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Abstract
In regular statistical models, the leave-one-out cross-validation is asymptotically equivalent to the
Akaike information criterion. However, since many learning machines are singular statistical mod-
els, the asymptotic behavior of the cross-validation remains unknown. In previous studies, we
established the singular learning theory and proposed a widely applicable information criterion, the
expectation value of which is asymptotically equal to the average Bayes generalization loss. In the
present paper, we theoretically compare the Bayes cross-validation loss and the widely applicable
information criterion and prove two theorems. First, the Bayes cross-validation loss is asymptot-
ically equivalent to the widely applicable information criterion as a random variable. Therefore,
model selection and hyperparameter optimization using these two values are asymptotically equiv-
alent. Second, the sum of the Bayes generalization error andthe Bayes cross-validation error is
asymptotically equal to 2λ/n, whereλ is the real log canonical threshold andn is the number of
training samples. Therefore the relation between the cross-validation error and the generalization
error is determined by the algebraic geometrical structureof a learning machine. We also clarify
that the deviance information criteria are different from the Bayes cross-validation and the widely
applicable information criterion.
Keywords: cross-validation, information criterion, singular learning machine, birational invariant

1. Introduction

A statistical model or a learning machine is said to be regular if the map taking parameters to
probability distributions is one-to-one and if its Fisher information matrix is positive definite. If a
model is not regular, then it is said to be singular. Many learning machines, such as artificial neu-
ral networks (Watanabe, 2001b), normal mixtures (Yamazaki and Watanabe, 2003), reduced rank
regressions (Aoyagi and Watanabe, 2005), Bayes networks (Rusakov and Geiger, 2005; Zwiernik,
2010), mixtures of probability distributions (Lin, 2010), Boltzmann machines (Aoyagi, 2010), and
hidden Markov models (Yamazaki and Watanabe, 2005), are not regular but singular (Watanabe,
2007). If a statistical model or a learning machine contains a hierarchical structure, hidden vari-
ables, or a grammatical rule, then the model is generally singular. Therefore, singular learning
theory is necessary in modern information science.

The statistical properties of singular models have remained unknown until recently, because
analyzing a singular likelihood function had been difficult (Hartigan, 1985; Watanabe, 1995). In
singular statistical models, the maximum likelihood estimator does not satisfy asymptotic normality.
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Consequently, AIC is not equal to the average generalization error (Hagiwara, 2002), and the Bayes
information criterion (BIC) is not equal to the Bayes marginal likelihood (Watanabe, 2001a), even
asymptotically. In singular models, the maximum likelihood estimator often diverges, or even if
it does not diverge, makes the generalization error very large. Therefore, the maximum likelihood
method is not appropriate for singular models. On the other hand, Bayes estimation was proven to
make the generalization error smaller if the statistical model contains singularities. Therefore, in
the present paper, we investigate methods for estimating the Bayes generalization error.

Recently, new statistical learning theory, based on methods from algebraicgeometry, has been
established (Watanabe, 2001a; Drton et al., 2009; Watanabe, 2009, 2010a,c; Lin, 2010). In singular
learning theory, a log likelihood function can be made into a common standard form, even if it con-
tains singularities, by using the resolution theorem in algebraic geometry. As aresult, the asymptotic
behavior of the posterior distribution is clarified, and the concepts of BIC and AIC can be general-
ized onto singular statistical models. The asymptotic Bayes marginal likelihood was proven to be
determined by the real log canonical threshold (Watanabe, 2001a), andthe average Bayes general-
ization error was proven to be estimable by the widely applicable information criterion (Watanabe,
2009, 2010a,c).

Cross-validation is an alternative method for estimating the generalization error (Mosier, 1951;
Stone, 1977; Geisser, 1975). By definition, the average of the cross-validation is equal to the average
generalization error in both regular and singular models. In regular statistical models, the leave-one-
out cross-validation is asymptotically equivalent to AIC (Akaike, 1974) in the maximum likelihood
method (Stone, 1977; Linhart, 1986; Browne, 2000). However, the asymptotic behavior of the
cross-validation in singular models has not been clarified.

In the present paper, in singular statistical models, we theoretically comparethe Bayes cross-
validation, the widely applicable information criterion, and the Bayes generalization error and prove
two theorems. First, we show that the Bayes cross-validation loss is asymptotically equivalent to
the widely applicable information criterion as a random variable. Second, wealso show that the
sum of the Bayes cross-validation error and the Bayes generalization error is asymptotically equal
to 2λ/n, whereλ is the real log canonical threshold andn is the number of training samples. It
is important that neitherλ or n is a random variable. Since the real log canonical threshold is a
birational invariant of the statistical model, the relationship between the Bayescross-validation and
the Bayes generalization error is determined by the algebraic geometrical structure of the statistical
model.

The remainder of the present paper is organized as follows. In Section 2, we introduce the
framework of Bayes learning and explain singular learning theory. In Section 3, the Bayes cross-
validation is defined. In Section 4, the main theorems are proven. In Section 5, we discuss the
results of the present paper, and the differences among the cross-validation, the widely applica-
ble information criterion, and the deviance information criterion are investigated theoretically and
experimentally. Finally, in Section 6, we summarize the primary conclusions of thepresent paper.

2. Bayes Learning Theory

In this section, we summarize Bayes learning theory for singular learning machines. The results
presented in this section are well known and are the fundamental basis of the present paper. Table 1
lists variables, names, and equation numbers in the present paper.
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Variable Name Equation number
Ew[ ] posterior average Equation (1)

E
(i)
w [ ] posterior average withoutXi Equation (16)

L(w) log loss function Equation (8)
L0 minimum loss Equation (9)
Ln empirical loss Equation (10)

BgL(n) Bayes generalization loss Equation (3)
BtL(n) Bayes training loss Equation (4)
GtL(n) Gibbs training loss Equation (7)
CvL(n) cross-validation loss Equation (17)
Bg(n) Bayes generalization error Equation (11)
Bt(n) Bayes training error Equation (12)
Cv(n) cross-validation error Equation (28)
V(n) functional variance Equation (5)
Yk(n) kth functional cumulant Equation (18)

WAIC(n) WAIC Equation (6)
λ real log canonical threshold Equation (29)
ν singular fluctuation Equation (30)

Table 1: Variables, Names, and Equation Numbers

2.1 Framework of Bayes Learning

First, we explain the framework of Bayes learning.
Let q(x) be a probability density function on theN dimensional real Euclidean spaceRN. The

training samples and the testing sample are denoted by random variablesX1,X2, ...,Xn andX, re-
spectively, which are independently subject to the same probability distribution asq(x)dx. The
probability distributionq(x)dx is sometimes called the true distribution.

