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Abstract

The problems of dimension reduction and inference of stediisdependence are addressed by the
modeling framework of learning gradients. The models weppse hold for Euclidean spaces as
well as the manifold setting. The central quantity in thipach is an estimate of the gradient
of the regression or classification function. Two quadr&tiens are constructed from gradient
estimates: the gradient outer product and gradient ba#edidn maps. The first quantity can be
used for supervised dimension reduction on manifolds atageihference of a graphical model
encoding dependencies that are predictive of a responsblearThe second quantity can be used
for nonlinear projections that incorporate both the gesimstructure of the manifold as well as
variation of the response variable on the manifold. We edla¢ gradient outer product to standard
statistical quantities such as covariances and providegisiand precise comparison of a variety of
supervised dimensionality reduction methods. We provédesrof convergence for both inference
of informative directions as well as inference of a graphicadel of variable dependencies.

Keywords: gradient estimates, manifold learning, graphical modelgrse regression, dimension
reduction, gradient diffusion maps

1. Introduction

The problem of developing predictive models given data from high-dirneakphysical and bi-
ological systems is central to many fields such as computational biology. mMigeeén modeling
natural phenomena of this type is that data generated by measuring thewéaariables lie on or
near a low-dimensional manifold. This hearkens to the central idea afiregidata to only relevant
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information. This idea was fundamental to the paradigm of Fisher (192Pya@s back at least to
Adcock (1878) and Edgeworth (1884). For an excellent review ofgragram see Cook (2007).
In this paper we examine how this paradigm can be used to infer geometrg dath as well as
statistical dependencies relevant to prediction.

The modern reprise of this program has been developed in the brcag afrenanifold learn-
ing and simultaneous dimension reduction and regression. Manifold ledmasépcused on the
problem of projecting high-dimensional data onto a few directions or dimessidile respect-
ing local structure and distances. A variety of unsupervised methodshwan proposed for this
problem (Tenenbaum et al., 2000; Roweis and Saul, 2000; Belkin arajN®003; Donoho and
Grimes, 2003). Simultaneous dimension reduction and regression canidgroblem of finding
directions that are informative with respect to predicting the responsablar These methods can
be summarized by three categories: (1) methods based on inversesiayés, 1991; Cook and
Weisberg, 1991; Fukumizu et al., 2005; Wu et al., 2007), (2) method=dbars gradients of the
regression function (Xia et al., 2002; Mukherjee and Zhou, 2006;hdtjke and Wu, 2006), (3)
methods based on combining local classifiers (Hastie and Tibshirani, $8g6jama, 2007). Our
focus is on the supervised problem. However, we will use the core ideariifottblearning, local
estimation.

We first illustrate with a simple example how gradient information can be usexlifmrvised
dimension reduction. Both linear projections as well as nonlinear embedoasgsl on gradient
estimates are used for supervised dimension reduction. In both appsahehimportance of using
the response variable is highlighted.

The main contributions in this paper consist of (1) development of gradiesed diffusion
maps, (2) precise statistical relations between the above three catedmigseo/ised dimension
reduction methods, (3) inference of graphical models or conditionapemtience structure given
gradient estimates, (4) rates of convergence of the estimated graphidal. mche rate of con-
vergence depends on a geometric quantity, the intrinsic dimension of thiergrad the manifold
supporting the data, rather than the sparsity of the graph.

2. A Statistical Foundation for Learning Gradients
The problem of regression can be summarized as estimating the function
frf(X) =E(Y | X =x)
from dataD = {L; = (Y, X))}, whereX; is a vector in ap-dimensional compact metric space
X e X Cc RP andY; € R is a real valued output. Typically the data are drawn iid from a joint

distribution,L; "9 p(X,Y) thus specifying a model

yi = fr (%) +&i

with & drawn iid from a specified noise model. We defmeas the marginal distribution of the
explanatory variables.
In this paper we will explain how inference of the gradient of the regwvadsinction
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provides information on the geometry and statistical dependencies retevprgdicting the re-
sponse variable given the explanatory variables. Our work is motivatetiebfollowing ideas.
The gradient is a local concept as it measures local changes of Bofunéntegrating informa-
tion encoded by the gradient allows for inference of the geometric steuatuthe data relevant
to the response. We will explore two approaches to integrate this locairiafmm. The first ap-
proach is averaging local gradient estimates and motivates the study afttierd outer product
(GOP) matrix. The GOP can be used to motivate a variety of linear supedirsedision reduction
formulations. The GOP can also be considered as a covariance matrisetdas inference of
conditional dependence between predictive explanatory variablessddond approach is to paste
local gradient estimates together. This motivates the study of gradiermt théfssion maps (GDM).
This operator can be used for nonlinear supervised dimension redbgtiembedding the support
of the marginal distribution onto a much lower dimensional manifold that variesrestpect to the
response.

The gradient outer produ€tis ap x p matrix with elements

R
DT\ oxox /]
™

wherep, is the marginal distribution of the explanatory variables aﬁxdis the space of square
integrable functions with respect to the measpreUsing the notatiom® b = ab' for a,b € RP,
we can write

r=E(Of @ Of).

This matrix provides global information about the predictive geometry of Hia (developed in
Section 2.2) as well as inference of conditional independence betwaeiables (developed in Sec-
tion 5). The GOP is meaningful in both the Euclidean as well as the manifold settinge the
marginal distributionp, is concentrated on a much lower dimensional maniféddof dimension
d,, (developed in Section 4.1.2).

