Journal of Machine Learning Research 11 (2010) 3371-3408 Submitted 5/10; Published 12/10

Stacked Denoising Autoencoders: Learning Useful Representatioms
a Deep Network with a Local Denoising Criterion

Pascal Vincent PASCAL.VINCENT @UMONTREAL .CA
Département d’informatique et de recherchemtionnelle

Universie de Montéal

2920, chemin de la Tour

Montréal, Qebec, H3T 1J8, Canada

Hugo Larochelle LAROCHEH @CS.TORONTO.EDU
Department of Computer Science

University of Toronto

10 King's College Road

Toronto, Ontario, M5S 3G4, Canada

Isabelle Lajoie ISABELLE .LAJOIE .1@UMONTREAL .CA
Yoshua Bengio YOSHUA.BENGIO @UMONTREAL .CA
Pierre-Antoine Manzagol PIERRE-ANTOINE .MANZAGOL @UMONTREAL .CA

Département d’informatique et de rechercheémgionnelle
Universié de Montéal

2920, chemin de la Tour

Montréal, Quebec, H3T 1J8, Canada

Editor: Léon Bottou

Abstract

We explore an original strategy for building deep netwobesed on stacking layers dénoising
autoencodersvhich are trained locally to denoise corrupted versiondeirtinputs. The resulting
algorithm is a straightforward variation on the stackingoodinary autoencoders. It is however
shown on a benchmark of classification problems to yieldiaamtly lower classification error,
thus bridging the performance gap with deep belief netw(DEN), and in several cases surpass-
ing it. Higher level representations learnt in this purehsupervised fashion also help boost the
performance of subsequent SVM classifiers. Qualitativeeexpents show that, contrary to ordi-
nary autoencoders, denoising autoencoders are able toGednor-like edge detectors from natural
image patches and larger stroke detectors from digit imagas work clearly establishes the value
of using a denoising criterion as a tractable unsuperviggetctve to guide the learning of useful
higher level representations.

Keywords: deep learning, unsupervised feature learning, deep bedisforks, autoencoders,
denoising

1. Introduction

It has been a long held belief in the field of neural network researchhéatomposition oseveral
levels of nonlinearitywould be key to efficiently model complex relationships between variables
and to achieve better generalization performance on difficult recognitsis {#cClelland et al.,
1986; Hinton, 1989; Utgoff and Stracuzzi, 2002). This viewpoint is nad&d in part by knowledge

(©2010 Pascal Vincent, Hugo Larochelle, Isabelle Lajoie hdasBengio and Pierre-Antoine Manzagol.

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

of the layered architecture of regions of the human brain such as the e@tex, and in part by a
body of theoretical arguments in its favorgstad, 1986; Bistad and Goldmann, 1991; Bengio and
LeCun, 2007; Bengio, 2009). Yet, looking back at the history of multilaygural networks, their
problematic non-convex optimization has for a long time prevented reapingpleeted benefits
(Bengio et al., 2007; Bengio, 2009) of going beyond one or two hiddgersd Consequently
much of machine learning research has seen progress in shallow aroki$eslowing for convex
optimization, while the difficult problem of learning in deep networks was leftrchnt.

The recent revival of interest in suclieep architecturess due to the discovery of novel ap-
proaches (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Bengilo, 2007; Ranzato et al.,
2007; Lee et al., 2008) that proved successful at learning theimedess. Several alternative tech-
nigues and refinements have been suggested since the seminal wodpdretief networks (DBN)
by Hinton et al. (2006) and Hinton and Salakhutdinov (2006). All appearever to build on the
same principle that we may summarize as follows:

e Training a deep network to directly optimize only the supervised objective@fast (for ex-
ample the log probability of correct classification) by gradient descemtirgfdrom random
initialized parameters, does not work very well.

e What worksmuchbetter is to initially use docal unsupervised criterioto (pre)train each
layer in turn, with the goal of learning to produce a uséfgher-level representatidinom the
lower-level representation output by the previous layer. From this sggrtimt on, gradient
descent on the supervised objective leads to much better solutions in tegasesélization
performance.

Deep layered networks trained in this fashion have been shown empiricadlyotd getting
stuck in the kind of poor solutions one typically reaches with only random inititidins. See
Erhan et al. (2010) for an in depth empirical study and discussiondieggapossible explanations
for the phenomenon.

In addition to the supervised criterion relevant to the task, what appedss key is using an
additionalunsupervised criterioto guide the learning at each layer. In this sense, these techniques
bear much in common with the semi-supervised learning approach, exceghigyhare useful even
in the scenario where all examples are labeled, exploiting the input paré ofaia to regularize,
thus approaching better minima of generalization error (Erhan et al., 2010).

There is yet no clear understanding of what constitutes “good” reptatons for initializing
deep architectures or what explicit unsupervised criteria may best theddearning. We know
but a few algorithms that work well for this purpose, beginning with restligeltzmann machines
(RBMs) (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Lee et @08 and autoencoders
(Bengio et al., 2007; Ranzato et al., 2007), but also semi-superviseddeinly (Weston et al.,
2008) and kernel PCA (Cho and Saul, 2010).

It is worth mentioning here that RBMs (Hinton, 2002; Smolensky, 1986) tzasic classical
autoencoders are very similar in their functional form, although their irgéapon and the pro-
cedures used for training them are quite different. More specificallydéterministic function
that maps from input tonean hidden representatipdetailed below in Section 2.2, is the same for
both models. One important difference is that deterministic autoencodesileothateal valued

1. There is a notable exception to this in the more specialized convolutiomankearchitecture of LeCun et al. (1989).

3372

STACKED DENOISINGAUTOENCODERS

meanas their hidden representation whereas stochastic RBMs sarbpiarg hidden representa-
tion from that mean. However, after their initial pretraining, the way layéRRBMSs are typically
used in practice when stacked in a deep neural network is by propagfadise real-valued means
(Hinton et al., 2006; Hinton and Salakhutdinov, 2006). This is more in line withd#terministic
autoencoder interpretation. Note also that reconstruction error oftaaraxoder can be seen as an
approximation of the log-likelihood gradient in an RBM, in a way that is similar tcajhygroxima-
tion made by using the Contrastive Divergence updates for RBMs (BemgidDelalleau, 2009).
It is thus not surprising that initializing a deep network by stacking autadersoyields almost as
good a classification performance as when stacking RBMs (Bengio eDal7; Rarochelle et al.,
2009a). But why is it onlyalmostas good? An initial motivation of the research presented here was
to find a way to bridge that performance gap.

With the autoencoder paradigm in mind, we began an inquiry into the questiahaif can
shape a good, useful representation. We were looking for undapdniearning principles likely to
lead to the learning of feature detectors that detect important structureiirptitepatterns.

Section 2 walks the reader along the lines of our reasoning. Starting f@sirtiple intuitive
notion of preserving information, we present a generalized formulatitmeaflassical autoencoder,
before highlighting its limitations. This leads us in Section 3 to motivate an alterrdgiveising
criterion, and derive thdenoising autoencodenodel, for which we also give a possible intuitive
geometric interpretation. A closer look at the considered noise types willalh@m us to derive a
further extension of the base model. Section 4 discusses related prepwistis and approaches.
Section 5 presents experiments that qualitatively study the feature deteetwrtsby a single-layer
denoising autoencoder under various conditions. Section 6 descxipesmeents with multi-layer
architectures obtained by stacking denoising autoencoders and cartiparelassification perfor-
mance with other state-of-the-art models. Section 7 is an attempt at turnihgdt@lenoising)
autoencoders into practical generative models, to allow for a qualitativga&ason of generated
samples with DBNs. Section 8 summarizes our findings and concludes dkir wor

1.1 Notation

We will be using the following notation throughout the article:
e Random variables are written in upper case, for examfle,

e |f X is a random vector, then iljéh componentwill be notedX;.

e Ordinary vectors are written in lowercase bold. For example, a realizat®mnamdom vector
X may be writterx. Vectors are considered column vectors.

e Matrices are written in uppercase bold (eW). | denotes the identity matrix.

e The transpose of a vectaror a matrixW is writtenx” or W' (notx’ or W/ which may be
used to refer to an entirely different vector or matrix).

e We use lower casp andq to denote both probability density functions or probability mass
functions according to context.

e Let X andY two random variables with marginal probabilip(X) and p(Y). Their joint
probability is writtenp(X,Y) and the conditionap(X|Y).

e We may use the following common shorthands when unambigupus) for p(X = x);
p(X|y) for p(X|Y =y) (denoting a conditional distribution) amix|y) for p(X = x|Y =vy).

3373

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

e f, g, h, will be used for ordinary functions.

e Expectation (discrete casgijs probability mass)Eyx) [f(X)] = ¥, p(X = x) f(x).
e Expectation (continuous casejs probability density) Eyx, [f(X)] = J p(x) f (x)dx.
e Entropy or differential entropyiH(X) = IH(p) = Ex)[—log p(X)].

e Conditional entropylH(X[Y) = Epx v)[—log p(X]Y)].

e Kullback-Leibler divergencelDk (p||q) = Epx)[log %].

e Cross-entropyH(p||q) = Epx)[—logq(X)] = H(p) + Dk (p[|9)-
e Mutual information:I(X;Y) = H(X) — H(X[Y).
e Sigmoid:s(x) = 1+t~ ands(x) = (s(x1),...,5(Xq))".

e Bernoulli distribution with meap: B(). By extension for vector variableX: ~ B(4) means
Vi, X ~ B().

1.2 General setup

We consider the typical supervised learning setup with a training setioput, target) pair®, =
{(x® t@y . (x(M M)}, that we suppose to be an i.i.d. sample fromuaknown distribution
q(X, T) with corresponding marginatg X) andq(T). We denoteg®(X, T) andg®(X) the empirical
distributions defined by the samplesD. X is ad-dimensional random vector (typically IR¢ or
in [0,1]9).

In this work we are primarily concerned with finding a new, higher-levetesentatiory of X.
Y is ad’-dimensional random vector (typically IR? or in [0,1]%). If d’ > d we will talk of an
over-completeepresentation, whereas it will be termeduamler-completeepresentation ifl’ < d.
Y may be linked toX by a deterministic or stochastic mappia@’|X; 8) parameterized by a vector
of parameter§.

2. What Makes a Good Representation? From Mutual Information o Autoencoders

From the outset we can give aperational definitiorof a “good” representation as one that will
eventually bausefulfor addressing tasks of interest, in the sense that it will help the systeikiyquic
achieve higher performance on those tasks than if it hadn't first ldaiméorm the representa-
tion. Based on the objective measure typically used to assess algorittormpante, this might be
phrased as “A good representation is one that will yield a better perfororasgifier”. Final classi-
fication performance will indeed typically be used to objectively comparerithgas. However, if
a lesson is to be learnt from the recent breakthroughs in deep netawrikg techniques, it is that
the error signal from a single narrowly defined classification task shratlde the only nor primary
criterion used taguidethe learning of representations. First because it has been showinexipe
tally that beginning by optimizing an unsupervised criterion, oblivious of geeific classification
problem, can actually greatly help in eventually achieving superior perforentor that classifica-
tion problem. Second it can be argued that the capacity of humans to quatddyne proficient in
new tasks builds on much of what they have leanr to being faced with that task.

In this section, we begin with the simple notion of retaining information and pssdgogformally
introduce the traditionadutoencodeparadigm from this more general vantage point.

3374

STACKED DENOISINGAUTOENCODERS

2.1 Retaining Information about the Input

We are interested in learning a (possibly stochastic) mapping from Kpata novel representa-
tion Y. To make this more precise, let us restrict ourselves to parameterized gsgEMX) =
q(Y|X;8) with parameter$® that we want to learn.

One natural criterion that we may expect any goegresentatiorto meet, at least to some
degree, is to retain a significant amount of information aboutiripat It can be expressed in
information-theoretic terms as maximizing the mutual informalioft Y') between an input random
variableX and its higher level representatign This is thenfomax principleput forward by Linsker
(1989).