A statistical model or a learning machine is defined as a probability density function p(x|w)
of x ∈ R

N for a given parameterw ∈ W ⊂ R
d, whereW is the set of all parameters. In Bayes

estimation, we prepare a probability density functionϕ(w) on W. Although ϕ(w) is referred to
as a prior distribution, in general,ϕ(w) does not necessary represent ana priori knowledge of the
parameter.

For a given functionf (w) on W, the expectation value off (w) with respect to the posterior
distribution is defined as

Ew[ f (w)] =

∫
f (w)

n

∏
i=1

p(Xi |w)β ϕ(w)dw

∫ n

∏
i=1

p(Xi |w)β ϕ(w)dw
, (1)

where 0< β < ∞ is the inverse temperature. The case in whichβ = 1 is most important because this
case corresponds to strict Bayes estimation. The Bayes predictive distribution is defined as

p∗(x)≡ Ew[p(x|w)]. (2)
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In Bayes learning theory, the following random variables are important. The Bayes generalization
lossBgL(n) and the Bayes training lossBtL(n) are defined, respectively, as

BgL(n) = −EX[logp∗(X)], (3)

BtL(n) = −1
n

n

∑
i=1

logp∗(Xi), (4)

whereEX[ ] gives the expectation value overX. Thefunctional varianceis defined as

V(n) =
n

∑
i=1

{

Ew[(logp(Xi |w))2]−Ew[logp(Xi |w)]2
}

, (5)

which shows the fluctuation of the posterior distribution. In previous papers (Watanabe, 2009,
2010a,b), we defined the widely applicable information criterion

WAIC(n)≡ BtL(n)+
β
n

V(n), (6)

and proved that

E[BgL(n)] = E[WAIC(n)]+o(
1
n
),

holds for both regular and singular statistical models, whereE[ ] gives the expectation value over
the sets of training samples.

Remark 1 Although the case in whichβ = 1 is most important, general cases in which0 < β <
∞ are also important for four reasons. First, from a theoretical viewpoint, several mathematical
relations can be obtained using the derivative ofβ. For example, using the Bayes free energy or the
Bayes stochastic complexity,

F (β) =− log
∫ n

∏
i=1

p(Xi |w)βϕ(w)dw,

the Gibbs training loss

GtL(n) =−Ew

[1
n

n

∑
i=1

logp(Xi |w)
]

(7)

can be written as

GtL(n) =
∂F
∂β

.

Such relations are useful in investigating Bayes learning theory. We use∂2F /∂β2 to investigate
the deviance information criteria in Section 5. Second, the maximum likelihood method formally
corresponds toβ = ∞. The maximum likelihood method is defined as

p∗(x) = p(x|ŵ),
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instead of Equation (2), wherêw is the maximum likelihood estimator. Its generalization loss is also
defined in the same manner as Equation (3). In regular statistical models,the asymptotic Bayes
generalization error does not depend on0< β ≤ ∞, whereas in singular models it strongly depends
on β. Therefore, the general case is useful for investigating the difference between the maximum
likelihood and Bayes methods. Third, from an experimental viewpoint, in order to approximate the
posterior distribution, the Markov chain Monte Carlo method is often applied bycontrolling β. In
particular, the identity

F (1) =
∫ 1

0

∂F
∂β

dβ

is used in the calculation of the Bayes marginal likelihood. The theoretical results for generalβ are
useful for monitoring the effect of controllingβ (Nagata and Watanabe, 2008). Finally, in the re-
gression problem,β can be understood as the variance of the unknown additional noise (Watanabe,
2010c) and so may be optimized as the hyperparameter. For these reasons, in the present paper, we
theoretically investigate the cases for generalβ.

2.2 Notation

In the following, we explain the notation used in the present study.
The log loss functionL(w) and the entropySof the true distribution are defined, respectively, as

L(w) = −EX[logp(X|w)], (8)

S = −EX[logq(X)].

Then,L(w) = S+D(q||pw), whereD(q||pw) is the Kullback-Leibler distance defined as

D(q||pw) =
∫

q(x) log
q(x)

p(x|w)dx.

Then,D(q||pw)≥ 0, henceL(w)≥ S. Moreover,L(w) = S if and only if p(x|w) = q(x).
In the present paper, we assume that there exists a parameterw0 ∈W that minimizesL(w),

L(w0) = min
w∈W

L(w).

Note that suchw0 is not unique in general because the mapw 7→ p(x|w) is, in general, not a one-
to-one map in singular learning machines. In addition, we assume that, for an arbitrary w that
satisfiesL(w) = L(w0), p(x|w) is the same probability density function. Letp0(x) be such a unique
probability density function. In general, the set

W0 = {w∈W; p(x|w) = p0(x)}

is not a set of a single element but rather an analytic or algebraic set with singularities. Here, a set
in R

d is said to be an analytic or algebraic set if and only if the set is equal to the setof all zero
points of an analytic or algebraic function, respectively. For simple notations, the minimum log loss
L0 and the empirical log lossLn are defined, respectively, as

L0 = −EX[logp0(X)], (9)

Ln = −1
n

n

∑
i=1

logp0(Xi). (10)
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Then, by definition,L0 = E[Ln]. Using these values, Bayes generalization errorBg(n) and Bayes
training errorBt(n) are defined, respectively, as

Bg(n) = BgL(n)−L0, (11)

Bt(n) = BtL(n)−Ln. (12)

Let us define a log density ratio function as:

f (x,w) = log
p0(x)
p(x|w) ,

which is equivalent to

p(x|w) = p0(x)exp(− f (x,w)).