Since the GOP is a global quantity and is constructed by averaging thergrawie the marginal
distribution of the data it cannot isolate local information or local geometris dlobal summary
of the joint distribution is advantageous in statistical analyses where gloleatirdes are desired:
global predictive factors comprised of the explanatory variables oayesiimates of statistical de-
pendence between explanatory variables. It is problematic to use a giobalary for constructing
a nonlinear projection or embedding that captures the local predictiveatep on the marginal
distribution.

Random walks or diffusions on manifolds and graphs have been usad/éoiety of nonlinear
dimension reduction or manifold embedding procedures (Belkin and Niyo@8,ZD04; Szummer
and Jaakkola, 2001; Coifman et al., 2005a,b). Our basic idea is to usegtadgent information
to construct a random walk on a graph or manifold based on the ideasfugidif analysis and
diffusion geometry (Coifman and Lafon, 2006; Coifman and Maggioni6200he central quantity
in diffusion based approaches is the definition of a diffusion opetab@sed on a similarity metric
W between two pointg; andx;. A commonly used diffusion operator is the graph Laplacian

L=1-DY2WD Y2, whereD; = > Wi
|

Dimension reduction is achieved by projection onto a spectral decomposittbe operatot or
powers of the operatdrt which corresponds to running the diffusion for some time
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We propose the following similarity metric called the gradient based diffusion (G&M) to
smoothly paste together local gradient estimates

s =xill? 1300 + D (X)) - (% —me) |

In the above equation the first tetjx — x; |2 encodes the local geometry of the marginal distribution
and the second term pastes together gradient estimates between neighbiotisigl he first term is
used in unsupervised dimension reduction methods such as Laplaciamafgear diffusion maps
(Belkin and Niyogi, 2003). The second term can be interpreted as aidiffumap on the function
values, the approximation is due to a first order Taylor expansion

1 .
E(Dfr(xi) +0f (%)) - (x —xj) = fr(x) — fr (%)) if x = X;.
A related similarity was briefly mentioned in Coifman et al. (2005b) and usedlian$et al. (2008)
in the context of semi-supervised learning. In Section 4.2 we study this eanlmojection method
under the assumption that the marginal distribution is concentrated on a mushdmaensional
manifold M.

2.1 lllustration of Linear Projections and Nonlinear Embeddings

The simple example in this section fixes the differences between linear projeetial nonlinear
embeddings using either diffusion maps or gradient based diffusion Mhpsnarginal distribution
is uniform on the following manifold

Xy =tcogt), Xp;=70h, Xz=tsin(t)wheret= %n(1+26), 8<[0,1],he[0,1],

and the regression function ¥s= sin(5m0), see Figure 1(a). In this example a two dimensional
manifold is embedded i and the variation of the response variable can be embedded onto one
dimension. The points in Figure 1(a) are the points on the manifold and thecfaltsesignifies
the function value at these points. In Figure 1(b) the data is embedded ininvemsions using
diffusion maps with the function values displayed in false color. It is clearttiedirection of
greatest variation iX, which corresponds tb. It is not the direction along which the regression
function has greatest variation. In Figure 1(c) the data is projected ontaxes using the GOP
approach and we see that the relevant dimensian%z are recovered. This example also shows
that linear dimension reduction may still make sense in the manifold setting. In Riff)rthe data

is embedded using gradient based diffusion maps and we capture th@difein which the data
varies with respect to the regression function.

2.2 Gradient Outer Product Matrix and Dimension Reduction

In the case of linear supervised dimension reduction we assume the foll@@mgparametric
model holds
Y =f(X)+e=g(bX,...,bIX) +¢, (1)

whereg is noise and = (b], ..., b} ) is the dimension reduction (DR) space. In this case the number
of explanatory variablep is large but the the response varialdepends on a few directionsIRP
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Figure 1: (a) Plot of the original three dimensional data with the color of thietgorrespond-
ing to the function value; (b) Embedding the data onto two dimensions usingidiffu
maps, here dimensions 1 and 2 correspondisaind 6 respectively; (c) Projection of the
data onto two dimensions using gradient based dimension reduction, hermestinel
and 2 corresponds toandz respectively; (d) Embedding the data onto two dimensions
using gradient based diffusion maps, here dimensions 1 and 2 candsspmd and h
respectively.

and dimension reduction becomes the central problem in finding an accegatssion model. In
the following we develop theory relating the gradient of the regressiattifumto the above model
of dimension reduction.

Observe that for a vectare RP, = v [Of; is identically zero iff, does not depends an
and is not zero iff, changes along the directianThe following lemma relates the gradient outer
product matrix to supervised dimension reduction.

At (x)
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Lemma 1 Under the assumptions of the semi-parametric md@dlgl the gradient outer product
matrix ' is of rank at most dDenote by{vs,...,vy} the eigenvectors associated to the nonzero
eigenvalues df . The following holds

spar{B) = spartv,...,Vq).

Lemma 1 states the dimension reduction space can be computed by a specnapaltion
of I'. Notice that this method does not require additional geometric conditions onsthi®wtion.
This is in contrast to other supervised dimension reduction methods (Li; Ce®ik and Weisberg,
1991; Li, 1992) that require a geometric or distributional requiremerX omamely that the level
sets of the distribution are elliptical.

This observation motivates supervised dimension reduction methods basedsistent esti-
matorsl p of I given dateD. Several methods have been motivated by this idea, either implicitly as
in minimum average variance estimation (MAVE) (Xia et al., 2002), or explicitiy asiter product
of gradient (OPG) (Xia et al., 2002) and learning gradients (Mukhetjed, 2010).

The gradient outer product matrix is defined globally and its relation to dimemsdwiction in
Section 2.2 is based on global properties. However, since the gradedhidta local concept we
can also study the geometric structure encoded in the gradient outercprodtrix from a local
point of view.

