convex with modulusσ.
For another example, consider theℓ1-norm ‖w‖ = ‖w‖1 = ∑n

i=1 |w(i)| and its associated dual
norm ‖w‖∗ = ‖w‖∞ = max1≤i≤n |w(i)|. Let Sn be the standard simplex inRn, that is,
Sn =

{

w∈ Rn
+ | ∑n

i=1w(i) = 1
}

. Then the negative entropy function

h(w) =
n

∑
i=1

w(i) lnw(i)+ lnn, (6)

with domh= Sn, is strongly convex with respect to‖ ·‖1 with modulus 1 (see, e.g., Nesterov, 2005,
Lemma 3). In this case, the unique minimizer ofh is w0 = (1/n, . . . ,1/n).

For a closed proper convex functionΨ, we use Argminw Ψ(w) to denote the (convex) set of
minimizing solutions. If a convex functionh has a unique minimizer, for example, whenh is
strongly convex, then we use argminwh(w) to denote that single point.
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Algorithm 1 Regularized dual averaging (RDA) method

input:
• an auxiliary functionh(w) that is strongly convex on domΨ and also satisfies

argmin
w

h(w) ∈ Argmin
w

Ψ(w). (7)

• a nonnegative and nondecreasing sequence{βt}t≥1.

initialize: setw1 = argminwh(w) andḡ0 = 0.

for t = 1,2,3, . . . do
1. Given the functionft , compute a subgradientgt ∈∂ ft(wt).
2. Update the average subgradient:

ḡt =
t −1

t
ḡt−1+

1
t
gt .

3. Compute the next weight vector:

wt+1 = argmin
w

{

〈ḡt ,w〉+Ψ(w)+
βt

t
h(w)

}

. (8)

end for

2. Regularized Dual Averaging Method

In this section, we present the generic RDA method (Algorithm 1) for solvingregularized stochastic
learning and online optimization problems, and give several concrete examples. To unify notation,
we useft(w) to denote the cost function at each stept. For stochastic learning problems, we simply
let ft(w) = f (w,zt).

At the input to the RDA method, we need an auxiliary functionh that is strongly convex on
domΨ. The condition (7) requires that its unique minimizer must also minimize the regularization
functionΨ. This can be done, for example, by first choosing a starting pointw0 ∈ Argminw Ψ(w)
and an arbitrary strongly convex functionh′(w), then letting

h(w) = h′(w)−h′(w0)−〈∇h′(w0),w−w0〉.

In other words,h(w) is theBregman divergencefrom w0 induced byh′(w). If h′ is not differentiable,
but subdifferentiable atw0, we can replace∇h′(w0) with a subgradient. The input sequence{βt}t≥1

determines the convergence rate, or regret bound, of the algorithm.
There are three steps in each iteration of the RDA method. Step 1 is to compute a subgradient

of ft at wt , which is standard for all subgradient or gradient based methods. Step 2is the online
version of computing the average subgradient:

ḡt =
1
t

t

∑
τ=1

gτ.

The namedual averagingcomes from the fact that the subgradients live in the dual spaceE∗.

2549



X IAO

Step 3 is most interesting and worth further explanation. In particular, the efficiency in com-
putingwt+1 determines how useful the method is in practice. For this reason, we assume the reg-
ularization functionsΨ(w) andh(w) aresimple. This means the minimization problem in (8) can
be solved with little effort, especially if we are able to find a closed-form solution for wt+1. At first
sight, this assumption seems to be quite restrictive. However, the examples below show that this
indeed is the case for many important learning problems in practice.

2.1 RDA Methods with General Convex Regularization

For a general convex regularizationΨ, we can choose any positive sequence{βt}t≥1 that is order
exactly

√
t, to obtain anO(1/

√
t) convergence rate for stochastic learning, or anO(

√
t) regret bound

for online optimization. We will state the formal convergence theorems in Sections 3 and 4. Here,
we give several concrete examples. To be more specific, we choose a parameterγ > 0 and use the
sequence

βt = γ
√

t, t = 1,2,3, . . . .

• Nesterov’s dual averaging method.Let Ψ(w) be the indicator function of a closed convex
setC . This recovers thesimple dual averagingscheme in Nesterov (2009). If we choose
h(w) = (1/2)‖w‖2

2, then the Equation (8) yields

wt+1 = ΠC

(

−
√

t
γ

ḡt

)

= ΠC

(

− 1

γ
√

t

t

∑
τ=1

gτ

)

. (9)

WhenC = {w ∈ Rn |‖w‖1 ≤ δ} for someδ > 0, we have “hard”ℓ1-regularization. In this
case, although there is no closed-form solution forwt+1, efficient algorithms for projection
onto theℓ1-ball can be found, for example, in Duchi et al. (2008).

• “Soft” ℓ1-regularization.Let Ψ(w) = λ‖w‖1 for someλ > 0, andh(w) = (1/2)‖w‖2
2. In this

case,wt+1 has a closed-form solution (see Appendix A for the derivation):

w(i)
t+1 =











0 if
∣

∣

∣
ḡ(i)

t

∣

∣

∣
≤ λ,

−
√

t
γ

(

ḡ(i)
t −λ sgn

(

ḡ(i)
t

)

)

otherwise,
i = 1, . . . ,n. (10)

Here sgn(·) is thesign or signumfunction, that is, sgn(ω) equals 1 ifω > 0, −1 if ω < 0,
and 0 ifω = 0. Whenever a component of ¯gt is less thanλ in magnitude, the corresponding
component ofwt+1 is set to zero. Further extensions of theℓ1-RDA method, and associated
computational experiments, are given in Section 6.

• Exponentiated dual averaging method.Let Ψ(w) be the indicator function of the standard
simplexSn, andh(w) be the negative entropy function defined in (6). In this case,

w(i)
t+1 =

1
Zt+1

exp

(

−
√

t
γ

ḡ(i)
t

)

, i = 1, . . . ,n,

whereZt+1 is a normalization parameter such that∑n
i=1w(i)

t+1 = 1. This is the dual averaging
version of the exponentiated gradient algorithm (Kivinen and Warmuth, 1997); see also Tseng
and Bertsekas (1993) and Juditsky et al. (2005). We note that this example is also covered by
Nesterov’s dual averaging method.
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We discuss in detail the special case ofp-norm RDA method in Section 7.2. Several other exam-
ples, includingℓ∞-norm and a hybridℓ1/ℓ2-norm (Berhu) regularization, also admit closed-form
solutions forwt+1. Their solutions are similar in form to those obtained in the context of the FOBOS

algorithm in Duchi and Singer (2009).

2.2 RDA Methods with Strongly Convex Regularization

If the regularization termΨ(w) is strongly convex, we can use any nonnegative and nondecreas-
ing sequence{βt}t≥1 that grows no faster thanO(ln t), to obtain anO(ln t/t) convergence rate for
stochastic learning, or anO(ln t) regret bound for online optimization. For simplicity, in the fol-
lowing examples, we use the zero sequenceβt = 0 for all t ≥ 1. In this case, we do not need the
auxiliary functionh(w), and the Equation (8) becomes

wt+1 = argmin
w

{

〈ḡt ,w〉+Ψ(w)
}

.

• ℓ2
2-regularization.Let Ψ(w) = (σ/2)‖w‖2

2 for someσ > 0. In this case,

wt+1 =−1
σ

ḡt =− 1
σt

t

∑
τ=1

gτ.

• Mixed ℓ1/ℓ2
2-regularization. Let Ψ(w) = λ‖w‖1+(σ/2)‖w‖2

2 with λ > 0 andσ > 0. In this
case, we have

w(i)
t+1 =











0 if |ḡ(i)
t | ≤ λ,

−1
σ

(

ḡ(i)
t −λ sgn

(

ḡ(i)
t

)

)

otherwise,
i = 1, . . . ,n.

• Kullback-Leibler (KL) divergence regularization.Let Ψ(w) = σDKL (w‖p), where the given
probability distributionp∈ rintSn, and

DKL (w‖p),
n

∑
i=1

w(i) ln

(

w(i)

p(i)

)

.

HereDKL (w‖p) is strongly convex with respect to‖w‖1 with modulus 1. In this case,

w(i)
t+1 =

1
Zt+1

p(i)exp

(

−1
σ

ḡ(i)
t

)

,

whereZt+1 is a normalization parameter such that∑n
i=1w(i)

t+1 = 1. KL divergence regulariza-
tion has thepseudo-sparsityeffect, meaning that most elements inw can be replaced by ele-
ments in the constant vectorp without significantly increasing the loss function (e.g., Bradley
and Bagnell, 2009).
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3. Regret Bounds for Online Optimization

In this section, we give the precise regret bounds of the RDA method for solving regularized online
optimization problems. The convergence rates for stochastic learning problems can be established
based on these regret bounds, and will be given in the next section. For clarity, we gather here the
general assumptions used throughout this paper:

• The regularization termΨ(w) is a closed proper convex function, and domΨ is closed. The
symbolσ is dedicated to the convexity parameter ofΨ. Without loss of generality, we assume
minw Ψ(w) = 0.

• For eacht ≥ 1, the functionft(w) is convex and subdifferentiable on domΨ.

• The functionh(w) is strongly convex on domΨ, and subdifferentiable on rint(domΨ). With-
out loss of generality, assumeh(w) has convexity parameter 1 and minwh(w) = 0.

We will not repeat these general assumptions when stating our formal results later.
To facilitate regret analysis, we first give a few definitions. For any constantD > 0, we define

the set
FD ,

{

w∈ domΨ
∣

∣ h(w)≤ D2} ,

and let
ΓD = sup

w∈FD

inf
g∈∂Ψ(w)

‖g‖∗. (11)

We use the convention infg∈ /0 ‖g‖∗ = +∞, where /0 denotes the empty set. As a result, ifΨ is not
subdifferentiable everywhere onFD, that is, if∂Ψ(w) = /0 at somew∈ FD, then we haveΓD =+∞.
Note thatΓD is not a Lipschitz-type constant which would be required to be an upper bound on all
the subgradients; instead, we only require that at least one subgradient is bounded in norm byΓD at
every point in the setFD.

We assume that the sequence of subgradients{gt}t≥1 generated by Algorithm 1 is bounded, that
is, there exist a constantG such that

‖gt‖∗ ≤ G, ∀ t ≥ 1. (12)

This is true, for example, if domΨ is compact and eachft has Lipschitz-continuous gradient on
domΨ. We require that the input sequence{βt}t≥1 be chosen such that

max{σ, β1}> 0, (13)

whereσ is the convexity parameter ofΨ(w). For convenience, we letβ0 = max{σ,β1} and define
the sequence ofregret bounds

∆t , βtD
2+

G2

2

t−1

∑
τ=0

1
στ+βτ

+
2(β0−β1)G2

(β1+σ)2 , t = 1,2,3, . . . , (14)

whereD is the constant used in the definition ofFD. We could always setβ1 ≥σ, so thatβ0 = β1 and
therefore the term 2(β0−β1)G2/(β1+σ)2 vanishes in the definition (14). However, whenσ > 0,
we would like to keep the flexibility of settingβt = 0 for all t ≥ 1, as we did in Section 2.2.
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Theorem 1 Let the sequences{wt}t≥1 and{gt}t≥1 be generated by Algorithm 1, and assume (12)
and (13) hold. Then for any t≥ 1 and any w∈ FD, we have:

(a) The regret defined in (5) is bounded by∆t , that is,

Rt(w)≤ ∆t . (15)

(b) The primal variables are bounded as

‖wt+1−w‖2 ≤ 2
σt +βt

(

∆t −Rt(w)
)

. (16)

(c) If w is an interior point, that is,B(w, r)⊂ FD for some r> 0, then

‖ḡt‖∗ ≤ ΓD − 1
2

σr +
1
rt

(

∆t −Rt(w)
)

. (17)

In Theorem 1, the bounds on‖wt+1−w‖2 and‖ḡt‖∗ depend on the regretRt(w). More pre-
cisely, they depend on∆t −Rt(w), which is theslackof the regret bound in (15). A smaller slack
is equivalent to a larger regretRt(w), which meansw is a betterfixedsolution for the online opti-
mization problem (the best one gives the largest regret); correspondingly, the inequality (16) gives
a tighter bound on‖wt+1−w‖2. In (17), the left-hand side‖ḡt‖∗ does not depend on any particular
interior pointw to compare with, but the right-hand side depends on bothRt(w) and how farw is
from the boundary ofFD. The tightest bound on‖ḡt‖∗ can be obtained by taking the infimum of
the right-hand side over allw∈ intFD. We further elaborate on part (c) through the following two
examples:

• Consider the case whenΨ is the indicator function of a closed convex setC . In this case,
σ = 0 and∂Ψ(w) is the normal coneto C at w (Rockafellar, 1970, Section 23). By the
definition (11), we haveΓD = 0 because the zero vector is a subgradient at everyw∈ C , even
though the normal cones can be unbounded at the boundary ofC . In this case, ifB(w, r)⊂FD

for somer > 0, then (17) simplifies to

‖ḡt‖∗ ≤
1
rt

(

∆t −Rt(w)
)

.