Then, it immediately follows that

Bg(n) = −EX[logEw[exp(− f (X,w))]],

Bt(n) = −1
n

n

∑
i=1

logEw[exp(− f (Xi,w))],

V(n) =
n

∑
i=1

{

Ew[ f (Xi ,w)
2]−Ew[ f (Xi ,w)]

2
}

.

Therefore, the problem of statistical learning is characterized by the function f (x,w).

Definition 2 (1) If q(x) = p0(x), then q(x) is said to be realizable by p(x|w). Otherwise, q(x) is
said to be unrealizable.
(2) If the set W0 consists of a single point w0 and if the Hessian matrix∇∇L(w0) is strictly positive
definite, then q(x) is said to be regular for p(x|w). Otherwise, q(x) is said to be singular for p(x|w).

Bayes learning theory was investigated for a realizable and regular case(Schwarz, 1978; Levin
et al., 1990; Amari, 1993). The WAIC was found for a realizable and singular case (Watanabe,
2001a, 2009, 2010a) and for an unrealizable and regular case (Watanabe, 2010b). In addition,
WAIC was generalized for an unrealizable and singular case (Watanabe, 2010d).

2.3 Singular Learning Theory

We summarize singular learning theory. In the present paper, we assume the followings.

2.3.1 ASSUMPTIONS

(1) The set of parametersW is a compact set inRd, the open kernel1 of which is not the empty set.
The boundary ofW is defined by several analytic functions,

W = {w∈ R
d;π1(w)≥ 0,π2(w)≥ 0, ...,πk(w)≥ 0}.

1. The open kernel of a setA is the largest open set that is contained inA.
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(2) The prior distribution satisfiesϕ(w) = ϕ1(w)ϕ2(w), whereϕ1(w)≥ 0 is an analytic function and
ϕ2(w)> 0 is aC∞-class function.
(3) Lets≥ 8 and let

Ls(q) = { f (x);‖ f‖ ≡
(

∫
| f (x)|sq(x)dx

)1/s
< ∞}

be a Banach space. The mapW ∋ w 7→ f (x,w) is anLs(q) valued analytic function.
(4) A nonnegative functionK(w) is defined as

K(w) = EX[ f (X,w)].

The setWε is defined as

Wε = {w∈W ; K(w)≤ ε}.

It is assumed that there exist constantsε,c> 0 such that

(∀w∈Wε) EX[ f (X,w)]≥ cEX[ f (X,w)2]. (13)

Remark 3 In ordinary learning problems, if the true distribution is regular for or realizable by a
learning machine, then assumptions (1), (2), (3) and (4) are satisfied, and the results of the present
paper hold. If the true distribution is singular for and unrealizable by a learning machine, then
assumption (4) is satisfied in some cases but not in other cases. If the assumption (4) is not satisfied,
then the Bayes generalization and training errors may have asymptotic behaviors other than those
described in Lemma 1 (Watanabe, 2010d).

The investigation of cross-validation in singular learning machines requiressingular learning
theory. In previous papers, we obtained the following lemma.

Lemma 1 Assume that assumptions (1), (2), (3), and (4) are satisfied. Then, the followings hold.
(1) Three random variables nBg(n), nBt(n), and V(n) converge in law, when n tends to infinity. In
addition, the expectation values of these variables converge.
(2) For k= 1,2,3,4, we define

Mk(n)≡ sup
|α|≤1+β

E

[1
n

n

∑
i=1

Ew[| f (Xi,w)|k exp(α f (Xi ,w))]
Ew[exp(α f (Xi ,w))]

]

,

whereE[ ] gives the average over all sets of training samples. Then,

limsupn→∞

(

nk/2 Mk(n)
)

< ∞. (14)

(3) The expectation value of the Bayes generalization loss is asymptotically equal to the widely
applicable information criterion,

E[BgL(n)] = E[WAIC(n)]+o(
1
n
). (15)
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Proof For the case in whichq(x) is realizable by and singular forp(x|w), this lemma was proven
in Watanabe (2010a) and Watanabe (2009). In fact, the proof of Lemma 1(1) is given in Theorem
1 of Watanabe (2010a). Also Lemma 1 (2) can be proven in the same manner as Equation (32) in
Watanabe (2010a) or Equation (6.59) in Watanabe (2009). The proof of Lemma 1 (3) is given in
Theorem 2 and the discussion of Watanabe (2010a). For the case in which q(x) is regular for and
unrealizable byp(x|w), this lemma was proven in Watanabe (2010b). For the case in whichq(x)
is singular for and unrealizable byp(x|w), these results can be generalized under the condition that
Equation (13) is satisfied (Watanabe, 2010d).

3. Bayes Cross-Validation

In this section, we introduce the cross-validation in Bayes learning.
The expectation valueE(i)

w [ ] using the posterior distribution leaving outXi is defined as

E
(i)
w [ ] =

∫
( )

n

∏
j 6=i

p(Xj |w)β ϕ(w)dw

∫ n

∏
j 6=i

p(Xj |w)β ϕ(w)dw
, (16)

where
n

∏
j 6=i

shows the product forj = 1,2,3, ..,n, which does not includej = i. The predictive

distribution leaving outXi is defined as

p(i)(x) = E
(i)
w [p(x|w)].

The log loss ofp(i)(x) whenXi is used as a testing sample is

− logp(i)(Xi) =− logE(i)
w [p(Xi |w)].

Thus, the log loss of the Bayes cross-validation is defined as the empirical average of them,

CvL(n) =−1
n

n

∑
i=1

logE(i)
w [p(Xi |w)]. (17)

The random variableCvL(n) is referred to as thecross-validation loss. SinceX1,X2, ...,Xn are inde-
pendent training samples, it immediately follows that

E[CvL(n)] = E[BgL(n−1)].

Although the two random variablesCvL(n) andBgL(n−1) are different,

CvL(n) 6= BgL(n−1),

their expectation values coincide with each other by the definition. Using Equation (15), it follows
that

E[CvL(n)] = E[WAIC(n−1)]+o(
1
n
).
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Therefore, three expectation valuesE[CvL(n)], E[BgL(n−1)], andE[WAIC(n−1)] are asymptoti-
cally equal to each other. The primary goal of the present paper is to clarify the asymptotic behaviors
of three random variables,CvL(n), BgL(n), and WAIC(n), whenn is sufficiently large.