Mutual information can be decomposed into an entropy and a conditionapgrgrm in two
different ways. A first possible decompositionliis<;Y) = IH(Y) — IH(Y|X) which lead Bell and
Sejnowski (1995) to their infomax approach to Independent Compakalysis. Here we will
start from another decompositiob(X;Y) = IH(X) — H(X|Y). Since observed input comes from
an unknown distributioig(X) on which® has no influence, this maké$(X) an unknown constant.
Thus the infomax principle reduces to:

argmaxi(X;Y) argmax—IH(X|Y)
C C

= argemaﬂq(xy) [logq(X|Y)].

Now for any distributionp(X|Y) we will have

Eqx,v)[10g p(X[Y)] < Eqx.y)[logq(X[Y)], (1)

—H(X|Y)

as can easily be shown starting from the property that for any two distritsuti@andq we have
D1 (all p) > 0, and in particulaDk. (A(X[Y = y)|[p(X]Y =y)) > 0.
Let us consider a parametric distributi@X|Y;8’), parameterized b§’, and the following
optimization:
maxZy(x ve)[log P(X[Y:6')].

From Equation 1, we see that this corresponds to maximizing a lower bountHdX |Y) and thus
on the mutual information. We would end up maximizing th@ctmutual information provided
30’ s.t. q(X]Y) = p(X|Y; 0').

If, as is done in infomax ICA, we further restrict ourselves to a determiniséipping fromX to
Y, that is, representationis to be computed by a parameterized funcoa fg(X) or equivalently
q(Y|X;8) = d(Y — fa(X)) (whered denotes Dirac-delta), then this optimization can be written:

MaxEqx) log p(X|Y = fo(X);).
This again corresponds to maximizing a lower bound on the mutual information.
Sinceq(X) is unknown, but we have samples from it, the empirical average over thenga

samples can be used instead as an unbiased estimate (i.e., reBlagingy Eqx)):

MaxEqp(x) log p(X]Y = fg(X);8")]. 2)

3375

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

We will see in the next section that this equation corresponds tetloastruction errocriterion
used to trairautoencoders

2.2 Traditional Autoencoders (AE)

Here we briefly specify the traditionalitoencode(AE)? framework and its terminology, based on
fg andp(X|Y;0') introduced above.

Encoder: The deterministic mappingp that transforms an input vectarinto hidden represen-
tationy is called theencoder. Its typical form is an affine mapping followed by a nonlinearity:

fo(X) = S(Wx +b).

Its parameter set i8 = {W,b}, whereW is ad’ x d weight matrix ancb is an offset vector of
dimensionalityd’.

Decoder: The resulting hidden representatignis then mapped back to a reconstructed
dimensional vectorz in input spacez = gy (). This mappingg is called thedecoder Its typical
form is again an affine mapping optionally followed by a squashing nonfligethat is, either
e (y) =W’y +Db"or

ge (y) =S(W'y+b'), (3)

with appropriately sized parametdé's= {W’',b’}.

In generalz is not to be interpreted as an exact reconstructiox, dfut rather in probabilistic
terms as the parameters (typically the mean) of a distribyi{df}Z = z) that may generate with
high probability. We have thus completed the specificatiop(&f|Y;6’) from the previous section
asp(X|Y =y) = p(X|Z=ge(y)). This yields an associated reconstruction error to be optimized:

L(x,2) O —logp(x|2). @)
Common choices fop(x|z) and associated loss functitux, z) include:

e For real-valued, thatis,x € IR%: X|z ~ A(z,02), that is, X[z ~ A((zj,0?).
This yieldsL(x,z) = L»(x,z) = C(0?)||x — z||> whereC(o?) denotes a constant that depends
only ono? and that can be ignored for the optimization. This issheared errorobjective
found in most traditional autoencoders. In this setting, due to the Gaussgapratation, it
is more naturahotto use a squashing nonlinearity in the decoder.

e For binaryx, thatis,x € {0,1}9: X|z~ B(z), that is,Xj|z ~ B(z;).
In this case, the decoder needs to produzed0,1]?. So a squashing nonlinearity such as a
sigmoid s will typically be used in the decoder. This yields(x,z) = Liy(Xx,2z) =
—¥ilXjlogzj+ (1—x;)log(1—z;)] = H(B(x)||B(z)) which is termed theross-entropy loss
because it is seen as the cross-entropy between two independent miatdtiernoullis, the
first with mearnx and the other with mean This loss can also be used wheis not strictly
binary but rathex < [0, 1]9.

2. Note: AutoEncoderg¢AE) are also often calledutoAssociator§AA) in the literature. The shorter autoencoder term
was preferred in this work, as we beliemecodingoetter conveys the idea of producing a novel useful representation.
Similarly, what we call Stacked Auto Encoders (SAE) has also been @iietked AutoAssociators (SAA).

3376

STACKED DENOISINGAUTOENCODERS

Note that in the general autoencoder framework, we may use other fbpasameterized func-
tions for the encoder or decoder, and other suitable choices of thaulost#oin (corresponding to a
differentp(X|z)). In particular, we investigated the usefulness of a more complex enchutiation
in Larochelle, Erhan, and Vincent (2009b). For the experiments in thgept work however, we
will restrict ourselves to the two usual forms detailed above, that isffame+sigmoid encoder
and eithemffine decoder with squared error lossor affine+sigmoid decoder with cross-entropy
loss A further constraint that can optionally be imposed, and that furthexlpls the workings of
RBMs, is havingied weightsetweendV andW, in effect definingV’ asw’ =WT.

Autoencoder training consists in minimizing the reconstruction error, thatisying the fol-
lowing optimization:

arggpinIqu(X>[L(X,Z(X))],
where we wroteZ(X) to emphasize the fact that is a deterministic function oK, sinceZ is
obtained by composition of deterministic encoding and decoding.

Making this explicit and using our definition of loksfrom Equation 4 this can be rewritten as:

arg g?aXEqO(X) llogp(X|Z = go (fe(X)))],

or equivalently

arg ?aﬂqo(x) logp(X]Y = fg(X);8)].
We see that this last line corresponds to Equation 2, that is, the maximizatidowéabound on
the mutual information betweexiandy.

It can thus be said thataining an autoencoder to minimize reconstruction error amounts
to maximizing a lower bound on the mutual information between inputX and learnt repre-
sentationY. Intuitively, if a representation allows a good reconstruction of its input, @mehat
it has retained much of the information that was present in that input.

2.3 Merely Retaining Information is Not Enough

The criterion that representatidhshould retain information about inpXtis not by itself sufficient
to yield a useful representation. Indeed mutual information can be triviallimized by setting
Y = X. Similarly, an ordinary autoencoder whefas of the same dimensionality &s(or larger)

can achieve perfect reconstruction simply by learning an identity magpigthout any other
constraints, this criterion alone is unlikely to lead to the discovery of a moffelus@resentation
than the input.

Thus further constraints need to be applied to attempt to separate usefatatibn (to be re-
tained) from noise (to be discarded). This will naturally translate to nom4szonstruction error.
The traditional approach to autoencoders uséstdeneckto produce arunder-completeepre-
sentation where’ < d. The resulting lower-dimensionl can thus be seen adassy compressed
representatiorof X. When using affine encoder and decoder without any nonlinearity aqdaaed
error loss, the autoencoder essentially performs principal componalyseg (PCA) as showed by

3. More precisely, it suffices thato f be the identity to obtain zero reconstruction error. &et d’ if we had a linear
encoder and decoder this would be achieved for any invertible matrby settingW’ = W1, Now there is a
sigmoid nonlinearity in the encoder, but it is possible to stay in the linear paresigmoid with small enougv.

3377

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Baldi and Hornik (1989%. When a nonlinearity such as a sigmoid is used in the encoder, things
become a little more complicated: obtaining the PCA subspace is a likely possibilityléBsdand
Kamp, 1988) since it is possible to stay in the linear regime of the sigmoid, hualalsgnot the only

one (Japkowicz et al., 2000). Also when using a cross-entropy ltssrridnan a squared error the
optimization objective is no longer the same as that of PCA and will likely leararéifit features.
The use of “tied weights” can also change the solution: forcing encatdacoder matrices to

be symmetric and thus have the same scale can make it harder for the elocstdgrin the linear
regime of its nonlinearity without paying a high price in reconstruction error.

Alternatively it is also conceivable to impose dndifferent constraints than that of a lower
dimensionality. In particular the possibility of usimyer-completdi.e., higher dimensional than
the input) butsparserepresentations has received much attention lately. Interest in spprse re
sentations is inspired in part by evidence that neural activity in the braimsé¢o be sparse and
has burgeoned following the seminal work of Olshausen and Field (I#32§)arse codingOther
motivations for sparse representations include the ability to handle eéflsctigriable-size repre-
sentations (counting only the non-zeros), and the fact that dense esseprrepresentations tend
to entangle information (i.e., changing a single aspect of the input yields samtiithanges in all
components of the representation) whereas sparse ones can bieeéxpee easier to interpret and
to use for a subsequent classifier. Various modifications of the traditanaéncoder framework
have been proposed in order to learn sparse representations t@Rahzh, 2007, 2008). These
were shown to extract very useful representations, from which itssipte to build top performing
deep neural network classifiers. A sparse over-complete représaatean be viewed as an alter-
native “compressed” representation: it @plicit straightforward compressibility due to the large
number of zeros rather than an explicit lower dimensionality.

3. Using a Denoising Criterion

We have seen that the reconstruction criterion alone is unable to guatlamtexdraction of useful
features as it can lead to the obvious solution “simply copy the input” or similaihjteresting ones
that trivially maximizes mutual information. One strategy to avoid this phenomertorcanstrain
the representation: the traditional bottleneck and the more recent intarsgarse representations
both follow this strategy.

Here we propose and explore a very different strategy. Rather trestrain the representation,
we change the reconstruction criterion for a both more challenging and imeresting objec-
tive: cleaning partially corrupted input, or in shaenoising In doing so we modify the implicit
definition of a good representation into the followirigr good representation is one that can be
obtained robustly from a corrupted input and that will be useful for redogethe corresponding
clean input”. Two underlying ideas are implicit in this approach:

e Firstitis expected that a higher level representation should be ratie atad robust under
corruptions of the input.

e Second, itis expected that performing the denoising task well requitesrg features that
capture useful structure in the input distribution.

4. More specifically it will find the samsubspaces PCA, but the specific projection directions found will in general
not correspond to the actual principal directions and need not benaontinal.

3378

STACKED DENOISINGAUTOENCODERS

We emphasize here that our goahist the task of denoising per se. RatttEmoising is ad-
vocated and investigated as #&raining criterion for learning to extract useful featuresthat will
constitute better higher level representation. The usefulness of a feprasentation can then be
assessed objectively by measuring the accuracy of a classifier tisdt asenput.

3.1 The Denoising Autoencoder Algorithm

This approach leads to a very simple variant of the basic autoencodeib@esabove. Alenoising
autoencoder (DAEJs trained to reconstruct a clean “repaired” input froracaruptedversion of
it (the specific types of corruptions we consider will be discussed beldw)s is done by first
corrupting the initial inpuk into X by means of a stochastic mappixg- g, (X|x).

Corrupted inputk is then mapped, as with the basic autoencoder, to a hidden representation
y = fg(X) = s(WX + b) from which we reconstruct a = gg/(y). See Figure 1 for a schematic
representation of the procedure. Paramefeasid 6’ are trained to minimize the average recon-
struction error over a training set, that is, to hawes close as possible to thacorruptedinput x.
The key difference is that is now a deterministic function of rather tharnx. As previously, the
considered reconstruction error is either the cross-entropyt|gés, z) = H(‘B(x)||B(z)), with an
affine+sigmoid decoder, or the squared error logx,z) = ||x — z||2, with an affine decoder. Pa-
rameters are initialized at random and then optimized by stochastic gradseeindeNote that each
time a training exampl& is presented, a different corrupted versjoaf it is generated according
to g (X[X).