• Consider the functionΨ(w) = σDKL (w|| p) with domΨ = Sn (assumingp∈ rintSn). In this
case, domΨ, and henceFD, have empty interior. Therefore the bound in part (c) does not
apply. In fact, the quantityΓD can be unbounded anyway. In particular, the subdifferentials
of Ψ at the relative boundary ofSn are all empty. In the relative interior ofSn, the subgradients
(actually gradients) ofΨ always exist, but can become unbounded for points approaching the
relative boundary. Nevertheless, the bounds in parts (a) and (b) still hold.

The proof of Theorem 1 is given in Appendix B. In the rest of this section, we discuss more
concrete regret bounds depending on whether or notΨ is strongly convex.
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3.1 Regret Bound with General Convex Regularization

For a general convex regularization termΨ, any nonnegative and nondecreasing sequenceβt =
Θ(

√
t) gives anO(

√
t) regret bound. Here we give detailed analysis for the sequence used in

Section 2.1. More specifically, we choose a constantγ > 0 and let

βt = γ
√

t, ∀ t ≥ 1. (18)

We have the following corollary of Theorem 1.

Corollary 2 Let the sequences{wt}t≥1 and {gt}t≥1 be generated by Algorithm 1 using{βt}t≥1

defined in (18), and assume (12) holds. Then for any t≥ 1 and any w∈ FD:

(a) The regret is bounded as

Rt(w)≤
(

γD2+
G2

γ

)√
t.

(b) The primal variables are bounded as

1
2
‖wt+1−w‖2 ≤ D2+

G2

γ2 − 1

γ
√

t
Rt(w).

(c) If w is an interior point, that is,B(w, r)⊂ FD for some r> 0, then

‖ḡt‖∗ ≤ ΓD +

(

γD2+
G2

γ

)

1

r
√

t
− 1

rt
Rt(w).

Proof To simplify regret analysis, letγ ≥ σ. Thereforeβ0 = β1 = γ. Then∆t defined in (14)
becomes

∆t = γ
√

tD2+
G2

2γ

(

1+
t−1

∑
τ=1

1√
τ

)

.

Next using the inequality
t−1

∑
τ=1

1√
τ
≤ 1+

∫ t

1

1√
τ
dτ = 2

√
t −1,

we get

∆t ≤ γ
√

tD2+
G2

2γ
(

1+
(

2
√

t −1
))

=

(

γD2+
G2

γ

)√
t.

Combining the above inequality and the conclusions of Theorem 1 proves thecorollary.

The regret bound in Corollary 2 is essentially the same as theonline gradient descentmethod of
Zinkevich (2003), which has the form (3), with the stepsizeαt = 1/(γ

√
t). The main advantage of

the RDA method is its capability of exploiting the regularization structure, as shown in Section 2.
The parametersD andG are not used explicitly in the algorithm. However, we need good estimates
of them for choosing a reasonable value forγ. The bestγ that minimizes the expressionγD2+G2/γ
is

γ⋆ =
G
D
,
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which leads to the simplified regret bound

Rt(w)≤ 2GD
√

t.

If the total number of online iterationsT is known in advance, then using a constant stepsize in the
classical gradient method (3), say

αt =
1
γ⋆

√

2
T

=
D
G

√

2
T
, ∀ t = 1, . . . ,T, (19)

gives a slightly improved boundRT(w)≤
√

2GD
√

T (see, e.g., Nemirovski et al., 2009).
The bound in part (b) does not converge to zero. This result is still interesting because there is

no special caution taken in the RDA method, more specifically in (8), to ensurethe boundedness
of the sequencewt . In the caseΨ(w) = 0, as pointed out by Nesterov (2009), this may even look
surprising since we are minimizing overE the sum of a linear function and a regularization term
(γ/

√
t)h(w) that eventually goes to zero.

Part (c) gives a bound on the norm of the dual average. IfΨ(w) is the indicator function of a
closed convex set, thenΓD = 0 and part (c) shows that ¯gt actually converges to zero if there exist an
interior w in FD such thatRt(w) ≥ 0. However, a properly scaled version of ¯gt , −(

√
t/γ)ḡt , tracks

the optimal solution; see the examples in Section 2.1.

3.2 Regret Bounds with Strongly Convex Regularization

If the regularization functionΨ(w) is strongly convex, that is, with a convexity parameterσ > 0,
then any nonnegative, nondecreasing sequence that satisfiesβt ≤ O(ln t) will give an O(ln t) regret
bound. If{βt}t≥1 is not the all zero sequence, we can simply choose the auxiliary functionh(w) =
(1/σ)Ψ(w). Here are several possibilities:

• Positive constant sequences.For simplicity, letβt = σ for t ≥ 0. In this case,

∆t = σD2+
G2

2σ

t−1

∑
τ=0

1
τ+1

≤ σD2+
G2

2σ
(1+ ln t).

• Logarithmic sequences.Let βt = σ(1+ ln t) for t ≥ 1. In this case,β0 = β1 = σ and

∆t = σ(1+ ln t)D2+
G2

2σ

(

1+
t−1

∑
τ=1

1
τ+1+ lnτ

)

≤
(

σD2+
G2

2σ

)

(1+ ln t).

• The zero sequence.Let βt = 0 for t ≥ 1. In this case,β0 = σ and

∆t =
G2

2σ

(

1+
t−1

∑
τ=1

1
τ

)

+
2G2

σ
≤ G2

2σ
(6+ ln t). (20)

Notice that in this last case, the regret bound does not depend onD.
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WhenΨ is strongly convex, we also conclude that, given two different pointsu andv, the regrets
Rt(u) andRt(v) cannot be nonnegative simultaneously ift is large enough. To see this, we notice
that if Rt(u) andRt(v) are nonnegative simultaneously for somet, then part (b) of Theorem 1 implies

‖wt+1−u‖2 ≤ O

(

ln t
t

)

, and ‖wt+1−v‖2 ≤ O

(

ln t
t

)

,

which again implies

‖u−v‖2 ≤ (‖wt+1−u‖+‖wt+1−v‖)2 ≤ O

(

ln t
t

)

.

Therefore, if the eventRt(u)≥ 0 andRt(v)≥ 0 happens for infinitely manyt, we must haveu= v.
If u 6= v, then eventually at least one of the regrets associated with them will become negative.
However, it is possible to construct sequences of functionsft such that the points with nonnegative
regrets do not converge to a fixed point.

4. Convergence Rates for Stochastic Learning

In this section, we give convergence rates of the RDA method when it is used to solve the regular-
ized stochastic learning problem (1), and also the related high probability bounds. These rates and
bounds are established not for the individualwt ’s generated by the RDA method, but rather for the
primal average

w̄t =
1
t

t

∑
τ=1

wτ, t ≥ 1.

4.1 Rate of Convergence in Expectation

Theorem 3 Assume there exists an optimal solution w⋆ to the problem (1) that satisfies h(w⋆)≤ D2

for some D> 0, and let φ⋆ = φ(w⋆). Let the sequences{wt}t≥1 and {gt}t≥1 be generated by
Algorithm 1, and assume (12) holds. Then for any t≥ 1, we have:

(a) The expected cost associated with the random variablew̄t is bounded as

Eφ(w̄t)−φ⋆ ≤ 1
t

∆t .

(b) The primal variables are bounded as

E‖wt+1−w⋆‖2 ≤ 2
σt +βt

∆t .

(c) If w⋆ is an interior point, that is,B(w⋆, r)⊂ FD for some r> 0, then

E‖ḡt‖∗ ≤ ΓD − 1
2

σr +
1
rt

∆t .
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Proof First, we substitute allfτ(·) by f (·,zτ) in the definition of the regret

Rt(w
⋆) =

t

∑
τ=1

(

f (wτ,zτ)+Ψ(wτ)
)

−
t

∑
τ=1

(

f (w⋆,zτ)+Ψ(w⋆)
)

.

Let z[t] denote the collection of i.i.d. random variables(z1, . . . ,zt). All the expectations in Theorem 3
are taken with respect toz[t], that is, the symbolE can be written more explicitly asEz[t]. We note
that the random variablewτ, where 1≤ τ ≤ t, is a function of(z1, . . . ,zτ−1), and is independent of
(zτ, . . . ,zt). Therefore

Ez[t]
(

f (wτ,zτ)+Ψ(wτ)
)

= Ez[τ−1]
(

Ezτ f (wτ,zτ)+Ψ(wτ)
)

= Ez[τ−1]φ(wτ) = Ez[t]φ(wτ),

and
Ez[t]

(

f (w⋆,zτ)+Ψ(w⋆)
)

= Ezτ f (w⋆,zτ)+Ψ(w⋆) = φ(w⋆) = φ⋆.

Sinceφ⋆ = φ(w⋆) = minw φ(w), we have

Ez[t]Rt(w
⋆) =

t

∑
τ=1

Ez[t]φ(wτ)− tφ⋆ ≥ 0. (21)

By convexity ofφ, we have

φ(w̄t) = φ

(

1
t

t

∑
τ=1

wτ

)

≤ 1
t

t

∑
τ=1

φ(wτ)

Taking expectation with respect toz[t] and subtractingφ⋆, we have

Ez[t]φ(w̄t)−φ⋆ ≤ 1
t

(

t

∑
τ=1

Ez[t]φ(w̄τ)− tφ⋆

)

=
1
t

Ez[t]Rt(w
⋆).

Then part (a) follows from that of Theorem 1, which states thatRt(w⋆) ≤ ∆t for all realizations
of z[t]. Similarly, parts (b) and (c) follow from those of Theorem 1 and (21).

Specific convergence rates can be obtained in parallel with the regret bounds discussed in Sec-
tions 3.1 and 3.2. We only need to divide every regret bound byt to obtain the corresponding rate
of convergence in expectation. More specifically, using appropriate sequences{βt}t≥1, we have
Eφ(w̄t) converging toφ⋆ with rate O(1/

√
t) for general convex regularization, andO(ln t/t) for

strongly convex regularization.
The bound in part (b) applies to both the caseσ = 0 and the caseσ > 0. For the latter, we can

derive a slightly different and more specific bound. WhenΨ has convexity parameterσ > 0, so is
the functionφ. Therefore,

φ(wt)≥ φ(w⋆)+ 〈s,wt −w⋆〉+ σ
2
‖wt −w⋆‖2, ∀s∈ ∂φ(w⋆).

Sincew⋆ is the minimizer ofφ, we must have 0∈ ∂φ(w⋆) (Rockafellar, 1970, Section 27). Setting
s= 0 in the above inequality and rearranging terms, we have

‖wt −w⋆‖2 ≤ 2
σ
(φ(wt)−φ⋆) .
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Taking expectation of both sides of the above inequality leads to

E‖wt −w⋆‖2 ≤ 2
σ
(Eφ(wt)−φ⋆)≤ 2

σt
∆t , (22)

where in the last step we used part (a) of Theorem 3. This bound directlyrelatewt to ∆t .
Next we take a closer look at the quantityE‖w̄t −w⋆‖2. By convexity of‖ · ‖2, we have

E‖w̄t −w⋆‖2 ≤ 1
t

t

∑
τ=1

E‖wτ −w⋆‖2 (23)

If σ = 0, then it is simply bounded by a constant because eachE‖wτ−w⋆‖2 for 1≤ τ ≤ t is bounded
by a constant. Whenσ > 0, the optimal solutionw⋆ is unique, and we have:

Corollary 4 If Ψ is strongly convex with convexity parameterσ > 0 andβt = O(ln t), then

E‖w̄t −w⋆‖2 ≤ O

(

(ln t)2

t

)

.

Proof For the ease of presentation, we consider the caseβt = 0 for all t ≥ 1. Substituting the bound
on ∆t in (20) into the inequality (22) gives

E‖wt −w⋆‖2 ≤ (6+ ln t)G2

t σ2 , ∀ t ≥ 1.

Then by (23),

E‖w̄t −w⋆‖2 ≤ 1
t

t

∑
τ=1

(

6
τ
+

lnτ
τ

)

G2

σ2 ≤ 1
t

(

6(1+ ln t)+
1
2
(ln t)2

)

G2

σ2 .

In other words,E‖w̄t −w⋆‖2 converges to zero with rateO((ln t)2/t). This can be shown for any
βt = O(ln t); see Section 3.2 for other choices ofβt .

As a further note, the conclusions in Theorem 3 still hold if the assumption (12) is weakened to

E‖gt‖2
∗ ≤ G2, ∀ t ≥ 1. (24)

However, we need (12) in order to prove the high probability bounds presented next.

