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Abstract

This paper introduces a Bayesian algorithm for constrggbiredictive models from data that are
optimized to predict a target variable well for a particutestance. This algorithm learns Markov
blanket models, carries out Bayesian model averaging oset af models to predict a target vari-
able of the instance at hand, and employs an instance-spkeiiristic to locate a set of suitable
models to average over. We call this method the instanceifgp®larkov blanket (ISMB) algo-
rithm. The ISMB algorithm was evaluated on 21 UCI data setsguive different performance
measures and its performance was compared to that of se@rahonly used predictive algo-
rithms, including nave Bayes, C4.5 decision tree, logistgression, neural networkk;Nearest
Neighbor, Lazy Bayesian Rules, and AdaBoost. Over all the dats, the ISMB algorithm per-
formed better on average on all performance measures aglittee comparison algorithms.

Keywords: instance-specific, Bayesian network, Markov blanket, Beyemodel averaging

1. Introduction

Prediction is a central problem in machine learning that involves inducing &Infimin a set of
training instances that is then applied to future instances to predict a tangable of interest.
Several commonly used predictive algorithms, such as logistic regreasiarg| networks, decision
trees, and Bayesian networks, typically induce a single model from a tgageirof instances, with
the intent of applying it to all future instances. We call such a modebpulation-wide model
because it is intended to be applied to an entire population of future instafgexpulation-wide
model is optimized to predict well on average when applied to expected fusiences.

Recent research in machine learning has shown that inducing modelsdhstexific to the
particular features of a given instance can improve predictive perfaresa(Gottrup et al., 2005).
We call such a model ainstance-specific modsince it is constructed specifically for a particular
instance (case). The structure and parameters of an instance-spexifit are specialized to the
particular features of an instance, so that it is optimized to predict espewiglljor that instance.
The goal of inducing an instance-specific model is to obtain optimal prediftirothe instance at
hand. This is in contrast to the induction of a population-wide model whergdhkis to obtain
optimal predictive performance on average on all future instances.

There are several possible approaches for learning predictivelsrtbdeare relevant to a single
instance. One approach is to learn a model from a subset of the trainiagelathat consists
of instances that are similar in some way to the instance at hand. Anotherappsoto learn a
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model from a subset of variables that are pertinent in some fashion tostaaée at hand. A third
approach, applicable to model averaging where a set of models is calgaised for prediction,
is to identify a set of models that are most relevant to prediction for the irestaritand.

In this paper, we describe a new instance-specific method for learngaicpve models that
(1) uses Bayesian network models, (2) carries out Bayesian modelgavg over a set of models
to predict the target variable for the instance at hand, and (3) empldgstance-specific heuristic
to identify a set of suitable models to average over. The remainder of tHisrsgives a brief
description of each of these characteristics.

Bayesian network (BN) models are probabilistic graphical models thatiqeav powerful
formalism for representation, reasoning and learning under uncer{@etyrl, 1988; Neapolitan,
2003). These graphical models are also referred to as probabilistionkstvibelief networks or
Bayesian belief networks. A BN model combines a graphical represamtaitb numerical in-
formation to represent a probability distribution over a set of randomblagan a domain. The
graphical representation constitutes the BN structure, and it explicitly highlitpe probabilistic
independencies among the domain variables. The complementary nhumeigcal&tibn consti-
tutes the BN parameters, which quantify the probabilistic relationships amongtiables. The
instance-specific method that we describe in this paper uses Markoweblaoklels, which are a
special type of BN models.

Typically, methods that learn predictive models from data, including tho$éetluan BN mod-
els, perform model selection. In model selection a single model is selectiesutinanarizes the
data well; it is then used to make future predictions. However, given finii, daere is uncer-
tainty in choosing one model to the exclusion of all others, and this can leeialip problematic
when the selected model is one of several distinct models that all summaridatthmore or less
equally well. A coherent approach to dealing with the uncertainty in modeltaaids Bayesian
model averaging (BMA) (Hoeting et al., 1999). BMA is the standard Biayeapproach wherein
the prediction is obtained from a weighted average of the predictions ¢fod s®dels, with more
probable models influencing the prediction more than less probable orraclital situations, the
number of models to be considered is enormous and averaging the presimtemall of them is
infeasible. A pragmatic approach is to average over a few good modetgdselective Bayesian
model averagingwhich serves to approximate the prediction obtained from averagingtveod-
els. The instance-specific method that we describe in this paper perfelestisee BMA over a set
of models that have been selected in an instance-specific fashion.

The instance-specific method described here learns both the structuparmeters of BNs
automatically from data. The instance-specific characteristic of the methodtigated by the
intuition that in constructing predictive models, all the available informationlshmeiused includ-
ing available knowledge of the features of the current instance. Sglsifithe instance-specific
method uses the features of the current instance to inform the BN lealgoriftam to selectively
average over models that differ considerably in their predictions for tigettaariable of the in-
stance at hand. The differing predictions of the selected models aredhdvired to predict the
target variable.

2. Characterization of Instance-Specific Models

Figure 1 illustrates the key difference between population-wide and irestggexific models: the
instance-specific model is constructed from data in the training set, as syétba the features
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about the particular instance to which it will be applied. In contrast, thelptipno-wide model is
constructed only from data in the training set. Thus, intuitively, the additiof@mation available
to the instance-specific method can facilitate the induction of a model that pedvédter prediction
for the instance at hand. In instance-specific modeling, different iossanill potentially result in
different models, because the instances contain potentially differeres/ébn the features. The
instance-specific models may differ in the variables included in the mod@&lplaselection), in the
interaction among the included variables (encoded in the structure of thd)paottkin the strength
of the interaction (encoded in the parameters of the model). Another ajpisto select a subset
of the training data that are similar in their feature values to those of the insthhe&d and learn
the model from the subset. A generalization of this is to weight the instances frathing data set
such that those that are more similar to the instance at hand are assigated \gsights than others,
and then learn the model from the weighted data set. The following are twoaliustexamples
where instance-specific methods may perform better than population-witiedse

apply population-wide method population-wide |

training set model 0

v

. .
. inference

........................................................ ape
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apply instance-specific method

instance-specific
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Figure 1: A general characterization of the induction of and inferengeojulation-wide (top
panel) and instance-specific (bottom panel) models. In the bottom paned, ithan

extra arc fromnstanceto mode] because the structure and parameters of the model are

influenced by the features of the instance at hand.

2.1 Variable Selection

Many model induction methods implicitly or explicitly perform variable selectiony@cess by
which a subset of the domain variables is selected for inclusion in the modedx&ample, logistic

1. Afeature is a variable-value pair, that is, a variable that has beigmads value.
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regression is often used with a stepwise variable selection process. tandesspecific version
of logistic regression could, for example, select different variablesliiberent instances being
predicted, compared to the standard population-wide version that ses#otgeasubset of variables.
Consider a simple example where a gé&hthat has several alleles. Suppose that allele al is rare,
and it is the only allele that predicts the development of dis€gsendeed, it predictd with
high probability. For future instances, the aim is to pre@d|G). In a population-wide logistic
regression modez may not be included as a predictor (variablepPobecause in the vast majority
of instances in the data s6t# al andD is absent, and havin@ as a predictor would just increase
the overall noise in predictinD. In contrast, if there is an instance at hand in whihk: al, then
the training data may contain enough instances to indicat®tisahighly likely. In this situationc
would be added as a predictor in an instance-specific model. Thus, ifstance in whiclG = al,
the typical population-wide logistic regression model would predict pobuian instance-specific
model would predict well.

This idea can be extended to examples with more than one predictor, in wimehpsedictors
are characterized by having particular values that are relatively targttongly predictive for the
outcome. A population-wide model tends to include only those predictors thesterage provide
the best predictive performance. In contrast, an instance-specifielmdlti potentially include
predictors that are highly predictive for the particular instance at handh predictors may be
different from those included in the population-wide model.

2.2 Decision Theoretic Comparison of Population-Wide and Instanc&pecific Models

We first introduce some notation and definitions and then compare popuwtienwith instance-
specific models in decision theoretic terms. Capital letters Xke&Z, denote random variables
and corresponding lower case lettexsz, denote specific values assigned to them. A feature is
a specification of a variable and its value. This= x is a feature that specifies that variable
X is assigned the value Bold upper case letters, such ds Z, represent sets of variables or
random vectors, and their realization is denoted by the correspondiddoer case letterss, z.

A feature vector is a list of features. Thué= x is a feature vector that specifies that the variables
in X have the values given by. In addition,Z denotes the target variable (class variable) being
predicted X denotes the set of predictor variabl& denotes a model (including both its structure
and parameters]) denotes the training data s€t,=< X', Z' > denotes a generic training instance
in D andC! =< X!, Z' > denotes a generic test instance that is nd.irA test instance is one in
which the unknown value of the target varial@feis to be predicted from the known values of the
predictorsX! and the known values ef X', Z' > of a set of training instances.

A probabilisticmodelis a family of probability distributions indexed by a set of parameters.
Model selectiorrefers to the problem of using data to select one model from a set of manlels
der consideration (Wasserman, 2000). The process of selecting a tyypdally involves model
class selection (e.g., logistic regression, BN), variable selection, anthpter estimationModel
averagingrefers to the process of estimating some quantity (e.g., prediction of the fauarget
variable) under each of the models under consideration and obtaininghtag average of their
estimates (Wasserman, 2000).

Model selection can be done using either non-Bayesian or Bayesiave@hps. Non-Bayesian
methods of model selection include choosing among competing models by maximiegitigeth
lihood, by maximizing a penalized version of the likelihood or by maximizing some uneas
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interest (e.g., accuracy) using cross-validation. Use of multiple models t@wagerformance
can also be done using either non-Bayesian or Bayesian appro&stsesnble techniques such as
bagging and boosting are non-Bayesian approaches that combine multigidsrtmcreate a new
better performing model. In both bagging and boosting, the data are reshagderal times, a
model is constructed from each sample, and the predictions of the indivithatels are combined
to obtain the final prediction. In the non-Bayesian approach, the heanged in model selection
and model combination are typically different. In contrast, the Bayesiaroapp to model selec-
tion and model combination both involve computing the posterior probability df peaxlel under
consideration. In Bayesian model selection the single model found thah&dsghest posterior
probability is chosen. The Bayesian model combination technique is called enattaging where
the combined prediction is the weighted average of the individual prediatibtiee models with
the model posterior probabilities comprising the weights.

When the goal is prediction of future data or future values of the targethla, BMA is pre-
ferred, since it suitably incorporates the uncertainty about the identityedftie model. However,
sometimes interest is focused on a single model. For example, a single model oszfldor pro-
viding insight into the relationships among the domain variables or can be sisezbanputationally
less expensive method for prediction. In such cases, Bayesian nabeleien maybe preferred to
BMA. However, the optimal Bayesian approach is to perform model guggaand thus, model
selection is at best an approximation to model averaging.

