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Abstract

We consider regularized stochastic learning and onlinenigetion problems, where the objective
function is the sum of two convex terms: one is the loss fumotif the learning task, and the other
is a simple regularization term such @snorm for promoting sparsity. We develop extensions of
Nesterov’s dual averaging method, that can exploit thelaggation structure in an online setting.
At each iteration of these methods, the learning variablesadjusted by solving a simple mini-
mization problem that involves the running average of adtjgsabgradients of the loss function and
the whole regularization term, not just its subgradienthincase of;-regularization, our method
is particularly effective in obtaining sparse solutionse Bthow that these methods achieve the op-
timal convergence rates or regret bounds that are staralénd literature on stochastic and online
convex optimization. For stochastic learning problems hiclv the loss functions have Lipschitz
continuous gradients, we also present an acceleratedmerkthe dual averaging method.

Keywords: stochastic learning, online optimizatiofi;regularization, structural convex optimiza-
tion, dual averaging methods, accelerated gradient method

1. Introduction

In machine learning, online algorithms operate by repetitively drawing rare@amples, one at a
time, and adjusting the learning variables using simple calculations that aréyusased on the
single example only. The low computational complexity (per iteration) of onlinerélgns is often
associated with their slow convergence and low accuracy in solving therlyimdy optimization
problems. As argued by Bottou and Bousquet (2008), the combined lmplegity and low accu-
racy, together with other tradeoffs in statistical learning theory, still makeealgorithms favorite
choices for solving large-scale learning problems. Nevertheless, traditaline algorithms, such
as stochastic gradient descent, have limited capability of exploiting problewctist in solving
regularizedlearning problems. As a result, their low accuracy often makes it hard tinaibia
desired regularization effects, for example, sparsity udgeegularization.

In this paper, we develop a new class of online algorithms,régelarized dual averaging
(RDA) methods, that can exploit the regularization structure more efédgtin an online setting.
In this section, we describe the two types of problems that we consideexatain the motivation
of our work.
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1.1 Regularized Stochastic Learning

The regularized stochastic learning problems we consider are of the ifodjdarm:
minimize {(p(w) 2 E,f(w2)+ ‘-IJ(W)} (1)

wherew € R" is the optimization variable (often callekightsin learning problems) = (x,y) is
an input-output pair of data drawn from an (unknown) underlying distidin, f(w,z) is the loss
function of usingw andx to predicty, and¥(w) is a regularization term. We assurdéw) is
a closed convex function (Rockafellar, 1970, Section 7), and itstefiedomain, don! = {w €
R"|W(w) < +}, is closed. We also assume tHaty, z) is convex inw for eachz, and it is subdif-
ferentiable (a subgradient always exists) on &#énkxamples of the loss functioh'w, z) include:

e Least-squarexc R",yc R, andf(w, (x,y)) = (y—wT"x)2.

e Hinge lossx € R", y e {+1,—1}, andf(w, (x,y)) = max{0,1—y(w'x)}.

e Logistic regressionx € R", ye {+1,—1}, andf (w, (x,y)) = log (1+ exp(—y(w'x))).
Examples of the regularization ter#%(w) include:

e (1-regularization:¥(w) = A|lw||1 with A > 0. With ¢1-regularization, we hope to get a rela-
tively sparse solution, that is, with many entries of the weight vestbeing zeroes.

e (p-regularization:W(w) = (a/2)|\w||3, with ¢ > 0. When/,-regularization is used with the
hinge loss function, we have the standard setup of support vector reachin

e Convex constraints¥(w) is the indicator function of a closed convex ggtthat is,

~ [0, ifwe C,
W) =lc(w) = { +o, otherwise.
We can also consider mixed regularizations such@s) = A||w||1 + (0/2)||w||3. These examples
cover a wide range of practical problems in machine learning.
A common approach for solving stochastic learning problems is to approximaexgected
loss functiong(w) by using a finite set of independent observatians. ., zr, and solve the follow-
ing problem to minimize the empirical loss:

T
mini/gnize it;f(w,zt) +W(w). 2

By our assumptions, this is a convex optimization problem. Depending on tleeusgwf particular
problems, they can be solved efficiently by interior-point methods (e.gisFard Munson, 2003;
Koh et al., 2007), quasi-Newton methods (e.g., Andrew and Gao, 260@}celerated first-order
methods (Nesterov, 2007; Tseng, 2008; Beck and Teboulle, 2009)eV¢r, thidatch optimization
approach may not scale well for very large problems: even with firstrargbthods, evaluating one
single gradient of the objective function in (2) requires going througmth@e data set.
In this paper, we considemline algorithmghat process samples sequentially as they become

available. More specifically, we draw a sequence of i.i.d. samples, z3,..., and use them to
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calculate a sequenea, w,,Ws, ... Suppose at time we have the most up-to-date weight veater
Wheneverz is available, we can evaluate the ld§sw, z), and also a subgradiegt € 0f (W, %)
(hered f (w, z) denotes the subdifferential 6fw, z) with respect tav). Then we computes 1 based
on these information.

The most widely used online algorithm is tetchastic gradient desce(8GD) method. Con-
sider the general casi(w) = I-(w) + Y(w), wherel ~(w) is a “hard” set constraint angl(w) is a
“soft” regularization. The SGD method takes the form

Wes1 = Me(We— 0 (G +&t) ) 3)

whereaq; is an appropriate stepsizg, is a subgradient of) atw;, andl~(-) denotes Euclidean
projection onto the saf. The SGD method belongs to the general schenstazhastic approxima-
tion, which can be traced back to Robbins and Monro (1951) and KiefeWnifbwitz (1952). In
general we are also allowed to use all previous information to compute and even second-order
derivatives if the loss functions are smooth.

In a stochastic online setting, each weight veatpris a random variable that depends on
{z1,...,z_1}, and so is the objective valugw;). Assume an optimal solutiow* to the prob-
lem (1) exists, and lep* = @(w*). The goal of online algorithms is to generate a sequéngg” ;
such that

lim E@(w) = ¢,

t—oo

and hopefully with reasonable convergence rate. This is the case f@GBemethod (3) if we
choose the stepsiz® = c//t, wherec is a positive constant. The corresponding convergence
rate isO(1/+/t), which is indeed best possible for subgradient schemes wlitack-boxmodel,
even in the case of deterministic optimization (Nemirovsky and Yudin, 19833pilesuch slow
convergence and the associated low accuracy in the solutions (convpitndaatch optimization
using, for example, interior-point methods), the SGD method has beempepnyar in the machine
learning community due to its capability of scaling with very large data sets artiggoeeralization
performances observed in practice (e.g., Bottou and LeCun, 2004gZB804; Shalev-Shwartz
et al., 2007).

Nevertheless, a main drawback of the SGD method is its lack of capability inigmxglprob-
lem structure, especially for problems with explicit regularization. Morecifipally, the SGD
method (3) treats the soft regularizatipiw) as a general convex function, and only uses its sub-
gradient in computing the next weight vector. In this case, we can simply lwp into f(w,z)
and treat them as a single loss function. Although in theory the algorithmeogew to an optimal
solution (in expectation) asgoes to infinity, in practice it is usually stopped far before that. Even
in the case of convergence in expectation, we still face (possibly bigjtiars in the solution due
to the stochastic nature of the algorithm. Therefore, the regularizatioct @ffe hope to have by
solving the problem (1) may be elusive for any particular solution geretat€3) based on finite
random samples.

An important example and main motivation for this papefiigegularized stochastic learn-
ing, whereW(w) = A||w||1. In the case of batch learning, the empirical minimization problem (2)
can be solved to very high precision, for example, by interior-point methdderefore simply
rounding the weights with very small magnitudes toward zero is usually ertfoygioduce desired
sparsity. As a resultj;-regularization has been very effective in obtaining sparse solutiang us
the batch optimization approach in statistical learning (e.g., Tibshirani, 198&ignal processing
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(e.g., Chen et al., 1998). In contrast, the SGD method (3) hardly gesemayesparse solution,
and its inherent low accuracy makes the simple rounding approach vegljalnhe. Several prin-
cipled soft-thresholding or truncation methods have been developed tesadtis problem (e.g.,
Langford et al., 2009; Duchi and Singer, 2009), but the levels afsfiypan their solutions are still
unsatisfactory compared with the corresponding batch solutions.

In this paper, we develoggularized dual averagingRDA) methods that can exploit the struc-
ture of (1) more effectively in a stochastic online setting. More specificaligh iteration of the
RDA methods takes the form

t

wt+1:argmin{tl Z(gr,w>+lv(w)+[ith(w)}, 4)
w =1

whereh(w) is an auxiliary strongly convex function, agf; }+>1 is a nonnegative and nondecreas-

ing input sequence, which determines the convergence properties alfjtiréhm. Essentially, at

each iteration, this method minimizes the sum of three terms: a linear function abtajirever-

aging all previous subgradients (the dual average), the originalaréation function®(w), and

an additional strongly convex regularization teffia/t)h(w). The RDA method is an extension of

the simple dual averagingcheme of Nesterov (2009), which is equivalent to lettihgv) be the

indicator function of a closed convex set.

For the RDA method to be practically efficient, we assume that the func#ow$ andh(w) are
simple meaning that we are able to find a closed-form solution for the minimizatiorgimaib (4).
Then the computational effort per iteration is o@n), the same as the SGD method. This assump-
tion indeed holds in many cases. For example, if wéH@t) = A |\w||; andh(w) = (1/2)|\w]||3, then
W11 has an entry-wise closed-from solution. This solution uses a much maresagg truncation
threshold than previous methods, thus results in significantly improvedtypaese discussions in
Section 5).

In terms of iteration complexity, we show thaflif = ©(+/t), that is, with order exactly/t, then
the RDA method (4) has the standard convergence rate

_ G
Eoi) -9 <0( 5 ).

wherew; = (1/t) SL_, w is theprimal average andG is a uniform upper bound on the norms of
the subgradientg;. If the regularization termi(w) is strongly convex, then settirfyy < O(Int)
gives a faster convergence r&@ént/t).

For stochastic optimization problems in which the loss functibfwg z) are all differentiable
and have Lipschitz continuous gradients, we also develop an acceleeaséxh of the RDA method
that has the convergence rate

Epw) — ¢ <O(1) (tl'z + %) ,

whereL is the Lipschitz constant of the gradients, a@tlis an upper bound on the variances of
the stochastic gradients. In addition to convergence in expectation, wetlshiothe same orders of
convergence rates hold with high probability.
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1.2 Regularized Online Optimization

In online optimizationwe use an online algorithm to generate a sequence of decisjpose at
atime, fort =1,2,3,.... At each timet, a previously unknown cost functiofa is revealed, and
we encounter a los§(w). We assume that the cost functiofisare convex for alt > 1. The
goal of the online algorithm is to ensure that the total cost up to eachttirzﬁp;l fr(wy), is not
much larger than mipst_; f:(w), the smallest total cost of any fixed decisirfrom hindsight.
The difference between these two cost is calledréigeet of the online algorithm. Applications of
online optimization include online prediction of time series and sequential inves{mgn Cesa-
Bianchi and Lugosi, 2006).

In regularized online optimization, we add a convex regularization téiw) to each cost
function. The regret with respect to any fixed decisioa domW is

t

Z (fr(w) +W(w)). (5)

=

w) £ i T(we) +W(wy)) —

As in the stochastic setting, the online algorithm can query a subgraglierdf;(w;) at each step,
and possibly use all previous information, to compute the next decigion It turns out that the
simple subgradient method (3) is well suited for online optimization: with a stepsize®(1//1),

it has a regreR (w) < O(+/t) for all w € domW (Zinkevich, 2003). This regret bound cannot be
improved in general for convex cost functions. However, if the casttions are strongly convex,
say with convexity parametex, then the same algorithm with stepstze= 1/(ot) gives anO(Int)
regret bound (e.g., Hazan et al., 2006; Bartlett et al., 2008).

Similar to the discussions on regularized stochastic learning, the onlinessligagirmethod (3)
in general lacks the capability of exploiting the regularization structure.isrptper, we show that
the same RDA method (4) can effectively exploit such structure in an onditimg, and ensure
the O(+1/t) regret bound wittB; = ©(+/t). For strongly convex regularizations, settig= O(Int)
yields the improved regret bour@Int).

Since there is no specifications on the probability distribution of the sequérigections, nor
assumptions like mutual independence, online optimization can be considesethare general
framework than stochastic learning. In this paper, we will first establigietdounds of the RDA
method for solving online optimization problems, then use them to derive ageves rates for
solving stochastic learning problems.