4.2 High Probability Bounds

For stochastic learning problems, in addition to the rates of convergence in expectation, it is often
desirable to obtain confidence level bounds for approximate solutions. For this purpose, we start
from part (a) of Theorem 3, which statesEφ(wt)−φ⋆ ≤ (1/t)∆t . By Markov’s inequality, we have
for anyε > 0,

Prob
(

φ(w̄t)−φ⋆ > ε
)

≤ ∆t

ε t
. (25)

This bound holds even with the weakened assumption (24). However, it is possible to have much
tighter bounds under more restrictive assumptions. To this end, we have thefollowing result.
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Theorem 5 Assume there exist constants D and G such that h(w⋆) ≤ D2, and h(wt) ≤ D2 and
‖gt‖∗ ≤ G for all t ≥ 1. Then for anyδ ∈ (0,1), we have, with probability at least1−δ,

φ(w̄t)−φ⋆ ≤ ∆t

t
+

8GD
√

ln(1/δ)√
t

, ∀ t ≥ 1. (26)

Theorem 5 is proved in Appendix C.
From our results in Section 3.1, with the input sequenceβt = γ

√
t for all t ≥ 1, we have∆t =

O(
√

t) regardless ofσ = 0 or σ > 0. Therefore,φ(w̄t)− φ⋆ = O(1/
√

t) with high probability. To
simplify further discussion, letγ = G/D, hence∆t ≤ 2GD

√
t (see Section 3.1). In this case, if

δ ≤ 1/e≈ 0.368, then with probability at least 1−δ,

φ(w̄t)−φ⋆ ≤ 10GD
√

ln(1/δ)√
t

.

Letting ε = 10GD
√

ln(1/δ)/
√

t, then the above bound is equivalent to

Prob(φ(w̄t)−φ⋆ > ε)≤ exp

(

− ε2t
(10GD)2

)

,

which is much tighter than the one in (25). It follows that for any chosen accuracyε and 0< δ≤ 1/e,
the sample size

t ≥ (10GD)2 ln(1/δ)
ε2

guarantees that, with probability at least 1−δ, w̄t is anε-optimal solution of the original stochastic
optimization problem (1).

WhenΨ is strongly convex (σ > 0), our results in Section 3.2 show that we can obtain regret
bounds∆t = O(ln t) usingβt = O(ln t). However, the high probability bound in Theorem 5 does not
improve: we still haveφ(w̄t)− φ⋆ = O(1/

√
t), not O(ln t/t). The reason is that the concentration

inequality (Azuma, 1967) used in proving Theorem 5 cannot take advantage of the strong-convexity
property. By using a refined concentration inequality due to Freedman (1975), Kakade and Tewari
(2009, Theorem 2) showed that for strongly convex stochastic learning problems, with probability
at least 1−4δ ln t,

φ(w̄t)−φ⋆ ≤ Rt(w⋆)

t
+4

√

Rt(w⋆)

t

√

G2 ln(1/δ)
σ

+max

{

16G2

σ
,6B

}

ln(1/δ)
t

.

In our context, the constantB is an upper bound onf (w,z)+Φ(w) for w ∈ FD. Using the regret
boundR(w⋆)≤ ∆t , this gives

φ(w̄t)−φ⋆ ≤ ∆t

t
+O

(

√

∆t ln(1/δ)
t

+
ln(1/δ)

t

)

.

Here the constants hidden in theO-notation are determined byG, σ andD. Plugging in∆t =O(ln t),
we haveφ(w̄t)− φ⋆ = O(ln t/t) with high probability. The additional penalty of getting the high
probability bound, compared with the rate of convergence in expectation, isonly O(

√
ln t/t).
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5. Related Work

As we pointed out in Section 2.1, ifΨ is the indicator function of a convex setC , then the RDA
method recovers the simple dual averaging scheme in Nesterov (2009). This special case also
belongs to a more general primal-dual algorithmic framework developed by Shalev-Shwartz and
Singer (2006), which can be expressed equivalently in our notation:

wt+1 = argmin
w∈C

{

1

γ
√

t

〈 t

∑
τ=1

dt
τ ,w

〉

+h(w)

}

,

where(dt
1, . . . ,d

t
t ) is the set of dual variables that can be chosen at timet. The simple dual averaging

scheme (9) is in fact thepassiveextreme of their framework in which the dual variables are simply
chosen as the subgradients and do not change over time, that is,

dt
τ = gτ, ∀τ ≤ t, ∀ t ≥ 1. (27)

However, with the addition of a general regularization termΨ(w) as in (4), the convergence analysis
andO(

√
t) regret bound of the RDA method donot follow directly as corollaries of either Nesterov

(2009) or Shalev-Shwartz and Singer (2006). Our analysis in Appendix B extends the framework
of Nesterov (2009).

Shalev-Shwartz and Kakade (2009) extended the primal-dual framework of Shalev-Shwartz and
Singer (2006) to strongly convex functions and obtainedO(ln t) regret bound. In the context of this
paper, their algorithm takes the form

wt+1 = argmin
w∈C

{

1
σt

〈 t

∑
τ=1

dt
τ ,w

〉

+h(w)

}

,

whereσ is the convexity parameter ofΨ, andh(w) = (1/σ)Ψ(w). The passive extreme of this
method, with the dual variables chosen in (27), is equivalent to a special case of the RDA method
with βt = 0 for all t ≥ 1.

Other than improving the iteration complexity, the idea of treating the regularizationexplicitly
in each step of a subgradient-based method (instead of lumping it together with the loss function
and taking their subgradients) is mainly motivated by practical considerations, such as obtaining
sparse solutions. In the case ofℓ1-regularization, this leads to soft-thresholding type of algorithms,
in both batch learning (e.g., Figueiredo et al., 2007; Wright et al., 2009; Bredies and Lorenz, 2008;
Beck and Teboulle, 2009) and the online setting (e.g., Langford et al., 2009; Duchi and Singer,
2009; Shalev-Shwartz and Tewari, 2009). Most of these algorithms canbe viewed as extensions of
classical gradient methods (including mirror-descent methods) in which thenew iterate is obtained
by stepping from the current iterate along a single subgradient, and then followed by a truncation.
Other types of algorithms include an interior-point based stochastic approximation scheme by Car-
bonetto et al. (2009), and Balakrishnan and Madigan (2008), where amodified shrinkage algorithm
is developed based on sequential quadratic approximations of the loss function.

The main point of this paper, is to show that dual-averaging based methods can be more effective
in exploiting the regularization structure, especially in a stochastic or online setting. To demonstrate
this point, we compare the RDA method with the FOBOS method studied in Duchi and Singer
(2009). In an online setting, each iteration of the FOBOS method consists of the following two

2560



REGULARIZED DUAL AVERAGING METHODS

steps:

wt+ 1
2
= wt −αtgt ,

wt+1 = argmin
w

{

1
2

∥

∥

∥
w−wt+ 1

2

∥

∥

∥

2

2
+αtΨ(w)

}

.

For convergence with optimal rates, the stepsizeαt is set to beΘ(1/
√

t) for general convex reg-
ularizations andΘ(1/t) if Ψ is strongly convex. This method is based on a technique known as
forward-backward splitting, which was first proposed by Lions and Mercier (1979) and later an-
alyzed by Chen and Rockafellar (1997) and Tseng (2000). For easycomparison with the RDA
method, we rewrite the FOBOSmethod in an equivalent form

wt+1 = argmin
w

{

〈gt ,w〉+Ψ(w)+
1

2αt
‖w−wt‖2

2

}

. (28)

Compared with this form of the FOBOSmethod, the RDA method (8) uses the average subgradient ¯gt

instead of the current subgradientgt ; it uses a global proximal function, sayh(w) = (1/2)‖w‖2
2,

instead of its local Bregman divergence(1/2)‖w−wt‖2
2; moreover, the coefficient for the proximal

function isβt/t =Θ(1/
√

t) instead of 1/αt =Θ(
√

t) for general convex regularization, andO(ln t/t)
instead ofΘ(t) for strongly convex regularization. Although these two methods have the same order
of iteration complexity, the differences list above contribute to quite different properties of their
solutions.

These differences can be better understood in the special case ofℓ1-regularization, that is, when
Ψ(w) = λ‖w‖1. In this case, the FOBOS method is equivalent to a special case of theTruncated
Gradient(TG) method of Langford et al. (2009). The TG method truncates the solutions obtained
by the standard SGD method everyK steps; more specifically,

w(i)
t+1 =

{

trnc
(

w(i)
t −αtg

(i)
t ,λTG

t ,θ
)

if mod(t,K) = 0,

w(i)
t −αtg

(i)
t otherwise,

(29)

whereλTG
t = αtλK, mod(t,K) is the remainder on division oft by K, and

trnc(ω,λTG
t ,θ) =







0 if |ω| ≤ λTG
t ,

ω−λTG
t sgn(ω) if λTG

t < |ω| ≤ θ,
ω if |ω|> θ.

WhenK = 1 andθ=+∞, the TG method is the same as the FOBOSmethod (28) withℓ1-regularization.
Now comparing the truncation thresholdλTG

t and the thresholdλ used in theℓ1-RDA method (10):
with αt = Θ(1/

√
t), we haveλTG

t = Θ(1/
√

t)λ. ThisΘ(1/
√

t) discount factor is also common for
other previous work that use soft-thresholding, including Shalev-Shwartz and Tewari (2009). It is
clear that the RDA method uses a much more aggressive truncation threshold, thus is able to gener-
ate significantly more sparse solutions. This is confirmed by our computationalexperiments in the
next section.

Most recently, Duchi et al. (2010) developed a family of subgradient methods that can adaptively
modifying the proximal function (squared Mahalanobis norms) at each iteration, in order to better
incorporate learned knowledge about geometry of the data. Their methods include extensions for
both the mirror-descent type of algorithms like (28) and the RDA methods studied in this paper.
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Algorithm 2 Enhancedℓ1-RDA method
Input: γ > 0, ρ ≥ 0
Initialize: w1 = 0, ḡ0 = 0.
for t = 1,2,3, . . . do

1. Given the functionft , compute subgradientgt ∈ ∂ ft(wt).
2. Compute the dual average

ḡt =
t −1

t
ḡt−1+

1
t
gt .

3. LetλRDA
t = λ+ γρ/

√
t, and computewt+1 entry-wise:

w(i)
t+1 =











0 if
∣

∣

∣
ḡ(i)

t

∣

∣

∣
≤ λRDA

t ,

−
√

t
γ

(

ḡ(i)
t −λRDA

t sgn
(

ḡ(i)
t

)

)

otherwise,
i = 1, . . . ,n. (30)

end for

6. Computational Experiments with ℓ1-Regularization

In this section, we provide computational experiments of theℓ1-RDA method on the MNIST data
set of handwritten digits (LeCun et al., 1998). Our purpose here is mainly toillustrate the basic
characteristics of theℓ1-RDA method, rather than comprehensive performance evaluation on a wide
range of data sets. First, we describe a variant of theℓ1-RDA method that is capable of getting
enhanced sparsity in the solution.

6.1 Enhanced ℓ1-RDA Method

The enhancedℓ1-RDA method shown in Algorithm 2 is a special case of Algorithm 1. It is derived
by settingΨ(w) = λ‖w‖1, βt = γ

√
t, and replacingh(w) with a parameterized version

hρ(w) =
1
2
‖w‖2

2+ρ‖w‖1, (31)

whereρ ≥ 0 is asparsity-enhancingparameter. Note thathρ(w) is strongly convex with modulus 1
for any ρ ≥ 0. Hence the convergence rate of this algorithm is the same as if we chooseh(w) =
(1/2)‖w‖2

2. In this case, the Equation (8) becomes

wt+1 = argmin
w

{

〈ḡt ,w〉+λ‖w‖1+
γ√
t

(

1
2
‖w‖2

2+ρ‖w‖1

)}

= argmin
w

{

〈ḡt ,w〉+λRDA
t ‖w‖1+

γ
2
√

t
‖w‖2

2

}

,

whereλRDA
t = λ+γρ/

√
t. The above minimization problem has a closed-form solution given in (30)

(see Appendix A for the derivation). By lettingρ > 0, the effective truncation thresholdλRDA
t is

larger thanλ, especially in the initial phase of the online process. For problems without explicit ℓ1-
regularization in the objective function, that is, whenλ = 0, this still gives a diminishing truncation
thresholdγρ/

√
t.
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Figure 1: Sample images from the MNIST data set, with gray-scale from 0 to 255.

We can also restrictℓ1-regularization on part of the optimization variables only. For example,
in support vector machines or logistic regression, we usually want the biasterms to be free of
regularization. In this case, we can simply replaceλRDA

t by 0 for the corresponding coordinates
in (30).

6.2 Experiments on the MNIST Data Set

Each image in the MNIST data set is represented by a 28×28 gray-scale pixel-map, for a total of
784 features. Each of the 10 digits has roughly 6,000 training examples and1,000 testing examples.
Some of the samples are shown in Figure 1. From the perspective of using stochastic and online
algorithms, the number of features and size of the data set are consideredvery small. Nevertheless,
we choose this data set because the computational results are easy to visualize. No preprocessing of
the data is employed.

We useℓ1-regularized logistic regression to do binary classification on each of the 45 pairs
of digits. More specifically, letz= (x,y) wherex ∈ R784 represents a gray-scale image andy ∈
{+1,−1} is the binary label, and letw = (w̃,b) wherew̃ ∈ R784 andb is the bias. Then the loss
function and regularization term in (1) are

f (w,z) = log
(

1+exp
(

−y(w̃Tx+b)
))

, Ψ(w) = λ‖w̃‖1.

