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Abstract
The problems of dimension reduction and inference of statistical dependence are addressed by the
modeling framework of learning gradients. The models we propose hold for Euclidean spaces as
well as the manifold setting. The central quantity in this approach is an estimate of the gradient
of the regression or classification function. Two quadraticforms are constructed from gradient
estimates: the gradient outer product and gradient based diffusion maps. The first quantity can be
used for supervised dimension reduction on manifolds as well as inference of a graphical model
encoding dependencies that are predictive of a response variable. The second quantity can be used
for nonlinear projections that incorporate both the geometric structure of the manifold as well as
variation of the response variable on the manifold. We relate the gradient outer product to standard
statistical quantities such as covariances and provide a simple and precise comparison of a variety of
supervised dimensionality reduction methods. We provide rates of convergence for both inference
of informative directions as well as inference of a graphical model of variable dependencies.

Keywords: gradient estimates, manifold learning, graphical models,inverse regression, dimension
reduction, gradient diffusion maps

1. Introduction

The problem of developing predictive models given data from high-dimensional physical and bi-
ological systems is central to many fields such as computational biology. A premise in modeling
natural phenomena of this type is that data generated by measuring thousands of variables lie on or
near a low-dimensional manifold. This hearkens to the central idea of reducing data to only relevant
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information. This idea was fundamental to the paradigm of Fisher (1922) and goes back at least to
Adcock (1878) and Edgeworth (1884). For an excellent review of thisprogram see Cook (2007).
In this paper we examine how this paradigm can be used to infer geometry of the data as well as
statistical dependencies relevant to prediction.

The modern reprise of this program has been developed in the broad areas of manifold learn-
ing and simultaneous dimension reduction and regression. Manifold learninghas focused on the
problem of projecting high-dimensional data onto a few directions or dimensions while respect-
ing local structure and distances. A variety of unsupervised methods have been proposed for this
problem (Tenenbaum et al., 2000; Roweis and Saul, 2000; Belkin and Niyogi, 2003; Donoho and
Grimes, 2003). Simultaneous dimension reduction and regression considers the problem of finding
directions that are informative with respect to predicting the response variable. These methods can
be summarized by three categories: (1) methods based on inverse regression (Li, 1991; Cook and
Weisberg, 1991; Fukumizu et al., 2005; Wu et al., 2007), (2) methods based on gradients of the
regression function (Xia et al., 2002; Mukherjee and Zhou, 2006; Mukherjee and Wu, 2006), (3)
methods based on combining local classifiers (Hastie and Tibshirani, 1996;Sugiyama, 2007). Our
focus is on the supervised problem. However, we will use the core idea in manifold learning, local
estimation.

We first illustrate with a simple example how gradient information can be used forsupervised
dimension reduction. Both linear projections as well as nonlinear embeddingsbased on gradient
estimates are used for supervised dimension reduction. In both approaches the importance of using
the response variable is highlighted.

The main contributions in this paper consist of (1) development of gradientbased diffusion
maps, (2) precise statistical relations between the above three categories of supervised dimension
reduction methods, (3) inference of graphical models or conditional independence structure given
gradient estimates, (4) rates of convergence of the estimated graphical model. The rate of con-
vergence depends on a geometric quantity, the intrinsic dimension of the gradient on the manifold
supporting the data, rather than the sparsity of the graph.

2. A Statistical Foundation for Learning Gradients

The problem of regression can be summarized as estimating the function

fr(x) = E(Y | X = x)

from dataD = {Li = (Yi ,Xi)}n
i=1 whereXi is a vector in ap-dimensional compact metric space

X ∈ X ⊂ R
p andYi ∈ R is a real valued output. Typically the data are drawn iid from a joint

distribution,Li
iid∼ ρ(X,Y) thus specifying a model

yi = fr(xi)+ εi

with εi drawn iid from a specified noise model. We defineρX as the marginal distribution of the
explanatory variables.

In this paper we will explain how inference of the gradient of the regression function

∇ fr =

(

∂ fr
∂x1 , ...,

∂ fr
∂xp

)T
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provides information on the geometry and statistical dependencies relevantto predicting the re-
sponse variable given the explanatory variables. Our work is motivated by the following ideas.
The gradient is a local concept as it measures local changes of a function. Integrating informa-
tion encoded by the gradient allows for inference of the geometric structure in the data relevant
to the response. We will explore two approaches to integrate this local information. The first ap-
proach is averaging local gradient estimates and motivates the study of the gradient outer product
(GOP) matrix. The GOP can be used to motivate a variety of linear superviseddimension reduction
formulations. The GOP can also be considered as a covariance matrix and used for inference of
conditional dependence between predictive explanatory variables. The second approach is to paste
local gradient estimates together. This motivates the study of gradient based diffusion maps (GDM).
This operator can be used for nonlinear supervised dimension reductionby embedding the support
of the marginal distribution onto a much lower dimensional manifold that varies withrespect to the
response.

The gradient outer productΓ is a p× p matrix with elements

Γi j =

〈

∂ fr
∂xi ,

∂ fr
∂x j

〉

L2
ρX

,

whereρX is the marginal distribution of the explanatory variables andL2
ρX

is the space of square

integrable functions with respect to the measureρX . Using the notationa⊗b= abT for a,b∈ R
p,

we can write
Γ = E(∇ fr ⊗∇ fr).

This matrix provides global information about the predictive geometry of the data (developed in
Section 2.2) as well as inference of conditional independence between variables (developed in Sec-
tion 5). The GOP is meaningful in both the Euclidean as well as the manifold settingwhere the
marginal distributionρX is concentrated on a much lower dimensional manifoldM of dimension
dM (developed in Section 4.1.2).

Since the GOP is a global quantity and is constructed by averaging the gradient over the marginal
distribution of the data it cannot isolate local information or local geometry. This global summary
of the joint distribution is advantageous in statistical analyses where global inferences are desired:
global predictive factors comprised of the explanatory variables or global estimates of statistical de-
pendence between explanatory variables. It is problematic to use a globalsummary for constructing
a nonlinear projection or embedding that captures the local predictive geometry on the marginal
distribution.

Random walks or diffusions on manifolds and graphs have been used for a variety of nonlinear
dimension reduction or manifold embedding procedures (Belkin and Niyogi, 2003, 2004; Szummer
and Jaakkola, 2001; Coifman et al., 2005a,b). Our basic idea is to use local gradient information
to construct a random walk on a graph or manifold based on the ideas of diffusion analysis and
diffusion geometry (Coifman and Lafon, 2006; Coifman and Maggioni, 2006). The central quantity
in diffusion based approaches is the definition of a diffusion operatorL based on a similarity metric
Wi j between two pointsxi andx j . A commonly used diffusion operator is the graph Laplacian

L = I −D−1/2WD−1/2, whereDii = ∑
j

Wi j .