Note that denoising autoencoders are still minimizing the same reconstructiobdtvgeen a
cleanX and its reconstruction frond. So this still amounts to maximizing a lower bound on the
mutual information between clean inp¥tand representatiovi. The difference is that is now
obtained by applying deterministic mappifigto acorruptedinput. It thus forces the learning of a
far more clever mapping than the identity: one that extracts features @isefidnoising

I—H (X7Z)
-V

-
-
P \

-
-

ROXOOl~* (00000) (00000)

Figure 1: The denoising autoencoder architecture. An examjdestochastically corrupted (via
gp) to X. The autoencoder then maps itytdvia encoderfg) and attempts to reconstruct
X via decodegy, producing reconstruction Reconstruction error is measured by loss
Lu(X,2).

3379

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

3.2 Geometric Interpretation

The process of denoising, that is, mapping a corrupted example backutacarrupted one, can
be given an intuitive geometric interpretation under the so-cafiadifold assumptiofChapelle
et al., 2006), which states that natural high dimensional data concenttagesto a non-linear
low-dimensional manifold. This is illustrated in Figure 2. During denoising trginime learn a
stochastic operatqn(X\f() that maps a corrupted back to its uncorruptef, for example, in the
case of binary data,

X|X ~ B(ge (fa(X))).

Corrupted examples are much more likely to be outside and farther from thiéoldathan the
uncorrupted ones. Thus stochastic opera’(m\f() learns a map that tends to go from lower prob-
ability pointsX to nearby high probability point, on or near the manifold. Note that whinis
farther from the manifoldp(xy)?) should learn to make bigger steps, to reach the manifold. Suc-
cessful denoising implies that the operator maps even far away points tdlaegien close to the
manifold.

The denoising autoencoder can thus be seen as a way to define aradreamifold. In particu-
lar, if we constrain the dimension ¥fto be smaller than the dimensionXf then the intermediate
representatiol = f (X) may be interpreted as a coordinate system for points on the manifold. More
generally, one can think of = f(X) as a representation of which is well suited to capture the
main variations in the data, that is, those along the manifold.

3.3 Types of Corruption Considered

The above principle and technique can potentially be used with any typeraption process. Also
the corruption process is an obvious place where prior knowledgeaittlle, could be easily in-
corporated. But in the present study we set to investigate a technique giesierally applicable. In

Figure 2: Manifold learning perspective. Suppose training dafac¢ncentrate near a low-
dimensional manifold. Corrupted exampleg fpbtained by applying corruption process
ao(X|X) will generally lie farther from the manifold. The model learns WX |X)
to “project them back” (via autoencodgj(fe(-))) onto the manifold. Intermediate rep-
resentationy = fg(X) may be interpreted as a coordinate system for pofhtsn the
manifold.

3380

STACKED DENOISINGAUTOENCODERS

particular we want it to be usable for learning ever higher level reptadens bystackingdenois-
ing autoencoders. Now while prior knowledge on relevant corruptiongsses may be available in
a particular input space (such as images), such prior knowledge witlenatailable for the space
of intermediate-level representations.

We will thus restrict our discussion and experiments to the following simpleiption pro-
cesses:

e Additive isotropicGaussian nois€GS):X|x ~ A(x,a?l);

e Masking noisdMN): a fractionv of the elements ok (chosen at random for each example)
is forced to O;

e Salt-and-pepper nois€SP): a fractiorv of the elements ok (chosen at random for each
example) is set to their minimum or maximum possible value (typically O or 1) acaptdin
a fair coin flip.

Additive Gaussian noise is a very common noise model, and is a natural dboieal val-
ued inputs. Thesalt-and-pepper noiswill also be considered, as it is a natural choice for input
domains which are interpretable as binary or near binary such as bldcltite images or the
representations produced at the hidden layer after a sigmoid squaghatigh.

Much of our work however, both for its inspiration and in experimentsu$es onmasking
noisewhich can be viewed as turning off components considered missing ocigpldeir value
by a default value—that is, a common technique for handling missing vallleafgkmation about
these masked components is thus removed from that particular input patidrme can view the
denoising autoencoder as traineditisin these artificially introduced “blanks”. Also, numerically,
forcing components to zero means that they are totally ignored in the compatatidownstream
neurons.

We draw the reader’s attention to the fact that both salt-and-pepper asldngaoise drasti-
cally corrupt but a fraction of the elements while leaving the others untaudbenoising, that is,
recovering the values of the corrupted elements, will only be possible shtardependencies be-
tween dimensions in high dimensional distributions. Denoising training is thuectegbto capture
these dependencies. The approach probably makes less sensg forwdimensional problems,
at least with these types of corruption.

3.4 Extension: Putting an Emphasis on Corrupted Dimensions

Noise types such amasking noisend salt-and-peppethat erase only a changing subset of the
input’s components while leaving the others untouched suggest a strafgdnifioextension of the
denoising autoencoder criterion. Rather than giving equal weight teetmnstruction of all com-
ponents of the input, we can put amphasi®n the corrupted dimensions. To achieve this we give
a different weightt for the reconstruction error on components that were corrupted3 éarxdhose
that were left untouchedx andp are considered hyperparameters.

For the squared loss this yields

Lz,a(X72)=G< > (Xj—21)2>+l3< > (Xj—21)2)7
J€TR) I£7T%)

where7(X) denotes the indexes of the components tifat were corrupted.

3381

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

And for the cross-entropy loss this yields

LHa(X,2) = a(— Z [leogzj+(1—xj)log(1—zj)]>

jel(x)

(> [xjlogz; +(1—xj)log(1—~ ZJ)])
j

¢J(X)

We call this extensioremphasized denoising autoencadek special case that we cdilll
emphasigs obtained forx = 1, 3 = 0 where we only take into account the error on the prediction
of corrupted elements.

3.5 Stacking Denoising Autoencoders to Build Deep Architectures

Stacking denoising autoencoders to initialize a deep network works in mucartteevsay as stack-
ing RBMs in deep belief networks (Hinton et al., 2006; Hinton and Salakhuid®@®6) or ordinary
autoencoders (Bengio et al., 2007; Ranzato et al., 2007; Larochelle 8009a). Let us specify
that input corruption is only used for the initial denoising-training of eadividual layer, so that
it may learn useful feature extractors. Once the mappintas thus been learnt, it will henceforth
be used omuncorruptedinputs. In particular no corruption is applied to produce the representation
that will serve as clean input for training the next layer. The completeepitoe for learning and
stacking several layers of denoising autoencoders is shown in Figure 3

Once a stack of encoders has thus been built, its highest level outpeseapation can be used
as input to a stand-alone supervised learning algorithm, for example a$ygetor Machine
classifier or a (multi-class) logistic regression. Alternatively, as illustratd€igare 4, a logistic
regression layer can be added on top of the encoders, yieldileg@a neural networkmenable
to supervised learning. The parameters of all layers can then be simuisiyoe-tunedusing a
gradient-based procedure such as stochastic gradient descent.

4. Related Approaches in the Literature

In this section, we briefly review and discuss related prior work alongttiifeerent axes.

4.1 Previous Work on Training Neural Networks for Denoising

The idea of training a multi-layer perceptron using error backpropagati@adenoising task is not
new. The approach was first introduced by LeCun (1987) and Gakihal. (1987) as an alternative
method to learn afauto-)associative memosjmilar to how Hopfield Networks (Hopfield, 1982)
were understood. The networks were trained and tested on binarypagetns, corrupted by
flipping a fraction of input bits chosen at random. Both the model and trajmiagedure in this
precursory work are very similar to the denoising autoencoder weideScOur motivation and
goal are however quite different. The objective of LeCun (1987) twastudy thecapacity of
such a network for memorization tasks, that is, counting how many trainingmattevas able to

5. There are a few minor differences; for example, the use of arsdwror after sigmoid for binary data, while we
tend to use a cross-entropy loss. Also their denoising procedure eomgioing several recurrent passes through the
autoencoder network, as in a recurrent net.

3382

STACKED DENOISINGAUTOENCODERS

. 00
-V)
e I

000 000 (e]e)e)
A A A

fo fo fo

(ele]elele) (ele]ele)e) (ele]ele)e)

Figure 3: Stacking denoising autoencoders. After training a first lexebiding autoencoder (see
Figure 1) its learnt encoding functiofy is used on clean input (left). The resulting
representation is used to train a second level denoising autoencodetejmalbbarn a
second level encoding functio‘réz). From there, the procedure can be repeated (right).

supervised cost

PN

oO)

A \

sup
fS

©0)

3 \
£ \

OO \
A

2
7 ‘\

(CICIC) R

A |

fo !

0000 (]

Target

Figure 4: Fine-tuning of a deep network for classification. After trainirgiaek of encoders as
explained in the previous figure, an output layer is added on top of thie Sthe param-
eters of the whole system are fine-tuned to minimize the error in predicting peevssed
target (e.g., class), by performing gradient descent on a supepaséd

3383

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

correctly recall under these conditions. The work also clearly establisteeusefulness of a non-
linear hidden layer for this. By contrast, our work is motivated by the $eand understanding
of unsupervised pretraining criteria to initialize deep networks. Our prinm@grest is thus in
investigating the ability of the denoising criterion to learn good feature extsgototh which to
initialize a deep network by stacking and composing these feature extrag@fecus on analyzing
the learnt higher-level representations and their effect on the clasgifigoerformance of resulting
deep networks.

Another insightful work that is very much related to the approach advd¢esee is the research
of Seung (1998), in which a recurrent neural network is trained to t&tmporrupted input patterns
using backpropagation through time. Both the work of Seung (1998) andtheCun (1987) and
Gallinari et al. (1987) appear to be inspired by Hopfield-type assoeiatemories (Hopfield, 1982)
in which learnt patterns are conceived as attractive fixed points ofuarest network dynamic.
Seung (1998) contributes a very interesting analysis in terms of contimttpastors, points out the
limitations of regular autoencoding, and advocates the pattern completionstaskadternative to
density estimation for unsupervised learning. Again, it differs form eudysmainly by itsfocus
a) on recurrent networRsnd b) on the image denoising task per se. The latter justifies their use of
prior knowledge of the 2D topology of images, both in the architectural ehafitocal 2D receptive
field connectivity, and in the corruption process that consists in zemihg-square image patch at
a random position. This occlusion by a 2D patch is a special formstiftecturedmasking noise,
where the a-priori known 2D topological structure of images is taken irdowatt. In our research
we deliberately chose not to use topological prior knowledge in our modehnaur corruption
process, so that treame generic proceduraay be applied to learn higher levels of representation
from lower ones, or to other domains for which we have no such topolqgiica knowledge.

More recently Jain and Seung (2008) presented a very interestingieoelssful approach for
image denoising, that consists in layer-wise building of a deep convolutieuail network. Their
algorithm yields comparable or better performance than state-of-theaskibM Random Field and
wavelet methods developed for image denoising. The approach clearlobts in their earlier
work (Seung, 1998) and appears also inspired by more recentckseadeep network pretraining,
including our own group’s (Bengio et al., 2007). But apparently, neifies was initially aware of
the other group’s relevant work on denoising (Vincent et al., 2008;alad Seung, 2008). Again the
focus of Seung (1998) on image denoising per se differs from ourfowus on studying deep net-
work pretraining for classification tasks and results in marked diffeeimcthe actual algorithms.
Specifically, in Jain and Seung (2008) each layer in the stack is traineddonsteuct the original
clean image a little better, which makes sense for image denoising. This camtb&sted with
our approach, in which upper layers are trained to denoise-andstaot whatever representation
they receive from the layer immediately below, rather than to restore the alrigiput image in
one operation. This logically follows from our search for a generic feagxtraction algorithm
for pretraining, where upper level representations will eventually bd tmr a totally different task
such as classification.

6. Note however that a recurrent network can be seen as deep ketitbrthe additional property that all layers share
the same weights.