Note that we do not apply regularization on the bias termb. In the experiments, we compare the
(enhanced)ℓ1-RDA method (Algorithm 2) with the SGD method

w(i)
t+1 = w(i)

t −αt

(

g(i)t +λsgn(w(i)
t )
)

, i = 1, . . . ,n,

and the TG method (29) withθ = ∞. These three online algorithms have similar convergence rates
and the same order of computational cost per iteration. We also compare themwith the batch
optimization approach, more specifically solving the empirical minimization problem (2) using an
efficient interior-point method (IPM) of Koh et al. (2007).

Each pair of digits have about 12,000 training examples and 2,000 testing examples. We use
online algorithms to go through the (randomly permuted) data only once, therefore the algorithms
stop atT = 12,000. We vary the regularization parameterλ from 0.01 to 10. As a reference, the
maximumλ for the batch optimization case (Koh et al., 2007) is mostly in the range of 30−50 (be-
yond which the optimal weights are all zeros). In theℓ1-RDA method, we useγ= 5,000, and setρ to
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λ = 0.01 λ = 0.03 λ = 0.1 λ = 0.3 λ = 1 λ = 3 λ = 10

SGD

TG

RDA

IPM

SGD

TG

RDA

wT

wT

wT

w⋆

w̄T

w̄T

w̄T

Figure 2: Sparsity patterns ofwT andw̄T for classifying the digits 6 and 7 when varying the pa-
rameterλ from 0.01 to 10 inℓ1-regularized logistic regression. The background gray
represents the value zero, bright spots represent positive values and dark spots represent
negative values. Each column corresponds to a value ofλ labeled at the top. The top
three rows are the weightswT (without averaging) from the last iteration of the three
online algorithms; the middle row shows optimal solutions of the batch optimization
problem solved by interior-point method (IPM); the bottom three rows showthe averaged
weightsw̄T in the three online algorithms. Both the TG and RDA methods were run with
parameters for enhancedℓ1-regularization, that is,K = 10 for TG andγρ = 25 for RDA.
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Left: K = 1 for TG,ρ = 0 for RDA Right: K = 10 for TG,γρ = 25 for RDA

Figure 3: Number of non-zeros (NNZs) inwt for the three online algorithms (classifying the pair 6
and 7). The left column shows SGD, TG withK = 1, and RDA withρ = 0; the right
column shows SGD, TG withK = 10, and RDA withγρ = 25. The same curves for SGD
are plotted in both columns for clear comparison. The two rows correspondto λ = 0.1
andλ = 10, respectively.

be either 0 for basic regularization, or 0.005 (effectivelyγρ = 25) for enhanced regularization effect.
These parameters are chosen by cross-validation. For the SGD and TG methods, we use a constant
stepsizeα = (1/γ)

√

2/T for comparable convergence rate; see (19) and related discussions.In the
TG method, the periodK is set to be either 1 for basic regularization (same as FOBOS), or 10 for
periodic enhanced regularization effect.

Figure 2 shows the sparsity patterns of the solutionswT andw̄T for classifying the digits 6 and 7.
The algorithmic parameters used are:K = 10 for the TG method, andγρ = 25 for the RDA method.
It is clear that the RDA method gives more sparse solutions than both SGD andTG methods. The
sparsity pattern obtained by the RDA method is very similar to the batch optimization results solved
by IPM, especially for largerλ.
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Figure 4: Tradeoffs between testing error rates and NNZs in solutions when varyingλ from 0.01
to 10 (for classifying 6 and 7). The left column shows SGD, TG withK = 1, RDA with
ρ = 0, and IPM. The right column shows SGD, TG withK = 10, RDA withγρ = 25, and
IPM. The same curves for SGD and IPM are plotted in both columns for clearcomparison.
The top two rows shows the testing error rates and NNZs of the final weightswT , and the
bottom two rows are for the averaged weights ¯wT . All horizontal axes have logarithmic
scale. For vertical axes, only the two plots in the first row have logarithmic scale.
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Figure 5: Testing error rates and NNZs in solutions for the RDA method whenvarying the param-
eterγ from 1,000 to 10,000, and settingρ such thatγρ = 25. The three rows show results
for λ = 0.1, 1, and 10, respectively. The corresponding batch optimization resultsfound
by IPM are shown as a horizontal line in each plot.

To have a better understanding of the behaviors of the algorithms, we plot the number of non-
zeros (NNZs) inwt in Figure 3. Only the RDA method and TG withK = 1 give explicit zero weights
using soft-thresholding at every step. In order to count the NNZs in all other cases, we have to set
a small threshold for rounding the weights to zero. Considering that the magnitudes of the largest
weights in Figure 2 are mostly on the order of 10−3, we set 10−5 as the threshold and verified that
rounding elements less than 10−5 to zero does not affect the testing errors. Note that we do not
truncate the weights for RDA and TG withK = 1 further, even if some of their components are
below 10−5. It can be seen that the RDA method maintains a much more sparsewt than the other
online algorithms. While the TG method generates more sparse solutions than the SGD method
whenλ is large, the NNZs inwt oscillates with a very big range. The oscillation becomes more
severe withK = 10. In contrast, the RDA method demonstrates a much more smooth behavior
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λ=0.1

λ=1

λ=10

IPM 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 6: Sparsity patterns ofwT by varying the parameterγ in the RDA method from 1,000 to
10,000 (for classifying the pair 6 and 7). The first column shows results of batch op-
timization using IPM, and the other 10 columns show results of RDA method usingγ
labeled at the top.

of the NNZs. For the RDA method, the effect of enhanced regularization using γρ = 25 is more
pronounced for relatively smallλ.

Next we illustrate the tradeoffs between sparsity and testing error rates. Figure 4 shows that
the solutions obtained by the RDA method match the batch optimization results very well. Since
the performance of the online algorithms vary when the training data are given in different random
sequences (permutations), we run them on 100 randomly permuted sequences of the same training
set, and plot the means and standard deviations shown as error bars. For the SGD and TG methods,
the testing error rates ofwT vary a lot for different random sequences. In contrast, the RDA method
demonstrates very robust performance (small standard deviations) forwT , even though the theorems
only give convergence bound for the averaged weight ¯wT . For large values ofλ, the averaged
weightsw̄T obtained by SGD and TG methods actually have much smaller error rates than those of
RDA and batch optimization. This can be explained by the limitation of the SGD and TGmethods
in obtaining sparse solutions: these lower error rates are obtained with much more nonzero features
than used by the RDA and batch optimization methods.

Figure 5 shows the results of choosing different values for the parameter γ in the RDA method.
We see that smaller values ofγ, which corresponds to faster learning rates, lead to more sparsewT

and higher testing error rates; larger values ofγ result in less sparsewT with lower testing error
rates. But interestingly, the effects on the averaged solution ¯wT is almost opposite: smaller values
of γ lead to less sparse ¯wT (in this case, we count the NNZs using the rounding threshold 10−5).
For large regularization parameterλ, smaller values ofγ also give lower testing error rates. Figure 6
shows the sparsity patterns ofwT when varyingγ from 1,000 to 10,000. We see that smaller values
of γ give more sparsewT , which are also more scattered like the batch optimization solution by IPM.

Figure 7 shows summary of classification results for all the 45 pairs of digits.For clarity, we only
show results of theℓ1-RDA method and batch optimization using IPM. We see that the solutions
obtained by theℓ1-RDA method demonstrate very similar tradeoffs between sparsity and testing
error rates as rendered by the batch optimization solutions.

Finally, we note that one of the main reasons for regularization in machine learning is to prevent
overfitting, meaning that appropriate amount of regularization may actually reduce the testing error
rate. In order to investigate the possibility of overfitting, we also conducted experiments by subsam-
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Figure 7: Binary classification for all 45 pairs of digits. The images in the lower-left triangular
area show sparsity patterns ofwT with λ = 1, obtained by theℓ1-RDA method withγ =
5000 andρ = 0.005. The plots in the upper-right triangular area show tradeoffs between
sparsity and testing error rates, by varyingλ from 0.1 to 10. The solid circles and solid
squares show error rates and NNZs inwT , respectively, using IPM for batch optimization.
The hollow circles and hollow squares show error rates and NNZs ofwT , respectively,
using theℓ1-RDA method. The vertical bars centered at hollow circles and squares show
standard deviations by running on 100 different random permutations ofthe same training
data. The scales of the error rates (in percentages) are marked on the left vertical axes,
and the scales of the NNZs are marked on the right-most vertical axes.
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Figure 8: Tradeoffs between testing error rates and NNZs in solutions when varyingλ from 0.01
to 10 (for classifying 3 and 8). In order to investigate overfitting, we used 1/10 subsam-
pling of the training data. The error bars show standard deviations of using 10 sets of
subsamples. For the three online algorithms, we averaged results on 10 random permuta-
tions for each of the 10 subsets. The left column shows SGD, TG withK = 1, RDA with
ρ = 0, and IPM. The right column shows SGD, TG withK = 10, RDA withγρ = 25, and
IPM. The same curves for SGD and IPM are plotted in both columns for clearcompari-
son.
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pling the training set. More specifically, we randomly partition the training sets in 10 subsets, and
use each subset for training but still test on the whole testing set. The same algorithmic parametersγ
andρ are used as before. Figure 8 shows the results of classifying the more difficult pair 3 and 8.
We see that overfitting does occur for batch optimization using IPM. Online algorithms, thanks for
their low accuracy in solving the optimization problems, are mostly immune from overfitting.

7. Discussions and Extensions

This paper is inspired by several work in the emerging area ofstructural convex optimization(Nes-
terov, 2008). The key idea is that by exploiting problem structure that arebeyond the conventional
black-box model (where only function values and gradient information are allowed), much more
efficient first-order methods can be developed for solving structural convex optimization problems.
Consider the following problem with two separate parts in the objective function:

minimize
w

f (w)+Ψ(w) (32)

where the functionf is convex and differentiable on domΨ, its gradient∇ f (w) is Lipschitz-
continuous with constantL, and the functionΨ is a closed proper convex function. SinceΨ in
general can be non-differentiable, the best convergence rate for gradient-type methods that are based
on the black-box model isO(1/

√
t) (Nemirovsky and Yudin, 1983). However, if the functionΨ is

simple, meaning that we are able to find closed-form solution for the auxiliary optimization problem

minimize
w

{

f (u)+ 〈∇ f (u),w−u〉+ L
2
‖w−u‖2

2+Ψ(w)

}

, (33)

then it is possible to develop accelerated gradient methods that have the convergence rateO(1/t2)
(Nesterov, 1983, 2004; Tseng, 2008; Beck and Teboulle, 2009). Accelerated first-order meth-
ods have also been developed for solving large-scale conic optimization problems (Auslender and
Teboulle, 2006; Lan et al., 2009; Lu, 2009).

The story is a bit different for stochastic optimization. In this case, the convergence rate
O(1/

√
t) cannot be improved in general for convex loss functions with a black-box model. When

the loss functionf (w,z) have better properties such as differentiability, higher orders of smooth-
ness, and strong convexity, it is tempting to expect that better convergence rates can be achieved.
Although these better properties off (w,z) are inherited by the expected functionϕ(w), Ez f (w,z),
almost none of them can really help (Nesterov and Vial, 2008, Section 4). One exception is when
the objective function is strongly convex. In this case, the convergencerate for stochastic optimiza-
tion problems can be improved toO(ln t/t) (e.g., Nesterov and Vial, 2008), or evenO(1/t) (e.g.,
Polyak and Juditsky, 1992; Nemirovski et al., 2009). For online convexoptimization problems,
the regret bound can be improved toO(ln t) (Hazan et al., 2006; Bartlett et al., 2008). But these
are still far short of the best complexity result for deterministic optimization with strong convexity
assumptions; see, for example, Nesterov (2004, Chapter 2) and Nesterov (2007).

We discuss further the case with a stronger smoothness assumption on the stochastic objective
functions. In particular, letf (w,z) be differentiable with respect tow for eachz, and the gradient,
denotedg(w,z), be Lipschitz continuous. In other words, there exists a constantL such that for any
fixedz,

‖g(v,z)−g(w,z)‖∗ ≤ L‖v−w‖, ∀v,w∈ domΨ. (34)
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Let ϕ(w) = Ez f (w,z). Thenϕ is differentiable and∇ϕ(w) = Ezg(w,z) (e.g., Rockafellar and Wets,
1982). By Jensen’s inequality,∇ϕ(w) is also Lipschitz continuous with the same constantL. For
the regularization functionΨ, we assume there is a constantGΨ such that

|Ψ(v)−Ψ(w)| ≤ GΨ‖v−w‖, ∀v,w∈ domΨ.

In a black-box model, for any query pointw, we are only allowed to query a stochastic gradient
g(w,z) and a subgradient ofΨ(w). We assume the stochastic gradients have bounded variance;
more specifically, let there be a constantQ such that

Ez‖g(w,z)−∇ϕ(w)‖2
∗ ≤ Q2, ∀w∈ domΨ. (35)

Under these assumptions and the black-box model, the optimal convergencerate for solving the
problem (1), according to the complexity theory of Nemirovsky and Yudin (1983), is

Eφ(wt)−φ⋆ ≤ O(1)

(

L
t2 +

GΨ +Q√
t

)

.