Dimension reduction is achieved by projection onto a spectral decomposition of the operatorL or
powers of the operatorLt which corresponds to running the diffusion for some timet.
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We propose the following similarity metric called the gradient based diffusion map(GDM) to
smoothly paste together local gradient estimates

Wi j =Wf (xi ,x j) = exp

(

−‖xi −x j‖2

σ1
− |1

2(∇ fr(xi)+∇ fr(x j)) · (xi −x j)|2
σ2

)

.

In the above equation the first term‖xi−x j‖2 encodes the local geometry of the marginal distribution
and the second term pastes together gradient estimates between neighboringpoints. The first term is
used in unsupervised dimension reduction methods such as Laplacian eigenmaps or diffusion maps
(Belkin and Niyogi, 2003). The second term can be interpreted as a diffusion map on the function
values, the approximation is due to a first order Taylor expansion

1
2
(∇ fr(xi)+∇ fr(x j)) · (xi −x j)≈ fr(xi)− fr(x j) if xi ≈ x j .

A related similarity was briefly mentioned in Coifman et al. (2005b) and used in Szlam et al. (2008)
in the context of semi-supervised learning. In Section 4.2 we study this nonlinear projection method
under the assumption that the marginal distribution is concentrated on a much lower dimensional
manifoldM .

2.1 Illustration of Linear Projections and Nonlinear Embeddings

The simple example in this section fixes the differences between linear projections and nonlinear
embeddings using either diffusion maps or gradient based diffusion maps.The marginal distribution
is uniform on the following manifold

X1 = t cos(t), X2 = 70h, X3 = t sin(t) wheret =
3π
2
(1+2θ), θ ∈ [0,1], h∈ [0,1],

and the regression function isY = sin(5πθ), see Figure 1(a). In this example a two dimensional
manifold is embedded inR3 and the variation of the response variable can be embedded onto one
dimension. The points in Figure 1(a) are the points on the manifold and the falsecolor signifies
the function value at these points. In Figure 1(b) the data is embedded in two dimensions using
diffusion maps with the function values displayed in false color. It is clear that the direction of
greatest variation isX2 which corresponds toh. It is not the direction along which the regression
function has greatest variation. In Figure 1(c) the data is projected onto two axes using the GOP
approach and we see that the relevant dimensionsX1,X3 are recovered. This example also shows
that linear dimension reduction may still make sense in the manifold setting. In Figure1(d) the data
is embedded using gradient based diffusion maps and we capture the direction θ in which the data
varies with respect to the regression function.

2.2 Gradient Outer Product Matrix and Dimension Reduction

In the case of linear supervised dimension reduction we assume the followingsemi-parametric
model holds

Y = fr(X)+ ε = g(bT
1 X, . . . ,bT

d X)+ ε, (1)

whereε is noise andB= (bT
1 , ...,b

T
d ) is the dimension reduction (DR) space. In this case the number

of explanatory variablesp is large but the the response variableY depends on a few directions inRp
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(b) Diffusion map
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(c) GOP
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(d) GDM
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Figure 1: (a) Plot of the original three dimensional data with the color of the point correspond-
ing to the function value; (b) Embedding the data onto two dimensions using diffusion
maps, here dimensions 1 and 2 corresponds toh andθ respectively; (c) Projection of the
data onto two dimensions using gradient based dimension reduction, here dimensions 1
and 2 corresponds tox andz respectively; (d) Embedding the data onto two dimensions
using gradient based diffusion maps, here dimensions 1 and 2 corresponds toθ andh
respectively.

and dimension reduction becomes the central problem in finding an accurateregression model. In
the following we develop theory relating the gradient of the regression function to the above model
of dimension reduction.

Observe that for a vectorv∈ R
p, ∂ fr (x)

∂v = v ·∇ fr is identically zero if fr does not depends onv
and is not zero iffr changes along the directionv. The following lemma relates the gradient outer
product matrix to supervised dimension reduction.
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Lemma 1 Under the assumptions of the semi-parametric model(1), the gradient outer product
matrix Γ is of rank at most d. Denote by{v1, . . . ,vd} the eigenvectors associated to the nonzero
eigenvalues ofΓ. The following holds

span(B) = span(v1, . . . ,vd).

Lemma 1 states the dimension reduction space can be computed by a spectral decomposition
of Γ. Notice that this method does not require additional geometric conditions on the distribution.
This is in contrast to other supervised dimension reduction methods (Li, 1991; Cook and Weisberg,
1991; Li, 1992) that require a geometric or distributional requirement onX, namely that the level
sets of the distribution are elliptical.

This observation motivates supervised dimension reduction methods based on consistent esti-
matorsΓD of Γ given dataD. Several methods have been motivated by this idea, either implicitly as
in minimum average variance estimation (MAVE) (Xia et al., 2002), or explicitly asin outer product
of gradient (OPG) (Xia et al., 2002) and learning gradients (Mukherjeeet al., 2010).

The gradient outer product matrix is defined globally and its relation to dimension reduction in
Section 2.2 is based on global properties. However, since the gradient itself is a local concept we
can also study the geometric structure encoded in the gradient outer product matrix from a local
point of view.

2.3 Gradient Outer Product Matrix as a Covariance Matrix

A central concept used in dimension reduction is the covariance matrix of theinverse regression
function ΩX|Y = covY [EX(X | Y)]. The fact thatΩX|Y encodes the DR directionsB = (b1, . . . ,bd)
under certain conditions was explored in Li (1991).

The main result of this subsection is to relate the two matrices:Γ andΩX|Y. The first observa-
tion from this relation is that the gradient outer product matrix is a covariancematrix with a very
particular construction. The second observation is that the gradient outer product matrix contains
more information than the covariance of the inverse regression since it captures local information.
This is outlined for linear regression and then generalized to nonlinear regression. Proofs of the
propositions and the underlying mathematical ideas will be developed in Section4.1.1.

The linear regression problem is often stated as

Y = βTX+ ε, Eε = 0. (2)

For this model the following relation between gradient estimates and the inverseregression holds.

Proposition 2 Suppose(2)holds. Given the covariance of the inverse regression,Ω
X|Y = covY(EX(X |

Y)), the variance of the output variable,σ2
Y
= var(Y), and the covariance of the input variables,

ΣX = cov(X), the gradient outer product matrix is

Γ = σ2
Y

(

1− σ2
ε

σ2
Y

)2
Σ−1

X
Ω

X|YΣ−1
X
, (3)

assuming thatΣX is full rank.