Population-wide model selection and instance-specific model selectiohanacterized in de-
cision theoretic terms as follows. In this paper, all conditional probabilitie® laaconditioning
eventK, which represents background knowledge and which we will leave implicihdtational
simplicity. Given training dat@® and a generic test instanee X', Z! >, the optimal population-
wide models:

arg max{ Zu [P(Z'X!,D),P(Z'|X",M)] P(Xt\D)} (1)
X

M

where the utility functiotd gives the utility of approximating thBayes optimal estimate(2'|X*, D)
with the estimatd®(Z!|X', M) obtained from modeM. For a modeM, Expression 1 considers all
possible instantiations oft and for each instantiation computes the utility of estima@g| X', D
with the specific model estimaRZt|X!, M), and weights that utility by the posterior probability of
that instantiation. The maximization is over the moddlf a given model space.

TheBayes optimal estimate(2!|X!, D) in Expression 1 is obtained by combining the estimates
of all models (in a given model space) weighted by their posterior probasilitie

P(Z!X!,D / P(Z!X!,M)P(M|D)dM 2
The termP(X!|D) in Expression 1 is given by:

P(X!D) = /M P(X[M)P(M|D)dM. 3)
Theoptimal instance-specific modelr estimatingZ! is the one that maximizes the following:

argmax{u[ (Z'|x',D),P(Z|x",M)] }, (4)
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wherex! are the values of the predictors of the test instaxicor which the target variablg! is to
be predicted. Th8ayes optimal instance-specific predictiofzRX!, D) is derived using Equation
2, for the special case in whickf = x', as follows:

P(Zt\xt,D):/MP(Zt|xt,M)P(M\D)dM.

The difference between the population-wide and the instance-specifiel meldction can be
noted by comparing Expressions 1 and 4. Expression 1 for the populaiiienmodel selects the
model that on average will have the greatest utility. Expression 4 for thenics-specific model,
however, selects the model that will have the greatest utility for the specitiarioeX' = x'. For
predictingZt given instanc&! = xt, application of the model selected using Expression 1 can never
have an expected utility greater than the application of the model selectedaxgiression 4. This
observation provides support for developing instance-specific models

Equations 2 and 3 carry out BMA over all models in some specified modetésgxpressions 1
and 4 include Equation 2; thus, these expressions for population-witlmstance-specific model
selection, respectively, are theoretical ideals. Moreover, Equatioth2 Bayes optimal prediction
of Zt. Thus, in order to do optimal model selection, the optimal prediction obtaimed BMA
must already be known.

Model selection, even if performed optimally, ignores the uncertainty imhenechoosing a
single model based on limited data. BMA is a normative approach for dealinghethincertainty
in model selection. Such averaging is primarily useful when no single modkeimodel space
under consideration has a dominant posterior probability. Howeveg givecnumber of models in
practically useful model spaces is enormaaxsgct BMAwhere the averaging is done over the entire
model space, is usually not feasible. That is, it is usually not computatioieal$ible to solve for
the exact solution given by Equation 2. In such casekgctive BMASs typically performed, where
the averaging is done over a selected subset of models.

BMA has been shown to improve predictive performance, and seveaad@es of significant
decrease in prediction errors with the use of BMA are described by Hoettalg(1999). However,
in other cases BMA has not proved to be better than ensemble technicpresxafple, uniform
averaging was shown by Cerquides and Mantaras (2005) to have dlattsification performance
than BMA for one dependence estimators. This may be because, as NiDB2) (points out,
BMA is better described as a method for 'soft model selection’ rather thanrmique for model
combination.

3. Related Work

There exists a vast literature in machine learning, data mining and pattegnitoo that is con-
cerned with the problem of predictive modeling and supervised learniedori&fly describe some
of the aspects of the similarity-based methods and instance-specific metbadsdthese methods
are most closely relevant to the present paper. Similarity-based metheodhaacterized by the
use of a similarity (or distance) measure necessary for measuring the sinbietitgen instances.
Instance-specific methods, on the other hand, learn an explicit modeldelsnioom the training
instances that are then applied to the test instance. The induction of a maeetlad models are
influenced by the values of the features of the test instance, and a similaasuneds not used.
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3.1 Similarity-Based Methods

These methods are also known as memory-based, case-based, ihstsedeor exemplar-based
learners. They (1) use a similarity or a distance measure, (2) defer mtst pfocessing until
a test instance is encountered, (3) combine the training instances in sdviwa fas predict the
target variable in the test instance, and (4) discard the answer andtenyeadiate results after
the prediction. Typically, no explicit model is induced from the training instarat the time of
prediction (Aha, 1998). The similarity measure evaluates the similarity betweeeshinstance
and the training instances and selects the appropriate training instancéemndlative weights
in response to the test instance (Zhang et al., 1997). The selected tiastemgces can be equally
weighted or weighted according to their similarity to the test instance. To ptbditarget variable
in the test instance, the values of the target variable in the selected trainiagces are combined
in some simple fashion such as majority vote, simple numerical average or fitted potiinomial.

Thenearest-neighbor techniqug the canonical similarity-based method. When a test instance
is encountered, the training instance that is most similar to the test instancetéllaca its target
value is returned as the prediction (Cover and Hart, 1967). A straigiviafd extension to the
nearest-neighbor technique is thélearest NeighbdkNN) method. For a test instance, this method
selects thek most similar training instances and either averages or takes a majority votearof the
target values. Another extension is the distance-weigkfddarest Neighbor method. This weights
the contribution of each of thke most similar training instances according to its similarity to the
test instance, assigning greater weights to more similar instances (Dasdr@®iy. A further
extension is locally weighted regression that selects instances similar to tlestaate, weights
them according to their similarity, and performs regression to predict thettédgkeson et al.,
1997).

One drawback of the similarity-based methods is that they may perform pebey predictors
are redundant, irrelevant or noisy. To make the similarity metrics more rolarsple selection
and variable weighting have been employed.

3.2 Instance-Specific Methods

Instance-specific methods are model-based methods that take advdrtagéeatures in the test
instance while inducing a model. Such methods are not as reliant on a similarisyiragt they
use one at all, as the similarity-based methods.

Friedman et al. (1996) describe one such algorithm called LazyDT thatlses for the best
CART-like decision tree for a test instance. As implemented by the authazgPadid not per-
form pruning and processed only nominal variables. The algorithm wapared to ID3 and C4.5
(standard population-wide methods for inducing decision trees), eachanittwithout pruning.
When evaluated on 28 data sets from the UCI Machine Learning repoditazyDT generally
out-performed both ID3 and C4.5 without pruning and performed slightly beteen C4.5 with
pruning.

Ting et al. (1999) developed a framework for inducing rules in a lazyidesthat are tailored
to the features of the test instance. Zheng and Webb (2000) describgplmentation of this
framework called the Lazy Bayesian Rules (LBR) learner that inducele aailored to the features
of the test instance that is then used to classify it. A LBR rule consists of ¢@hjmnction of the
features (variable-value pairs) present in the test instance as thedemnécand (2) a local naive
Bayes classifier as the consequent. The structure of the local nayes Bassifier consists of
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the target variable as the parent of all other variables that do not ajppse antecedent, and the
parameters of the classifier are estimated from those training instanceatibiyt the antecedent.
A greedy step-forward search selects the optimal LBR rule for a teshiuest® be classified. In
particular, each predictor is added to the antecedent of the curréntiteesnd evaluated for whether
it reduces the overall error rate on the training set that is estimated Isreatidation. The predictor
that most reduces the overall error rate is added to the antecedernaonked from the consequent,
and the search continues; if no single predictor move can decreaserteetarror rate, then the
search halts and the current rule is applied to predict the outcome for thediesice. LBR is an
example of an instance-specific method that uses feature information $aildbe test instance
to direct the search for a suitable model in the model space.

The performance of LBR was evaluated by Zheng and Webb (20009 alata sets from the
UCI Machine Learning repository and compared to that of seven algoritamesve Bayes classifier
(NB), adecision tree algorithm (C4.5), a Bayesian tree learning algortBiiiiee) (Kohavi, 1996),
a constructive Bayesian classifier that replaces single variables witharéailes constructed from
Cartesian products of existing nominal variables (BSEJ) (Pazzani)1@%glective naive Bayes
classifier that deletes irrelevant variables using Backward Sequelitiah&tion (BSE) (Pazzani,
1995), and LazyDT, which is described above. Based on ten thiéeruss validation trials (for a
total of 30 trials), LBR achieved the lowest average error rate acresaXhlata sets. The average
relative error reduction of LBR over NB, C4.5, NBTree, BSEJ, BSH bazyDT were 9%, 10%,
2%, 3%, 5% and 16% respectively. LBR performed significantly better &tlasther algorithms
except BSE; compared to BSE its performance was better but not statissicgdificantly so.

The instance-specific algorithms like LazyDT and LBR have limitations in thatdheyrocess
only discrete variables, and continuous variables have to be discredised they are computation-
ally more intensive than many other learning algorithms. However, they e $hown to have
better accuracy than several of the population-wide methods.

4. Bayesian Networks

A Bayesian network (BN) is a probabilistic model that combines a graplepaésentation (the BN
structure) with quantitative information (the BN parameterization) to reptes@int probability
distribution over a set of random variables (Pearl, 1988; Neapolitad8)2More specifically, a
BN modelM representing the set of random variab¥e$or some domain consists of a p&t6g.
The first componenG is a directed acyclic graph (DAG) that contains a node for every variable
in X and an arc between a pair of nodes if the corresponding variablesractlydprobabilisti-
cally dependent. Conversely, the absence of an arc between a paides denotes probabilistic
independence between the corresponding variables. In this pape&riisevariable and node are
used interchangeably in the context of random variables being modeleadeag in a BN. Thus, a
variableX; in the domain of interest is represented by a node labgl@dthe BN graph. Note that
the phraséBN structurerefers only to the graphical structu@ while the term BN (model) refers
to both the structur& and a corresponding set of parames

The terminology of kinship is used to denote various relationships amongs redegraph.
These kinship relations are defined along the direction of the arcs. des=ies of a nod¥ in G,
both immediate and remote, are calledaineestorof X;. In particular, the immediate predecessors
of X; are called theparentsof X;. The set of parents of; in G is denoted byPa(X;,G) or more
simply asPa when the BN structure is obvious from the context. In a similar fashion essocs of
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Xi in G, both immediate and remote, are called descendantsf X;, and the immediate successors
are called thechildren of X;. A nodeX; is termed aspouseof X if X; is a parent of a child of
Xi. The set of nodes consisting of a nodeand its parents is called tHamily of X;. Figure 2
gives an illustrative example of a simple hypothetical BN, where the top jghiogls the graphical
componentG of the BN. In the figure, the variablgoor dietis a parent of the variablischemic
heart diseasas well as a parent of the varialgastroesophageal reflux diseaSée variablechest
painis a child of the variabléung canceras well as a child of the variabtgastroesophageal reflux
diseaseand the variableschemic heart diseassndabnormal electrocardiograrare descendants
of the variablepoor diet

poor diet

ischemic heart
disease

gastroesophageal
reflux disease

chest pain abno;’lﬁal
exercise
electrocardiogram

Node X; P(X; = F)=0.70 P(X;=T)=0.30

Node X, P(X;=F|X,=F)=097 P(X,=T|X;=F)=0.03
PX,=F| X, =T)=0.96 PX,=T|X,=T)=0.04

Node X; P(X;=F|X,=F)=0.94 P(X; =T | X, = F)=0.06
P(X3:F|X1:T):096 P(X3=T‘X]:T)=008

Node X, P(Xy=F|X,=F, X;=F)=0.90 PX,=T|X,=F, X;=F)=0.10
PX,;=F | X;=F, X;=T)=0.40 PX,=T|X,=F,X;=T)=0.60
PX,=F|X, =T, X;=F)=0.50 PX,=T|X,=T,X;=F)=0.50
PX;=F|Xo=T,X;=T)=025 PX,=T|X,=T,X=T)=0.75

