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Abstract
In regular statistical models, the leave-one-out crogisiation is asymptotically equivalent to the
Akaike information criterion. However, since many leammachines are singular statistical mod-
els, the asymptotic behavior of the cross-validation remainknown. In previous studies, we
established the singular learning theory and proposed elyégbplicable information criterion, the
expectation value of which is asymptotically equal to therage Bayes generalization loss. In the
present paper, we theoretically compare the Bayes crdisiatran loss and the widely applicable
information criterion and prove two theorems. First, thg/@&across-validation loss is asymptot-
ically equivalent to the widely applicable informationterion as a random variable. Therefore,
model selection and hyperparameter optimization usingeth®o values are asymptotically equiv-
alent. Second, the sum of the Bayes generalization errotrenBayes cross-validation error is
asymptotically equal toX/n, whereA is the real log canonical threshold ands the number of
training samples. Therefore the relation between the erakidation error and the generalization
error is determined by the algebraic geometrical struodfiige learning machine. We also clarify
that the deviance information criteria are different frdre Bayes cross-validation and the widely
applicable information criterion.
Keywords: cross-validation, information criterion, singular leg machine, birational invariant

1. Introduction

A statistical model or a learning machine is said to be regular if the map takinghptaes to
probability distributions is one-to-one and if its Fisher information matrix is pasiefinite. If a
model is not regular, then it is said to be singular. Many learning machinel,as artificial neu-
ral networks (Watanabe, 2001b), normal mixtures (Yamazaki and \aa¢ar2003), reduced rank
regressions (Aoyagi and Watanabe, 2005), Bayes networks KRusad Geiger, 2005; Zwiernik,
2010), mixtures of probability distributions (Lin, 2010), Boltzmann machides/égi, 2010), and
hidden Markov models (Yamazaki and Watanabe, 2005), are not regutiaingular (Watanabe,
2007). If a statistical model or a learning machine contains a hierarchicatisre, hidden vari-
ables, or a grammatical rule, then the model is generally singular. Therefimgular learning
theory is necessary in modern information science.

The statistical properties of singular models have remained unknown ucdihtig, because
analyzing a singular likelihood function had been difficult (Hartigan, 198&tanabe, 1995). In
singular statistical models, the maximum likelihood estimator does not satisfy agiamationality.
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Consequently, AIC is not equal to the average generalization errgiidea, 2002), and the Bayes
information criterion (BIC) is not equal to the Bayes marginal likelihood (\Wakee, 2001a), even
asymptotically. In singular models, the maximum likelihood estimator often diveayesven if

it does not diverge, makes the generalization error very large. fidnereéhe maximum likelihood
method is not appropriate for singular models. On the other hand, Bay@s&sn was proven to
make the generalization error smaller if the statistical model contains singulaitiesefore, in
the present paper, we investigate methods for estimating the Bayes gextienakzror.

Recently, new statistical learning theory, based on methods from alggeaicetry, has been
established (Watanabe, 2001a; Drton et al., 2009; Watanabe, 20@&,20Lin, 2010). In singular
learning theory, a log likelihood function can be made into a common standangddgen if it con-
tains singularities, by using the resolution theorem in algebraic geometryressly the asymptotic
behavior of the posterior distribution is clarified, and the concepts of BHCAAC can be general-
ized onto singular statistical models. The asymptotic Bayes marginal likelihosgbreaen to be
determined by the real log canonical threshold (Watanabe, 2001ahamsgerage Bayes general-
ization error was proven to be estimable by the widely applicable informatiomiarit@Vatanabe,
2009, 2010a,c).

Cross-validation is an alternative method for estimating the generalizatian(®tosier, 1951;
Stone, 1977; Geisser, 1975). By definition, the average of the gadigigtion is equal to the average
generalization error in both regular and singular models. In regular statistadels, the leave-one-
out cross-validation is asymptotically equivalent to AIC (Akaike, 1974) ewttaximum likelihood
method (Stone, 1977; Linhart, 1986; Browne, 2000). However, thmptic behavior of the
cross-validation in singular models has not been clarified.

In the present paper, in singular statistical models, we theoretically cortipaiayes cross-
validation, the widely applicable information criterion, and the Bayes genatiglizerror and prove
two theorems. First, we show that the Bayes cross-validation loss is asyrajiyotiguivalent to
the widely applicable information criterion as a random variable. Secondlseeshow that the
sum of the Bayes cross-validation error and the Bayes generalizatmmisasymptotically equal
to 2\ /n, whereA is the real log canonical threshold ands the number of training samples. It
is important that neithek or n is a random variable. Since the real log canonical threshold is a
birational invariant of the statistical model, the relationship between the Ragss-validation and
the Bayes generalization error is determined by the algebraic geometnicalstr of the statistical
model.

The remainder of the present paper is organized as follows. In Sectime thtroduce the
framework of Bayes learning and explain singular learning theory. ttiGe3, the Bayes cross-
validation is defined. In Section 4, the main theorems are proven. In Sectiwe 8iscuss the
results of the present paper, and the differences among the clakstiva, the widely applica-
ble information criterion, and the deviance information criterion are investighteoretically and
experimentally. Finally, in Section 6, we summarize the primary conclusions gir&sent paper.