3384

STACKED DENOISINGAUTOENCODERS

4.2 Training Classifiers with Noisy Inputs

The idea of training a neural network with noisy input (Scalettar and Z&8;von Lehman et al.,
1988)—or training withjitter as it is sometimes called—has been proposed to enhance generaliza-
tion performance for supervised learning tasks (Sietsma and Dow, He®hstrm and Koistinen,
1992; An, 1996). This thread of research is less directly related toradders and denoising than
the studies discussed in the previous section. Itis nevertheless relgftanall, denoising amounts
to using noisy patterns as input with the clean pattern as a supervised a#vgéta rather high di-
mensional one. It has been argued that training with noise is equivalapiptging generalized
Tikhonov regularization (Bishop, 1995). On the surface, this may sesomigest that training with
noisy inputs has a similar effect to training with an L2 weight decay penaltyeealizing the sum
of squared weights), but this view is incorrect. Tikhonov regularizatjgplied tolinear regression
is indeed equivalent to a L2 weight decay penalty (i.e., ridge regres®onjor a non-linear map-
ping such as a neural network, Tikhonov regularization is no longdansgaes (Bishop, 1995). More
importantly, in the non-linear case, the equivalence of noisy training withofi&h regularization
is derived from a Taylor series expansion, and is thus only valid in the limieof small additive
noise. See Grandvalet et al. (1997) for a theoretical study and disouggarding the limitations
of validity for this equivalence. Last but not least, our experimentallteén Section 5.1 clearly
show qualitatively very different results when using denoising auta#ersdi.e., noisy inputs) than
when using regular autoencoders with a L2 weight decay.

Here, we must also mention a well-known technique to improve the generalipatifonmance
of a classifier (neural network or other), which consists in augmentingttigénal training set
with additional distorted inputs, either explicitly (Baird, 1990; Poggio and Yet@92) or virtually
through a modified algorithm (Simard et al., 1992; 8kbpf et al., 1996). For character images
for instance such distortions may include small translations, rotations, ssalimd)shearings of
the image, or even applying a scanner noise model. This technique canretlsegm as training
with noisy corrupted inputs, but with a highly structured corruption predesed omuchprior
knowledge’ As already explained and motivated above, our intent in this work is to deweid
investigate a generally applicable technique, that should also be applicabtertoediate higher
level representations. Thus we intentionally restrict our study to very siggseric corruption
processes that do not incorporate explicit prior knowledge.

We also stress the difference between the approaches we just disdhsseonsist in training a
neural network by optimizing global supervised criterion using noisy inpaind the approach we
investigate in the present work, that is, usinfpeal unsupervised denoising criterion to pretrain
each layer of the netwonkith the goal to learn useful intermediate representations. We shall see
in experimental Section 6.4 that the latter applied to a deep network yields bletteification
performance than the former.

4.3 Pseudo-Likelihood and Dependency Networks

The view of denoising training as “filling in the blanks” that motivated the maskimige and the
extension that puts an emphasis on corrupted dimensions presented im Settican also be re-
lated to the pseudo-likelihood (Besag, 1975) and Dependency NetWedkérman et al., 2000)

7. Clearly, simple Tikhonov regularization cannot achieve the sameiasgravith such prior knowledge based cor-
ruption process. This further illustrates the limitation of the equivalencedsstiraining with noise and Tikhonov
regularization.

3385

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

paradigms. Maximizing pseudo-likelihood instead of likelihood implies replaciedikielihood
term p(X) by the product of conditionalf]®_; p(X|X-). HereX denotes thé" component of
input vector variableéX andX-; denotes all components but tH& Similarly, in the Dependency
Network approach of Heckerman et al. (2000) one ledrosnditional distributions, each trained to
predict componeritgiven (a subset of) all other components. This is in effect wharaphasized
denoising autoencodewvith a masking noise that masks but one input componest é), and a
full emphasiqa = 1, 3 = 0), is trained to do. More specifically, for binary variables it will learn
to predictp(X = 1|X.i); and when using squared error for real-valued variables it will learn to
predictE[X;|X-;] assuming |X.i ~ A (E[X|X-i],0°). Note that with denoising autoencoders,dll
conditional distributions are constrainedstoare common parametemshich define the mapping to
and from hidden representatiodin Also when the emphasis is not fully put on the corrupted com-
ponents 8 > 0) some of the network’s capacity will be devoted to encoding/decodingruuped
components.

A more important difference can be appreciated by considering the folljpgganario: What
happens if components of the input come in identical pairs? In that caséitiooal distribution
p(Xi|X-;) can simply learn to replicate the other component of the pair, thus not capanynother
potentially useful dependency. Now for dependency networks thist exanario is forbidden by
the formal requirement that no input configuration may have zero pildlaBut a similar problem
may occur in practice if the components in a pair are not identical but vehiyhamrrelated. By
contrast, denoising autoencoders can and will typically be trained with erl&mactionv of cor-
rupted components, so that reliable prediction of a component cannaxelysively on a single
other component.

5. Experiments on Single Denoising Autoencoders: Qualitate Evaluation of
Learned Feature Detectors

A first series of experiments was carried out using single denoisingraadders, that is, without
any stacking nor supervised fine tuning. The goal was to examine qua&liyatine kind of feature
detectors learnt by a denoising criterion, for various noise types,@ngare these to what ordinary
autoencoders yield.

Feature detectors that correspond to the first hidden layer of a netvaomkd on image data
are straightforward to visualize. Each hidden newrphas an associated vector of weigiifs that
it uses to compute a dot product with an input example (before applying ritdimearity). These
W vectors, thdilters, have the same dimensionality as the input, and can thus be displayed as little
images showing what aspects of the input each hidden neuron is settsitive

5.1 Feature Detectors Learnt from Natural Image Patches

We trained both regular autoencoders and denoising autoencodeétsd2 patches from whitened
natural scene images, made available by Olshausen (Olshausen and $3él§, A few of these
patches are shown in Figure 5 (left). For these natural image patchassedea linear decoder
and a squared reconstruction cost. Network parameters were traimedafrandom staft,using

8. More specifically randomly positioned %212 patches were extracted from the>2Q0 patches made available by
Olshausen at the following URIbttps://redwood.berkeley.edu/bruno/sparsenet/ .
9. We applied the usual random initialization heuristic in which weights are lsanmpdependently form a uniform in

range[— ——~—, ———] where fanin in this case is the input dimension.
fanin’ v/fanin

3386

STACKED DENOISINGAUTOENCODERS

stochastic gradient descent to perform 500000 weight updates witkdaléiarning rate of 0.05. All
filters shown were from experiments with tied weights, but untied weights yedufeilar results.

Figure 5 displays filters learnt by a regulander-complet@autoencoder that used a bottleneck
of 50 hidden units, as well as those learnt byoarr-completautoencoder using 200 hidden units.
Filters obtained in the under-complete case look like very local blob detedtorslear structure is
apparent in the filters learnt in the over-complete case.

b P
T
N

B N
hd A

I I B

Figure 5: Regular autoencoder trained on natural image pattle#is.some of the 1% 12 image
patches used for trainingdiddle: filters learnt by a regulaunder-completautoencoder
(50 hidden units) using tied weights and L2 reconstruction eRmyht: filters learnt by a
regularover-complet@autoencoder (200 hidden units). The under-complete autoencoder
appears to learn rather uninteresting local blob detectors. Filters obtairlee over-
complete case have no recognizable structure, looking entirely random.

We then trained 200 hidden units over-complete noiseless autoencogdelarized with L2
weight decay, as well as 200 hidden units denoising autoencoders witbpigoGaussian noise
(but no weight decay). Resulting filters are shown in Figure 6. Note tdahaising autoencoder
with a noise level of 0 is identical to a regular autoencoder. So, naturéitysfiearnt by a denoising
autoencoder at small noise levels (not shown) look like those obtained wéiuiar autoencoder
previously shown in Figure 5. With a sufficiently large noise level howéwet 0.5), the denoising
autoencoder learns Gabor-like local oriented edge detectors (see Bigurhis is similar to what
is learnt by sparse coding (Olshausen and Field, 1996, 1997), o(BE€hand Sejnowski, 1997)
and resembles simple cell receptive fields from the primary visual corsfirdied by Hubel and
Wiesel (1959). The L2 regularized autoencoder on the other hantt leathing interesting beyond
restoring some of the local blob detectors found in the under-complete datethat we did try a
wide range of values for the regularization hyperparam@teut were never able to get Gabor-like
filters. From this experiment, we see clearly thraining with sufficiently large noise yields a
qualitatively very different outcome than training with a weight decay regularization, which
confirms experimentally that the two amet equivalent for a non-linear autoencoder, as discussed
earlier in Section 4.2.

Figure 7 shows some of the results obtained with the other two noise typederauk that is,
salt-and-pepper noise, and masking-noise. We experimented with ptorrlevelsv: 10% 25%, 55%.
The filters shown were obtained using 100 hidden units, but similar filters feeind with 50 or
200 hidden units. Salt-and-pepper noise yielded Gabor-like edge dstegtereas masking noise

10. Attempted weight decays values were the followikg: {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5,
1.0}.

3387

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

HENSEREEES CENEREEREE
EEEAEENEENE HAESREENEEEE
SEMEETENERES NDENESESEZAN
EENEOEASEEEN EEAOESEO0EN
AEEEEESEEE N EEESNIESNE
HESESREEENS BEENSENEENS
EREFENEENS RFEASAEIENCOS
HEEEEEREEEE RNEEESNAEANE A
EEFIE NN EER RENEFEAEEDN
PRI EEEEE ENIEESNNNA

Figure 6: Weight decay vs. Gaussian noise. We show typical filterstl&@m natural image
patches in the over-complete case (200 hidden unitgft: regular autoencoder with
weight decay. We tried a wide range of weight-decay values and learaiieg; filters
never appeared to capture a more interesting structure than what is bleosynNote
that some local blob detectors are recovered compared to using no weicagy at all
(Figure 5 right).Right: a denoising autoencoder with additive Gaussian naise (.5)
learns Gabor-like local oriented edge detectors. Clearly the filters leggmjualitatively
very different in the two cases.

yielded a mixture of edge detectors and grating filters. Clearly differantigtion types and levels
can yield qualitatively different filters. But it is interesting to note that all ¢hn@ise types we
experimented with were able to yield some potentially useful edge detectors.

5.2 Feature Detectors Learnt from Handwritten Digits

We also trained denoising autoencoders on thex 28 gray-scale images of handwritten digits
from the MNIST data set. For this experiment, we used denoising autoerscaith tied weights,
cross-entropy reconstruction error, and zero-masking noise. ddlergs to better understand the
qualitative effect of the noise level. So we trained several denoisingachaers, all starting from
the same initial random point in weight spateitwith different noise leveldzigure 8 shows some
of the resulting filters learnt and how they are affected as we increaseviief corruption. With
0% corruption, the majority of the filters appear totally random, with only a fewspeacialize as
little ink blob detectors. With increased noise levels, a much larger propoitiateoesting (visibly
non random and with a clear structure) feature detectors are learnse Tieude local oriented
stroke detectors and detectors of digit parts such as loops. It was tqpbeted that denoising a
more corrupted input requires detecting bigger, less local structuresdethoising auto-encoder
must rely on longer range statistical dependencies and pool evidemsafiarger subset of pixels.
Interestingly, filters that start from the same initial random weight vectendbok like they “grow”
from random, to local blob detector, to slightly bigger structure detectats asia stroke detector,
as we use increased noise levels. By “grow” we mean that the slightly langeture learnt at a
higher noise level often appears related to the smaller structure obtait®deatnoise levels, in
that they share about the same position and orientation.

3388

STACKED DENOISINGAUTOENCODERS

EENENFNESE AVELET VEEEL:
ENEZEEESRER EESNEFEEER
A EEr Py ESERNEEEEH
ECNEENEEREE TIREERFELRE
A TFEELT T PN LN e
RENFEAEEAR TEEEEEEREE
EERNNUSAEN LV EEEE
SEANSDEEAN EfEEAEDES s
PANHENNEES ENEHEEYENE
SEEEEEEAES EISEEEENEE

Figure 7: Filters obtained on natural image patches by denoising aut@saasing other noise
types.Left: with 10% salt-and-pepper noise, we obtain oriented Gabor-like filtersy The
appear slightly less localized than when using Gaussian noise (contradtigitie 6
right). Right: with 55% zero-masking noise we obtain filters that look like oriented
gratings. For the three considered noise types, denoising trainingrafipdearn filters
that capture meaningful natural image statistics structure.