Remark 4 In practical applications, the Bayes generalization loss BgL(n) indicates the accuracy
of Bayes estimation. However, in order to calculate BgL(n), we need the expectation value over the
testing sample taken from the unknown true distribution, hence we cannot directly obtain BgL(n)
in practical applications. On the other hand, both the cross-validation loss CvL(n) and the widely
applicable information criterion WAIC(n) can be calculated using only training samples. Therefore,
the cross-validation loss and the widely applicable information criterion can beused for model
selection and hyperparameter optimization. This is the reason why comparison of these random
variables is an important problem in statistical learning theory.

4. Main Results

In this section, the main results of the present paper are explained. First, we define functional
cumulants and describe their asymptotic properties. Second, we prove thatboth the cross-validation
loss and the widely applicable information criterion can be represented by thefunctional cumulants.
Finally, we prove that the cross-validation loss and the widely applicable information criterion are
related to the birational invariants.

4.1 Functional Cumulants

Definition 5 The generating function F(α) of functional cumulants is defined as

F(α) =
1
n

n

∑
i=1

logEw[p(Xi |w)α].

The kth order functional cumulant Yk(n) (k= 1,2,3,4) is defined as

Yk(n) =
dkF
dαk (0). (18)

Then, by definition,

F(0) = 0,

F(1) = −BtL(n),

Y1(n) = −GtL(n),

Y2(n) = V(n)/n.

For simple notation, we use

ℓk(Xi) = Ew[(logp(Xi |w))k] (k= 1,2,3,4).

Lemma 2 Then, the following equations hold:

Y1(n) =
1
n

n

∑
i=1

ℓ1(Xi), (19)
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Y2(n) =
1
n

n

∑
i=1

{

ℓ2(Xi)− ℓ1(Xi)
2
}

, (20)

Y3(n) =
1
n

n

∑
i=1

{

ℓ3(Xi)−3ℓ2(Xi)ℓ1(Xi)+2ℓ1(Xi)
3
}

, (21)

Y4(n) =
1
n

n

∑
i=1

{

ℓ4(Xi)−4ℓ3(Xi)ℓ1(Xi)−3ℓ2(Xi)
2

+12ℓ2(Xi)ℓ1(Xi)
2−6ℓ1(Xi)

4
}

. (22)

Moreover,

Yk(n) = Op(
1

nk/2
) (k= 2,3,4).

In other words,

limsupn→∞E[n
k/2 |Yk(n)|]< ∞ (k= 2,3,4). (23)

Proof First, we prove Equations (19) through (22). Let us define

gi(α) = Ew[p(Xi |w)α].

Then,gi(0) = 1,

g(k)i (0)≡ dkgi

dαk (0) = ℓk(Xi) (k= 1,2,3,4),

and

F(α) =
1
n

n

∑
i=1

loggi(α).

For arbitrary natural numberk,

(gi(α)(k)

gi(α)

)′
=

gi(α)(k+1)

gi(α)
−
(gi(α)(k)

gi(α)

)(gi(α)′

gi(α)

)

.

By applying this relation recursively, Equations (19), (20), (21), and(22) are derived. Let us prove
Equation (23). The random variablesYk(n) (k= 2,3,4) are invariant under the transform,

logp(Xi |w) 7→ logp(Xi |w)+c(Xi), (24)

for arbitraryc(Xi). In fact, by replacingp(Xi |w) by p(Xi |w)eC(Xi), we define

F̂(α) =
1
n

n

∑
i=1

logEw[p(Xi |w)α eαc(Xi)].

Then, the difference betweenF(α) andF̂(α) is a linear function ofα, which vanishes by higher-
order differentiation. In particular, by selectingc(Xi) = − logp0(Xi), we can show thatYk(n) (k =
2,3,4) are invariant by the following replacement,

logp(Xi |w) 7→ f (Xi ,w).
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In other words,Yk(n) (n= 2,3,4) are invarianrt by the replacement,

ℓk(Xi) 7→ Ew[ f (Xi ,w)
k].

Using the Cauchy-Schwarz inequality, for 1≤ k′ ≤ k,

Ew[| f (Xi ,w)|k
′
]1/k′ ≤ Ew[| f (Xi,w)|k]1/k.

Therefore, fork= 2,3,4,

E[|Yk(n)|]≤ E

[Ck

n

n

∑
i=1

Ew[| f (Xi,w)|k]
]

≤CkMk(n),

whereC2 = 2,C3 = 6,C4 = 26. Then, using Equation (14), we obtain Equation (23).

Remark 6 Using Equation (24) with c(Xi)=−Ew[logp(Xi |w)] and the normalized function defined
as

ℓ∗k(Xi) = Ew[(logp(Xi |w)−c(Xi))
k],

it follows that

Y2(n) =
1
n

n

∑
i=1

ℓ∗2(Xi),

Y3(n) =
1
n

n

∑
i=1

ℓ∗3(Xi),

Y4(n) =
1
n

n

∑
i=1

{

ℓ∗4(Xi)−3ℓ∗2(Xi)
2
}

.

These formulas may be useful in practical applications.

4.2 Bayes Cross-validation and Widely Applicable Information Criterion

We show the asymptotic equivalence of the cross-validation lossCvL(n) and the widely applicable
information criterion WAIC(n).

Theorem 1 For arbitrary 0 < β < ∞, the cross-validation loss CvL(n) and the widely applicable
information criterionWAIC(n) are given, respectively, as

CvL(n) = −Y1(n)+
(2β−1

2

)

Y2(n)

−
(3β2−3β+1

6

)

Y3(n)+Op(
1
n2),

WAIC(n) = −Y1(n)+
(2β−1

2

)

Y2(n)

−1
6

Y3(n)+Op(
1
n2).
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Proof First, we considerCvL(n). From the definitions ofEw[ ] andE(i)
w [ ], we have

E
(i)
w [( )] =

Ew[( )p(Xi |w)−β ]

Ew[p(Xi |w)−β ]
. (25)

Therefore, by the definition of the cross-validation loss, Equation (17),

CvL(n) =−1
n

n

∑
i=1

log
Ew[ p(Xi |w)1−β ]

Ew[ p(Xi |w)−β ]
.