2.3 Gradient Outer Product Matrix as a Covariance Matrix

A central concept used in dimension reduction is the covariance matrix éftBese regression
function Qxy = cov, [E, (X | Y)]. The fact thatQyy encodes the DR directior= (by,...,bq)
under certain conditions was explored in Li (1991).

The main result of this subsection is to relate the two matrifeand Qyy. The first observa-
tion from this relation is that the gradient outer product matrix is a covariarateix with a very
particular construction. The second observation is that the gradientpouct matrix contains
more information than the covariance of the inverse regression sinceiifreapocal information.
This is outlined for linear regression and then generalized to nonlineegssign. Proofs of the
propositions and the underlying mathematical ideas will be developed in Séctidn

The linear regression problem is often stated as

Y=B'X+¢&, Ee=0. (2)
For this model the following relation between gradient estimates and the imegngssion holds.

Proposition 2 Suppos¢€2) holds. Given the covariance of the inverse regres<ipn, = coy, (E, (X |
Y)), the variance of the output variable? = var(Y), and the covariance of the input variables,
> = cov(X), the gradient outer product matrix is

2\ 2
r=o?(1-%) 5%q,z5 3)

XY<x
assuming thak, is full rank.

The above result states that for a linear model the matficsdQ, , are equivalent modulo a
scale parameter—approximately the variance of the output variable—aati@m—the precision

matrix (inverse of the covariance matrix) of the input variables.
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In order to generalize Proposition 2 to the nonlinear regression settingswvedirsider piece-
wise linear functions. Suppose there exists a non-overlapping partitibie aiput space

such that in each regidR the regression functiofy is linear and the noise has zero mean
fi(x)=B'x, Eg=0 forxeR. (4)
The following corollary is true.

Corollary 3 Given partitions Rof the input space for whicfd) holds, define in each partition
R; the following local quantities: the covariance of the input variabies= cov(X € R;), the co-
variance of the inverse regressiéh = cov, (E, (X € R | Y)), the variance of the output variable
02 =var(Y | X € R). Assuming that matriceX; are full rank, the gradient outer product matrix
can be computed in terms of these local quantities

O

2\ 2
inf&(RﬂGf( —02> ozt (5)

wherep, (R) is the measure of partition;Rvith respect to the marginal distribution .

If the regression function is smooth it can be approximated by a first dialdor series ex-
pansion in each partitioR; provided the region is small enough. Theoretically there always exist
partitions such that the locally linear models (4) hold approximately {i.e.~ 0). Therefore (5)
holds approximately

2
o%

1 2
M~ _leK(Ri)oiZ ( ~ c?) Sto st

Supervised dimension reduction methods based on the covariance ofehseinggression re-
quire an elliptic condition oiX. This condition ensures th&yy encodes the DR subspace but not
necessarily the entire DR subspace. In the worst case it is possiblg(taty) = 0, Qxy = 0.
and as a resulRyy contains no information. In the linear ca@gy will encode the full DR sub-
space, the one predictive direction. Since the GOP is an average theeimgemariance matrix of
the locally linear models it contains all the predictive directions. This motivagesahtrality of the
gradient outer product.

This derivation of the gradient outer product matrix based on localti@mifas two potential
implications. It provides a theoretical comparison between dimension redwgjroaches based
on the gradient outer product matrix and inverse regression. This wikpkred in Section4.1.1
in detail. The integration of local variation will be used to infer statistical ddpane between the
explanatory variables conditioned on the response variable in Section 5.

A common belief in high dimensional data analysis is that the data are concdriratelow
dimensional manifold. Both theoretical and empirical evidence of this beliefdsraulating. In
the manifold setting, the input space is a manif@led= M of dimensiond,, < p. We assume the
existence of an isometric embeddigg & — RP and the observed input variables)]! ; are the
image of pointgq;);’_; drawn from a distribution on the manifola; = ¢(q;). In this case, global
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statistics are not as meaningful from a modeling perspettire.this setting the gradient outer
product matrix should be defined in terms of the gradient on the manifig)cf;,

[ =E (dd(Oas fr) ©dd(Oay fr)) = E (dd (D fr @ Oag fr) (d)T) .

This quantity is meaningful from a modeling perspective because gradieth® manifold capture
the local structure in the data. Note that thg x d,, matrix I 3, = Oy fr @ Og, fr is the central
guantity of interest in this setting. However, we know neither the manifold recdordinates on
the manifold and are only provided points in the ambient space. For thisreascannot compute
I 4c. However, we can understand its properties by analyzing the gradiést product matrix’
in the ambient space,@x p matrix. Details on conditions under whi€¢hprovides information on
I 5 are developed in Section 4.1.2.

3. Estimating Gradients

An estimate of the gradient is required in order to estimate the gradient ooigugbrmatrixI.
Many approaches for computing gradients exist including various nuahelécivative algorithms,
local linear/polynomial smoothing (Fan and Gijbels, 1996), and learnirdjegres by kernel models
(Mukherjee and Zhou, 2006; Mukherjee and Wu, 2006). Our mainsfé€wn what can be done
given an estimate df rather than estimation methods for the gradient. The application domain we
focus on is the analysis of high-dimensional data with few observationsteqh>> n and some
traditional methods do not work well because of computational complexityimrenical stability.
Learning gradients by kernel models was specifically developed for fiestfdata in the Euclidean
setting for regression (Mukherjee and Zhou, 2006) and classificatlolki{erjee and Wu, 2006).
The same algorithms were shown to be valid for the manifold setting with a diffievtenpretation
in Mukherjee et al. (2010). In this section we review the formulation of therdlgns and state
properties that will be relevant in subsequent sections.