1.3 Outline of Contents

The methods we develop apply to more general settings RYawith Euclidean geometry. In
Section 1.4, we introduce the necessary notations and definitions assavitite general finite-
dimensional real vector space.

In Section 2, we present the generic RDA method for solving both the sticthaarning and
online optimization problems, and give several concrete examples of theanetho

In Section 3, we present the precise regret bounds of the RDA methadlfong regularized
online optimization problems.

In Section 4, we derive convergence rates of the RDA method for solegugarized stochastic
learning problems. In addition to the rates of convergence in expectatioalsovgive associated
high probability bounds.
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In Section 5, we explain the connections of the RDA method to several relatrigdand analyze
its capability of generating better sparse solutions than other methods.

In Section 6, we give an enhanced version of i kDA method, and present computational
experiments on the MNIST handwritten data set (LeCun et al., 1998). Xparienents show that
the RDA method is capable of generate sparse solutions that are comgartitdee obtained by
batch learning using interior-point methods.

In Section 7, we discuss the RDA methods in the contestrictural convex optimizatioand
their connections to incremental subgradient methods. As an extensialevei®p an accelerated
version of the RDA method for stochastic optimization problems with smooth lossidas. We
also discuss in detail the-norm based RDA methods.

Appendices A-D contain technical proofs of our main results.

1.4 Notationsand Generalities

Let £ be a finite-dimensional real vector space, endowed with a forin This norm defines a
systems of ballsB(w,r) = {ue E||lu—w]|| <r}. Let E* be the vector space of all linear functions
on ‘£, and let(s,w) denote the value af€ E* atw € E. The dual spac&* is endowed with the
dual norm|[s||. = maxy<1(s,W).

A functionh: £ — RU {+} is calledstrongly convexvith respect to the norrj- || if there
exists a constard > 0 such that

h(aw-+ (1 — a)u) < ah(w) + (1 — a)h(u) — iz’a(l_ a)w—ul?,  vwue domh.

The constant is called theconvexity parameteror the modulusof strong convexity. Let ring
denote theelative interiorof a convex set” (Rockafellar, 1970, Section 6). ffis strongly convex
with moduluso, then for anyw € domh andu € rint (domh),

h(w) > h(u)+<s,w-u>+gHW—uH2, Vs e oh(u).

See, for example, Goebel and Rockafellar (2008) and Juditsky amddeski (2008).

In the special case of the coordinate vector space R", we haveZ = £*, and the standard
inner product(s,w) = s'w = 3, swl), wherew()) denotes the-th coordinate ofw. For the
standard Euclidean normiw|| = [|w||2 = v/(W,w) and||s||. = ||s||2. For anywp € R", the function
h(w) = (a/2)|lw—wp||3 is strongly convex with modulus.

For another example, consider thgnorm ||w|| = [|w||; = 3, |w()| and its associated dual
norm |w||, = [W]|e = max<i<n|wW®|. Let S, be the standard simplex iR", that is,
Sn={weR1|y",wl =1} Then the negative entropy function

n . .
h(w) = Zwm Inwt) +Inn, (6)
i=

with domh = §,,, is strongly convex with respect {o || with modulus 1 (see, e.g., Nesterov, 2005,
Lemma 3). In this case, the unique minimizethaé wo = (1/n,...,1/n).

For a closed proper convex functidp, we use Argmip¥(w) to denote the (convex) set of
minimizing solutions. If a convex functioh has a unique minimizer, for example, whbrs
strongly convex, then we use argim(w) to denote that single point.
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Algorithm 1 Regularized dual averaging (RDA) method

input:
e an auxiliary functiorh(w) that is strongly convex on do¥ and also satisfies

argminh(w) € Argmin¥(w). (7)
w w
e a nonnegative and nondecreasing sequéfci>1.

initialize: setw; = argmin, h(w) andgo = 0.

fort=1,2,3,...do
1. Given the functiorf;, compute a subgradiegte 0 fi(w).
2. Update the average subgradient:

_ t-1_ n 1
0= e O-1 tgt'
3. Compute the next weight vector:

Weiq = argwmin{ (O, W) +W(w) + %h(w)} . (8)

end for

2. Regularized Dual Averaging Method

In this section, we present the generic RDA method (Algorithm 1) for solsggglarized stochastic
learning and online optimization problems, and give several concrete éesni unify notation,
we usefi(w) to denote the cost function at each stepor stochastic learning problems, we simply
let fr(w) = f(w,z).

At the input to the RDA method, we need an auxiliary functiothat is strongly convex on
domW. The condition (7) requires that its unique minimizer must also minimize the recatiariz
functionW. This can be done, for example, by first choosing a starting pajret Arg min,, W(w)
and an arbitrary strongly convex functibi{w), then letting

h(w) = h'(w) — h (wp) — (Oh' (Wp), W — Wo).

In other wordsh(w) is theBregman divergendeom wg induced by (w). If h' is not differentiable,
but subdifferentiable ati, we can replacélh’(wp) with a subgradient. The input sequer@e}t>1
determines the convergence rate, or regret bound, of the algorithm.

There are three steps in each iteration of the RDA method. Step 1 is to compuiigradient
of f; atw, which is standard for all subgradient or gradient based methods. S$eih@ online
version of computing the average subgradient:

_ 1
QZZE’E:QP

=1

The namedual averagingcomes from the fact that the subgradients live in the dual s@dce
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Step 3 is most interesting and worth further explanation. In particular, flogeety in com-
putingw; .1 determines how useful the method is in practice. For this reason, we asseimegth
ularization functiong?(w) andh(w) aresimple This means the minimization problem in (8) can
be solved with little effort, especially if we are able to find a closed-form sotudtow; . ;. At first
sight, this assumption seems to be quite restrictive. However, the examplesdieey that this
indeed is the case for many important learning problems in practice.

2.1 RDA Methodswith General Convex Regularization

For a general convex regularizatit we can choose any positive sequeffigl>1 that is order
exactly/t, to obtain arD(1/+/t) convergence rate for stochastic learning, 0©axy't) regret bound
for online optimization. We will state the formal convergence theorems in Secsi@md 4. Here,
we give several concrete examples. To be more specific, we cho@saragiery > 0 and use the
sequence

Br=wit, t=123....

e Nesterov's dual averaging methodlet W(w) be the indicator function of a closed convex
setC. This recovers thaimple dual averagingcheme in Nesterov (2009). If we choose
h(w) = (1/2)|w||3, then the Equation (8) yields

t

When C = {w € R"|||w||1 < &} for somed > 0, we have “hard”;-regularization. In this
case, although there is no closed-form solutionvipr;, efficient algorithms for projection
onto the/1-ball can be found, for example, in Duchi et al. (2008).

e “Soft” ¢;-regularization.Let W(w) = A|\w]||, for someA > 0, andh(w) = (1/2)||w||3. In this
casew; .1 has a closed-form solution (see Appendix A for the derivation):

0 if g <,

() .
W = _ _ i=1...,n (10)
o vt (g_t(') —A sgn(gt'))) otherwise

Here sgi-) is thesign or signumfunction, that is, sgfw) equals 1 ifw > 0, —1 if w < 0,
and 0 ifw = 0. Whenever a component gf is less thar\ in magnitude, the corresponding
component ofa 1 is set to zero. Further extensions of theRDA method, and associated
computational experiments, are given in Section 6.

e Exponentiated dual averaging methodet W(w) be the indicator function of the standard
simplexs$,, andh(w) be the negative entropy function defined in (6). In this case,

M _ 1 ( vi 4i>> P

W, = —exp| —— , i=1,...,n,
1z P Y &

whereZz; 1 is a normalization parameter such tlzélglwt(zl = 1. This is the dual averaging

version of the exponentiated gradient algorithm (Kivinen and Warmu®v 1 See also Tseng

and Bertsekas (1993) and Juditsky et al. (2005). We note that this éx@&@mbso covered by

Nesterov’s dual averaging method.
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We discuss in detail the special casepafiorm RDA method in Section 7.2. Several other exam-
ples, including/.-norm and a hybrid; /¢>-norm Berhy regularization, also admit closed-form
solutions forw 1. Their solutions are similar in form to those obtained in the context of teds
algorithm in Duchi and Singer (2009).

2.2 RDA Methodswith Strongly Convex Regularization

If the regularization term¥(w) is strongly convex, we can use any nonnegative and nondecreas-
ing sequencé Bt }1>1 that grows no faster tha@(Int), to obtain anO(Int/t) convergence rate for
stochastic learning, or a@(Int) regret bound for online optimization. For simplicity, in the fol-
lowing examples, we use the zero sequefce O for allt > 1. In this case, we do not need the
auxiliary functionh(w), and the Equation (8) becomes

W1 = arngin{@,w> +W(w)}.

e (3-regularization.Let W(w) = (0/2)||w||3 for someo > 0. In this case,

1_ 1
VW+1—-—7§gt—-“6{;Z;gr

e Mixed ¢1/¢3-regularization. Let W(w) = A||w||1 + (0/2)||w]|3 with A > 0 ando > 0. In this
case, we have

. | it |G <A,

| .

Wi = : . i=1,...,n
’ —% (g_t(') —A sgr’(gt'))> otherwise

e Kullback-Leibler (KL) divergence regularizatiohet W(w) = oDk (w||p), where the given
probability distributionp € rint.$,, and

no (i)
D Wip) 2 Swiin( Y,
KL( Hp) i; ( p(|)

HereDk_ (w||p) is strongly convex with respect tw||; with modulus 1. In this case,

. 1 ) 1 i
Wt(l-al = Zth(')EXP<—O§t(I)) ;

whereZ; 1 is a normalization parameter such tlﬁglwt(ﬁl = 1. KL divergence regulariza-
tion has thgseudo-sparsitgffect, meaning that most elementsarcan be replaced by ele-
ments in the constant vectpmwithout significantly increasing the loss function (e.g., Bradley
and Bagnell, 2009).
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3. Regret Boundsfor Online Optimization

In this section, we give the precise regret bounds of the RDA methoafang regularized online
optimization problems. The convergence rates for stochastic learningpr®ioan be established
based on these regret bounds, and will be given in the next sectiomldfity, we gather here the
general assumptions used throughout this paper:

e The regularization terr?(w) is a closed proper convex function, and déns closed. The
symboloc is dedicated to the convexity parametekbfWithout loss of generality, we assume
miny ¥ (w) = 0.

e For eacht > 1, the functionf;(w) is convex and subdifferentiable on d&m

e The functionh(w) is strongly convex on do, and subdifferentiable on ritdomW¥). With-
out loss of generality, assurhéw) has convexity parameter 1 and maim(w) = 0.

We will not repeat these general assumptions when stating our fornudtksriser.
To facilitate regret analysis, we first give a few definitions. For anystamtD > 0, we define
the set
Fo = {we dom¥ | h(w) < D?},

and let

b= sup inf [gls. (11)

o=sup inf il
We use the convention igfy ||9||« = +, where0 denotes the empty set. As a resulti#fis not
subdifferentiable everywhere ¢fb, that is, ifo¥(w) = 0 at somew € 7p, then we havé p = +o.
Note thatlp is not a Lipschitz-type constant which would be required to be an uppardoon all
the subgradients; instead, we only require that at least one subgdrisdiennded in norm bi/p at
every point in the sefp.
We assume that the sequence of subgradignis-1 generated by Algorithm 1 is bounded, that

is, there exist a consta such that

lgtll« <G, Vt>1. (12)

This is true, for example, if doM is compact and each has Lipschitz-continuous gradient on
domW¥. We require that the input sequenid® }:~1 be chosen such that

max{c, B1} >0, (13)

whereo is the convexity parameter & (w). For convenience, we I = max{o,B1} and define
the sequence oégret bounds

N 2 BD?+

2t-1 _ 2
G 1 2((30 Bl)G’ t=123,..., (14)

= +
2 4&,01+p; B1+0)2

whereD is the constant used in the definitions$. We could always sdt; > o, so thaf3; = 3; and
therefore the term Bo — B1)G?/(B1 + 0)? vanishes in the definition (14). However, when> 0,
we would like to keep the flexibility of setting; = 0 for allt > 1, as we did in Section 2.2.
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Theorem 1 Let the sequenceaw }i>1 and{g: }t>1 be generated by Algorithm 1, and assume (12)
and (13) hold. Then for any* 1 and any we 7p, we have:

(&) The regret defined in (5) is boundedMy that is,

R(w) <A (15)

(b) The primal variables are bounded as

W41 —wi? <

ot B (A —R(w)). (16)

(c) If wis an interior point, that isB(w,r) C %p for some r> 0, then

_ 1 1
|Gl < o — 501 + = (&~ R(w)). (17)

In Theorem 1, the bounds djw; 1 —w]||?> and||g||. depend on the regré (w). More pre-
cisely, they depend ofy; — R (w), which is theslackof the regret bound in (15). A smaller slack
is equivalent to a larger regr&(w), which meanav is a betteifixed solution for the online opti-
mization problem (the best one gives the largest regret); corresmindime inequality (16) gives
a tighter bound ofiw; 1 —w]||%. In (17), the left-hand sidgg . does not depend on any particular
interior pointw to compare with, but the right-hand side depends on Botiw) and how farw is
from the boundary offp. The tightest bound ofig;||. can be obtained by taking the infimum of
the right-hand side over alv € int /5. We further elaborate on part (c) through the following two
examples:

e Consider the case whé# is the indicator function of a closed convex gét In this case,
o = 0 andd¥(w) is the normal coneto C at w (Rockafellar, 1970, Section 23). By the
definition (11), we hav€p = 0 because the zero vector is a subgradient at every”, even
though the normal cones can be unbounded at the boundarylothis case, ifB(w,r) C %p
for somer > 0, then (17) simplifies to

| =

1G]l < = (B = Re(w)).