6. Experiments on Stacked Denoising Autoencoders

In this section, we evaluate denoising autoencoders as a pretrainingsfiatéuilding deep net-
works, using the stacking procedure that we described in Section 3.8hallanainly compare the
classification performance of networks pretrained by stacking dendsitogncoders (SDAE), ver-
sus stacking regular autoencoders (SAE), versus stacking restBiotenann machines (DBN),
on a benchmark of classification problems.

6.1 Considered Classification Problems and Experimental Methodolgg

We considered 10 classification problems, the details of which are listed le Tali'hey consist
of:

e The standard MNIST digit classification problem with 60000 training examples

e The eight benchmark image classification problems used in Larochelle 20@¥)(which in-
clude more challenging variations of the MNIST digit classification probldhwigh 10000
training examples), as well as three artificial 228 binary image classification tasks.
These problems were designed to be particularly challenging to curreetigéearning al-
gorithms (Larochelle et al., 2007). They are illustrated in Figure 9.

e A variation of thetzanetakisaudio genre classification data set (Bergstra, 2006) which con-
tains 10000 three-second audio clips, equally distributed among 10 musiuasy blues,
classical, country, disco, hiphop, pop, jazz, metal, reggae and raa &le in the set

11. The data sets for this benchmark are availabhé@t/www.iro.umontreal.ca/ ~ lisa/licm|2007

3389

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

(a) No corruption (b) 25% corruption (c) 50% corruption
(d) Neuron A (0%, 10%, 20%, 50% corruption) (e) Neuron B (0%, 10%, 20%, 50% corruption)

Figure 8: Filters learnt by denoising autoencoder on MNIST digits, ugngrmasking noisga-c)
show some of the filters learnt by denoising autoencoders trained withugar@sruption
levelsv. Filters at the same position in the three images are related only by the fact
that the autoencoders were started from the same random initialization ppargimeter
space(d) and(e) zoom in on the filters obtained for two of the neurons. As can be seen,
with no noise, many filters remain similarly uninteresting (undistinctive almost imifo
random grey patches). As we increase the noise level, denoising tréonieg the filters
to differentiate more, and capture more distinctive features. Higher noisks lend to
induce less local filters, as expected. One can distinguish differerg kifniilters, from
local blob detectors, to stroke detectors, and character parts detatctioeshigher noise
levels.

was represented by 538el Phon CoefficienfMPC) features. These are a simplified for-
mulation of theMel-frequency cepstral coefficien(tg FCCs) that were shown to yield better
classification performance (Bergstra, 2006).

All problems exceptzanetakishad their data split into training set, validation set and test set.
We kept the same standard splits that were used in Larochelle et al. (ZB@7{raining set is used
for both pretraining and fine tuning of the models. Classification performamti®e validation set is
used for choosing the best configuration of hyperparameters (meléetisn). The corresponding
classification performance on the test set is then reported together with ad@8idence interval.

For tzanetakisve used a slightly different procedure, since there was no predeftaedard
split and fewer examples. We used 10-fold cross validation, where fettitonsisted of 8000
training examples, 1000 test and 1000 validation examples. For each ypleparameters were
chosen based on the performance on the validation set, and the retaineldvasdised for com-
puting the corresponding test error. We report the average testagmcstandard deviation across
the 10 folds.

We were thus able to compare the classification performance of deed netwarks using
different unsupervised initialization strategies for their parameters:

3390

STACKED DENOISINGAUTOENCODERS

e MLP random: multilayer perceptron with usual random initialization;

e DBN (deep belief networks) corresponds to stacked RBM pretraining;
e SAE stacked autoencoder pretraining;

e SDAE stacked denoising autoencoder pretraining.

In all cases, the same supervised fine-tuning procedure was thentlhiaes, simple stochastic
gradient descent with early stopping based on validation set perfoenanc

Data Set| Description input m | Train-Valid-Test
MNIST | Standard MNIST digit classit 784 gray-scale 10 | 50000-10000-10000
fication problem. values scaleg
to [0,1]
basic | Smaller subset of MNIST. 10 | 10000-2000-50000
rot | MNIST digits with added 10 | 10000-2000-50000
random rotation.
bg-rand | MNIST digits with random 10 | 10000-2000-50000
noise background.
bg-img | MNIST digits with random 10 | 10000-2000-50000
image background.
bg-img-rot| MNIST digits with rotation 10 | 10000-2000-50000

and image background.
rect | Discriminate between tall 784 values| 2 | 10000-2000-50000
and wide rectangles (whitee{0,1}
on black).
rect-img | Discriminate between tall 784 valuese | 2 | 10000-2000-50000
and wide rectangular image|0, 1]
overlayed on a different
background image.
convex| Discriminate between con-784 values| 2 | 6000-2000-50000

vex and concave shape. {0,1}
tzanetakis| Classify genre of thirty secr 592 MPC| 10 | 10-fold cross valida-
ond audio-clip. coefficients, tion on 10000 training
standardized. samples.

Table 1: Data sets. Characteristics of the 10 different problems coediddgxcept fortzane-
takis whose input is made of 592 MPC features extracted from short audiesees,
all other problems are 2828 gray-scale image classification tasks (i.e., input dimension-
ality is 28x 28 =784). See Larochelle et al. (2007) and Bergstra (2006) for fudétils
on these data sets. The table gives, for each task, its shorthand nagseriatibn of the
problem, a description of input preprocessing, the number of clasgear{d the number
of examples used for the training, validation and test sets respectively.

3391

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

(a) rot, bg-rand bg-img bg-img-rot (b) rect, rect-img convex

Figure 9: Samples form the various image classification problems. (a)emeadations on the
MNIST digit classification problems. (b): artificial binary classificationigemns.

On the 28x 28 gray-scale image problems, SAE and SDAE used linear+sigmoid ddegdes
and were trained using a cross-entropy loss, due to this being a ndtaied ¢or this kind of (near)
binary images, as well as being functionally closer to RBM pretraining wetegato compare
against.

However for training thdirst layer on thetzanetakigproblem, that is, for reconstructingPC
coefficientsa linear decoder and a squared reconstruction cost were deemedppaopriate (sub-
sequent layers used sigmoid cross entropy as before). Similarly thiafiestRBM used in pre-
training a DBN ontzanetakisvas defined with a Gaussian visible layer.

Table 2 lists the hyperparameters that had to be tuned by proper moddioselased on
validation set performance). Note that to reduce the choice space siietesl ourselves to the
same number of hidden units, the same noise level, and the same learning adthitiden layers.

6.2 Empirical Comparison of Deep Network Training Strategies

Table 3 reports the classification performance obtained on all data segsauainidden layer neural
network pretrained with the three different strategies: by stacking dagasitoencoders (SDAE-
3), stacking restricted Boltzmann machines (DBN-3), and stacking regutaencoders (SAE-3).
For reference the table also contains the performance obtained by alstdga-layer DBN-1 and
by a Support Vector Machine with a RBF kernel (S\NL'2

12. SVMs were trained using the libsvm implementation. Their hyperpdeas€ and kernel width) were tuned semi-
automatically (i.e., by human guided grid-search), searching forekegderformer on the validation set.

3392

STACKED DENOISINGAUTOENCODERS

| hyperparameter | description | considered values
nHLay | number of hidden layers {1,2,3

nHUnit | number of units per hidden layer{1000,2000,300p
(same for all layers)
IRate | fixed learning rate for unsupef-{ 5x 10°°, 5x 10>, 5x 104,

vised pretraining 5x1073,5x1072, 1071}
IRateSup| fixed learning rate for supervised{0.0005,0.005,0.05,0.1,0.15,(.2
fine-tuning

nEpoq| number of pretraining epochs{5,10,50,100,125,150,200,3P0
(passages through the whale
training set)

v | corrupting noise level fraction of corrupted inputs
(0,0.10,0.25,0.40)
or standard deviation
for Gaussian noise

(0,0.05,0.10,0.15,0.30,0.50)

Table 2: List of hyperparameters for deep networks. These hyaneders are common to all
considered deep network training strategies, except for noise Vewdlich is specific
to SDAE (for which we must also choose the kind of corruption). We list tipicaf
values we considered in the majority of our experiments. Best performiniggcoation
on the validation set was always searched for in a semi-automatic fashabis,trunning
experiments in parallel on a large computation cluster, but with manual g@darwoid
wasting resources on unnecessary parts of the configuration sfaree experiments
meant to study more closely the influence of specific hyperparametersatally used a
finer search grid for them, as will be specified in the description of thgseriements.

In these experiments, SDAE used a zero-masking corruption noise fanoalems except for
tzanetakisfor which a Gaussian noise was deemed more appropriate due to theafaheénput.

We see that SDAE-3 systematically outperforms the baseline SVM, as welAEes3 $except
for convexfor which the difference is not statistically significant). This shows clearat tte-
noising pretraining with a non-zero noise level is a better strategy tharaimiaty with regular
autoencoders. For all but one problem, SDAE-3 is either the bestrpenip algorithm or has its
confidence interval overlap with that of the winning algorithm (i.e., diffeeecannot be considered
statistically significant). In most cases, stacking 3 layers of denoisingraagder seems to be on
par or better than stacking 3 layers of RBMs in DBN-3.

In the following subsections, we will be conducting further detailed experisnt® shed light
on particular aspects of the denoising autoencoder pretraining strategy.

6.3 Influence of Number of Layers, Hidden Units per Layer, and Noisé.evel

Next we wanted to study more closely the influence of important architediypdrparameters,
namely the number of layers, the number of hidden units per layer, andideeleeel. For this finer

3393

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

] Data Set \ SVMp¢ \ DBN-1 \ SAE-3 \ DBN-3 \ SDAE-3(v) \
MNIST 1.40t023 | 1.2%+021 | 1.40t023 | 1.24r022 | 1.28t022(25%)
basic 3.03t015 | 3.94t017 | 3.46t016 | 3.11+015 | 2.84:r0.15(10%)
rot 11.1%028 | 14.69-031 | 10.300.27 | 10.30:0.27 | 9.53+0.26 (25%)
bg-rand 1458031 | 9.80+0.26 | 11.28r0.28 | 6.73t0.22 | 10.30:0.27 (40%)
bg-img 22.6%037 | 16.15:032 | 23.00:0.37 | 16.3%0.32 | 16.68:0.33 (25%)
bg-img-rot| 55.18:0.44 | 52.21:0.44 | 51.93:044 | 47.39%0.44 | 43.76:0.43 (25%)
rect 2.15t013 | 4.71x019 | 2.41+013 | 2.60t014 | 1.99:0.12(10%)
rect-img 24.04:037 | 23.69:037 | 24.05:0.37 | 22.50:0.37 | 21.59:0.36 (25%)
convex 19.13t0.34 | 19.92t035 | 18.410.34 | 18.630.34 | 19.06:0.34 (10%)
tzanetakis | 14.4%-218 | 18.07131 | 16.15t1.95 | 18.38-1.64 | 16.02:1.04(0.05)

Table 3: Comparison of stacked denoising autoencoders (SDAE-3) thign models. Test error
rate on all considered classification problems is reported together with ac@bftlence
interval. Best performer is in bold, as well as those for which confiderteevals overlap.
SDAE-3 appears to achieve performance superior or equivalent bett@ther model on
all problems excepibg-rand For SDAE-3, we also indicate the fractionof corrupted
input components, or in casetaiinetakisthe standard deviation of the Gaussian noise, as
chosen by proper model selection. Note that SAE-3 is equivalent to SDith v = 0%.

grained series of experiments, we chose to concentrate on the hartlestconsidered problems,
that is, the one with the most factors of variatidng-img-rot

We first examine how the proposed network training strategy behavesiaswase the capacity
of the model both in breadth (humber of neurons per layer) and in depthi@r of hidden layers).
Figure 10 shows the evolution of the performance as we increase the nahiiéden layers from
1 to 3, for three different network training strategies: without any pirgtrg (standard MLP),
with ordinary autoencoder pretraining (SAE) and with denoising autasrqaretraining (SDAE).
We clearly see a strict ordering: denoising pretraining being better thaeraoder pretraining
being better than no pretraining. The advantage appears to increaseenitimiiver of layers (note
that without pretraining it seems impossible to successfully train a 3 hidden nape&ork) and
with the number of hidden units. This general behavior is a typical illustratiamhat is gained
by pretraining deep networks with a good unsupervised criterion, apéaap to be common to
several pretraining strategies. We refer the reader to Erhan et 40)(26r an empirical study
and discussion regarding possible explanations for the phenomember,ezton the observation of
regularizationeffects (we exploit the hypothesis that featureXahat help to captur®(X) also
help to capturd’(Y|X)) andoptimizationeffects (unsupervised pre-training initializes parameters
near a bettelocal minimumof generalizatiorerror).

