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Abstract

A non-parametric hierarchical Bayesian framework is dewedl for designing a classifier, based
on a mixture of simple (linear) classifiers. Each simplesiféey is termed a local “expert”, and the
number of experts and their construction are manifeste@ ¥dérichlet process formulation. The
simple form of the “experts” allows analytical handling aEomplete data. The model is extended
to allow simultaneous design of classifiers on multiple da&tis, termed multi-task learning, with
this also performed non-parametrically via the Dirichleigess. Fast inference is performed using
variational Bayesian (VB) analysis, and example resubpaesented for several data sets. We also
perform inference via Gibbs sampling, to which we compaes\B results.

Keywords: classification, incomplete data, expert, Dirichlet pracesriational Bayesian, multi-
task learning

1. Introduction

In many applications one must deal with data that have been collected incdmpifeteexample,
in censuses and surveys, some participants may not respond to cegsiioigs (Rubin, 1987); in
email spam filtering, server information may be unavailable for emails frommretsources (Dick
et al., 2008); in medical studies, measurements on some subjects may be padtadlycertain
stages of the treatment (Ibrahim, 1990); in DNA analysis, gene-expresscroarrays may be
incomplete due to insufficient resolution, image corruption, or simply dustratches on the slide
(Wang et al., 2006); in sensing applications, a subset of sensors nadysbet or fail to operate at
certain regions (Williams and Carin, 2005). Unlike in semi-supervised legf#indo and Zhang,
2005) where missing labels (responses) must be addressed, fémtpues) are partially missing in
the aforementioned incomplete-data problems. Since most data analysidyrescéor example,
regression and classification) are designed for complete data, andt dadlirectly applied to
incomplete data, the appropriate handling of missing data is challenging.
Traditionally, data are often “completed” kgd hocediting, such as case deletion and sin-

gle imputation, where feature vectors with missing values are simply discardesnpleted with
specific values in the initial stage of analysis, before the main inferencexXtmple, mean im-
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putation and regression imputation see Schafer and Graham, 2002). Altaoatysis procedures
designed for complete data become applicable after these edits, shortcam@ngsar. For case
deletion, discarding information is generally inefficient, especially whenatatacarce. Secondly,
the remaining complete data may be statistically unrepresentative. More impgorevettyif the
incomplete-data problem is eliminated by ignoring data with missing features in thiagrahase,
it is still inevitable in the test stage since test data cannot be ignored simplydgeagortion of
features are missing. For single imputation, the main concern is that the umiyeofethe missing
features is ignored by imputing fixed values.

The work of Rubin (1976) developed a theoretical framework for indetepdata problems,
where widely-cited terminology for missing patterns was first defined. $tpvaven that ignoring
the missing mechanisiis appropriate (Rubin, 1976) under thessing at randonfMAR) assump-
tion, meaning that theissing mechanisis conditionally independent of the missing features given
the observed data. As elaborated later, given the MAR assumption (Datk2008; Ibrahim, 1990;
Williams and Carin, 2005), incomplete data can generally be handled by fullmaxlikelihood
and Bayesian approaches; however, whemttssing mechanisaoes depend on the missing values
(missing not at randoror MNAR), a problem-specific model is necessary to describertissing
mechanismand no general approach exists. In this paper, we address misatngefeunder the
MAR assumption. Previous work in this setting may be placed into two groupgndég on
whether the missing data are handled before algorithm learning or within thethig.

For the former, an extra step is required to estinpéte|«°), conditional distributions of miss-
ing values given observed ones, with this step distinct from the main irderaigorithm. After
p(x™|x°) is learned, various imputation methods may be performed. As a Monte Carloaapp
Bayesian multiple imputation (MI) (Rubin, 1987) is widely used, where multiplex(1) samples
from p(xz™|x°) are imputed to fornM “complete” data sets, with the complete-data algorithm ap-
plied on each, and results of those imputed data sets combined to yield a filiaITee Ml method
“completes” data sets so that algorithms designed for complete data becolicatdpp Further-
more, Rubin (1987) showed that Ml does not require as many sampleste I@arlo methods
usually do. With a mild Gaussian mixture model (GMM) assumption for the joint digiob of
observed and missing data, Williams et al. (2007) managed to analytically i@egramissing
values overp(z™|x°) and performed essentially infinite imputations. Since explicit imputations
are avoided, this method is more efficient than the Ml method, as suggestrdgisical results
(Williams et al., 2007). Other examples of these two-step methods include Williach€amn
(2005), Smola et al. (2005) and Shivaswamy et al. (2006).

The other class of methods explicitly addresses missing values during thé leexténg pro-
cedure. The work proposed by Chechik et al. (2008) represemscias case, in which no model
is assumed fostructurally absentvalues; the margin for the support vector machine (SVM) is
re-scaled according to the observed features for each instance. iéahpsults (Chechik et al.,
2008) show that this procedure is comparable to several single-imputatithocisewhen values
aremissing at randomAnother recent work (Dick et al., 2008) handles the missing featurateins
the procedure of learning a support vector machine (SVM), withousteaining the distribution of
missing features to any specific class. The main concern is that this methodlgdrandle miss-
ing features in the training data; however, in many applications one caontwotwhether missing
values occur in the training or test data.

A widely employed approach for handling missing values within the algorithm\vegamaxi-
mum likelihood (ML) estimation via expectation maximization (EM) (Dempster et al.7L9Be-
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sides the latent variables (e.g., mixture component indicators), the missiongefeare also inte-
grated out in the E-step so that the likelihood is maximized with respect to ma@dehpters in the
M-step. The main difficulty is that the integral in the E-step is analytically tractatlle when an
assumption is made on the distribution of the missing features. For example, #utahte integral
is avoided by requiring the features to be discrete (Ibrahim, 1990)son@rg a Gaussian mixture
model (GMM) for the features (Ghahramani and Jordan, 1994, Liab,2007). The discreteness
requirement is often too restrictive, while the GMM assumption is mild since it iskmelvn that

a GMM can approximate arbitrary continuous distributions.

In Liao et al. (2007) the authors proposed a quadratically gated mixtuegpefrts (QGME)
where the GMM is used to form the gating network, statistically partitioning thereapace into
guadratic subregions. In each subregion, one linear classifier wsikical “expert”. As a mixture
of experts (Jacobs et al., 1991), the QGME is capable of addressiagsification problem with a
nonlinear decision boundary in terms of multiple local experts; the simple fothisonodel makes
it straightforward to handle incomplete data without completing kernel fureiiGnaepel, 2002;
Williams and Carin, 2005). However, as in many mixture-of-expert modetobiaet al., 1991;
Waterhouse and Robinson, 1994; Xu et al., 1995), the number of Igpatts in the QGME must
be specified initially, and thus a model-selection stage is in general necdglemeover, since the
expectation-maximization method renders a point (single) solution that maximiékelihood,
over-fitting may occur when data are scarce relative to the model complexity.

In this paper, we first extend the finite QGME (Liao et al., 2007) to an infin@&g (IQGME),
with theoretically an infinite number of experts realized via a Dirichlet pro¢@8y (Ferguson,
1973) prior; this yields a fully Bayesian solution, rather than a point estinrathis manner model
selection is avoided and the uncertainty on the number of experts is capttinedosterior density
function.

The Dirichlet process (Ferguson, 1973) has been an active topic i apgtications since the
middle 1990s, for example, density estimation (Escobar and West, 199k ddaern and Nller,
1998; Dunson et al., 2007) and regression/curve fittingl@ et al., 1996; Rasmussen and Ghahra-
mani, 2002; Meeds and Osindero, 2006; Shahbaba and Neal, 2088gRez et al., 2009; Hannah
et al., 2010). The latter group is relevant to classification problems of sttérehis paper. The
work in Muller et al. (1996) jointly modeled inputs and responses as a Dirichlet ggouecture
of multivariate normals, while Rotjuez et al. (2009) extended this model to simultaneously esti-
mate multiple curves using dependent DP. In Rasmussen and Ghahraf)i #d Meeds and
Osindero (2006) two approaches to constructing infinite mixtures of @auBsocess (GP) experts
were proposed. The difference is that Meeds and Osindero (2p@6)fied the gating network
using a multivariate Gaussian mixture instead of a (fixed) input-dependeinhtrProcess. In
Shahbaba and Neal (2009) another form of infinite mixtures of expadgwposed, where experts
are specified by a multinomial logit (MNL) model (also called softmax) and thiegaetwork is
Gaussian mixture model with independent covariates. Further, Hanreth(2010) generalized
existing DP-based nonparametric regression models to accommodatendiffgres of covariates
and responses, and further gave theoretical guarantees for tli®thasdels.

Our focus in this paper is on developing classification models that handlenpiete
inputs/covariates efficiently using Dirichlet process. Some of the abovehlzit process regres-
sion models are potentially capable of handling incomplete inputs/featuresybgwmone of them
actually deal with such problems. IniMer et al. (1996), although the joint multivariate normal
assumption over inputs and responses endow this approach with the pateh&adling missing
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features and/or missing responses naturally, a good estimation for the igihitiudion does not
guarantee a good estimation for classification boundaries. Other thanjairftiGaussian distri-
bution assumption, explicit classifiers were used to model the conditionabdi&in of responses
given covariates in the models proposed in Meeds and Osindero (20068 ehbaba and Neal
(2009). These two models are highly related to the IQGME proposed hére.inllependence
assumption of covariates in Shahbaba and Neal (2009) leads to efiormputation but is not ap-
pealing for handling missing features. With Gaussian process experesié\vad Osindero, 2006),
the inference for missing features is not analytical for fast inferelgmgithms such as variational
Bayesian (Beal, 2003) and EM, and the computation could be prohibitariye data sets. The
iIQGME seeks a balance between the ease of inference, computaticheh laund the ability of han-
dling missing features. For high-dimensional data sets, we develop atvafriaur model based on
mixtures of factor analyzers (MFA) (Ghahramani and Hinton, 1996;h@&raani and Beal, 2000),
where a low-rank assumption is made for the covariance matrices of higmsional inputs in
each cluster.

In addition to challenges with incomplete data, one must often address diciestifjuantity of
labeled data. In Williams et al. (2007) the authors employed semi-supervaseaihig (Zhu, 2005) to
address this challenge, using the contextual information in the unlabele @atgment the limited
labeled data, all done in the presence of missing/incomplete data. Anotimeofeontext one may
employ to address limited labeled data is multi-task learning (MTL) (Caruand,; %o and
Zhang, 2005), which allows the learning of multiple tasks simultaneously to iragreneralization
performance. The work of Caruana (1997) provided an overvieM®BE and demonstrated it
on multiple problems. In recent research, a hierarchical statistical steuecfis been favored for
such models, where information is transferred via a common prior within arbiecal Bayesian
model (Yu et al., 2003; Zhang et al., 2006). Specifically, information matrdesferred among
related tasks (Xue et al., 2007) when the Dirichlet process (DP) (Bengd973) is introduced as a
common prior. To the best of our knowledge, there is no previous exarmatiElcessing incomplete
data in a multi-task setting, this problem constituting an important aspect of thés. pap

The main contributions of this paper may be summarized as follows. The pralenssing
data in classifier design is addressed by extending QGME (Liao et al.) 280@/fully Bayesian
setting, with the number of local experts inferred automatically via a DP pri@.algorithm is fur-
ther extended to a multi-task setting, again using a non-parametric Bayesiah siwalilitaneously
learningJ missing-data classification problems, with appropriate sharing (could balgiolocal).
Throughout, efficient inference is implemented via the variational Bayd€siB) method (Beal,
2003). To quantify the accuracy of the VB results, we also perform eoatipe studies based on
Gibbs sampling.