The motivation for learning gradients is based on Taylor expanding thessign function

fr(u) = f,(x) + Of (X) - (u—x), for x~=u,
which can be evaluated at data poig_,
fr (%) = fr (X)) + Of (X)) - (% —X;), for x ~X;.

Given dataD = {(yi,X)}{.; the objective is to simultaneously estimate the regression funétion
by a functionfp and the gradierifl f, by the p-dimensional vector valued functiof.

In the regression setting the following regularized loss functional prevtieestimates (Mukher-
jee and Zhou, 2006).

Definition 4 Given the data D= {(x;,y;)}{.;, define the first order difference error of function f
and vector-valued functiofi = (fi,..., f,) on D as

n 2
ZD(f,]?) = rleZ Wﬁj <yi — f(xj)+ l?(Xi)'(Xj —Xi)> .

i1=1

1. ConsiderQ(X | Y) as an example. For any giventhe set{x|Y =y} is a submanifold. The global mean will not
necessarily lie on the manifold. Therefore, from a modeling persgeEfX | Y) and hence&(X | Y) may convey
nothing about the manifold. Although this does not mean it is useless itiggaa theoretical justification seems
impossible.

2182



LEARNING GRADIENTS: PREDICTIVE MODELS THAT INFER GEOMETRY

The regression function and gradient estimate is modeled by

(fo, To) i=arg  min (zomF>+A1\\f\|ﬁ+xzrwfwwﬁ),
(f,Fem? ™

where £ and fp are estimates of. fand [, given the data, \?v is a weight function with bandwidth
s, || - ||k is the reproducing kernel Hilbert space (RKHS) norm and A, are positive constants
called the regularization parameters, the RKHS norm of a p-vector vdluection is the sum of
the RKHS norm of its component§||Z := S, || f||Z.

A typical weight function is a Gaussiam®; = exp(—||x — x;||?/2s%). Note this definition is
slightly different from that given in Mukherjee and Zhou (2006) whéf;) is replaced by; and
only the gradient estimat is estimated.

In the classification setting we are given= {(yi,x )} ; wherey; € {—1,1} are labels. The
central quantity here is the classification function which we can define igitional probabilities

[P(Yzllx)

oY = 1] x)} =argminE @Y f(X))

whereg(t) = log(1+e™) and the sign of, is a Bayes optimal classifier. The following regularized
loss functional provides estimates for the classification function and grtadiikherjee and Wu,
2006).

Definition 5 Given a sample D= {(x;,yi) }]_; we define the empirical error as
-7 z W0 (1) + Fx) - (x=x1) ).

The classification function and gradient estimate given a sample is modeled by

(fo.fo) =arg  min_ (£3(F,)+Aallfl& +22l FIR)
(f, Hend™

where § and fp are estimates of fand Of., andA1, A, are the regularization parameters.

In the manifold setting the above algorithms are still valid. However the intetfmetzhanges.
We state the regression case, the classification case is analogous (jdelkiteal., 2010).

Definition 6 Let M be a Riemannian manifold ard: 4/ — RP be an isometric embedding which
is unknown. Denot& = ¢ (M) and Hx = Hg (X). For the sample D= {(q,yi)}_, € (M x R)",
Xi = ¢(qi) € RP, the learning gradients algorithm oft/ provides estimates

. 1 0 . 2 .
(fo. o) i=arg min {5 5wy (1= £09)-+ T00) -0y =) ) -+l +2al IR
f,fer?t (N% 6=

wherefp is a model fod$ (0, fr) and b is a model for f.
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From a computational perspective the advantage of the RKHS framewthidt i both regres-
sion and classification the solutions satisfy a representer theorem (WESS@& Mukherjee and
Zhou, 2006; Mukherjee and Wu, 2006)

n n

fo(X) = 'ZlainK(x,xi), fo(x) = 'ZchDK(x,xi), (6)

with cp = (C1.p; - --,Cnp) € RP*", andap = (d1p,...,0np)" € RP. In Mukherjee and Zhou (2006)
and Mukherjee and Wu (2006) methods for efficiently computing the minima ingaduced in
the setting wherg > n. The methods involve linear systems of equations of dimensibwhere
d<n.

The consistency of the gradient estimates for both regression and classifiwere proven in
Mukherjee and Zhou (2006) and Mukherjee and Wu (2006) resgdgtiv

Proposition 7 Under mild conditions (see Mukherjee and Zhou, 2006; Mukherjee and?®D6
for details) the estimates of the gradients of the regression or classificatatidn f converge to
the true gradients: with probability greater thdn- 9,

Ifo — Df|l2 <Clog (g) P,

Consistency in the manifold setting was studied in Mukherjee et al. (2010hamrdte of con-
vergence was determined by the dimension of the manitg|dnot the dimension of the ambient

spacep.

Proposition 8 Under mild conditions (see Mukherjee et al., 2010 for details), with probability
greater thanl — 9,

x g 2 _
1(d¢)"fo— 0, fllz < Clog (6)” 1l

where wherddd)* is the dual of the mag¢.

4. Dimension Reduction Using Gradient Estimates

In this section we study some properties of dimension reduction using thiegradtimates. We
also relate learning gradients to previous approaches for dimensiocticedin regression.