Node X5 P(Xs=F|X;=F)=0.80 P(Xs=T|Xs=F)=0.20
P(Xs=F | X;=T)=0.25 PXs=T|X;=T)=0.75

Figure 2: A simple hypothetical Bayesian network for a medical domain. Alhthaes represent
binary variables, taking values in the domain T, F where T stands for Trde~afor
False. The graph at the top represents the Bayesian network strusss@ciated with
each variable (node) is a conditional probability table representing thalpildy of each
variable’s value conditioned on its parent set. (Note: these probabiligderatustration
only; they are not intended to reflect frequency of events in any goeati@nt population.)
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The second componefg represents the parameterization of the probability distribution over
the space of possible instantiationsofind is a set of local probabilistic models that encode quan-
titatively the nature of dependence of each variable on its parents. EbrneaeX; there is a
probability distribution (that may be discrete or continuous) defined on thde for each state of
its parents. The set of all the probability distributions associated with all tdheshcomprises the
complete parameterization of the BN. The bottom panel in Figure 2 givesaanpe of a set of
parameters fofs. Taken together, the top and bottom panels in Figure 2 provide a fully sgkcifi
structural and quantitative representation for the BN.

4.1 Markov Blanket

The Markov blankebof a variableX;, denoted by MBYX;), defines a set of variables such that con-
ditioned on MEX;) is conditionally independent of all variables given §¥) for joint probability
distributions consistent with BN in which MB;) appears (Pearl, 1988). The minimal Markov blan-
ket of a nodeX;, which is sometimes called its Markov boundary, consists of the parentsieshild
and children’s parents of;. In this paper, we refer to the minimal Markov blanket as the Markov
blanket (MB). This entails that the variables in \¥8) are sufficient to determine the probability
distribution of X;. Since d-separation is applied to the graphical structure of a BN to idetitify a
conditional independence relations, it can also be applied to identify thefldBade in a BN. The
MB of a nodeX; consists of its parents, its children, and its children’s parents and is illubirate
Figure 3. The parents and children6fare directly connected to it. In addition, the spouses are also
included in the MB, because of the phenomenon of explaining away whiets e the observation
that when a child node is instantiated its parents in general are statisticallyddgpe Analogous

to BNs, theMB structurerefers only to the graphical structure while the MB (model) refers to both
the structure and a corresponding set of parameters.

Figure 3: Example of a Markov blanket. The Markov blanket of the n&gléshown stippled)
comprises the set of parents, children and spouses of the node anéc#&eaddy the
shaded nodes. The nodes in the Markov blanket inckydend X3 as parentsXg andXg
as children, ans andX; as spouses ofg. X1, X4, X190 andXp1 are not in the Markov
blanket ofXg.

The MB of a node is noteworthy because it identifies all the variables tretighe node from
the rest of the network. In particular, when interest centers on the dittnbof a specific target
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node, as is the case in classification, the structure and parameters ofeM§Btbf the target node
need be learned.

4.2 Markov Blanket Algorithms

Many approaches for learning general BNs as well as for learning Win data have been de-
scribed in the literature. Here we briefly review algorithms that learn MB ifleiss One of the
earliest described MB learning algorithms is the Grow-Shrink (GS) Mabtanket algorithm that
orders the variables according to the strength of association with the targaises conditional
independence tests to find a reduced set of variables estimated to be thédwautis and Thrun,
1999). Madden (2002a,b) described the Markov Blanket Bayesiassifiéa (MBBC) algorithm
that constructs an approximate MB classifier using a Bayesian scorediuaéng the network.
The algorithm consists of three steps: the first step identifies a set of dasnts and children
of the target, the second step identifies a set of parents of the childatthethird step identifies
dependencies among the children. The MBBC was competitive in terms af apdeaccuracy rel-
ative to Nave Bayes, Tree-Augmented Nave Bayes and generaliBayetworks, when evaluated
on a large set of UCI data sets.

Several MB algorithms have been developed in the context of variabletisel@nd learning
local causal structures around target variables of interest. KolleSahdmi (1996) showed that
the optimal set of variables to predict a target is its MB. They proposediastie entropy-based
procedure (commonly referred to as the KS algorithm) that assumes thatgbeitdluences the
predictor variables and that the variables most strongly associated withrgfe¢ &ae in its MB.
The KS algorithm was not guaranteed to succeed. Tsamardinos andsAl#e®3) showed that for
faithful distributions, the MB of a target variable is exactly the set of stiyrejevant features, and
developed the Incremental Association Markov Blanket (IAMB) to idenitifyT his algorithm has
two stages: a growing phase that adds potential predictor variables t®&mia shrinking phase
that removes the false positives that were added in the first phaseal &atee faithfulness assump-
tion, Tsamardinos et al. (2006) later developed the Min-Max Markov Edaalkgorithm (MMMB)
that first identifies the direct parents and children of the target and #rents of the children using
conditional independence tests. A comparison of the efficiency of @evi@ learning algorithms
are provided by Fu and Desmarais (2008). A recent comprehensirgiev of MB methods of
classification and the local structure learning is provided by Aliferis e2all@a,b).

Several methods for averaging over BNs for prediction or classificatiwa heen described in
the literature, including Dash and Cooper (2002), Dash and Coopeé#d)2tid Hwang and Zhang
(2005). In prior work, we developed a lazy instance-specific algorithemh performs BMA over
LBR models (Visweswaran and Cooper, 2004) and showed that it Heef b&assification perfor-
mance than did model selection. However, to our knowledge, averagargMBs has not been
described in the literature.

5. The Instance-Specific Markov Blanket (ISMB) Algorithm

The goal of the instance-specific Markov blanket (ISMB) algorithm isredjzt well a discrete
target variable of interest. Relative to some model space, BMA is the optimabch&ihmaking

predictions in the sense that it achieves the lowest expected error rasintpg the outcomes of
future instances. Such Bayes optimal predictions involve averagingativerodels in the model
space which is usually computationally intractable. One approach, tesebective model averag-
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ing, has been to approximate the Bayes optimal prediction by averaging oubset ©f the pos-

sible models and has been shown to improve predictive performance (fleetih, 1999; Raftery

et al., 1997; Madigan and Raftery, 1994). The ISMB algorithm perfarefsctive model averaging
and uses a novel heuristic search method to select the models over whielyiag is done. The
instance-specific characteristic of the algorithm arises from the oliservhat the search heuristic
is sensitive to the features of the particular instance at hand.

The model space employed by the ISMB algorithm is the space of BNs ovepthain vari-
ables. In particular, the algorithm considers only MBs of the target nsidege a MB is sufficient
for predicting the target variable. The remainder of this section desdtieelsSMB algorithm in
terms of the (1) model space, (2) scoring functions including parametkestancture priors, and
(3) the search procedure for exploring the space of models. Thentwersion of the algorithm
handles discrete variables.

5.1 Model Space

As mentioned above, the ISMB algorithm learns MBs of the target variathershan entire BNs
over all the variables. Typically, BN structure learning algorithms that léam data induce a BN
structure over all the variables in the domain. The MB of the target varianide extracted from
the learned BN structure by ignoring those nodes and their relations thabamembers of the
MB. The ISMB algorithm modifies the typical BN structure learning algorithm soreonly MBs
of the target node of interest, by using a set of operators that genalgtihe MB structures of the
target variable.

The ISMB algorithm is a search-and-score method that searches inabe sppossible MB
structures. Both, the BN structure learning algorithms and the MB structaritg algorithm
used by ISMB, search in a space of structures that is exponential imithieer of domain variables.
Though the number of MB structures grows more slowly than the number oftBNMtures with
the number of domain variables, the number of MB structures is still expohantiee number of
variables (Visweswaran and Cooper, 2009). Thus, exhaustiverseathis space is infeasible for
domains containing more than a few variables and heuristic search is a@pfgop

5.2 Instance-Specific Bayesian Model Averaging

The objective of the ISMB algorithm is to derive the posterior distribuB¢z' |, x*, D) for the target
variableZ' in the instance at hand, given the values of the other variablesx! and the training
dataD. The ideal computation of the posterior distributfz!|,x',D) by BMA is as follows:

P(Z'|x',D) = EM P(Z'|x',G,D)P(G|D), (5)
Ge

where the sum is taken ovail MB structuresG in the model spacé. The first term on the
right hand sideP(Z'|x!,G, D), is the probabilityP(Z!|x!) computed with a MB that has structure
G and parameterég that are given by Equation 6 below. This parameterizatio® gfroduces
predictions equivalent to those obtained by integrating over all the possibéeneterizations for
G. The second ternR(G|D), is the posterior probability of the MB structu@&given the training
dataD. In essence, Equation 5 states that a conditional probability of infe(5x') is derived by
taking a weighted average of that probability over all MB structures, evttex weight associated
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with a MB structure is the probability of that MB structure given the data. hega,P(Zt|x!) will
have different values for the different sets of models over which tkeaging is carried out.

5.3 Inference in Markov Blankets

ComputingP(Z!|x!, G, D) in Equation 5 involves doing inference in the MB with a specified struc-
ture G. First, the parameters of the MB structu@eare estimated using Bayesian parameters as
given by the following expression (Cooper and Herskovits, 1992kef@ean, 1999):

Ojjk + Nijk
aij + Njj ©)
where (1)Nijk is the number of instances in data 8ein which X; = k and the parents of; have

the state denoted by (2) Nij = S« Nijk, (3) aijk is a parameter prior that can be interpreted as belief
equivalent to having previously (prior to obtainiyseena;jk instances in whiclX; = k and the
parents ofX; have the state denoted pyand (4)ai; = Sy Qijk. The éijk in Equation 6 represent
the expected value of the probabilities that are derived by integratingadiveossible parameter
values. For the ISMB algorithm we satj to 1 for alli, j, andk, as a simple non-informative
parameter prior (Cooper and Herskovits, 1992). Next, the parametdiBas used to compute the
distribution over the target variab® of the instance at hand given the valué®f the remaining
variables in the MB by applying standard BN inference (Neapolitan, 2003).