—

r

e Consider the functio®(w) = oDk (w|| p) with domW¥ = §, (assumingp € rint$,). In this
case, dor¥, and hencefp, have empty interior. Therefore the bound in part (c) does not
apply. In fact, the quantityp can be unbounded anyway. In particular, the subdifferentials
of W at the relative boundary ¢f, are all empty. In the relative interior ¢, the subgradients
(actually gradients) o¥ always exist, but can become unbounded for points approaching the
relative boundary. Nevertheless, the bounds in parts (a) and (b)adll h

The proof of Theorem 1 is given in Appendix B. In the rest of this sectws discuss more
concrete regret bounds depending on whether okhiststrongly convex.
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3.1 Regret Bound with General Convex Regularization

For a general convex regularization tek) any nonnegative and nondecreasing sequ@nce
O(v/1) gives anO(y/t) regret bound. Here we give detailed analysis for the sequence used in
Section 2.1. More specifically, we choose a consyan) and let

Br=ywt  Vvt>1 (18)
We have the following corollary of Theorem 1.

Corollary 2 Let the sequencen }i>1 and {g }t>1 be generated by Algorithm 1 usiqd: }i>1
defined in (18), and assume (12) holds. Then for amyitand any we 7p:

(&) The regretis bounded as
G2
Re(w) < <yD2+y> Vi
(b) The primal variables are bounded as

1 G2 1
Sl —wi? <D+ 5 — = R(w).

¥y
(c) If wis an interior point, that isB(w,r) C p for some r> 0, then

2
Il <o+ (024 5 ) % - TR

Proof To simplify regret analysis, ley > 0. Thereforefo = 1 = VY. ThenA; defined in (14)
becomes

t—1 1
At—y\/D2+— 1+z .
Next using the inequality
21 ‘1o
—§1+/ —dt=2vt-1,
DAV R AV
we get
2, G 2, G
A < YWD +E(1+(2ﬁ—1)): YOI+ Vit

Combining the above inequality and the conclusions of Theorem 1 provesitbiary. |

The regret bound in Corollary 2 is essentially the same asriliee gradient descembhethod of
Zinkevich (2003), which has the form (3), with the stepsize= 1/(yy/t). The main advantage of
the RDA method is its capability of exploiting the regularization structure, as slm@ection 2.

The parameter® andG are not used explicitly in the algorithm. However, we need good estimates
of them for choosing a reasonable valueyoT he besy that minimizes the expressig? + G?/y
is
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which leads to the simplified regret bound

R (W) < 2GDvA.

If the total number of online iterationk is known in advance, then using a constant stepsize in the
classical gradient method (3), say

1 /2 D /2
==y JE=Z5  wvt=1..T 19
“=vVT VT el (19)

gives a slightly improved bounigr (w) < v/2GDV/T (see, e.g., Nemirovski et al., 2009).

The bound in part (b) does not converge to zero. This result is stilldstieig because there is
no special caution taken in the RDA method, more specifically in (8), to enlsarBoundedness
of the sequencex. In the casé¥(w) = 0, as pointed out by Nesterov (2009), this may even look
surprising since we are minimizing ovér the sum of a linear function and a regularization term
(y/+/t)h(w) that eventually goes to zero.

Part (c) gives a bound on the norm of the dual averag& (V) is the indicator function of a
closed convex set, thdi, = 0 and part (c) shows that actually converges to zero if there exist an
interiorw in 7p such thaR (w) > 0. However, a properly scaled versiongf —(1/t/y)g, tracks
the optimal solution; see the examples in Section 2.1.

3.2 Regret Boundswith Strongly Convex Regularization

If the regularization functio¥(w) is strongly convex, that is, with a convexity parameter O,
then any nonnegative, nondecreasing sequence that sgisfied(Int) will give an O(Int) regret
bound. If{ };>1 is not the all zero sequence, we can simply choose the auxiliary furfton=
(1/0)W(w). Here are several possibilities:

¢ Positive constant sequencésr simplicity, letB; = o fort > 0. In this case,

GZt—l 1 GZ
N =0D?+ —§ —— < oD%+ —(1+Int).
t=9 +20T;r+1_0 +20(+ )

e Logarithmic sequenceset f; = a(1+Int) fort > 1. In this casefop = 31 = 0 and

A—o(1+|nt)D2+G—2 1+H; < oD2+G—2 (1+Int)
T 20 TerJrlJrInr - 20 '

e The zero sequencket 3 =0 fort > 1. In this casef}p = o and

G 1), 2% G
A=—-[1 = |+ = < ==(6+Int). 20
‘ 20<+T21T>+0_20(+n) (20)

Notice that in this last case, the regret bound does not depeBd on
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WhenW is strongly convex, we also conclude that, given two different paitsdv, the regrets
R:(u) andR;(v) cannot be nonnegative simultaneously i§ large enough. To see this, we notice
that if R (u) andR; (v) are nonnegative simultaneously for someaen part (b) of Theorem 1 implies

Int Int
uwtﬂ—usto(t), and vat+1—vngo(t>,

which again implies

Int

2

Ju=vI? < (s —ul + otea ~vi)? < O ().
Therefore, if the everi® (u) > 0 andR;(v) > 0 happens for infinitely manty we must haves = v.

If u#v, then eventually at least one of the regrets associated with them will becegadive.
However, it is possible to construct sequences of functipssich that the points with nonnegative
regrets do not converge to a fixed point.

4. Convergence Ratesfor Stochastic Learning

In this section, we give convergence rates of the RDA method when it tstassolve the regular-
ized stochastic learning problem (1), and also the related high probabilitydso These rates and
bounds are established not for the individugb generated by the RDA method, but rather for the
primal average

_ 1

Wt:azlwr, t>1.

4.1 Rate of Convergencein Expectation

Theorem 3 Assume there exists an optimal solutiontevthe problem (1) that satisfiega) < D?
for some D> 0, and letg* = @(w*). Let the sequenceSn }i~1 and {g:}t>1 be generated by
Algorithm 1, and assume (12) holds. Then for any1, we have:

(a2) The expected cost associated with the random variabis bounded as

1
Epw) — @ < fAt.
(b) The primal variables are bounded as
E Wy — W% < 2_p
t+1 = ot+ Bt t -

(c) If wris an interior point, that isB(w*,r) C #p for some r> 0, then

_ 1 1
E <Ip—=or+ —A.
|Gl <o~ 50r+ 2

2556



REGULARIZED DUAL AVERAGING METHODS

Proof First, we substitute alf(-) by f(-,z) in the definition of the regret

R(W') = t (f(we,zo) +W(wy)) i (W, z) +WP(w)).

=1 =1

Letz[t] denote the collection of i.i.d. random variables, . . .,z). All the expectations in Theorem 3
are taken with respect tjt], that is, the symbdE can be written more explicitly a,y . We note
that the random variable;, where 1< 1t <t, is a function of(z,...,z_1), and is independent of
(z,...,%). Therefore

Ez[t] (f(WTaZT)+qJ(WT)) = Ez[Tfl} (Esz(WhZT)‘FLP(WT)) = Ez[rfl](p(wr) = EZM(p(WT)a

and
Eap (f(W,z0) + W(W)) = B (W', z) + W(W") = g(w") = ¢
Sinceq" = @(w*) = miny @(w), we have

t
EzR(W) = > Egzne(w) —tg" > 0. (21)
=1

By convexity of@, we have

“oftgw) <15

Taking expectation with respect #ft] and subtracting*, we have

t
Em@ﬂrﬂﬁgi<zEm@M%4@>=%EMMW)
=1

Then part (a) follows from that of Theorem 1, which states Rawv*) < A; for all realizations
of z[t]. Similarly, parts (b) and (c) follow from those of Theorem 1 and (21). |

Specific convergence rates can be obtained in parallel with the regnetibdiscussed in Sec-
tions 3.1 and 3.2. We only need to divide every regret bountltbyobtain the corresponding rate
of convergence in expectation. More specifically, using appropriafeesees{; }>1, we have
Eg@(w;) converging tog* with rate O(1/+/t) for general convex regularization, a@{Int/t) for
strongly convex regularization.

The bound in part (b) applies to both the case 0 and the case > 0. For the latter, we can
derive a slightly different and more specific bound. WHKehas convexity parameter > 0, so is
the functiong. Therefore,

o
P(w) 2CP(W*)+<S,Wt—W*>+§HWt—W*||2, Vse ap(w).

Sincew* is the minimizer ofp, we must have @& dg(w*) (Rockafellar, 1970, Section 27). Setting
s=0in the above inequality and rearranging terms, we have

It~ w12 < 2 (glwe) — ).
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Taking expectation of both sides of the above inequality leads to

° (Egw) —¢") < 24 22)

Ellw —w %< =
[t ch(

where in the last step we used part (a) of Theorem 3. This bound diretdtgw; to 4.
Next we take a closer look at the quanti&jfw; —w*||2. By convexity of| - |2, we have

E[|W —w*|? <

=

t

S Elwe —w*? (23)
=1
If 0 =0, then itis simply bounded by a constant because Efeh —w*||? for 1 < t <t is bounded
by a constant. Whea > 0, the optimal solutionv* is unique, and we have:

Corollary 4 If W is strongly convex with convexity parameter- 0 and3; = O(Int), then

mm—wwsoCTV)

Proof For the ease of presentation, we consider the Base0 for allt > 1. Substituting the bound
on4; in (20) into the inequality (22) gives

(6+Int) G2

E kw7 < ST

vt > 1

Then by (23),
_ 1L /6 Int\G 1 1 G?
Elw —W[?<ZY (=+— | = <= (6(1+Int)+=(Int)? ) =;.
i —wt< ¢ 3 (30 ) & < 1 (g + 50n0?) &

In other words E||w —w*||2 converges to zero with ra®((Int)?/t). This can be shown for any
Bt = O(Int); see Section 3.2 for other choicesfhf [

As a further note, the conclusions in Theorem 3 still hold if the assumptigngi&akened to
Elal?<G?  vt>1 (24)

However, we need (12) in order to prove the high probability boundsepited next.

4.2 High Probability Bounds

For stochastic learning problems, in addition to the rates of convergengpéatation, it is often
desirable to obtain confidence level bounds for approximate solutionsthisqourpose, we start
from part (a) of Theorem 3, which statBg(w; ) — ¢* < (1/t)A;. By Markov’s inequality, we have
for anye > 0,
_ JAY
Prob(@(w) — ¢" > €) < s—i (25)

This bound holds even with the weakened assumption (24). However,dsshpe to have much
tighter bounds under more restrictive assumptions. To this end, we hal@lthneng result.
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Theorem 5 Assume there exist constants D and G such tifat h< D?, and Hw) < D? and
llot|l« < G forallt > 1. Then for anyd € (0,1), we have, with probability at leadt— 9,

« . A, 8GDy/In(1/3)

PW) — " = - 7 , vt>1l (26)
Theorem 5 is proved in Appendix C.