The remainder of the paper is organized as follows. In Section 2 we ettierfthite QGME
(Liao et al., 2007) to an infinite QGME via a Dirichlet process prior. Thelnglete-data problem is
defined and discussed in Section 3. Extension to the multi-task learning cassidered in Section
4, and variational Bayesian inference is developed in Section 5. Expgghresults for synthetic
data and multiple real data sets are presented in Section 6, followed in Sebgaoiiclusions and
a discussions of future research directions.
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2. Infinite Quadratically Gated Mixture of Experts

In this section, we first provide a brief review of the quadratically gated maxaéiexperts (QGME)
(Liao et al., 2007) and Dirichlet process (DP) (Ferguson, 1973),then extend the number of
experts to be infinite via DP.

2.1 Quadratically Gated Mixture of Experts

Consider a binary classification problem with real-valledimensional column feature vectors

x;j and corresponding class labg|s= {1,—1}. We assume binary labels for simplicity, while the

proposed method may be directly extended to cases with more than two cleesteed.variables;

are introduced as “soft labels” associated wittas in probit models (Albert and Chib, 1993), where
y; =1ifti > 0andy; = —1if t; <0. The finite quadratically gated mixture of experts (QGME) (Liao
et al., 2007) is defined as

(ti’Zi:h) ~ N(w;wrmibvl)a 1)

(@ilz =h) ~ Ap(pnApY), )
K

(@lm) ~ > Thon, 3)
(=1

with Zﬁzlﬂh =1, and where, is a point measure concentratechdtvith probability one, a draw
from &, will be h). The (P+ 1) x K matrix W has columnswy, where eachwy, are the weights
on a local linear classifier, and the are feature vectors with an intercept, thati8,= [z ,1]7.
A total of K groups ofwy, are introduced to parameterize teexperts. With probabilityrg, the
indicator for theith data point satisfieg = h, which means théth local expert is selected, ang
is distributed according to B-variate Gaussian distribution with megi and precisiomp.

It can be seen that the QGME is highly related to the mixture of experts (MEpPE3 et al.,
1991) and the hierarchical mixture of experts (HME) (Jordan andb3d®94) if we write the
conditional distribution of labels as

P(ilei) = hi P(z = hlzi)p(yilz = h, i), (4)

where
p(yilz = h,zi) = tiyi>o9\i(ti|wﬁ-’13ib,1)dﬁ, (5)
0(z = hlz;) = oG (i, Ay ) ©)

I TRAR (i, A ™)

From (4), as a special case of the ME, the QGME is capable of handlimmear problems with
linear experts characterized in (5). However, unlike other ME modelQ@®RIE probabilistically
partitions the feature space through a mixturéKozaussian distributions fat; as in (6). This
assumption on the distribution af; is mild since it is well known that a Gaussian mixture model
(GMM) is general enough to approximate any continuous distribution. IQBME, x; as well as

y; are treated as random variables (generative model) and we considet argbability p(y;, x;)
instead of a conditional probability(yi|x;) for fixed z; as in most ME models (which are typically
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discriminative). Previous work on the comparison between discriminatisleganerative models
may be found in Ng and Jordan (2002) and Liang and Jordan (2068hel QGME, the GMM

of the inputsx; plays two important roles:i) as a gating network, whilei§ enabling analytic

incorporation of incomplete data during classifier inference (as disgdisg@er below).

The QGME (Liao et al., 2007) is inferred via the expectation-maximization (&k&thod, which
renders a point-estimate solution for an initially specified model (1)-(3), witkeal numbeK of
local experts. Since learning the correct model requires model seleatidnmoreover in many
applications there may exist no such fixed “correct” model, in the workrtegdere we infer the
full posterior for a QGME model with the number of experts data-drivehe ®bjective can be
achieved by imposing a nonparametric Dirichlet process (DP) prior.

2.2 Dirichlet Process

The Dirichlet process (DP) (Ferguson, 1973) is a random meastired®n measures of random
variables, denoted a®?(aGp), with a real scaling parameter> 0 and a base measuBy. As-
suming that a measure is dra@n~ DP(aGy), the base measufe, reflects the prior expectation
of G and the scaling parametercontrols how mucl@ is allowed to deviate frongg. In the limit
o — oo, G goes toGp; in the limit a — 0, G reduces to a delta function at a random point in the
support ofGg.

The stick-breaking construction (Sethuraman, 1994) provides an iXplim of a draw from a
DP prior. Specifically, it has been proven that a d@may be constructed as

G= 5 Ty, (7
o

with0O <t <landy,_ ;T =1, and

h-1 iid iid
THh =W r!(l—\ﬁ), Vh ~ Be1,a), 6y~ Go.
|=

From (7), it is clear thaG is discrete (with probability one) with an infinite set of weighis
at atomsf},. Since the weightst, decrease stochastically with the summation in (7) may be
truncated withN terms, yielding arlN-level truncated approximation to a draw from the Dirichlet
process (Ishwaran and James, 2001).

Assuming that underlying variablés are drawn i.i.d. fronG, the associated daja ~ F(6;)
will naturally cluster with@; taking distinct value®);;, where the functiori (@) represents an arbi-
trary parametric model for the observed data, with hidden param@térserefore, the number of
clusters is automatically determined by the data and could be “infinite” in princireed; take
distinct valuest;, with probabilitiesT,, this clustering is a statistical procedure instead of a hard
partition, and thus we only have a belief on the number of clusters, whicfeiged by the scaling
parameten. As the value ofx influences the prior belief on the clustering, a gamma hyper-prior is
usually employed on.

2.3 Infinite QGME via DP

Consider a classification task with a training data®et {(xi,y) :i = 1,...,n}, wherex; ¢ RP
andy; € {—1,1}. With soft labelst; introduced as in Section 2.1, the infinite QGME (iQGME)
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model is achieved via a DP prior imposed on the mea&uoé (u;, Aj, w;), the hidden variables
characterizing the density function of each data p6intt;). For simplicity, the same symbols are
used to denote parameters associated with each data point and the distiest wéth subscripts
andh indexing data points and unique values, respectively:

(xit) ~ Np(xilpi, AT HN(tiw] 2P, 1),
(i, Aj, wi) " G,

G ~ DP(aGy), (8)

where the base measugg is factorized as the product of a normal-Wishart prior (far, An) and

a normal prior forwy, for the sake of conjugacy. As discussed in Section 2.2, data samplesr clus
automatically, and the same meag, covariance matriX\, and regression coefficients (expeudy

are shared for a given clustler Using the stick-breaking construction, we elaborate (8) as follows
fori=1,...,nandh=1,... :

Data generation:
(tlz=h) ~ AN(wfzP 1),
(@ilz=h) ~ Ap(un AyY),
Drawing indicators:

Z ~ ) Thd, where nh:VhrL(l—Vl),
h=1 I<

Vh ~ Be(l0),
Drawing parameters fror@y :
(kn,An) ~  Ap(pn|mo, Uy " Ap™) W (An| Bo, Vo),
wh ~ Apia(¢[diag\)] ), where A= [A1,..., Apy1].

Furthermore, to achieve a more robust algorithm, we assign diffuse-pyjoes on several crucial
parameters. As discussed in Section 2.2, the scaling parameédiects our prior belief on the
number of clusters. For the sake of conjugacy, a diffuse Gamma priouddlysassumed foa as
suggested by West et al. (1994). In addition, paramé&texscharacterizing the prior of the distinct
local classifieravy are another set of important parameters, since we focus on classifitzicn
Normal-Gamma priors are the conjugate priors for the mean and precisiomarivaal density.
Therefore,

a ~ Ga(to,T20),
(CIA) ~ 2Ap4a(0,yp [diagA)] ),
}‘p ~ Ga(a()7b0)7 p:l77P+17

whereTtig, T20, 89, bp are usually set to be much less than one and of about the same magnitude, so
that the constructed Gamma distributions with means about one and largecgarae diffuseyy
is usually set to be around one.
The graphical representation of the iIQGME for single-task learning iwshio Figure 1. We
notice that a possible variant with sparse local classifiers could be othi&ime impose zero mean
for the local classifiersup, that is,{ = 0, and retain the Gamma hyper-prior for the precisigrmas
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Figure 1: Graphical representation of the iQGME for single-task leanidligcircles denote ran-
dom variables, with shaded ones indicating observable data, and bngghtepresenting
hidden variables. Diamonds denote fixed hyper-parameters, boxeseapindependent
replicates with numbers at the lower right corner indicating the numbers ofdogles,
and arrows indicate the dependence between variables (pointing fremtgeo children).

in the relevance vector machine (RVM) (Tipping, 2000), which employsgesponding Student-t
sparseness prior on the weights. Although this sparseness priorusfassteking relevant features
in many applications, imposing the same sparse pattern for all the local eispaotsdesirable.

2.4 Variant for High-Dimensional Problems

For the classification problem, we assume access to a training date=sétx;,y;) :i=1,...,n},
where feature vectorg; € R” and labels; € {—1,1}. We have assumed that the feature vectors of
objects in clusteh are generated fromR-variate normal distribution with meamy, and covariance
matrix A2, that is,

(zilz=h) ~ Ap(knApY) 9)

It is well known that each covariance matrix 3@ + 1) /2 parameters to be estimated. Without
any further assumption, the estimation of these parameters could be comgliapoohibitive for
largeP, especially when the number of available training deitasmall, which is common for clas-
sification applications. By imposing an approximately low-rank constraint®cdkariances, as in
well-studied mixtures of factor analyzers (MFA) models (Ghahramani a@ntbh, 1996; Ghahra-
mani and Beal, 2000), the number of unknowns could be significanthcestliSpecifically, assume
a vector of standard normal latent facterss RT** for datax;, a factor loading matri;, € RP*T

for clusterh, and Gaussian residueswith diagonal covariance matrik,Ip, then

(xilz=h) ~ Ap(Ansi+ pn, Py Ip).

Marginalizings; with s; ~ As (0, I'T), we recover (9), With&g1 = Ap A + lpgle. The number of
free parameters is significantly reduced ik < P .
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In this paper, we modify the MFA model for classification applications withsEzaamples.
First, we consider a common loading matdxfor all the clusters, and introduce a binary vedigr
for each cluster to select which columnsAfare used, that is,

(zilz=h) ~ Ap(Adiagdobn)si+ pn, Wy, Ip),

where each column o, A ~ Ap(O, P—le), si~AN(0,1,), dis a vector responsible for scale,
ando is a component-wise (Hadamard) product. Hove employ the priod, ~ A’(O, Bl‘l) with

B ~ Ga(cp,dp). Furthermore, we let the algorithm infer the intrinsic number of factors by gimgo
a low-rank belief for each cluster through the priogf that is,

by ~ Bern(m), TIh|NBe(a0/L,b0(L—l)/L), |:l,...,L,

wherelL is a large number, which defines the largest possible dimensionality the ahgonly infer.
Through the choice odp andby we impose our prior belief about the intrinsic dimensionality of
clusterh (upon integrating out the dramt,, the number of non-zero componentdgis drawn from
BinomiallL, a9/ (ao + bo(L —1))]). As a result, both the number of clusters and the dimensionality
of each cluster is inferred by this variant of IQGME.