P(X =kPa = j) =8k =

5.4 Bayesian Scoring of Markov Blankets

In the Bayesian approach, the scoring function is based on the pogtestmbility P(G|D) of the

BN structureG given dataD. This is the second term on the right hand side in Equation 3. The
Bayesian approach treats the structure and parameters as uncertditiegiand incorporates prior
distributions for both. The specification of the structure pRO&) assigns prior probabilities for
the different MB structures. Application of Bayes rule gives:

PIGID) =~ )

Since the denominatdt(D) does not vary with the structure, it simply acts as a normalizing factor
that does not distinguish between different structures. Dropping thengieator yields the follow-
ing Bayesian score:

scordG; D) = P(D|G)P(G). (8)

The second term on the right in Equation 8 is the prior over structures, wWigldirst term is
the marginal likelihood (also know as the integrated likelihood or evidenc&@hwheasures the
goodness of fit of the given structure to the data. The marginal likelihooohigputed as follows:

P(D|G) :/e P(D|66, G)P(8c|G)dég, 9)
G

whereP(D|6g, G) is the likelihood of the data given the B{G,0s) andP(6g|G) is the specified

prior distribution over the possible parameter values for the network steu@u Intuitively, the

marginal likelihood measures the goodness of fit of the structure oveosdlitge values of its

parameters. Note that the marginal likelihood is distinct from the maximum likelitbodgh both
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are computed from the same function: the likelihood of the data given théwsgud@he maximum
likelihood is the maximum value of this function while the marginal likelihood is the iwatiegk (or

the average) value of this function with the integration being carried out w#pect to the prior
P(6g|G).

Equation 9 can be evaluated analytically when the following assumptions hbldhg vari-
ables are discrete and the dBtés a multinomial random sample with no missing values; (2) global
parameter independence, that is, the parameters associated with ealole e independent; (3)
local parameter independence, that is, the parameters associated Wilaeatt state of a variable
are independent; and (4) the parameters’ prior distribution is Dirichlet.ettii above assump-
tions, the closed form fdP(D|G) is given by (Cooper and Herskovits, 1992; Heckerman, 1999):

2 A T(og) (o + Nij)
P(D|G)_igﬂr(0ij+'\'ij)|!]1 Maik) (10)

wherel" denotes the Gamma functions the number of variables i@, q; is the number of joint
states of the parents of variabtgthat occur inD, r; is the number of states & that occur inD,
andaijj = Y ajjk. Also, as previously describebljk is the number of instances in the data where
nodei has value and the parents ofhave the state denoted pyandNi; = 3 Nijk.

The Bayesian score in Equation 7 incorporates both structure and garagriers. The term
P(G) represents the structure prior and is the prior probability assigned to tretrBtdureG. For
the ISMB algorithm, a uniform prior belief over ab is assumed which makes the teR(G) a
constant. Thus?(G|D) is equal toP(D|G) up to a proportionality constant and the Bayesian score
for P(G) is defined simply as the marginal likelihood as follows:

scor€G; D) = P(D|G) O P(G|D). (11)

The parameter priors are incorporated in the marginal likelin®@|G) as is obvious from the
presence of the alpha terms in Equation 10. For the ISMB algorithm we;ged 1 for alli, j, and
kin Equation 10, as a simple non-informative parameter prior, as mentionedpretvieus section.

5.5 Selective Bayesian Model Averaging

Since Equation 5 sums over a very large number of MB structures, it iseastifie to compute
it exactly. Hence, complete model averaging given by Equation 5 is aippated with selective
model averaging, and heuristic search (described in the next sectioggdsto sample the model
space. For a s® of MB structures that have been chosen from the model space bytieseiarch,
selective model averaging estimai&!|x!, G) as:

P(G|D)
P(Z'x!,D) = ;Pztxt,G,D R S e 12
Substituting Equation 11 into Equation 12, we obtain:
scoreG;D) (13)

P(Z'x'. D)~ § P(Zx'.G,D )
( |X7 ) 5%; ( |X>G7 )ZefeRSCOVE(G'?D)

The ISMB algorithm performs selective model averaging and seeks ttelacgood set of
models over which averaging is carried out.
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5.6 Instance-Specific Search

The ISMB algorithm uses a two-phase search to sample the space of MBists1 The first phase
(phase 1) ignores the evidencderom the instance at hand, while searching for MB structures that
best fit the training data. The second phase (phase 2) continues to thedstet of MB structures
obtained from phase 1, but now searches for MB structures thatthavgreatest impact on the
prediction ofZ! for the instance at hand. We now describe in greater detail the two pbbtes
search.

Phase 1 usegreedy hill-climbing searctand accumulates the best model discovered at each
iteration of the search into a st At each iteration of the search, successor models are generated
from the current best model; the best of the successor models is ad@eadrily if this model
is better than current best model; and the remaining successor modeisaeled. Since, no
backtracking is performed, phase 1 search terminates in a local maximum.

Phase 2 usdsest-first searcland adds the best model discovered at each iteration of the search
to the sefR. Unlike greedy hill-climbing search, best-first search holds models thvat hat been
expanded (i.e., whose successors have not be generatepianity queue Q At each iteration of
the search, successor models are generated from the current liEdtand added tQ; after an
iteration the best model froi is added tdR even ifthis model is not better than the current best
model inR. Phase 2 search terminates when a user set criterion is satisfied. Sesmonanther of
successor models that are generated can be quite large, the priorig/Q@igelimited to a capacity
of at mostw models. Thus, i) already containgy models, addition of a new model to it leads to
removal of the worst model from it. The queue allows the algorithm to keep maneup to the
bestw scoring models found so far, and it facilitates limited backtracking to escapérttaxima.

5.7 Search Operators and Scores

The operators used by the ISMB algorithm to traverse the space of M&uwtes are the same as
those used in standard BN structure learning with minor modifications. ThaasthBN structure
learning operators are (1) add an arc between two nodes if one dbexgisito (2) delete an exist-
ing arc, and (3) reverse an existing arc, with the constraint that aatpeis allowed only if it
generates a legal BN structure (Neapolitan, 2003). This constraint simplies that the graph of
the generated BN structure be a DAG. A similar constraint is applicable to treragen of MB
structures, namely, that an operation is considered valid if it producegmbNEB structure of the
target node. This constraint entails that some of the operations be deerakd ias illustrated in
the following examples. With respect to a MB, the nodes can be categorizefivie groups: (1)
the target node, (2) parent nodes of the target, (3) child nodes ofrtet,téd) spousal nodes, which
are parents of the children, and (5) other nodes, which are notfthd ourrent MB. Incoming arcs
into parents or spouses are not part of the MB structure and, hemcatiops that add such arcs
are deemed invalid. Arcs between nodes not in the MB are not part of BhstMcture and, hence
operations that add such arcs are also deemed invalid. Figure 4 ghaasstively the validity of the
MB operators. Furthermore, the application of the delete arc or the eeseroperators may lead
to additional removal of arcs to produce a valid MB structure (see Figtoedn example).

As described in the previous section, the search for MB structuregguedn two sequential
phases. In phase 1 the candidate MB structures are scored with theidageore (phase 1 score)
shown in Equation 11. Since this phase selects the highest scoring MBistrateach iteration, it
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NEIRAES Nfrlr|cls|o] [R]T|Pp s|o
T v |V T v T
P v PV v PlVv
C v'* C v C v'*
S S v S
o o o
(a)Addarc X —» Y (b) Delete arc X — Y (c) Reverse arc X — Y

Figure 4: Constraints on the Markov blanket operators. The nodeatergorized into five groups:
T =target, P = parent, C = child, S = spouse, and O = other (hot in the Matkoket of
T). The cells with check marks indicate valid operations and are the onlytbaeseed
to be considered in generating candidate structures. The cells with aislagtdicate
that the operation is valid only if the resulting graph is acyclic.

Figure 5: An example where the application of an operator leads to additemalval of arcs to
produce a valid Markov blanket structure. Deletion of Are> Xs leads to removal of the
arcX4 — Xs sinceXs is no longer a part of the Markov blanketof Reversal of the same
arc also leads to removal of the aXg — X5 sinceXs is now a parent and is precluded
from having incoming arcs. Also, unle¥g — Xs is removed there will be a cycle.

accumulates MB structures with high marginal likelihood. The purpose of tasepis to identify
a set of MB structures that are highly probable, given @ata

Phase 2 searches for MB structures that change the current medages estimate &(Z!|x!, D)
the most. The notion here is to find viable competing MB structures for makingdhtenior prob-
ability prediction. When no competitive MB structures can be found, theigtied is assumed to
be stable. Phase 2 differs from the phase 1 in two aspects: it usesrbesgdirch and it employs a
different scoring function for evaluating candidate MB structures.
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At the beginning of the phase R contains MB structures that were generated in phase 1.
Successors to the MB structuresRmare generated, scored with the phase 2 score (described in
detail below) and added to the priority queQeAt each iteration of the search, the highest scoring
MB structure inQ is removed fromQ and added t&®; all operations leading to legal MB structures
are applied to it; the successor structures are scored with the phase 2asubthe scored structures
are added t®. Phase 2 search terminates when no MB structu@has a score higher than some
small valuee or when a period of timéhas elapsed, wheeandt are user specified parameters.

In phase 2, the model score is computed as follows. Each successdrddBieG* to be added
to Q is scored based on how much it changes the current estim&@gzbk!, D); this is obtained
by model averaging over the MB structuresRn More change is better. Specifically, we use the
Kullback-Leibler (KL) divergence between the two estimateB@ |x', D), one estimate computed
with and another computed witho®* in the set of models over which the model averaging is
carried out. The KL divergence, or relative entropy, is a quantity whiglasures the difference
between two probability distributions (Cover and Joy, 2006). Thus, thegh score for a candidate
MB structureG* is given by:

f(RG") =KL(pllg) = 3 p(¥Iog .
where
< i P(GID)
P = 2 PEKCD)5  pED)
and
P(GID)

q(x) = P(Z!x!,G,D .
M= g P eDs o T hED)

Using Equation 11 the terfa(G|D) that appears ip(x) andq(x) can be substituted with the term
scorgG; D). Using this substitution, the score fG¥ is:

o _ p(X)
f(RG )—KL(pHQ)zgp(X)IogW, (14)
where
B scorgG;D)
p(X) - gekP(Zt |Xt7 Ga D) ZG’GRSCOI‘QGI; D)
and

scordG;D)
Y GeruG SCOr€G/; D)’

q(x) = ZU P(Z'|X',G,D)
GeRUG*

The pseudocode for the two-phase search procedure used byadjdithm is given in Figure
6.
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ProcedureSearchForl SMB
/I phase 1: greedy hill-climbing search
R+ empty set
BestModek— empty MB (graph containing only the target node)
ScoreBestModelwith phase 1 score
BestScore— phase 1 score @estModel
Add BestModelko R

Do
For every possible operat@ that can be applied tBestModel
Apply O to BestModelo deriveModel
ScoreModelwith phase 1 score
ModelScore— phase 1 score dflodel
If ModelScore> BestScore
BestModek— Model
BestScore— ModelScore
FoundBetterModet True
Endif
Endfor
If FoundBetterModeis True
Add BestModelo R
Else
Terminatedo
Endif
Enddo

/l phase 2: best-first search

Q + empty priority queue with maximum capacity

Generate all successors for the MB structureR and add them tQ
Score all MB structures i@ with phase 2 score

Do while elapsed time< t
BestModek— remove MB structure with highest phase 2 score f@m
BestScore— phase 2 score @estModel
For every possible operat@ that can be applied tBestModel
Apply O to BestModelo deriveModel
ScoreModelwith phase 2 score
Add Modelto Q
Endfor
If BestScore- €
Add BestModeto R
Else
Terminatedo
Endif
Enddo

ReturnR

Figure 6: Pseudocode for the two-phase search procedure ugbd ByMB algorithm. Phase 1
uses greedy hill-climbing search while phase 2 uses best-first search.