The above result states that for a linear model the matricesΓ andΩ
X|Y are equivalent modulo a

scale parameter—approximately the variance of the output variable—and a rotation—the precision
matrix (inverse of the covariance matrix) of the input variables.
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In order to generalize Proposition 2 to the nonlinear regression setting we first consider piece-
wise linear functions. Suppose there exists a non-overlapping partition ofthe input space

X =
I⋃

i=1

Ri

such that in each regionRi the regression functionfr is linear and the noise has zero mean

fr(x) = βT
i x, Eεi = 0 for x∈ Ri . (4)

The following corollary is true.

Corollary 3 Given partitions Ri of the input space for which(4) holds, define in each partition
Ri the following local quantities: the covariance of the input variablesΣi = cov(X ∈ Ri), the co-
variance of the inverse regressionΩi = covY(EX(X ∈ Ri | Y)), the variance of the output variable
σ2

i = var(Y | X ∈ Ri). Assuming that matricesΣi are full rank, the gradient outer product matrix
can be computed in terms of these local quantities

Γ =
I

∑
i=1

ρX(Ri)σ2
i

(

1− σ2
εi

σ2
i

)2

Σ−1
i Ωi Σ

−1
i , (5)

whereρX(Ri) is the measure of partition Ri with respect to the marginal distributionρX .

If the regression function is smooth it can be approximated by a first orderTaylor series ex-
pansion in each partitionRi provided the region is small enough. Theoretically there always exist
partitions such that the locally linear models (4) hold approximately (i.e.,Eεi ≈ 0). Therefore (5)
holds approximately

Γ ≈
I

∑
i=1

ρX(Ri)σ2
i

(

1− σ2
εi

σ2
i

)2

Σ−1
i Ωi Σ

−1
i .

Supervised dimension reduction methods based on the covariance of the inverse regression re-
quire an elliptic condition onX. This condition ensures thatΩX|Y encodes the DR subspace but not
necessarily the entire DR subspace. In the worst case it is possible thatE(X | Y) = 0, ΩX|Y = 0.
and as a resultΩX|Y contains no information. In the linear caseΩX|Y will encode the full DR sub-
space, the one predictive direction. Since the GOP is an average the inverse covariance matrix of
the locally linear models it contains all the predictive directions. This motivates the centrality of the
gradient outer product.

This derivation of the gradient outer product matrix based on local variation has two potential
implications. It provides a theoretical comparison between dimension reduction approaches based
on the gradient outer product matrix and inverse regression. This will beexplored in Section 4.1.1
in detail. The integration of local variation will be used to infer statistical dependence between the
explanatory variables conditioned on the response variable in Section 5.

A common belief in high dimensional data analysis is that the data are concentrated on a low
dimensional manifold. Both theoretical and empirical evidence of this belief is accumulating. In
the manifold setting, the input space is a manifoldX =M of dimensiondM ≪ p. We assume the
existence of an isometric embeddingϕ : M → R

p and the observed input variables(xi)
n
i=1 are the

image of points(qi)
n
i=1 drawn from a distribution on the manifold:xi = ϕ(qi). In this case, global
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statistics are not as meaningful from a modeling perspective.1 In this setting the gradient outer
product matrix should be defined in terms of the gradient on the manifold,∇M fr ,

Γ = E(dϕ(∇M fr)⊗dϕ(∇M fr)) = E
(

dϕ(∇M fr ⊗∇M fr)(dϕ)T) .

This quantity is meaningful from a modeling perspective because gradientson the manifold capture
the local structure in the data. Note that thedM ×dM matrix ΓM = ∇M fr ⊗∇M fr is the central
quantity of interest in this setting. However, we know neither the manifold nor the coordinates on
the manifold and are only provided points in the ambient space. For this reason we cannot compute
ΓM . However, we can understand its properties by analyzing the gradient outer product matrixΓ
in the ambient space, ap× p matrix. Details on conditions under whichΓ provides information on
ΓM are developed in Section 4.1.2.

3. Estimating Gradients

An estimate of the gradient is required in order to estimate the gradient outer product matrixΓ.
Many approaches for computing gradients exist including various numerical derivative algorithms,
local linear/polynomial smoothing (Fan and Gijbels, 1996), and learning gradients by kernel models
(Mukherjee and Zhou, 2006; Mukherjee and Wu, 2006). Our main focus is on what can be done
given an estimate ofΓ rather than estimation methods for the gradient. The application domain we
focus on is the analysis of high-dimensional data with few observations, where p ≫ n and some
traditional methods do not work well because of computational complexity or numerical stability.
Learning gradients by kernel models was specifically developed for this type of data in the Euclidean
setting for regression (Mukherjee and Zhou, 2006) and classification (Mukherjee and Wu, 2006).
The same algorithms were shown to be valid for the manifold setting with a different interpretation
in Mukherjee et al. (2010). In this section we review the formulation of the algorithms and state
properties that will be relevant in subsequent sections.

The motivation for learning gradients is based on Taylor expanding the regression function

fr(u)≈ fr(x)+∇ fr(x) · (u−x), for x≈ u,

which can be evaluated at data points(xi)
n
i=1

fr(xi)≈ fr(x j)+∇ fr(x j) · (xi −x j), for xi ≈ x j .

Given dataD = {(yi ,xi)}n
i=1 the objective is to simultaneously estimate the regression functionfr

by a functionfD and the gradient∇ fr by thep-dimensional vector valued function~fD.
In the regression setting the following regularized loss functional provides the estimates (Mukher-

jee and Zhou, 2006).

Definition 4 Given the data D= {(xi ,yi)}n
i=1, define the first order difference error of function f

and vector-valued function~f = ( f1, . . . , fp) on D as

ED( f , ~f ) =
1
n2

n

∑
i, j=1

ws
i, j

(

yi − f (x j)+~f (xi) · (x j −xi)

)2

.

1. ConsiderΩ(X | Y) as an example. For any giveny, the set{x | Y = y} is a submanifold. The global mean will not
necessarily lie on the manifold. Therefore, from a modeling perspectiveE(X | Y) and henceΩ(X | Y) may convey
nothing about the manifold. Although this does not mean it is useless in practice, a theoretical justification seems
impossible.
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The regression function and gradient estimate is modeled by

( fD, ~fD) := arg min
( f ,~f )∈H p+1

K

(

ED( f , ~f )+λ1‖ f‖2
K +λ2‖~f‖2

K

)

,

where fD and~fD are estimates of fr and∇ fr given the data, wsi, j is a weight function with bandwidth
s, ‖ · ‖K is the reproducing kernel Hilbert space (RKHS) norm,λ1 and λ2 are positive constants
called the regularization parameters, the RKHS norm of a p-vector valuedfunction is the sum of
the RKHS norm of its components‖~f‖2

K := ∑p
t=1‖~ft‖2

K .

A typical weight function is a Gaussianws
i, j = exp(−‖xi − x j‖2/2s2). Note this definition is

slightly different from that given in Mukherjee and Zhou (2006) wheref (x j) is replaced byy j and
only the gradient estimate~fD is estimated.