Using the generating function of functional cumulantsF(α),

CvL(n) = F(−β)−F(1−β). (26)

Then, using Lemma 1 (2) for eachk= 2,3,4, and|α|< 1+β,

E[|F(k)(α)|] ≤ E

[Ck

n

n

∑
i=1

Ew[| f (Xi,w)|k exp(α f (Xi ,w))]
Ew[exp(α f (Xi ,w))]

]

≤ CkMk(n),

whereC2 = 2,C3 = 6,C4 = 26. Therefore,

|F(k)(α)|= Op(
1

nk/2
). (27)

By Taylor expansion ofF(α) amongα = 0, there existβ∗,β∗∗ (|β∗|, |β∗∗|< 1+β) such that

F(−β) = F(0)−βF ′(0)+
β2

2
F ′′(0)

−β3

6
F(3)(0)+

β4

24
F(4)(β∗),

F(1−β) = F(0)+(1−β)F ′(0)+
(1−β)2

2
F ′′(0)

+
(1−β)3

6
F(3)(0)+

(1−β)4

24
F(4)(β∗∗).

UsingF(0) = 0 and Equations (26) and (27), it follows that

CvL(n) = −F ′(0)+
2β−1

2
F ′′(0)

−3β2−3β+1
6

F(3)(0)+Op(
1
n2).

Thus, we have proven the first half of the theorem. For the latter half, by the definitions of WAIC(n),
Bayes training loss, and the functional variance, we have

WAIC(n) = BtL(n)+(β/n)V(n),

BtL(n) = −F(1),

V(n) = nF′′(0).
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Therefore,

WAIC(n) =−F(1)+βF ′′(0).

By Taylor expansion ofF(1), we obtain

WAIC(n) =−F ′(0)+
2β−1

2
F ′′(0)− 1

6
F(3)(0)+Op(

1
n2),

which completes the proof.

From the above theorem, we obtain the following corollary.

Corollary 1 For arbitrary 0< β < ∞, the cross-validation loss CvL(n) and the widely applicable
information criterionWAIC(n) satisfy

CvL(n) = WAIC(n)+Op(
1

n3/2
).

In particular, for β = 1,

CvL(n) = WAIC(n)+Op(
1
n2).

More precisely, the difference between the cross-validation loss and thewidely applicable informa-
tion criterion is given by

CvL(n)−WAIC(n)∼=
(β−β2

2

)

Y3(n).

If β = 1,

CvL(n)−WAIC(n)∼= 1
12

Y4(n).

4.3 Generalization Error and Cross-validation Error

In the previous subsection, we have shown that the cross-validation lossis asymptotically equivalent
to the widely applicable information criterion. In this section, let us compare the Bayes general-
ization errorBg(n) given in Equation (11) and the cross-validation errorCv(n), which is defined
as

Cv(n) =CvL(n)−Ln. (28)

We need mathematical concepts, the real log canonical threshold, and the singular fluctuation.

Definition 7 The zeta functionζ(z) (Re(z)> 0) of statistical learning is defined as

ζ(z) =
∫

K(w)zϕ(w)dw,
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where

K(w) = EX[ f (X,w)]

is a nonnegative analytic function. Here,ζ(z) can be analytically continued to the unique mero-
morphic function on the entire complex planeC. All poles ofζ(z) are real, negative, and rational
numbers. The maximum pole is denoted as

(−λ) = maximum pole ofζ(z). (29)

Then, the positive rational numberλ is referred to as the real log canonical threshold. The singular
fluctuation is defined as

ν = ν(β) = lim
n→∞

β
2
E[V(n)]. (30)

Note that the real log canonical threshold does not depend onβ, whereas the singular fluctuation is
a function ofβ.

Both the real log canonical threshold and the singular fluctuation are birational invariants. In
other words, they are determined by the algebraic geometrical structure ofthe statistical model. The
following lemma was proven in a previous study (Watanabe, 2010a,b,d).

Lemma 3 The following convergences hold:

lim
n→∞

nE[Bg(n)] =
λ−ν

β
+ν, (31)

lim
n→∞

nE[Bt(n)] =
λ−ν

β
−ν, (32)

Moreover, convergence in probability

n(Bg(n)+Bt(n))+V(n)→ 2λ
β

(33)

holds.

Proof For the case in whichq(x) is realizable by and singular forp(x|w), Equations (31) and (32)
were proven by in Corollary 3 in Watanabe (2010a). The equation (33) was given in Corollary 2
in Watanabe (2010a). For the case in whichq(x) is regular forp(x|w), these results were proved in
Watanabe (2010b). For the case in whichq(x) is singular for and unrealizable byp(x|w) they were
generalized in Watanabe (2010d).

4.3.1 EXAMPLES

If q(x) is regular for and realizable byp(x|w), thenλ = ν = d/2, whered is the dimension of
the parameter space. Ifq(x) is regular for and unrealizable byp(x|w), thenλ andν are given by
Watanabe (2010b). Ifq(x) is singular for and realizable byp(x|w), thenλ for several models are
obtained by resolution of singularities (Aoyagi and Watanabe, 2005; Rusakov and Geiger, 2005;
Yamazaki and Watanabe, 2003; Lin, 2010; Zwiernik, 2010). Ifq(x) is singular for and unrealizable
by p(x|w), thenλ andν remain unknown constants.

We have the following theorem.
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Theorem 2 The following equation holds:

lim
n→∞

nE[Cv(n)] =
λ−ν

β
+ν,

The sum of the Bayes generalization error and the cross-validation error satisfies

Bg(n)+Cv(n) = (β−1)
V(n)

n
+

2λ
βn

+op(
1
n
).

In particular, if β = 1,

Bg(n)+Cv(n) =
2λ
n

+op(
1
n
).

Proof By Equation (31),

E[Bg(n−1)] =
(λ−ν

β
+ν

)1
n
+o(

1
n
).