5.8 Complexity of the ISMB Algorithm

For one instance, the ISMB algorithm runs@ibdmn time and use®((w+ d)mn) space, where
mis the number of instances in the training datal3at is the number of domain variablasjs the
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total number of iterations of the search in the two phaségthe branching factor) is the maximum
number of successors generated from a MB structurendadhe capacity of the priority queug.

5.8.1 TiME COMPLEXITY

At each iteration of the search, a maximumtoguccessor MB structures are generated. dror
iterations of the search, the number of MB structures generated aretlseih the phase 1 score
is O(bd). Note that both phases of the search require successor MB structinescored with the
phase 1 score.

Since the phase 1 score decomposes over the MB nodes, to compute iitewtyagenerated
MB structure only those MB nodes whose parent nodes have chamgetlbe evaluated. The
number of MB nodes that need to be evaluated is either one (wheadther removeoperator is
applied) or two (when theeverseoperator is applied). Computing the phase 1 score for a MB
node entails estimating the parameters for that node and calculating the mékgiitadod from
those parameters. Estimating the parameters requires one pagsanvetake(mn) time which
determines the time complexity of the phase 1 score.

The phase 2 score computes the effect of a candidate MB structure onotie averaged
estimate of the distribution of the target variable. This requires doing irdertr the target node
in a MB that contains all measured variables which taRés) since at mosh nodes influence the
target distribution and hence at mossets of parameters need be retrieved. Computing both phase
1 and phase 2 scores for a MB structure therefore t&@Ke®) time. Thus, the total time required
by the ISMB algorithm that runs fat iterations of the search and generdi®4B structures at each
iteration isO(bdmn). However, the branching factbris O(n?) andd is O(n) and hence the overall
complexity isO(mrf"). This complexity limits that algorithm’s applicability to data sets of small to
medium dimensionality with up to several hundred variables.

5.8.2 $ACE COMPLEXITY

The ISMB algorithm searches in the space of MB structures using gtatayimbing search for
phase 1 and best-first search with a priority queue of capadity phase 2. Fod iterations of the
search, the maximum number of MB structures that is stor€@lvs+ d). The space required for
each MB structure is linear in the number of its parameters.

For a given MB node, the number of parameters (using a conditionahpildip table) is ex-
ponential in the number of its parent nodes. However, the number of dipin@meters cannot be
greater than the number of instance the training dat®; the remaining parameters for a node
have a single default value. Thus, the space required for the paranoét@riviB node iSO(m).

In a domain withn variables, a MB structure can have uprtmodes and thus requires space of
O(mn). In total, the space required by the ISMB algorithm that rungifiterations of the search is
O((w+d)mn).

6. Evaluation of the ISMB Algorithm

This section describes the evaluation of the ISMB algorithm on a syntheticelzaad several data
sets from the UCI Machine Learning repository (UCI data sets). Wedstribe the preprocessing
of variables, the evaluation measures and the comparison algorithms.

3351



VISWESWARAN AND COOPER

6.1 Preprocessing

Any instance that had one or more missing values was removed from thectlaéa svas done by
Friedman et al. (1997). Sixteen of the 21 UCI data sets have no missing \aideno instances
were removed. In the remaining five data sets, removal of missing valudteres a decrease in
the size of the data set of less than 10%. After the removal of instances wingiislues, the
data sets were evaluated with two stratified applications of 10-fold crdisktian. Hence, each
data set was split twice into 10 stratified training and test folds to create a t@@ltmining and
test folds. All experiments were carried out on the same set of 20 trainmhgeat folds. All target
variables in all the data sets are discrete. However, some of the prediciales are continuous.
All continuous variables were discretized using the method describedyyadand Irani (1993).
The discretization thresholds were determined only from the training sethandpplied to both
the training and test sets.

6.2 Performance Measures

The performance of the ISMB algorithm was evaluated on two measuréscoiaination (i.e., pre-
diction under 0-1 loss) and three probability measures. The discriminatiosumesaused are the
misclassification error and the area under the ROC curve (AUC). For muttgdses, we used the
method described by Hand and Till (2001) for computing the AUC. The ididtation measures
evaluate how well an algorithm differentiates among the various classesl@s of the target vari-
able). The probability measures considered are the logarithmic lossedaggraor, and calibration.
The closer the measure is to zero the better. For the multiclass case, we abtheuteyarithmic
loss as described by Witten and Frank (2005) and the squared emesasbed by Yeung et al.
(2005). For calibration, we used the CAL score that was developedayaBa and Alexandru
(2004) and is based on reliability diagrams. The probability measures intioateell probability
predictions correspond to reality. For example, consider a sbsktest instances in which target
outcome is predicted to be positive with probabilgy If a fraction p of C actually has a positive
outcome, then such performance will contribute toward the probability mesbeing low. A brief
description of the measures is given in Table 1.

Performance measure Range Best score
Misclassification error [0, 1] 0
Area under the ROC curve (AUC]O, 1] 1
Logarithmic loss [0, ) 0
Squared error [0, 1] 0
Calibration score (CAL) [0, 1] 0

Table 1: Brief description of the performance measures used in evaludtibe performance of
the algorithms.

6.3 Comparison Algorithms

The performance of the instance-specific algorithms was compared tdltwveifig methods: nave
Bayes (NB), C4.5 decision tree (DT), logistic regression (LR), nenetvorks (NN),k-Nearest
Neighbor kNN), Lazy Bayesian Rules (LBR), and AdaBoost (AB). The firstrfate representative
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population-wide methods, the next two are examples of instance-specifiogsetind AB is an
ensemble methodkNN is a similarity-based method. The LBR algorithm induces a rule tailored to
the features of the test instance that is then used to classify it, and is anlexarapnodel-based
instance-specific method that performs model selection. For all the sesgracison methods, we
used the implementations in the Weka software package (version 3.4.3) (Wittdfrank, 2005).
We used the default settings provided in Weka for NB, DT, and LR. For Wé&lset the number

of hidden nodes tdn -+ c)/2 wheren is the number of predictor variables aads the number of
classes, the learning rate to 0.3 and the momentum to 0.2 (these are the eéttiagk ;1 Weka) and
the number of iterations to 1000 since this setting resulted in slightly better peniae than the
default setting of 500. FA&NN, we used the Weka setting that identifies the best value(ice., the
number of neighbors) by way of cross validation. For AB, we used WWek@aBoostM1 procedure
with the decision tree J48 as the base classifier and the number of iteratibma 4eg(m), where

n is the number of variables amd is the number of instances in the training data set. We did not
perform variable selection as a pre-processing step before applgiapptive classification methods.
However, DT, LBR and AB perform variable selection as part of the rhie#ning procedure,
while the other the methods do not.

Three versions of the ISMB algorithm were used in the experiments dedcldber in this
section, and they are listed in Table 2. The ISMB algorithm performs setectadel averaging
to estimate the distribution of the target variable of the instance at hand athddsa Section 5.
The ISMB-MS algorithm is anodel selectiowersion of the ISMB algorithm. It chooses the MB
structure that has the highest posterior probability from those foundebhSMB algorithm in the
two-phase search, and uses that single model to estimate the distributiotiasb#tesariable of the
instance at hand. Comparing the ISMB algorithm to the ISMB-MS algorithm nneaghe effect
of approximating selective model averaging by using model selection. Wiedraining data set is
large the performance of the ISMB algorithm and the ISMB-MS algorithm nessirnilar if a single
model with a relatively large posterior probability overwhelms the contributafribe remaining
models during model averaging.

Acronym | Algorithm Phase 1 Phase 2 Prediction
ISMB Instance-specific Is non-instance-  Is instance-specif8y model averaging
Markov blanket specific Uses best-first search over modédsteel
Uses greedy hill-  Uses phase 2 scordn phase 1 and
climbing search phase 2

Uses phase 1 score

ISMB-MS | Instance-specific Same as ISMB Same as ISMB Based on theshighe
Markov blanket - scoring model from
Model Selection models found by ISMB

NISMB | Non-instance- Same as ISMB Is non-instance- By model averaging;
specific Markov specific number of selected
blanket Uses best-first search models is the same

Uses phase 1 score as in ISMB

Table 2: Three versions of the ISMB algorithm.
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The NISMB algorithm is thenon-instance-specifiG.e., population-wide) version of the ISMB
algorithm. Phase 1 of the NISMB algorithm is identical to that of the ISMB algaritm phase 2,
the NISMB algorithm accumulates the same number of MB models as the ISMBtafgaxcept
that the models are identified on the basis of the non-instance-specifie pts®ore. Thus, the
NISMB algorithm averages over the same number of models as the ISMBtafgortComparing
the ISMB algorithm to the NISMB algorithm measures the effect of the instapeeific heuristic
on the performance of model averaging.

6.4 Evaluation on a Synthetic Data Set

This section describes the evaluation of the ISMB algorithm on a small syntieticset. The
synthetic domain consists of five binary variabkesB, C, D, Z whereZ is a deterministic function
of the other variables:

Z=AV(BACAD).

On such a small data set it is possible to perform model averaging over @dllsp@and this es-
tablishes the best possible prediction performance that is attainable usimgdd@&s. The training
and the test sets used in the experiments are shown in Figure 7. The trahsigialates a low
occurrence oA =T (only five out of 69 instances have= T), and the test set consists of three
instances oA = T which are not present in the training set.

Training set Test set
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Figure 7: Training and test data sets derived from the deterministic funétieA\ (BACAD).
The training set contains a total of 69 instances and the test set a totadefitistances
as shown; the test instances are not present in the training set. Thegrsd@tigimu-
lates low prevalence & = T since only five of the 69 instances have this variable-value
combination.