2. Bayes Learning Theory

In this section, we summarize Bayes learning theory for singular learninginesc The results
presented in this section are well known and are the fundamental basespegent paper. Table 1
lists variables, names, and equation numbers in the present paper.
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Variable Name Equation numbet
Ewl ] posterior average Equation (1)
E\(,\',)[ ] posterior average withol Equation (16)
L(w) log loss function Equation (8)

Lo minimum loss Equation (9)
Ln empirical loss Equation (10)
BgL(n) Bayes generalization losg  Equation (3)
BiL(n) Bayes training loss Equation (4)
GtL(n) Gibbs training loss Equation (7)
CiL(n) cross-validation loss Equation (17)
Bgy(n Bayes generalization error Equation (11)
Bt (n) Bayes training error Equation (12)
Cv(n) cross-validation error Equation (28)
V(n) functional variance Equation (5)
Yi(n) kth functional cumulant Equation (18)
WAIC (n) WAIC Equation (6)
A real log canonical threshold Equation (29)

v singular fluctuation Equation (30)

Table 1: Variables, Names, and Equation Numbers

2.1 Framework of Bayes Learning

First, we explain the framework of Bayes learning.

Let g(x) be a probability density function on tt¢ dimensional real Euclidean spak&. The
training samples and the testing sample are denoted by random vadabtes..., X, and X, re-
spectively, which are independently subject to the same probability distribagg(x)dx. The
probability distributiong(x)dx is sometimes called the true distribution.

A statistical model or a learning machine is defined as a probability densityidang(x|w)
of x € RN for a given parametew €¢ W ¢ RY, whereW is the set of all parameters. In Bayes
estimation, we prepare a probability density functipfw) on W. Although ¢(w) is referred to
as a prior distribution, in generap(w) does not necessary representagpriori knowledge of the
parameter.

For a given functionf (w) on W, the expectation value of(w) with respect to the posterior
distribution is defined as

[ ) [ P04 wctw
]

Euw ; 1)

| 1] poxiw® oty

where 0< B < « is the inverse temperature. The case in wifieh 1 is most important because this
case corresponds to strict Bayes estimation. The Bayes predictive isiniis defined as

p*(x) = Ew[p(X|w)]. (2)
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In Bayes learning theory, the following random variables are importarg. Betyes generalization
lossBgL(n) and the Bayes training logL (n) are defined, respectively, as

BgL(n) = —Ex[logp*(X)], 3
BLN) = 3 0gp(X), @

whereEx| | gives the expectation value ovér Thefunctional variances defined as

V(n) = 5 {Eu(logp(x )7~ Eulogp(x|w) 7} ©

which shows the fluctuation of the posterior distribution. In previous Eaféfatanabe, 2009,
2010a,b), we defined the widely applicable information criterion

WAIC(n) = BL(n) + EV(n), (6)
and proved that
E[BgL(n)] = E[WAIC(n)] +o(%),

holds for both regular and singular statistical models, wfi#ré gives the expectation value over
the sets of training samples.

Remark 1 Although the case in which = 1 is most important, general cases in whigh< <
oo are also important for four reasons. First, from a theoretical viewpointesal mathematical

relations can be obtained using the derivativdofor example, using the Bayes free energy or the
Bayes stochastic complexity,

7(8) = ~log | [ pOXw Py

the Gibbs training loss

GL(n) =~ 5 109p0KIw | )
can be written as
GiL(n) = %g

Such relations are useful in investigating Bayes learning theory. We@3s5¢dp? to investigate
the deviance information criteria in Section 5. Second, the maximum likelihetitbch formally
corresponds t@ = . The maximum likelihood method is defined as
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instead of Equation (2), wherg is the maximum likelihood estimator. Its generalization loss is also
defined in the same manner as Equation (3). In regular statistical motthelsasymptotic Bayes
generalization error does not depend @r: 3 < «, whereas in singular models it strongly depends
on 3. Therefore, the general case is useful for investigating the differerteeeba the maximum
likelihood and Bayes methods. Third, from an experimental viewpointdier @0 approximate the
posterior distribution, the Markov chain Monte Carlo method is often applieddmgrolling 3. In
particular, the identity
1oF

7= | 55 9P
is used in the calculation of the Bayes marginal likelihood. The theoretisaltefor generap are
useful for monitoring the effect of controllirfy(Nagata and Watanabe, 2008). Finally, in the re-
gression problemf can be understood as the variance of the unknown additional noise rféfza
2010c) and so may be optimized as the hyperparameter. For thesmeeds the present paper, we
theoretically investigate the cases for gendal

2.2 Notation

In the following, we explain the notation used in the present study.
The log loss functiorh.(w) and the entrop of the true distribution are defined, respectively, as

Lw) = —Ex[logp(X|w)], (8)
S = —Ex[logq(X)].
Then,L(w) = S+ D(q||pw), whereD(q|| pw) is the Kullback-Leibler distance defined as
q(x)
D :/ X)lo dx
(@llpw) = [ alog-E i

Then,D(q||pw) > 0, henceL(w) > S. Moreover,L(w) = Sif and only if p(x|w) = q(X).
In the present paper, we assume that there exists a paramgetéd/ that minimized_(w),

L(wp) = minL(w).