In the classification setting we are givenD = {(yi ,xi)}n
i=1 whereyi ∈ {−1,1} are labels. The

central quantity here is the classification function which we can define by conditional probabilities

fc(x) = log

[

ρ(Y = 1 | x)
ρ(Y =−1 | x)

]

= argminEφ(Y f(X))

whereφ(t) = log(1+e−t) and the sign offc is a Bayes optimal classifier. The following regularized
loss functional provides estimates for the classification function and gradient (Mukherjee and Wu,
2006).

Definition 5 Given a sample D= {(xi ,yi)}n
i=1 we define the empirical error as

E
φ
D( f , ~f ) =

1
n2

n

∑
i, j=1

ws
i j φ
(

yi
(

f (x j)+~f (xi) · (xi −x j)
)

)

.

The classification function and gradient estimate given a sample is modeled by

( fD, ~fD) = arg min
( f ,~f )∈H p+1

K

(

E
φ
D( f , ~f )+λ1‖ f‖2

K +λ2‖~f‖2
K

)

,

where fD and~fD are estimates of fc and∇ fc, andλ1,λ2 are the regularization parameters.

In the manifold setting the above algorithms are still valid. However the interpretation changes.
We state the regression case, the classification case is analogous (Mukherjee et al., 2010).

Definition 6 LetM be a Riemannian manifold andϕ : M →R
p be an isometric embedding which

is unknown. DenoteX = ϕ(M ) andHK = HK(X ). For the sample D= {(qi ,yi)}n
i=1 ∈ (M ×R)n,

xi = ϕ(qi) ∈ R
p, the learning gradients algorithm onM provides estimates

( fD, ~fD) := arg min
f ,~f∈H p+1

K

{

1
n2

n

∑
i, j=1

ws
i, j

(

yi − f (x j)+~f (xi) · (x j −xi)

)2

+λ1‖ f‖+λ2‖~f‖2
K

}

,

where~fD is a model fordϕ(∇
M

fr) and fD is a model for fr .
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From a computational perspective the advantage of the RKHS framework isthat in both regres-
sion and classification the solutions satisfy a representer theorem (Wahba, 1990; Mukherjee and
Zhou, 2006; Mukherjee and Wu, 2006)

fD(x) =
n

∑
i=1

αi,DK(x,xi), ~fD(x) =
n

∑
i=1

ci,DK(x,xi), (6)

with cD = (c1,D, . . . ,cn,D) ∈R
p×n, andαD = (α1,D, ...,αn,D)

T ∈R
p. In Mukherjee and Zhou (2006)

and Mukherjee and Wu (2006) methods for efficiently computing the minima wereintroduced in
the setting wherep≫ n. The methods involve linear systems of equations of dimensionnd where
d ≤ n.

The consistency of the gradient estimates for both regression and classification were proven in
Mukherjee and Zhou (2006) and Mukherjee and Wu (2006) respectively.

Proposition 7 Under mild conditions (see Mukherjee and Zhou, 2006; Mukherjee and Wu, 2006
for details) the estimates of the gradients of the regression or classification function f converge to
the true gradients: with probability greater than1−δ,

‖~fD −∇ f‖L2
ρx
≤C log

(

2
δ

)

n−1/p.

Consistency in the manifold setting was studied in Mukherjee et al. (2010) andthe rate of con-
vergence was determined by the dimension of the manifold,d

M
, not the dimension of the ambient

spacep.

Proposition 8 Under mild conditions (see Mukherjee et al., 2010 for details), with probability
greater than1−δ,

||(dϕ)∗~fD −∇
M

f ||L2
ρ
M

≤C log

(

2
δ

)

n−1/d
M ,

where where(dϕ)∗ is the dual of the mapdϕ.

4. Dimension Reduction Using Gradient Estimates

In this section we study some properties of dimension reduction using the gradient estimates. We
also relate learning gradients to previous approaches for dimension reduction in regression.

4.1 Linear Dimension Reduction

The theoretical foundation for linear dimension reduction using the spectral decomposition of the
gradient outer production matrix was developed in Section 2.2. The estimate ofthe gradient obtained
by the kernel models in Section 3 provides the following empirical estimate of the gradient outer
product matrix

Γ̂ := cDK2cT
D =

1
n

n

∑
i=1

~fD(xi)⊗~fD(xi),

whereK is the kernel matrix withKi j = K(xi ,x j) andcD is defined in (6). The eigenvectors corre-
sponding to the top eigenvalues ofΓ̂ can be used to estimate thed dimension reduction directions.
The following proposition states that the estimate is consistent.
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Proposition 9 Suppose that f satisfies the semi-parametric model(1) and ~fD is an empirical ap-
proximation of∇ f . Let v̂1, . . . , v̂d be the eigenvectors ofΓ̂ associated to the top d eigenvalues. The
following holds

lim
n→∞

span(v̂1, . . . , v̂d) = span(B).

Moreover, the remaining eigenvectors correspond to eigenvalues close to0.

Proof : Proposition 7 implies that limn→∞ Γ̂i j = Γi j and hence limn→∞ Γ = Γ in matrix norm. By
perturbation theory the eigenvalues (see Golub and Loan, 1996, Theorem 8.1.4 and Corollary 8.1.6)
and eigenvectors (see Zwald and Blanchard, 2006) ofΓ̂ converge to those ofΓ respectively. The
conclusions then follow from Lemma 1.

Proposition 9 justifies linear dimension reduction using consistent gradient estimates from a
global point of view.

In the next subsection we study the gradient outer product matrix from thelocal point of view
and provide details on the relation between gradient based methods and sliced inverse regression.

4.1.1 RELATION TO SLICED INVERSEREGRESSION(SIR)

The SIR method computes the DR directions using a generalized eigen-decomposition problem

Ω
X|Y β = νΣX β. (7)

In order to study the relation between our method with SIR, we study the relationbetween the
matricesΩ

X|Y andΓ.
We start with a simple model where the DR space contains only one direction which means the

regression function satisfies the following semi-parametric model

Y = g(βTX)+ ε

where‖β‖= 1 andEε = 0. The following theorem holds and Proposition 2 is a special case.

Theorem 10 Suppose thatΣX is invertible. There exists a constant C such that

Γ =CΣ−1
X

Ω
X|YΣ−1

X
.

If g is a linear function the constant is C= σ2
Y

(

1− σ2
ε

σ2
Y

)2
.

Proof It is proven in Duan and Li (1991) that

Ω
X|Y = var(h(Y))ΣX ββTΣX

whereh(y) = E(βT(X−µ)|y)
βT ΣX β with µ= E(X) andΣX is the covariance matrix ofX. In this case, the

computation of matrixΓ is direct:

Γ = E[(g′(βTX))2]ββT .