The following algorithms were used in the experiments: (1) a complete modelgageversion
of the ISMB algorithm where model averaging is carried out over all 3x&&ible MB structures,
(2) the ISMB algorithm, (3) the ISMB-MS algorithm, and (4) the NISMB algarith
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The settings used for the ISMB algorithm are as follows:

e Phase 1: As described in Section 5.

e Phase 2. The model score for phase 2 is computed using Equation 14 llaaes on KL-
divergence. Phase 2 uses best-first search with a priority ddevese maximum capacity
wwas set to 1000. Phase 2 search terminates when no MB structQress a phase 2 score
higher thare = 0.001 for 10 consecutive iterations of the search. The maximum period of

running timet for phase 2 was not specified since the algorithm terminated in a reasonable

period of time with the specified value fer

e The predicted distribution for the target varialdeof the test instance is computed using
Equation 13; for each MB structure the parameters are estimated usintjdaciia

The results are given in Table 3. All performance measures exceptiliavere computed for
the test set of three instances. The AUC could not be computed since aiktaaces in the test

set are from the same clags= T. The results from complete model averaging represent the best

achievable expected performance that could be achieved by the ISNditfahy. The ISMB and the
NISMB algorithms that average over a subset of all models had poar@rpance than complete
model averaging but performed better than ISMB-MS. However, theB &Morithm improved over
the performance of the NISMB algorithm. Though both methods averagdlmeame number of
models, the ISMB algorithm uses the instance-specific phase 2 scoredsechbase 2 models
while the ISMB algorithm uses the non-instance-specific phase 1 sconedse both phase 1 and
phase 2 models. The phase 2 models chosen by the ISMB algorithm aré&gilytetifferent for
each test instance in contrast to the NISMB algorithm which selects the sanssnroelspective
of the test instance. These results, while limited in scope, provide suppbththinstance-specific
search for models may be able to choose models that better approximate thatiistof the target
variable of the instance at hand.

Performance measure ISMB ISMB ISMB-MS NISMB
complete model
averaged

Misclassification error 0.0000 0.0000 0.3333 0.3333
AUC - - - -
Logarithmic loss 0.0406 0.0505 0.0596 0.0585
Squared error 0.0684 0.0783 0.0902 0.0862
CAL score 0.3720 0.4092 0.4534 0.4284

Table 3: Results obtained from the training and test sets that are giveruire FigThe AUC could
not be computed since the test set instances are all from a single clasdtsRethe first
column are obtained by model averaging over all 3567 MBs.

Figure 8 plots the estimate &f(Z! = T|x!,D) for each test instanceas it varies with each
addition of a model to the set of models being averaged over. A secovel glats the model score
as the logarithmic posterior probability of the model given the data; this scasures the relative
contribution of the model to the final estimateR{Z! = T|x!, D). Each row in the figure contains a
pair of plots for a single test instance, the plot on the left is obtained fronSM& algorithm and
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the corresponding plot on the right is obtained from the NISMB algorithne. glat for the estimate

of P(Z' = T|x!,D) is shown in black while the plot for the model score is shown in gray. In each
plot, on going from left to right, the estimate BfZ' = T|x!, D) initially fluctuates considerably and
then settles to a stable estimate as the number of models providing the estimateesictedbe
first two test instances the final estimate®@' = T|x', D) obtained from the instance-specific and
non-instance-specific model averaging respectively are very diosiethe ISMB and the NISMB
algorithms predicted the value dfcorrectly as T. In the third test instance, the final estimates of
P(Z' = T|x!, D) are quite different; the ISMB algorithm predicted the valuZ abrrectly as T while

the NISMB algorithm predicted the value gfincorrectly as F.

6.5 Evaluation on UCI Data Sets

We now describe the evaluation of the ISMB algorithm on 21 data sets fror@ieMachine
Learning repository (UCI data sets) (Frank and Asuncion, 2010¢. sBtected UCI data sets have
between four and 60 predictor variables and a single target variableab&ietween two and seven
classes. The size of the data sets, the number and type of predictolegreaid the number of
classes (states) taken by the target variable are given in Table 4 Tioenpemce of the ISMB
algorithm is compared to that of the ISMB-MS and the NISMB algorithms, araital¢hat of the
seven comparison machine learning methods described in Section 6.3.

6.5.1 EXPERIMENTAL DESIGN

The experimental design is as follows:

e For each data set, a total of 10 machine learning algorithms were run: |SAMB-MS,
NISMB, NB, DT, LR, NN, kNN, LBR and AB.

e The data sets used in the experiments are the 21 UCI data sets listed in Table 4.

e Summary statistics were measured using 10-fold stratified cross-validatientdace for a
total of 20 training-test pairs. The summary statistics were computed for nsigidagon
error, the AUC, logarithmic loss, squared error and the CAL score.

e The statistical tests performed were (1) significance testing with the Wilcaioedasamples
signed ranks test, and (2) effect size testing with paired-sarpdes

The settings for the ISMB algorithm are the same as those stated in Sectionthd $gnthetic
data evaluation.

6.5.2 RESULTS

Table 5 gives the average number of models selected by the ISMB and $hB\hIgorithms in
each of the phases for each data set. The average number of modedsnean 17.99 for the iris
data set (with four predictor variables) to 89.38 for the lymphography skttéwith 18 predictor
variables).

Tables 6 to 10 report the means of the misclassification error, the AUC|tlogés loss, squared
error and the CAL score respectively for the ISMB algorithm, its variantstae comparison al-
gorithms. In each table, a row represents a data set and a column reépasa@lgorithm. The last
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Figure 8: Plots of model averaged estimaté(Z' = T|x!, D) that is abbreviated &&(Z = T) and
model score obtained by ISMB and NISMB algorithms on the three test gasasin
Figure 7. Each row represents a single test case with the plot on the teithed from
the ISMB algorithm and the plot on the right obtained from the NISMB algoritfitme
value of the final averaged estimateR{Z' = T|x!, D) is the point where the darker curve
meets the Y-axis on the right.

3357



VISWESWARAN AND COOPER

Data Set # Predictors # Classes # Cases
(cnt + dsc = total)
australian 6+8=14 2 690
breast-cancer 9+0=9 2 683
cleveland 6+9=13 2 296
corral 0+6=6 2 128
crx 6+9=15 2 653
diabetes 8+0=8 2 768
flare 0+10=10 2 1066
german 7+13=20 2 1000
glass2 9+0=9 2 163
glass 9+0=9 7 214
heart 13+0=13 2 270
hepatitis 6+13=19 2 80
iris 4+0=4 3 150
lymphography 0+18=18 4 148
pima 8+0=8 2 768
postoperative 1+7=8 3 87
sonar 60+0=60 2 208
vehicle 18+0=18 4 846
vote 0+16=16 2 435
wine 13+0=13 3 178
Z00 0+16=16 7 101

Table 4: Description of the 21 UCI data sets used in the experiments. Inltmarcon predictors,
the number of continuous (cnt) and discrete (dsc) predictors as wek astéh number of
predictor variables (excluding the target variable) are given. In thenwoon instances,
the numbers of instances used in the experiments are given; this may balegshotal
number of instances in the original UCI data set since instances with misduegswaere
removed.

row in each table gives for each algorithm the overall mean of the spep#igdrmance measure
across all the data sets. From the tables, it is seen that on all five penftgmeeasures, the ISMB
algorithm achieved a better overall average score than each of theatjbathms.

Tables 11 and 12 report results from pair-wise comparisons of therpeahce of the algorithms
on all the data sets that are aimed at assessing the statistical significaribe ambnitude of the
observed differences in the measures. Table 11 reports results fiworsaided Wilcoxon paired-
samples signed ranks test, and Table 12 reports results from a two-gided-pamplestest.

Table 13 reports the running times of the ISMB and the comparison algoritimesexperiments
were performed on a server with 8 GB of RAM and two dual core Pentiwwngssors of 3 GHz
each that were running the Windows XP operating system. The algorithnesregricted to a
single core in all the experiments. Averaged over all the data sets, the t&dkBapproximately 2
minutes for a test instance.

We ran additional experiments on the first seven data sets (see Tablewdjytoesthe sensitivity
of the ISMB algorithm to the parametens(queue capacity) angl(change in Phase 2 score). For
w, we evaluated values of 100, 200, 400, 800, 1600, 3200 and 64t pdrformance on all the
evaluation measures peaked at values of 800 or 1600 and beyondd @@ther improvement was
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Data Set # models # models # models
phase 1 phase 2 phases1and 2
australian 28.55 11.00 39.55
breast-cancer, 18.85 10.15 29.00
cleveland 20.45 11.99 32.44
corral 10.65 15.03 25.68
crx 32.10 13.42 45,52
diabetes 11.65 10.03 21.68
flare 20.75 11.44 32.19
german 22.45 19.23 41.68
glass2 12.05 13.26 25.31
glass 15.80 10.73 26.53
heart 18.50 11.32 29.82
hepatitis 27.45 26.63 54.08
iris 7.25 10.74 17.99
lymphography  51.55 37.83 89.38
pima 40.40 16.97 57.37
postoperative 12.00 10.02 22.02
sonar 11.65 10.09 21.74
vehicle 1.15 21.09 22.24
vote 59.80 18.44 78.24
wine 39.30 10.73 50.03
Z00 45,55 13.53 59.08

Table 5: Average number of models in phases 1 and 2 over which avgriagiarried out by the
ISMB and NISMB algorithms. Both algorithms average over the same numimeodéls
in each phase. Both algorithms select the same models in phase 1 but poteifitétynd
models in phase 2. The number of models in phases 1 and 2 is the sum of this mode
selected in the two phases.

seen. Fok, we evaluated values of 1.0, 0.1, 0.01, 0.001, 0.0001 and 0.00001. effezrpance
improved ag decreased until 0.001 or 0.0001, but did not improve further for smallees ofe.

The results are encouraging in that they show that the ISMB algorithnt nederperformed
on any performance measure when compared to the other learning methadgsimthe variants
of the ISMB algorithm that do model selection and non-instance-specifieha@raging. For
misclassification error, logarithmic loss, squared error and the CAL stteeamean difference is
always negative which denotes that the ISMB algorithm always has & fm@ee on these measures.
For the AUC, the difference is always positive which means that the ISNg&ithm always has
a higher AUC. However, all mean differences are not statistically signifiaithe 0.05 level as
can be seen by the p-values in Tables 11 and 12. The best perforinasa in logarithmic loss
where the ISMB algorithm significantly outperforms all other methods, foltblse squared error
and CAL score where the ISMB algorithm significantly outperforms many efrttethods. On
misclassification error and the AUC, the ISMB algorithm has smaller perfaengains.