With this form of IQGME, we could build local linear classifiers in either the omddjiieature
space or the (low-dimensional) space of latent factargor the sake of computational simplicity,
we choose to classify in the low-dimensional factor space.

3. Incomplete Data Problem

In the above discussion it was assumed that all components of the feattmeswvere available (no
missing data). In this section, we consider the situation for which featutergeg are partially
observed. We partition each feature vectgrinto observed and missing parts, = [z;x"],
wherez = {Xjp : p € 0;} denotes the subvector of observed features #fid= {x, : p € m}
represents the subvector of missing features, gjitndm denoting the set of indices for observed
and missing features, respectively. Eaghhas its own observed set and missing setn, which
may be different for each Following a generic notation (Schafer and Graham, 2002), we refer
to R as the missingness. For an arbitrary missing pattBrould be defined as a missing data
indicator matrix, that is,
| 1, xpobserved
R‘D - { 0 : icqj
., Xip missing
We use€ to denote parameters characterizing the distributiolRpfwvhich is usually called the
missing mechanismin the classification context, the joint distribution of class labels, observed
features and the missingneRsmay be given by integrating out the missing featucé's

p(y.2° RI6.€) = [ py.[6)p(Rle,€)da" (10)

To handle such a problem analytically, assumptions must be made on the tstritfuR. If the
missing mechanisis conditionally independent of missing value’8 given the observed data, that
is, p(R|x, &) = p(R|x°, &), the missing data are defined to mssing at randonfMAR) (Rubin,
1976). Consequently, (10) reduces to

p(y,z° R|6,£) = p(R|x°,§) / p(y,x|0)dz™ = p(R|x° &) p(y,z°|0). (11)
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According to (11), the likelihood is factorizable under the assumption of MAg&ong as the prior
p(0,&) = p(@)p(&) (factorizable), the posterior

p(0,&ly,z° R) O p(y,z°, R|6,£)p(6,€) = p(R|x°,&)p(&) p(y, x°|6)p(6)

is also factorizable. For the purpose of inferring model paraméter® explicit specification is
necessary on the distribution of the missingness. As an important spestabtMAR, missing
completely at randoniMCAR) occurs if we can further assume thatR|x, &) = p(R|¢), which
means the distribution of missingness is independent of observed veluas well. When the
missing mechanisilepends on missing value$', the data are termed to b&ssing not at random
(MNAR). From (10), an explicit form has to be assumed for the distributfdhe@missingness, and
both the accuracy and the computational efficiency should be concerned

When missingness is not totally controlled, as in most realistic applications, mettell
from the data alone whether the MCAR or MAR assumption is valid. Since the RIGAMAR
assumption is unlikely to be precisely satisfied in practice, inference basttkse assumptions
may lead to a bias. However, as demonstrated in many cases, it is believied thalistic problems
departures from MAR are usually not large enough to significantly impactttalysis (Collins
et al., 2001). On the other hand, without the MAR assumption, one must idy@ecify a model
for the missingnes®R, which is a difficult task in most cases. As a result, the data are typically
assumed to be either MCAR or MAR in the literature, unless significant ctimetabetween the
missing values and the distribution of the missingness are suspected.

In this work we make the MAR assumption, and thus expression (11) appli¢se iIQGME
framework, the joint likelihood may be further expanded as

p,2°10) = [ py.al0)da”= | [ pltfe,02)plalon)da"dt (12

The solution to such a problem with incomplete daffais analytical since the distributions bénd
x are assumed to be a Gaussian and a Gaussian mixture model, respectugigll{y the missing
features could be regarded as hidden variables to be inferred andaibt@azl representation of
the iIQGME with incomplete data remains the same as in Figure 1, except that th@msenting
features are partially observed now. As elaborated below, the impodantild assumption that
the features are distributed as a GMM enables us to analytically infer theimaalkdistributions
associated with the missing values in a procedure of variational BayeseganicE.

As in many models (Williams et al., 2007), estimating the distribution of the missing values
first and learning the classifier at a second step gives the flexibility oftgedethe classifier for
the second step. However, (12) suggests that the classifier and theistetaution are coupled,
provided that partial data are missing and thus have to be integrated otgtfarkea joint estimation
of missing features and classifiers (searching in the spadh o#4)) is more desirable than a two-
step process (searching in the spacé@-ofor the distribution of the data, and then in the space of
6, for the classifier).

4. Extension to Multi-Task Learning

Assume we havé data sets, with th¢th represented a@B; = {(xji,y;i) :i=1,...,n;}; our goalis to
design a classifier for each data set, with the design of each classifiedtartask”. One may learn
separate classifiers for each of theéata sets (single-task learning) by ignoring connections between
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the data sets, or a single classifier may be learned based on the unioratd §fiabling) by ignoring
differences between the data sets. More appropriately, in a hierdrBlaasian frameworld task-
dependent classifiers may be learned jointly, with information borrowed ¥Yigltser-level prior
(multi-task learning). In some previous research all tasks are assumecatpblly related to each
other (Yu et al., 2003; Zhang et al., 2006), or related tasks shardyeiae same task-dependent
classifier (Xue et al., 2007). With multiple local experts, the proposed iQ@Idé&el for a particular
task is relatively flexible, enabling the borrowing of information acrosslttesks (two data sets
may shareartsof the respective classifiers, without requiring sharing of all classifierponents).

As discussed in Section 2.2, a DP prior encourages clustering (eatdr coisesponds to a local
expert). Now considering multiple tasks, a hierarchical Dirichlet pro@dBd®) (Teh et al., 2006)
may be considered to solve the problem of sharing clusters (local expertsss multiple tasks.
Assume a random measu@ is associated with each tagk where eaclG; is an independent
draw from Dirichlet proces®P(aGp) with a base measufg drawn from an upper-level Dirichlet
processDP(BH), that is,

Gj ~ DP(aGy), for j=1,...,J,
Go ~ DP(PH).

As a draw from a Dirichlet proces§; is discrete with probability one and has a stick-breaking
representation as in (7). With such a base measure, the task-depBittertéuse the atont;
defined inGy, yielding the desired sharing of atoms among tasks.

With the task-dependent iIQGME defined in (8), we consided tdkks jointly:

@jiti) ~ Ap(mjilpj, AN (tilw]ah, 1),
(i, Aji, wji) < Gj,
Gj ~ DP(aGp),
Go ~ DPBH).

In this form of borrowing information, experts with associated means aaciglon matrices
are shared across tasks as distinct atoms. Since means and precisioasns#dtistically define
local regions in feature space, sharing is encouraged locally. We iglyplicite the stick-breaking
representations foG; and Gy, with zj; andcj, introduced as the indicators for each data point
and each distinct atom @&, respectively. By factorizing the base measHras a product of a
normal-Wishart prior for s, As) and a normal prior forws, the hierarchical model of the multi-
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task iIQGME via the HDP is represented as
Data Generation:
(tilch=szi=h) ~ N(wlzh,1),
(zjilch=s2zj=h) ~ Ap(us,As?),
Drawing lower-level indicators:
zj ~ hzlnjhéh, where T, :th||_L(l_le )
— <

Vih ~ Be(la),
Drawing upper-level indicators:

Cjh ~ Ns®s, where ns=Us[](1-U),
] ; sYs S S‘|:|S

Us ~ Be(lp),
Drawing parameters from :
(s, As) ~  Np(ps|mo, Uy " Ag™) W (As| Bo, Vo),
ws ~ Apsa(C, [diagn)] ).
wherej =1,...,J andi = 1,...,n; index tasks and data points in each tasks, respectively;

1,...,@ands=1,...,o index atoms for task-depende@i and the globally shared ba&, re-
spectively. Hyper-priors are imposed similarly as in the single-task case:

a ~ Ga(Tio,T20),
B ~ Ga(tzo,T40),
(CIA) ~ Apr1(0,y, [diagA)] b,
Ap ~ Ga(ag,bp), p=1,...,P+1,

The graphical representation of the IQGME for multi-task learning via the BB3Rown in Figure
2.

5. Variational Bayesian Inference

We initially present the inference formalism for single-task learning, anddiseuss the (relatively
modest) extensions required for the multi-task case.

5.1 Basic Construction

For simplicity we denote the collection of hidden variables and model paranast@rand specified
hyper-parameters &4. In a Bayesian framework we are intereste@(®|2, W), the joint posterior
distribution of the unknowns given observed data and hyper-parasné&tem Bayes’ rule,

P(P©)p(O¥)
p(D|w) -
wherep(D|¥) = [ p(D|O©)p(O|W)dO is the marginal likelihood that often involves multi-dimensional

integrals. Since these integrals are nonanalytical in most cases, the coampoitthe marginal like-
lihood is the principal challenge in Bayesian inference. These integelsraumvented if only a

p(©|D,W) =
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Figure 2: Graphical representation of the IQGME for multi-task leaning viaigarchical Dirich-
let process (HDP). Refer to Figure 1 for additional information.

point estimate is pursued, as in the expectation-maximization algorithm (Dempster et al.,.1977)
Markov chain Monte Carlo (MCMC) sampling methods (Gelfand et al., 19%@INL993) provide
one class of approximations for the full posterior, based on samplesdribtarkov chain whose
stationary distribution is the posterior of interest. As a Markov chain is gieed to converge

to its true posterior theoretically as long as the chain is long enough, MCMClasammgnstitute

an unbiased estimation for the posterior. Most previous applications withiehl@irprocess prior
(Ishwaran and James, 2001; West et al., 1994), including the relagpedspae reviewed in Section

1, have been implemented with various MCMC methods. The main concerns BIGVi@ethods

are associated with computational costs for computation of sufficient collesaimples, and that
diagnosis of convergence is often difficult.

As an efficient alternative, the variational Bayesian (VB) method (B&&l3Rapproximates the
true posteriop(©|D, W) with a variational distributiom(©) with free variational parameters. The
problem of computing the posterior is reformulated as an optimization probleninithizing the
Kullback-Leibler (KL) divergence betweeg(©) and p(Q|D, W), which is equivalent to maximiz-
ing a lower bound of logp(D|¥), the log marginal likelihood. This optimization problem can be
solved iteratively with two assumptions o©): (i) q(©) is factorized,; i) the factorized compo-
nents ofq(®) come from the same exponential family as the corresponding priors doe Biac
lower bound cannot achieve the true log marginal likelihood in general piiv@=imation given by
the variational Bayesian method is biased. Another issue concerning tlagéBthm is that the
solution may be trapped at local optima since the optimization problem is notxcofie main
advantages of VB include the ease of convergence diagnosis and teiomal efficiency. As the
VB is solving an optimization problem, the objective function—the lower bourttdefog marginal
likelihood—is a natural criterion for convergence diagnosis. TheeefdB is a good alternative to
MCMC when conjugacy is achieved and computational efficiency is dedimedcent publications
(Blei and Jordan, 2006; Kurihara et al., 2007), discussions on the rimepiation of the variational
Bayesian inference are given for Dirichlet process mixtures.