From our results in Section 3.1, with the input sequeice y/t for all t > 1, we havely, =
O(+/t) regardless ob = 0 or o > 0. Thereforeg(w) — @ = O(1/+/t) with high probability. To
simplify further discussion, ley = G/D, hencel; < 2GDv/t (see Section 3.1). In this case, if
0 < 1/e~ 0.368, then with probability at least-19,

o) < 1OGD\\//L n(1/8)

Lettinge = 10GD,/In(1/d)/+/t, then the above bound is equivalent to

2
Prob(e(i) ¢ > £) < exp( 1055 ).
which is much tighter than the one in (25). It follows that for any chosenracye and 0< 6 < 1/e,
the sample size
10GD)?In(1/3)
2
guarantees that, with probability at least d, w; is ane-optimal solution of the original stochastic
optimization problem (1).

WhenW is strongly convexd > 0), our results in Section 3.2 show that we can obtain regret
boundsA; = O(Int) usingB: = O(Int). However, the high probability bound in Theorem 5 does not
improve: we still havep(w; ) — ¢* = O(1/+/t), not O(Int/t). The reason is that the concentration
inequality (Azuma, 1967) used in proving Theorem 5 cannot take adyaofahe strong-convexity
property. By using a refined concentration inequality due to Freedm&ib),\Rakade and Tewari
(2009, Theorem 2) showed that for strongly convex stochastic lepmisblems, with probability
at least 1- 45Int,

__RWw) VRW) [GIn(1/3) 1662 ) In(1/3)
I +4 n \/ = +max{0,6B} T

tZ(

In our context, the constail is an upper bound ofi(w, z) + ®(w) for w € #p. Using the regret
boundR(w*) < Ay, this gives

) = g < Att+o< AIn(L/3) In(1/6)> |

t t
Here the constants hidden in tBenotation are determined Iy, o andD. Plugging inA; = O(Int),

we haveg(w;) — ¢ = O(Int/t) with high probability. The additional penalty of getting the high
probability bound, compared with the rate of convergence in expectationlyi(v/Int/t).

2559



XI1AO

5. Related Work

As we pointed out in Section 2.1, W is the indicator function of a convex sg€} then the RDA

method recovers the simple dual averaging scheme in Nesterov (2009.sfdctial case also
belongs to a more general primal-dual algorithmic framework developechbie®Shwartz and
Singer (2006), which can be expressed equivalently in our notation:

1 t
Wiiq = argmind —— d‘,w>+hw},
o v?ec n{V\/f<Tzl ' W)

where(d},...,d}) is the set of dual variables that can be chosen attirffibe simple dual averaging
scheme (9) is in fact thpassiveextreme of their framework in which the dual variables are simply
chosen as the subgradients and do not change over time, that is,

d=g, Vvi<t, vt>1 (27)

However, with the addition of a general regularization t&mv) as in (4), the convergence analysis
andO(+/t) regret bound of the RDA method dwt follow directly as corollaries of either Nesterov
(2009) or Shalev-Shwartz and Singer (2006). Our analysis in Appdéhdxtends the framework
of Nesterov (2009).

Shalev-Shwartz and Kakade (2009) extended the primal-dual frark@f8halev-Shwartz and
Singer (2006) to strongly convex functions and obtai@¢hht) regret bound. In the context of this
paper, their algorithm takes the form

1 t
Wey1 = argmirk — d‘,w>+hw},
o= 53 )

whereo is the convexity parameter 6P, andh(w) = (1/0)W(w). The passive extreme of this
method, with the dual variables chosen in (27), is equivalent to a spesalaf the RDA method
with By =0 for allt > 1.

Other than improving the iteration complexity, the idea of treating the regularizeiolcitly
in each step of a subgradient-based method (instead of lumping it together avittsthfunction
and taking their subgradients) is mainly motivated by practical considerasonh as obtaining
sparse solutions. In the casefgfregularization, this leads to soft-thresholding type of algorithms,
in both batch learning (e.qg., Figueiredo et al., 2007; Wright et al., 2008]iBs and Lorenz, 2008;
Beck and Teboulle, 2009) and the online setting (e.g., Langford et al9; ZD@chi and Singer,
2009; Shalev-Shwartz and Tewari, 2009). Most of these algorithmbearewed as extensions of
classical gradient methods (including mirror-descent methods) in whiahetlvéterate is obtained
by stepping from the current iterate along a single subgradient, anddhewdd by a truncation.
Other types of algorithms include an interior-point based stochastic dapmti@n scheme by Car-
bonetto et al. (2009), and Balakrishnan and Madigan (2008), whewediied shrinkage algorithm
is developed based on sequential quadratic approximations of the lasi®fun

The main point of this paper, is to show that dual-averaging based methobs ozore effective
in exploiting the regularization structure, especially in a stochastic or onlitiegseTo demonstrate
this point, we compare the RDA method with thedos method studied in Duchi and Singer
(2009). In an online setting, each iteration of thed®s method consists of the following two
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steps:

Wpr% = Wy — OO,

2
W1 = argwmin{; HW—WH% 2+atw(w)} .
For convergence with optimal rates, the stepsizés set to bed(1/+/t) for general convex reg-
ularizations andd(1/t) if W is strongly convex. This method is based on a technique known as
forward-backward splittingwhich was first proposed by Lions and Mercier (1979) and later an-
alyzed by Chen and Rockafellar (1997) and Tseng (2000). For @asparison with the RDA
method, we rewrite the&B8osmethod in an equivalent form

. 1
wt+1:argm|n{<gt,w>+w(w)+2]W—Wtyg}. (28)
w Q¢

Compared with this form of thedBosmethod, the RDA method (8) uses the average subgraglient
instead of the current subgradiegt it uses a global proximal function, sdyw) = (1/2)||w|3,
instead of its local Bregman divergen(®/2) |w — w||3; moreover, the coefficient for the proximal
function isf; /t = ©(1/+/t) instead of Ya; = ©(+/t) for general convex regularization, a@dint /t)
instead ofO(t) for strongly convex regularization. Although these two methods have the seder

of iteration complexity, the differences list above contribute to quite diftepeoperties of their
solutions.

These differences can be better understood in the special casesgfularization, that is, when
W(w) = A||w||1. In this case, the &80s method is equivalent to a special case of Thencated
Gradient(TG) method of Langford et al. (2009). The TG method truncates the sofutibtained
by the standard SGD method evdfysteps; more specifically,

(0 { trnc(wt(') — atgt('),)\tTG,G) if mod(t,K) =0, (29)

t+1 — (i)

wt(i) — O(tgti otherwise,

where\[® = a;AK, modt, K) is the remainder on division ofby K, and

0 if |0 < AT,
trnc(w,A\{®,8) = { w—ACsgnw) if \[® < |w| <8,
W if || > 6.

WhenK = 1 andd = 4, the TG method is the same as the#osmethod (28) witl/1-regularization.
Now comparing the truncation threshdli® and the threshold used in the/;-RDA method (10):
with a; = ©(1/+/1), we have\{® = ©(1//1)A. ThisO(1//1) discount factor is also common for
other previous work that use soft-thresholding, including Shalev-8awad Tewari (2009). It is
clear that the RDA method uses a much more aggressive truncation threbheld able to gener-
ate significantly more sparse solutions. This is confirmed by our computa@gpeafiments in the
next section.

Most recently, Duchi et al. (2010) developed a family of subgradietthaus that can adaptively
modifying the proximal function (squared Mahalanobis norms) at eacHideran order to better
incorporate learned knowledge about geometry of the data. Their meth@ddarextensions for
both the mirror-descent type of algorithms like (28) and the RDA methods studtbis paper.
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Algorithm 2 Enhanced1-RDA method
Input: y>0,p>0
Initialize: w; = 0,90 =0.
fort=1,2,3,...do
1. Given the functiorf;, compute subgradiet € 0 f;(w).
2. Compute the dual average

Sl 1
G = e O-1 n G-
3. LetARPA =\ +yp/\A, and computev ., ; entry-wise:

. o if g < aFon,

Wy = \ﬁ< i=1....n (30)

. @(i)_)\tRDAsgn(gli))) otherwise

end for

6. Computational Experimentswith ¢1-Regularization

In this section, we provide computational experiments off(hRRDA method on the MNIST data
set of handwritten digits (LeCun et al., 1998). Our purpose here is mainlustrate the basic
characteristics of thé -RDA method, rather than comprehensive performance evaluation orea wid
range of data sets. First, we describe a variant of/{fieDA method that is capable of getting
enhanced sparsity in the solution.

6.1 Enhanced ¢/1-RDA Method

The enhanced;-RDA method shown in Algorithm 2 is a special case of Algorithm 1. It is ativ
by setting¥(w) = A||w||1, Bt = yv/t, and replacindi(w) with a parameterized version

1
hp(w) = §||W||%+p\|WH17 (31)

wherep > 0 is asparsity-enhancingarameter. Note théi, (w) is strongly convex with modulus 1
for anyp > 0. Hence the convergence rate of this algorithm is the same as if we ch@ose-
(1/2)|lw||3. In this case, the Equation (8) becomes

B (= Y (1, 2
iz = argminf (@) -+ \lwl-+ % (Gl + piwl ) |

_ . ARDA Y 2
argminf (@) + NP wls + 5V w3 .

whereARPA = A 4-yp/+/t. The above minimization problem has a closed-form solution given in (30)
(see Appendix A for the derivation). By letting> 0, the effective truncation thresholrf is
larger tham, especially in the initial phase of the online process. For problems withglitix;-
regularization in the objective function, that is, wheg- 0, this still gives a diminishing truncation

thresholdyp/ /1.
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Figure 1: Sample images from the MNIST data set, with gray-scale from 0&to 25

We can also restriat;-regularization on part of the optimization variables only. For example,
in support vector machines or logistic regression, we usually want thetdriass to be free of
regularization. In this case, we can simply replaf&” by 0 for the corresponding coordinates
in (30).

6.2 Experimentson the MNIST Data Set

Each image in the MNIST data set is represented by a 28 gray-scale pixel-map, for a total of
784 features. Each of the 10 digits has roughly 6,000 training examplds@@@itesting examples.
Some of the samples are shown in Figure 1. From the perspective of tigaiastic and online
algorithms, the number of features and size of the data set are consigeyesnall. Nevertheless,
we choose this data set because the computational results are easylipevidl@preprocessing of
the data is employed.

We usef;-regularized logistic regression to do binary classification on each of 3heaits
of digits. More specifically, lez = (x,y) wherex € R8 represents a gray-scale image and
{+1,—1} is the binary label, and lat = (W,b) wherew € R"8* andb is the bias. Then the loss
function and regularization termin (1) are

f(w2) =log(1+exp(—y(W x+b))),  W(w)=A|W|}:.

Note that we do not apply regularization on the bias térnin the experiments, we compare the
(enhanced¥1-RDA method (Algorithm 2) with the SGD method

Wfﬁlzwtm—ut (gt(')+)\sgr(wt('))>, i=1,....n,
and the TG method (29) with = «. These three online algorithms have similar convergence rates
and the same order of computational cost per iteration. We also comparewitierthe batch
optimization approach, more specifically solving the empirical minimization probBmsing an
efficient interior-point method (IPM) of Koh et al. (2007).

Each pair of digits have about 12,000 training examples and 2,000 testimpkesa We use
online algorithms to go through the (randomly permuted) data only once, dherttie algorithms
stop atT = 12,000. We vary the regularization paramekefrom 0.01 to 10. As a reference, the
maximumA for the batch optimization case (Koh et al., 2007) is mostly in the range -ef580(be-
yond which the optimal weights are all zeros). In theRDA method, we usg= 5,000, and sep to
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A=0.01 A=0.03 =

SGD
Wr
TG
Wr
RDA L
Wr

E*

W)

IPIVI--.....

Figure 2: Sparsity patterns @fr andwy for classifying the digits 6 and 7 when varying the pa-

rameterA from 0.01 to 10 in¢;-regularized logistic regression. The background gray
represents the value zero, bright spots represent positive valdetadnspots represent
negative values. Each column corresponds to a valuelabeled at the top. The top
three rows are the weightsy (without averaging) from the last iteration of the three
online algorithms; the middle row shows optimal solutions of the batch optimization
problem solved by interior-point method (IPM); the bottom three rows shevaveraged
weightswr in the three online algorithms. Both the TG and RDA methods were run with
parameters for enhancégregularization, that i = 10 for TG andyp = 25 for RDA.
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Left: K =1 for TG, p = 0 for RDA Right: K = 10 for TG,yp = 25 for RDA

600 600

- SGD [--sGD

---TG (K=1) ---TG (K=10)
—RDA(p=0) | 500¢ —RDA (yp=25) ||

300}
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Figure 3: Number of non-zeros (NNZs)n for the three online algorithms (classifying the pair 6

and 7). The left column shows SGD, TG wikh= 1, and RDA withp = 0; the right
column shows SGD, TG witK = 10, and RDA withyp = 25. The same curves for SGD
are plotted in both columns for clear comparison. The two rows corresjoohng- 0.1
andA = 10, respectively.

be either O for basic regularization, a005 (effectivelyyp = 25) for enhanced regularization effect.
These parameters are chosen by cross-validation. For the SGD andtii@dseve use a constant
stepsizen = (1/y)+/2/T for comparable convergence rate; see (19) and related discussiahs.
TG method, the perioK is set to be either 1 for basic regularization (same @asd<s), or 10 for
periodic enhanced regularization effect.