Notice that in tuning the hyperparameters for all classification perfornseswéar reported, we
considered only a coarse choice of noise levgsamely 0%, 10%, 25%, or 40% of zero-masking
corruption for the image classification problems). Clearly it was not nacgs$s pick the noise
level very precisely to obtain good performances. In Figure 11 we examimore details the
influence of the level of corruption using a more fine-grained grid for probldmgy-img-rot We

3394

STACKED DENOISINGAUTOENCODERS

Dataset : bgimgRot

NoPreTrain SAE SDAE

70 70 T T 70

— 1 hidden layer
- 2 hidden layers
3 hidden layers

651 651 1 65F

o
=)
o
<)
o
=)

S g g

= t =

o o o

= = =

CIJ]]

c c H/{\ﬂ c

o o o

=} = =}

@© 55 @© 55} {1 ®s5
= = =

= = =

wn wn w

0 0 1 0

o © -- - ©

[] o } ————— P - o

o o = i - o

3 3 3

@ 501 9 501 @ sor

45t 4 ast 4 45t
4900 00 1000 2000 “%00 500 1000 2000 “%00 500 1000 2000
Number of hidden units per layer Number of hidden units per layer Number of hidden units per layer

Figure 10: Classification performance bg-img-rotfor standard MLP with random initialization
(NoPreTrain, left), SAE (middle), and SDAE (right), as we increase theber of hid-
den layers and the number of neurons per layer. Error bars showc8hfitience in-
tervals. Note that without pretraining the curve for 3 layers is outside tyehge, the
classification error being above 89%.

notice that SDAE appears to perform better than SAE (0 noise) for arraide range of noise
levels, regardless of the number of hidden layers.

The following section reports an experiment that was conducted on ttireedata sets. The ex-
periment had a different goal and thus used a coargeid, but the resulting curves (see Figure 12)
appear to follow a similar pattern to the one seen here (Figure 11).

6.4 Denoising Pretraining vs. Training with Noisy Input

We discussed in Section 4.2 the important distinction between denoising pregrasit is done
in SDAE and simply training with noisy inputs. SDAE uses a denoising criterion tm lgaod
initial feature extractors at each layer that will be used as initialization fwiselessupervised
training. This is very different from training with noisy inputs, which amouotsraining with a
(virtually) expanded data set. This latter approach can in principle be dgplany classifier, such
as an SVM? or a SAE. Note that in the case of the SAE, since there are two phasési(png
and fine-tuning), it is possible to use noisy inputs for only the pretrainirigrdroth the pretraining

13. For SAE, input examples can cheaply be corrupted on the fly, isus thot an option with standard SVM algorithms.
So for SVM training we first augmented the training set by generating @ eafiiations of each original training
example thus yielding a training set 10 times bigger than the original. Alteaiative could instead have used the

3395

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Dataset : bgimgRot

70 — T

— 1 hidden layer
- - 2 hidden layers
65f| - 3 hidden layers 1
§ 60 E
@
C
S
_*5 55} .
3‘5
©
(]
+ 50F 1
()
'_
45+ 1
40 L L L L L

0 5 10 15 20 25 30 35 40 45 55 70 85
Fraction of corrupted input (%)

Figure 11: Sensitivity to the level of corruption. The curves report teederor rate for SDAE
trained on problenbg-img-rotas a function of the fraction of corrupted input compo-
nents (using zero masking noise). Error bars show 95% confidenceaht®lote that
0% corruption corresponds to a SAE (regular autoencoder).

and fine-tuning phase. We experimentally compare these differentag@® on three data sets in
Figure 12. We see that denoising pretraining with SDAE, for a large rahgeise levels, yields
significantly improved performance, whereas training with noisy inputs sometitegrades the
performance, and sometimes improves it slightly but is clearly less benefiareSiDAE.

6.5 Variations on the Denoising Autoencoder: Alternate CorruptionTypes and Emphasizing

In the next series of experiments, we wanted to evaluate quantitativelyféloe @fusing the various
corrupting noises described in Section 3.3 as well agthghasized denoising autoencodariant
described in Section 3.4.

Extensive experiments were carried out on the same 3 problems we usegievious section.
Besides zero-masking noise (MN) we trained 3 hidden layer SDAE usliagrs&pepper noise (SP)
and additive Gaussian noise (GS). For MN and SP, we also tried the eiagzheariant* For each
considered variant, hyperparameters were selected as usual to yidddsthperformance on the

virtual SV technique (Sabikopf et al., 1996), which may or may not have yielded better peroiga, but since our
main focus here is comparing noisy SAE with SDAE, SVM only serves &sjpls baseline.

14. As already mentioned previously, since Gaussian noise corrugtg @wmension, emphasized denoising does not
make sense for this type of corruption.

3396

STACKED DENOISINGAUTOENCODERS

Dataset : basic

SVM_rbf
- SAE(1)

5.0f SAE(2) i
oo SDAE }

Test classification error (%)

0 10 20 30 40
Fraction of corrupted input (%)

(a) basic
Dataset : rot Dataset : bgRand
13.5p : 45 :
SVM_rbf — SVM_rbf
130l -- SAE(1) B wl| -~ SAEQ) 1l
SAE(2) - SAE(2)
1251 ®© SDAE : | e—o SDAE

w
v

12.0{

30
11.5F

25F

11.0r

Test classification error (%)
Test classification error (%)

-
o
n
N
o
T

10.01

0 10 20 30 40 10 0 10 20 30 40
Fraction of corrupted input (%) Fraction of corrupted input (%)
(b) rot (c) bg-rand

Figure 12: SDAE vs. training with noisy input. The test error 8RAE with 3 hidden layers
is compared to other algorithms trained with noisy inputs: a SVM with RBF kernel
(SVMpt), a 3-hidden-layers SAE where noisy inputs were used for pretrainihg
(SAE(1)) and one where noisy inputs were used both for pretraining and sspérv
fine-tuning SAE(2)). Hidden layers have 1000 neurons each. Zero-masking noise was
used. Note that at 0% noise, the three stacked models correspond wirsarypSAE.
Error bars show 95% confidence interval. Denoising pretraining with[SBgpears to
always yield significantly better performance, unlike training with noisy inputs

3397

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

| Model basic | rot bg-rand |
SVMp¢ 3.03r015 11.1%o0.28 14.58:0.31
SAE-3 3.46+0.16 10.30-0.27 11.280.28
DBN-3 3.11+015 10.30-0.27 6.73+0.22
SDAE-3un (V) 2.84+015(10%) | 9.53t0.26(25%) | 10.30:0.27(40%)
SDAE-3un(V) + emph | 2.76:0.14(25%) | 10.36:0.27(25%) | 9.69:0.26(40%)
SDAE-3sp(V) 2.66+0.14(25%) | 9.33:0.25(25%) | 10.03:0.26(25%)
SDAE-3sp(v) + emph | 2.48t0.14(25%) | 8.76+0.29(25%) | 8.52:0.24(10%)
SDAE-3:g(V) 2.61:014(0.1) | 8.86:028(0.3) | 11.73:028(0.1)

Table 4: Variations on 3-hidden-layer stacked denoising autoenc(slesfE-3): alternative noise
types and effect of emphasis. Considered noise types are masking Mdiesalt-and-
pepper (SP) and Gaussian noise (GS). Emphasized version codsilergle emphasis
and full emphasis (see main text for detailed explanation). For easy campahe table
also reproduces previously shown results for S¥MSAE-3, and DBN-3. Test error rate
is reported together with a 95% confidence interval. Best performer islih bs well
as those for which confidence intervals overlap. Corruption le@taction of corrupted
input components or Gaussian standard deviation) that was retained ley satattion on
the validation set is specified in parenthesis. SDARY#th emphasis on reconstruction of
corrupted dimension appears to be the best SDAE variant for theseetmtaignificantly
improving performance orot andbg-rand

validation set. These included the number of units per layer (same for atE)ayiee corruption
level v (fraction of corrupted dimensions for MN and SP, or standard deviatiois5), with the
usual considered values (listed previously in Table 2). For the emphag&sion, a further hy-
perparameter was the degree of emphasis. We considereddadite emphasjsvhere the weight
on the reconstruction of the corrupted components is twice that on therupta components
(a =1, B=0.5), andfull emphasisvhere all the weight is on reconstructing the corrupted compo-
nents and none on the uncorrupted dimensions: (L, B = 0). Table 4 reports the corresponding
classification performance on the held-out test set. For the three cretsidata sets, an empha-
sized SDAE with salt-and-pepper noise appears to be the winning SDA&alt thus appears
that a judicious choice of noise type and added emphasis may often buyetieagerformance.
However we had hoped, with these variants, to catch up with the perfoer@diaBN-3 on the
bg-randproblem?® but DBN-3 still performs significantly better than the best SDAE variant @n th
particular problem.

6.6 Are Features Learnt in an Unsupervised Fashion by SDAE Useftlibr SVMs?

In the following series of experiments, we wanted to verify whether the higliel representations
extracted using SDAE could improve the performance of learning algorittings than a neural
network, such as SVMs.

15. As discussed in Larochelle et al. (2003Q;randis particularly favorable to RBMs because the pixel-wise indepen-
dent noise perfectly matches what an RBM expects and will naturallyexmfiresented in the hidden units.

3398

STACKED DENOISINGAUTOENCODERS

To this end, we fed the representations learnt by the purely unsupmbiptisese of SDAE, at
increasing higher levels (first, second and third hidden layer) to both arllB€éM and a Kernel
SVM (using a RBF kernel). The hyperparameters of the SVM and its keree= tuned on the
validation set as usual. For computational reasons, we did not re-tuA& &iperparameters.
Instead, we identified the best performing SDAE-pretrained neuralankswvith 1000 units per
layer, based on their validation performance after fine-tuning fromiquewexperiments, but used
their saved weights prior to fine-tuning (i.e., after unsupervised dendisiming only).

Results for all considered data sets are reported in Table 5, and FRhighlights performance
curves for two of them. Clearly, SVM performance can benefit signifigdrom using the higher
level representation learnt by SDAE On all problems we see improved performance compared
to using the original input (SVl). More interestingly, on most problems, SVM performance im-
proves steadily as we use ever higher level representations. While tttisasurprising that linear
SVMs can benefit from having the original input processed non-lipgais noteworthy that RBF
kernel SVMs, which are high-capacity non-linear classifiers, alsmgedenefit greatly from the
non-linear mapping learned by SDAE.

Dataset : basic Dataset : bgimgRot

©

T 65 T T T T
— SVM linear — SVM linear

-~ SVM rbf -~ SVM rbf
T SDAE_mn |1 60r SDAE_mn |1

55F IS
N

501

Test classification error (%)
w1
Test classification error (%)

45F

40

35

1 2
Number of hidden layer Number of hidden layer

Figure 13: SVM on representations learnt by SDAE. The curves sholutéon, on two data sets,
of the test performance of linear and RBF kernel SVMs as we train themgber level
representations learnt in the unsupervised phase of SDAE. Perfoern&8DAE after
supervised fine-tuning is also shown as SAEMN stands for masking noise). Hidden
layer O corresponds to original input representation.