(wo) = minL (w)
Note that suctwp is not unique in general because the map> p(x|w) is, in general, not a one-
to-one map in singular learning machines. In addition, we assume that, fabiraty w that

satisfied (w) = L(wp), p(x|w) is the same probability density function. Lgj(x) be such a unique
probability density function. In general, the set

Wo = {w € W, p(x|w) = po(x)}

is not a set of a single element but rather an analytic or algebraic set wgthiaiities. Here, a set
in RY is said to be an analytic or algebraic set if and only if the set is equal to thef a#itzero
points of an analytic or algebraic function, respectively. For simple notgttbe minimum log loss
Lo and the empirical log lods,, are defined, respectively, as

Lo = —Ex[logpo(X)], 9)
1 n
Ln = e izl'OQ Po(Xi). (10)
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Then, by definitionLo = E[L,]. Using these values, Bayes generalization eBgin) and Bayes
training errorB;(n) are defined, respectively, as

Bg(n) = BgL(n)—Lo, (11)
Bi(n) = BiL(n)—Ln. (12)

Let us define a log density ratio function as:

Po(X)

f(x,w) = log D0xW)’

which is equivalent to
P(XW) = po(X) exp(—f (x,w)).
Then, it immediately follows that
By(n) = —Ex[logEw[exp(—f(X,w))]],

B~ —3 5 logEulexe—F(X.),
V() = i{EW[fm,w)Z]—Ew[fm,w)]z}.

Therefore, the problem of statistical learning is characterized by thagidumf (x, w).
Definition 2 (1) If q(x) = po(X), then dx) is said to be realizable by (gw). Otherwise, ¢x) is
said to be unrealizable.

(2) If the set W consists of a single pointgrand if the Hessian matriXIOL (wp) is strictly positive
definite, then () is said to be regular for {x|w). Otherwise, ¢x) is said to be singular for {x|w).

Bayes learning theory was investigated for a realizable and regula(Scis&arz, 1978; Levin
et al., 1990; Amari, 1993). The WAIC was found for a realizable anduargcase (Watanabe,
2001a, 2009, 2010a) and for an unrealizable and regular casen®data2010b). In addition,
WAIC was generalized for an unrealizable and singular case (Watak@bed).

2.3 Singular Learning Theory

We summarize singular learning theory. In the present paper, we assefioddtvings.

2.3.1 ASSUMPTIONS

(1) The set of parameteWs is a compact set iiRY, the open kernélof which is not the empty set.
The boundary o¥V is defined by several analytic functions,

W = {w e R% my(w) > 0,Tm(W) >0, ..., T (W) > 0}.

1. The open kernel of a sétis the largest open set that is containedin
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(2) The prior distribution satisfies(w) = ¢1(w)d2(w), whered,(w) > 0 is an analytic function and
d2(w) > 0 is aC™-class function.
(3) Lets> 8 and let

(@) = (1001 171 = ([ 1169 apgae) *° < )

be a Banach space. The mafps w— f(x,w) is anL3(q) valued analytic function.
(4) A nonnegative functioi (w) is defined as

K(w) = Ex[f(X,w)].
The seW\ is defined as
We ={weW; K(w) <e}.
It is assumed that there exist constamts> 0 such that
(YweW,) Ex[f(X,w)] > cEx[f(X,w)?. (13)

Remark 3 In ordinary learning problems, if the true distribution is regular for or realite by a
learning machine, then assumptions (1), (2), (3) and (4) are satjimtithe results of the present
paper hold. If the true distribution is singular for and unrealizable by a Iéagnmachine, then
assumption (4) is satisfied in some cases but not in other cases. Istin@piion (4) is not satisfied,
then the Bayes generalization and training errors may have asymptotavizeh other than those
described in Lemma 1 (Watanabe, 2010d).

The investigation of cross-validation in singular learning machines regsiingsilar learning
theory. In previous papers, we obtained the following lemma.

Lemma 1 Assume that assumptions (1), (2), (3), and (4) are satisfied. Thefgltbwings hold.

(1) Three random variables gkn), nB(n), and V(n) converge in law, when n tends to infinity. In
addition, the expectation values of these variables converge.

(2) Fork=1,2,3,4, we define

Ew|| f (%, w) [“exp(a f (X, w))]
Ew[explof (X, w))] ’

Mk(n) = sup E[li

laj<14p NS

whereE[ | gives the average over all sets of training samples. Then,
limsup, .., (n"/2 Mk(n)> < oo, (14)

(3) The expectation value of the Bayes generalization loss is asymptotiqally ® the widely
applicable information criterion,

E[ByL(n)] = E[WAIC(n)] +o(d). (15)

n
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Proof For the case in whichy(x) is realizable by and singular fga(x|w), this lemma was proven

in Watanabe (2010a) and Watanabe (2009). In fact, the proof of Lem{heid given in Theorem

1 of Watanabe (2010a). Also Lemma 1 (2) can be proven in the same manBquation (32) in
Watanabe (2010a) or Equation (6.59) in Watanabe (2009). The pfa@homa 1 (3) is given in
Theorem 2 and the discussion of Watanabe (2010a). For the case imgykjds regular for and
unrealizable byp(x|w), this lemma was proven in Watanabe (2010b). For the case in wvgigh

is singular for and unrealizable Ip(x|w), these results can be generalized under the condition that
Equation (13) is satisfied (Watanabe, 2010d). |

3. Bayes Cross-Validation

In this section, we introduce the cross-validation in Bayes learning.
The expectation vaIuE\(,\',)[ ] using the posterior distribution leaving oXjtis defined as

[0 [0 1) g wtw

EW[ |= ——2 , (16)
/l_l P(X;|w) )P (w
J#
n
whererl shows the product fof = 1,2,3,..,n, which does not includg =i. The predictive

dlstrlbutlon leaving ouk; is defined as
p (x) = EW [p(xw)]-
The log loss ofpl) (x) whenX; is used as a testing sample is
~logp (%) = —logEW [p(%|w)].