Figure 2 shows the sparsity patterns of the solutienandw for classifying the digits 6 and 7.

The algorithmic parameters used afe= 10 for the TG method, angp = 25 for the RDA method.
It is clear that the RDA method gives more sparse solutions than both SGD@nuethods. The
sparsity pattern obtained by the RDA method is very similar to the batch optimizasiolsreolved
by IPM, especially for largex.
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Left: K=1for TG, p=0 for RDA

Right: K=10 for TG, yp=25 for RDA
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Figure 4: Tradeoffs between testing error rates and NNZs in solutioes wéryingA from 0.01
to 10 (for classifying 6 and 7). The left column shows SGD, TG Witk 1, RDA with
p =0, and IPM. The right column shows SGD, TG wih= 10, RDA withyp = 25, and

IPM. The same curves for SGD and IPM are plotted in both columns foroteaparison.

The top two rows shows the testing error rates and NNZs of the final weightznd the

bottom two rows are for the averaged weights All horizontal axes have logarithmic

scale. For vertical axes, only the two plots in the first row have logarithnaie sc
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Figure 5: Testing error rates and NNZs in solutions for the RDA method wasgjing the param-
etery from 1,000 to 10,000, and settipgsuch thayp = 25. The three rows show results
forA=0.1, 1, and 10, respectively. The corresponding batch optimization résutg
by IPM are shown as a horizontal line in each plot.

To have a better understanding of the behaviors of the algorithms, we plauthber of non-
zeros (NNZs) iy in Figure 3. Only the RDA method and TG wilkh= 1 give explicit zero weights
using soft-thresholding at every step. In order to count the NNZs irtladracases, we have to set
a small threshold for rounding the weights to zero. Considering that theitundgs of the largest
weights in Figure 2 are mostly on the order of $0we set 10° as the threshold and verified that
rounding elements less thanf0to zero does not affect the testing errors. Note that we do not
truncate the weights for RDA and TG with = 1 further, even if some of their components are
below 10°°. It can be seen that the RDA method maintains a much more spatban the other
online algorithms. While the TG method generates more sparse solutions thaGEhen&hod
whenA is large, the NNZs i oscillates with a very big range. The oscillation becomes more
severe withK = 10. In contrast, the RDA method demonstrates a much more smooth behavior
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IPM 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 6: Sparsity patterns @fr by varying the parameterin the RDA method from 1,000 to
10,000 (for classifying the pair 6 and 7). The first column shows resiélbaich op-
timization using IPM, and the other 10 columns show results of RDA method ysing
labeled at the top.

of the NNZs. For the RDA method, the effect of enhanced regularizasorgyp = 25 is more
pronounced for relatively small.

Next we illustrate the tradeoffs between sparsity and testing error raigsre shows that
the solutions obtained by the RDA method match the batch optimization results vitrySivece
the performance of the online algorithms vary when the training data ane igivd¥fferent random
sequences (permutations), we run them on 100 randomly permuted segwéthe same training
set, and plot the means and standard deviations shown as error batse B&D and TG methods,
the testing error rates @fr vary a lot for different random sequences. In contrast, the RDA ndetho
demonstrates very robust performance (small standard deviationg) feven though the theorems
only give convergence bound for the averaged weight For large values ol, the averaged
weightswr obtained by SGD and TG methods actually have much smaller error rates tisarotho
RDA and batch optimization. This can be explained by the limitation of the SGD anhdiGods
in obtaining sparse solutions: these lower error rates are obtained with muemorzero features
than used by the RDA and batch optimization methods.

Figure 5 shows the results of choosing different values for the paramiet¢the RDA method.
We see that smaller values ypfwhich corresponds to faster learning rates, lead to more sparse
and higher testing error rates; larger valuey oésult in less sparser with lower testing error
rates. But interestingly, the effects on the averaged solutiois almost opposite: smaller values
of y lead to less sparser (in this case, we count the NNZs using the rounding threshofc)10
For large regularization paramefersmaller values of also give lower testing error rates. Figure 6
shows the sparsity patternswf when varyingy from 1,000 to 10,000. We see that smaller values
of y give more sparser, which are also more scattered like the batch optimization solution by IPM.

Figure 7 shows summary of classification results for all the 45 pairs of digptclarity, we only
show results of thé;-RDA method and batch optimization using IPM. We see that the solutions
obtained by the/;-RDA method demonstrate very similar tradeoffs between sparsity and testing
error rates as rendered by the batch optimization solutions.

Finally, we note that one of the main reasons for regularization in machimerigas to prevent
overfitting, meaning that appropriate amount of regularization may actuallcesthe testing error
rate. In order to investigate the possibility of overfitting, we also conductgeranents by subsam-
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Figure 7: Binary classification for all 45 pairs of digits. The images in the tdefe triangular
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Left: K=1 for TG, p=0 for RDA Right: K=10 for TG,yp=25 for RDA
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Figure 8: Tradeoffs between testing error rates and NNZs in solutioes wéaryingA from 0.01

to 10 (for classifying 3 and 8). In order to investigate overfitting, we usé@ gubsam-
pling of the training data. The error bars show standard deviations of d€irsets of
subsamples. For the three online algorithms, we averaged results ordbdraermuta-
tions for each of the 10 subsets. The left column shows SGD, TGKuvithl, RDA with
p =0, and IPM. The right column shows SGD, TG wikh= 10, RDA withyp = 25, and
IPM. The same curves for SGD and IPM are plotted in both columns for cteapari-
son.
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pling the training set. More specifically, we randomly partition the training set® isubsets, and
use each subset for training but still test on the whole testing set. The $gonthanic parameterg
andp are used as before. Figure 8 shows the results of classifying the miiceltair 3 and 8.
We see that overfitting does occur for batch optimization using IPM. Onlireitdigns, thanks for
their low accuracy in solving the optimization problems, are mostly immune fronditivey.

7. Discussions and Extensions

This paper is inspired by several work in the emerging arestrattural convex optimizatiofNes-
terov, 2008). The key idea is that by exploiting problem structure thabeyend the conventional
black-box model (where only function values and gradient informatienadiowed), much more
efficient first-order methods can be developed for solving structoralex optimization problems.
Consider the following problem with two separate parts in the objective fumctio

minENmize f(w) +W¥(w) (32)

where the functionf is convex and differentiable on dd# its gradientOf (w) is Lipschitz-
continuous with constarit, and the functiortV is a closed proper convex function. Singein
general can be non-differentiable, the best convergence ratesftiegt-type methods that are based
on the black-box model i©(1/+/t) (Nemirovsky and Yudin, 1983). However, if the functitthis
simple meaning that we are able to find closed-form solution for the auxiliary opttrarzproblem

minimize {f(u) +(Of (u),w—u) +%HW— ul|3+ w(w)} , (33)

then it is possible to develop accelerated gradient methods that have treegmrce rat®©(1/t?)
(Nesterov, 1983, 2004; Tseng, 2008; Beck and Teboulle, 2009)celérated first-order meth-
ods have also been developed for solving large-scale conic optimizatbfeprs (Auslender and
Teboulle, 2006; Lan et al., 2009; Lu, 2009).

The story is a bit different for stochastic optimization. In this case, the exgewce rate
O(1/+/t) cannot be improved in general for convex loss functions with a blagkaedel. When
the loss functionf (w,z) have better properties such as differentiability, higher orders of smooth-
ness, and strong convexity, it is tempting to expect that better convergates can be achieved.
Although these better properties bfw, z) are inherited by the expected functiptw) = E,f (w, 2),
almost none of them can really help (Nesterov and Vial, 2008, Sectionrh.e®ception is when
the objective function is strongly convex. In this case, the convergatedor stochastic optimiza-
tion problems can be improved @(Int/t) (e.g., Nesterov and Vial, 2008), or ev&il/t) (e.g.,
Polyak and Juditsky, 1992; Nemirovski et al., 2009). For online comimization problems,
the regret bound can be improved@gInt) (Hazan et al., 2006; Bartlett et al., 2008). But these
are still far short of the best complexity result for deterministic optimization witbtng convexity
assumptions; see, for example, Nesterov (2004, Chapter 2) and iNe&807).

We discuss further the case with a stronger smoothness assumption orcttesstoobjective
functions. In particular, lef(w,z) be differentiable with respect W for eachz, and the gradient,
denotedy(w, z), be Lipschitz continuous. In other words, there exists a conktanth that for any
fixed z,

lo(v,z2) —g(w, 2) || < L|lv—w]|, Vv,w e domW. (34)
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Let ¢(w) = E;f(w,2). Then¢ is differentiable andl¢(w) = E,g(w,z) (e.g., Rockafellar and Wets,
1982). By Jensen’s inequalitij¢(w) is also Lipschitz continuous with the same constantor
the regularization functiok, we assume there is a const&at such that

W(V) —W(w)| < Gyllv—w|,  Vv,wedomy.

In a black-box model, for any query point we are only allowed to query a stochastic gradient
g(w,z) and a subgradient d¥(w). We assume the stochastic gradients have bounded variance;
more specifically, let there be a constgnhsuch that

Erdlgw2) —0d(W)[? < Ywe domy, (35)

Under these assumptions and the black-box model, the optimal convenmggader solving the
problem (1), according to the complexity theory of Nemirovsky and Yud@88), is

Egw) ¢ <o) (5 + 3)).

Lan (2010) developed an accelerated mirror-descent stochastioxapption method to achieve
this rate. The stochastic nature of the algorithm dictates that the@étQ//t) is inevitable in
the convergence bound. However, by using structural optimizationitpetmsimilar to (33), it is
possible to eliminate the ter@(1)(Gy/+/t) and achieve

Eow) ' <O (5 + % ). (36)
Such a result was obtained by Hu et al. (2009). Their algorithm can kesgli@s an accelerated
version of the BBOosmethod (28). In each iteration of their method, the regularization tm)
is discounted by a factor @(t~%/2). In terms of obtaining the desired regularization effects (see
discussions in Section 5), this is even worse thar€ifte/2) discount factor in the 88osmethod.
For the case of;-regularization, this means using an even smaller truncation thre€ifoltd/2)\.
Next, we give an accelerated version of the RDA method, which achiegesathe improved con-
vergence rate (36), but also maintains the desired property of usingdmscaunted regularization
at each iteration.

7.1 Accelerated RDA Method for Stochastic Optimization

Nesterov (2005) developed an accelerated version of the duabavgraethod for solving smooth
convex optimization problems, where the uniform average of all pasiegriadis replaced by an
weighted average that emphasizes more recent gradients. SeviatibrarNesterov, 2007; Tseng,
2008) were also developed for minimizing composite objective functions dbthe(32). They all
have a convergence rabgL /t?).

Algorithm 3 is our extension of Nesterov's method for solving stochastic opditiniz problems
of the form (1). At the input, it needs a strongly convex functiopand two positive sequences
{ai}i>1 and {Bt }t>0. At each iteratiort > 1, it computes three primal vectows, , w;, and a
dual vectorg;. Among them,u; is the point for querying a stochastic gradiegtjs an weighted
average of all past stochastic gradientss the solution of an auxiliary minimization problem that
involvesd; and the regularization tert#(w), andw is the output vector. The computational effort

2572



REGULARIZED DUAL AVERAGING METHODS

Algorithm 3 Accelerated RDA method

I nput:
E a strongly convex functioh(w) with modulus 1 on dor{V.
e two positive sequence®; }i>1 and{B }i>o.
Initialize: setwy = Vo = argmin, h(w), Ag =0, andgp = 0.
fort=1,23,...do
1. Calculate the coefficients

A =A-1+ay, etZ%-

2. Compute the query point
U = (1—6)W—1+ 61

3. Query stochastic gradiegt= g(u, z), and update the weighted average ~
G = (1—6t)G-1+ 6.

4. Solve for the exploration point

Vi = arg min{ (G, W) +W(w) + h(w)}

w

5. Computew; by interpolation
W = (1—6)Wwe—1+Bew.

end for

per iteration is on the same order as Algorithm 1. The additional costs are ni@éntywo vector
interpolations (convex combinations) for computingandw;. The following theorem gives an
estimate of its convergence rate.