Lan (2010) developed an accelerated mirror-descent stochastic approximation method to achieve
this rate. The stochastic nature of the algorithm dictates that the termO(1)(Q/

√
t) is inevitable in

the convergence bound. However, by using structural optimization techniques similar to (33), it is
possible to eliminate the termO(1)(GΨ/

√
t) and achieve

Eφ(wt)−φ⋆ ≤ O(1)

(

L
t2 +

Q√
t

)

. (36)

Such a result was obtained by Hu et al. (2009). Their algorithm can be viewed as an accelerated
version of the FOBOSmethod (28). In each iteration of their method, the regularization termΨ(w)
is discounted by a factor ofΘ(t−3/2). In terms of obtaining the desired regularization effects (see
discussions in Section 5), this is even worse than theΘ(t−1/2) discount factor in the FOBOSmethod.
For the case ofℓ1-regularization, this means using an even smaller truncation thresholdΘ(t−3/2)λ.
Next, we give an accelerated version of the RDA method, which achieves the same improved con-
vergence rate (36), but also maintains the desired property of using the undiscounted regularization
at each iteration.

7.1 Accelerated RDA Method for Stochastic Optimization

Nesterov (2005) developed an accelerated version of the dual averaging method for solving smooth
convex optimization problems, where the uniform average of all past gradients is replaced by an
weighted average that emphasizes more recent gradients. Several variations (Nesterov, 2007; Tseng,
2008) were also developed for minimizing composite objective functions of theform (32). They all
have a convergence rateO(L/t2).

Algorithm 3 is our extension of Nesterov’s method for solving stochastic optimization problems
of the form (1). At the input, it needs a strongly convex functionh and two positive sequences
{αt}t≥1 and{βt}t≥0. At each iterationt ≥ 1, it computes three primal vectorsut , vt , wt , and a
dual vector ˜gt . Among them,ut is the point for querying a stochastic gradient, ˜gt is an weighted
average of all past stochastic gradients,vt is the solution of an auxiliary minimization problem that
involvesg̃t and the regularization termΨ(w), andwt is the output vector. The computational effort
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Algorithm 3 Accelerated RDA method

Input:
• a strongly convex functionh(w) with modulus 1 on domΨ.
• two positive sequences{αt}t≥1 and{βt}t≥0.

Initialize: setw0 = v0 = argminwh(w), A0 = 0, andg̃0 = 0.

for t = 1,2,3, . . . do
1. Calculate the coefficients

At = At−1+αt , θt =
αt

At
.

2. Compute the query point
ut = (1−θt)wt−1+θtvt−1.

3. Query stochastic gradientgt = g(ut ,zt), and update the weighted average ˜gt :

g̃t = (1−θt)g̃t−1+θtgt .

4. Solve for the exploration point

vt = argmin
w

{

〈g̃t ,w〉+Ψ(w)+
L+βt

At
h(w)

}

5. Computewt by interpolation

wt = (1−θt)wt−1+θtvt .

end for

per iteration is on the same order as Algorithm 1. The additional costs are mainlythe two vector
interpolations (convex combinations) for computingut and wt . The following theorem gives an
estimate of its convergence rate.

Theorem 6 Assume the conditions (34) and (35) hold, and the problem (1) has an optimal solu-
tion w⋆ with optimal valueφ⋆. In Algorithm 3, if the sequence{αt}t≥1 and its accumulative sums
At = At−1+αt satisfy the conditionα2

t ≤ At for all t ≥ 1, then

Eφ(wt)−φ⋆ ≤ L
At

h(w⋆)+
1
At

(

βth(w
⋆)+Q2

t

∑
τ=1

α2
τ

2βτ−1

)

.

The proof of this theorem is given in Appendix D.
If we choose the two input sequences as

αt = 1, ∀ t ≥ 1,

βt = γ
√

t +1, ∀ t ≥ 0,

thenAt = t, θt = 1/t, and g̃t = ḡt is the uniform average of all past gradients. In this case, the
minimization problem in Step 4 is very similar to that in Step 3 of Algorithm 1. LetD2 be an upper
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bound onh(w⋆) and setγ = Q/D. Then we have

Eφ(wt)−φ⋆ ≤ LD2

t
+

2QD√
t
.

To achieve the optimal convergence rate stated in (36), we choose

αt =
t
2
, ∀ t ≥ 1, (37)

βt = γ
(t +1)3/2

2
, ∀ t ≥ 0. (38)

In this case,

At =
t

∑
τ=1

ατ =
t(t +1)

4
, θt =

αt

At
=

2
t +1

, ∀ t ≥ 1.

It is easy to verify that the conditionα2
t ≤ At is satisfied. The following corollary is proved in

Appendix D.1.

Corollary 7 Assume the conditions (34) and (35) hold, and h(w⋆)≤ D2. If the two input sequences
in Algorithm 3 are chosen as in (37) and (38) withγ = Q/D, then

Eφ(wt)−φ⋆ ≤ 4LD2

t2 +
4QD√

t
.

We can also give high probability bound under more restrictive assumptions. Instead of requir-
ing the deterministic condition‖g(w,z)−∇ϕ(w)‖2

∗ ≤ Q2 for all z and allw ∈ domΨ, we adopt a
weaker condition used in Nemirovski et al. (2009) and Lan (2010):

E
[

exp

(‖g(w,z)−∇ϕ(w)‖2
∗

Q2

)]

≤ exp(1), ∀w∈ domΨ. (39)

It is not hard to see that this implies (35) by using Jensen’s inequality.

Theorem 8 SupposedomΨ is compact, say h(w) ≤ D2 for all w ∈ domΨ, and let the assump-
tions (34) and (39) hold. If the two input sequences in Algorithm 3 are chosen as in (37) and (38)
with γ = Q/D, then for anyδ ∈ (0,1), with probability at least1−δ,

φ(wt)−φ⋆ ≤ 4LD2

t2 +
4QD√

t
+

QD√
t

(

ln(2/δ)+2
√

ln(2/δ)
)

Compared with the bound on expectation, the additional penalty in the high probability bound de-
pends only onQ, notL. This theorem is proved in Appendix D.2.

In the special case of deterministic optimization, that is, whenQ= 0, we haveγ = Q/D = 0 and
βt = 0 for all t ≥ 0. Then Algorithm 3 reduces to a variant of Nesterov’s method given in Tseng
(2008, Section 4), which has convergence rateφ(wt)−φ⋆ ≤ 4LD2/t2.

For stochastic optimization problems, the above theoretical bounds show thatthe algorithm can
be very effective whenQ is much smaller thanLD. One way to make this happen is to use a mini-
batch approach. More specifically, at each iteration of Algorithm 3, letgt itself be the average of
the stochastic gradients at a small batch of samples computed atut . We leave the empirical studies
of Algorithm 3 and other accelerated schemes for future investigation.
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7.2 The p-Norm RDA Methods

The p-norm RDA methods are special cases of Algorithm 1 in which the auxiliary functionsh (not
the regularization functionsΨ) are squaredp-norms. They offer more flexibility than 2-norm based
RDA methods in adapting to the geometry of the learning problems.

Recall that forp≥ 1, thep-norm ofw∈ Rn is defined as‖w‖p =
(

∑n
i=1 |w(i)|p

)1/p
. If p andq

satisfy the equality 1/p+1/q= 1, then the norms‖w‖p and‖g‖q are dual to each other. Moreover,
the pair of functions(1/2)‖w‖2

p and(1/2)‖g‖2
q are conjugate functions of each other. As a result,

their gradient mappings are a pair of inverse mappings. More formally, letp ∈ (1,2] and q =
p/(p−1), and define the mappingϑ : E → E∗ with

ϑi(w) = ∇i

(

1
2
‖w‖2

p

)

=
sgn
(

w(i)
)∣

∣w(i)
∣

∣

p−1

‖w‖p−2
p

, i = 1, . . . ,n,

and the inverse mappingϑ−1 : E∗ → E with

ϑ−1
i (g) = ∇i

(

1
2
‖g‖2

q

)

=
sgn
(

g(i)
)∣

∣g(i)
∣

∣

q−1

‖g‖q−2
q

, i = 1, . . . ,n.

These mappings are often calledlink functionsin machine learning (e.g., Gentile, 2003).
Again we focus on theℓ1-RDA case withΨ(w) = λ‖w‖1. For any p ∈ (1,2], the function

(1/2)‖w‖2
p is strongly convex with respect to‖·‖p with the convexity parameterp−1 (e.g., Juditsky

and Nemirovski, 2008). In order to have an auxiliary strongly convex function h with convexity
parameter 1, we define

h(w) =
1

2(p−1)
‖w‖2

p.

Usingβt = γ
√

t for someγ > 0,, the Equation (8) in Algorithm 1 becomes

wt+1 = argmin
w

{

〈ḡt ,w〉+λ‖w‖1+
γ√
t

1
2(p−1)

‖w‖2
p

}

.

The optimality condition of the above minimization problem (Rockafellar, 1970, Section 27) states
that there exists a subgradients∈ ∂‖wt+1‖1 such that

ḡt +λs+
γ

(p−1)
√

t
ϑ(wt+1) = 0.

Following similar arguments as in Appendix A, we find that it has a closed-formsolution

wt+1 = ϑ−1(ĝt) ,

where the elements of ˆgt are given as

ĝ(i)t =











0 if
∣

∣

∣
ḡ(i)

t

∣

∣

∣
≤ λ,

−(p−1)
√

t
γ

(

ḡ(i)
t −λsgn

(

ḡ(i)
t

)

)

otherwise,
i = 1, . . . ,n.

When p = q = 2, ϑ andϑ−1 are identity maps and the solution is the same as (10). Ifp is close
to 1 (q ≫ 2), the mapϑ−1 penalizes small entries of the truncated vector ˆgt to be even smaller.
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As an interesting property of the mapϑ−1, we always have‖wt+1‖p = ‖ĝt‖q (e.g., Gentile, 2003,
Lemma 1).

In terms of regret bound or convergence rate, our results in Sections 3and 4 apply directly.
More specifically, for stochastic learning problems, letD2

p = (1/2(p− 1))‖w⋆‖2
p, andGq be an

upper bound on‖gt‖q for all t ≥ 1. Then by Corollary 2 and Theorem 3,

Eφ(w̄t)−φ⋆ ≤
(

γD2
p+

G2
q

γ

)

1√
t
.

The optimal choice ofγ is γ⋆ = Gq/Dp, which results in

Eφ(w̄t)−φ⋆ ≤
√

2
p−1

Gq‖w⋆‖p√
t

=
√

2(q−1)
Gq‖w⋆‖p√

t
.

In order to gain further insight, we transform the convergence bound interms ofℓ∞ andℓ1 norms.
Let G∞ be an upper bound on‖gt‖∞, that is,

∣

∣

∣
g(i)t

∣

∣

∣
≤ G∞, ∀ i = 1, . . . ,n, ∀ t ≥ 1.

Then ‖gt‖q ≤ G∞n1/q. If we chooseq = lnn (assumingn ≥ e2 so thatq ≥ 2), then‖gt‖q ≤
G∞n1/ lnn = G∞e. Next we substituteG∞e for Gq and use the fact‖w⋆‖p ≤ ‖w⋆‖1, then

Eφ(w̄t)−φ⋆ ≤
√

2(lnn−1)
eG∞‖w⋆‖1√

t
= O

(√
lnnG∞‖w⋆‖1√

t

)

.

For 2-norm based RDA method, we have‖gt‖2 ≤ G∞
√

n, thus

Eφ(w̄t)−φ⋆ ≤
√

2nG∞‖w⋆‖2√
t

.

Therefore, for learning problems in which the features are dense (i.e.,G2 close toG∞
√

n) and
w⋆ is indeed very sparse (i.e.,‖w⋆‖2 close to‖w⋆‖1), using thep-norm RDA method, withp =
lnn/(lnn−1), can lead to faster convergence.

The above analysis of convergence rates matches that for thep-norm based SMIDAS (Stochas-
tic MIrror Descent Algorithm made Sparse) algorithm developed in Shalev-Shwartz and Tewari
(2009). However, like other algorithms of the mirror-descent type, including TG (Langford et al.,
2009) and FOBOS(Duchi and Singer, 2009), SMIDAS uses a truncation thresholdΘ(1/

√
t)λ in ob-

taining sparse solutions. In contrast, thep-norm based RDA method uses a much more aggressive
thresholdλ. This is their major difference.

The accelerated RDA method (Algorithm 3) also works in thep-norm setting.

7.3 Connection with Incremental Subgradient Methods

As an intermediate model between deterministic and stochastic optimization problems,consider the
problem

minimize
w

m

∑
k=1

fk(w)+Ψ(w), (40)
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which can be considered as a special case of (1) where the random variablezhas a uniform distribu-
tion on a finite support; more specifically,fk(w) = (1/m) f (w,zk) for k = 1, . . . ,m. The unregular-
ized version, that is, withΨ(w) = 0, has been addressed byincremental subgradient methods(e.g.,
Tseng, 1998; Nedić and Bertsekas, 2001). At each iteration of such methods, a step is taken along
the negative subgradient of a single functionfk, which is chosen either in a round-robin manner or
randomly with uniform distribution. The randomized version is equivalent to the SGD method. The
RDA methods are well suited for solving the regularized version (40).