By the assumptionΣX is invertible, we immediately obtain the first relation with

C= E[(g′(βTX))2]var(h(Y))−1.
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If g(t) = at+b, we haveh(y) = y−b−βTµ
aβT ΣX β and consequently

var(h(Y)) =
σ2

Y

a2(βTΣX β)2 .

By the simple factE(g′(βTX)2] = a2 andσ2
Y = a2βTΣXβ+σ2

ε , we get

C=
a4(βTΣX β)2

σ2
Y

=
(σ2

Y −σ2
ε)

2

σ2
Y

= σ2
Y

(

1− σ2
ε

σ2
Y

)2
.

This finishes the proof.

It is apparent thatΓ andΩ
X|Y differ only up to a linear transformation. As a consequence the

generalized eigen-decomposition (7) ofΩ
X|Y with respect toΣX yields the same first direction as the

eigen-decomposition ofΓ.
Consider the linear case. Without loss of generality supposeX is normalized to satisfyΣX = σ2I ,

we seeΩ
X|Y is the same asΓ up to a constant of about

σ2
Y

σ4 . Notice that this factor measures the ratio
of the variation of the response to the variation over the input space as wellas along the predictive
direction. This implies thatΓ is more informative because it not only contains the information of the
descriptive directions but also measures their importance with respect to thechange of the response
variable.

When there are more than one DR directions as in model (1), we partition the input space into
I small regionsX =

⋃I
i=1Ri such that over each regionRi the response variabley is approximately

linear with respect tox and the descriptive direction is a linear combination of the column vectors
of B. By the discussion in Section 2.2

Γ = ∑
i

ρX(Ri)Γi ≈
I

∑
i=1

ρX(Ri)σ2
i Σ−1

i Ωi Σ
−1
i ,

whereΓi is the gradient outer product matrix onRi andΩi = covY(EX(X ∈ Ri | Y)). In this sense,
the gradient covariance matrixΓ can be regarded as the weighted sum of the local covariance ma-
trices of the inverse regression function. Recall that SIR suffers from the possible degeneracy of
the covariance matrix of the inverse regression function over the entire input space while the local
covariance matrix of the inverse regression function will not be degenerate unless the function is
constant. Moreover, in the gradient outer product matrix, the importance of local descriptive di-
rections are also taken into account. These observations partially explain the generality and some
advantages of gradient based methods.

Note this theoretical comparison is independent of the method used to estimate thegradient.
Hence the same comparison holds between SIR and other gradient based methods such as mean
average variance estimation (MAVE) and outer product of gradients (OPG) developed in Xia et al.
(2002).

4.1.2 THEORETICAL FEASIBILITY OF L INEAR PROJECTIONS FORNONLINEAR MANIFOLDS

In this section we explore why linear projections based on the gradient outer product matrix are
feasible and have meaning when the manifold structure is nonlinear. The crux of the analysis will
be demonstrating that the estimated gradient outer product matrixΓ̂ is still meaningful.
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Again assume there exists an unknown isometric embedding of the manifold onto the ambient
space,ϕ : M → R

p. From a modeling perspective we would like the gradient estimate from data
~fD to approximate dϕ(∇

M
fr) (Mukherjee et al., 2010). Generally this is not true when the manifold

is nonlinear,ϕ is a nonlinear map. Instead, the estimate provides the following information about
∇

M
fr

lim
n→∞

(dϕ)∗~fD = ∇M fr ,

where(dϕ)∗ is the dual of dϕ, the differential ofϕ.
Note that fr is not well defined on any open set ofR

p. Hence, it is not meaningful to consider
the gradient of∇ fr in the ambient spaceRp. Also, we cannot recover directly the gradient offr on
the manifold since we know neither the manifold nor the embedding. However, we can still recover
the DR directions from the matrix̂Γ.

Assumefr satisfies the semi-parametric model (1). The matrixΓ is not well defined but̂Γ is
well defined. The following proposition ensures that the spectral decomposition of Γ̂ provides the
DR directions.

Proposition 11 If v ⊥ bi for all i = 1, . . . ,d, thenlimn→∞ vT Γ̂v= 0.

Proof Let ~fλ be the sample limit of~fD, that is

~fλ = arg min
~f∈H p

K

{

∫
M

∫
M

e−
‖x−ξ‖2

2s2

(

fr(x)− fr(ξ)+~f (x) · (ξ−x)
)2

dρ
M
(x)dρ

M
(ξ)+λ‖~f‖2

K

}

.

By the assumption and a simple rotation argument we can show thatv· ~fλ = 0.
It was proven in Mukherjee and Zhou (2006) that limn→∞ ‖~fD−~fλ‖K = 0. A result of this is for

Ξ̂ = cDKcT
D

vT Ξ̂v= ‖v· ~fD‖2
K

n→∞−→ ‖v· ~fλ‖2
K = 0.

This implies that limn→∞ vT Γ̂v= 0 and proves the proposition.

Proposition 11 states that all the vectors perpendicular to the DR space correspond to eigenval-
ues near zero of̂Γ and will be filtered out. This means the DR directions can be still found by the
spectral decomposition of the estimated gradient outer product matrix.

4.2 Nonlinear Projections: Gradient Based Diffusion Maps (GDM)

As discussed in Section 2 the gradient of the regression function can be used for nonlinear projec-
tions. The basic idea was to use local gradient information to construct a diffusion operatorL based
on a similarity metricWi j between two pointsxi andx j . A commonly used diffusion operator is the
graph Laplacian

L = I −D−1/2WD−1/2, whereDii = ∑
j

Wi j .

Dimension reduction is achieved by projection onto a spectral decomposition of the operatorL or
powers(I −L)t of the operator(I −L) which corresponds to running the diffusion(I −L) for some
time t. The gradient based diffusion map (GDM) was defined as

Wi j =Wf (xi ,x j) = exp

(

−‖xi −x j‖2

σ1
− |1

2(∇ fr(xi)+∇ fr(x j)) · (xi −x j)|2
σ2

)

. (8)
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In the above equation the first term‖xi−x j‖2 encodes the local geometry of the marginal distribution
and the second term pastes together gradient estimates between neighboringpoints. The first term is
used in unsupervised dimension reduction methods such as Laplacian eigenmaps or diffusion maps
(Belkin and Niyogi, 2003). The second term can be interpreted as a firstorder Taylor expansion
leading to the following approximation

1
2
(∇ fr(xi)+∇ fr(x j)) · (xi −x j)≈ fr(xi)− fr(x j).

The form (8) is closely related to the following function adapted similarity proposed in Szlam et al.
(2008)

Wf (xi ,x j) = exp

(

−‖xi −x j‖2

σ1
− | f (xi)− f (x j)|2

σ2

)

,

where the function evaluationsf (xi) are computed based on a first rough estimate of the regression
function from the data.