Theorem 6 Assume the conditions (34) and (35) hold, and the problem (1) has timasolu-
tion w* with optimal valueg*. In Algorithm 3, if the sequenci }+>1 and its accumulative sums
A = A1+ 0y satisfy the conditiom? < A for allt > 1, then

L 1 Loa?
Eew) — ¢ < —h(W)+ — [ BthW)+ Q@ § —— |.
Q) — ¢ < £ h(w) At(&( ) QT;28T1>
The proof of this theorem is given in Appendix D.

If we choose the two input sequences as

o = 1, vt>1,
Br=ywt+1, Vt>0,

thenA =t, 6; = 1/t, andd; = g is the uniform average of all past gradients. In this case, the
minimization problem in Step 4 is very similar to that in Step 3 of Algorithm 1.D#&be an upper
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bound orh(w*) and sety = Q/D. Then we have

LD? 2QD

To achieve the optimal convergence rate stated in (36), we choose

o=, vt > 1, (37)
Be= v(t+21)3/2, vt >0. (38)
In this case, t
At:Tzlar:t(tIl), etzzztfl, vt>1

It is easy to verify that the condition? < A is satisfied. The following corollary is proved in
Appendix D.1.

Corollary 7 Assume the conditions (34) and (35) hold, ad’) < D?. If the two input sequences
in Algorithm 3 are chosen as in (37) and (38) wijtk- Q/D, then
4LD? 4QD
—p< —.
Ep(w) — ¢ < 2t Vi
We can also give high probability bound under more restrictive assumptiastead of requir-
ing the deterministic conditiofig(w,z) — Do (w)||2 < Q? for all zand allw € domW¥, we adopt a
weaker condition used in Nemirovski et al. (2009) and Lan (2010):

E [exp(”g(w’ 2 52D¢(W)H$>} <expl), VYwedomw. (39)

It is not hard to see that this implies (35) by using Jensen’s inequality.

Theorem 8 SupposedomW¥ is compact, say (w) < D? for all w € dom¥, and let the assump-
tions (34) and (39) hold. If the two input sequences in Algorithm 3 arsehas in (37) and (38)
with y = Q/D, then for anyd € (0, 1), with probability at leastL — §,

2
ow) — @ < % + 43? + (\Q/I? <In(2/6) +2\/In(2/6)>

Compared with the bound on expectation, the additional penalty in the highlmhtypbound de-
pends only orQ, notL. This theorem is proved in Appendix D.2.

In the special case of deterministic optimization, that is, wQen0, we havey= Q/D =0 and
Bt =0 for allt > 0. Then Algorithm 3 reduces to a variant of Nesterov's method given @ng's
(2008, Section 4), which has convergence &) — ¢* < 4LD?/t2.

For stochastic optimization problems, the above theoretical bounds shathetedgorithm can
be very effective whe® is much smaller thahD. One way to make this happen is to use a mini-
batch approach. More specifically, at each iteration of Algorithm 3gléself be the average of
the stochastic gradients at a small batch of samples computede leave the empirical studies
of Algorithm 3 and other accelerated schemes for future investigation.
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7.2 The p-Norm RDA Methods

The p-norm RDA methods are special cases of Algorithm 1 in which the auxiliargtfonsh (not
the regularization function®’) are squareg-norms. They offer more flexibility than 2-norm based
RDA methods in adapting to the geometry of the learning problems.

Recall that forp > 1, the p-norm ofw € R" is defined agjw||p, = (3, [w|P) YP if pandq
satisfy the equality Ap+1/q = 1, then the norm§w||, and||g||q are dual to each other. Moreover,
the pair of functions{1/2)||w||% and(1/2)||g||§ are conjugate functions of each other. As a result,
their gradient mappings are a pair of inverse mappings. More formallyp tet(1,2] andq =
p/(p— 1), and define the mappiry: £ — £* with

. . 1

1 sgr(w('))‘w(')‘p )
9i(w) = 0 (HW||2) = — , i=1,....n,

27 F w5~
and the inverse mappiry 1 : £ — £ with
(iya-1

_ sgngt’)|9 .

919 =0 < 9 Hq> n(‘ |)’|_2} , i=L...n
9llq

These mappings are often callétk functionsin machine learning (e.g., Gentile, 2003).

Again we focus on the1-RDA case withW(w) = A|jw||1. For anyp € (1,2], the function
(1/2) HWH% is strongly convex with respect {o ||, with the convexity parametgr— 1 (e.qg., Juditsky
and Nemirovski, 2008). In order to have an auxiliary strongly convexction h with convexity
parameter 1, we define

h(w) = Z(pl_l)uw%.

UsingB; = yy/t for somey > 0,, the Equation (8) in Algorithm 1 becomes

w1 —argmin{ (@) + Al + Voot

The optimality condition of the above minimization problem (Rockafellar, 1976ti@e27) states
that there exists a subgradiext d||w;1|/1 such that

O +As+ (p_yl)ﬁﬁ(wtﬂ) =0.
Following similar arguments as in Appendix A, we find that it has a closed-fmiotion
Wi =9""(G),
where the elements of are given as
A(D) 0 i ‘gti)’ <A
&= _(p—yl)\/f (@i) —)\sgn(gti))) otherwise '=Len

Whenp = q= 2,9 and9~* are identity maps and the solution is the same as (10p.i¢fclose
to 1 (@>> 2), the mapd ! penalizes small entries of the truncated vegjoto’be even smaller.
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As an interesting property of the m&p !, we always haveéjw1|/p = ||G||4 (€.9., Gentile, 2003,
Lemma 1).

In terms of regret bound or convergence rate, our results in Sectiansl 3 apply directly.
More specifically, for stochastic learning problems, IIl%t: (1/2(p— 1))|]W*H%, andGq be an
upper bound orfjgt||q for allt > 1. Then by Corollary 2 and Theorem 3,

G2\ 1
EQw) — ¢ < [ yDZ+ 2 | =.
P(W) cp_< p+y>\/t»

The optimal choice of is y* = Gq/Dp, which results in

- | 2 Gqllwl a7 Cal Wl
Epw) —¢" < ﬁ%: 2(q_l)%-

In order to gain further insight, we transform the convergence boutetins of/., and/; norms.
Let G, be an upper bound ot ||, that is,

‘gt“)‘ <Gw, Vi=1...n  Vt>1

Then ||gt|lqg < Gon/9. If we chooseq = Inn (assumingn > € so thatq > 2), then||glq <
Gwn'/I"N = Gye. Next we substitut&..e for Gq and use the fadtw* ||, < ||w*||1, then

EQ(W) — ¢ < \/me(i.@@llw*lhzoﬁmw*m).

Vi Vi
For 2-norm based RDA method, we ha\g||2 < G.+/N, thus
_ V2N G [ W2
Eow) —@p< ——=.
(W) — " < N

Therefore, for learning problems in which the features are dense @Geclose toG.+/n) and
w* is indeed very sparse (i.g|w*||> close to|\w*||1), using thep-norm RDA method, withp =
Inn/(Inn— 1), can lead to faster convergence.

The above analysis of convergence rates matches that fprloemn based SMIDAS (Stochas-
tic Mirror Descent Algorithm made Sparse) algorithm developed in ShatevaBz and Tewari
(2009). However, like other algorithms of the mirror-descent type, inctpu@@ (Langford et al.,
2009) and BBOSs(Duchi and Singer, 2009), SMIDAS uses a truncation thres®gld 1/t)\ in ob-
taining sparse solutions. In contrast, fi@orm based RDA method uses a much more aggressive
threshold\. This is their major difference.

The accelerated RDA method (Algorithm 3) also works in pheorm setting.

7.3 Connection with Incremental Subgradient Methods

As an intermediate model between deterministic and stochastic optimization probtersisler the

problem
m

minimize Z fe(w) +W¥(w), (40)
W K=1
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which can be considered as a special case of (1) where the randiai@ahas a uniform distribu-
tion on a finite support; more specificallfi(w) = (1/m) f(w, z) for k=1,...,m. The unregular-
ized version, that is, witd(w) = 0, has been addressedibgremental subgradient metho(sg.,
Tseng, 1998; Nediand Bertsekas, 2001). At each iteration of such methods, a step is takgn a
the negative subgradient of a single functignwhich is chosen either in a round-robin manner or
randomly with uniform distribution. The randomized version is equivalente®&GD method. The
RDA methods are well suited for solving the regularized version (40).

Randomized incremental subgradient methods with Markov jumps have agsodeeeloped
for solving (40) with¥(w) = 0 (Johansson et al., 2009; Ram et al., 2009). In such methods, the
functionsfy are picked randomly but not independently: they follow the transition fidbes of
a Markov chain that has the uniform distribution. It would be very intergstininvestigate the
convergence of the RDA methods when the random examples are drawndiag to a Markovian
chain. This is particularly attractive for online learning problems where #seraption of i.i.d.
samples does not hold.
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Appendix A. Closed-form Solution for /1-RDA M ethod

For RDA method with¢;-regularization, we sé¥(w) = A|jw||; and useh(w) = (1/2)||w]||3, or use
he(w) in (31) for enhanced regularization effect. In such cases, the minimizatailem in step 3

of Algorithm 1 can be decomposed imtiandependent scalar minimization problems, each of the
form

minimize  New-+ Adjod] + Lo,
weR 2
where the coefficients; > 0, i > 0, andn; can be arbitrary. This is an unconstrained nonsmooth
optimization problem. Its optimality condition (Rockafellar, 1970, Section 27) sthtgso* is an
optimal solution if and only if there exisése d|w*| such that
Nt + A& +yw" =0. (41)
The subdifferential ofw]| is

{1} if w>0,

{£eR|-1<E<1} fw=0,
olw| =
{-1} if < 0.

We discuss the solution to (41) in three different cases:
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e If [Nt <A, thenw* = 0 and = —n¢/A: € 0|0| satisfy (41). We also show that there is no
solution other thamw* = 0. If w> 0, thené = 1, and

Nt +At+%w>nNg+A; > 0.
Similarly, if w < 0, then§ = —1, and
Nt—At+ynw<ng—A; <0.
In either cases whew £ 0, the optimality condition (41) cannot be satisfied.

e If Nt > A¢ > 0, we must havey” < 0 and¢ = —1. More specifically,

1
W=—-——(MNt—=M).
yt(r]t t)

e If Nt < —A; < 0, we must havey” > 0 and¢ = 1. More specifically,

1
W*:—%(ﬂt-ﬁ\t)-

The above discussions can be summarized as
0 if ’nt’ S )\ta
w = 1 .
_V (r]t — At Sgr(r]t)) otherwise.
1

This is the closed-form solution for each componentaf; in the /,-RDA method.

Appendix B. Regret Analysis of RDA Method

In this Appendix, we prove Theorem 1. First, gtdenote the sum of the subgradients obtained up
to timet in the RDA method, that is,

t
S= ) O =1g, (42)
2.

with the initializationsy = 0. Then the Equation (8) in Algorithm 1 is equivalent to
W1 = argmin{ (s, W) +tW(w) -+ Bch(w) } . (43)
w

This extends thesimple dual averagingcheme of Nesterov (2009), whe#w) reduces to the
indicator function of a closed convex set. Compared with the analysis in fdes2009), the
assumption (7), Lemma 11 and Lemma 12 (below) are new essentials that mpkeaheork. We
also provide refined bounds on the primal and dual variables that reltite tegret with respect to
an arbitrary comparison point; see part (b) and (c) of Theorem Zelins that theveighted dual
averagingscheme of Nesterov (2009) cannot be extended viHés a nontrivial regularization
function.
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B.1 Conjugate Functionsand Their Properties

Let wp be the unique minimizer di(w). By the assumption (7), we have

Wo = arg minh(w) € Argmin¥(w).
w w

Let {Bt}i>1 be the input sequence to Algorithm 1, which is nonnegative and norafege In
accordance with the assumption (13), we let

Bo=max{o, B1} >0, (44)

whereo be the convexity parameter 8f(w). For eacht > 0, we define two conjugate-type func-
tions:

Ui(s) = Vr\/r;z;x{(s,w— Wo) —tW(w)}, (45)
Vi (s) = mv\z;\x{ (s,W—Wo) —tW(w) — Bth(w) }, (46)

where 7p = {w € domW¥|h(w) < D?}. The maximum in (45) is always achieved becagiseis
a honempty compact set (which always contaigs Because of (44), we haw + ; > o > 0
for all t > 0, which means the function®’(w) + Bh(w) are all strongly convex. Therefore, the
maximum in (46) is always achieved, and the maximizer is unique. As a resutiaveedont); =
domV; = £* for all t > 0. Moreover, by the assumptidb(wg) = h(wp) = 0, both of the functions
are nonnegative.