Thus, the log loss of the Bayes cross-validation is defined as the empirgzabe of them,
12 i
CuL(m) = =T 3 logEw [p(X )] (17)
1=

The random variabl€,L(n) is referred to as theross-validation lossSinceXy, X, ..., Xy are inde-
pendent training samples, it immediately follows that

E[GL(n)] = E[BgL(n—1)].
Although the two random variabl€sL (n) andBgL (n— 1) are different,
CuL(n) # BgL(n—1),

their expectation values coincide with each other by the definition. Usingtiguab), it follows
that

E[C,L(n)] = E[WAIC (n— 1)] +o(%).

3578



SINGULAR CROSSVALIDATION

Therefore, three expectation valuefC,L (n)], E[BgL(n— 1)], andE[WAIC (n— 1)] are asymptoti-
cally equal to each other. The primary goal of the present paper is iy ¢tk asymptotic behaviors
of three random variable€,L(n), BgL(n), and WAIC(n), whenn is sufficiently large.

Remark 4 In practical applications, the Bayes generalization logs @) indicates the accuracy
of Bayes estimation. However, in order to calculagt @), we need the expectation value over the
testing sample taken from the unknown true distribution, hence we caneotlyliobtain BL(n)

in practical applications. On the other hand, both the cross-validation Ig&$rg and the widely
applicable information criterion WAIQ) can be calculated using only training samples. Therefore,
the cross-validation loss and the widely applicable information criterion camges for model
selection and hyperparameter optimization. This is the reason why cisopasf these random
variables is an important problem in statistical learning theory.

4. Main Results

In this section, the main results of the present paper are explained. Fasiefine functional
cumulants and describe their asymptotic properties. Second, we probethahe cross-validation
loss and the widely applicable information criterion can be represented fyrtbonal cumulants.
Finally, we prove that the cross-validation loss and the widely applicableniafiion criterion are
related to the birational invariants.

4.1 Functional Cumulants

Definition 5 The generating function () of functional cumulants is defined as
1 n
I f a
F(o) = 3 109w [p(XW)°).

The kth order functional cumulankth) (k= 1,2,3,4) is defined as

k

V) = $r 0) (18)
Then, by definition,

FO) = 0

F(l) = _BIL(n)a

Yi(n) = —GL(n),

Yo(n) = V(n)/n.

For simple notation, we use

0(%) = Eu[(logp(Xw))¥] (k=1,2,3,4).

Lemma 2 Then, the following equations hold:
1 n
Vi) = S5 ), (19)
ni;
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=}

B = =3 {600 -6}, (20
W = 5 3 {00 300600+ 200°), @)
W = 5 3 {100~ 4a(X)a() ~ oK)
+1265(X)(2(X)? ~ 601(%)*}. (22)
Moreover,
() =Op( ;) (k=2.3.4)
In other words,
limsup, ,E[N“2 [Yk(n)[] <o (k=2,3,4). (23)

Proof First, we prove Equations (19) through (22). Let us define
Gi () = Ew[p(Xi|w)°].
Then,gi(0) =1,

and
1n |
Fla) =7 3 l096i(@).
For arbitrary natural numbés;

gi(@)®y  gi(@® g™y rgi(a)
< gi(a) ) ~ gi(a) _( gi(a) >(gi(a))'

By applying this relation recursively, Equations (19), (20), (21), &R&) are derived. Let us prove
Equation (23). The random variabMgn) (k = 2, 3,4) are invariant under the transform,

log p(Xi|w) — log p(Xi|w) +c(X), (24)
for arbitraryc(X;). In fact, by replacingp(X;|w) by p(X|w)e“™), we define

P(0) = 5 3 oG [pOXIwf ]

Then, the difference betwedi(a) andF (a) is a linear function ofx, which vanishes by higher-
order differentiation. In particular, by selectiegX;) = —log po(Xi), we can show thati(n) (k=
2,3,4) are invariant by the following replacement,

log p(Xi|w) — f(X;,w).
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In other wordsYk(n) (n= 2,3,4) are invarianrt by the replacement,
0(X) = B[ (X, W)K].
Using the Cauchy-Schwarz inequality, fork’ < k,
B[] £ 06, W) KT < B[ £, W) /X

Therefore, fok = 2, 3,4,
E G i, w)[K
M < B[S BallfO6w)]] < CM(n).
i=
whereC; = 2,C3 = 6,C4 = 26. Then, using Equation (14), we obtain Equation (23). |

Remark 6 Using Equation (24) with(X) = —Ew[log p(Xi|w)] and the normalized function defined
as

k(%) = Ew[(log p(Xi|w) — c(%))"],

it follows that

) = 13 606

W = 1S 60
W = 53 {0 -25007).

These formulas may be useful in practical applications.

4.2 Bayes Cross-validation and Widely Applicable Information Criterion

We show the asymptotic equivalence of the cross-validationQgis@) and the widely applicable
information criterion WAIGn).

Theorem 1 For arbitrary 0 < B < o, the cross-validation lossC(n) and the widely applicable
information criterionWAIC (n) are given, respectively, as

CL(n) = —vl(n)+<$)vz(n)
2 _
~(FEE v 053,
WAIC(n) = —Yl(n)+(%)vz(n)
— gl + Op( ).
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Proof First, we conside€,L(n). From the definitions o[ | andES\i,)[ |, we have

Ew[(_)p(Xi|w) P ]
Ew[p(Xw)—B] -

Therefore, by the definition of the cross-validation loss, Equation (17),

EQI( )] =

12 X.|w1 B]
n2' %% o p(X (W) B]

Using the generating function of functional cumulaftst),
GL(n) =F(-B)-F(1-B).
Then, using Lemma 1 (2) for ea&h= 2,3,4, and|a| < 1+ B,

C « Ew[|f (X, w)[*exp(af (X, w))]
BIFM@) < B[S = atoow) )
< CGMk(n),

whereC; = 2,C3 = 6,C4 = 26. Therefore,

1

F¥ (@) = Opl(—5).