The utility of nonlinear dimension reduction has been shown to be dramatic with respect to
prediction accuracy in the semi-supervised learning setting where a large set of unlabeled data,
{x1, ...,xu}, drawn from the marginal distribution, were used to learn the projection anda small set
of labeled data{(y1,x1), ...,(yℓ,xℓ)} were used to learn the regression function on the projected data.
Of practical importance in this setting is the need to evaluate the similarity function onout of sample
data. The labeled data is used to compute the gradient estimate, which can be evaluated on out-of-
sample data. Given the gradient estimate and the labeled and unlabeled data(x1, ...,xℓ,xℓ+1,xℓ+u)
the following GDM can be defined on all the samples

W̃i j = exp

(

−‖xi −x j‖2

σ1
− |1

2(
~fD(xi)+~fD(x j)) · (xi −x j)|2

σ2

)

, i, j = 1, ..,u+ ℓ.

An analysis of the accuracy of the GDM approach is based on how wellf (xi)− f (x j) can be
estimated using the gradient estimate~fD. The first order Taylor expansion on the manifold results
in the following approximation

f (xi)− f (x j)≈ ∇
M

f (xi) ·vi j , for vi j ≈ 0,

wherevi j ∈ TxiM is the tangent vector such thatx j = Expxi
(vi j ) where Expxi

is the exponential map

at xi (see do Carmo, 1992; Mukherjee et al., 2010). Since we cannot compute∇
M

f we use~fD.
The following proposition states that estimates of the function value differences can be accurately
estimated from gradient estimate~fD.

Proposition 12 The following holds

fr(xi)− fr(x j)≈ ~fD(xi) · (xi −x j), for xi ≈ x j .

Proof By the factxi −x j ≈ dϕ(vi j ) we have

~fD(xi) · (xi −x j)≈ 〈~fD(xi),dϕ(vi j )〉= 〈(dϕ)∗(~fD(xi)),vi j 〉 ≈ 〈∇
M

fr(xi),vi j 〉

which implies the conclusion.
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This proposition does not prove consistency of the GDM approach. Thisresearch program
of proving convergence of the eigenvectors of a graph Laplacian to theeigenfunctions of a cor-
responding Laplace-Beltrami operator is a source of extensive research in diffusion maps (Belkin
and Niyogi, 2005; Gińe and Koltchinskii, 2006). It would be of interest to adapt these approaches
to the gradient setting. The limiting operator will in general depend on howσ1 andσ2 approach
0 as the number of points tends to infinity. For example, it is easy to see that ifσ1,σ2 → 0+
suitably asn → +∞, with σ1/σ2 = α, then the limiting operator is the Laplacian on the manifold
(x,α f (x))⊂M ×R.

4.2.1 EMPIRICAL RESULTS FORGRADIENT BASED DIFFUSION MAPS

In this section we motivate the efficacy of the GDM approach with an empirical study of predic-
tive accuracy in the semi-supervised setting on six benchmark data sets found in Chapelle et al.
(2006). In the semi-supervised setting using the labeled as well as the unlabeled data for dimension
reduction followed by fitting a regression model has often increased predictive accuracy. We used
the benchmark data so we could compare the performance of DM and GDM to eleven algorithms
(Chapelle et al., 2006, Table 21.11). The conclusion of our study is that GDM improves predictive
accuracy over DM and that GDM is competitive with respect to the other algorithms.

For each data set twelve splits were generated with 100 samples labeled in each split. We
applied DM and GDM to each of these sets to find DR directions. We projected the data (labeled
and unlabeled) onto the DR directions and used a k-Nearest-Neighbor (kNN) classifier to classify
the unlabeled data. The parameters of the DM, GDM, and number of neighbors were set using
a validation set in each trial. The average classification error rate for the unlabeled data over the
twelve splits are reported in Table 1. We also report in Table 1 the top performing algorithm for
the data sets in Chapelle et al. (2006, Table 21.11). Laplacian RLS stands for Laplacian regularized
least-squares, SGT stands for spectral graph transducer, Cluster-Kernel is an algorithm that uses two
kernel functions, see (Chapelle et al., 2006, Chapter 11) for details.

A reasonable conclusion from Table 1 is that having label information improves the performance
of diffusion operator with respect to prediction. In addition, dimension reduction using GDM fol-
lowed by a simple classifier is competitive to other approaches. We suspect that integrating GDM
with a penalized classification algorithm in the same spirit as Laplacian regularized least-squares
can improve performance.

5. Graphical Models and Conditional Independence

One example of a statistical analysis where global inferences are desiredor explanations with re-
spect to the coordinates of the data is important is a graphical model over undirected graphs. In this
setting it is of interest to understand how coordinates covary with respectto variation in response,
as is provided by the GOP. Often of greater interest is to infer direct or conditional dependencies
between two coordinates as a function of variation in the response. In this section we explore how
this can be done using the GOP.

A natural idea in multivariate analysis is to model the conditional independenceof a multivariate
distribution using a graphical model over undirected graphs. The theoryof Gauss-Markov graphs
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Data DM GDM Best
G241C 19.96% 18.61% 13.49% (Cluster-Kernel)
G241D 14.27% 13.64% 4.95% (Cluster-Kernel)
Digit1 1.8% 1.8% 1.8% (DM, GDM)
BCI 48.53% 31.36% 31.36% (GDM, Laplacian RLS)

USPS 12.85% 10.76% 4.68% (Laplacian RLS)
Text 24.71% 23.57% 23.09% (SGT)

Table 1: Error rates for DM and GDM over six data sets reported in Chapelle et al. (2006, Table
21.11). The column ’Best’ reports the error rate for the algorithm with the smallest error
of the 13 applied to the data.

(Speed and Kiiveri, 1986; Lauritzen, 1996) was developed for multivariate Gaussian densities

p(x) ∝ exp

(

−1
2

xTJx+hTx

)

,

where the covariance isJ−1 and the mean isµ= J−1h. The result of the theory is that the precision
matrix J, given byJ = Σ−1

X , provides a measurement of conditional independence. The meaning
of this dependence is highlighted by the partial correlation matrixRX where each elementRi j is a
measure of dependence between variablesi and j conditioned on all other variablesS/i j andi 6= j

Ri j =
cov(Xi ,Xj | S/i j )

√

var(Xi | S/i j )
√

var(Xj | S/i j )
.

The partial correlation matrix is typically computed from the precision matrixJ

Ri j =−Ji j/
√

Jii Jj j .

In the regression and classification framework inference of the conditional dependence between
explanatory variables has limited information. Much more useful would be the conditional depen-
dence of the explanatory variables conditioned on variation in the response variable. In Section 2
we stated that both the covariance of the inverse regression as well as thegradient outer product
matrix provide estimates of the covariance of the explanatory variables conditioned on variation in
the response variable. Given this observation, the inverses of these matrices

JX|Y = Ω−1
X|Y and JΓ = Γ−1,

provide evidence for the conditional dependence between explanatoryvariables conditioned on the
response. We focus on the inverse of the gradient outer product matrixin this paper since it is of use
for both linear and nonlinear functions.