The lemma below is similar to Lemma 2 of Nesterov (2009), but with our new defigitibld;
andV;. We include the proof for completeness.

Lemma9 For any s€ £* and t> 0, we have
Ut(s) < Wi(s) +BD>.
Proof Starting with the definition of);(s) and usingfp = {w € domW¥ |h(w) < D?},
Ui(s) = max{(s,w—wo) —t¥(w)}

= maxmin {(s,w—wo) —tW(w) +B(D?—h(w))}

< rg1>|(r)1 max{ (s, w —wo) —tW(w) + B(D?—h(w))}

< mﬂx{ (S, W—Wo) — tW(w) + B (D*— h(w)) }

=\i(s) + B:D?.
For the second equality and the first inequality above, we used stanaiity drguments and the
max-min inequality; see, for example, Boyd and Vandenberghe (20084068&.4.1). |

Let 1% (s) denote the unique maximizer in the definitionvpfs); in other words,
TR (s) = argmax{ (s,w—wp) — t¥(w) — Bh(w) }
w

= argmin{ (—s,w) +tW(w) + Bh(w) }.
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Comparing with the Equation (43), we have
W1 =Te(—-%), Vt>0.
Lemma 10 The function Vis convex and differentiable. Its gradient is given by
OVi(s) = T&(S) —Wo (47)

Moreover, the gradient is Lipschitz continuous with constiaiiot + (3;); that is

IOV (s1) — M) ]| <

- * 9 v P} GE*.
O.t+[3t||51 S| S, S

Proof Because the functior(w) + B:h(w) is a strongly convex with convexity parametgr- 3,
this lemma follows from classical results in convex analysis; see, for examplart-Urruty and
Lemagchal (2001, Chapter E, Theorem 4.2.1), or Nesterov (2005, €hey. |

A direct consequence of Lemma 10 is the following inequality:

Vi(s+9) <M(s) + (9. LM(9) + 5

1 *
WHQHE, vVsge E". (48)

For a proof, see, for example, Nesterov (2004, Theorem 2.1.5).
Lemma 1l For eacht> 1, we have

Vi(—=) +WWei1) <Vi-1(=%) + (Br-1— Bo)h(We41).
Proof We start with the definition o#%_1(—%):

Vici(—5) = m&x{(—a,w—w@ —(t=1)¥Y(w) —Bi_1h(w)}

> (=5, W1 —Wo) — (t = 1)W(Wer1) — Br—1h(We 1)
= {(—s,Wty1—Wo) —tW(Wer1) — Bth(Wes1) } +W(Wer1) + (B — Br—1)h(Wey1).

Comparing with (43) and (46), we recognize that the expression in thierlsts above is precisely
Vi(—s). Making the substitution and rearranging terms give the desired result. |

Since by assumption(w;1) > 0 and the sequendé; }:>1 is nondecreasing, we have
Ve(—8) +WWi1) <Veoa(-s), VE>2. (49)
Fort =1, Lemma (11) gives
Vi(—s1) +W(Wz2) <Vo(—51) + (Bo— Br)h(wz). (50)

Since it may happen th@ > 31, we need the following upper bound bfws,).
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Lemma 12 Assumenax{o, B1} > 0, and let Hw) = (1/0)W(w) if o > 0. Then
2||ga 2
hiw) < ———2.
2= (g + oy

Proof Fort =1, we haven; =wp, W(w1) = W(wp) =0, h(w;) = h(wp) =0, andgy = g1. Sincew,
is the minimizer in (43) fot = 1, we have

(51)

(91, W2) +W(W2) + B1h(wz) < (g1, Wr) +W(wy) + Brh(wa) = (g1, Wr).

Therefore,
W(wz) +Brh(wz) < (g1, Wi —W2) < [|ga].[[wz —wal|.
On the other hand, by strong convexity\8fw) andh(w), we have

o+B1
2

W(wz) + Bih(wz) > Wz — wa |2

Combining the last two inequalities together, we have

) < 2||ga 2
o+PB1’
By assumption, it = 0, we must hav@; > 0. In this case, sinc#(w,) > 0, we have

2”91”32 2||gu|? .
Bl (0+PB1)?

W(w2) + Brh(w

2
Blh<w2>sw<wZ>+Blh<wZ>s2”§i”* — hwy) <

If o > 0, we have¥(w) = oh(w) by assumption, and therefore

)< 2||gul2
~o+B1]

which also results in (51). [ |

W(wz) + Bih(wz) = (0 + B1)h(w

B.2 Boundingthe Regret
To measure the quality of the solutiows, ..., w;, we define the followingyap sequence:
t
O = max{ > ({gr,wr —W) +W(wy)) —th(W)} , t=123.... (52)
we fp =

The gapd; is an upper bound on the regi&{w) for all w € 7p. To see this, we use the assumption
w € 7p and convexity off;(w) in the following:

62 5 (g w)+ (o) ()
> i (fe(we) — fo(w) +W(wy)) —tW(w)
=1
= 3 (1) 4 90w0) = 3 (1) + ) = R(w. (59
= =1
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We can also derive an upper bound®nFor this purpose, we add and subtract the SUm (gr, wo)
in the definition (52), which leads to

& = i ({ge, We —Wo) + W (wy)) +Vr\)1%x{<st,wo—w> —tP(w)}. (54)
=1 SV

We observe that the maximization term in (54) is in fdgt—s ). Therefore, by applying Lemma 9,

we have :

&éZJ@mm—%%HWMD+WG&Hﬂ@? (55)

Next, we show thafy; defined in (14) is an upper bound for the right-hand side of the inequal-
ity (55). For anyt > 2, we have
Vr(_sr) + LP(WT+1) < VTfl(_S[)
=Vr_1(—S-1—0r)
0|2
—1)+Be-1)

<Vioa(=S-1) + (=0, Vi1 (=se-1)) + 2(o(t

0|2
2(0(t—1) +Br-1)’
where the four steps above used (49), (42), (48), and (47xctsely. Therefore,

[l g |2
, Y1>2
2(0(t—1)4Br-1)

=Vi_1(=St-1) + (=, W — Wo) +

<gTaWT - WO> + qJ(WH_l) < VT—l(_S[—l) _VT(_Sr) 4

Fort =1, we have a similar inequality

2
(93:9 )+ (1) < Vo(—50) —Va(—50) + I + (B~ Bu)hwe)

where the additional terrff3o — B1)h(w,) comes from using (50). Summing the above inequalities
fort=1,...,t, and noting tha¥p(—sy) = Vo(0) = 0, we arrive at

i g’[vw'l' Wo +LP(WT+1)) +M(—%) < (Bo—B1)h i w

=1 =1 +BT 1
Using wy = wp € Argmin, WY(w), we haveW(w 1) > W(wp) = W(wy). Therefore, adding the
nonpositive quantity(w; ) — W(w1) to the left-hand side of the above inequality yields

t ‘ ngHz
,Wr —Wo) +W(Wy)) +W - _ 56
2. ((gewe—vio) +W(we)) +Vh(—s) < (Bo—Pu)h 22 g, ©®
Combining the inequalities (53), (55) and (56), and using Lemma 12,
‘ HgTH2 2(Bo—PB1)ll9e12

2
R(w) <& < BD*+ 221 +|311+ (102

Finally using the assumption (12) and the definitiof\pin (14), we conclude

Ri(w) <& <A
This proves the regret bound (15).
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B.3 Bounding the Primal Variable

We start with the optimality condition for the minimization problem in (43): there exisggadients
b1 € 0W (Wit 1) andd 1 € oh(wi1) such that

(st+thiy1s+Bidhi1, W—wiy1) >0, Vwe domW. (57)

By the strong convexity dfiandW¥, we have for anyv € domW¥,
o
W(w) > W(Wei1) + (e, W—wWep1) + EHV\&H—WHZ, (58)
1
h(w) > h(W1) + (41, W— W) + > W1 — w2 (59)

We multiply both sides of the inequality (58) bymultiply both sides of the inequality (59) I,
and then add them together. This gives

%(OT +Br) [We 1 — W12 < Brh(w) — Bth(Wes1) — (thrsa + Brlhya, W—Wiya)
+tW(w) —tW(Wey1).

Using the optimality condition (57), we have

%(OT + Bo) W1 — W2 < Beh(w) — Beh(Wes1) + (S, W— Wi 1) +tW(W) — tW(Wiiq)
= Bth(W) + {(—st, W1 — Wo) —tW(Wep1) — Beh(Weya) }
+t‘-|-’( )+<S[,W*W0>.

Using (43), we recognize that the collection in the braces is precisehs ). Therefore

1

5(0t+B) w1 — W < Beh(w) +Vi(—) +1P(W) + (5, W—Wo). (60)
Now we expand the last terfs, w— wp) using the definition o§:

t t
(S, W— W) Z (G, W—Wo) = > (Gr, W —Wo) + Z(gr,W—wr%
=1 =1 =

By further adding and subtractirg}_, W(w), the right-hand side of (60) becomes

t

Bih(w >+{vt +; e — wO>+w<wT>>} 5, () 9w waT

We recognize that the expression in the braces above is exactly thenefsite in (56). Further-
more, by convexity off; fort > 1,

t t

Z(gT,W—WT)JrNJ(W) — i Ww) < 5 (Fe(w) — fr(wr)) +t¥(w Z

= =1 =1

= (f'[ i fr(we) + ))

= =
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Putting everything together, and using (56), we have

t

(0t B[k~ w2 < Bh(w) + (Bo — Bu)h(vi) + ;

ngll2

1) +Bra —RWw).

Finally, usingw € p, Lemma 12 and the assumption (12), we conclude

1
E(O-t"‘ﬁt)HWtJrl_WHZ <D —R(w),
which is the same as (16).

B.4 Boundingthe Dual Average
First notice that (54) still holds if we replae® with an arbitrary, fixedv € 7p, that is,

& = ZL Or, Wr — +lP(WT))+max{ §,W—u) —t¥(u )}

By convexity of f; for 1 > 1, we have

—

&>y (fo(wp) — fr(w) +W(wp)) + m?x{<st,w—u> —t¥(u)}
1 ueyp

—
-l

(fo(wp) +W(we) — fr(w) — W(w)) + max{ (s, w—u) —t(Y(u)—¥(w)) }

ue fp

—

I
LU

( )+52?x{ s, W—U) —t(W(u)—-W(w))}. (61)

Let d(u) denote a subgradient &f atu with minimum norm, that is,

d(u) = argmin|g].. (62)
geoW(u)

SinceW has convexity parameter, we have
o
W(w) —W(u) = (d(u),w—u) + 5 w— ulf.
Therefore,

3 > R(w) + max{ (s, w-u) +t{d(u),w—u) + 5 |w—ul}

uefp

> R(w+ max {(s.w—u) +tdw).w—u)+ 5 w—u[?},

ue B(w,r

where in the last inequality, we used the assumpgw,r) C 7p for somer > 0. Letu* be the
maximizer of(s, w— u) within the setB(w,r), that is,

u* = argmax{ (s,w—u) }.
ueB(w,r)
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Then|w—u*|| =r and
(s, w—u") = lw—u[[[[sefl« =TIl
So we can continue with the inequality:

B > R(W) + (5, W)+ t{d(u), w—u) + 5 w2

= RI(W) +r||$||* +t<d(u*),W— u*> + %o'trz

1
> R(W) + sl —td(u)Jw—u|| + Sotr?

1
> R[(w)+r||s(\|*—rtrD+éoTr2

where in the last inequality, we uséd(u*)||. < I'p, which is due to (62) and (11). Therefore

Il <to— Sotr+ (&~ R(w)).

Finally, we have (17) by noting; < A; ands =tg.