We implement the variational Bayesian inference throughout this paperaritbarisons made
to Gibbs sampling. Since it is desirable to maintain the dependencies amongireadables (e.g.,
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shown in the graphical models Figure 1) in the variational distributjg®), one typically only
breaks those dependencies that bring difficulty to computation. In theguést inference for the
iIQGME, we retain some dependencies as unbroken. Following Blei addrd¢2006), we employ
stick-breaking representations with a truncation lévels variational distributions to approximate
the infinite-dimensional random measutas

We detail the variational Bayesian inference for the case of incomplete TOagainference for
the complete-data case is similar, except that all feature vectors are fabyvaldl and thus the step
of learning missing values is skipped. To avoid repetition, a thorough guoedor the complete-
data case is not included, with differences from the incomplete-data aisatid.

5.2 Single-task Learning

For single-task iQGME the unknowns @e= {t,™, 2,V ,a, u, A, W {, A}, with hyper-parameters
W = {my, Uy, Bo, Vo, T10, T20, Yo, &0, bo }. We specify the factorized variational distributions as

qlt, 2™z, V,a,u, A, W, ()

n N—-1 N P+1

I_l qt| tl qmm, z| | 7z| I_I th Vh quh An ﬂh,Ah)Qwh 'UJh I_l Ckp Zpu ) ( )
= h=1

where
e ¢ (ti) is a truncated normal distribution,
t| ~ TN(Ht?layltl > 0)7 I - 17' "7n7

which means the density functiontpfs assumed to be normal with megirand unit variance
for thoset; satisfyingyit; > 0.

g, (x™,z) = qwim.( x"|2)0;(z), whereq, (z) is a multinomial distribution with proba-

bilities p;, and there ar&l possible outcomesg; ~ My(1,pi1,...,Pin), | =1,...,n. Given

the associated indicatog, since features are assumed to be distributed as a multivariate
Gaussian, the distributions of missing value$ are still Gaussian according to conditional
properties of multivariate Gaussian distributions:

(@7 = h) ~ Ny (mp @, S =10, h=1,...,N.

We retain the dependency betweeh andz in the variational distribution since the inference
is still tractable; for complete data, the variation distribution(tel* |z = h) is not necessary.

e Qv (Vh) is a beta distribution,
W ~ Be(Vhl,th), h= l,...,N -1

Recall that we have a truncation levelddfwhich implies that the mixture proportiomg(V')
are equal to zero fdn > N. Thereforegy, (Vh) = &1 for h= N, anday, (V) = & for h > N.
Forh < N, Vj, has a variational Beta posterior.

® Qu, A, (1th, An) is @ normal-Wishart distribution,

([Lh,Ah) ~ %(mh,UElAﬁl)W(Bh,Vh), h= 1,....N.
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ey, (wn) is @ normal distribution,
wh ~ Ap1(p), 20), h=1,...,N.
® 0z, ({p;Ap) is @ normal-gamma distribution,
(@p,Ap) ~ N(@p,y A HGa(ap,bp), p=1,...,P+1.

e (q(0) is @ Gamma distribution,
o~ Ga(1y,T2).

Given the specifications on the variational distributions, a mean-field varétadgorithm (Beal,
2003) is developed for the iIQGME model. All update equations and demfa q(z",z) are
included in the Appendix; similar derivations for other random variables@aind elsewhere (Xue
et al., 2007; Williams et al., 2007). Each variational parameter is re-estimatatvitdy condi-
tioned on the current estimate of the others until the lower bound of the logmahlielihood
converges. Although the algorithm yields a bound for any initialization of #reational parame-
ters, different initializations may lead to different bounds. To alleviate thigliowmxima problem,
one may perform multiple independent runs with random initializations, andsehthe run that
produces the highest bound on the marginal likelihood. We will elaborataiomitializations in
the experiment section.

For simplicity, we omit the subscripts on the variational distributions and hertbefiseq to
denote any variational distributions. In the following derivations and tgéguations, we use
generic notatior{f).) to denote .| f], the expectation of a functiohwith respect to variational
distributionsq(-). The subscripg(-) is dropped when it shares the same arguments fvith

5.3 Multi-task Learning

For multi-task learning much of the inference is highly related to that of singlet&arning, as
discussed above; in the following we focus only on differences. In thé-task learning model,
the latent variables a® = {¢t, =™ 2,V ,a,¢c,U, B, u, A, W {, A}, and hyper-parameters ade=

{my, Uo, Bo, Vo, T10, T20, T30, T40, Yo, 80, Do } . We specify the factorized variational distributions as

qt,z™ 2, V,a,c,U,B,u, A, W,(,\)
J N m; N—1 N s 1

_ ﬂ{ig[q(tji)Q(mﬁ )A(Z;i)] hE|1Q(th)hﬂlq(cjh)}gq(us)
S P41

rl[qws,Asm(ws)] |_|1Q(Zp’7\p)CI(0()Q(B)
S= p=

where the variational distributions i, Vin, o, s, As, ws, {p,Ap) are assumed to be the same as in
the single-task learning, while the variational distributions of hidden vasais®/ly introduced for
the upper-level Dirichlet process are specified as

e ((cjn) for each indicatocj, is a multinomial distribution with probabilities jp,

thNMs(l,O'jhl,...,O'jhs), jZl,...,J, h=1,...,N.
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¢ ((Us) for each weights is a Beta distribution,
Us"\-/Be(Ksl,Ksz)7 S:J.,,S_l

Here we have a truncation level 8ffor the upper-lever DP, which implies that the mixture
proportions)s(U ) are equal to zero fa> S. Thereforeq(Us) = & for s= S, andq(Us) = &g
fors> S Fors< S Us has a variational Beta posterior.

e q(PB) for the scaling paramet@ris a Gamma distribution,
B~ Ga(t3,14).

We also note that with a higher-level of hierarchy, the dependency bativee missing values
”" and the associated indicatgr has to be broken so that the inference becomes tractable. The

variational distribution of;; is still assumed to be multinomial distributed, whtbg“ is assumed
to be normally distributed but no longer dependenzpnAll update equations are included in the
Appendix.

5.4 Prediction

For a new observed feature vectd}, the prediction on the associated class lahdk given by
integrating out the missing values.
p(y* =1 mg*‘@) _ f p(y* =1 m*‘@)dmin*
p|D)  [p(z.]D)dat
J Sho1P(z = h|D)p(x.|z. = h, D)P(y, = 1|,z = h, D)da™
J$i1P(z. =K D)p(x.|z. =k D)dz" '

We marginalize the hidden variables over their variational distributions to ctentpa predictive
probability of the class label

She1 BV M0 Jo S Bunn[A6(2s o, A )] Euwy, [Nt 22, 1) dae]dit,

P(y, = 1|2, D) =

= 1x% D
(y |m ) lezlzlEV[T[k]fEukAk[%(m*mk:AI:l)}dwTk
where
B B - Vi 1(h<N) Vi 1(h>1)
B (1] = BV [ (1=W0)] = () [] {4V = [Vhﬁvhz] N [sz] ‘

The expectation , o, [Ap(x*|un, Apt)] is a multivariate Student-t distribution (Attias, 2000).
However, for the incomplete-data situation, the integral over the missingsvaueactable only
when the two terms in the integral are both normal. To retain the form of notnibdisons, we use
the posterior means @iy, A, andwy, to approximate the variables:

Sh_1Ev[Th] o [ A (@ mn, (vnBn) )AL (uf) "2, 1)dadt,

= 1|x%, D
PO =1, D) Z;tllEv[ ]ffz\[p(a:qu,(kak)*l)me*
_ S B G, (= VhBh) 1°*°*)fo AL(t|94n, Gen)dlt,
Zk:lEv 9\40\ @ |my, (VkBg)~10:)

3284



MULTI-TASK CLASSIFICATION FORINCOMPLETEDATA

where

b = [mf, Upl +TH(AF%) Hx2 —mp),
g = 1+ ()T Anal — TT(AR%) T,

Din = AR (un)™ +AR™ (uy)™,
ﬁw = (/"’\rqv)l:P?
Ay = (VhBh)fl.

For complete data the integral of missing features is absent, so we takeaapvahthe full varia-
tional posteriors for prediction.

5.5 Computational Complexity

Given the truncation level (or the number of clusté¥s)the data dimensionalitl?, and the num-
ber of data points, we compare the iQGME to closely related DP regression models (Meeds and
Osindero, 2006; Shahbaba and Neal, 2009), in terms of the time and meomopjexity. The in-
ference of the IQGME with complete data requires inversion ofwoP matrices (the covariance
matrices for the inputs and the local expert) associated with each clustnefdie, the time and
memory complexity ar®(2NP?) andO(2NP?), respectively. With incomplete data, since the miss-
ing pattern is unique for each data point, the time and memory complexity incréassumber of
data points, that iQ(nNP?) andO(nNP?), respectively. The mixture of Gaussian process experts
(Meeds and Osindero, 2006) requi@d\N P® +n3/N) computations for each MCMC iteration if the

N experts equally divide the data, and the memory complexi®(iP?+n?/N). In the model pro-
posed by Shahbaba and Neal (2009), no matrix inversion is heededisencovariates are assumed
to be independent. The time and memory complexityGii¢P) andO(NP), respectively.

From the aspect of computational complexity, the model in Meeds and Osi(2{206) is re-
stricted by the increase of both dimensionality and data size; while the modelsaehm Shahbaba
and Neal (2009) is more efficient. Although the proposed model requioee computations for
each MCMC iteration than the latter one, we are able to handle missing valueallyagind much
more efficiently compared to the former one. Considering the usual nurhiterations required
by VB (several dozens) and MCMC (thousands or even tens of thdagaour model is even more
efficient.

6. Experimental Results

In all the following experiments the hyper-parameters are set as follags: 0.01, bp = 0.01,
Yo = 0.1, 110 = 0.05, 190 = 0.05, 150 = 0.05, 1490 = 0.05,ug = 0.1, vg = P+ 2, andmg and By are
set according to sample mean and sample precision, respectively. Tdragsgepers have not been
optimized for any particular data set (which are all different in form), tredresults are relatively
insensitive to “reasonable” settings. The truncation levels for the var@téistributions are set to
beN = 20 andS= 50. We have found the results insensitive to the truncation level, for vigesy
than those considered here.

Because of the local-maxima issue associated with VB, initialization of the idf$iBehyper-
parameters is often important. We initialize most variational hyper-parameterg the corre-
sponding prior hyper-parameters, which are data-independent. r€hisipn/covariance matrices
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By andX}Y are simply initialized as identity matrices. However, for several other hyaeameters,
we may obtain information for good start points from the data. Specificallydhational mean
of the soft labeld is initialized by the associated labgl A K-means clustering algorithm is im-
plemented on the feature vectors, and the cluster means and identificatiohgeftts are used to
initialize the variational mean of the Gaussian meansand the indicator probabilities;, respec-
tively. As an alternative, one may randomly initialize;, and p; multiple times, and select the
solution that produces the highest lower bound on the log marginal likelihbmeltwo approaches
work almost equivalently for low-dimensional problems; however, fabfgms with moderate to
high dimensionality, it could be fairly difficult to get a satisfying initialization by nmakseveral
random trials.

6.1 Synthetic Data

We first demonstrate the proposed iQGME single-task learning model ontteetig data set, for il-
lustrative purposes. The data are generated according to a GMM m@adet S3_; TeNa(x |k, Zk)
with the following parameters:

r=[1/3 13 1/3], u1=[_03}’ “2:[3]’ “3:[2]

052 -0.36 ], 5, — [ 0.47 019 ]’ S, = [ 0.52 —0.36]

Zl:[—0.36 073 019 07 -036 073

The class boundary for each Gaussian component is given by threediaewyx; + by for k =
1,2, 3, wherew; = 0.75,b; = 2.25,w, = —0.58 b, = 0.58, andwz = 0.75,b3 = —3.75. The simu-
lated data are shown in Figure 3(a), where black dots and dashed etlpsesent the true means
and covariance matrices of the Gaussian components, respectively.