Overall, the ISMB algorithm significantly improved on the probabilities of thejateons while
maintaining or slightly improving on discrimination over all other algorithms used irexperi-
ments. The non-instance-specific NISMB algorithm had inferior perfoo@an logarithmic loss
and squared error but similar performance on the other measures wimgaued to the ISMB al-
gorithm. Both the ISMB and the NISMB algorithms average over the same nurhbavdels and
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB

MS
australian 0.1457 0.1457 0.1435 0.1449 0.13831486 0.1848 0.1457 0.1471 0.1453
breast-cancer 0.0256 0.0271 0.0256 0.0256 0.0403 0.0337 0.0373 0.0286 0.02%60264
cleveland 0.1740 0.1791 0.1740_0.1656.2095 0.16550.1993 0.1791_0.165%.1985
corral 0.0000 0.0156 _0.00000.1328 0.0508 0.1289 0.0000.0977 0.1250_0.0000
crx 0.1547 0.1577 0.1485 0.1348 0.1317 0.1424 0.1692 0.148340.D.1308
diabetes 0.2116 0.2129 0.2142 0.2201 0.2194 0.2135 0.2272 0.2201 0.220Z449.2
flare 0.1806 0.1834 0.1825 0.2012 0.1735 0.17@2P054 0.1806 0.1750 0.1730
german 0.2580 0.2585 0.2580 0.2445 0.2845 0.2422980 0.2695 0.2475 0.2818
glass2 0.1503 0.1564 0.1472 0.1595 0.1933 0.1442 0.1442 0.1811%03 0.1503
glass 0.2150 0.2220 0.2196 0.2687 0.2500 0.2547 0.2220 0.2173 0.250820.2
heart 0.1778 0.1778 0.1778 0.1630.1870 0.16300.1963 0.1741_0.163M.1724
hepatitis 0.0938 0.1000 0.1000 0.1375 0.1250 0.1375 0.1688 0.0&8875 0.1040
iris 0.0567 0.0600 0.0633 0.0538.0600 0.0567 0.0633 0.0633 0.058B0600
lymphography 0.1622 0.1486 0.1622 _0.14860.2365 0.2365 0.1622 0.1622 0.1520 0.1622
pima 0.2155 0.21350.2142 0.2214 0.2259 0.2148 0.2389 0.2246 0.2227 0.2224
postoperative| 0.3391 0.3851 0.3391 0.3103 0.2989 0.3736 0.4138 0.333808.3.2111
sonar 0.1635 0.1659 0.1731 0.1490 0.1659 0.1484611 0.1707 0.1490 0.1742
vehicle 0.2600 0.25770.2612 0.3712 0.2843 0.2914 0.2825 0.2766 0.2784 0.2923
vote 0.0453 0.0582 0.0453 0.0927 0.03880733 0.0711 0.0819 0.0927 0.0438
wine 0.0084 0.0084 _0.00560.0112 0.0702 0.0253 0.0169 0.0281 0.0112 0.0617
Zoo 0.0347 0.0396 0.03470.0644 0.0792 0.0594 0.0495 0.0347/0644 0.0658
average 0.1463 0.1511 0.1471 0.1629 0.1647 0.1629 0.1672 0.1546 0.156496.1

Table 6: Mean misclassification errors of different algorithms based efoldCcross-validation
done twice. The bottom row gives the average misclassification erroist. r&mults are
underlined.

both select the same models in phase 1 of the search. In phase 2 of ttie sésle the number of
selected models is the same, the two methods identify potentially different modedsprovides
evidence that the models selected in phase 2 by the ISMB algorithm, usingciexstipecific search,
are able to improve the performance of the ISMB algorithm over the alreadgt performance
obtained by the NISMB algorithm. Of note, LBR, which is an instance-speajfiroach that per-
forms model selection, is tied with ISMB on mean error and comes second3ifi& on AUC, but
it performs more poorly on the probabilistic measures.

7. Discussion

This paper described the development and evaluation of a hew apparaéarning predictive
models that are relevant to a single instance. The instance-specific mettizysleped uses MB
models, carries out selective BMA to predict the outcome of interest faindtance at hand, and
employs an instance-specific heuristic to locate a set of suitable modelsagawser. The essence
of the instance-specific method lies in the model score used in phase 2 eftioh.sThis score is
sensitive to both the posterior probability of the model and the predicted disbritfor the outcome
variable of the instance at hand. Typically, methods that evaluate models witbr@ employ a
score that is sensitive only to the fit of the model to the training data and na# fwéldiction of the
outcome variable.
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB

MS
australian 0.9315 0.9303 0.9313 0.9200 0.9032 0.9187 0.8937 0.9092 0.918567P2.9
breast-cancer 0.9926 0.9922 0.9925 0.9938.9613 0.9879 0.9818 0.9930 0.99839802
cleveland 0.9098 0.9079 0.9084 0.9140.7952 0.9089 0.8781 0.8995 0.91418350
corral 1.0000 0.9997 _1.00000.9252 0.9916 0.9459 1.0000.9827 0.9373 0.9932
crx 0.9303 0.9280 0.9302 0.9301 0.9087 0.9138 0.9002 0.9057 0.930240.9
diabetes 0.8468 0.8468 0.8466 0.8438 0.7991 0.8439 0.8311 0.8148 0.8423 0.8004
flare 0.7289 0.7288 0.7261 0.7550.4916 0.7451 0.6445 0.6797 0.7520 0.7034
german 0.7662 0.7633 0.7641 0.7903 0.6736 0.7839 0.7340 0.744890.D.7911
glass2 0.8703 0.8653 0.8700 0.8769 0.7982 0.8838B483 0.8384 0.8826 0.8744
glass 0.9364 0.9361 0.9361 0.9408 0.8834 0.9101 0.9241 0.9112349.9.9488
heart 0.9055 0.9049 0.9073 0.9108.8239 0.9032 0.8649 0.8791 0.91@68332
hepatitis 0.9225 0.92620.9237 0.9013 0.8203 0.7784 0.8436 0.8792 0.8970 0.9004
iris 0.9890 0.9900 0.9905 0.9938.9629 0.9846 0.9785 0.9886 0.99889808
lymphography 0.9139 0.9156 0.9173 0.9198.7741 0.8571 0.9192 0.9087 0.9175 0.8830
pima 0.8431 0.8424 0.8424 0.8450 0.7977 0.8468237 0.8134 0.8449 0.8284
postoperative| 0.5026 0.4943 0.4538 0.5038.4228 0.4515 0.4113 0.3665 0.50864975
sonar 0.9203 0.9204 0.9217 0.9343 0.8521 0.9275 0.9331 0.913249%.9.9142
vehicle 0.9234 0.9228 _0.92350.8655 0.8761 0.9016 0.8931 0.9032 0.9109 0.8965
vote 0.9875 0.9850 0.9854 0.9684 0.9578 0.9582 0.9871 0.9735 0.966898.9
wine 0.9994 0.9994 0.9994 1.0000.9660 0.9967 0.9994 0.9981 1.00a00000
Zoo 0.9994 0.9992 0.9992 0.9989 0.9565 0.9967 0.9916 0.999989 0.9622
average 0.8962 0.8952 0.8938 0.8919 0.8293 0.8783 0.8705 0.8715 0.894364.8

Table 7: Mean AUCs of different algorithms based on 10-fold crodistaiion done twice. The
bottom row gives the average AUCs. Best results are underlined.

The experimental results demonstrate that the ISMB algorithm improves tioedit the target
variable on a variety of performance measures when compared tolgeyauéation-wide predictive
algorithms. The greatest improvements occur in logarithmic loss and squaoedfellowed by
good improvement in calibration and smaller improvements in misclassificatioregmiahe AUC.
BMA had better performance than Bayesian model selection, and within raeelelging, instance-
specific BMA had better performance than non-instance-specific BMAgihdghe improvement
is not as large as that of model averaging over model selection. The iethperformance by
ISMB may arise from not only the model averaging but also from the vigrigblection that is
performed implicitly by the Markov blanket models. Both these components likglaim the
better performance of ISMB over comparison methods such as NB, LRNiddhat do not perform
variable selection. However, the superiority of ISMB over ISMB-MSgrgis that model averaging
is an important component in the improved performance of the former. We &law evaluated
ISMB on several medical data sets and obtained good results (Viswasetal., 2010).

Several situations are possible where the instance-specific method lek/antage over a
population-wide method. As one example, in a domain where complete BMA islilaaad
model averaging is carried out over all models in the model space, ehdezudstic that selects a
subset of models such as the one used by the instance-specific methperfiisus. Typically, in
real life domains, complete BMA over all models is not tractable due to the engrmamber of
models in the model space. Thus, the ISMB algorithm is useful for selente| averaging where
it identifies a potentially relevant set of models that is predictive of the ingtanlcand. As another
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB
MS
australian 0.3390 0.3456 0.3417 0.4476 0.4091 0.7136 0.4263 0.8627 0.448250.3
breast-cancer| 0.1068 0.1138 0.1083 0.2497 0.2955 0.1485 0.1205 0.2138 0.24977D2.2
cleveland 0.3925 0.4067 0.4021 0.4491 1.3001 0.6500 0.4584 0.8625 0.44904498.7
corral 0.1018 0.1101 0.0989 0.3326 0.1475 0.2753 0.1542 0.01.33430 0.1280
crx 0.3451 0.3564 0.3525 0.4113 0.3783 0.9377 0.4678 0.8747 0.401848.3
diabetes 0.4601 0.4606 0.4604 0.4809 0.5497 0.4588 0.6039 0.502826.49.4478
flare 0.4282 0.4294 0.4314 0.5904 0.4879 0.4042 0.5333 0.58588P.%.4032
german 0.5331 0.5413 0.5377_0.5218.4604 0.5229 0.5801 1.5415 0.5221 0.7981
glass2 0.4238 0.4302 0.4246 0.4532 0.8498 0.41948853 0.4562 0.4447 0.4530
glass 0.7112 0.7239 0.7113 0.7697 2.3005 4.0749 1.3612 0.8685 0.72645D.9
heart 0.3996 0.4069 0.3973 0.4560 0.6920 0.3907 0.6109 0.848360.4.3788
hepatitis 0.2396 0.2517 0.2583 0.4247 0.6122 17.7871 0.3562 0.6253 0.427248.
iris 0.1560 0.1909 0.1620 0.1621 0.5287 0.7579 0.5770 0.2240 0.16271D2.1
lymphography 0.4100 0.4289 0.4430 0.4282 2.9112 21.6371 0.5765 0.7272 0.44082D.
pima 0.4647 0.4657 0.4657 0.4793 0.5268 0.451%873 0.5114 0.4774 0.4880
postoperative|0.7381 0.7776 _0.72870.7953 1.1395 2.8236 1.3339 1.9418 0.7953 0.9453
sonar 0.3573 0.3726 0.3743 0.4573 1.2814 0.5762 0.4170 0.5728 0.455340.4
vehicle 0.5863 0.5900 0.5866 1.8645 2.3842 3.9997 1.0134 1.2590 0.781642.0
vote 0.1393 0.1635 0.1588 0.6804 0.3028 5.5427 0.3171 0.2782 0.562968.1
wine 0.0418 0.0402 0.0367 0.0308.8270 0.9593 0.1032 0.0409 0.03@B0531
Z00 0.1297 0.1202 0.1268 0.1474 1.1102 0.5325 0.0998695 0.1474 0.1130
average 0.3573 0.3679 0.3622 0.5063 0.9759 3.0507 0.5497 0.6654 0.442604.4

Table 8: Mean logarithmic losses of different algorithms based on 10-folssevalidation done
twice. The bottom row gives the average logarithmic losses. Best resalitsderlined.

example, in a domain where features that are relevant are commonly tpisedention of relevant
variables may not be a problem. In such a situation, the variables seleceeg@dpulation-wide
method are likely to be relevant for predicting any future instance and ttenires-specific method
that performs model selection will likely select the same set of variablesfir mew instance.