7. Generating Samples from Stacked Denoising Autoencodere¥ivorks

Besides the classification performance comparisons and qualitativeiispattion of learnt filters,
it is also customary in studies of deep generative models such as DBNsw®@amples generated

16. To verify that the learnt representation was responsible for theoiragrperformance, rather than a random non-
linear transformation, we also trained SVMs on the representation of the saural network architecture but using
randomly initialized weights: the performance degraded as we used ther héyel representations.

3399

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Data Set kgx\'\éll SVMg SVM SVM, SVM3
MNIST linear| 5.33t044 | 1.49+024 | 1.24+022 1.2+021
rbf | 1.40t023 | 1.04r020| 0.94r019 | 0.95:0.19
basic linear| 7.32t023| 3.43t016| 2.71t014 | 2.63t0.14
rbf | 3.03t015 | 2.59014 | 2.55t014 | 2.57014
rot linear | 43.47:043 | 21.74t036 | 15.15t0.31 | 10.00:0.26
rbf | 11.1%028 | 8.45t024 | 8.274+024 | 8.64+025
bg-rand linear | 24.14r0.38 | 13.58t0.30 | 13.00r0.29 | 11.32t0.28
rbf | 14.58:031 | 11.00-0.27 | 10.08:0.26 | 10.16+0.26
bg-img linear | 25.08:0.38 | 16.72:0.33 | 20.73:0.36 | 14.55:0.31
rbf | 22.6%037 | 15.9%032 | 16.36:032 | 14.06:0.30
bg-img-rot linear | 63.53t0.42 | 50.44t0.44 | 50.26t0.44 | 42.07:0.43
rbf | 55.18:0.44 | 44.09:044 | 42.28-0.43 | 39.07-0.43
rect linear | 29.04r040 | 6.43t022 | 2.31+013| 1.80:0.12
rbf | 2.15t013 | 2.19013 | 1.46t011 | 1.22t0.10
rect-img linear | 49.64:0.44 | 23.12:0.37 | 23.01:0.37 | 21.43t0.36
rbf | 24.04:037 | 22.27036 | 21.56+0.36 | 20.98:0.36
convex linear | 45.75:044 | 24.10:0.37 | 18.40:0.34 | 18.06:0.34
rbf | 19.13t0.34 | 18.09:034 | 17.39-0.33 | 17.53+0.33
tzanetakis linear | 20.72:251 | 12.5%205 | 7.95t168 | 5.04+1.36
rbf | 14.4%218 | 7.54+164 | 5.20:138 | 4.13r1.23

Table 5: SVM performance on higher level representations learnt ByESBPerformance of both
linear SVM, and SVM with RBF kernel is reported, as they are trained oeredtiginal
input (SVM), or on the representation learnt by a SDAE at the level of its first (gyM
second (SVM), or third (SVMs) hidden layer. The representations used for the SVMs
were those obtained prior to fine-tuning. Test error rate on all coresidelassification
problems is reported together with a 95% confidence interval. Best pegfas in bold,
as well as those for which confidence intervals overlap. Clearly bothrlizwed kernel
SVM performance benefit from using the higher level representati@mati®y SDAE.
For most problems the performance increases steadily as we use négtiess from ever
higher levels of the architecture.

from the trained models. This can yield another qualitative visual assesefmehether they were
able to capture the input distribution well.

7.1 Top-Down Generation of a Visible Sample Given a Top-Layer Repres¢ation

Given a top-layer representatipa deep belief network (Hinton et al., 2006) is a directed graphical
model, and it is easy to do a top down sampling pass, that is, sampling eaclcdagiioned on
the layer above, to eventually produce a sample in the bottom layer that alispteyed. More
precisely, in sigmoid deep belief networks (DBN), the representation ater layerX given the

3400

STACKED DENOISINGAUTOENCODERS

layer aboveY is distributed according to a product of independent Bernoullis whose risea
deterministic function of, that is,X|Y ~ B(ge(Y)), wheregy has the exact same form as that
given in Equation 3 for thelecoderpart of an autoencoder. From a trained SAE or SBAEis
thus possible to generate samples at one layer from the representatietayethabove in the exact
same way as in a DBN.

7.2 Bottom-Up Inferring of the Top-Layer Representation Corresponding to a Given Input
Pattern

In SAE/SDAE,given an input representation at the bottom laytbe corresponding representation
in the top layer is computed in a deterministiottom-uppass using encoding functioris. The
same procedure is used in DBNs and, in the graphical model perspemivebe viewed as an
approximate inferencef a factorial Bernoulli top-layer distribution given the low level input. This
top-layer representation is to be understood as the parameters (the rhadartrial Bernoulli
distribution for the actual binary units.

7.3 Generating Samples with SAE, SDAE, and DBN Using the Same Proase

The deep belief network of Hinton et al. (2006) is a fully specified gdaiveranodel. In particular
the joint distribution of its top two layers is defined by an RBM molfelthat is, anundirected
graphical model from which one can efficiently sample using alternatingsGbampling (Hinton
et al., 2006). So to sample from a DBN model, one would first sample from giayer RBM
using alternating Gibbs sampling. Then, given the thus obtained top-lgy@sentation, perform
the single top down sampling pass previously described to produce a viaiiderpat the bottom
layer.

By contrast, SAE/SDAE training does not attempt to model the distribution of {éateer
representation. So even though—given a top-layer representatiorcarwese the exact same top
down sampling procedure to generate input patterns from a SAE/SDA% adfBN, SAE/SDAE
cannot by themselves alone be treated as fully specified generative motdeislack a model of
the marginal distribution of their top layer.

We can easily fix this by modeling that top-layer distribution non-parametricgliy® simple
memory-base@mpirical distributionof the encoded top-layer representations ofrthiining set
patterns. A visible sample can then be generated by simply taking the top-teyatesl represen-
tation of a randomly picked training set input, and carrying out the top-dsammpling procedure
explained previously, as illustrated in Figure 14. This same technique @belssed as an alter-
native sample-generation procedure for DBNs built by stacking RBMs.

If we keep the same fixed input pattern, and hence the same correspdriglier level rep-
resentation, and perform several top-down samplings, we can thesvebshat kind of pattern
variations the deep multilayer part of a deep network has learnt to modab¢tract away in ex-
tracting the top-layer representation). Figure 15 shows the resultingilyien the regenerated
patterns, for models pretrained respectively as SAE, SI3AERd DBN on MNIST without any su-

17. SAE and SDAE train suchy to perform reconstruction, that is, predicting the mean value of a layenghe
representation in the layer immediately above it.

18. This RBM was trained, using the training set, to model the represerstatiiained at the layer just below the top
one, produced by the bottom-up pass we just described.

19. Both were pretrained with salt-and-pepper noise.

3401

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

—> Encoding

[O O}{O O} ————— - Sampling
g lge'z — Decoding
©O) [OOJ+OO)
fg J7ge'1
(ele]e) (Slelo)u(e]0le)

fe Jde
OO00O00) X X (©OOO0O

Figure 14: Non-parametric sampling procedure for pretrained netwérkandomly picked input
form the original data set is provided as input. Its top level representiataistained by
deterministic bottom-up encoding using functiofys . A visible pattern is generated
given this high level representation, by alternating Bernoulli sampling etefmhinistic
decoding, that is, by successively sampling fr@(gy« (previouslayey. This same
procedure can be applied with SAE, SDAE and DBN. It allows to see thityjaad
variability of patterns one obtains given a high-level representation.

pervised fine-tuning. It appears that SDAE and DBN are able to resyiztha variety of similarly
good quality digits, whereas the SAE trained model regenerates patternsiwgthvisible degra-
dation in quality. This is further evidence of the qualitative differenceltiegufrom optimizing a
denoising criterion instead of mere reconstruction criterion. Note how SPAE& back the miss-
ing hole in the loop of the regenerated 6, and sometimes straightens up thestipge of the 7,
suggesting that it did indeed capture interesting specific characteristiggpdars that, when using
this same sample generation procedure, SDAE and DBN yield a similar ddgraeaility in the
regenerated patterns (with DBN patterns looking slightly fatter and SDAErpatséghtly thinner).
Neither DBN nor SDAE guarantee that class boundaries will not be ed@8dor example DBN
closes a loop in a 7 making it look closer to a 9, whereas SDAE sometimes lueakghe loop
of an 8 making it look like a 3. But in all cases, and contrary to SAE, thenageed patterns look
like they could be samples from the same unknown input distribution that yighéeidaining set.

8. Conclusion and Future Work

The present work was inspired by recent successful appro&ehtiesning deep networks, specif-
ically by their use of a local unsupervised criterion, and led by the quesfiavhat that crite-
rion should be. At the same time we were motivated by a desire to bridge a regpiifor-
mance gap between deep belief networks and the stacking of ordinagnaatters (Bengio et al.,
2007; Larochelle et al., 2009a). This led us to address a theoreticataming of traditional
autoencoders—namely their inability in principle to learn useful over-compgtesentations—in

a simple yet original way: by changing the objective from one involving mecenstruction to
the more challenging task afenoising The resulting Stacked Denoising Autoencoder algorithm

20. The reader should however keep in mind that this results from angsed training only.

3402

STACKED DENOISING AUTOENCODERS

o|o]olofo[o]o]o]elolo
R EEEEEEEEE
HEEEEREHEEREE
of ||| ||| 2| <] ||+
o2 [e e e o e e o e o
& s s|s5|515 1851515
22222 2|22 2] 2|2
ARAABAAAA AN
sl o] s]| o] v
7171217171717l 7171717

C;
5
>
m

Lawp

Seevodlodwo
STronotoas
S=rvwoiowo
S=rvwoiooo
S=rvnaldoo
Servofiowo
S=ruadiowo
S=roaolawo
SEronoiowo

q
5
4
¢
i
7
D

(c) DBN

Figure 15: Variability of the samples generated with 3-hidden-layer SABAESBnd DBN pre-
trained models. Each sub-figure is to be read row-wise: the leftmost pattesch row
is a training set pattern. Following the sample generation depicted in Figurewlak
provided as input to the network and its top-layer representation was tethpy de-
terministic bottom up encoding. Patterns to its right were then generated irbayiky
given that top level representation. Clearly, SDAE trained networksDIEMNs, are able
to regenerate high quality samples from their high level representatiotnacpto SAE.
SDAE and DBNs also appear to give rise to a similar level of variability in the botip
generated patterns (DBN patterns tending to be somewhat fatter). NotsDat puts
back the missing hole in the loop of the regenerated 6, and sometimes straigptens
the upper stroke of the last 7, suggesting that it did indeed capture madrspgcific
characteristics. DBN and SDAE generated patterns can easily passriples from the
unknown input distribution being modeled, unlike patterns generated by SAE

3403

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

for training deep networks, proved indeed able to bridge the perforengeqe with DBNs, yielding
equivalent or better classification performance on all but one of thsidemred benchmark prob-
lems. As a deep network pretraining strategy, stacking of denoising awiders yielded in most
cases a significant improvement in performance over the stacking ofaoydautoencoders. The
representations thus extracted layer by layer, using a purely unssgxbfocal denoising criterion,
appear to make subsequent classification tasks much easier. This is éwittenced by the fact
that state-of-the-art shallow classifiers such as kernel SVMs alsaapple to greatly benefit from
it. Close examination of the feature extractors learnt by denoising autderscehowed that they
were able to zero in on useful structure in the data (such as Gabor-ljjeededectors on natural
image patches) that regular autoencoders seemed unable to learn.