4.1 Linear Dimension Reduction

The theoretical foundation for linear dimension reduction using the speetcamposition of the
gradient outer production matrix was developed in Section 2.2. The estintagegradient obtained
by the kernel models in Section 3 provides the following empirical estimate ofréiemt outer
product matrix

= cpK?ch = ZfD x) @ fo(x
whereK is the kernel matrix wittK;; = K(x;,xj) andcp is defined in (6). The eigenvectors corre-

sponding to the top eigenvaluesiotan be used to estimate tHalimension reduction directions.
The following proposition states that the estimate is consistent.
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Proposition 9 Suppose that f satisfies the semi-parametric mteand fp is an empirical ap-
proximation of 0 f. LetVy, ...,V be the eigenvectors éfassociated to the top d eigenvalues. The
following holds

rI]imospar(\?l, ...,Vq) = sparB).

Moreover, the remaining eigenvectors correspond to eigenvalues t@s

Proof : Proposition 7 implies that lim. e fij =Tjj and hence lim,., [ =T in matrix norm. By
perturbation theory the eigenvalues (see Golub and Loan, 1996,érhébt.4 and Corollary 8.1.6)
and eigenvectors (see Zwald and Blanchard, 2006) ebnverge to those df respectively. The
conclusions then follow from Lemma 1. |

Proposition 9 justifies linear dimension reduction using consistent gradséimates from a
global point of view.

In the next subsection we study the gradient outer product matrix frodothaépoint of view
and provide details on the relation between gradient based methods addrslexse regression.

4.1.1 RELATION TO SLICED INVERSE REGRESSION(SIR)

The SIR method computes the DR directions using a generalized eigen-destbompproblem

Q, B=Vp. (7)

In order to study the relation between our method with SIR, we study the relagitmeen the
matricesQ, , andr.

We start with a simple model where the DR space contains only one directioh migians the
regression function satisfies the following semi-parametric model

Y=9(B"X)+¢
where||B|| = 1 andEe = 0. The following theorem holds and Proposition 2 is a special case.

Theorem 10 Suppose thaly is invertible. There exists a constant C such that

r=cz o,z

X|Y <x

2
If g is a linear function the constant is€ 03 ( — gé) .
Y

Proof Itis proven in Duan and Li (1991) that
QX\Y =var(h(Y))z, BBTZX

whereh(y) = %}?E‘)M with p=[E(X) andZ, is the covariance matrix of. In this case, the

computation of matriXx is direct:
I =E[(g(B"X))?]Bp".
By the assumptio, is invertible, we immediately obtain the first relation with

C =E[(g'(B™X))?var(h(Y)) .
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If g(t) = at+ b, we haveh(y) = y?B?LBM and consequently

¢
a’(BTZ,B)?
By the simple fac(g'(B"X)?] = & ando? = a®B"=xB + o2, we get

var(h(Y)) =

c— (BTZ B)? _(0g—02)? _ (1_7)2.

2
of Oy

This finishes the proof. |

It is apparent thaf andQ, , differ only up to a linear transformation. As a consequence the
generalized eigen-decomposition (7Xaf, with respect t&, yields the same first direction as the
eigen-decomposition df.

Consider the linear case. Without loss of generallty suppdsaormalized to satisf§, = o?l,

we se&Q, . is the same ab up to a constant of abo%& Notice that this factor measures the ratio
of the variation of the response to the variation over the input space aasvalibng the predictive
direction. This implies thdt is more informative because it not only contains the information of the
descriptive directions but also measures their importance with respectdbahge of the response
variable.

When there are more than one DR directions as in model (1), we partition thiesipace into
I small regionsX = |JZ_; R such that over each regid the response variabieis approximately
linear with respect tax and the descriptive direction is a linear combination of the column vectors

of B. By the discussion in Section 2.2

r_sz r.NleA R)o?Z Q3

wherer; is the gradient outer product matrix & andQ; = cov, (E, (X € R | Y)). In this sense,

the gradient covariance matrixcan be regarded as the weighted sum of the local covariance ma-
trices of the inverse regression function. Recall that SIR suffera tiee possible degeneracy of
the covariance matrix of the inverse regression function over the enté sppce while the local
covariance matrix of the inverse regression function will not be degémemless the function is
constant. Moreover, in the gradient outer product matrix, the importahlmea descriptive di-
rections are also taken into account. These observations partially ex@ageterality and some
advantages of gradient based methods.

Note this theoretical comparison is independent of the method used to estimgtadient.
Hence the same comparison holds between SIR and other gradient bakedsrgich as mean
average variance estimation (MAVE) and outer product of gradient§&j@Bveloped in Xia et al.
(2002).

4.1.2 THEORETICAL FEASIBILITY OF LINEAR PROJECTIONS FORNONLINEAR MANIFOLDS

In this section we explore why linear projections based on the gradient pugtduct matrix are
feasible and have meaning when the manifold structure is nonlinear. Thefctiue analysis will
be demonstrating that the estimated gradient outer product niasigtill meaningful.
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Again assume there exists an unknown isometric embedding of the manifold eramtiient
spaced : M — RP. From a modeling perspective we would like the gradient estimate from data
fb to approximate ¢(0,, fr) (Mukherjee et al., 2010). Generally this is not true when the manifold
is nonlinearg is a nonlinear map. Instead, the estimate provides the following informationt abou
O, fr

#gl(d¢) fo =Uafr,

where(d¢)* is the dual of @, the differential of.

Note thatf; is not well defined on any open setl&P. Hence, it is not meaningful to consider
the gradient of1f, in the ambient spac®P. Also, we cannot recover directly the gradientfpbn
the manifold since we know neither the manifold nor the embedding. Howeeerawstill recover
the DR directions from the matrix.

Assumef, satisfies the semi-parametric model (1). The mdtris not well defined buf is
well defined. The following proposition ensures that the spectral degsitiqgm of [~ provides the
DR directions.