By Taylor expansion oF (a) amonga = 0, there exisf*, 3** (|B*|, |B**| < 1+ B) such that

2
F(-B) = F(O)-BF/(0)+ 5 F(0)
ij(?»)(o) B—4F(4)(B*)
"6 "2 ’
B — [P € e )
F1-B) = FO)+1-BF©O+ P F/(

+ﬂp<3> (0)+ (1- B)4F(4)(B**)-

6 24
UsingF (0) = 0 and Equations (26) and (27), it follows that
cLm = —F(O)+ 2 F ()
3p%-3p+1 1

—TF@)(O)JrOp(ﬁ).

(25)

(26)

(27)

Thus, we have proven the first half of the theorem. For the latter half ebgefinitions of WAIGN),

Bayes training loss, and the functional variance, we have

+(B/mV(n),

)

WAIC(n) = BiL(n)
BL(n) = —F(1)
V(n) = nF"(0).
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Therefore,
WAIC (n) = —F (1) + BF"(0).
By Taylor expansion oF (1), we obtain

28-1

WAIC () = —F'(0) + =

1 1
F"(0) - EF(g) (0) +Op(@)7

which completes the proof. |

From the above theorem, we obtain the following corollary.

Corollary 1 For arbitrary 0 < 3 < o, the cross-validation lossC(n) and the widely applicable
information criterionWAIC (n) satisfy

1

CuL(n) = WAIC(n) + Op( 7).

In particular, for3 = 1,

CoL(n) = WAIC () +op($).

More precisely, the difference between the cross-validation loss anddiedy applicable informa-
tion criterion is given by

@2
CL(n) — WAIC (n) = (B zB )Yg(n).
If =1,
CyL(n) — WAIC (n) = 1i2Y4(n).

4.3 Generalization Error and Cross-validation Error

In the previous subsection, we have shown that the cross-validatiais Esgmptotically equivalent
to the widely applicable information criterion. In this section, let us compare gy=8general-
ization errorBy(n) given in Equation (11) and the cross-validation ex@(n), which is defined
as

Cv(n) =CL(n) —Lp. (28)
We need mathematical concepts, the real log canonical threshold, andghkasfluctuation.

Definition 7 The zeta functiod(z) (Rez) > 0) of statistical learning is defined as
(@) = [ KW pwdw
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where
K(w) = Ex[f(X,w)]

is @ nonnegative analytic function. Her&z) can be analytically continued to the unique mero-
morphic function on the entire complex pla@e All poles of{(z) are real, negative, and rational
numbers. The maximum pole is denoted as

(—A) = maximum pole of(z). (29)

Then, the positive rational numbgtis referred to as the real log canonical threshold. The singular
fluctuation is defined as

v=V(B)=lim gE[V(n)]. (30)

n—oo

Note that the real log canonical threshold does not depen@, evhereas the singular fluctuation is
a function off3.

Both the real log canonical threshold and the singular fluctuation are ighiiovariants. In
other words, they are determined by the algebraic geometrical structilre sthtistical model. The
following lemma was proven in a previous study (Watanabe, 2010a,b,d).

Lemma 3 The following convergences hold:

lim nE[By(n)] = )‘g"w, 31)
tm s (m] = 2. (32)

Moreover, convergence in probability
n(By(n) + B(n) +V(m) - 5 (33)

holds.

Proof For the case in which(x) is realizable by and singular fg(x|w), Equations (31) and (32)
were proven by in Corollary 3 in Watanabe (2010a). The equation (a3)giwen in Corollary 2
in Watanabe (2010a). For the case in whigh) is regular forp(x|w), these results were proved in
Watanabe (2010b). For the case in whigR) is singular for and unrealizable tp(x|w) they were
generalized in Watanabe (2010d). |

4.3.1 EXAMPLES

If g(x) is regular for and realizable bg(x|w), thenA = v = d/2, whered is the dimension of
the parameter space. dfx) is regular for and unrealizable y(x|w), thenA andv are given by
Watanabe (2010b). Kj(x) is singular for and realizable by(x|w), thenA for several models are
obtained by resolution of singularities (Aoyagi and Watanabe, 2005akusand Geiger, 2005;
Yamazaki and Watanabe, 2003; Lin, 2010; Zwiernik, 2010y(X) is singular for and unrealizable
by p(x|w), thenA andv remain unknown constants.

We have the following theorem.
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Theorem 2 The following equation holds:

lim nE[C,(n)] = A-v +Vv,

n—oo B
The sum of the Bayes generalization error and the cross-validation eatcsfies

Bo(n)+ () = (B— 1) + 2+ 05(7).

In particular, if B =1,

2\
By(1) + Cul) = =+ 0p(5).

Proof By Equation (31),

A—

E[By(n—1)] = (BV +v) % +o(%).
SinceE[Cy(n)] = E[Bg(n—1)],
lim nE(C,(n)] = lim nE[By(n— 1)]

= 3 .
From Equation (33) and Corollary 1,

B 1

Bi(n) =Cy(n) — HV(n) +Op(@),

and it follows that

(Bo(m+Culm) = (B- DY+ 22 +oul3),

which proves the Theorem. |
This theorem indicates that both the cross-validation error and the Bayesaijzation error

are determined by the algebraic geometrical structure of the statistical modieh, izlextracted as
the real log canonical threshold. From this theorem, in the strict Bayefcad, we have

BlBg(m)] = 2+o(}).
ECM)] = Ao},
and
Bo() + () = 2 +0p( ). (34
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Therefore, the smaller cross-validation er@(n) is equivalent to the larger Bayes generalization
error Bg(n). Note that a regular statistical model is a special example of singular moeéeise h
both Theorems 1 and 2 also hold in regular statistical models. In Watana®@)(&0vas proven
that the random variableBy(n) converges to a random variable in law. Thuo€,(n) converges
to a random variable in law. The asymptotic probability distributiomBf(n) can be represented
using a Gaussian process, which is defined on the set of true pararbetdssnot equal to thg?
distribution in general.