The algorithm we developed is a straightforward, easy to implement, variatidheowell-
understood ordinary autoencoders. All that remains to be chosen istharkd level of corrupting
noise. It is likely that a careful choice, possibly guided by prior domaiowkedge, may further
boost application-specific performance. Nevertheless our experirmbatged that high perfor-
mance can already be achieved using very simple and generic noise mgp@ittalittle tuning of
the noise level. In addition, we were able to show that, contrary to what it &y ®n the sur-
face based on popular myths, the denoising training we advocate éguivalent to using a mere
weight decay regularization, nor is it the same as direct supervised gautim corrupted (jittered)
examples.

Beyond the specificities and practical usefulness of the simple algorithnevedoghedpur re-
sults clearly establish the value of using @enoising criterion as an unsupervised objective to
guide the learning of useful higher level representationsThis is in our view the most important
contribution of our work, as it offers an interesting alternative to moralugund often intractable)
likelihood derived criteria. Indeed, denoising performance can easiipdasured and directly op-
timized. The use of a denoising criterion is very different from the cotieasgivergence training
of RBMs or the direct enforcing of sparsity in autoencoders. We hogiedtlr very encouraging
results will inspire further research in this direction, both theoretical (tebanderstand the rela-
tionship between denoising and representation learning), and prattic\velop better learning
algorithms based on this understanding).

There are certainly better ways to use denoising-based training signadsl@athing of a deep
network than the simple local approach we explored here. In particudlie gtacking denoising
autoencoders allows us to build a deep network, the denoising autoesseeleised here were
shallow. It would thus be interesting to investigate deep denoising autcensowmih several hidden
layers, and their ability to form useful representations. The choice@adfthe corruption process
also deserves further inquiry. If more involved corruption procegsasthose explored here prove
beneficial, it would be most useful if they could be parameterized andtlé@aectly from the data,
rather than having to be hand-engineered based on prior-knowledge.

Acknowledgments

This research was supported by funding from NSERC, MITACS, FORNFAR, and the Canada
Research Chairs, and partly carried out on computation resourcesaveitddle by RQCHP.

3404

STACKED DENOISINGAUTOENCODERS

References

G. An. The effects of adding noise during backpropagation training gargralization perfor-
mance.Neural Computation8(3):643—674, 1996.

H. Baird. Document image defect models.IKPR Workshop on Syntactic and Structural Pattern
Recognitionpages 38-46, Murray Hill, NJ., 1990.

P. Baldi and K. Hornik. Neural networks and principal componenlysig Learning from examples
without local minima.Neural Networks2:53-58, 1989.

A. Bell and T.J. Sejnowski. The independent components of naturaésae edge filters/ision
Research37:3327-3338, 1997.

A.J. Bell and T.J. Sejnowski. An information maximisation approach to blindraéipa and blind
deconvolutionNeural Computation7(6):1129-1159, 1995.

Y. Bengio. Learning deep architectures for Abundations and Trends in Machine Learnjr2gl):
1-127, 2009. Also published as a book. Now Publishers, 2009.

Y. Bengio and O. Delalleau. Justifying and generalizing contrastiveghiveee.Neural Computa-
tion, 21(6):1601-1621, June 2009.

Y. Bengio and Y. LeCun. Scaling learning algorithms towards Al. In L. Batt®. Chapelle,
D. DeCoste, and J. Weston, editdrayge Scale Kernel MachineMIT Press, 2007.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layeewisining of deep net-
works. In Bernhard Saikopf, John Platt, and Thomas Hoffman, editokslvances in Neural
Information Processing Systems 19 (NIPS;@@&ges 153—-160. MIT Press, 2007.

J. Bergstra. Algorithms for classifying recorded music by genre. Magtegsis, Universé de
Montreal, 2006.

J. Besag. Statistical analysis of non-lattice ddtiae Statistician24(3):179-195, 1975.

C.M. Bishop. Training with noise is equivalent to Tikhonov regularizatideural Computation7
(1):108-116, 1995.

H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons argliar value decom-
position. Biological Cybernetics59:291-294, 1988.

O. Chapelle, B. Sdblkopf, and A. Zien, editorsSemi-Supervised LearninillT Press, Cambridge,
MA, 2006.

Y. Cho and L. Saul. Kernel methods for deep learning. In Y. Bengi&Gdwuurmans, C. Williams,
J. Lafferty, and A. Culotta, editorsAdvances in Neural Information Processing Systems 22
(NIPS’09) pages 342—-350. NIPS Foundation, 2010.

D. Erhan, Y. Bengio, A. Courville, P.A. Manzagol, P. Vincent, and Sndgde. Why does unsu-
pervised pre-training help deep learnindgdurnal of Machine Learning Researchl:625-660,
February 2010.

3405

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

P. Gallinari, Y. LeCun, S. Thiria, and F. Fogelman-Soulie. Memoires &8s distribuees. In
Proceedings of COGNITIVA 8Paris, La Villette, 1987.

Y. Grandvalet, S. Canu, and S. Boucheron. Noise injection: Theadrptizspects Neural Compu-
tation, 9(5):1093-1108, 1997.

J. Hastad. Almost optimal lower bounds for small depth circuitsPioceedings of the 18th annual
ACM Symposium on Theory of Computipgges 6—20, Berkeley, California, 1986. ACM Press.

J. Hastad and M. Goldmann. On the power of small-depth threshold cir€isiputational Com-
plexity, 1:113-129, 1991.

D. Heckerman, D.M. Chickering, C. Meek, R. Rounthwaite, and C. Kadigpendency networks
for inference, collaborative filtering, and data visualizatidleurnal of Machine Learning Re-
search 1:49-75, 2000.

G.E. Hinton. Connectionist learning procedurAstificial Intelligence 40:185-234, 1989.

G.E. Hinton. Training products of experts by minimizing contrastive divecgeNeural Computa-
tion, 14:1771-1800, 2002.

G.E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data witrahaatworks.
Science313(5786):504-507, July 2006.

G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm foipdaglief nets. Neural
Computation18:1527-1554, 2006.

L. Holmstrm and P. Koistinen. Using additive noise in back-propagationimigainEEE Transac-
tions on Neural Networks$3(1):24—-38, 1992.

J.J. Hopfield. Neural networks and physical systems with emergent tigdleomputational abili-
ties. Proceedings of the National Academy of Sciences,, USAL982.

D.H. Hubel and T.N. Wiesel. Receptive fields of single neurons in the siiie cortex.Journal
of Physiology 148:574-591, 1959.

V. Jain and S.H. Seung. Natural image denoising with convolutional neswdnkDaphne Koller,
Dale Schuurmans, Yoshua Bengio, and Leon Bottou, edifmigances in Neural Information
Processing Systems 21 (NIPS’03008.

N. Japkowicz, S.J. Hanson, and M.A. Gluck. Nonlinear autoassociatioot isquivalent to PCA.
Neural Computation12(3):531-545, 2000.

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio.efimpirical evaluation of deep
architectures on problems with many factors of variation. In Z. Ghahrareditar, Proceedings
of the Twenty-fourth International Conference on Machine Learniny/(l07), pages 473-480.
ACM, 2007.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploringtegigs for training deep
neural networksJournal of Machine Learning ResearctD:1-40, January 2009a.

3406

STACKED DENOISINGAUTOENCODERS

H. Larochelle, D. Erhan, and P. Vincent. Deep learning using robtesidependent codes. Rro-
ceedings of the Twelfth International Conference on Atrtificial Intelligenue Statistics (AlS-
TATS 2009)pages 312-319, April 2009b.

Y. LeCun. Modeles connexionistes de I'apprentissaghD thesis, Universitde Paris VI, 1987.

Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, Wdhdrd, and L.D. Jackel. Back-
propagation applied to handwritten zip code recognitidieural Computation1(4):541-551,
1989.

H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief net model falhdsea V2. In J.C. Platt,
D. Koller, Y. Singer, and S. Roweis, editoisgvances in Neural Information Processing Systems
20 (NIPS’07) pages 873-880, Cambridge, MA, 2008. MIT Press.

R. Linsker. An application of the principle of maximum information preservaidimear systems.
In D.S. Touretzky, editor\dvances in Neural Information Processing Systems 1 (NIPS@&)
gan Kaufmann, 1989.

J.L. McClelland, D.E. Rumelhart, and the PDP Research Gr&apallel Distributed Processing:
Explorations in the Microstructure of Cognitipmolume 2. MIT Press, Cambridge, 1986.

B.A. Olshausen and D.J. Field. Emergence of simple-cell receptive fiefztefdies by learning a
sparse code for natural imagé¢ature 381:607—609, 1996.

B.A. Olshausen and D.J. Field. Sparse coding with an overcomplete bassssmtegy employed
by V17 Vision Researgh37:3311-3325, December 1997.

T. Poggio and T. Vetter. Recognition and structure from one 2d model: viglservations on
prototypes, object classes and symmetries. Technical Report A.l. Memd347, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, 1992.

M. Ranzato, C.S. Poultney, S. Chopra, and Y. LeCun. Efficient legmfirsparse representations
with an energy-based model. In B. Stkopf, J. Platt, and T. Hoffman, editorédvances in
Neural Information Processing Systems 19 (NIPS'@&pes 1137-1144. MIT Press, 2007.

M. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature learnindefep belief networks. In J.C.
Platt, D. Koller, Y. Singer, and S. Roweis, editogjvances in Neural Information Processing
Systems 20 (NIPS'0O/7pages 1185-1192, Cambridge, MA, 2008. MIT Press.

R. Scalettar and A. Zee. Emergence of grandmother memory in feed tbneaworks: Learning
with noise and forgetfulness. In D. Waltz and J. A. Feldman, edi@osnectionist Models and
Their Implications: Readings from Cognitive Sciengages 309-332. Ablex, Norwood, 1988.

B. Sclolkopf, C.J.C. Burges, and V. Vapnik. Incorporating invariances ppsu vector learning
machines. In C. von der Malsburg, W. von Seelen, J. C. Vorbrggah Ba Sendhoff, editors,
Lecture Notes in Computer Science (Vol 112), Artificial Neural NeteWBIANN'96 pages 47—
52. Springer, 1996.

S.H. Seung. Learning continuous attractors in recurrent network&/.llnJordan, M.J. Kearns,
and S.A. Solla, editordddvances in Neural Information Processing Systems 10 (NIP38dgs
654-660. MIT Press, 1998.

3407

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

J. Sietsma and R. Dow. Creating artificial neural networks that generélegral Networks4(1):
67-79, 1991.

P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tangent prop - Afalism for specifying selected
invariances in an adaptive network. In J.E. Moody S.J. Hanson and_Lipgtnann, editors,
Advances in Neural Information Processing Systems 4 (NIPSigihes 895-903, San Mateo,
CA, 1992. Morgan Kaufmann.

P. Smolensky. Information processing in dynamical systems: Foundatidvasraony theory. In
D.E. Rumelhart and J.L. McClelland, editoRgrallel Distributed Processingvolume 1, chap-
ter 6, pages 194-281. MIT Press, Cambridge, 1986.

P.E. Utgoff and D.J. Stracuzzi. Many-layered learniNgural Computation14:2497-2539, 2002.

P. Vincent, H. Larochelle, Y. Bengio, and P.A. Manzagol. Extracting@mdposing robust features
with denoising autoencoders. In W.W. Cohen, A. McCallum, and S.T. Rowedisors, Pro-
ceedings of the Twenty-fifth International Conference on Machine rea(hCML'08), pages
1096-1103. ACM, 2008.

A. von Lehman, E.G. Paek, P.F. Liao, A. Marrakchi, and J.S. Patel. f=aictibuencing learning
by back-propagation. IfEEE International Conference on Neural Netwarkslume 1, pages
335-341, San Diego 1988, 1988. IEEE, New York.

J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervigsedeling. In William W.
Cohen, Andrew McCallum, and Sam T. Roweis, editéhmceedings of the Twenty-fifth Inter-
national Conference on Machine Learning (ICML'Q@gpges 1168-1175, New York, NY, USA,
2008. ACM. ISBN 978-1-60558-205-4. doi: 10.1145/1390156.B8830

3408