Proposition 11 Ifv L b; foralli =1,...,d, thenlim_, V' F'v=0.

Proof Let f, be the sample limit ofp, that is

hmargmin{ [ [ &5 (100~ @)+ 7€) "db, (0o, @)A1l )

By the assumption and a simple rotation argument we can show tfiat= 0.
It was proven in Mukherjee and Zhou (2006) thatdim || fp — fi||x = 0. A result of this is for

2 = cpKcf,
2o - n 00 -
vizv=|v-fo[g = [lv- fallk = 0.
This implies that lim_, V' ['v= 0 and proves the proposition. |

Proposition 11 states that all the vectors perpendicular to the DR spaespand to eigenval-
ues near zero df and will be filtered out. This means the DR directions can be still found by the
spectral decomposition of the estimated gradient outer product matrix.

4.2 Nonlinear Projections: Gradient Based Diffusion Maps (GDM)

As discussed in Section 2 the gradient of the regression function caseblefar nonlinear projec-
tions. The basic idea was to use local gradient information to construdtiaidii operatot. based
on a similarity metrid\j between two pointg; andx;. A commonly used diffusion operator is the
graph Laplacian
L=1-D "D Y%, whereD;j =y W;.
]

Dimension reduction is achieved by projection onto a spectral decomposittbre operatoiL. or
powers(l —L)! of the operatofl — L) which corresponds to running the diffusiéin- L) for some
timet. The gradient based diffusion map (GDM) was defined as

C=xil2 13O0 + 0 (x))) - (% —me) |

(8)

W =Wf(Xi7Xj)=eXp< o1 =

2187



Wu, GUINNEY, MAGGIONI AND MUKHERJEE

In the above equation the first tefjx — x; |2 encodes the local geometry of the marginal distribution
and the second term pastes together gradient estimates between neighbiotingr he first termis
used in unsupervised dimension reduction methods such as Laplaciamajggear diffusion maps
(Belkin and Niyogi, 2003). The second term can be interpreted as afdst Taylor expansion
leading to the following approximation

1
E(Dfr(xi) + 01 (%)) - (% —x5) = (%) — fr ().
The form (8) is closely related to the following function adapted similarity psepdn Szlam et al.

(2008)
i —xi[l* |F(x)— f(Xj)lz)
01 O2 ’

Wf (Xi,Xj) = exp(

where the function evaluatiorfgx;) are computed based on a first rough estimate of the regression
function from the data.

The utility of nonlinear dimension reduction has been shown to be dramatic veipieceto
prediction accuracy in the semi-supervised learning setting where a lerg# anlabeled data,
{X1,...,%}, drawn from the marginal distribution, were used to learn the projectioraamdall set
of labeled datd (y1,x1), .., (Y¢, X¢) } were used to learn the regression function on the projected data.
Of practical importance in this setting is the need to evaluate the similarity functioatai sample
data. The labeled data is used to compute the gradient estimate, which catuagesl/on out-of-
sample data. Given the gradient estimate and the labeled and unlabelég date, X;1,X¢+u)
the following GDM can be defined on all the samples

% — X2 B 12(Fo(x) + To(x))) - (x —x))[?
o1 02

VV,-—exp( >, i,j=1,..,u+"

An analysis of the accuracy of the GDM approach is based on howfywel — f(x;) can be
estimated using the gradient estimdge The first order Taylor expansion on the manifold results
in the following approximation

f(x)— f(xj)zDMf(xi)-vij, forvij = 0,

wherev;; € Ty M is the tangent vector such thgt= Exp, (vij) where Exp is the exponential map

atx; (see do Carmo, 1992; Mukherjee et al., 2010). Since we cannot corputeve useﬁg.
The following proposition states that estimates of the function value diffesecan be accurately
estimated from gradient estimatg.

Proposition 12 The following holds
fo(x) — fr(xj) = T (%) - (X — Xj), for % ~ xj.

Proof By the factx; — xj ~ d§(vij) we have

-

fo(x) - (% —x;) = (fo (%), dd(w))) = ((d)"(Fo (%)), vig) ~ (O, fr (%), vij)

which implies the conclusion. |
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This proposition does not prove consistency of the GDM approach. ré€kisarch program
of proving convergence of the eigenvectors of a graph Laplacian teigenfunctions of a cor-
responding Laplace-Beltrami operator is a source of extensiverobsigadiffusion maps (Belkin
and Niyogi, 2005; Gié and Koltchinskii, 2006). It would be of interest to adapt these appesac
to the gradient setting. The limiting operator will in general depend on tip@nd o, approach
0 as the number of points tends to infinity. For example, it is easy to see tbatap — 0,
suitably asn — 4o, with 01/02 = @, then the limiting operator is the Laplacian on the manifold
(x,af(x)) C M xR.

4.2.1 BUPIRICAL RESULTS FORGRADIENT BASED DIFFUSION MAPS

In this section we motivate the efficacy of the GDM approach with an empiriadly<f predic-
tive accuracy in the semi-supervised setting on six benchmark data satsifoChapelle et al.
(2006). In the semi-supervised setting using the labeled as well as theledatata for dimension
reduction followed by fitting a regression model has often increasedctivedaccuracy. We used
the benchmark data so we could compare the performance of DM and GDlevemealgorithms
(Chapelle et al., 2006, Table 21.11). The conclusion of our study is thé nproves predictive
accuracy over DM and that GDM is competitive with respect to the otheritigus.