Remark 8 The relation given by Equation (34) indicates thaf i 1, the variances of &n) and
Cv(n) are equal. If the average vally = E[V (n)] is known, then Bn) +2v /n can be used instead
of G,(n), because both average values are asymptotically equal to the Bayesaligation error.
The variance of Bn) +2v/n is smaller than that of &n) if and only if the variance of #n) is
smaller than that of B(n). If a true distribution is regular for and realizable by the statistical
model, then the variance of @) is asymptotically equal to that ofjBn). However, in other cases,
the variance of Bn) may be smaller or larger than that o).

5. Discussion

Let us now discuss the results of the present paper.

5.1 From Regular to Singular

First, we summarize the regular and singular learning theories.

In regular statistical models, the generalization loss of the maximum likelihood thétho
asymptotically equal to that of the Bayes estimation. In both the maximum likelihcoh@ayes
methods, the cross-validation losses have the same asymptotic behaviotsavdrone-out cross-
validation is asymptotically equivalent to the AIC, in both the maximum likelihood aayeB meth-
ods.

On the other hand, in singular learning machines, the generalization loss mikimum like-
lihood method is larger than the Bayes generalization loss. Since the gest@alitbss of the
maximum likelihood method is determined by the maximum value of the Gaussian prolces
maximum likelihood method is not appropriate in singular models (Watanabe).26@ayes esti-
mation, we derived the asymptotic expansion of the generalization loss evebghat the average
of the widely applicable information criterion is asymptotically equal to the Bageemglization
loss (Watanabe, 2010a). In the present paper, we clarified that treedea-out cross-validation in
Bayes estimation is asymptotically equivalent to WAIC.

It was proven (Watanabe, 2001a) that the Bayes marginal likelihood ofgailar model is
different from BIC of a regular model. In the future, we intend to complaeecross-validation and
Bayes marginal likelihood in model selection and hyperparameter optimizatiowinar statistical
models.

5.2 Cross- validation and Importance Sampling

Second, let us investigate the cross-validation and the importance samplsgvalidation from a
practical viewpoint.

In Theorem 1, we theoretically proved that the leave-one-out cralgdation is asymptotically
equivalent to the widely applicable information criterion. In practical appboa, we often approx-
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imate the posterior distribution using the Markov Chain Monte Carlo or other ncahenethods.
If the posterior distribution is precisely realized, then the two theorems ofrdsept paper hold.
However, if the posterior distribution was not precisely approximated, thercross-validation
might not be equivalent to the widely applicable information criterion.

In Bayes estimation, there are two different methods by which the leavedrezoss-validation
is numerically approximated. In the former meth@¥; is obtained by realizing all posterior dis-

tributionsIE\(,\',)[ | leaving outX; fori = 1,2 3,...,n, and the empirical average
Vi = — 2 5 logE{ [p(Xw)
n i; "

is then calculated. In this method, we must reatiziifferent posterior distributions, which requires
heavy computational costs.

In the latter method, the posterior distribution leaving Buts estimated using the posterior
averagek,,| ], in the same manner as Equation (25),

Ew[p(X|w) pOX|w) ]
Ew[p(Xi|w) P ]
This method is referred to as the importance sampling leave-one-outaiidation (Gelfand et al.,

1992), in which only one posterior distribution is needed and the leav@woineross-validation is
approximated by V>,

B [p(X|w)] =

0g xrw (NIW)*B]
Zl p(Xijw)R]

If the posterior distribution is completely realized, tHé¥f, andCV, coincide with each other
and are asymptotically equivalent to the widely applicable information critetitowever, if the
posterior distribution is not sufficiently approximated, then the valygsCV,, and WAIC(n) might
be different.

The average values using the posterior distribution may sometimes have irdinédeoces (Pe-
ruggia, 1997) if the set of parameters is not compact. Moreover, in Isingrarning machines,
the set of true parameters is not a single point but rather an analytic seg e must restrict
the parameter space to be compact for well-defined average valugefdreewe adopted the as-
sumptions in Section 2.3 that the parameter space is compact and the log likélihotion has the
appropriate properties. Under these conditions, the observablesdsindiee present paper have
finite variances.

5.3 Comparison with the Deviance Information Criteria

Third, let us compare the deviance information criterion (DIC) (Spiegethattal., 2002) to the
Bayes cross-validation and WAIC, because DIC is sometimes used iniBayasdel evaluation.
In order to estimate the Bayesian generalization error, DIC is written by

DIC: = BL() + 1 5 { ~EullogpOX ]+ log (X Eulw) .

where the second term of the right-hand side corresponds to thetieffaamber of parameters” of
DIC divided by the number of parameters. Under the condition that the Idghidkeel ratio function
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in the posterior distribution is subject to tgé distribution, a modified DIC was proposed (Gelman
etal., 2004) as

DIz ~ BL( + 3 [ 5 I0gp0X/w) } | ~Eul 5 ogp(x|w)]

the variance of which was investigated previously (Raftery, 2007). thet®IC, is different from
WAIC. In a singular learning machine, since the set of optimal parametersasalytic set, the
correlation between different true parameters does not vanish, syaptotically.