Randomized incremental subgradient methods with Markov jumps have also been developed
for solving (40) withΨ(w) = 0 (Johansson et al., 2009; Ram et al., 2009). In such methods, the
functions fk are picked randomly but not independently: they follow the transition probabilities of
a Markov chain that has the uniform distribution. It would be very interesting to investigate the
convergence of the RDA methods when the random examples are drawn according to a Markovian
chain. This is particularly attractive for online learning problems where the assumption of i.i.d.
samples does not hold.
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Appendix A. Closed-form Solution for ℓ1-RDA Method

For RDA method withℓ1-regularization, we setΨ(w) = λ‖w‖1 and useh(w) = (1/2)‖w‖2
2, or use

hρ(w) in (31) for enhanced regularization effect. In such cases, the minimizationproblem in step 3
of Algorithm 1 can be decomposed inton independent scalar minimization problems, each of the
form

minimize
ω∈R

ηtω+λt |ω|+
γt

2
ω2,

where the coefficientsλt > 0, γt > 0, andηt can be arbitrary. This is an unconstrained nonsmooth
optimization problem. Its optimality condition (Rockafellar, 1970, Section 27) statesthatω⋆ is an
optimal solution if and only if there existsξ ∈ ∂|ω⋆| such that

ηt +λtξ+ γtω⋆ = 0. (41)

The subdifferential of|ω| is

∂|ω|=







{ξ ∈ R | −1≤ ξ ≤ 1} if ω = 0,
{1} if ω > 0,
{−1} if ω < 0.

We discuss the solution to (41) in three different cases:
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• If |ηt | ≤ λt , thenω⋆ = 0 andξ = −ηt/λt ∈ ∂|0| satisfy (41). We also show that there is no
solution other thanω⋆ = 0. If ω > 0, thenξ = 1, and

ηt +λt + γtω > ηt +λt ≥ 0.

Similarly, if ω < 0, thenξ =−1, and

ηt −λt + γtω < ηt −λt ≤ 0.

In either cases whenω 6= 0, the optimality condition (41) cannot be satisfied.

• If ηt > λt > 0, we must haveω⋆ < 0 andξ =−1. More specifically,

ω⋆ =− 1
γt
(ηt −λt).

• If ηt <−λt < 0, we must haveω⋆ > 0 andξ = 1. More specifically,

ω⋆ =− 1
γt
(ηt +λt).

The above discussions can be summarized as

ω⋆ =







0 if |ηt | ≤ λt ,

− 1
γt

(

ηt −λt sgn(ηt)
)

otherwise.

This is the closed-form solution for each component ofwt+1 in theℓ1-RDA method.

Appendix B. Regret Analysis of RDA Method

In this Appendix, we prove Theorem 1. First, letst denote the sum of the subgradients obtained up
to timet in the RDA method, that is,

st =
t

∑
τ=1

gτ = tḡt , (42)

with the initializations0 = 0. Then the Equation (8) in Algorithm 1 is equivalent to

wt+1 = argmin
w

{

〈st ,w〉+ tΨ(w)+βth(w)
}

. (43)

This extends thesimple dual averagingscheme of Nesterov (2009), whereΨ(w) reduces to the
indicator function of a closed convex set. Compared with the analysis in Nesterov (2009), the
assumption (7), Lemma 11 and Lemma 12 (below) are new essentials that make theproof work. We
also provide refined bounds on the primal and dual variables that relate tothe regret with respect to
an arbitrary comparison point; see part (b) and (c) of Theorem 1. It seems that theweighted dual
averagingscheme of Nesterov (2009) cannot be extended whenΨ is a nontrivial regularization
function.
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B.1 Conjugate Functions and Their Properties

Let w0 be the unique minimizer ofh(w). By the assumption (7), we have

w0 = argmin
w

h(w) ∈ Argmin
w

Ψ(w).

Let {βt}t≥1 be the input sequence to Algorithm 1, which is nonnegative and nondecreasing. In
accordance with the assumption (13), we let

β0 = max{σ, β1}> 0, (44)

whereσ be the convexity parameter ofΨ(w). For eacht ≥ 0, we define two conjugate-type func-
tions:

Ut(s) = max
w∈FD

{

〈s,w−w0〉− tΨ(w)
}

, (45)

Vt(s) = max
w

{

〈s,w−w0〉− tΨ(w)−βth(w)
}

, (46)

whereFD =
{

w ∈ domΨ |h(w) ≤ D2}. The maximum in (45) is always achieved becauseFD is
a nonempty compact set (which always containsw0). Because of (44), we haveσt +βt ≥ β0 > 0
for all t ≥ 0, which means the functionstΨ(w)+ βth(w) are all strongly convex. Therefore, the
maximum in (46) is always achieved, and the maximizer is unique. As a result, wehave domUt =
domVt = E∗ for all t ≥ 0. Moreover, by the assumptionΨ(w0) = h(w0) = 0, both of the functions
are nonnegative.

The lemma below is similar to Lemma 2 of Nesterov (2009), but with our new definitions ofUt

andVt . We include the proof for completeness.

Lemma 9 For any s∈ E∗ and t≥ 0, we have

Ut(s)≤Vt(s)+βtD
2.

Proof Starting with the definition ofUt(s) and usingFD = {w∈ domΨ |h(w)≤ D2},

Ut(s) = max
w∈FD

{〈s,w−w0〉− tΨ(w)}

= max
w

min
β≥0

{

〈s,w−w0〉− tΨ(w)+β(D2−h(w))
}

≤ min
β≥0

max
w

{

〈s,w−w0〉− tΨ(w)+β(D2−h(w))
}

≤ max
w

{

〈s,w−w0〉− tΨ(w)+βt(D
2−h(w))

}

=Vt(s)+βtD
2.

For the second equality and the first inequality above, we used standard duality arguments and the
max-min inequality; see, for example, Boyd and Vandenberghe (2004, Section 5.4.1).

Let πt(s) denote the unique maximizer in the definition ofVt(s); in other words,

πt(s) = argmax
w

{

〈s,w−w0〉− tΨ(w)−βth(w)
}

= argmin
w

{

〈−s,w〉+ tΨ(w)+βth(w)
}

.
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Comparing with the Equation (43), we have

wt+1 = πt(−st), ∀ t ≥ 0.

Lemma 10 The function Vt is convex and differentiable. Its gradient is given by

∇Vt(s) = πt(s)−w0 (47)

Moreover, the gradient is Lipschitz continuous with constant1/(σt +βt); that is

‖∇Vt(s1)−∇Vt(s2)‖ ≤
1

σt +βt
‖s1−s2‖∗, ∀s1,s2 ∈ E∗.

Proof Because the functiontΨ(w)+βth(w) is a strongly convex with convexity parameterσt +βt ,
this lemma follows from classical results in convex analysis; see, for example, Hiriart-Urruty and
Lemaŕechal (2001, Chapter E, Theorem 4.2.1), or Nesterov (2005, Theorem 1).

A direct consequence of Lemma 10 is the following inequality:

Vt(s+g)≤Vt(s)+ 〈g,∇Vt(s)〉+
1

2(σt +βt)
‖g‖2

∗, ∀s,g∈ E∗. (48)

For a proof, see, for example, Nesterov (2004, Theorem 2.1.5).

Lemma 11 For each t≥ 1, we have

Vt(−st)+Ψ(wt+1)≤Vt−1(−st)+(βt−1−βt)h(wt+1).

Proof We start with the definition ofVt−1(−st):

Vt−1(−st) = max
w

{〈−st ,w−w0〉− (t −1)Ψ(w)−βt−1h(w)}

≥ 〈−st ,wt+1−w0〉− (t −1)Ψ(wt+1)−βt−1h(wt+1)

=
{

〈−st ,wt+1−w0〉− tΨ(wt+1)−βth(wt+1)
}

+Ψ(wt+1)+(βt −βt−1)h(wt+1).

Comparing with (43) and (46), we recognize that the expression in the lastbraces above is precisely
Vt(−st). Making the substitution and rearranging terms give the desired result.

Since by assumptionh(wt+1)≥ 0 and the sequence{βt}t≥1 is nondecreasing, we have

Vt(−st)+Ψ(wt+1)≤Vt−1(−st), ∀ t ≥ 2. (49)

For t = 1, Lemma (11) gives

V1(−s1)+Ψ(w2)≤V0(−s1)+(β0−β1)h(w2). (50)

Since it may happen thatβ0 > β1, we need the following upper bound onh(w2).
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Lemma 12 Assumemax{σ, β1}> 0, and let h(w) = (1/σ)Ψ(w) if σ > 0. Then

h(w2)≤
2‖g1‖2

∗
(β1+σ)2 . (51)

Proof For t = 1, we havew1 = w0, Ψ(w1) = Ψ(w0) = 0, h(w1) = h(w0) = 0, andḡ1 = g1. Sincew2

is the minimizer in (43) fort = 1, we have

〈g1,w2〉+Ψ(w2)+β1h(w2)≤ 〈g1,w1〉+Ψ(w1)+β1h(w1) = 〈g1,w1〉.

Therefore,
Ψ(w2)+β1h(w2)≤ 〈g1,w1−w2〉 ≤ ‖g1‖∗‖w2−w1‖.

On the other hand, by strong convexity ofΨ(w) andh(w), we have

Ψ(w2)+β1h(w2)≥
σ+β1

2
‖w2−w1‖2.

Combining the last two inequalities together, we have

Ψ(w2)+β1h(w2)≤
2‖g1‖2

∗
σ+β1

.

By assumption, ifσ = 0, we must haveβ1 > 0. In this case, sinceΨ(w2)≥ 0, we have

β1h(w2)≤ Ψ(w2)+β1h(w2)≤
2‖g1‖2

∗
β1

=⇒ h(w2)≤
2‖g1‖2

∗
β2

1

=
2‖g1‖2

∗
(σ+β1)2 .

If σ > 0, we haveΨ(w) = σh(w) by assumption, and therefore

Ψ(w2)+β1h(w2) = (σ+β1)h(w2)≤
2‖g1‖2

∗
σ+β1

,

which also results in (51).

B.2 Bounding the Regret

To measure the quality of the solutionsw1, . . . ,wt , we define the followinggapsequence:

δt = max
w∈FD

{

t

∑
τ=1

(

〈gτ,wτ −w〉+Ψ(wτ)
)

− tΨ(w)

}

, t = 1,2,3, . . . . (52)

The gapδt is an upper bound on the regretRt(w) for all w∈ FD. To see this, we use the assumption
w∈ FD and convexity offt(w) in the following:

δt ≥
t

∑
τ=1

(

〈gτ,wτ −w〉+Ψ(wτ)
)

− tΨ(w)

≥
t

∑
τ=1

(

fτ(wτ)− fτ(w)+Ψ(wτ)
)

− tΨ(w)

=
t

∑
τ=1

(

fτ(wτ)+Ψ(wτ)
)

−
t

∑
τ=1

(

fτ(w)+Ψ(w)
)

= Rt(w). (53)
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We can also derive an upper bound onδt . For this purpose, we add and subtract the sum∑t
τ=1〈gτ,w0〉

in the definition (52), which leads to

δt =
t

∑
τ=1

(

〈gτ,wτ −w0〉+Ψ(wτ)
)

+ max
w∈FD

{

〈st ,w0−w〉− tΨ(w)
}

. (54)

We observe that the maximization term in (54) is in factUt(−st). Therefore, by applying Lemma 9,
we have

δt ≤
t

∑
τ=1

(

〈gτ,wτ −w0〉+Ψ(wτ)
)

+Vt(−st)+βtD
2. (55)

Next, we show that∆t defined in (14) is an upper bound for the right-hand side of the inequal-
ity (55). For anyτ ≥ 2, we have

Vτ(−sτ)+Ψ(wτ+1)≤Vτ−1(−sτ)

=Vτ−1(−sτ−1−gτ)

≤Vτ−1(−sτ−1)+ 〈−gτ,∇Vτ−1(−sτ−1)〉+
‖gτ‖2

∗
2(σ(τ−1)+βτ−1)

=Vτ−1(−sτ−1)+ 〈−gτ,wτ −w0〉+
‖gτ‖2

∗
2(σ(τ−1)+βτ−1)

,

where the four steps above used (49), (42), (48), and (47), respectively. Therefore,

〈gτ,wτ −w0〉+Ψ(wτ+1)≤Vτ−1(−sτ−1)−Vτ(−sτ)+
‖gτ‖2

∗
2(σ(τ−1)+βτ−1)

, ∀τ ≥ 2.

For τ = 1, we have a similar inequality

〈g1,w1−w0〉+Ψ(w2)≤V0(−s0)−V1(−s1)+
‖g1‖2

∗
2β0

+(β0−β1)h(w2),

where the additional term(β0−β1)h(w2) comes from using (50). Summing the above inequalities
for τ = 1, . . . , t, and noting thatV0(−s0) =V0(0) = 0, we arrive at

t

∑
τ=1

(

〈gτ,wτ −w0〉+Ψ(wτ+1)
)

+Vt(−st)≤ (β0−β1)h(w2)+
1
2

t

∑
τ=1

‖gτ‖2
∗

σ(τ−1)+βτ−1
.