For each data set twelve splits were generated with 100 samples labelechispdiac We
applied DM and GDM to each of these sets to find DR directions. We projecteditta (labeled
and unlabeled) onto the DR directions and used a k-Nearest-Neighh) Hassifier to classify
the unlabeled data. The parameters of the DM, GDM, and number of neghlese set using
a validation set in each trial. The average classification error rate forlabeled data over the
twelve splits are reported in Table 1. We also report in Table 1 the top parfgralgorithm for
the data sets in Chapelle et al. (2006, Table 21.11). Laplacian RLS staridgplacian regularized
least-squares, SGT stands for spectral graph transducer, (estest is an algorithm that uses two
kernel functions, see (Chapelle et al., 2006, Chapter 11) for details.

Areasonable conclusion from Table 1 is that having label information ingsrthe performance
of diffusion operator with respect to prediction. In addition, dimensiomec&dn using GDM fol-
lowed by a simple classifier is competitive to other approaches. We suspeattgrating GDM
with a penalized classification algorithm in the same spirit as Laplacian regddsast-squares
can improve performance.

5. Graphical Models and Conditional Independence

One example of a statistical analysis where global inferences are desiexglanations with re-
spect to the coordinates of the data is important is a graphical model adieected graphs. In this
setting it is of interest to understand how coordinates covary with respeatiation in response,
as is provided by the GOP. Often of greater interest is to infer direct militonal dependencies
between two coordinates as a function of variation in the response. Iretttisrs we explore how
this can be done using the GOP.

A natural idea in multivariate analysis is to model the conditional indepenadromultivariate
distribution using a graphical model over undirected graphs. The tlteddBauss-Markov graphs
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Data DM GDM Best

G241C| 19.96%| 18.61% 13.49% (Cluster-Kernel)
G241D | 14.27%| 13.64% 4.95% (Cluster-Kernel)
Digitl | 1.8% 1.8% 1.8% (DM, GDM)

BCl | 48.53%| 31.36%| 31.36% (GDM, Laplacian RLS
USPS | 12.85%| 10.76% 4.68% (Laplacian RLS)
Text | 24.71%| 23.57% 23.09% (SGT)

Table 1: Error rates for DM and GDM over six data sets reported in Gleapeal. (2006, Table
21.11). The column 'Best’ reports the error rate for the algorithm with thdlestarror
of the 13 applied to the data.

(Speed and Kiiveri, 1986; Lauritzen, 1996) was developed for mulitaGaussian densities
1+ T
p(x) O exp ~3 Ix+h'x|,

where the covariance & and the mean ig = Jh. The result of the theory is that the precision
matrix J, given byJ = Z;(l, provides a measurement of conditional independence. The meaning
of this dependence is highlighted by the partial correlation m&gixvhere each elemeiR; is a
measure of dependence between variaibéesl j conditioned on all other variabl&¥ andi # |

cov(X;,X; | ')

The partial correlation matrix is typically computed from the precision mdtrix

Rj = —Jij/v/Jidjj.-

In the regression and classification framework inference of the condititapendence between
explanatory variables has limited information. Much more useful would bedhdittonal depen-
dence of the explanatory variables conditioned on variation in the resp@nigble. In Section 2
we stated that both the covariance of the inverse regression as well gsathient outer product
matrix provide estimates of the covariance of the explanatory variablegicomed on variation in
the response variable. Given this observation, the inverses of theseanatr

Rj =

Iy = Q;qlY and Jr=r"1

provide evidence for the conditional dependence between explanaitdaples conditioned on the
response. We focus on the inverse of the gradient outer product rimettnis paper since it is of use
for both linear and nonlinear functions.

The two main approaches to inferring graphical models in high-dimensiege¢ssion have
been based on either sparse factor models (Carvalho et al., 200&)rse gpaphical models repre-
senting sparse partial correlations (Meinshausen and Buhlmann,. 2006xpproach differs from
both of these approaches in that the response variable is always exphicgparse factor models
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the factors can be estimated independent of the response variable aadjrathe graphical model
the response variable is considered as just another node, the sameeaplédmatory variables.
Our approach and the sparse factor models approach both sharsuamptien of sparsity in the
number of factors or directions. Sparse graphical model approasisesne sparsity of the partial
correlation matrix.

Our proof of the convergence of the estimated conditional dependeritie (h3 ~* to the pop-
ulation conditional dependence matfix! relies on the assumption that the gradient outer product
matrix being low rank. This again highlights the difference between our mgdasumption of
low rank versus sparsity of the conditional dependence matrix. Sincesuere that both and[”
are singular and low rank we use pseudo-inverses in order to cartsteudependence graph.

Proposition 13 Let ! be the pseudo-inverse bBf Let the eigenvalues and eigenvectorfdje
Ai and ¥ respectively. I€ > 0 is chosen so that = &, = o(1) ande; || — || = o(1), then the
convergence

Z Vi}\\flvi -t

Ai>e

holds in probability.

Proof We have shown in Proposition 9 thit — || = o(1). Denote the eigenvalues and eigenvec-
tors of " asA; andy; respectively. Then

A=ANl=O(|F=rl)  and % —w=O(|F ~r]).
By the conditiore; || — || = o(1) the following holds
Xi >e= A\ >¢€/2= A >0

implying {i : A > €} C {i: A > 0} in probability. On the other hand, denoting- min{A; : A; > 0},
the conditiore, = o(1) implies

{i:n>0 ={i:A>t}c{i:A>1/2 C{i:A >¢g}
in probability. Hence we obtain A
{i:A >0} ={i: A >¢}
in probability. A
For eachj € {i: Aj > 0} we haveAj,Aj > 1/2 in probability, so

ATE =A< A=A/ (20) =2 0.