SinceE[Cv(n)] = E[Bg(n−1)],

lim
n→∞

nE[Cv(n)] = lim
n→∞

nE[Bg(n−1)]

=
λ−ν

β
+ν.

From Equation (33) and Corollary 1,

Bt(n) =Cv(n)−
β
n

V(n)+Op(
1

n3/2
),

and it follows that

(Bg(n)+Cv(n)) = (β−1)
V(n)

n
+

2λ
βn

+op(
1
n
),

which proves the Theorem.

This theorem indicates that both the cross-validation error and the Bayes generalization error
are determined by the algebraic geometrical structure of the statistical model, which is extracted as
the real log canonical threshold. From this theorem, in the strict Bayes case β = 1, we have

E[Bg(n)] =
λ
n
+o(

1
n
),

E[Cv(n)] =
λ
n
+o(

1
n
),

and

Bg(n)+Cv(n) =
2λ
n

+op(
1
n
). (34)
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Therefore, the smaller cross-validation errorCv(n) is equivalent to the larger Bayes generalization
error Bg(n). Note that a regular statistical model is a special example of singular models, hence
both Theorems 1 and 2 also hold in regular statistical models. In Watanabe (2009), it was proven
that the random variablenBg(n) converges to a random variable in law. Thus,nCv(n) converges
to a random variable in law. The asymptotic probability distribution ofnBg(n) can be represented
using a Gaussian process, which is defined on the set of true parameters, but is not equal to theχ2

distribution in general.

Remark 8 The relation given by Equation (34) indicates that, ifβ = 1, the variances of Bg(n) and
Cv(n) are equal. If the average value2ν =E[V(n)] is known, then Bt(n)+2ν/n can be used instead
of Cv(n), because both average values are asymptotically equal to the Bayes generalization error.
The variance of Bt(n)+ 2ν/n is smaller than that of Cv(n) if and only if the variance of Bt(n) is
smaller than that of Bg(n). If a true distribution is regular for and realizable by the statistical
model, then the variance of Bt(n) is asymptotically equal to that of Bg(n). However, in other cases,
the variance of Bt(n) may be smaller or larger than that of Bg(n).

5. Discussion

Let us now discuss the results of the present paper.

5.1 From Regular to Singular

First, we summarize the regular and singular learning theories.
In regular statistical models, the generalization loss of the maximum likelihood method is

asymptotically equal to that of the Bayes estimation. In both the maximum likelihood and Bayes
methods, the cross-validation losses have the same asymptotic behaviors. The leave-one-out cross-
validation is asymptotically equivalent to the AIC, in both the maximum likelihood and Bayes meth-
ods.

On the other hand, in singular learning machines, the generalization loss of the maximum like-
lihood method is larger than the Bayes generalization loss. Since the generalization loss of the
maximum likelihood method is determined by the maximum value of the Gaussian process, the
maximum likelihood method is not appropriate in singular models (Watanabe, 2009). In Bayes esti-
mation, we derived the asymptotic expansion of the generalization loss and proved that the average
of the widely applicable information criterion is asymptotically equal to the Bayes generalization
loss (Watanabe, 2010a). In the present paper, we clarified that the leave-one-out cross-validation in
Bayes estimation is asymptotically equivalent to WAIC.

It was proven (Watanabe, 2001a) that the Bayes marginal likelihood of a singular model is
different from BIC of a regular model. In the future, we intend to comparethe cross-validation and
Bayes marginal likelihood in model selection and hyperparameter optimization in singular statistical
models.

5.2 Cross- validation and Importance Sampling

Second, let us investigate the cross-validation and the importance sampling cross-validation from a
practical viewpoint.

In Theorem 1, we theoretically proved that the leave-one-out cross-validation is asymptotically
equivalent to the widely applicable information criterion. In practical applications, we often approx-
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imate the posterior distribution using the Markov Chain Monte Carlo or other numerical methods.
If the posterior distribution is precisely realized, then the two theorems of the present paper hold.
However, if the posterior distribution was not precisely approximated, thenthe cross-validation
might not be equivalent to the widely applicable information criterion.

In Bayes estimation, there are two different methods by which the leave-one-out cross-validation
is numerically approximated. In the former method,CV1 is obtained by realizing all posterior dis-
tributionsE(i)

w [ ] leaving outXi for i = 1,2,3, ...,n, and the empirical average

CV1 =−1
n

n

∑
i=1

logE(i)
w [p(Xi |w)]

is then calculated. In this method, we must realizen different posterior distributions, which requires
heavy computational costs.

In the latter method, the posterior distribution leaving outXi is estimated using the posterior
averageEw[ ], in the same manner as Equation (25),

E
(i)
w [p(Xi |w)]∼=

Ew[p(Xi |w) p(Xi |w)−β ]

Ew[p(Xi |w)−β ]
.

This method is referred to as the importance sampling leave-one-out cross-validation (Gelfand et al.,
1992), in which only one posterior distribution is needed and the leave-one-out cross-validation is
approximated byCV2,

CV2
∼=−1

n

n

∑
i=1

log
Ew[p(Xi |w) p(Xi |w)−β ]

Ew[p(Xi |w)−β ]
.

If the posterior distribution is completely realized, thenCV1 andCV2 coincide with each other
and are asymptotically equivalent to the widely applicable information criterion.However, if the
posterior distribution is not sufficiently approximated, then the valuesCV1,CV2, and WAIC(n) might
be different.

The average values using the posterior distribution may sometimes have infinite variances (Pe-
ruggia, 1997) if the set of parameters is not compact. Moreover, in singular learning machines,
the set of true parameters is not a single point but rather an analytic set, hence we must restrict
the parameter space to be compact for well-defined average values. Therefore, we adopted the as-
sumptions in Section 2.3 that the parameter space is compact and the log likelihoodfunction has the
appropriate properties. Under these conditions, the observables studied in the present paper have
finite variances.