Using w1 = w0 ∈ Argminw Ψ(w), we haveΨ(wt+1) ≥ Ψ(w0) = Ψ(w1). Therefore, adding the
nonpositive quantityΨ(w1)−Ψ(wt+1) to the left-hand side of the above inequality yields

t

∑
τ=1

(

〈gτ,wτ −w0〉+Ψ(wτ)
)

+Vt(−st)≤ (β0−β1)h(w2)+
1
2

t

∑
τ=1

‖gτ‖2
∗

σ(τ−1)+βτ−1
. (56)

Combining the inequalities (53), (55) and (56), and using Lemma 12,

Rt(w)≤ δt ≤ βtD
2+

1
2

t

∑
τ=1

‖gτ‖2
∗

σ(τ−1)+βτ−1
+

2(β0−β1)‖g1‖2
∗

(β1+σ)2 .

Finally using the assumption (12) and the definition of∆t in (14), we conclude

Rt(w)≤ δt ≤ ∆t .

This proves the regret bound (15).
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B.3 Bounding the Primal Variable

We start with the optimality condition for the minimization problem in (43): there exist subgradients
bt+1 ∈ ∂Ψ(wt+1) anddt+1 ∈ ∂h(wt+1) such that

〈st + tbt+1+βtdt+1, w−wt+1〉 ≥ 0, ∀w∈ domΨ. (57)

By the strong convexity ofh andΨ, we have for anyw∈ domΨ,

Ψ(w)≥ Ψ(wt+1)+ 〈bt+1,w−wt+1〉+
σ
2
‖wt+1−w‖2, (58)

h(w)≥ h(wt+1)+ 〈dt+1,w−wt+1〉+
1
2
‖wt+1−w‖2. (59)

We multiply both sides of the inequality (58) byt, multiply both sides of the inequality (59) byβt ,
and then add them together. This gives

1
2
(σt +βt)‖wt+1−w‖2 ≤βth(w)−βth(wt+1)−〈tbt+1+βtdt+1,w−wt+1〉

+ tΨ(w)− tΨ(wt+1).

Using the optimality condition (57), we have

1
2
(σt +βt)‖wt+1−w‖2 ≤ βth(w)−βth(wt+1)+ 〈st ,w−wt+1〉+ tΨ(w)− tΨ(wt+1)

= βth(w)+
{

〈−st ,wt+1−w0〉− tΨ(wt+1)−βth(wt+1)
}

+ tΨ(w)+ 〈st ,w−w0〉.

Using (43), we recognize that the collection in the braces is preciselyVt(−st). Therefore

1
2
(σt +βt)‖wt+1−w‖2 ≤ βth(w)+Vt(−st)+ tΨ(w)+ 〈st ,w−w0〉. (60)

Now we expand the last term〈st ,w−w0〉 using the definition ofst :

〈st ,w−w0〉=
t

∑
τ=1

〈gτ,w−w0〉=
t

∑
τ=1

〈gτ,wτ −w0〉+
t

∑
τ=1

〈gτ,w−wτ〉.

By further adding and subtracting∑t
τ=1 Ψ(wτ), the right-hand side of (60) becomes

βth(w)+

{

Vt(−st)+
t

∑
τ=1

(

〈gτ,wτ −w0〉+Ψ(wτ)
)

}

+
t

∑
τ=1

〈gτ,w−wτ〉+ tΨ(w)−
t

∑
τ=1

Ψ(wτ).

We recognize that the expression in the braces above is exactly the left-hand side in (56). Further-
more, by convexity offτ for τ ≥ 1,

t

∑
τ=1

〈gτ,w−wτ〉+ tΨ(w)−
t

∑
τ=1

Ψ(wτ)≤
t

∑
τ=1

(

fτ(w)− fτ(wτ)
)

+ tΨ(w)−
t

∑
τ=1

Ψ(wτ)

=
t

∑
τ=1

(

fτ(w)+Ψ(w)
)

−
t

∑
τ=1

(

fτ(wτ)+Ψ(wτ)
)

=−Rt(w).
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Putting everything together, and using (56), we have

1
2
(σt +βt)‖wt+1−w‖2 ≤ βth(w)+(β0−β1)h(w2)+

1
2

t

∑
τ=1

‖gτ‖2
∗

σ(τ−1)+βτ−1
−Rt(w).

Finally, usingw∈ FD, Lemma 12 and the assumption (12), we conclude

1
2
(σt +βt)‖wt+1−w‖2 ≤ ∆t −Rt(w),

which is the same as (16).

B.4 Bounding the Dual Average

First notice that (54) still holds if we replacew0 with an arbitrary, fixedw∈ FD, that is,

δt =
t

∑
τ=1

(

〈gτ,wτ −w〉+Ψ(wτ)
)

+max
u∈FD

{

〈st ,w−u〉− tΨ(u)
}

.

By convexity of fτ for τ ≥ 1, we have

δt ≥
t

∑
τ=1

(

fτ(wτ)− fτ(w)+Ψ(wτ)
)

+max
u∈FD

{

〈st ,w−u〉− tΨ(u)
}

=
t

∑
τ=1

(

fτ(wτ)+Ψ(wτ)− fτ(w)−Ψ(w)
)

+max
u∈FD

{

〈st ,w−u〉− t
(

Ψ(u)−Ψ(w)
)}

= Rt(w)+max
u∈FD

{

〈st ,w−u〉− t
(

Ψ(u)−Ψ(w)
)}

. (61)

Let d(u) denote a subgradient ofΨ atu with minimum norm, that is,

d(u) = argmin
g∈∂Ψ(u)

‖g‖∗. (62)

SinceΨ has convexity parameterσ, we have

Ψ(w)−Ψ(u)≥ 〈d(u),w−u〉+ σ
2
‖w−u‖2.

Therefore,

δt ≥ Rt(w)+max
u∈FD

{

〈st ,w−u〉+ t〈d(u),w−u〉+ σt
2
‖w−u‖2

}

≥ Rt(w)+ max
u∈B(w,r)

{

〈st ,w−u〉+ t〈d(u),w−u〉+ σt
2
‖w−u‖2

}

,

where in the last inequality, we used the assumptionB(w, r) ⊂ FD for somer > 0. Let u⋆ be the
maximizer of〈st ,w−u〉 within the setB(w, r), that is,

u⋆ = argmax
u∈B(w,r)

{

〈st ,w−u〉
}

.
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Then‖w−u⋆‖= r and
〈st ,w−u⋆〉= ‖w−u⋆‖‖st‖∗ = r‖st‖∗.

So we can continue with the inequality:

δt ≥ Rt(w)+ 〈st ,w−u⋆〉+ t〈d(u⋆),w−u⋆〉+ σt
2
‖w−u⋆‖2

= Rt(w)+ r‖st‖∗+ t〈d(u⋆),w−u⋆〉+ 1
2

σtr2

≥ Rt(w)+ r‖st‖∗− t‖d(u⋆)‖∗‖w−u⋆‖+ 1
2

σtr2

≥ Rt(w)+ r‖st‖∗− rtΓD +
1
2

σtr2

where in the last inequality, we used‖d(u⋆)‖∗ ≤ ΓD, which is due to (62) and (11). Therefore

‖st‖∗ ≤ tΓD − 1
2

σtr +
1
r

(

δt −Rt(w)
)

.

Finally, we have (17) by notingδt ≤ ∆t andst = tḡ.

Appendix C. Proof of High Probability Bounds

In this Appendix, we prove Theorem 5. First letϕ(w) = Ez f (w,z), then by definitionφ(w) =
ϕ(w)+Ψ(w). Let ĝt be the conditional expectation ofgt givenwt , that is,

ĝt = E[gt |wt ] = E
[

gt |z[t −1]
]

.

Sincegt ∈ ∂ f (wt ,zt), we have ˆgt ∈ ∂ϕ(wt) (e.g., Rockafellar and Wets, 1982). By the definition
of δt in (52), for anyw⋆ ∈ FD,

δt ≥
t

∑
τ=1

(

〈gτ,wτ −w⋆〉+Ψ(wτ)
)

− tΨ(w⋆)

=
t

∑
τ=1

(

〈ĝτ,wτ −w⋆〉+Ψ(wτ)
)

− tΨ(w⋆)+
t

∑
τ=1

〈gτ − ĝτ,wτ −w⋆〉

≥
t

∑
τ=1

(

ϕ(wτ)−ϕ(w⋆)+Ψ(wτ)
)

− tΨ(w⋆)+
t

∑
τ=1

〈gτ − ĝτ,wτ −w⋆〉

=
t

∑
τ=1

(

φ(wτ)−φ(w⋆)
)

+
t

∑
τ=1

〈gτ − ĝτ,wτ −w⋆〉. (63)

where in the second inequality above we used convexity ofϕ. Now define the random variables

ξτ = 〈gτ − ĝτ,w
⋆−wτ〉, ∀τ ≥ 1.

Combining (63) and the resultδt ≤ ∆t leads to

t

∑
τ=1

(

φ(wτ)−φ(w⋆)
)

≤ ∆t +
t

∑
τ=1

ξτ. (64)
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Sincewt is a deterministic function ofz[t −1] andĝt = E[gt |wt ], we have

E
[

ξτ
∣

∣z[τ−1]
]

= 0.

Therefore the sum∑t
τ=1 ξτ is a martingale. By the assumptionsh(wτ)≤D2 and‖gτ‖∗ ≤ L for all wτ,

we have

‖w−wτ‖ ≤ ‖w−w0‖+‖wτ −w0‖ ≤ (2h(w))1/2+(2h(wτ))
1/2 ≤ 2

√
2D,

and‖gτ −Gτ‖∗ ≤ ‖gτ‖∗+‖Gτ‖∗ ≤ 2L. Therefore,

|ξτ| ≤ ‖gτ −Gτ‖∗‖w−wτ‖ ≤ 4
√

2LD

So the sequence of random variables{ξτ}t
τ=1 form a bounded martingale difference. Now by

Hoeffding-Azuma inequality (Azuma, 1967), we have

Prob

(

t

∑
τ=1

ξτ ≥ Θ

)

≤ exp

( −Θ2

2t(4
√

2LD)2

)

= exp

(

− Θ2

64L2D2t

)

, ∀Θ > 0.

Let Ω = Θ/(8LD
√

t), we have

Prob

(

t

∑
τ=1

ξτ ≥ 8LD
√

t Ω

)

≤ exp(−Ω2).

Now combining with (64) yields

Prob

(

φ(w̄t)−φ⋆ ≥ ∆t

t
+

8LDΩ√
t

)

≤ exp(−Ω2).

Settingδ = exp(−Ω2) gives the desired result (26).

Appendix D. Convergence Analysis of Accelerated RDA Method

In this appendix, we prove Theorem 6. We will need the following lemma.

Lemma 13 Let ψ be a closed proper convex function, and h be strongly convex ondomψ with
convexity parameterσh. If

v= argmin
w

{

ψ(w)+h(w)
}

, (65)

then
ψ(w)+h(w)≥ ψ(v)+h(v)+

σh

2
‖w−v‖2, ∀w∈ domψ.

Proof By the optimality condition for (65), there existb∈ ∂ψ(v) andd ∈ ∂h(v) such that

〈b+d,w−v〉 ≥ 0, ∀w∈ domψ.

Sinceψ is convex andh is strongly convex, we have

ψ(w)≥ ψ(v)+ 〈b,w−v〉,

h(w)≥ h(v)+ 〈d,w−v〉+ σh

2
‖w−v‖2.
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The lemma is proved by combining the three inequalities above.

In Lemma 13, we do not assume differentiability of eitherψ or h. Similar results assuming differ-
entiability have appeared in, for example, Chen and Teboulle (1993) and Tseng (2008), where the
term(σh/2)‖w−v‖2 was replaced by the Bregman divergence induced byh.

Our proof combines several techniques appeared separately in Nesterov (2005), Tseng (2008),
Lan (2010), and Nemirovski et al. (2009). First, letϕ(w) = Ez f (w,z). For everyt ≥ 1, define the
following two functions:

ℓt(w) = ϕ(ut)+ 〈∇ϕ(ut),w−ut〉+Ψ(w),

ℓ̂t(w) = ϕ(ut)+ 〈gt ,w−ut〉+Ψ(w).

Note thatℓt(w) is a lower bound ofφ(w) for all t ≥ 1. Letqt = gt −∇ϕ(ut), then

ℓ̂t(w) = ℓt(w)+ 〈qt ,w−ut〉.

For eacht ≥ 1, we also define the function

ψt(w) =
t

∑
τ=1

ατℓ̂τ(w).

For convenience, letψ0(w) = 0. Then step 4 in Algorithm 3 is equivalent to

vt = argmin
w

{

ψt(w)+(L+βt)h(w)
}

. (66)

Since∇ϕ is Lipschitz continuous with a constantL (see discussions following (34)), we have

ϕ(wt)≤ ϕ(ut)+ 〈∇ϕ(ut),wt −ut〉+
L
2
‖wt −ut‖2.