T
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Weights on Components Dominant t Components
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or Expectation of Weights Ef, ]
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@ (b) (©

Figure 3: Synthetic three-Gaussian single-task data with inferred comigor{ah Data in feature
space with true labels and true Gaussian components indicated; (b) dinjesterior ex-
pectation of weights on components, with standard deviations depictecbadars; (C)
ground truth with posterior means of dominant components indicated (the Gleessi-
fiers and Gaussian ellipses are inferred from the data).

The inferred mean mixture weights with standard deviations are depicted ireR3¢h), and
it is observed that three dominant mixture components (local “experts”inéerred. The domi-
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nant components (those with mean weight larger th@0%) are characterized by Gaussian means,
covariance matrices and local experts, as depicted in Figure 3(c). Fgure 3(c), the nonlinear
classification is manifested by using three domirianal linear classifiers, with a GMM defining
the effective regions stochastically.

Prior and Posterior on Number of Dominant Components Prior and Posterior on a
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Number of Dominant Components a

(a) (b)

Figure 4: Synthetic three-Gaussian single-task data: (a) prior andripodteliefs on the number
of dominant components; (b) prior and posterior beliefsion

An important point is that we are not selecting a “correct” number of mixtoragonents as
in most mixture-of-expert models, including the finite QGME model (Liao et &072. Instead,
there exists uncertainty on the number of components in our posterior I&ihek this uncertainty
is not inferred directly, we obtain samples for the number of dominant coemtsioy calculating
Tt based oy, sampled from their probability density functions (prior or variational pastgrand
the probability mass functions given by histogram are shown in Figure A¢adiscussed, the scale
parameten is highly related to the number of clusters, so we depict the prior and thdivagh
posterior oro in Figure 4(b).

The predictions in feature space are presented in Figure 5, whereettietjum in sub-figure (a)
is given by integrating over the full posteriors of local experts andmpatars (means and covari-
ance matrices) of Gaussian components; while the prediction in sub-flgueegiven by posterior
means. We examine these two cases since the analytical integrals over plosteitiors may be un-
available sometimes in practice (for example, for cases with incomplete datzassdid in Section
5). From Figures 5(a) and 5(b), we observe that these two predictierfairly similar, except that
(a) allows more uncertainty on regions with scarce data. The reasornidas tihat the posteriors
are often peaked and thus posterior means are usually represenfatiae. example, we plot the
broad common prior imposed for local experts in Figure 5(c) and the deak@tional posteriors
for three dominant experts in Figure 5(d). According to Figure 5, wgasigthe usage of full pos-
teriors for prediction whenever integrals are analytical, that is, forraxgats with complete data.
It also empirically justifies the use of posterior means as an approximatiose Tésults have been
computed using VB inference, with MCMC-based results presented bafoavcomparison.
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P (y=1) in Feature Space (Using Full Posteriors) P (y=1) in Feature Space (Using Posterior Means)
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Figure 5: Synthetic three-Gauss single-task data: (a) prediction in éesppace using the full pos-
teriors; (b) prediction in feature space using the posterior means; @naon broad
prior on local experts; (d) variational posteriors on local experts.

6.2 Benchmark Data

To further evaluate the proposed iIQGME, we compare it with other modéthgy benchmark data
sets available from the UCI machine learning repository (Newman et al.)) 1Sg#cifically, we
consider Wisconsin Diagnostic Breast Cancer (WDBC) and the Johpgik#oUniversity lono-
sphere database (lonosphere) data sets, which have been studieditierétture (Williams et al.,
2007; Liao et al., 2007). These two data sets are summarized in Table 1.

The models we compare to include:

e State-of-the-art classification algorithms: Support Vector Machined()SWapnik, 1995)

and Relevance Vector Machines (RVM) (Tipping, 2000). We considén bnear models
(Linear) and non-linear models with radial basis function (RBF) for bdglor&ghms. For
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Data set | Dimension| Number of positive instancesNumber of negative instances
lonosphere 34 126 225
WDBC 30 212 357

Table 1: Details of lonosphere and WDBC data sets

each data set, the kernel parameter is selected for one training/test/valgtgiamation, and
then fixed for all the other experimental settings. The RVM models are impleohevitie
Tipping’s Matlab code available attp://www.miketipping.com/index.php?page=rvm

Since those SVM and RVM algorithms are not directly applicable to problems witkimgis
features, we use two methods to impute the missing values before the implemei@atas.

using the mean of observed values (unconditional mean) for the giaturée referred to as
Uncond; the other is using the posterior mean conditional on observeatdegconditional

mean), referred to as Cond (Schafer and Graham, 2002).

¢ Classifiers handling missing values: the finite QGME inferred by expectataximization
(EM) (Liao et al., 2007), referred to as QGME-EM, and a two-stagerdlgo (Williams
et al., 2007) where the parameters of the GMM for the covariates are eddifiratgiven the
observed features, and then a marginalized linear logistic regressigclésRifier is learned,
referred to as LR-Integration. Results are cited from Liao et al. (2@@d)Williams et al.
(2007), respectively.

In order to simulate thenissing at randonsetting, we randomly remove a fraction of feature
values according to a uniform distribution, and assume the rest arevetisémny instance with all
feature values missing is deleted. After that, we randomly split each datas#taiming and test
subsets, imposing that each subset encompasses at least one instarezch of the classes. Note
that the random pattern of missing features and the random partition of trainih test subsets
are independent of each other. By performing multiple trials we considegeheral (average)
performance for various data settings. For convenient comparison viliilaré et al. (2007) and
Liao et al. (2007), the performance of algorithms is evaluated in terms oféaeumder a receiver
operating characteristic (ROC) curve (AUC) (Hanley and McNeil, 1982)

The results on the lonosphere and WDBC data sets are summarized insFégamd 7, respec-
tively, where we consider 25% and 50% of the feature values missingn@iyortion of missing
values, each curve is a function of the fraction of data used in traininga Bwen size of training
data, we perform ten independent trials for the SVM and RVM models angrtiposed iQGME.

From both Figures 6 and 7, the proposed IQGME-VB is robust for allxpermental settings,
and its overall performance is the best among all algorithms considerechughithe RVM-RBF-
Cond and the SVM-RBF-Cond perform well for the lonosphere dataespecially when the train-
ing data is limited, their performance on the WDBC data set is not as good. érhelknethods
benefit from the introduction of the RBF kernel for the lonosphere datahowever, the perfor-
mance is inferior for the WDBC data set. We also note that the one-step iQ@idlEha finite
QGME outperform the two-step LR-integration. The proposed iQGME istergly performs bet-
ter than the finite QGME (where, for the latter, in all cases we show resulteddest/optimized
choice of number of experts), which reveals the advantage of retaining the uncertainty on the
model structure (number of experts) and model parameters. As shovguire 7, the advantage of
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Figure 6: Results on lonosphere data set for (a)(b) 25%, and &)¢d of the feature values miss-
ing. For legibility, we only report the standard deviation for the propos«aNE-VB
algorithm as error bars, and present the compared algorithms in twodifgureach case.
The results of the finite QGME solved with an expectation-maximization method are
cited from Liao et al. (2007), and those of LR-Integration are cited fvfifiams et al.
(2007). Since the performance of the QGME-EM is affected by the clufineamber of
expertsK, the overall best results amotkg= 1,3,5,10,20 are cited for comparison in
each case (no such selectiorkofs required for the proposed iIQGME-VB algorithm).

considering the uncertainty on the model parameters is fairly pronouncedef WDBC data set,
especially when training examples are relatively scarce and thus the pmétsn EM method
suffers from over-fitting issues. A more detailed examination on the modetrtamaty is shown in
Figures 8 and 9.

In Figure 8, the influence of the preset valuekKoon the QGME-EM model is examined on the
lonosphere data. We observe that with different fractions of missinggesand training samples,
the values foK which achieve the best performance may be differeni§ gses to a large number
(e.g., 20 here), the performance gets worse due to over-fitting. Inagbnive do not need to set the
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Figure 7: Results on WDBC data set for cases when (a)(b) 25%, afd) &0% of the feature
values are missing. Refer to Figure 6 for additional information.

number of clusters for the proposed IQGME-VB model. As long as the ttiomckevelN is large
enough N = 20 for all the experiments), the number of clusters is inferred by the algurithe
give an example for the posterior on the number of clusters inferred byrtdposed IQGME-VB
model, and report the statistics for the most probable number of expestseich missing fraction
and training fraction in Figure 9, which suggests that the number of clustgysary significantly
even for the trials with the same fraction of feature values missing and the sactierf of samples
for training. Therefore, it may be not appropriate to set a fixed valutheonumber of clusters for
all the experimental settings as one has to do for the QGME-EM.

Although our main purpose is classification, one may also be interested in bihthes algo-
rithm can estimate the missing values while pursuing the main purpose. In Figumeelshow
the ratio of correctly estimated missing values for the lonosphere data se23#iitieature values
missing, where two criteria are considered: true values are one stag@laadion (red circles) or
two standard deviations (blue squares) away from the posterior medis figure suggests that
the algorithm estimates most of the missing values in a reasonable range amathé true val-
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Figure 8: The comparison on the lonosphere data set between QGMtEMIifferent preset
number of cluster& and the proposed iIQGME-VB, when (a)(b)(c) 25%, and (d)(e)(f)
50% of the features are missing. In each row, 10%, 50%, and 90% ofleseme used
for training, respectively. Results of QGME-EM are cited from Liao e(2007).

ues when the training size is large enough; even with not so satisfying estis\éi® for limited
training data), the classification results are still relatively robust as showigure 6.

We have discussed the advantages and disadvantages for the infetmbCMC and VB
in Section 5.1. Here we take the lonosphere data with 25% features missarg @ample to
compare these two inference techniques, as shown in Figure 11. lecseeb that they achieve
similar performance for the particular iQGME model proposed in this papee. time consumed
for each iteration is also comparable, and increases almost linearly with thiegraize, as dis-
cussed in Section 5.5. The VB inference takes a little bit longer per iteratiobaply due to the
extra computation for the lower bound of the log marginal likelihood, whiclhieseas convergence
criterion. Significant differences occur on the number of iterations we tmtake. In the experi-
ment, even though we set a very strict threshold ). @or the relative change of the lower bound,
the VB algorithm converges at about 50 iterations for most cases exbepttraining data are very
scarce (10%). For the MCMC inference, we discard the initial samplestie first 1000 iterations
(burn-in), and collect the next 500 samples to present the posterierfalt from enough to claim
convergence; however, we consider it a fair comparison for compantatidhe two methods yield
similar results under this setting. Given the fact that the VB algorithm only takest /30 the
CPU time, and VB and MCMC performance are similar, in the following examplesnlepresent
results based on VB inference. However, in all the examples below weattarmed Gibbs sam-
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Figure 9: Number of clusters for the lonosphere data set inferred @MB-VB. (a) Prior and
inferred posterior on the number of clusters for one trial given 10% kiipr training,
the number of clusters for the case when (b) 25%, and (c) 50% of é&satuie missing.
The most probable value of clusters number is used for each trial toager{b) and (c)
(e.g., the most probable value of clusters number is two for the trial showad)in Iy
(b) and (c), the distribution of number of clusters for the ten trials giverh eaissing
fraction and training fraction is presented as a box-plot, where the rectlmesents the
median; the bottom and top of the blue box are the 25th and 75th percentilectigsly;
the bottom and top black lines are the end of the whiskers, which could be tivaumin
and maximum, respectively; if some data are beyond 1.5 times of the length diithe b
box (interquartile range), they are outliers, indicated by a red ‘+'.
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Figure 10: Ratio of missing values whose true values are one standaatiaie(red circles) or two
standard deviations (blue squares) away from the posterior meanseftortbsphere
data set with 25% feature values missing. One trial for each training sizessleved.

pling, and the relative inference consistency and computational codisedtaVVB were found to
be as summarized here (i.e., in all cases there was close agreement bieve@and MCMC
inferences, and considerable computational acceleration manifested)by V
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Figure 11: Comparison between VB and MCMC inferred iQGME on the Iphese data with 25%
features missing in terms of (a) performance, (b) time consumed for eaatidter(c)
number of iterations. For the VB inference, we set a threshold®1fr the relative
change of lower bound in two consecutive iterations as the convergatar@on; for the
MCMC inference, we discard the initial samples from the first 1000 iteratiouns-in),
and collect the next 500 samples to present the posterior.