The two main approaches to inferring graphical models in high-dimensional regression have
been based on either sparse factor models (Carvalho et al., 2008) or sparse graphical models repre-
senting sparse partial correlations (Meinshausen and Buhlmann, 2006). Our approach differs from
both of these approaches in that the response variable is always explicit.For sparse factor models
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the factors can be estimated independent of the response variable and in the sparse graphical model
the response variable is considered as just another node, the same as theexplanatory variables.
Our approach and the sparse factor models approach both share an assumption of sparsity in the
number of factors or directions. Sparse graphical model approachesassume sparsity of the partial
correlation matrix.

Our proof of the convergence of the estimated conditional dependence matrix (Γ̂)−1 to the pop-
ulation conditional dependence matrixΓ−1 relies on the assumption that the gradient outer product
matrix being low rank. This again highlights the difference between our modeling assumption of
low rank versus sparsity of the conditional dependence matrix. Since we assume that bothΓ andΓ̂
are singular and low rank we use pseudo-inverses in order to construct the dependence graph.

Proposition 13 Let Γ−1 be the pseudo-inverse ofΓ. Let the eigenvalues and eigenvectors ofΓ̂ be
λ̂i and v̂i respectively. Ifε > 0 is chosen so thatε = εn = o(1) and ε−1

n ‖Γ̂−Γ‖ = o(1), then the
convergence

∑
λ̂i>ε

v̂i λ̂−1
i v̂i

n→∞−→ Γ−1

holds in probability.

Proof We have shown in Proposition 9 that‖Γ̂−Γ‖= o(1). Denote the eigenvalues and eigenvec-
tors ofΓ asλi andvi respectively. Then

|λ̂i −λi |= O(‖Γ̂−Γ‖) and ‖v̂i −vi‖= O(‖Γ̂−Γ‖).

By the conditionε−1
n ‖Γ̂−Γ‖= o(1) the following holds

λ̂i > ε =⇒ λi > ε/2=⇒ λi > 0

implying {i : λ̂i > ε}⊂ {i : λi > 0} in probability. On the other hand, denotingτ =min{λi : λi > 0},
the conditionεn = o(1) implies

{i : λi > 0}= {i : λ ≥ τ} ⊂ {i : λ̂i ≥ τ/2} ⊂ {i : λ̂i > ε}

in probability. Hence we obtain
{i : λi > 0}= {i : λ̂i > ε}

in probability.
For eachj ∈ {i : λi > 0} we haveλ j , λ̂ j ≥ τ/2 in probability, so

|λ̂−1
j −λ−1

j | ≤ |λ̂ j −λ j |/(2τ) n→∞−→ 0.

Thus we finally obtain

∑
λ̂i>ε

v̂i λ̂−1
i v̂i

n→∞−→ ∑
λi>0

viλ−1
i vT

i = Γ−1.

This proves the conclusion.
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5.1 Results on Simulated and Real Data

We first provide an intuition of the ideas behind our inference of graphical models using simple sim-
ulated data. We then apply the method to study dependencies in gene expression in the development
of prostate cancer.

5.1.1 SIMULATED DATA

The following simple example clarifies the information contained in the covariancematrix as well
as the gradient outer product matrix. Construct the following dependentexplanatory variables from

standard random normal variablesθ1, ...,θ5
iid∼ N (0,1)

X1 = θ1, X2 = θ1+θ2, X3 = θ3+θ4, X4 = θ4, X5 = θ5−θ4,

and the following response
Y = X1+(X3+X5)/2+ ε1,

whereε1 ∼N (0, .52).
We drew 100 observations(xi1,xi2,xi3,xi4,xi5,yi)

100
i=1 from the above sampling design. From this

data we estimate the covariance matrix of the marginalsΣ̂X and the gradient outer product matrix
Γ̂. FromΣ̂X, Figure 2(a), we see thatX1 andX2 covary with each other andX3, X4, X5 covary. The
conditional independence matrix̂RX, Figure 2(b), provides information on more direct relations
between the coordinates as we see thatX5 is independent ofX3 given X4, X5 ⊥⊥ X3 | X4. The
dependence relations are summarized in the graphical model in Figure 2(c). Taking the response
variable into account, we find in the gradient outer product matrix, Figure 2(d), the variablesX2 and
X4 are irrelevant whileX1,X3,X5 are relevant. The matrix̂RΓ̂ is shown in Figure 2(e) and implies that
any pair ofX1,X3,X5 are negatively dependent conditioned on the other and the response variable
Y. The graphical model is given in Figure 2(f).

5.1.2 GENESDRIVING PROGRESSION OFPROSTATECANCER

A fundamental problem in cancer biology is to understand the molecular and genetic basis of the
progression of a tumor from less serious states to more serious states. An example is the progression
from a benign growth to malignant cancer. The key interest in this problem isto understand the
genetic basis of cancer. A classic model for the genetic basis of cancer was proposed by Fearon and
Vogelstein (1990) describing a series of genetic events that cause progression of colorectal cancer.

In Edelman et al. (2008) the inverse of the gradient outer product was used to infer the depen-
dence between genes that drive tumor progression in prostate cancer and melanoma. In the case of
melanoma the data consisted of genomewide expression data from normal, primary, and metastatic
skin samples. Part of the analysis in this paper was inference of conditional dependence graphs
or networks of genes that drive differential expression between stages of progression. The gradi-
ent outer product matrix was used to infer detailed models of gene networksthat may drive tumor
progression.

In this paper, we model gene networks relevant in driving progressionin prostate cancer as an
illustration of how the methodology can be used to posit biological hypotheses. The objective is to
understand the dependence structure between genes that are predictive of progression from benign
to malignant prostate cancer. in progressing from benign to malignant prostate cancer. The data
consists of 22 benign and 32 advanced prostate tumor samples (Tomlins et al.,2007; Edelman et al.,
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Figure 2: (a) Covariance matrix̂ΣX; (b) Partial correlation matrix̂RX; (c) Graphical model repre-
sentation of partial correlation matrix; (d) Gradient outer product matrixΓ̂; (e) Partial
correlationsR̂Γ̂ with respect tôΓ; (f) Graphical model representation ofR̂Γ̂.

2008). For each sample the expression level of over 12,000 probes corresponding to genes were
measured. We eliminated many of those probes with low variation across all samples resulting in
a 4095 probes or variables. From this reduced data set we estimated the gradient outer product
matrix, Γ̂, and used the pseudo-inverse to compute the conditional independence matrix, Ĵ = (Γ̂)−1.
From the conditional independence matrix we computed the partial correlationmatrix R̂ where

R̂i j = − Ĵi j√
Ĵii Ĵj j

for i 6= j and 0 otherwise. We again reduced theR matrix to obtain 139 nodes and

400 edges corresponding to the largest partial correlations and construct the graph seen in Figure 3.