Adding Ψ(wt) to both sides of the above inequality yields

φ(wt)≤ ℓt(wt)+
L
2
‖wt −ut‖2

= ℓt
(

(1−θt)wt−1+θtvt
)

+
L
2

∥

∥(1−θt)wt−1+θtvt −ut
∥

∥

2

≤ (1−θt)ℓt(wt−1)+θtℓt(vt)+
L
2

∥

∥θtvt −θtvt−1
∥

∥

2

= (1−θt)ℓt(wt−1)+θt ℓ̂t(vt)−θt〈qt ,vt −ut〉+θ2
t
L
2

∥

∥vt −vt−1
∥

∥

2

= (1−θt)ℓt(wt−1)+
1
At

(

αt ℓ̂t(vt)+
α2

t

At

L
2

∥

∥vt −vt−1
∥

∥

2
)

−θt〈qt ,vt −ut〉

≤ (1−θt)φ(wt−1)+
1
At

(

αt ℓ̂t(vt)+
L
2

∥

∥vt −vt−1
∥

∥

2
)

−θt〈qt ,vt −ut〉.

In the second inequality above, we used convexity ofℓt andut = (1−θt)wt−1+θtvt−1, and in the
last inequality above, we usedℓt(w)≤ φ(w) and the assumptionα2

t ≤ At . Multiplying both sides of
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the above inequality byAt and noticingAt(1−θt) = At −αt = At−1, we have

Atφ(wt)≤ At−1φ(wt−1)+αt ℓ̂t(vt)+
L
2

∥

∥vt −vt−1
∥

∥

2−αt〈qt ,vt −ut〉

= At−1φ(wt−1)+αt ℓ̂t(vt)+
L+βt−1

2

∥

∥vt −vt−1
∥

∥

2− βt−1

2

∥

∥vt −vt−1
∥

∥

2

−αt〈qt ,vt −vt−1〉−αt〈qt ,vt−1−ut〉

≤ At−1φ(wt−1)+αt ℓ̂t(vt)+
L+βt−1

2

∥

∥vt −vt−1
∥

∥

2− βt−1

2

∥

∥vt −vt−1
∥

∥

2

+αt‖qt‖∗‖vt −vt−1‖−αt〈qt ,vt−1−ut〉.

Now using the inequality

bc− a
2

c2 ≤ b2

2a
, ∀a> 0,

with a= βt−1, b= αt‖qt‖∗, andc= ‖vt −vt−1‖, we have

Atφ(wt)≤ At−1φ(wt−1)+αt ℓ̂t(vt)+
L+βt−1

2

∥

∥vt −vt−1
∥

∥

2
+

α2
t ‖qt‖2

∗
2βt−1

−αt〈qt ,vt−1−ut〉.

By (66),vt−1 is the minimizer ofψt−1(v)+(L+βt−1)h(v). Then by Lemma 13, we have

ψt−1(vt)+(L+βt−1)h(vt)≥ ψt−1(vt−1)+(L+βt−1)h(vt−1)+
L+βt−1

2

∥

∥vt −vt−1
∥

∥

2
,

therefore,

Atφ(wt)−ψt(vt)− (L+βt−1)h(vt)≤ At−1φ(wt−1)−ψt−1(vt−1)− (L+βt−1)h(vt−1)

+
α2

t ‖qt‖2
∗

2βt−1
−αt〈qt ,vt−1−ut〉.

Sinceβt ≥ βt−1 andh(vt)≥ 0, we can replace theβt−1 on the left-hand side withβt :

Atφ(wt)−ψt(vt)− (L+βt)h(vt)≤ At−1φ(wt−1)−ψt−1(vt−1)− (L+βt−1)h(vt−1)

+
α2

t ‖qt‖2
∗

2βt−1
−αt〈qt ,vt−1−ut〉.

Summing the above inequality fromτ = 1 to t results in

Atφ(wt)≤ ψt(vt)+(L+βt)h(vt)+A0φ(w0)−ψ0(v0)− (L+β0)h(v0)

+
t

∑
τ=1

α2
τ‖qτ‖2

∗
2βτ−1

+
t

∑
τ=1

ατ〈qτ,uτ −vτ−1〉.
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UsingA0 = 0, ψ0(v0) = 0, h(v0) = 0, and (66), we have

Atφ(wt)≤ ψt(w
⋆)+(L+βt)h(w

⋆)+
t

∑
τ=1

α2
τ‖qτ‖2

∗
2βτ−1

+
t

∑
τ=1

ατ〈qτ,uτ −vτ−1〉

=
t

∑
τ=1

ατℓ̂τ(w
⋆)+(L+βt)h(w

⋆)+
t

∑
τ=1

α2
τ‖qτ‖2

∗
2βτ−1

+
t

∑
τ=1

ατ〈qτ,uτ −vτ−1〉

=
t

∑
τ=1

ατ
(

ℓτ(w
⋆)+ 〈qτ,w

⋆−uτ〉
)

+(L+βt)h(w
⋆)+

t

∑
τ=1

α2
τ‖qτ‖2

∗
2βτ−1

+
t

∑
τ=1

ατ〈qτ,uτ −vτ−1〉

=
t

∑
τ=1

ατℓτ(w
⋆)+(L+βt)h(w

⋆)+
t

∑
τ=1

α2
τ‖qτ‖2

∗
2βτ−1

+
t

∑
τ=1

ατ〈qτ,w
⋆−vτ−1〉.

Next, byℓτ(w⋆)≤ φ(w⋆) for all τ ≥ 1 andAt = ∑t
τ=1 ατ, we have

Atφ(wt)≤ Atφ(w⋆)+(L+βt)h(w
⋆)+

t

∑
τ=1

α2
τ‖qτ‖2

∗
2βτ−1

+
t

∑
τ=1

ατ〈qτ,w
⋆−vτ−1〉. (67)

SinceE
[

qτ|z[τ− 1]
]

= 0 andqτ is independent ofvτ−1, we haveE
[

〈qτ,w⋆ − vτ−1〉|z[τ− 1]
]

= 0.
Together with the assumptionE‖qτ‖2

∗ ≤ Q2 for all τ ≥ 1, we conclude

Eφ(wt)−φ(w⋆)≤ L+βt

At
h(w⋆)+

1
At

(

Q2

2

t

∑
τ=1

α2
τ

βτ−1

)

.

By rearranging terms on the right-hand side, this finishes the proof for Theorem 6.

D.1 Proof of Corollary 7

Using the two input sequences given in (37) and (38), we have

t

∑
τ=1

α2
τ

2βτ−1
=

1
4γ

t

∑
τ=1

τ1/2 ≤ 1
4γ

∫ t+1

0
τ1/2dτ =

(t +1)3/2

6γ
. (68)

Plugging them into the conclusion of Theorem 6 gives

Eφ(wt)−φ⋆ ≤ 4L
t(t +1)

h(w⋆)+
(t +1)1/2

t

(

2γh(w⋆)+
2Q2

3γ

)

.

Next we use the assumptionh(w⋆)≤ D2 and letγ = Q/D. Then

Eφ(wt)−φ⋆ ≤ 4LD2

t(t +1)
+

(t +1)1/2

t
8QD

3
≤ 4LD

t2 +
4QD√

t
.
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D.2 Proof of Theorem 8

We start with the inequality (67). We will first show high probability bounds forthe two summations
on the right-hand side of (67) that involve the stochastic quantitiesqτ, and then combine them to
prove Theorem 8. We need the following result on large-deviation bound for martingales, which
can be viewed as an extension to the Hoeffding-Azuma inequality.

Lemma 14 (Lan et al., 2008, Lemma 6) Let z1,z2, . . . be a sequence of i.i.d. random variables and
let z[t] denote the collection[z1, . . . ,zt ]. If ξt = ξt(z[t]) are deterministic Borel functions ofz[t] such
that the conditional expectationsE

[

ξt |z[t −1]
]

= 0 almost surely and

E
[

exp(ξ2
t /ν2

t ) |z[t −1]
]

≤ exp(1) (69)

almost surely, whereνt > 0 are deterministic. Then for all t≥ 1,

Prob

(

t

∑
τ=1

ξτ > Ω

√

t

∑
τ=1

ν2
τ

)

≤ exp

(

−Ω2

3

)

, ∀Ω ≥ 0.

Lemma 15 Let ξt = αt〈qt ,w⋆−vt−1〉. Then for all t≥ 1 and anyΩ > 0,

Prob

(

t

∑
τ=1

ξτ > ΩQD

√

2
3
(t +1)3

)

≤ exp(−Ω2/3).

Proof SinceE
[

qt |z[t −1]
]

= 0 andqt is independent ofw⋆ andvt−1, we have

E
[

ξt
∣

∣z[t −1]
]

= E
[

αt〈qt ,w
⋆−vt−1〉

∣

∣z[t −1]
]

= 0.

Therefore,∑t
τ=1 ξτ is a martingale. By the assumption(1/2)‖w‖2 ≤ h(w)≤ D2 for all w∈ domΨ,

we have‖w‖ ≤
√

2D for all w∈ domΨ, and therefore

|ξt | ≤ αt‖qt‖∗‖w⋆−vt−1‖ ≤ αt‖qt‖∗
(

‖w⋆‖+‖vt−1‖
)

≤ αt‖qt‖∗2
√

2D.

Using the assumptionE
[

exp
(

‖qt‖2
∗/Q2

)]

≤ exp(1), we have

E
[

exp

(

ξ2
t

(8α2
t Q2D2)2

)∣

∣

∣

∣

z[t −1]

]

≤ E

[

exp

(

(αt‖qt‖∗2
√

2D)2

8α2
t Q2D2

)

∣

∣

∣

∣

z[t −1]

]

≤ exp(1).

Therefore the condition (69) holds withν2
t = 8α2

t Q2D2. We bound∑t
τ=1 ν2

τ as follows:

t

∑
τ=1

ν2
τ ≤ 8Q2D2

t

∑
τ=1

α2
τ = 2Q2D2

t

∑
τ=1

τ2 ≤ 2Q2D2
∫ t+1

0
τ2dτ =

2Q2D2

3
(t +1)3.

Then applying Lemma 14 gives the desired result.

Lemma 16 For all t ≥ 1 and anyΛ > 0,

Prob

(

t

∑
τ=1

α2
τ

2βτ−1
‖qτ‖2

∗ > (1+Λ)
Q2

6γ
(t +1)3/2

)

≤ exp(−Λ).
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Proof For any givent ≥ 1, let

Θt =
t

∑
τ=1

α2
τ

2βτ−1
,

and

ητ =
α2

τ
2βτ−1

1
Θt

, τ = 1, . . . , t.

Therefore∑t
τ=1 ητ = 1. By convexity of the function exp(·),

exp

(

t

∑
τ=1

ητ
‖qτ‖2

∗
Q2

)

≤
t

∑
τ=1

ητ exp

(‖qτ‖2
∗

Q2

)

.

Taking expectation and using the assumption (39),

Eexp

(

t

∑
τ=1

ητ
‖qτ‖2

∗
Q2

)

≤
t

∑
τ=1

ητEexp

(‖qτ‖2
∗

Q2

)

≤
t

∑
τ=1

ητ exp(1) = exp(1).

By Markov’s inequality,

Prob

(

exp

(

t

∑
τ=1

ητ
‖qτ‖2

∗
Q2

)

> exp(1+Λ)

)

≤ exp(1)
exp(1+Λ)

= exp(−Λ),

which is the same as

Prob

(

t

∑
τ=1

α2
τ

2βτ−1
‖qτ‖2

∗ > (1+Λ)ΘtQ
2

)

≤ exp(−Λ).

Then using the upper bound onΘt derived in (68) gives the desired result.

Combining Lemma 15, Lemma 16, and the inequality (67), we have

Prob

(

At(φ(wt)−φ⋆)> (L+βt)h(w
⋆)+(1+Λ)

Q2

6γ
(t +1)3/2+ΩQD

√

2
3
(t +1)3/2

)

≤ exp(−Λ)+exp

(

−Ω2

3

)

.

Plugging inAt = t(t +1)/4, βt = (γ/2)(t +1)3/2, and lettingγ = Q/D, Ω =
√

3Λ, we get

Prob

(

φ(wt)−φ⋆ >
4LD2

t(t +1)
+

(

8QD
3

+
2ΛQD

3
+
√

2ΛQD

)

(t +1)1/2

t

)

≤ 2exp(−Λ).

Then using the fact
√

(t +1)/t ≤
√

2≤ 3/2 for all t ≥ 1 results in

Prob

(

φ(wt)−φ⋆ >
4LD2

t2 +
4QD√

t
+

(Λ+2
√

Λ)QD√
t

)

≤ 2exp(−Λ).

Finally, letδ = 2exp(−Λ), henceΛ = ln(2/δ). Then with probability at least 1−δ,

φ(wt)−φ⋆ ≤ 4LD2

t2 +
4QD√

t
+

QD√
t

(

ln(2/δ)+2
√

ln(2/δ)
)

.

This finishes the proof of Theorem 8.
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