We first derive the theoretical properties of DIC. If the true distributioreguitar for the statis-
tical model, then the set of the optimal parameter is a single point hus, the difference df[w]
and the maximuna posterioriestimator is asymptotically smaller thapj\In. Therefore, based on
the results in Watanabe (2010b)iE= 1,

1 1
E[DIC;] = Lo+ (3N — 2\)(1))5 + O(ﬁ)'
If the true distribution is realizable by or regular for the statistical model afid=f1, then the

asymptotic behavior dDIC; is given by

E[DIC,] = Lo+(3)\—2v(1)+2v’(1))%+0(%)7 (35)

wherev’(1) = (dv/dB)(1). Equation (35) is derived from the relations (Watanabe, 2009, 20H)a,b

d
DIC; = BlL(n)-— 2%GtL(n),

A 1 1
EIGLM)] = Lot (5—v(®);+o(y)
whereG;L(n) is given by Equation (7).
Next, let us consider the DIC for each case. If the true distribution idaefpr and realizable by
the statistical model and@= 1, thenA =v =d/2,V’(1) = 0, whered is the number of parameters.
Thus, their averages are asymptotically equal to the Bayes generalization e

d 1
E[DIC;] = Lo—l-%-i-o(ﬁ),
d 1
E[DIC,] = |—0+%+0(ﬁ)-

In this case, the averagesFfC,, DIC,, CV;, CV,, and WAIC have the same asymptotic behavior.

If the true distribution is regular for and unrealizable by the statistical mauglffd = 1, then
A=d/2,v =(1/2)tr(1371), andV/(1) = 0 (Watanabe, 2010b), whetds the Fisher information
matrix atwp, andJ is the Hessian matrix df(w) atw = wp. Thus, we have

E[DIC,] = Lo+(3—2d—tr(lrl))%+o(%),
E[DIC;] = Lo+(3—2d—tr(IJ’1)>%+o(%).
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In this case, as shown in Lemma 3, the Bayes generalization error is gileyHbd/(2n) asymp-
totically, and so the averages of the deviance information criteria are nal tegthe average of the
Bayes generalization error.

If the true distribution is singular for and realizable by the statistical modelfgBie- 1, then

E[DIC;] = C+o(1), (36)
E[DIC,] = Lo+(3)\—2v(l)+2v’(1))%+0(1),

n

whereC (C # Lp) is, in general, a constant. Equation (36) is obtained because the setof tru
parameters in a singular model is not a single point, but rather an analytsogégt, in general,
the averagde,[w] is not contained in the neighborhood of the set of the true parameterseHen
the averages of the deviance information criteria are not equal to thake Bfayes generalization
error.

The averages of the cross-validation loss and WAIC have the same asigrbptmavior as that
of the Bayes generalization error, even if the true distribution is unreddizabor singular for the
statistical model. Therefore, the deviance information criteria are diffén@m the cross-validation
and WAIC, if the true distribution is singular for or unrealizable by the statistizalel.

5.4 Experiment

In this section, we describe an experiment. The purpose of the pregmmtip to clarify the theoreti-
cal properties of the cross-validation and the widely applicable informatitamion. An experiment
was conducted in order to illustrate the main theorems.

Letx,y € R3. We considered a statistical model defined as

_ 2
p(X,y|w) = (ZTTC(I)Z())W eXF(—Hngc(;(’W)H)’

whereo = 0.1 ands(x) is A((0,221). Here, A (m, A) exhibits a normal distribution with the average
vectorm and the covariance matri, andl is the identity matrix. Note that the distributic(x)
was not estimated. We used a three-layered neural network,

H

Ry (x,w) = z aptanhby - x),

h=1
where the parameter was

w={(aneR3b,eR®;h=12..H} eR".

In the experiment, a learning machine wih= 3 was used and the true distribution was set with
H = 1. The parameter that gives the distribution is denoteasasvhich denotes the parameters of
both modeldd = 1,3. Then Ry (X,Wo) = Ru, (X, Wo). Under this condition, the set of true parameters

{w € W; p(xjw) = p(x|wo)}
is not a single point but an analytic set with singularities, resulting that thdanéty condition is
not satisfied. In this case, the log density ratio function is equivalent to

1

= 552 { 1Y =R (W) ly = R (x.wo) °}.

f(x,y,w)

3589



WATANABE

In this model, although the Bayes generalization error is not equal to thagevequare error

SE) = 5 BEx | R (X,vi0) — EulRs (X, W)] [P,

asymptotically SEn) andBgy(n) are equal to each other (Watanabe, 2009).

The prior distributiond(w) was set as\((0,10?1). Although this prior does not have compact
support mathematically, it can be understood in the experiment that thersapow) is essentially
contained in a sufficiently large compact set.

In the experiment, the number of training samples was fixed as200. One hundred sets
of 200 training samples each were obtained independently. For eachdragtirnthe strict Bayes
posterior distributiod = 1 was approximated by the Markov chain Monte Carlo (MCMC) method.
The Metropolis method, in which each random trial was taken g0, (0.005)?1 ), was applied,
and the average exchanging ratio was obtained as approximately 0.36183€00 iterations of
Metropolis random sampling, 200 parameters were obtained in every dilisg steps. For a fixed
training set, by changing the initial values and the random seeds of theaseftiive same MCMC
sampling procedures were performed 10 times independently, which wasfoiothe purpose of
minimizing the effect of the local minima. Finally, for each training set, we obtag@fiix 10 =
2,000 parameters, which were used to approximate the posterior distribution.