6.3 Unexploded Ordnance Data

We now consider an unexploded ordnance (UXO) detection problemnzkt al., 2003), where
two types of sensors are used to collect data, but one of them may b &ysearticular targets.
Specifically, one sensor is a magnetometer (MAG) and the other an electretitagduction (EMI)
sensor; these sensors are deployed separately to interrogate bugyéesl, i@nd for some targets both
sensors are deployed and for others only one sensor is deployisds &hreal sensing problem for
which missing data occurs naturally. The data considered were made bv&il#ie authors by the
US Army (and were collected from a real former bombing range in the U8)l#ta are available
to other researchers upon request. The total number of targets anetiete 79 of them UXO and
the rest are non-UXO (i.e., non-explosives). A six-dimensional featactor is extracted from the
raw signals to represent each target, with the first three componengsponding to MAG features
and the rest as EMI features (details on feature extraction is providdukingzet al., 2003). Figure
12 shows the missing patterns for this data set.

We compare the proposed iIQGME-VB algorithm with the SVM, RVM and LRgrdéon as
detailed in Section 6.2. In order to evaluate the overall performance dfifodas, we randomly
partition the training and test subsets, and change the training size. Reswdtown in Figure 13,
where only performance means are reported for the legibility of the figlmesn this figure, the
proposed iIQGME-VB method is robust for all the experimental settingsruoat& performance
criteria.

6.4 Sepsis Classification Data

In Sections 6.2 and 6.3, we have demonstrated the proposed iIQGME-VBtasets with low to
moderate dimensionality. A high-dimensional data set with natural missing vialwesisidered
in this subsection. These data were made available to the authors from theal&enter for
Genomic Research in the US, and will be made available upon request. Thistieaexample
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Missing Pattern for the Unexploded Ordnance Data Set
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Figure 13: Mean performance over 100 random training/test partitioresafth training fraction on

the unexploded ordnance data set, in terms of (a) area under the R@£; and (b)
classification accuracy.

for which missing data are a natural consequence of the sensing modalite @re 121 patients
who are infected by sepsis, with 90 of them surviving (label -1) andf3hem who die (label
1). For each patient, we have 521 metabolic features and 100 proteinefeaiithe purpose is to
predict whether a patient infected by sepsis will die given his/her featufde missing pattern
of feature values is shown in Figure 14(a), where black indicates \wa¢this missingness is a
natural consequence of the sensing device).

As the data are in a 621-dimensional feature space, with only 121 samplkee; we use the
MFA-based variant of the IQGME (Section 2.4). To impose the low-rank tfelieeach cluster, we
setcy = dp = 1, and the largest possible dimensionality for clusters is set to-b&0.
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We compare to the same algorithms considered in Section 6.3, except thedgration al-
gorithm since it is not capable of handling such a high-dimensional datd/isetn AUC over ten
random partitions are reported in Figure 14(b). Here we report the SW3/RVM results on the
original data since they are able to classify the data in the original 621-diomahspace after miss-
ing values are imputed; we also examined SVM and RVM results on the data iradiwensional
latent space, after first performing factor analysis on the data, ane taeslts were very similar
to the SVM/RVM results in the original 621-dimensional space. From Figd(b)1our method
provides improvement by handling missing values analytically in the procedunedel inference
and performing a dimensionality reduction jointly with local classifiers learning.

Missing Pattern AUC: Sepsis Data
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Figure 14: Sepsis data set. (a) Missing pattern, where black and whitateadiserved and miss-
ing, respectively, (b) mean performance over 100 random trainingéetions for each
training fraction.

6.5 Multi-Task Learning with Landmine Detection Data

We now consider a multi-task-learning example. In an application of landmieetd® (available
at http://www.ee.duke.edu/ ~Icarin/LandmineData.zip ), data collected from 19 landmine
fields are treated as 19 subtasks. Among them, subtasks 1-10 correésgegébns that are rel-
atively highly foliated and subtasks 11-19 correspond to regions thdbare earth or desert. In
all subtasks, each target is characterized by a 9-dimensional featier ¥ with corresponding
binary labely (1 for landmines and -1 for clutter). The number of landmines and cluttecimtazk
is summarized in Figure 15. The feature vectors are extracted from imagesired with airborne
radar systems. A detailed description of this landmine data set has beentpteslsewhere (Xue
et al., 2007).

Although our main objective is to simultaneously learn classifiers for multiple tagksin-
complete data, we first demonstrate the proposed IQGME-based multi-tasikte@viTL) model
on the complete data, comparing it to two multi-task learning algorithms design#tkfeituation
with all the features observed. One is based on task-specific logistessign (LR) models, with
the DP as a hierarchical prior across all the tasks (Xue et al., 200'Gtltbeassumes an underlying
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Figure 15: Number of landmines and clutter in each task for the landminetideteata set (Xue
et al., 2007).

structure, which is shared by all the tasks (Ando and Zhang, 200%)thEd_R-MTL algorithm,

we cite results on complete data from Xue et al. (2007), and implement thergiutketlab code
with default hyper-parameters on the cases with incomplete data. The Matl&riengation for
the Structure-MTL algorithm is included in the “Transfer Learning ToolkitNtatlab” available at
http://multitask.cs.berkeley.edu/ . The dimension of the underlying structure is a user-set
parameter, and it should be smaller than the feature dimension in the origical g the dimen-
sion of the landmine detection data is 9, we set the hidden dimension as 5. WWeeaal€y 7, and

8, and did not observe big differences in performance. Single-taskimga(STL) IQGME and LR
models are also included for comparison.

Each task is divided into training and test subsets randomly. Since the nafdd@ments in the
two classes is highly unbalanced, as shown in Figure 15, we impose traitla¢teast one instance
from each class in each subset. Following Xue et al. (2007), the size tfdiiming subset in each
task varies from 20 to 300 in increments of 20, and 100 independent treajsesformed for each
size of data set. An average AUC (Hanley and McNeil, 1982) over all $headks is calculated as
the performance representation for one trial of a given training sizeulReare reported in Figure
16.

The first observation from Figure 16 is that we obtain a significant pmdace improvement
for single-task learning by using the IQGME-VB instead of the linear logistipagsion model (Xue
et al., 2007). We also notice that the multi-task algorithm based on IQGME-¥Béduimproves
the performance when the training data are scarce, and yields comparata# results as the LR-
MTL does. The structure-MTL does not perform well on this data set.sMgpect that a hidden
structure in such a 9-dimensional space does not necessarily existheApossible reason may be
that the minimization of empirical risk is sensitive for the cases with highly unbathiabels, as
for this data set.
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Figure 16: Average AUC over 19 tasks of landmine detection with complete Batar bars reflect
the standard deviation across 100 random partitions of training and besttsuResults
of logistic regression based algorithms are cited from Xue et al. (200i8reALR-MTL
and LR-STL respectively correspond to SMTL-2 and STL in Figure Xoé et al.
(2007).

It is also interesting to explore the similarity among tasks. The similarity definediffieyeht
algorithms may be different. In Xue et al. (2007), two tasks are defined girnbilar if they share
the same linear classifier. However, with the joint distribution of covariatdstznresponse, the
iIQGME-MTL requires both the data distributions and the classification baiesdo be similar if
two tasks are deemed to be similar. Another difference is that two tasks cegdrtally similar
since sharing between tasks is encouraged at the cluster-level infeatetask-level (Xue et al.
2007 employs task-level clustering). We generate the similarity matrices betases as follows:
In each random trial, there are in to@higher-level items shared among tasks. For each task, we
can find the task-specific probability mass function (pmf) over all the hitgved items. Using these
pmfs as the characteristics for tasks in the current trial, we calculate thevigaiKullback-Leibler
(KL) distances and convert them to similarity measures through a minus exti@rfunction. Re-
sults of multiple trials are summed over and normalized as shown in Figure 1ah becseen that
the similarity structure among tasks becomes clearer when we have more tdatargyailable. As
discovered by Xue et al. (2007), we also find two big clusters correspmtwo different vegetation
conditions of the landmine fields (task 1-10 and task 11-19). Furthestsubtures among tasks are
also explored by the iQGME-MTL model, which may suggest other unknafferehce among the
landmine fields.

After yielding competitive results on the landmine-detection data set with comptde tthe
iIQGME-based algorithms are evaluated on incomplete data, which are simwataddomly re-
moving a portion of feature values for each task as in Section 6.2. We eorthigte different
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Figure 17: Similarity between tasks in the landmine detection problem with completeidan
(a) 20, (b) 100, and (c) 300 training samples from each task. The sgeen blocks
represent the value of the corresponding matrix element.

portions of missing values: 25%, 50% and 75%. As in the experiments alnavermhmark data
sets, we perform ten independent random trials for each setting of missatign and training size.