The structure of the partial correlation graph recapitulates some known biological processes
in the progression of prostate cancer. The most highly connected gene isMME (labeled green)
which is known to have significant deregulation in prostate cancer and is associated with aggressive
tumors (Tomlins et al., 2007). We also observe two distinct clusters annotatedin yellow and purple
in the graph that we callC1 andC2 respectively. These clusters derive their associations principally
through 5 genes, annotated in light blue and dark blue in the graph. The light blue genes AMACR,
ANXA1, and CD38 seem to have strong dependence with respect to the genes inC1 wile C2 is
dependent on these genes in addition to the dark blue genes LMAN1L and SLC14A1. AMACR
and ANXA1 as well as CD38 are well-known to have roles in prostate cancer progression (Jiang
et al., 2004; Hsiang et al., 2004; Kramer et al., 1995). The other two genes LMAN1L and SLC14A1
are known to have tumorigenic properties and would be candidates for further experiments to better
understand their role in prostate cancer.
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Figure 3: Graphical model of genes relevant in tumors progressing from benign to malignant
prostate tissue. The edges correspond to partial correlations.

6. Discussion

The main contribution of this paper is to describe how inference of the gradient of the regression or
classification function encodes information about the predictive geometry as well as the predictive
conditional dependence in the data. Two methods are introduced gradientbased diffusion maps
and inference of conditional independence structure given gradientestimates. Precise statistical re-
lations between different approaches to supervised dimension reductionare described. Simulated
and real data are used to illustrate the utility of the methods developed. We prove convergence
of the estimated graphical model to the population dependence graph. We find this direct link be-
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tween graphical models and dimension reduction intriguing and suggest thatthe manifold learning
perspective holds potential in the analysis and inference of graphical models.
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E. Gińe and V. Koltchinskii. Empirical graph Laplacian approximation of Laplace-Beltrami oper-
ators: large sample results. InHigh dimensional probability, volume 51 ofIMS Lecture Notes
Monogr. Ser., pages 238–259. Inst. Math. Statist., Beachwood, OH, 2006.

G.H. Golub and C.F. Va Loan.Matrix Computations. The Johns Hopkins University Press; 3rd
edition, 1996.

T. Hastie and R. Tibshirani. Discriminant analysis by Gaussian mixtures.J. Roy.Statist. Soc. Ser. B,
58(1):155–176, 1996.

C-H. Hsiang, T. Tunoda, Y.E. Whang, D.R. Tyson, and D.K. Ornstein. The impact of altered
annexin i protein levels on apoptosis and signal transduction pathways in prostate cancer cells.
The Prostate, 66(13):1413–1424, 2004.

Z. Jiang, B.A. Woda BA, C.L. Wu, and X.J. Yang. Discovery and clinical application of a novel
prostate cancer marker: alpha-methylacyl CoA racemase (P504S).Am. J. Clin. Pathol, 122(2):
275–8941, 2004.

G . Kramer, G. Steiner, D. Fodinger, E. Fiebiger, C. Rappersberger,S. Binder, J. Hofbauer, and
M. Marberger. High expression of a CD38-like molecule in normal prostaticepithelium and its
differential loss in benign and malignant disease.The Journal of Urology, 154(5):1636–1641,
1995.

S.L. Lauritzen.Graphical Models. Oxford: Clarendon Press, 1996.

2196



LEARNING GRADIENTS: PREDICTIVE MODELS THAT INFER GEOMETRY

K.C. Li. Sliced inverse regression for dimension reduction.J. Amer. Statist. Assoc., 86:316–342,
1991.

K.C. Li. On principal Hessian directions for data visualization and dimension reduction: another
application of Stein’s lemma.Ann. Statist., 97:1025–1039, 1992.

N. Meinshausen and P. Buhlmann. High-dimensional graphs and variableselection with the Lasso.
Annals of Statistics, 34(2):1436–1462, 2006.

S. Mukherjee and Q. Wu. Estimation of gradients and coordinate covariationin classification.J.
Mach. Learn. Res., 7:2481–2514, 2006.

S. Mukherjee and DX. Zhou. Learning coordinate covariances via gradients.J. Mach. Learn. Res.,
7:519–549, 2006.

S. Mukherjee, D-X. Zhou, and Q. Wu. Learning gradients and featureselection on manifolds.
Bernoulli, 16(1):181–207, 2010.

S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science,
290:2323–2326, 2000.

T. Speed and H. Kiiveri. Gaussian Markov distributions over finite graphs. Ann. Statist., 14:138–
150, 1986.

M. Sugiyama. Dimensionality reduction of multimodal labeled data by local fisher discriminant
analysis.J. Mach. Learn. Res., 8:1027–1061, 2007.

A. Szlam, M. Maggioni, and R. R. Coifman. Regularization on graphs with function-adapted diffu-
sion process.J. Mach. Learn. Res., 9:1711–1739, 2008.

M. Szummer and T. Jaakkola. Partially labeled classification with markov random walks. In T. Di-
etterich, S. Becker, and Z. Ghahramani, editors,Advances in Neural Information Processing
Systems, volume 14, pages 945–952, 2001.

J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimen-
sionality reduction.Science, 290:2319–2323, 2000.

S.A. Tomlins, R. Mehra, D.R. Rhodes, X. Cao, L. Wang, S.M. Dhanasekaran, S. Kalyana-
Sundaram, J.T. Wei, M.A. Rubin, K.J. Pienta, R.B. Shah, and A.M. Chinnaiyan. Integrative
molecular concept modeling of prostate cancer progression.Nature Genetics, 39(1):41–51, 2007.

G. Wahba.Splines Models for Observational Data. Series in Applied Mathematics, Vol. 59, SIAM,
Philadelphia, 1990.

Q. Wu, F. Liang, and S. Mukherjee. Regularized sliced inverse regression for kernel models. Tech-
nical Report 07-25, ISDS, Duke Univ., 2007.

Y. Xia, H. Tong, W. Li, and L-X. Zhu. An adaptive estimation of dimension reduction space.J.
Roy.Statist. Soc. Ser. B, 64(3):363–410, 2002.

2197



WU, GUINNEY, MAGGIONI AND MUKHERJEE

L. Zwald and G. Blanchard. On the convergence of eigenspaces in kernel principal component
analysi s. In Y. Weiss, B. Schölkopf, and J. Platt, editors,Advances in Neural Information Pro-
cessing Systems 18, pages 1649–1656. MIT Press, Cambridge, MA, 2006.

2198