5.3 Comparison with the Deviance Information Criteria

Third, let us compare the deviance information criterion (DIC) (Spiegelhalter et al., 2002) to the
Bayes cross-validation and WAIC, because DIC is sometimes used in Bayesian model evaluation.
In order to estimate the Bayesian generalization error, DIC is written by

DIC1 = BtL(n)+
2
n

n

∑
i=1

{

−Ew[logp(Xi |w)]+ logp(Xi |Ew[w])
}

,

where the second term of the right-hand side corresponds to the “effective number of parameters” of
DIC divided by the number of parameters. Under the condition that the log likelihood ratio function
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in the posterior distribution is subject to theχ2 distribution, a modified DIC was proposed (Gelman
et al., 2004) as

DIC2 = BtL(n)+
2
n

[

Ew[
{ n

∑
i=1

logp(Xi |w)
}2

]−Ew[
n

∑
i=1

logp(Xi |w)]2
]

,

the variance of which was investigated previously (Raftery, 2007). NotethatDIC2 is different from
WAIC. In a singular learning machine, since the set of optimal parameters is an analytic set, the
correlation between different true parameters does not vanish, even asymptotically.

We first derive the theoretical properties of DIC. If the true distribution is regular for the statis-
tical model, then the set of the optimal parameter is a single pointw0. Thus, the difference ofEw[w]
and the maximuma posterioriestimator is asymptotically smaller than 1/

√
n. Therefore, based on

the results in Watanabe (2010b), ifβ = 1,

E[DIC1] = L0+(3λ−2ν(1))
1
n
+o(

1
n
).

If the true distribution is realizable by or regular for the statistical model and ifβ = 1, then the
asymptotic behavior ofDIC2 is given by

E[DIC2] = L0+(3λ−2ν(1)+2ν′(1))
1
n
+o(

1
n
), (35)

whereν′(1)= (dν/dβ)(1). Equation (35) is derived from the relations (Watanabe, 2009, 2010a,b,d),

DIC2 = BtL(n)−2
∂

∂β
GtL(n),

E[GtL(n)] = L0+
(λ

β
−ν(β)

)1
n
+o(

1
n
),

whereGtL(n) is given by Equation (7).
Next, let us consider the DIC for each case. If the true distribution is regular for and realizable by

the statistical model and ifβ = 1, thenλ = ν = d/2, ν′(1) = 0, whered is the number of parameters.
Thus, their averages are asymptotically equal to the Bayes generalization error,

E[DIC1] = L0+
d
2n

+o(
1
n
),

E[DIC2] = L0+
d
2n

+o(
1
n
).

In this case, the averages ofDIC1, DIC2, CV1, CV2, and WAIC have the same asymptotic behavior.
If the true distribution is regular for and unrealizable by the statistical model and if β = 1, then

λ = d/2, ν = (1/2)tr(IJ−1), andν′(1) = 0 (Watanabe, 2010b), whereI is the Fisher information
matrix atw0, andJ is the Hessian matrix ofL(w) atw= w0. Thus, we have

E[DIC1] = L0+
(3d

2
− tr(IJ−1)

)1
n
+o(

1
n
),

E[DIC2] = L0+
(3d

2
− tr(IJ−1)

)1
n
+o(

1
n
).
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In this case, as shown in Lemma 3, the Bayes generalization error is given by L0+d/(2n) asymp-
totically, and so the averages of the deviance information criteria are not equal to the average of the
Bayes generalization error.

If the true distribution is singular for and realizable by the statistical model andif β = 1, then

E[DIC1] = C+o(1), (36)

E[DIC2] = L0+(3λ−2ν(1)+2ν′(1))
1
n
+o(

1
n
),

whereC (C 6= L0) is, in general, a constant. Equation (36) is obtained because the set of true
parameters in a singular model is not a single point, but rather an analytic set,so that, in general,
the averageEw[w] is not contained in the neighborhood of the set of the true parameters. Hence
the averages of the deviance information criteria are not equal to those ofthe Bayes generalization
error.

The averages of the cross-validation loss and WAIC have the same asymptotic behavior as that
of the Bayes generalization error, even if the true distribution is unrealizable by or singular for the
statistical model. Therefore, the deviance information criteria are different from the cross-validation
and WAIC, if the true distribution is singular for or unrealizable by the statistical model.

5.4 Experiment

In this section, we describe an experiment. The purpose of the present paper is to clarify the theoreti-
cal properties of the cross-validation and the widely applicable information criterion. An experiment
was conducted in order to illustrate the main theorems.

Let x,y∈ R
3. We considered a statistical model defined as

p(x,y|w) = s(x)

(2πσ2)3/2
exp(−‖y−RH(x,w)‖2

2σ2 ),

whereσ = 0.1 ands(x) isN (0,22I). Here,N (m,A) exhibits a normal distribution with the average
vectorm and the covariance matrixA, andI is the identity matrix. Note that the distributions(x)
was not estimated. We used a three-layered neural network,

RH(x,w) =
H

∑
h=1

ah tanh(bh ·x),

where the parameter was

w= {(ah ∈ R
3,bh ∈ R

3) ; h= 1,2, ...,H} ∈ R
6H .

In the experiment, a learning machine withH = 3 was used and the true distribution was set with
H = 1. The parameter that gives the distribution is denoted asw0, which denotes the parameters of
both modelsH = 1,3. Then,RH(x,w0)=RH0(x,w0). Under this condition, the set of true parameters

{w∈W; p(x|w) = p(x|w0)}

is not a single point but an analytic set with singularities, resulting that the regularity condition is
not satisfied. In this case, the log density ratio function is equivalent to

f (x,y,w) =
1

2σ2

{

‖y−RH(x,w)‖2−‖y−RH(x,w0)‖2
}

.
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In this model, although the Bayes generalization error is not equal to the average square error

SE(n) =
1

2σ2EEX

[

‖ RH(X,w0)−Ew[RH(X,w)] ‖2
]

,

asymptotically SE(n) andBg(n) are equal to each other (Watanabe, 2009).
The prior distributionϕ(w) was set asN (0,102I). Although this prior does not have compact

support mathematically, it can be understood in the experiment that the support of ϕ(w) is essentially
contained in a sufficiently large compact set.