To the best of our knowledge, there exists no previous work in the literatormulti-task
learning with missing data. As presented in Figure 18, we use the LR-MTE &ual., 2007) and
the Structure-MTL (Ando and Zhang, 2005) with missing values imputed saliha algorithms.
Results of the two-step LR with integration (Williams et al., 2007) and the LR-Sith single
imputations are also included for comparison. Imputations using both uncoradititeans and
conditional-means are considered. From Figure 18, iQGME-STL con8ispeerforms best among
single-task learning methods and even better than LR-MTL-Uncond whesizé of the training set
is relatively large. The imputations using conditional-means yields consistegitbr besults for the
LR-based models on this data set. The IQGME-MTL outperforms the basaliteall the single-
task learning methods overall. Furthermore, the improvement of iQGME-MTrioie pronounced
when there are more features missing. These observations unddfse@edvantage of handling
missing data in a principled manner and at the same time learning multiple tasks simustgneo

The task-similarity matrices for the incomplete-data cases are shown in F@utean be seen
that when a small fraction (e.g., 25%) of the feature values are missingainoh¢y data are rich
(e.g., 300 samples from each task), the similarity pattern among tasks is similantavethave
seen for the complete-data case. As the fraction of missing values becaoness fasks appear
more different from each other in terms of the usage of the higher-lewesit€onsidering that the
missing pattern for each task is unique, it is probable that tasks look quigeetifffrom each other
after a large fraction of feature values are missing. However, the faictatbks tend to use different
subsets of higher-level items does not mean it is equivalent to learningspanately (STL), as
parameters of the common base measures are inferred based on allshe task

6.6 Multi-Task Learning with Handwritten Letters Data

The final example corresponds to multi-task learning of classifiers faivaditen letters, this data
set included in the “Transfer Learning Toolkit for Matlab” availablenhtip://multitask.cs.
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Figure 18: Average AUC over 19 tasks of landmine detection for the eelses (a) 25%, (b) 50%,
and (c) 75% of the features are missing. Mean values of performanzssal® random
partitions of training and test subsets are reported. Error bars are ofoitledibility.

berkeley.edu/ . The objective of each task is to distinguish two letters which are easily sedfu

The number of samples for all the letters considered in the total eight task®iisarized in Table

2. Each sample is a 268 image as shown in Figure 20. We use the 128 pixel values of each sample
directly as its feature vector.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8
‘c’: 2107 | ‘g’ 2460 | ‘'m’: 1596 | ‘a’: 4016 | ‘i 4895 | ‘a’: 4016 | ‘f: 918 | ‘h’: 858
‘e’ 4928 | 'y: 1218 | ‘n’: 5004 | ‘g’: 2460 | j': 188 | ‘0: 3880 | ‘t: 2131 | ‘n’: 5004

Table 2: Handwritten letters classification data set.

We compare the proposed iIQGME-MTL algorithm to the LR-MTL (Xue et alQ7ZCand the
Structure-MTL (Ando and Zhang, 2005) mentioned in Section 6.5. Fordheparametric Bayesian
methods (IQGME-MTL and LR-MTL), we use the same parameter setting asbdfhe dimension

3300



MULTI-TASK CLASSIFICATION FORINCOMPLETE DATA

= EEE R EEN
EEEEEE

R I L L S EEe

Index of Task
Index of Task
Index of Task

& o j
10 O

o
e
(=]
eI
I [
(=8I
(]
I
i
B (i
] 1
It [

N NS NN

I [ I
[ (O

il

[ T = o
e &= Gm- I T e I
5 .5 A -
IO O - i O

Index of Task
5
=
Index of Task
Index of Task

[T re-vorr [T erel ]
oo I o o - I -~

12 14 16 18

Index of Task
S = |
TRy SR Y Y | O
s A j1jj7
I I ey

Index of Task
Index of Task

6 6

8 12
Index of Task

8 12
Index of Task

Figure 19: Similarity between tasks in the landmine detection problem with incompitte Rlow
1, 2 and 3 corresponds to the cases with 25%, 50% and 75% featuresgniesipec-

tively; column 1, 2 and 3 corresponds to the cases with 20, 100 and 3@@graamples
from each task, respectively.

of the underlying structure for the Structure-MTL is set to be 50 in thelteeshown in Figure 21.
We also tried 10, 20, 40, 60, 80 and 100, and did not observe bigeatiffer From Figure 21, the
iIQGME-MTL performs significantly better than the baselines on this data setllfthe missing
fractions and training fractions under consideration. As we expectedStitucture-MTL yields
comparable results as the LR-MTL on this data set.
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Figure 20: Sample images of the handwritten letters. The two images in each ca@preesents
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Figure 21: Average AUC over eight tasks of handwriting letters clastiitdor the cases when

(a) none, (b) 25%, (c) 50%, and (d) 75% of the features are missireanMalues of
performance with one standard deviation across 10 random partitiongimhyg and
test subsets are reported.

7. Conclusion and Future Work

In this paper we have introduced three new concepts, summarized asstolinst, we have em-
ployed non-parametric Bayesian techniques to develop a mixture-oftexgbgorithm for classifier

3302



MULTI-TASK CLASSIFICATION FORINCOMPLETEDATA

design, which employs a set of localized (in feature space) linear classifieexperts. The Dirich-
let process is employed to allow the model to infer automatically the proper nuwshbgperts and
their characteristics; in fact, since a Bayesian formulation is employed,@ostierior distribution is
manifested on the properties of the local experts, including their numbesn8ly, the classifier is
endowed with the ability to naturally address missing data, without the need forpatation step.
Finally, the whole framework has been placed within the context of a multi-taskitey, allow-
ing one to jointly infer classifiers for multiple data sets with missing data. The multiléasking
component has also been implemented with the general tools associated wittichieQprocess,
with specific implementations manifested via the hierarchical Dirichlet pro8essause of the hi-
erarchical form of the model, in terms of a sequence of distributions in theigate-exponential
family, all inference has been manifested efficiently via variational Bagd&i8) analysis. The
VB results have been compared to those computed via Gibbs sampling; thesMEB iregave been
found to be consistent with those inferred via Gibbs sampling, while requaremgall fraction of the
computational costs. Results have been presented for single-task antastuléarning on various
data sets with the same hyper-parameters setting (no model-parameter tansh@rncouraging
algorithm performance has been demonstrated.

Concerning future research, we note that the use of multi-task learninglps an important
class of contextual information, and therefore is particularly usefulwdree has limited labeled
data and when the data are incomplete (missing features). Another foontektthat has received
significant recent attention is semi-supervised learning (Zhu, 200&yeTtas been recent work on
integrating multi-task learning with semi-supervised learning (Liu et al., 2087 )Jmportant new
research direction includes extending semi-supervised multi-task learniaglistic problems for
which the data are incomplete.

Appendix A.
The update equations of single-task learning with incomplete data are sunresifmlows:

L. q(tilH)

b

HE = pih<wh>Tmbi,h where :Bbhh = [mioi;m?‘oi;l].

h=1

The expectation of andt? may be derived according to properties of truncated normal dis-
tributions:
o(—H)
t)y = W+ :
AR T ECTET)
t t
w0 S T ey

whereq(-) and®(-) denote the probability density function and the cumulative density func-
tion of the standard normal distribution, respectively.

2. g™, zlmy * =, pin)
A related derivation for a GMM model with incomplete data could be found in Williatva.
(2007), where no classifier terms appeatr.
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First, we explicitly write the intercept? , that is,wn = [(w})",wWP]T:

O exp{(In[p(tijz = h,zi, W)p(z = h\V)p(xi|z = N, 12, A)]) gt a(eon)av)a(pan. An)
O AnAp(ilfin, Xin),

where
S o= [(wh(wl)")+vnBn
fiin = Sin[(ti)(wp) + VhBhmn — (wiw)]
An = expllnW)-+ 5 (n(1-V0)+ 1))
I<
4l Aw) + S5t in +In S| T — e Bmn — (wR)5)])
Since

385 B
x; Ay |7 T Xy ’

|
the conditional distribution of missing feature$' given observable features” is also a
normal distribution, that isg™ @2 ~ Ajm (mp *, =) with
m |0 ~ S Mi0; ($10i0;\ — i M0
mpt® =+ SR (S0 e — i),
Mo MM $\mo; ($30i0i\ —150im
Tho= S i ()T X

Thereforeg(x",z = h) could be factorized as the product of a factor independenf'ofind

the variational posterior oi:{“, that is,

q@Mz=h) O AnNo (@i, S2%) N (@ mp @, =)
Ph O AnNo (x|, Zh™)

For complete data, no factorization for the distribution#§} is necessary:

on O exp{<ti><wh>Tazi—%xr<whw;>xi+<lnvh>

3 n(1-W) + 20 ARl — 2 (G — o) Anlar —pun)}

- q(Vh|Vh1, Vh2)
Similar updating could be found in Blei and Jordan (2006), except thaguwe prior belief
ona here instead of setting a fixed number.

Vi = 1+épih, Vi = (0) +ii|;9n;

(INVh) = W(Vh1) = W(Vh +Vh2), (IN(1-M)) = W(vi2) — Wiz +Vi2).
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4. d(n, An|mn, Un, Bn,Vn)
Similar updating could be found in Williams et al. (2007).

Uomo + Nhaxh
Vh=Vo+Nh, Ur=Uo+Nn, mnh= —w

_ IR —  UNhp, — _
B, 1_ B, 1y Zpihﬂi,h+NhSh+ %hh(:ch—mo)(:ch —mo)T,
is

where

n n n

Nh = leiha Th= leihivi/Nha Sp = Zpih(ii,h —zn)(&in—xh)" /N
< i= i£

. x)
Tin=|  mo

h

0 0

, Qin= .
i,h 0 2hm|oI

P

(In[An)) = ¥ W((vn—p+1)/2)+PIn2+In| By,
p=1

(i — pn) T An(@i — pn)) = (&ip — mn) "VnBn(&ih — mn) + P/ + tr(vnBnip).

5. q(wn|pft, BN), (wn) = s (wnwy) = S+ pf ()"
-1
o = (_zlpih@zi,wébiyhaéb&) +diag<<x>>> :
Ph =2y (_leiha;bi,h@ +diag(<)\>)¢> :

6. a(Lp, Apl@p, Y. ap,bp), (Ap) = ap/bp.
Similar updating could be found in Xue et al. (2007).

N

@ =) (Whp)/V; Y=Yo+N
h=1
N 1N 1
ap:ao—i—i, bp:b0+§hzl<m’2hp>_éy(l)%~

7. q(alt1,12), () =11 /T2.
Similar updating could be found in any VB-inferred DP model with a Gamma prion o
(Xue et al., 2007).

N—-1
T1=N—-1+T19, To=To0— z <In(1—Vh)>.
h=1
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The update equations of multi-task learning with incomplete data are summaritcdidas:

1. q(tilu)

S N
¢ T N 0j mii|0ji .
i = ZEO]iS(wS) :Bbji where Egjis = z PjihTijhs, :Bbji =[x Jlll,mji" "
S= —

mii mj; |0j; mji |Oji
2. q(XJ|J| jIJ| J 2jil| ])
mii |Oji ~m. mii Oji 0ji Ojj \ — Oii ~ Oji
jiJ|J — 1+2 j J(EjiJ 1) 1(:13“1 “’jil)v
m~i|0'i mij; Mi; M;i Oii /«=0ii Oji 1+~ 0ji Mji
Zjil i 2“1 j Eji] J(zjil J) Ejil 1,
where
s -1
i = ZEGjis(<w§(w§)T>+vsBs) ,
S=
- S
fi = Xj ZEGjis(<t1i><w§>+VsBsms—<w’§W§>)-
S=
Oji
S| T 2 0 0 2Ty — a2l 4O
Tji = [ m;Ti\ji\Oji ) ji= 0 2]m,.|oj. ) (mjlw“) =xjiTji +8Lj.
a(zilpji)
Pjih = d(zji = h)

S “
0 expf ;ths[<tji><ws>vabji - %tf(<wswsT Y (2h) )]
+(InVjn) +I;<In(1—vﬂ)>
S A
+% Z\ojhs[dn |As‘> — (féji — mS)TVSBS(ﬁji — ms) — P/Us— tr(VsBSjS)]}.

4. q(Vlv)

nj nj
Vint =1+ lejiha th2:<a>+Z‘ijilo
i= IShi=

(INVjh) = W(Vjhe) —=W(Vipe +Vinz),  (In(A—=Vj)) = W(Vvji2) — W(Vji1+Vj2).

5. q(alt,12), () =11 /T2.