Table 2 shows the experimental results. We observed the Bayes geat@alizrrorBG =
Bg(n), the Bayes training errd8T = Bt (n), importance sampling leave-one-out cross-validation
CV =CW, — L, the widely applicable information criterion WAIE WAIC (n) — Ly, two deviance
information criteria, namelDIC1 = DIC; — L, andDIC2 = DIC, — Ly, and the sunBG+CV =
Bg(n) +Cy(n). The valuesAV RandSTDin Table 2 show the average and standard deviation of
one hundred sets of training data, respectively. The original crassationCV; was not observed
because the associated computational cost was too high.

The experimental results reveal that the average and standard dewhBdhwere approxi-
mately the same as those @Y and WAIC, which indicates that Theorem 1 holds. The real log
canonical threshold, the singular fluctuation, and its derivative of tlsis weere estimated as

A ~ 5.6,

v(1) 7.9,
V(1) =~ 36.

Q

Note that, if the true distribution is regular for and realizable by the statisticaeimbdd- v(1) =
d/2=9 andv’(1) = 0. The averages of the two deviance information criteria were not eqtfato
of the Bayes generalization error. The standard deviati@@f CV was smaller than the standard
deviations oBG andCV, which is in agreement with Theorem 2.

Note that the standard deviationBT was larger than those &V and WAIC, which indicates
that, even if the average valligC,(n) — B;(n)] = 2v/nis known and an alternative cross-validation,
such as the AIC,

CVs =B:iL(n)+2v/n,

is used, then the variance ©¥; — L, was larger than the variances@fL(n) — L, and WAIC(n) —
Ln.
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BG BT cv WAIC DIC1 DIC2 | BG+CV
AVR | 0.0264| -0.0511| 0.0298| 0.0278| -35.1077| 0.0415| 0.0562
STD | 0.0120| 0.0165| 0.0137| 0.0134| 19.1350| 0.0235| 0.0071

Table 2: Average and standard deviation

BG BT CV | WAIC | DIC1 | DIC2 | BG+CV
BG | 1.000| -0.854| -0.854| -0.873| 0.031 | -0.327| 0.043
BT 1.000 | 0.717 | 0.736 | 0.066 | 0.203 | -0.060
Ccv 1.000 | 0.996 | -0.087| 0.340 | 0.481
WA 1.000 | -0.085| 0.341| 0.443
DIC1 1.000 | -0.069| -0.115
DiC2 1.000 | 0.102

Table 3: Correlation matrix

Table 3 shows the correlation matrix for several values. The correlagibvelenCV and WAIC
was 0.996, which indicates that Theorem 1 holds. The correlation be®B@amdCV was -0.854,
and that betweeBG and WAIC was -0.873, which corresponds to Theorem 2.

The accuracy of numerical approximation of the posterior distributionra¥gpen the statistical
model, the true distribution, the prior distribution, the Markov chain Monte Cardéthod, and
the experimental fluctuation. In the future, we intend to develop a method hwb design
experiments. The theorems proven in the present paper may be usefahiresearch.

5.5 Birational Invariant

Finally, we investigate the statistical problem from an algebraic geometricapuiat.
In Bayes estimation, we can introduce an analytic function of the parameieggpU — W,

w=g(u).

Let |g'(u)| be its Jacobian determinant. Note that the inverse fungtions not needed if satisfies
the condition thafu € U; |g'(u)| = 0} is a measure zero setlih Such a functiomy is referred to as
a birational transform. It is important that, by the transform,

p(xjw) —  p(x|g(u)),
d(w) — d(g(u)lg'(u)l,

the Bayes estimation oW is equivalent to that o). A constant defined for a set of statistical
models and a prior is said to be a birational invariant if it is invariant unden sutransfornmw =
g(u).

The real log canonical threshoklis a birational invariant (Atiyah, 1970; Hiroanaka, 1964;
Kashiwara, 1976; Kofir et al., 1998; Mustata, 2002; Watanabe, 2009) that represents #iealy
geometrical relation between the set of parameétérand the set of the optimal paramet&s.
Although the singular fluctuation is also a birational invariant, its propertiesire unknown. In
the present paper, we proved in Theorem 1 that

E[ByL ()] = E[G.L(n)] +0(1/n). (37)
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On the other hand, in Theorem 2, we proved that

Bg(n) +Cy(n) = %Jrop(l/n). (38)

In model selection or hyperparameter optimization, Equation (37) showsnthahization of the
cross-validation makes the generalization loss smaller on average. Hp&quation (38) shows
that minimization of the cross-validation does not ensure minimum generalizasi®nlbe widely
applicable information criterion has the same property as the cross-validati@nconstank ap-
pears to exhibit a bound, which can be attained by statistical estimation feem ggir of a statis-
tical model and a prior distribution. Hence, clarification of the algebraiergtiacal structure in
statistical estimation is an important problem in statistical learning theory.

6. Conclusion

In the present paper, we have shown theoretically that the leavettrgess-validation in Bayes
estimation is asymptotically equal to the widely applicable information criterion anththaum of
the cross-validation error and the generalization error is equal to twicedhkwg canonical thresh-
old divided by the number of training samples. In addition, we clarified thesevalidation and the
widely applicable information criterion are different from the deviancermgation criteria. This
result indicates that, even in singular statistical models, the cross-validagisyrgptotically equiv-
alent to the information criterion, and that the asymptotic properties of theselsrar@ determined
by the algebraic geometrical structure of a statistical model.
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