Improvements in the phase 1 search may make the phase 2 search relaiebntibutory to
the overall performance. We believe that the greedy hill climbing approseth in phase 1 of ISMB
serves as a useful starting point for investigating this algorithm. Noneghslash an approach may
become trapped in local maxima, leading it to miss finding highly probable MBtateg: To
explore this issue a number of search strategies that augment locay gesadh that have been
successfully applied to learning BN structures can be tried, such agilsésearch (Neapolitan,
2003), simulated annealing (Heckerman et al., 1995), tabu lists (Friednman £099), random
restarts to escape the numerous local optima (Heckerman et al., 1995)ptmeal reinsertion
(Moore and Wong, 2003). Algorithms that have been developed sgdlifior learning MBs
such as the Markov Blanket Bayesian Classifier (MBBC) (Maddemn22QMITON (Aliferis et al.,
2003), the Incremental Association Markov Blanket (IAMB) (Tsamardiaod Aliferis, 2003),
and the Min-Max Markov Blanket algorithm (MMMB) (Tsamardinos et al.0@pare additional
candidates for consideration. Investigating the use of such alternativelrsmethods in phase 1 is
an interesting open problem.

There are several open questions regarding the behavior of thedestpacific method. Char-
acterizing theoretically the bias of the selective model averaged predidttbe mstance-specific
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB

MS
australian 0.2054 0.2082 0.2060 0.2234 0.2066 0.2116 0.3062 0.2287 0.22807H.2
breast-cancer 0.0440 0.0449 0.0441 0.0474 0.0731 0.0542 0.0689 0.0484 0.047@22.0
cleveland 0.2433 0.2499 0.2462 0.2553 0.3516 0.2333364 0.2526 0.2553 0.3314
corral 0.0352 0.0463 0.0354 0.2056 0.0887 0.1836 0.003B051 0.1951 0.0787
crx 0.2081 0.2146 0.2087 0.2092 0.19662121 0.2948 0.2363 0.2078 0.1987
diabetes 0.2978 0.2981 0.2979 0.3073 0.3219 0.29783156 0.3315 0.3086 0.2978
flare 0.2619 0.2626 0.2652 0.3145 0.2846 0.2513 0.3203 0.284300.2.2498
german 0.3526 0.3570 0.3555 0.3419 0.4196 0.33®5104 0.3591 0.3433 0.4050
glass2 0.2469 0.2513 0.2468 0.2450 0.3116 0.2409 0.2572 0.260398.R.2572
glass 0.3609 0.3635 0.36050.3823 0.4186 0.4363 0.4075 0.3880 0.3673 0.3857
heart 0.2444 0.2486 0.2420 0.2570 0.3113 0.2398273 0.2611 0.2570 0.2565
hepatitis 0.1410 0.1495 0.1534 0.2079 0.2170 0.2750 0.2579 0.1481 0.209688.1
iris 0.0727 0.0828 0.0753 0.0751 0.1122 0.0942 0.1032 0.1086 0.075834.0
lymphography 0.2391 0.2353 0.2433 0.234@.4162 0.4545 0.2687 0.2650 0.2406 0.2388
pima 0.3009 0.3011 0.3011 0.3065 0.3264 0.29883248 0.3332 0.3060 0.3130
postoperative| 0.4772 0.5044 0.4748 0.4894 0.4525 0.6011 0.7221 0.616890.4€.4512
sonar 0.2349 0.2391 0.2369 0.2411 0.2887 0.2222764 0.2402 0.2405 0.2614
vehicle 0.3471 0.3481 0.34700.5805 0.4171 0.4109 0.4672 0.3934 0.4059 0.3815
vote 0.0788 0.0903 0.0810 0.1681 0.07@B81461 0.1172 0.1293 0.1529 0.0911
wine 0.0183 0.0158 0.01420.0191 0.1268 0.0503 0.0213 0.0407 0.0191 0.0255
Z00 0.0612 0.0652 0.0630 0.0860 0.1415 0.0991 0.0568 0.02.0860 0.0877
average 0.2129 0.2179 0.2142 0.2475 0.2644 0.2547 0.2745 0.2415 0.23529D.2

Table 9: Mean squared errors of different algorithms based onlii@Gfoss-validation done twice.
The bottom row gives the average squared errors. Best resultadedined.

method is an open problem. In contrast, the bias of selective BMA over mtidglsire chosen
randomly is low. However, the variance of selective BMA over models tteatlosen randomly is
likely to be much larger than the variance of selective BMA over models chiogé¢he instance-
specific method which is constrained to prefer models that are good fit todainéntyr data. The
results here support that as a practical matter ISMB is attaining a gooccbddatween bias and
variance.

The experimental work presented in this paper is a first step in exploringtility of the
instance-specific framework, and several directions of future wiakpassible. The computation
of the phase 2 score (see Equation 14) requires a dissimilarity metric to conmgapredictive
distributions of the target variable in candidate MB structures. The dumgiementation of the
ISMB algorithm uses KL divergence as the dissimilarity metric. The experirheedalts indicate
that KL divergence optimizes most logarithmic loss and the largest improvempetformance is
observed on this measure. Alternative dissimilarity metrics that may optimize athiermance
measures are worth exploring.
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB

MS
australian 0.0470 0.0459 0.0454 0.0775 0.0463 0.0480526 0.1423 0.0817 0.0454
breast-cancer 0.0146 0.0146 0.0144 0.0200 0.0261 0.0155 0.001@299 0.0200 0.0210
cleveland 0.0497 0.0630 0.0569 0.0930 0.0690 0.029H432 0.1543 0.0930 0.0632
corral 0.0583 0.0656 0.0561 0.0470 0.0505 0.0473 0.0162 0.010368 0.0516
crx 0.0452 0.0518 0.0503 0.0711 0.0440 0.03@4722 0.1354 0.0689 0.0430
diabetes 0.0403 0.0401 0.0411 0.0618 0.0633 0.0433 0.0813 0.066290.®.0400
flare 0.0551 0.0546 0.0562 0.1260 0.0467 0.0414 0.0762 0.10000D.@.0404
german 0.0684 0.0696 0.0699 0.0625 0.1038 0.0504€547 0.2363 0.0645 0.0942
glass2 0.0359 0.0395 0.0373 0.0644 0.0386 0.032P482 0.0561 0.0569 0.0349
glass 0.0188 0.0189 _0.01860.0282 0.0223 0.0262 0.0258 0.0246 0.0241 0.0232
heart 0.0498 0.0585 0.0513 0.0913 0.0641 0.0320624 0.1385 0.0913 0.0524
hepatitis 0.0422 0.0294 0.0381 0.0488 0.0306 0.0462 0.000492 0.0466 0.0288
iris 0.0110 0.0115 0.0114 0.0132 0.0188 0.0142 0.0219 0.0205 0.013244.0
lymphography 0.0226 0.0259 0.0256 0.0326 0.0279 0.0863 0.0272 0.0512 0.035269.0
pima 0.0532 0.0539 0.0539 0.0596 0.0660 0.04@4€960 0.0805 0.0586 0.0588
postoperative| 0.0404 0.0358 0.0438 0.0436 0.0450 0.0707 0.0844 0.1175 0.0436 0.0430
sonar 0.0437 0.0656 0.0643 0.1042 0.0591 0.0814 0.0503 0.1336 0.104538.0
vehicle 0.0479 0.0481 0.0480 0.1272 0.0654 0.0632 0.0567 0.0984 0.069848.0
vote 0.0247 0.0285 0.0306 0.0722 0.02270520 0.0603 0.0346 0.0658 0.0235
wine 0.0062 0.00430.0054 0.0083 0.0247 0.0154 0.0256 0.0133 0.0083 0.0103
Zoo 0.0065 0.0067 0.0069 0.0078 0.0094 0.0055 0.0028075 0.0078 0.0067
average 0.0372 0.0396 0.0393 0.0600 0.0450 0.0419 0.0471 0.0810 0.053398.0

Table 10: Mean CAL scores of different algorithms based on 10-faldszwalidation done twice.
The bottom row gives the average CAL scores. Best results arelineder

Performance |ISMB- NISMB NB DT LR NN kNN LBR AB

measure MS

Misclassification -2.338 -0.776 -2.121 -2.070 -1.181 -3.861 -0.825 -0.36&24.
error 0.019 0.438 0.034 0.038 0.238 <0.001 0.409 0.713 0.085
AUC -2.085 -1.257 -1.511 -4.457 -2.197 -4.029 -4.203 -0.9271983.

0.037 0.209 0.131 0.0010.028 0.001 0.001 0.354 0.001
Logarithmic -3.595 -2.426 -4.280 -4.457 -3.340 -4.254 -4.026 -4.05P213.
loss 0.001 0.015 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Squared error | -3.608 -2.313 -3.975 -3.24 -2.121 -4.127 -3.518 -3.21332.8
0.001 0.021 0.001 0.001 0.034 0.001 0.001 0.001 0.005
CAL score -2.032 -1.867 -4.026 -2.806 -0.063 -4.076 -1.892 -3.543143.
0.042 0.062 0.001 0.005 0.949 0.001 0.058 0.001 0.149

Table 11: Two-sided Wilcoxon paired-samples signed ranks test corgpdwénperformance of
ISMB with other algorithms. For each performance measure the number as tiop
Z statistic and the number at the bottom is the corresponding p-value. Thésficia
negative when ISMB has a lower score on a performance measure thaortipeting
algorithm. On all measures, a negative Z statistic indicates better perforimaisB.
Underlined results indicate p-values of 0.05 or smaller.
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Performance |ISMB- NISMB NB DT LR NN kNN LBR AB

measure MS

Misclassification -0.004 -0.001 -0.021 -0.013 -0.012 -0.019 -0.005 -0.00700®.
error 0.077 0.312 0.014 0.021 0.065 <0.001 0.334 0.289 0.258
AUC -0.001 -0.002 -0.001 -0.104 -0.017 -0.032 -0.023 -0.00102M.

0.077 0.242 0.975<0.001 0.022 <0.001 <0.001 0.932 0.001
Logarithmic | -0.009 -0.004 -0.163 -0.211 -0.215 -0.306 -0.140 -0.07110®.
loss 0.001 0.026 0.005 <0.001 0.006 <0.001 <0.001 <0.001 0.002
Squared error | -0.004 -0.001 -0.044 -0.044 -0.034 -0.062 -0.023 -0.019016.
0.003 0.054 0.002 <0.001 0.009 0.002 <0.001 0.017 0.007
CAL score -0.003 -0.002 -0.033 -0.011 -0.003 -0.047 -0.008 -0.01600D.
0.044 0.058 <0.001 0.018 0.441 <0.001 0.079 0.001 0.237

Table 12: Two-sided paired-samples t test comparing the performan&vié with other algo-
rithms. For each performance measure the number on top is the mean diffbetween
ISMB and the indicated algorithm and the number at the bottom is the cormtisgon
p-value. The mean difference is negative when ISMB has a lower soagerformance
measure than the competing algorithm. On all measures, a negative meaendifer
indicates better performance by ISMB. Underlined results indicate psafi8.05 or
smaller.

Algorithm | Average running time
NB < 1second
DT < 1 second
LR < 1 second
NN < 1 second
kNN < 1 second
LBR ~ 1 second
AB < 1second
ISMB ~ 2 minutes

Table 13: Approximate running times of the various algorithms. For eachitdggrthe time
shown is the average running time over all the UCI data sets. For the instpaciic
algorithms LBR and ISMB the reported running time is for a single test instavitiée
for the other algorithms the reported running time is over all test instances.
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