In the experiment, the number of training samples was fixed asn = 200. One hundred sets
of 200 training samples each were obtained independently. For each training set, the strict Bayes
posterior distributionβ = 1 was approximated by the Markov chain Monte Carlo (MCMC) method.
The Metropolis method, in which each random trial was taken fromN (0,(0.005)2I), was applied,
and the average exchanging ratio was obtained as approximately 0.35. After 100,000 iterations of
Metropolis random sampling, 200 parameters were obtained in every 100 sampling steps. For a fixed
training set, by changing the initial values and the random seeds of the software, the same MCMC
sampling procedures were performed 10 times independently, which was done for the purpose of
minimizing the effect of the local minima. Finally, for each training set, we obtained200×10=
2,000 parameters, which were used to approximate the posterior distribution.

Table 2 shows the experimental results. We observed the Bayes generalization errorBG=
Bg(n), the Bayes training errorBT = Bt(n), importance sampling leave-one-out cross-validation
CV =CV2−Ln, the widely applicable information criterion WAIC= WAIC(n)−Ln, two deviance
information criteria, namely,DIC1= DIC1−Ln andDIC2= DIC2−Ln, and the sumBG+CV =
Bg(n)+Cv(n). The valuesAVRandSTD in Table 2 show the average and standard deviation of
one hundred sets of training data, respectively. The original cross-validationCV1 was not observed
because the associated computational cost was too high.

The experimental results reveal that the average and standard deviationof BG were approxi-
mately the same as those ofCV and WAIC, which indicates that Theorem 1 holds. The real log
canonical threshold, the singular fluctuation, and its derivative of this case were estimated as

λ ≈ 5.6,

ν(1) ≈ 7.9,

ν′(1) ≈ 3.6.

Note that, if the true distribution is regular for and realizable by the statistical model, λ = ν(1) =
d/2= 9 andν′(1) = 0. The averages of the two deviance information criteria were not equal tothat
of the Bayes generalization error. The standard deviation ofBG+CV was smaller than the standard
deviations ofBGandCV, which is in agreement with Theorem 2.

Note that the standard deviation ofBT was larger than those ofCV and WAIC, which indicates
that, even if the average valueE[Cv(n)−Bt(n)] = 2ν/n is known and an alternative cross-validation,
such as the AIC,

CV3 = BtL(n)+2ν/n,

is used, then the variance ofCV3−Ln was larger than the variances ofCvL(n)−Ln and WAIC(n)−
Ln.
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BG BT CV WAIC DIC1 DIC2 BG+CV
AVR 0.0264 -0.0511 0.0298 0.0278 -35.1077 0.0415 0.0562
STD 0.0120 0.0165 0.0137 0.0134 19.1350 0.0235 0.0071

Table 2: Average and standard deviation

BG BT CV WAIC DIC1 DIC2 BG+CV
BG 1.000 -0.854 -0.854 -0.873 0.031 -0.327 0.043
BT 1.000 0.717 0.736 0.066 0.203 -0.060
CV 1.000 0.996 -0.087 0.340 0.481
WA 1.000 -0.085 0.341 0.443

DIC1 1.000 -0.069 -0.115
DIC2 1.000 0.102

Table 3: Correlation matrix

Table 3 shows the correlation matrix for several values. The correlation betweenCV and WAIC
was 0.996, which indicates that Theorem 1 holds. The correlation betweenBGandCV was -0.854,
and that betweenBGand WAIC was -0.873, which corresponds to Theorem 2.

The accuracy of numerical approximation of the posterior distribution depends on the statistical
model, the true distribution, the prior distribution, the Markov chain Monte Carlomethod, and
the experimental fluctuation. In the future, we intend to develop a method by which to design
experiments. The theorems proven in the present paper may be useful in such research.

5.5 Birational Invariant

Finally, we investigate the statistical problem from an algebraic geometrical viewpoint.
In Bayes estimation, we can introduce an analytic function of the parameter spaceg : U →W,

w= g(u).

Let |g′(u)| be its Jacobian determinant. Note that the inverse functiong−1 is not needed ifg satisfies
the condition that{u∈U ; |g′(u)|= 0} is a measure zero set inU . Such a functiong is referred to as
a birational transform. It is important that, by the transform,

p(x|w) 7→ p(x|g(u)),
ϕ(w) 7→ ϕ(g(u))|g′(u)|,

the Bayes estimation onW is equivalent to that onU . A constant defined for a set of statistical
models and a prior is said to be a birational invariant if it is invariant under such a transformw=
g(u).

The real log canonical thresholdλ is a birational invariant (Atiyah, 1970; Hiroanaka, 1964;
Kashiwara, 1976; Kolĺor et al., 1998; Mustata, 2002; Watanabe, 2009) that represents the algebraic
geometrical relation between the set of parametersW and the set of the optimal parametersW0.
Although the singular fluctuation is also a birational invariant, its properties remain unknown. In
the present paper, we proved in Theorem 1 that

E[BgL(n)] = E[CvL(n)]+o(1/n). (37)
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On the other hand, in Theorem 2, we proved that

Bg(n)+Cv(n) =
2λ
n

+op(1/n). (38)

In model selection or hyperparameter optimization, Equation (37) shows thatminimization of the
cross-validation makes the generalization loss smaller on average. However, Equation (38) shows
that minimization of the cross-validation does not ensure minimum generalization loss. The widely
applicable information criterion has the same property as the cross-validation. The constantλ ap-
pears to exhibit a bound, which can be attained by statistical estimation for a given pair of a statis-
tical model and a prior distribution. Hence, clarification of the algebraic geometrical structure in
statistical estimation is an important problem in statistical learning theory.

6. Conclusion

In the present paper, we have shown theoretically that the leave-one-out cross-validation in Bayes
estimation is asymptotically equal to the widely applicable information criterion and that the sum of
the cross-validation error and the generalization error is equal to twice thereal log canonical thresh-
old divided by the number of training samples. In addition, we clarified that cross-validation and the
widely applicable information criterion are different from the deviance information criteria. This
result indicates that, even in singular statistical models, the cross-validation isasymptotically equiv-
alent to the information criterion, and that the asymptotic properties of these models are determined
by the algebraic geometrical structure of a statistical model.
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