J N-1
=J(N—1)+ 11, T2:T20—Z Z (In(1—Vjn)).
j=1h=1
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6. q(clo)

s 0 expl3 pinlty) e — Jir( (s o} ()"

+(InUg) + ¥ (In(1—Uy))

I<s

3.3, PnInIAS) — (o ) V5Bl — ) P/t w(vsBely )] ).

7. q(Us|Ks1,Ks2)
J N J

N
K51:l+z ZO’th, K52:<B>_|_ Z
J=1h=1
(INUs) = P(ks1) — P(Ks +Ke2), (IN(1—Us)) = P(Ks2) — W(Ks1 + Keo).
d(Blts,14), (B) = 13/1a.

T3=S—1+4+T30, T4a=Tao— Z(In(l— US)>.
=

9. g(ps, As|ms, Us, Bs,Vs)

Uommo + Nss
Vs=Vo+Ns, Us=Ug+Ns, mg=—"—"—,

Us
1 J n _ —
B'=B,'+ Y ( —mg)(ws—mo)’,
= l|
whereEgjis = 2”:1 PjihTjhs, and
J nj _ J nj
Ns = Z ZEGjis, Ts= Z Zlonis@ji/NSv
j=1i= j=1i=

J nj

SS_ ZEGJIS :1:“ )(33“ a_:S)T/NS'
j=1i

(In|Ag|) = z P((vs—p+1)/2)+PIn2+In|B|,
=1

(i — ps) T As(xji — ps)) = (& — ms) VsBs(&ji — ms) + P/Us+ tr(vsBs§2;i).
10. q(ws|pd’, XY)

J nj

-1
Y = ( ZlEOJ.Sa: J|:1: J,4—QJ|)—|—dlag(< >)) ,

J N
p)év = ( Zlonlsw J|<t1|>+d|aQ< ) )

J=1i
(ws) =¥,  (wswl) =T+ p(pd)".
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11. q(Ap[ap, bp), (Ap) = ap/bp.

s
(Pp:ZfWSp)/V, Y=Yo+S
S=
S 13 ,.., 1
ap:aO‘l—é, bp:bo-f-ész <Wsp>_§y(p$)

References

J. H. Albert and S. Chib. Bayesian analysis of binary and polychotomespeonse datalournal of
the American Statistical Associatio88:669—-679, 1993.

R. K. Ando and T. Zhang. A framework for learning predictive struesuirom multiple tasks and
unlabeled dataJournal of Machine Learning Researd1817-1853, 2005.

H. Attias. A variational Bayesian framework for graphical modelsAdtlvances in Neural Informa-
tion Processing Systems (NIR3D00.

M. J. Beal. Variational Algorithms for Approximate Bayesian Inferen&D dissertation, Univer-
sity College London, Gatsby Computational Neuroscience Unit, 2003.

D. M. Blei and M. I. Jordan. Variational inference for Dirichlet presemixturesBayesian Analysjs
1(1):121-144, 2006.

R. Caruana. Multitask learning/achine Learning28:41-75, 1997.

G. Chechik, G. Heitz, G. Elidan, P. Abbeel, and D. Koller. Max-margingifecstion of data with
absent featureslournal of Machine Learning Researci1-21, 2008.

L. M. Collins, J. L. Schafer, and C. M. Kam. A comparison of inclusivd egstrictive strategies in
modern missing data procedur&sychological Method$(4):330-351, 2001.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete dasathe EM
algorithm. Journal of Royal Statistical Society B9:1-38, 1977.

U. Dick, P. Haider, and T. Scheffer. Learning from incomplete data wifinite imputations. In
International Conference on Machine Learning (ICMRPO8.

D. B. Dunson, N. Pillai, and J.-H. Park. Bayesian density regres3amnal of the Royal Statistical
Society: Series B9, 2007.

M. D. Escobar and M. West. Bayesian density estimation and inferenog méitures.Journal of
the American Statistical Associatio®0:577-588, 1995.

T. Ferguson. A Bayesian analysis of some nonparametric probld@ims.Annals of Statisticd.:
209-230, 1973.

A. E. Gelfand, S. E. Hills, A. Racine-Poon, and A. F. M. Smith. lllustratibBayesian inference
in normal data models using Gibbs samplinpurnal of American Statistical Associatio8b:
972-985, 1990.

3308



MULTI-TASK CLASSIFICATION FORINCOMPLETEDATA

Z. Ghahramani and M. J. Beal. Variational inference for Bayesian nagtof factor analysers.
In Advances in Neural Information Processing Systems (NIPSpdges 449-455. MIT Press,
2000.

Z. Ghahramani and G. E. Hinton. The EM algorithm for mixtures of factalyaers. Technical
Report CRG-TR-96-1, Department of Computer Science, Universitpinto, 1996.

Z. Ghahramani and M. |. Jordan. Learning from incomplete data. Tealmport, Massachusetts
Institute of Technology, 1994.

T. Graepel. Kernel matrix completion by semidefinite programmindprateedings of the Interna-
tional Conference on Artificial Neural Networksages 694—-699, 2002.

J. Hanley and B. McNeil. The meaning and use of the area under ageoperating characteristic
(ROC) curve.Radiology 143:29-36, 1982.

L. Hannah, D. Blei, and W. Powell. Dirichlet process mixtures of geneaxdlimear models. In
Artificial Intelligence and Statistics (AISTAT®pges 313-320, 2010.

J. Ibrahim. Incomplete data in generalized linear modelsurnal of the American Statistical
Association85:765-769, 1990.

H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breakimg.pJournal of the
American Statistical Associatip86:161-173, 2001.

R. A. Jacobs, M. I. Jordon, S. J. Nowlan, and G. E. Hinton. Adaptiidures of local experts.
Neural Computation3:79-87, 1991.

M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts amdEM algorithm. Neural
Computation6:181-214, 1994.

K. Kurihara, M. Welling, and Y. W. Teh. Collapsed variational Dirichlebpess mixture models.
In Proceedings of the International Joint Conference on Artificial IntellgelJCAI) pages
2796-2801, 2007.

Percy Liang and Michael I. Jordan. An asymptotic analysis of genetatigcriminative, and pseu-
dolikelihood estimators. liProceedings of the International Conference on Machine Learning
(ICML), pages 584-591, 2008.

X. Liao, H. Li, and L. Carin. Quadratically gated mixture of experts for mpbete data classi-
fication. InProceedings of the International Conference on Machine LearninyIU)C pages
553-560, 2007.

Q. Liu, X. Liao, and L. Carin. Semi-supervised multitask learningN&ural Information Process-
ing Systems2007.

S. N. MacEachern and P. (Mer. Estimating mixture of Dirichlet process modeldournal of
Computational and Graphical Statistics, 1998.

E. Meeds and S. Osindero. An alternative infinite mixture of Gaussiamegsaxperts. INIPS 18
pages 883-890. MIT Press, 2006.

3309



WANG, LiAO, CARIN AND DUNSON

P. Muller, A. Erkanli, and M. West. Bayesian curve fitting using multivariate nbmmixtures.
Biometrika 83:67—79, 1996.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methdéshnical report,
Department of Computer Science, University of Toronto, 1993.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repositorynathine learning
databasesttp://www.ics.uci.eduémlearn/MLRepository.htmiL998.

A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiArsomparison of logistic
regression and naive Bayes.Advances in Neural Information Processing Systems (NEBP.

C. E. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussian prexqesrts. IMNIPS 14
MIT Press, 2002.

A. Rodiiguez, D. B. Dunson, and A. E. Gelfang. Bayesian nonparametritifunat data analysis
through density estimatioBiometrikg 96, 2009.

D. B. Rubin. Inference and missing daBiometrikg 63:581-592, 1976.
D. B. Rubin. Multiple Imputation for Nonresponse in Surveyshn Wiley & Sons, Inc., 1987.

J. L. Schafer and J. W. Graham. Missing data: Our view of the state ofrthé?aychological
Methods 7:147-177, 2002.

J. Sethuraman. A constructive definition of Dirichlet priodgsatistica Sinical:639-650, 1994.

B. Shahbaba and R. Neal. Nonlinear models using Dirichlet process nsxflanernal of Machine
Learning Research0:1829-1850, 2009.

P. K. Shivaswamy, C. Bhattacharyya, and A. J. Smola. Second asdeqrogramming approaches
for handling missing and uncertain datkournal of Machine Learning Research1283—-1314,
2006.

A. Smola, S. Vishwanathan, and T. Hofmann. Kernel methods for missiagles. InProceedings
of the Tenth International Workshop on Atrtificial Intelligence and Statis#065.

Y. W. Teh, M. J. Beal M. |. Jordan, and D. M. Blei. Hierarchical Difiehprocesseslournal of the
American Statistical Associatiph01:1566—-1581, 2006.

M. E. Tipping. The relevance vector machine. In T. K. Leen S. A. SolthkarR. Mller, editors,
Advances in Neural Information Processing Systems (NMR$)me 12, pages 652—658. MIT
Press, 2000.

V. N. Vapnik. The Nature of Statistical Learning Theor$pringer, 1995.

X. Wang, A. Li, Z. Jiang, and H. Feng. Missing value estimation for DNA nacray gene ex-
pression data by support vector regression imputation and orthogodigcscheme. BMC
Bioinformatics 7:32, 2006.

3310



MULTI-TASK CLASSIFICATION FORINCOMPLETEDATA

S. R. Waterhouse and A. J. Robinson. Classification using hierarchigtdres of experts. In
Proceedings of the IEEE Workshop on Neural Networks for Signatding IV pages 177—
186, 1994.

M. West, P. Miller, and M. D. Escobar. Hierarchical priors and mixture models, witHiegtmon
in regression and density estimation. In P. R. Freeman and A. F. Smith, edikpscts of
Uncertainty pages 363—386. John Wiley, 1994.

D. Williams and L. Carin. Analytical kernel matrix completion with incomplete multi-viested In
Proceedings of the International Conference on Machine LearninlyiJONorkshop on Learn-
ing with Multiple Viewspages 80-86, 2005.

D. Williams, X. Liao, Y. Xue, L. Carin, and B. Krishnapuram. On classificatwith incomplete
data.|EEE Transactions on Pattern Analysis and Machine Intellige28¢3):427—-436, 2007.

L. Xu, M. I. Jordan, and G. E. Hinton. An alternative model for mixturésxperts. InAdvances
in Neural Information Processing Systems (NIP)ages 633—640, 1995.

Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning ftassification with Dirichlet
process priorsJournal of Machine Learning Resear@135-63, 2007.

K. Yu, A. Schwaighofer, V. Tresp, W.-Y. Ma, and H. Zhang. Colladttve ensemble learning:
Combining collaborative and content-based information filtering via hieieatBayes. InPro-
ceedings of the Conference on Uncertainty in Artificial Intelligemames 616-623, 2003.

J. Zhang, Z. Ghahramani, and Y. Yang. Learning multiple related taskg late#nt independent
component analysis. lAdvances in Neural Information Processing Syste2086.

Y. Zhang, L. M. Collins, H. Yu, C. Baum, and L. Carin. Sensing of udedpd ordnance with mag-
netometer and induction data: theory and signal proces$EIgE Transactions on Geoscience
and Remote Sensing1(5):1005-1015, 2003.

X. Zhu. Semi-supervised learning literature survey. Technical Ref3®, Computer Sciences,
University of Wisconsin-Madison, 2005.

3311