Thus we finally obtain

Ay 1A~ N— _ _
> UGN R RAAY > ViN W =r-1
i>€ Ai>0

This proves the conclusion. |
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5.1 Results on Simulated and Real Data

We first provide an intuition of the ideas behind our inference of graphiocdels using simple sim-
ulated data. We then apply the method to study dependencies in gene iexpiretize development
of prostate cancer.

5.1.1 SMULATED DATA

The following simple example clarifies the information contained in the covariaratex as well
as the gradient outer product matrix. Construct the following depem@tanatory variables from
standard random normal variab@s ..., 65 g AN(0,1)

X1 =01, Xo =01+ 02, X3 =03+ 04, X4 = 64, X5 = 05 — B4,

and the following response
Y=X1+ (X'3+X5)/2+817

whereg; ~ A((0,.5%).

We drew 100 observatior(, , X,, X, X4, X, ¥i )i0% from the above sampling design. From this
data we estimate the covariance matrix of the margibgland the gradient outer product matrix
[. From3x, Figure 2(a), we see thxk andX, covary with each other ars, X4, X5 covary. The
conditional independence matri, Figure 2(b), provides information on more direct relations
between the coordinates as we see Hais independent o3 given X4, X5 LL X3 | X4. The
dependence relations are summarized in the graphical model in FigureTa{ahg the response
variable into account, we find in the gradient outer product matrix, Fig{ae the variableX,; and
X4 are irrelevant whiléy, X3, Xs are relevant. The matriif is shown in Figure 2(e) and implies that
any pair ofXy, X3, X5 are negatively dependent conditioned on the other and the respareddeva
Y. The graphical model is given in Figure 2(f).

5.1.2 GENESDRIVING PROGRESSION OFPROSTATE CANCER

A fundamental problem in cancer biology is to understand the molecularemetig basis of the
progression of a tumor from less serious states to more serious statesarAple is the progression
from a benign growth to malignant cancer. The key interest in this probldmusderstand the
genetic basis of cancer. A classic model for the genetic basis of caasgraposed by Fearon and
Vogelstein (1990) describing a series of genetic events that causegsam of colorectal cancer.

In Edelman et al. (2008) the inverse of the gradient outer product sed to infer the depen-
dence between genes that drive tumor progression in prostate cadometanoma. In the case of
melanoma the data consisted of genomewide expression data from normatypantametastatic
skin samples. Part of the analysis in this paper was inference of condliiepandence graphs
or networks of genes that drive differential expression betweemstafprogression. The gradi-
ent outer product matrix was used to infer detailed models of gene netitatksay drive tumor
progression.

In this paper, we model gene networks relevant in driving progressiprostate cancer as an
illustration of how the methodology can be used to posit biological hypoth&éesobjective is to
understand the dependence structure between genes that areyeaediptiogression from benign
to malignant prostate cancer. in progressing from benign to malignanbasncer. The data
consists of 22 benign and 32 advanced prostate tumor samples (Tomlin2@0@|.Edelman et al.,
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Figure 2: (a) Covariance matriy; (b) Partial correlation matriRy; (c) Graphical model repre-
sentation of partial correlation matrix; (d) Gradient outer product mitr|(<e) Partial
correlatloner with respect td ; (f) Graphical model representation |a,£

2008). For each sample the expression level of ove0Q@ probes corresponding to genes were
measured. We eliminated many of those probes with low variation across allesaragulting in

a 4095 probes or variables. From this reduced data set we estimatechthengrouter product
matrix, I:, and used the pseudo-inverse to compute the conditional independetmkxe.ﬂha (f)—1
From the conditional independence matrix we computed the partial correlatirix R where

I'Q’ij = \/3'”7 fori # j and O otherwise. We again reduced Renatrix to obtain 139 nodes and
i Jjj

400 edges corresponding to the largest partial correlations and wttritsie graph seen in Figure 3.

The structure of the partial correlation graph recapitulates some knoveglwal processes
in the progression of prostate cancer. The most highly connected géfldks(labeled green)
which is known to have significant deregulation in prostate cancer andasiaged with aggressive
tumors (Tomlins et al., 2007). We also observe two distinct clusters annatatetlow and purple
in the graph that we cafl; andC, respectively. These clusters derive their associations principally
through 5 genes, annotated in light blue and dark blue in the graph. Thdlighgenes AMACR,
ANXA1, and CD38 seem to have strong dependence with respect to ties geC; wile Cy is
dependent on these genes in addition to the dark blue genes LMAN1L&Dt481. AMACR
and ANXA1 as well as CD38 are well-known to have roles in prostate cgrogression (Jiang
et al., 2004; Hsiang et al., 2004; Kramer et al., 1995). The other twasdeMAN1L and SLC14A1
are known to have tumorigenic properties and would be candidates fbefaxperiments to better
understand their role in prostate cancer.
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Figure 3: Graphical model of genes relevant in tumors progressing frenign to malignant
prostate tissue. The edges correspond to partial correlations.

6. Discussion

The main contribution of this paper is to describe how inference of the griaafi¢he regression or
classification function encodes information about the predictive geometmeh as the predictive
conditional dependence in the data. Two methods are introduced gradsed diffusion maps
and inference of conditional independence structure given gragléimates. Precise statistical re-
lations between different approaches to supervised dimension redactiatescribed. Simulated
and real data are used to illustrate the utility of the methods developed. We poavergence
of the estimated graphical model to the population dependence graph. ddaifirdirect link be-
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tween graphical models and dimension reduction intriguing and suggeshéhatanifold learning
perspective holds potential in the analysis and inference of graphialmo
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