Appendix C. Proof of High Probability Bounds
In this Appendix, we prove Theorem 5. First ligtw) = E;f(w,2), then by definitiong(w) =
d(w)+W(w). Letd; be the conditional expectation gf givenw, that is,

G = Elor [w] = E[gr| z[t — 1]].
Sinceg; € df(w,z), we haveg € 0p(w) (e.g., Rockafellar and Wets, 1982). By the definition
of & in (52), for anyw* € 7p,

t

8> 3 ({gwe—w) + W(we) ) — (W)

t t
= 3 (G we—w) + W) ) —tPW) + (g — Gr.we —w)

171 = lt
z_(wmwwmm+wm&)4w )+ Y (G G we—w)
t
_ W — W, 63
T:l((p( +Z — G, W — W) (63)

where in the second inequality above we used convexity &fow define the random variables
&t = (Or — Gr, W —Wp), vVt> 1

Combining (63) and the resf < A; leads to
t

Z (Q(wr) — (W) < A+ ZlEr. (64)

'[:
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Sincew; is a deterministic function of[t — 1] andd; = E[g; | w], we have
E[&|z[t-1]] =0.

Therefore the sunth:lET is a martingale. By the assumptiomsv;) < D? and||gc||. <L for all w,
we have

W —we]| < [[w—wol| + [[we —wol| < (2h(w))*?+ (2h(w))"* < 2v/2D,
and||gr — G|« < [|ge|l« + |Gt ||+ < 2L. Therefore,
€| < |9 — G|+ [w—wq || < 4v/2LD

So the sequence of random variabl€s}!_, form a bounded martingale difference. Now by
Hoeffding-Azuma inequality (Azuma, 1967), we have

t —62 92
Prob >0 | <exp[ ———— | =exp[————-], VO>O.
(TZfr = ) = p(2t(4ﬁ|_D)2) p< 641_202t>

Let Q = ©/(8LDv/t), we have

Prob( izr > 8LD\/fQ> < exp(—Q?).

Now combining with (64) yields

_ . A 8LDQ 2
—>—+—" )< —Q9).
Prob<(p(wt) Q> n + v )_exp( Q)

Settingd = exp(—Q?) gives the desired result (26).

Appendix D. Convergence Analysis of Accelerated RDA M ethod
In this appendix, we prove Theorem 6. We will need the following lemma.

Lemma 13 Let ¢ be a closed proper convex function, and h be strongly convestoom} with
convexity parameteoy,. If

v =argmin{ Y(w) +h(w) }, (65)

then
W(w) + h(w) > L|J(V)+h(V)+%HW—VH2, Yw e domy.

Proof By the optimality condition for (65), there existc dy(v) andd € oh(v) such that
(b+d,w—v) >0, Yw e domy.
Sincey is convex and is strongly convex, we have

W) > W) + (b.w—v),
h(w) > h(v) + (d,w—v) + w2
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The lemma is proved by combining the three inequalities above. |

In Lemma 13, we do not assume differentiability of eitigeor h. Similar results assuming differ-
entiability have appeared in, for example, Chen and Teboulle (1993) senlyT{2008), where the
term(on/2)||w— v||? was replaced by the Bregman divergence induceld. by

Our proof combines several techniques appeared separately in dNeg805), Tseng (2008),
Lan (2010), and Nemirovski et al. (2009). First, ¢gw) = E,f(w,z). For everyt > 1, define the
following two functions:

G (W) = ¢ (U) + (00 (U ), W — u) + W (w),
f(w) = () + (g, W—up) +¥(w).

Note that/;(w) is a lower bound ofp(w) for allt > 1. Letqg = g — O (u), then
be(w) = (W) + (G, W— ).

For eacht > 1, we also define the function

t
)= 3,0k
For convenience, lepp(w) = 0. Then step 4 in Algorithm 3 is equivalent to
Vi = argwmin{lpt(w) + (L+Bo)h(w) }. (66)
Sincel¢ is Lipschitz continuous with a constanisee discussions following (34)), we have

L
& (we) < & (u) + (06 (), W — ) + 5 [[we — w1
Adding W(w; ) to both sides of the above inequality yields

L
o(w) < b (W) + §||Wt —wf?

L
=4 ((1—6)W-1+6ivt) + EH(l_ Ot )W 1 + v — UtH2
L
< (1—60)b(W—1) + B¢l () + > Hetvt - 9tVt—1H2

L
(1 Gt et(Wt 1>+9t€t(vt) <qt Vi — >+9t27Hvt—vt_1H2

=(1-6¢)f (W1 +E (tht Vt) +7*HVt Vea| >—9t<Qt7Vt—Ut)
1
< (1-6)@w-_1) + A (atﬁt(vt)JrZHvt —Vt1H2> — 6t (0, vt — ).

In the second inequality above, we used convexity; @ndu;, = (1 — 6;)w;_1 + 61, and in the
last inequality above, we uségdw) < @(w) and the assumptiom? < A.. Multiplying both sides of
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the above inequality by and noticingA (1 — 6;) = A — o = A._1, we have

~ L
AQW) < A1 @)+ el (W) + 5 [[ve — vea | — ae(a v - w)

~ L _ -
= A1)+ 0 () + T w2 P v v P

— Ot (G, Ve — Ve—1) — O (O, Ve—1 — W)

- L _ _
< Aca@We-1) + 0l (W) + +2& L NG _VFle - %HW —thle

+ 0t Q[+ [[ Ve = Ve[| — G (O, Vi1 — ).

Now using the inequality

bc—fczg2 ., VYa>0o,

with a= ;_1, b= 0¢||qt||«, andc = ||\ —v_1||, we have

of||o||?
— O (O, Vi1 — Ut).
2B £ {0k, Ve—1 — W)

[ve—via*+

. LB
Acp(we) < A 1@(We—1) + 0l () + +§t :

By (66), t_1 is the minimizer of{s_1(Vv) + (L + Bt—1)h(v). Then by Lemma 13, we have

Peo1(v) + (L+Br—1)h(v) > Wr—1(v—1) + (L +Br—1)h(v—1) + L+

ve—vial”
2

therefore,

Acp(We) — We (V) — (L+Br-1)h(v) <A 1@We—1) —Wr-1(v—1) — (L+Br-1)h(v%-1)

afoi2

1 (G, Vo1 — ).
2B £ (O, Ve—1 — W)

Sincef; > Bt—1 andh(v) > 0, we can replace th& 1 on the left-hand side witB;:

A(We) — W (W) — (L+Br)h(v) < A a@We-1) — Wr-1(M-1) — (L+Br-1)h(V-1)

afoi2

+ — O (O, Ve—1 — Ut ).
2B 1 £(Qt, Vi—1 — W)

Summing the above inequality from= 1 tot results in
Ap(We) < re(vt) + (L+Br)h(v) + Ao@(Wo) — Wo(Vo) — (L + Bo)h(Vo)
c 2||qr||2 &
+ ks ,Up — V.
T; 2&71 TZL qr T — V1— 1
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UsingAo = 0, Wo(vo) = 0, h(vp) = 0, and (66), we have

s ood||gell? | o
Acp(we) < (W) + (L+Bph +Zl 2Br 1 + ) OO, Uy —Vi_1)

_ =
t

ol (w) + (L+Bohw) + 3 SISl <
rzl o ‘[Zl 2Br1

=
t

Ot (Ofr, Up — Vg—1)
1

= S e (W) + (e ) + (L + Boh(w) + Yy SNl
Zl o qT’ ' T; 21
t

z (O, Ur — Ve—1)

t

_ * oo Elal? | <
=Y Oele(W) + (L+Br)h(w") + > + ) OO, W= Vo).
=1 =1 BT*]- =1

Next, by/r(w*) < g(w*) for all T > 1 andA = $%_, o, we have

. t afflell? | <
AQ(W) < AQW") + (L +Br)h(w*) + 2B + ' O (O, W — Ve_1). (67)

=

SinceE || z[t — 1]] = 0 andq is independent of;_31, we haveE [ (g, w* — vi_1)| z[t — 1]] = 0.
Together with the assumptid| g ||? < Q? for all T > 1, we conclude

2 t
comy oo < w3 (95 )

By rearranging terms on the right-hand side, this finishes the proof feoreim 6.
D.1 Proof of Corollary 7
Using the two input sequences given in (37) and (38), we have

- O /2 < / (t+1)°%2 (68)
ZLZBT 1 4Y a 4 6V

Plugging them into the conclusion of Theorem 6 gives

1/2 2
o)~ < o pshow) + U () + 2

Next we use the assumptitiw*) < D? and lety = Q/D. Then

4D? (t+1)Y/?28QD _4LD 4QD
—< < .
Eow) — @ ~t(t+1) t 3 -2 A
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D.2 Proof of Theorem 8

We start with the inequality (67). We will first show high probability boundgifiertwo summations

on the right-hand side of (67) that involve the stochastic quantigieand then combine them to
prove Theorem 8. We need the following result on large-deviation boanchértingales, which

can be viewed as an extension to the Hoeffding-Azuma inequality.

Lemma 14 (Lan et al., 2008, Lemma 6) Let,z,, ... be a sequence of i.i.d. random variables and
let z[t] denote the collectiofr, ..., z]. If & = & (z[t]) are deterministic Borel functions aft] such
that the conditional expectatiors[&; | z[t — 1]] = 0 almost surely and

E [exp(&2/v?) |zt — 1]] < exp(1) (69)
almost surely, where; > 0 are deterministic. Then for all} 1,

t t QZ
Prob & >Q v2 | < exp<—> , vQ>0.
(22 2%) <on( -5

Lemma 15 Let& = ai{q,w" —w_1). Then for allt> 1 and anyQ > O,
¢ 2
Prob( 3 & >QQD,/Z(t+ 1)3 | <exp(—Q?/3).
=1

Proof SinceE[q|z[t —1]] =0 andq; is independent of* andv;_1, we have
E[& |zt — 1]] = E[o (o, W — 1) |zt — 1]] =0.

Therefore 3! _, & is a martingale. By the assumpti¢b/2)||w||? < h(w) < D? for all w € domW,
we have|w|| < +/2D for all w € domW, and therefore

€] < oo oI — Ve < el ([Iw]] + e ) < el ]l2v/2D.

Using the assumptiol [exp(||c[|2/Q?)] < exp(1), we have

2 t/|at]2v/2D)?
E [exp(@@) Z] —1]} <E [exp(m Ik 2v'2D) > ‘z[t—l]] <exp(l).

807Q2D2
Therefore the condition (69) holds witf = 8a?Q?D?2. We bounds_, v as follows:

t 2Q2 D2

t t t+1
V2 <8QPD? Y of = 2Q°D § 1? < 2Q°D? / 2t (t+1)%
=1 =1 =1 0
Then applying Lemma 14 gives the desired result. |

Lemma 16 For allt > 1 and anyA > 0,

Prob i at Iq H2>(1+/\)Q—2(t+1)3/2 < exp(—A)
T:12BT71 i 6y o '
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Proof For any givert > 1, let

0(2
O =
t Z 2By
and )
ar 1
= —, T=1...,1t
f ZBTflet

Thereforey!_, Ny = 1. By convexity of the function exp),

exp(an”q‘”Z) iﬂrexp(”q”z)

Taking expectation and using the assumption (39),

2 t 2 t
Eexp<z,huqru> ZmEeXp@qTH) 3 ot = ool

By Markov's inequality,

2
Prob(exp(T;r] “g” >>exp(l+/\)> exep)((f(i)/\) exp(—A),

which is the same as

t 0(2
Prob u 25 (14+N)6Q% | <exp(—A).
(TZlZBT_lllqul (1+N)6 Q7 ) <exp(—A)

Then using the upper bound @q derived in (68) gives the desired result.

Combining Lemma 15, Lemma 16, and the inequality (67), we have

Prob(At(cp(wt)— ¢') > (L+Boh(w) + (H/\)?j(+1>3/2+QQD\E(t+1)3/2>

2
<exp(—A) +exp<—§;> .
Plugging inA, =t(t +1)/4, Bt = (y/2)(t + 1)¥2, and lettingy = Q/D, Q = v/3A, we get

2 1/2
Prob((p(vvt) —¢ > télfl) + <82D + ZA??DJr\/ﬁQD) (t+t1)> < 2exp—A).

Then using the fact/(t + 1)/t < /2 < 3/2for allt > 1 results in

4.D2 4QD (A+2VA)QD
Prob(cp(wt)—(p?*> > N + v

Finally, letd = 2exp—A), hence\ = In(2/0). Then with probability at least 4 d,

4|_D2 40D QD
(W) — ¢* < +7+7( (2/8) +24/In 2/5)

> < 2exp—A).

This finishes the proof of Theorem 8.
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